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Abstract

This thesis presents a method for the comprehensive optical simulation of disordered
scattering layers that can be used for light extraction in organic light emitting diodes
(OLEDs). The method is accurate in the sense that it solves Maxwell’s equations for
dipole emission into a plane parallel system of layers including multiple scattering
particles. To this end, the electromagnetic field is computed by means of an expansion
in spherical waves (to treat the scattering by the individual particles) as well as in plane
waves (for the propagation of the field through the OLED thin film system).

After visiting the fundamentals of OLEDs and the issue of trapped light, the relevant
multiple-scattering formulas are derived in an excitation-response notation. They allow
the formulation of the scattering problem in terms of a linear system of equations
for the scattered field coefficients, featuring the so called T-matrix to account for the
scattering properties of the individual particles.

Numerical aspects of an efficient assembly and solution of the linear system are dis-
cussed, and formulas to process the solution further into the relevant figures of merit
(electric field distribution, dissipated dipole power, power flux through surfaces, far
field intensity distribution) are given.

The presented formalism has been implemented into a freely available software pack-
age, Smuthi. The program structure is sketched and the validity of the implementa-
tion is demonstrated by a comparison to finite-elements calculations.

Finally, the simulation method is applied to a typical OLED light management sce-
nario: it consists of a flat scattering layer integrated within a white OLED, whose
planar layout and the location of the emission zones have been optimized before-
hand to optimize the outcoupling efficiency. This way, a fair estimate for the gain in
outcoupling efficiency through an internal scattering layer is provided.

It is noted that the range of possible use cases for the presented theoretical formal-
ism and for the software package is not limited to light extraction from OLEDs, but
includes many other applications that involve particles near planar interfaces.
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Zusammenfassung

Diese Arbeit handelt von einer Methode zur umfassenden optischen Simulation von
organischen Leuchtdioden (OLEDs) mit internen ungeordneten Streuschichten zur
Lichtauskopplung. Die Methode ist exakt in dem Sinne, dass sie die Lösung der
Maxwellgleichungen für Dipolstrahlung in einem planparallelen Schichtsystem mit
mehreren Streupartikeln ermöglicht. Dies wird durch die Entwicklung des gestreuten
elektromagnetischen Feldes in Kugelvektorwellenfunktionen (zur effizienten Hand-
habung der Streuung an den einzelnen Partikeln) sowie in ebenen Wellen (zur Hand-
habung der Propagation des Lichtes durchs Dünnschichtsystem) erreicht.

Nach einer Einführung zum Thema OLEDs mit einem besonderen Augenmerk
auf Lichtauskopplung werden die relevanten Formeln für die Mehrfachstreuung in
einem Formalismus von Anregung und Systemantwort hergeleitet. Auf diese Weise
kann das Streuproblem in ein System von linearen Gleichungen überführt werden,
das auf der Grundlage des T-Matrix Formalismus’ die Berechnung der Streukoef-
fizienten erlaubt.

Es werden auch numerische Aspekte einer effizienten Aufstellung und Lösung dieses
Gleichungssystemes erörtert und Gleichungen, welche die Berechnung der interes-
santen Kenngrößen ermöglichen, werden hergeleitet (elektrische Feldverteilung, dis-
sipierte Leistung, Leistungsfluss durch Grenzflächen, Fernfeld-Intensitätsverteilun-
gen).

Die hier vorgestellte Simulationsmethode wurde auch in einer frei verfügbaren Soft-
ware (Smuthi) implementiert. Die Programmstruktur von Smuthi wird skizziert, und
die Korrektheit der Simulationsergebnisse wird durch einen Vergleich mit Finite-
Elemente Rechnungen belegt.

Abschließend wird die Simulationsmethode an Hand einer praxisrelevanten Fall-
studie illustriert. Hierzu wird eine weiße OLED, deren Auskoppeleffizienz bereits
durch Anpassen der Schichtdicken und der Lage der Emissionszonen optimiert wor-
den ist, mit einer internen Streuschicht versehen und der erwartbare Zugewinn in
der Lichtausbeute durch Simulationen berechnet.

Außer der Lichtauskopplung aus OLEDs kann der hier präsentierte theoretische For-
malismus und die Software für zahlreiche andere Anwendungen genutzt werden,
welche die Streuung von Licht an Partikeln in der Nähe von ebenen Grenzflächen
beinhalten.
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Preface

When I started my PhD project in the summer of 2012, my initial objective was to
study mechanisms of light scattering in layered media in order to identify design
rules for efficient organic light emitting diodes (OLEDs)1. My work was thus planned
to be part of a broader experimental research effort carried out at the Light Technol-
ogy Institute [1] with the aim of improving the efficiency of (mostly wet processed
and eventually printed) OLEDs – and simulations were supposed to be a mere tool
that would be used to approach this goal.

But soon it became evident that the numerics of scattering by disordered structures
in OLEDs is a difficult and interesting problem on its own. A major challenge is that
OLEDs with scattering layers involve multiple length scales: from the wavelength of
light, the layer thicknesses and the size of scattering particles, each in the order of
hundreds of nanometers, over the decay length of waveguide modes in the order of
tens of microns to the thickness of the substrate layer in the order of millimeters. This
makes the choice of a suitable modeling approach difficult, because each technique
usually applies only to a certain regime of length scales.

The focus of my project gradually shifted from

“What can we learn from optical simulations for the design of OLEDs with scat-
tering layers?”

towards

“What numerical strategy is best suited for the optical simulation of scattering
layers in OLEDs?”

The latter became the central question of my PhD studies. The new goal was to iden-
tify a simulation method that is accurate and numerically efficient at the same time.

The existing literature on optical simulations of scattering layers in OLEDs offered
basically two types of approaches: The first kind would apply approximate numer-
ical methods with restrictive assumptions like independent scattering or incoherent
multiple scattering. A frequently seen example is the usage of Monte-Carlo ray op-
tics scattering for disordered nanoscopic geometries. These simulation strategies run
with a moderate computational workload, but the underlying assumptions are in
general not fulfilled and it is not clear how accurate the results are.

1As will be explained in chapter 1, OLEDs suffer from light trapping and scattering layers can be
used for light extraction.

1



1. OLEDs and
the trapped-
light problem

2. Electromag-
netic waves

3. Scattering
particles in

layered media

4. The Smuthi
software
package

5. Simulation of
scattering layers

in OLEDs

Figure – Outline of this thesis. The chapters follow an A-B-B-B-A structure, where A refers to
OLEDs (blue) and B refers to electromagnetic scattering (red).

The second class of approaches follows rigorous modeling concepts like the finite el-
ement (FEM) or the finite difference time domain (FDTD) method. These simulations
usually bring an enormous computational workload and are thus limited to a sim-
ulation volume spanning a couple of wavelengths. It is then not straightforward to
derive macroscopic device parameters from these microscopic simulations.

With a look at the general electromagnetic scattering literature, it became clear that
one of the most powerful techniques for the simulation of scattering by particles is the
T-matrix method [2]. In the OLED literature, it seemed to be almost completely un-
known (one exception being a book chapter by Tishchenko [3]) although extensions
of the T-matrix method to multiple scattering [4] and to particles near infinite inter-
faces [5, 6] had existed for a long time. In addition to its relatively low recognition
in the nano-photonics research community, the lack of available computer codes for
particles near interfaces prevented the T-matrix method to be used more frequently
for these applications.

In light of these observations, the scope of this thesis is to ...

• transfer the T-matrix concept to scattering by many particles in stratified media

• identify numerical bottlenecks and present strategies for computational effi-
ciency

• introduce a computer code (Smuthi) for the simulation of light scattering by
particles near or between planar interfaces

• demonstrate that the suggested concepts are well suited for the accurate simu-
lation of relevant optical figures of merit of macroscopic OLED devices.

In that regard, this thesis addresses two scientific disciplines: the OLED research and
the electromagnetic scattering research. In fact, the theoretical and numerical con-
cepts as well as their implementation are not limited to the use in OLED simulations,
but can be applied to many fields including meta surfaces, near field microscopy or
the scattering of surface plasmon polaritons by particles on a metal surface – basically
any application involving scattering by particles near planar interfaces.

Accordingly, I have tried to prepare the thesis such that it is accessible for readers
from the OLED community without a dedicated interest in numerical details (they
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might want to read chapters 1 and 5 only) as well as for readers from the electro-
magnetic scattering community or users of the Smuthi software package (who might
want to read chapters 2 to 4 only), compare the above chapter flowchart.

As a consequence, there are two introductory chapters: In chapter 1, OLEDs and
the trapped light problem are introduced, and basic concepts for the optical model-
ing of OLEDs are reviewed. Chapter 2 then takes a step back and introduces some
concepts of electrodynamic theory that will be needed later on, especially the vector
wave functions as a basis set of solutions to the Maxwell equations in homogeneous
space, as well as an excitation-and-response formalism for the propagation of waves in
a planarly layered medium. Chapter 3 is the central part of this work. It contains the
derivation of the multiple scattering formalism for particles in a layered medium as
well as a discussion of some numerical aspects. Chapter 4 introduces Smuthi, a freely
available software package for the simulation of scattering by multiple particles in a
layered medium. Chapter 5 demonstrates how the presented computational strategy
and computer code can be applied to a realistic optimization problem of scattering
layers in white OLEDs. Equipped with the newly developed theoretical tools, the
OLED extraction problem is taken up again, and the simulated extraction efficiency
for OLEDs with scattering layer is compared to that of OLEDs without scattering
layer. Finally, in chapter 6 I draw conclusions and give an outlook on possible future
developments.

3



Contents

Preface 1

1. OLEDs and the trapped-light problem 7
1.1. The working principle of an OLED . . . . . . . . . . . . . . . . . . . . . 7

1.1.1. The OLED stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2. Molecular luminescence . . . . . . . . . . . . . . . . . . . . . . . 9

1.2. Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1. The trapped-light problem . . . . . . . . . . . . . . . . . . . . . 10
1.2.2. Light extraction approaches . . . . . . . . . . . . . . . . . . . . . 11

1.3. Optical modeling concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1. The extraction pattern . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.2. Molecular luminescence in a photonic environment . . . . . . . 18
1.3.3. Internal disordered scattering layers (state of the art) . . . . . . 22

2. Electromagnetic waves 27
2.1. The wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2. Dyadic Green’s function . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3. Vector wave functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1. Plane vector wave functions . . . . . . . . . . . . . . . . . . . . . 29
2.3.2. Spherical vector wave functions . . . . . . . . . . . . . . . . . . 34
2.3.3. Transformations and translations . . . . . . . . . . . . . . . . . . 37

2.4. Stratified media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.1. Transfer Matrix Scheme . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.2. Scattering Matrix Scheme . . . . . . . . . . . . . . . . . . . . . . 39
2.4.3. Excitation and response . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.4. Waveguide modes . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3. Scattering particles in planarly layered media 45
3.1. Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2. Initial field, incoming field and scattered field . . . . . . . . . . . . . . . 46
3.3. The T-matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1. Computing the T-matrix . . . . . . . . . . . . . . . . . . . . . . . 49
3.4. The incoming field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1. Excitation as plane wave expansion . . . . . . . . . . . . . . . . 51
3.4.2. Excitation as spherical wave expansion . . . . . . . . . . . . . . 53

4



Contents

3.5. Initial field coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.1. Plane wave excitation . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.2. Focused beam excitation . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.3. Point dipole sources . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6. Multiple scattering coefficients . . . . . . . . . . . . . . . . . . . . . . . 58
3.7. Linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.8. Scattered far field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.8.1. Cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.9. Scattered near field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.10. Numerical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.10.1. Lookup table for particle coupling matrices . . . . . . . . . . . . 64
3.10.2. Evaluation of Sommerfeld integrals . . . . . . . . . . . . . . . . 65
3.10.3. Solution of the linear system . . . . . . . . . . . . . . . . . . . . 68

4. The Smuthi software package 69
4.1. Program structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2. Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1. Conservation of energy . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.2. Comparison to other codes . . . . . . . . . . . . . . . . . . . . . 76

5. Simulation of disordered internal scattering layers in OLEDs 78
5.1. Stack optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2. The scattering layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3. Accuracy analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1. Numerical errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.2. Sample averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.3. Particle number truncation . . . . . . . . . . . . . . . . . . . . . 88

5.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.1. Radiation into the substrate . . . . . . . . . . . . . . . . . . . . . 90
5.4.2. Diffuse and specular reflection . . . . . . . . . . . . . . . . . . . 90
5.4.3. Radiation into the ambient . . . . . . . . . . . . . . . . . . . . . 94

6. Discussion 96
6.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Appendix 100

A. PVWF expansion: energy flux 101

B. SVWF addition theorem 103

C. Excitation and response (formal definition) 104

5



Contents

D. Tests for the conservation of energy 106

Danksagung 111

List of Figures 114

List of Tables 119

Bibliography 120

Peer-reviewed journal publications 136

Conference proceedings 138

Supervised thesis projects 139

6



1. OLEDs and the trapped-light
problem

This chapter introduces the working principles of organic light emitting diodes (OLEDs) (sec-
tion 1.1), and loss mechanisms that limit the efficiency of OLEDs are discussed, with an
emphasis to waveguiding losses (section 1.2). The outcoupling efficiency is identified as the
figure of merit with the most direct connection to optical simulations, and various approaches
to enhance the light extraction are reviewed. Fundamental concepts of optical OLED mod-
eling are introduced (section 1.3). As the central figure of interest, the extraction pattern is
defined. A semi-quantum mechanical approach is compared to the (more usual) classical mod-
eling framework. Finally, the state of the art for the optical simulation of internal scattering
layers in OLEDs is reviewed.

Organic light emitting diodes (OLEDs) turn electrical energy into visible light. They
are organic in the sense that emitter materials are carbon-based, in contrast to con-
ventional inorganic light emitting diodes (LEDs) made of inorganic crystalline semi-
conductors. The working principle is based on molecular electroluminescence, that
is the decay of an excited molecular electronic state to a state of lower energy un-
der emission of a photon, while the electronic excitation is achieved by applying a
voltage.

1.1. The working principle of an OLED

1.1.1. The OLED stack

Due to the limited electrical conductivity of organic materials, OLEDs are designed
as thin-film devices with layer thicknesses in the range of ∼ 10 nm to ∼ 100 nm but
with lateral dimensions that can range in the order of centimeters (thus, OLEDs are
area light sources). The bottom of the OLED stack is given by a mechanically stable or
flexible substrate layer. The lateral charge transport is provided by two electrode lay-
ers, and the active material is sandwiched between them (see figure 1.1). The charge
carriers thus only need to travel a distance in the order of the layer thickness through
the emitter layer. In so called bottom-emitting OLEDs, all layers below the emitter layer
are transparent in order to allow the photons to propagate through the bottom side
out of the OLED, whereas in top-emitting OLEDs, the layers above the emitter layer

7



1. OLEDs and the trapped-light problem

glass substrate

transparent electrode

organic layers

metal electrode

Figure 1.1. – Working principle of a bottom-emitting OLED: Charges are injected into and
transported through the emitter layer by applying a voltage between the elec-
trode layers. The charges form bound states (excitons) which eventually decay
to emit a photon.
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Figure 1.2. – Energy diagram of a typical OLED stack consisting of anode, hole transport
layer (HTL), electron blocking layer (EBL), emitter layer, hole blocking layer
(HBL), electron transport layer (ETL) and cathode. Electrons propagate in the
lowest unoccupied molecular orbital (LUMO), whereas holes propagate in the
highest occupied molecular orbital (HOMO) of the respective layer materials.

are transparent. If both is the case, a semi-transparent OLED can be realized. In any
case, at least one of the two electrodes needs to be transparent. So called transpar-
ent conducting oxides (TCOs) like indium doped tin oxide (ITO) or aluminum doped
zinc oxide (AZO) are typically employed.

In order to shape the emission spectrum of white OLEDs, several emitter layers cover-
ing different parts of the visible light spectrum can be combined. Further, additional
layers can be included to improve the internal quantum efficiency: charge injection
layers improve the charge injection by energy level alignment, charge transport lay-
ers avoid space charges and charge blocking layers confine the charges in the desired
emission zone. A typical OLED energy level diagram is depicted in figure 1.2.
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1. OLEDs and the trapped-light problem
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Figure 1.3. – Electroluminescence mechanisms in OLEDs. Left: Fluorescence (only singlet
excitons decay under emission of a photon). Middle: Phosphorescence (also
triplet excitons decay radiatively). Right: Thermally activated delayed fluores-
cence (triplet excitons are thermally elevated to the singlet state from where
they decay radiatively).

1.1.2. Molecular luminescence

Electrons and holes are attracted to each other by the Coulumb force. In organic ma-
terials, the screening of that force is weak such that bound states of one electron and
one hole, called excitons, emerge. Here, singlet excitons with a total spin of zero are
distinguished from triplet excitons with a total spin of one. Only the former can decay
radiatively to the molecule’s ground state without violating the quantum mechanical
selection rules. As the multiplicity of triplet excitons is three times higher than that of
singlet excitons, only 25 % of the excitons that form under electrical operation of an
OLED are at first in the singlet state.

Fluorescent emitter based OLED devices which do not offer a harvesting mechanism
for triplet excitons, can therefore not have an efficiency larger than 25 %, because the
energy of triplet excitons is wasted to non-radiative decay channels. In contrast, phos-
phorescent emitter materials allow higher internal quantum efficiencies (see section
1.2) of up to 100 % [7]. Heavy nuclei like iridium in the molecule lead to a high spin-
orbit interaction which enhances the probability of the “forbidden” radiative decay
of triplet excitons. Finally another class of emitter materials, allowing thermally acti-
vated delayed fluorescence [8] have been demonstrated to yield high internal quantum
efficiencies: They are characterized by a small energy difference between singlet and
triplet excitons, such that the latter can be thermally converted into the former.

1.2. Efficiency

Various figures of merit can be defined to quantify the efficiency of an OLED. In this
work, I focus on the external quantum efficiency ηext, because it is most directly related
to the (passive) optical properties of the OLED. The external quantum efficiency is
defined as the number of emitted photons Nγ,out divided by the number of electrons
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1. OLEDs and the trapped-light problem

Ne injected into the device:

ηext =
Nγ,out

Ne

(1.1)

An ideal (single-junction) OLED would have a quantum efficiency of 1, but in real
devices, absorption on the one hand and electronic losses on the other hand lead to
significantly smaller values, such that

ηext = ηintηout, (1.2)

where ηint denotes the internal quantum efficiency, that is the number of generated pho-
tons divided by the injected number of electrons and ηout denotes the outcoupling ef-
ficiency, that is the number of emitted photons divided by the total number of gener-
ated photons, including the absorbed.

It is instructive to further split up the internal quantum efficiency into factors repre-
senting the various loss mechanisms [9]. First, the number of formed excitons divided
by the number of injected charge carriers is denoted by γ. It is also called the charge
balance factor, because if an unequal amount of electrons and holes are injected, then
γ < 1.

Further, the singlet/triplet factor ηS/T accounts for the fact that during electrical op-
eration of an OLED, the probability to form triplet excitons is 0.75, whereas the prob-
ablity to form singlet excitons is 0.25. As explained in section 1.1.2, up to 75% of the
generated excitons are thus lost for light production due to selection rules. This sce-
nario would correspond to a singlet/triplet factor of ηS/T ≈ 0.25, whereas ηS/T = 1 for
a material where both singlet and triplet excitons contribute to light generation.

Finally, the actual rate of radiative exciton decay can be smaller than the value
dictated by spin statistics, because other loss mechanisms like non-radiative decay
or “quenching” (non-radiative energy transfer to non luminescing molecules) are
present. This additional loss is denoted by qeff . Collecting these loss mechanisms,
the external quantum efficiency is written as

ηext = γηS/Tqeffηout. (1.3)

By selection of appropriate materials and by a wise stack design, each of these loss
factors can be addressed and optimized, see for example [9, 10].

1.2.1. The trapped-light problem

While OLEDs with an internal quantum efficiency of approximately 100 % are fea-
sible [7], it is mainly the outcoupling efficiency that ultimately limits the external
quantum efficiency. As the refractive index of the organic layers (n ∼ 1.75) as well as
that of the transparent electrode layers (n ∼ 1.85) is usually higher than that of the
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escape
cone

extracted light

substrate guided

thin film guidedz

Figure 1.4. – Trapped light in an OLED: Only photons that are emitted into the escape cone
of the substrate (i.e., with an emission angle smaller than the critical angle for
total internal reflection) contribute to the usable light output.

substrate (n ∼ 1.5), the OLED stack as depicted in figure 1.4 forms a slab waveguide
structure with waveguide modes that are confined in the thin-film system, see also
figure 1.5. In the following, I will refer to light in these modes as thin-film guided light.
In addition, for bottom-emitting and transparent OLEDs, the substrate’s refractive in-
dex is higher than that of air, and further waveguide modes exist that can propagate
in the substrate but not in the air. These modes will be referred to as substrate modes.

Light emission from inside the emitter layer will necessarily excite the thin-film and
substrate waveguide modes. These compete with the radiation out of the device,
such that the external quantum efficiency of conventional white OLEDs is limited to
ηext . 25 % [10].

1.2.2. Light extraction approaches

Numerous approaches have been suggested to improve light extraction from waveg-
uide modes or to suppress their excitation. Several review articles have been dedi-
cated to this topic [9, 11–13]. In the following, the most important ideas will be enu-
merated.

Some light extraction approaches only aim at the extraction or suppression of sub-
strate modes. They are referred to as external outcoupling. Other approaches mostly
aim at the extraction or suppression of thin-film guided modes. This is referred to as
internal outcoupling.
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1. OLEDs and the trapped-light problem
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Figure 1.5. – Electric field profile of waveguide modes for a typical OLED structure. The stack
supports three modes: The fundamental (TM0) and first order (TM1) transverse
magnetic mode as well as the fundamental transverse electric mode (TE0). The
TM0 mode is also called surface plasmon polariton (SPP).

Micro-cavity optimization Interference in the OLED thin-film system influences
the fraction of photons trapped in waveguide modes. A careful choice of the layer
thicknesses and the inclusion of additional optical spacer layers can significantly en-
hance the (internal and external) outcoupling efficiency. In particular, the distance of
the emitting molecule from the metal electrode is an important parameter. Section 5.1
presents a detailed discussion of the stack optimization with regard to outcoupling
efficiency of white OLEDs.

Dipole moment orientation Luminescent molecules are dipole emitters, see chap-
ter 1.3. The light emission is preferred in the directions perpendicular to the transi-
tion dipole moment, whereas in the direction parallel to the dipole moment, emission
is suppressed. A statistically preferred in-plane orientation of the dipole moments
(“horizontal dipoles”) thus leads to a greatly enhanced (internal and external) out-
coupling compared to a statistically isotropic or out-of-plane orientation (“vertical
dipoles”) [9, 14–17]. Emitter molecules can be chemically designed to show a pre-
ferred orientation of transition dipole moments. In combination with suitable depo-
sition techniques, the alignment of the dipole moments with the layer interfaces and
thereby the outcoupling efficiency can be positively influenced.

Macro-extractors Macro extractors achieve almost 100 % external outcoupling. A
macroscopic glass half sphere is brought into optical contact with the substrate using
index-matching oil. If the dimension of the active area is much smaller than the glass
half sphere’s size, all light rays approach its surface approximately under normal
incidence, such that reflection is effectively suppressed [9]. Alternatively, a prism
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instead of a half sphere can be used [18]. For large-area OLEDs, this approach is
not practicable because very large extractors would be required. For an analysis of
the total light emitted into the substrate, macro-extractors are very useful. The so
extracted light pattern, measured with respect to its spectral, angular and polarization
dependence, allows for conclusions regarding the emission zone, emitter orientation
and internal quantum efficiency [14, 17, 19–22].

External particle-based scattering layers A scattering layer is deposited on the
bottom side of the substrate (i.e., the air side) [23–26]. When propagating through
that layer, the direction of a light ray is changed in a probabilistic manner. This re-
distribution of propagation angles allows for a photon recycling of the trapped light:
Rays that have undergone total internal reflection at the substrate/air interface need
to pass the scattering layer before hitting that interface again, such that they are not
necessarily in the angular regime of total reflection anymore and thus get a ”second
chance” to escape. In terms of fabrication, this approach is quite simple. Scattering
particles are dispersed into a matrix material, and this mixture is applied to the sub-
strate back side after the actual OLED fabrication steps have been completed. The
drawback is that only external outcoupling can be achieved.

External micro-structures Instead of particle-based scattering structures, micro-
structures can be used to redistribute the light in the substrate. The most prominent
example are micro-lenses [27–30]. Pyramids or roughened surfaces have been pro-
posed, too [18]. In contrast to the macro-extractor the projected surface area is not
larger than the active area of the OLED, such that due to Étendue conservation, a
complete light extraction is not possible. However, for non Lambertian emission pro-
files from the OLED stack into the substrate, the shape of the micro structures can be
adapted to yield an optimal external outcoupling efficiency [31].

High index substrates Technologically, internal outcoupling is more difficult than
external outcoupling, because internal scattering structures carry the risk of introduc-
ing shunts in the electrically relevant layers. One solution is to use high index glasses
or plastics for the substrate of bottom emitting OLEDs and thereby eliminate the re-
fractive index contrast between the thin film system and the substrate [32–34]. This
way, no thin-film guided modes are supported, and the increased portion of substrate
guided light can be extracted through external structures, see above. The approach
can be regarded as an internal outcoupling technique, but it only works in combina-
tion with additional external outcoupling. In the case of high index glass as substrate,
a drawback of this method is high material cost.
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Periodic internal structures One dimensional (gratings, [35–41]) or two dimen-
sional (photonic crystal slabs, [42–45]) periodic scattering structures have been intro-
duced into the thin film system to couple the internal waveguide modes to radiation.
These structures are typically fabricated in a top-down manner by means of litho-
graphic techniques. This approach allows good control over the achieved structures,
but the emission characteristics of such devices often shows angular color distortions
due to deterministic outcoupling of the waveguide modes into certain directions.

Disordered internal structures Scattering structures without periodicity can be
fabricated using bottom-up techniques like dewetting of thin metal films as etch
masks [46–48], microsphere lithography [49] or phase separation of polymer blends
[49–57]. Cylindrical nano discs or nano pillars can be formed, and planarized by a
transparent layer of different refractive index. In bottom-emitting OLEDs, such struc-
tures are typically inserted between the substrate and the transparent electrode. The
remaining OLED stack can then be applied without alteration on top of the scattering
layer, which can in fact be regarded as part of the substrate. Using internal disordered
scattering layers in combination with a macro-extractor and an emitter material with
a horizontal dipole orientation, a record efficiency of ηext = 78 % has recently been
claimed [58].

Volumetric internal scattering layers Another very promising approach relies on
internal scattering layers on the basis of nano particles [25, 26, 59–70]. Again, the
preferred location for such layers in bottom-emitting OLEDs is between the substrate
and the transparent electrode. The scattering intensity can be tuned by changing
the particle concentration, size and material. Compared to 2D-disordered scattering
structures, the scattering layers on the basis of nano particles are quite thick (in the
range of several micron). Consequently, the scattering matrix material needs to have
a high refractive index in order to allow the thin-film guided modes to propagate in
the scattering layer. This can be achieved by mixing smaller nano particles into the
layer. The resulting effective refractive index can be tuned by the volume fraction of
these smaller, non scattering particles [62]. The most frequently used material used
for the scattering particles is TiO2 due to its high refractive index and low absorption.
Alternatively, hollow-core nano particles have been proposed [68], exploiting the low
refractive index of air. In fact, it is the refractive index contrast to the host medium
which yields scattering.

Rough internal interfaces Surface roughening of the substrate by means of sand
blasting, abrasion and wet etching has been proposed to introduce a scattering in-
ternal interface. After application of a thin film of a high index material, the rough
surface can be planarized with a polymer layer [71].
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Corrugated OLED stack One can also produce an OLED stack such that the elec-
trically relevant layers, especially the metal electrode, is corrugated [35, 72–74]. The
advantage is a comparatively large scattering effect, that also couples surface plas-
mon polariton (SPP) modes to radiation. This is difficult to achieve with other ap-
proaches, as the mode overlap of the SPP modes with the scattering centers is weak
for planarized structures. A drawback of this approach is that the electrical properties
of the OLED are affected, and it is difficult to exclude an introduction of shunts. For
top-emitting OLEDs, corrugation of the layer stack is nevertheless the most important
approach for outcoupling [75, 76].

1.3. Optical modeling concepts

Optical simulations are of great importance in the layout of OLED designs, as they
allow to predict the outcoupling efficiency [77] as well as the color and angular emis-
sion properties for a given layer stack. Compared to purely experimental optimiza-
tion approaches, where the variation of parameters require the production of many
samples, OLEDs with desired properties can be designed with less effort and mate-
rials consumption. In addition, optical simulations have successfully been used to
draw conclusions on internal OLED properties [14, 21] such as emission zones [19],
transition dipole orientation distributions [17, 22] and internal quantum efficiencies
[20]. This can be achieved by measuring the angular and polarization resolved spec-
tral light output into the substrate using a goniometer setup with macro-extractor and
then fitting simulated emission patterns to the measured.

In order to achieve a simple optical model, it is common to apply the following ide-
alizations:

• Layers are homogeneous (constant refractive index)1.

• Layers are bounded by parallel planes. That implies that surface roughness is
neglected.

• Layers are infinitely extended into the lateral direction.

These idealizations can be subsumed in stating that the OLED thin-film system is a
stratified medium, see chapter 2.4. Further,

• Light emission is assumed to originate from electric dipole transitions (higher
orders are neglected, see section 1.3.2).

• The coherence length of the molecular luminescence is assumed to be large com-
pared to the thin film thicknesses, whereas in the substrate, incoherent light
propagation is assumed (see section 1.3.1).

1This approximation prohibits the treatment of absorption in the emitter layer, because dipole life
times in absorbing media are zero.
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All of these approximations are well justified in most practical cases, and excellent
agreement between measurement and simulation has been achieved (see for example
[9, 20, 77]).

1.3.1. The extraction pattern

The propagation of light through a bottom-emitting OLED stack is inherently a multi-
scale problem: Whereas the thin-film system of the OLED is characterized by layer
thicknesses in the nano scale (such that a wave optics treatment is essential in order
to account for interference), the substrate and possible external micro-structures are
much larger than the wavelength of visible light such that a ray optics treatment is
more appropriate.

In order to achieve an overall optical model of the bottom-emitting OLED, one can
define the extraction pattern as the central quantity2 [78]:

Xair
j (λ, β) =

1

P0 (λ)

d

dβ
P air
j (λ) , (1.4)

where λ denotes the vacuum wavelength, β is the polar propagation angle with
π/2 ≤ β ≤ π, see figure 1.6, P0(λ) is the internal spectrum (that is the rate of pho-
tons generated per wavelength times the photon energy), j is an index to distinguish
between TE (j = 1) and TM (j = 2) polarized radiation and P air

j (λ) is the total power
of light emitted with polarization j and wavelength λ. If the extraction pattern and
the internal spectrum are known, the outcoupling (quantum) efficiency can be calcu-
lated according to

ηout =
2∑

j=1

∫
dλP γ

0 (λ)
∫

dβ Xair
j (λ, β)∫

dλP γ
0 (λ)

with P γ
0 (λ) = P0 (λ) /~ω denoting the internal photon number spectrum (as opposed

to the energy spectrum P0 (λ)). Before calculating the extraction pattern to the air, it is
first necessary to solve for the radiation pattern in the substrate in analogy to (1.4),

Xsub
j (λ, β) =

1

P0 (λ)

d

dβ
P sub
j (λ) , (1.5)

where P sub
j (λ) is the intensity inside the substrate. In contrast to the extraction pattern

to the air, the radiation pattern in the substrate contains radiation propagating in both
downward directions π/2 ≤ β ≤ π and upward directions 0 ≤ β ≤ π/2, due to the
reflection from the substrate/air interface.

2I assume that all structures of the OLED are statistically isotropic with regard to rotations around
the direction normal to the layer interfaces. Therefore, the extraction pattern is assumed to only
depend on the polar angle.
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Figure 1.6. – Light propagation in the substrate.

Solving for Xsub
j is thus a ray optics problem with the following boundary conditions

[78]:

• An initial substrate pattern Xsub,0
j (λ, β) which corresponds to the initial radiation

from the active OLED thin film stack into the substrate, divided by the total
dissipated power. The initial substrate pattern is computed by means of a wave
optics calculation. Interference effects are essential.

• The reflectivity of the OLED stack, which is again the solution of a wave optics
problem.

• The transmittivity and reflectivity of the substrate/air interface.

Once the substrate radiation pattern is known, the air radiation pattern can be evalu-
ated according to

Xair
j (λ, βair) = T air

j ( λ, βsub)Xsub
j (λ, βsub)

dβsub

dβair

(1.6)

with
nsub sin βsub = sin βair (1.7)

and
dβsub

dβair

=
cos βair

nsub cos βsub

, (1.8)

where βair and βsub are the respective propagation angles in air and in the substrate,
T air
j ( λ, βsub) is the transmittance of light rays with polarization j from the substrate

into the air and nsub is the substrate refractive index.

For a planar OLED stack, the molecular emission (see section 1.3.2) and thereby the
initial substrate pattern Xsub,0

j can be modelled in closed form up to the numerical
solution of a one-dimensional integral [79, 80]. The reflectivity Roled

j ( λ, β) of the
OLED stack is a function of the wavelength and propagation angle and polariza-
tion, and can be evaluated by means of the transfer matrix method or the scattering
matrix method (see section 2.4). Finally, the reflectivity Rair

j ( λ, β) at the substrate/air
interface is simply given by the Fresnel formula, and the transmittivity into air is
T air
j ( λ, β) = 1−Rair

j ( λ, β).
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Then, the forward and backward propagating radiation patterns are connected by the
following equations:

Xsub
j (λ, β) =

{
Rair
j (λ, β)Xsub

j (λ, π − β) for 0 ≤ β ≤ π/2

Xsub,0
j (λ, β) +Roled

j (λ, β)Xsub
j (λ, π − β) for π/2 < β ≤ π

(1.9)

1.3.2. Molecular luminescence in a photonic environment

Molecular luminescence is a quantum mechanical problem, and the interaction of
light and matter inside a thin-film system can be studied in the framework of cav-
ity quantum electrodynamics. However, for the optical modeling of OLEDs, a de-
scription in terms of classical electrodynamics is more appropriate in most cases. In
the following, I want to briefly sketch both approaches. The aim is to show how
the classical model is related to the quantum mechanical picture and where are the
conceptual and the practical limitations of the classical and the quantum approach,
respectively.

1.3.2.1. Quantum-mechanical description

The decay of an excited molecular state |e〉 into a lower energy state |g〉 under the
creation of a photon |γµ〉 is a quantum mechanical transition, called spontaneous emis-
sion:

|e〉 → |g, γµ〉 (1.10)

In the so called minimal coupling treatment, the electronic states of the excited and
the relaxed molecule are treated as quantum states, whereas the generated photon
enters the picture as an external field Eµ (r).

In first order perturbation theory, the transition rate is given by Fermi’s Golden Rule
[81, 82],

Γ(e, g) =
2π

~2

∑

µ

∣∣∣ 〈g|Ĥµ|e〉
∣∣∣
2

δ(ωµ − ωeg), (1.11)

where Ĥµ is the perturbation Hamilton operator for the photon state |γµ〉, and ωµ and
ωeg are the frequencies that correspond to the photon energy and the energy difference
between the molecular states |e〉 and |g〉, respectively. The sum runs over all photon
states, indexed by µ.

In dipole approximation, the interaction Hamilton operator Hµ reads

Hµ = qr̂ · Eµ, (1.12)
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OLED

L

mirror

Figure 1.7. – Regularization of photonic states: OLED between hypothetic perfect electric
conductors

where q stands for the elementary charge and r̂ denotes the electronic position oper-
ator. We can thus write

Γ(e, g) =
2πq

~2

∑

µ

|deg · Eµ(r0)|2δ(ωµ − ωeg). (1.13)

In the above,

deg = 〈g|r̂|e〉 (1.14)

denotes the transition dipole moment of the transition from state |e〉 into |g〉 and r0 is
the location of the emitting molecule 3.

When modeling photon emission inside a photonic environment (like planarly lay-
ered media), the idea is to replace the electric field of the free-space photon (a plane
wave), by a solution of Maxwell’s equations for the system at hand.

The actual total transition rate Γ cannot be determined theoretically without consid-
ering the wavefunctions of the electronic states |e〉 and |g〉. However, in many situa-
tions it is more important to assess the relative transition rate Γµ(e, g)/Γ(e, g), that is
the share of excited photons in some collection of states {|γµ〉 |µ ∈ Ω} relative to the
total number of excited photons. And the relative transition rate can be evaluated
knowing only the orientation of the transition dipole moment. Setting

deg = |deg|êeg, (1.15)

one can write

ΓΩ(e, g)

Γ(e, g)
=

∑
µ∈Ω |êeg · Eµ(r0)|2
∑

µ |êeg · Eµ(r0)|2
. (1.16)

3Here we have used that the wavelength of the photon is large compared to the molecule size, such
that Eµ (r) ≈ Eµ(r0).
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A priori, it is not clear how the sum in the above expression shall be evaluated, as
the set of photonic modes in an unbounded volume is not countable. The trick is
to imagine the photonic environment (e.g., the thin film system) between a pair of
perfectly conducting metallic plates4 (see figure 1.7), and consider the limit of the
distance L between those plates tending towards infinity [83]. The number of modes
fitting into this 1D cavity scales proportional to L. At the same time, the mode profile
Eµ (r) needs to be scaled such that the energy in the respective mode is constant (as
it corresponds to ωeg). As the total energy is porportional to

∫
d3r|Eµ|2, |Eµ|2 scales

as L−1, such that the sum in (1.16) takes a well-defined value in the limit L → ∞,
compare [84].

One can thus model the outcoupling efficiency of an OLED by following these
steps:

1. Use the transfer matrix method (see chapter 2.4) to evaluate the mode profile
Eβ(z) for a list of radiation modes, indexed by the polar angle of propagation β.
These are nothing else than a reflected plane wave, incident under polar angle
β. The density of states as well as the normalization of the mode profile are
obtained using the above described regularization scheme.

2. Calculate the waveguide modes supported by the layered medium. Here, the
regularization scheme with the metallic box is not necessary, as the waveguide
modes are countable with regard to the polar direction and their energy is con-
fined to the thin film system.

3. Use (1.16) to obtain the relative transition rate into each of these modes.
The outcoupling efficiency would correspond to the relative transition rate
ΓΩ(e, g)/Γ(e, g) where Ω is the set of all radiative states (as opposed to the
waveguided).

The above described formalism can yield accurate results for lossless media. But in
the case of optical losses, it is not well defined. In particular, the near-field coupling
to metal layers is not estimated correctly [85]. Despite this drawback, the quantum
mechanical approach has been used for the optical modeling of planar OLEDs in a
couple of publications [85–87].

1.3.2.2. Classical description

In the framework of classical electrodynamics, molecular luminescence can be de-
scribed by identifying the emitter with a monochromatic point dipole source [79, 88,
89], that is an external current distribution of the form

j(r) = −iωδ(r− r0)deg, (1.17)

4For OLEDs with reflecting electrode, consider a single perfectly conducting plate in opposition to
the OLED.
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where deg, as before, denotes the electric dipole moment associated with the molec-
ular decay. A harmonic time dependency of exp (−iωt) is implicitly understood for
all fields, where as before, the angular frequency ω = ωeg corresponds to the energy
difference between excited molecular state and ground state. The electric power dis-
sipated by the time-harmonic current distribution is [89]

Pdip = −1

2

∫

R3

d3r Re (j∗ (r) · E (r))

=
ω

2
Im
(
d∗eg · E(r0)

)
.

(1.18)

The above just describes that a current performs work against the electric field that it
generates, and E(r0) includes both, the dipole’s primary field as well as the response
from the photonic environment5. According to Poynting’s theorem, the electric power
dissipated by the dipole source equals the radiated electromagnetic power.

In order to model the outcoupling efficiency of an OLED, the following steps are
followed:

1. Compute the electromagnetic fields by solving Maxwell’s equations for an ex-
ternal current distribution (1.17). This can be achieved by expanding the field of
the dipole source in terms of cylindrical waves [79, 91] or plane waves [92], and
employ the transfer matrix scheme or the scattering matrix scheme (see chapter
2.4) to propagate the partial waves through the layer stack.

2. Evaluate the total dissipated power Pdip of the dipole using (1.18).

3. Evaluate the electromagnetic outcoupled power and the far field intensity as
will be explained in section 2.3.1.2. The ratio between the emitted power and
the total dissipated power yields the outcoupling efficiency.

The classical treatment has been demonstrated to yield relative life time predictions
in very good agreement to experimental observations, see [79]. It is valid also for
lossy materials6 and the near-field coupling to metal layers is treated accurately7. For
that reason, the classical model is the state of the art for optical OLED modeling in
the academic [93] as well as in the industrial sector. Commercial software products
are available on the market, for example Setfos by FLUXIM [94].

5As the dipole’s dissipated power models the decay rate of the luminescent molecule, we can see at
this point that the latter depends on the photonic environment of the molecule. This result that
might seem counter-intuitive at first sight is called the Purcell effect [90].

6With one exception: Absorption in the emitter layer cannot be considered. It would lead to an
infinite decay rate due to absorption of the singular near field

7The mathematical treatment of surface plasmon polariton modes was introduced by Arnold Som-
merfeld who studied their radio-frequency analogs in his seminal paper “Über die Ausbreitung
der Wellen in der drahtlosen Telegraphie” [91]
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Figure 1.8. – Modeling approaches for OLEDs with internal disordered scattering layers.

1.3.3. Internal disordered scattering layers (state of the art)

Internal disordered scattering layers in OLEDs break the transverse translational
symmetry, such that a closed form computation of the extraction pattern is no longer
feasible. In this section, I want to briefly discuss numerical approaches that have
instead been applied to this problem. First, it is worth noting that the computation
of the extraction efficiency is a statistical problem, and numerical simulations will in
one or the other way need to address the probabilistic nature of disordered scattering
layers. Secondly, simulation strategies can be distinguished by how they treat light
scattering – coherently or incoherently? In other words, is the electromagnetic field
or the electromagnetic intensity the central quantity of the scattering calculation?

1.3.3.1. Incoherent and coherent scattering

For volumetric nano particle based scattering layers, the most popular modeling tech-
nique is to follow an incoherent Monte-Carlo approach [24, 95, 96] or to solve the
radiative transfer equation (RTE) [97, 98] for the propagation in the scattering layer
(compare the left picture in figure 1.8). The initial emission from the OLED layer sys-
tem into the scattering layer can be computed using the standard modeling formal-
ism for flat OLEDs, see section 1.3.2.2, whereas the reflectivity for light rays hitting
the OLED thin film system can be evaluated by means of the transfer matrix formal-
ism, see chapter 2.4. With this approach, the statistical nature of the scattering layer
is automatically accounted for and the overall computational effort is low.

One issue with this method is that for compact scattering layers with smaller inter-
particle distances it can be expected that coherent multiple scattering effects become
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significant [99], such that an incoherent treatment does no longer yield an accurate
estimate of the extraction pattern. In fact, the thicknesses of experimentally realized
volumetric scattering layers reported in literature vary from several ten microns [18,
64] over a couple of microns [62,67] to a few hundred nanometers [59,66]. In addition,
it is not straightforward to include evanescent wave scattering (like the extraction of
surface plasmon polariton modes) within the incoherent framework.

On the other hand, many publications that deal with the simulation of flat scattering
layers in OLEDs treat the whole OLED stack including the substrate in a wave optics
simulation (see the right of figure 1.8). The extraction pattern into air can then directly
be evaluated by monitoring the electromagnetic power flux through the substrate
air interface [47, 48, 68]. In order to meet the probabilistic nature of the scattering
layer, ensemble averages over the random particle configuration or at least over the
dipole position relative to the scattering particles need to be computed by repeated
simulations.

A drawback of the full wave optics approach is that the substrate is usually modeled
with an unrealistically low thickness, the effect of which on the estimated extraction
pattern is not clear and should at least be averaged over by varying the substrate
layer thickness.

The most rigorous (but also most expensive) approach is to treat the OLED thin film
system including the scattering layer in a wave optics picture, and to address only
light propagation in the substrate with a ray optics treatment (compare the middle
picture of figure 1.8) [78].

First, one computes the initial radiation pattern Xsub,0
j from the OLED stack with

scattering layer into the substrate by means of wave optics simulations, see chapter 5
or [78]. Further, the reflectivity at the OLED stack8 (with scattering layer) is modeled
by means of a bidirectional reflectance distribution function (BRDF), the calculation of
which is again based on wave optics simulations [78].

Assuming that the OLED is azimuthally isotropic (i.e., there is no preferred azimuthal
direction in the scattering structure or the emitter molecules), a bookkeeping of the
polar propagation angle is then sufficient to describe the light field in the substrate,
and in that spirit one can define the polar BRDF by the relation

Roled
j,j′ (λ, β, β′) = Φ−1

inc

dΦj,refl

dβ
(1.19)

where

• Φinc is the radiant flux of a light ray with polar propagation angle β′ and polar-
ization j′ that is incident on the OLED from the substrate

8In the case of external micro-structures, one can also use a bidirectional scattering distribution func-
tion for the substrate/air interface, which can be obtained by means of ray tracing simulations.
However, in this work only planar substrate/air interfaces are considered.
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• Φj,refl is the j-polarized part of the radiant flux reflected back into the substrate
(diffuse and specular reflection).

The second case of (1.9) (the case of π/2 ≤ β ≤ π) is then replaced by

Xsub
j (λ, β) = Xsub,0

j (λ, β) +
∑

j′

∫ π/2

0

dβ′Roled
j,j′ (λ, β, β′)Xsub

j′ (λ, β′) . (1.20)

to compute the substrate radiation pattern and from that the extraction pattern ac-
cording to (1.6).

1.3.3.2. Wave optics computational approaches

The simulation of the light extraction pattern within the coherent approach involves
the solution of one or multiple wave optics problems for scattering centers inside a
planarly layered background medium. The wave optics problem has a unique exact
solution, and the task is to numerically construct an approximation to that solution.
A variety of computational approaches has been suggested in literature, and the se-
lection of an appropriate strategy depends on the desired accuracy, the complexity of
the problem, symmetries, availability of computer codes, and personal taste.

Following [100], we can distinguish between9 differential approaches, integral approaches
and series approaches.

Figure 1.9. – Computational wave optics approaches for particles inside a stratified medium.
In the differential approach (left), the whole geometry is discretized. In the in-
tegral approach (middle), only the particle volumes or surfaces need to be dis-
cretized, whereas the propagation in the layered background medium is treated
analytically. In the T-matrix method (a representative of the series approach)
(right), the scattered field is expanded in multipoles.

9For completeness, treatments on the basis of perturbation theory have also been published [101].
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Differential approach The differential approach aims at the direct solution of the
Helmholtz equation, (see section 2.1). Typical examples are

• the Finite-Difference Time Domain (FDTD) Method [102]

• the Finite-Element Method (FEM) [103].

These methods are most flexible and can be applied to complex geometries. Com-
mercial [104–106] and free [107] computer codes are available. It seems that currently,
the FDTD method is most popular for the simulation of OLEDs with internal scat-
tering layers [42, 45, 47, 68, 87, 108–110], whereas only few papers are based on the
FEM [111].

Integral approach In the integral approach, the Helmholtz equation is rewritten
in terms of an integral equation [112], coupling the electromagnetic fields with an
induced current distribution through the Green’s function of the Helmholtz equation,
see section 2.2. Methods that fall into this class include

• the volume integral equation (VIE) approach [113] which is related to the the
discrete dipole approximation (DDA) [114]. In a scattering problem, only the
scattering particle needs to be discretized, whereas the propagation in the sur-
rounding medium is treated analytically. This can be regarded as an advantage
over the FDTD and FEM methods. However, the drawback is that the system
of linear equations for the VIE or DDA approach is dense as compared to the
sparse interaction matrices in the FEM.

• the boundary element method (BEM) [115]. In contrast to the VIE approach,
the fields emerging from the induced current sources inside the scatterer are
represented by equivalent surface currents.

These volume integral or surface integral methods have in common that they rely
on the Green’s function formalism. Scattering particles inside a layered medium can
thus be treated by replacing the free-space Green’s function with the layered-medium
Green’s function, thereby avoiding the need to discretize the background geometry
[116, 117]. It seems that the integral approach has been applied only rarely to the
simulation of scattering layers in OLEDs [118].

Series approach Finally, the class of series approaches is given by methods where
space is partitioned into domains of constant refractive index, and the solution of
the Helmholtz equation is written as a series of basis solution functions in each of
these domains. The coefficients of these series expansions are calculated from a lin-
ear system of equations that exploits the continuity condition of the respective series
expansions across a domain boundary. A discretization of the geometry is not nec-
essary, and by a wise choice of the basis functions, an accurate representation of the
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scattered field can often be achieved with a small number of parameters. Methods
that fall into this category include

• methods that are based on the expansion of the scattered field in plane waves,
also called the rigorous coupled wave analysis (RCWA) [119, 120]. This method
is well suited for rectangular periodic geometries and has been applied to the
problem of light extraction from OLEDs in some publications [109, 121, 122].

• a method based on the expansion of the scattered field in cylindrical waves
[123–125]. Although this approach seems very promising, it has not yet been
applied to scattering layers in organic light emitting diodes. The reason is prob-
ably that this method is relatively unknown and computer codes seem not to be
available.

• a method based on the expansion of the scattered field in spherical waves and
plane waves, also called the T-matrix method [2, 4–6]. It has been applied to
scattering layers in OLEDs in a few publications [3, 78, 126, 127] and will be the
main subject of this thesis.
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2. Electromagnetic waves

This chapter introduces some basic concepts of electromagnetic wave propagation that are
needed for the treatment of scattering by particles in a thin film system. After briefly recalling
the wave equation of the electric field and the definition of the dyadic Green’s function (sections
2.1 and 2.2), the plane and spherical vector wave functions are introduced in section 2.3, and
the transformation of the one kind into the other is discussed. The section on plane vector
wave functions also includes the definition of a beam with Gaussian transverse footprint and
gives the expansion of the according electric field in plane waves. Finally, section 2.4 provides
an extensive treatment of wave propagation in stratified media, including the important case
of excitations from within.

2.1. The wave equation

Throughout this thesis, I assume that all media are non-magnetic, linear, local, piece-
wise homogeneous and isotropic. In the context of optoelectronic thin film devices
like OLEDs, the last of these assumptions is not always justified, as some commonly
used materials show a significant optical anisotropy. It is possible to extend the here
presented treatment to the case of anisotropic materials [128], but for simplicity I just
assume isotropy.

Monochromatic solutions 1

E (t, r) = E (r) e−iωt (2.1)

H (t, r) = H (r) e−iωt (2.2)

of the Maxwell’s equations can then be constructed by first solving the system [89,
129]

∇×∇× E (r)− k2E (r) = iωµ0j (2.3)

∇ · E (r) =
ρ

εε0

(2.4)

and then let
H (r) =

1

iωµ0

∇× E (r) . (2.5)

1This is not a restriction, as a general time-dependent field can be expanded in monochromatic fields
by means of a Fourier transform.
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2. Electromagnetic waves

In the above, k is the wavenumber in the respective medium containing r,

k =
nω

c
, (2.6)

µ0 is the vacuum permeability, j (r) is a time-harmonic source current in the sense of
equations (2.1) and (2.2), ρ (r) is a time-harmonic source charge density distribution,
ε and ε0 are the relative permittivity of the medium at angular frequency ω and the
vacuum permittivity, respectively, c is the vacuum speed of light and

n =
√
ε+ iσ/ (ωε0), (2.7)

is the complex refractive index, where σ is the conductivity of the medium at angular
frequency ω.

In a source-free domain, equations (2.3) and (2.4) reduce to the homogeneous
Helmholtz equation for a divergence-free field:

(
∇2 + k2

)
E (r) = 0 (2.8)

∇ · E (r) = 0. (2.9)

At an interface between two media, the fields fulfill the transmission boundary con-
ditions

n̂× (E (r)− E′ (r)) = 0

n̂× (H (r)−H′ (r)) = 0,
(2.10)

where E (r) ,H (r) and E′ (r) ,H′ (r) denote the fields at either side of the interface and
n̂ is the unit normal vector of the interface. Finally, a radiation condition is required
in order to distinguish between waves of outgoing and incoming type, respectively.
This is ensured by the Silver-Müller radiation condition [129]

lim
|r|→∞

(
√
ε0E (r)× r + |r| √µ0H (r)) = 0. (2.11)

2.2. Dyadic Green’s function

The dyadic Green’s function is an operator that maps a given point current source to
the resulting electric field. It is a matrix-valued function of two positions, r (the field
position) and r′ (the source position). It obeys the relations

∇×∇×G (r, r′)− k2G (r, r′) = I3δ (r− r′) (2.12)

lim
|r|→∞

(√
ε0G (r, r′)× r +

|r|
iω
√
µ0

∇×G (r, r′)

)
= 0 (2.13)

with I3 denoting the unit matrix. Then, for an arbitrary source current distribution j,
the electric field reads

E (r) = iωµ0

∫

R3

d3r′G (r, r′) · j (r′) . (2.14)
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α
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Figure 2.1. – Coordinate systems for vectors in position space and in reciprocal space.

r k
Cartesian (x, y, z) (kx, ky, kz)

Cylindrical (ρ, φ, z) (κ, α, kz)
Spherical (r, θ, φ) (k, β, α)

Table 2.1. – Notation for Cartesian, cylindrical and spherical coordinates of r and k.

2.3. Vector wave functions

In the spirit of what can be called the series approach to the numerical solution of
electromagnetic scattering problems [100], the field in a domain of constant refractive
index is expanded in terms of basis solutions to the Helmholtz equation. Namely,
I will employ the plane vector wave functions (PVWFs) and the spherical vector wave
functions (SVWFs). These basis sets are constructed from the Helmholtz equation
by a separation of variables for the Cartesian and the spherical coordinate system,
respectively [130].

Vectors r in configuration space and vectors k in reciprocal space will be represented
in cartesian, cylindrical and spherical coordinates. Figure 2.1 and table 2.1 give an
overview on the notation used in this work for the respective coordinates.

2.3.1. Plane vector wave functions

The plane vector wave functions in a medium with refractive index n and wavenum-
ber k = nω/c are given by

Φ±j (κ, α; r) = eik±·rê±j . (2.15)

Here ê±j denotes the unit vector in the azimuthal direction for j = 1 (TE-polarization)
and the unit vector in the polar direction for j = 2 (TM-polarization) at k = k±,
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2. Electromagnetic waves

z1

z2 D

Figure 2.2. – In a homogeneous domain D bounded by two z-planes, every solution of the
homogeneous Maxwell’s equations can be expanded in plane waves.

where k± is the wave vector given by the cylindrical coordinates (κ, α,±kz) and kz is
a function of κ,

kz =
√
k2 − κ2, (2.16)

ensuring |k| = k. As the square root is double-valued, the following convention is
employed to pick one well-defined value:

Re kz ≥ 0 if Im kz = 0
Im kz > 0 else. (2.17)

In vacuum or in a dielectric medium, i.e., when the refractive index n is real, kz is a
real number for κ ≤ k. Then, the amplitude of the PVWFs is an oscillating function
of all three components of the position vector r. The PVWF marked with a plus sign,
Φ+
j , correspond to waves propagating in the positive z-direction, whereas the minus

sign in Φ−j indicates a propagation into the negative z-direction.

For κ > k, kz is imaginary, such that Φ±j is an exponential function of z. This is called
an evanescent wave. Then, the square root convention (2.17) ensures that Φ+

j decays in
the positive z-direction whereas Φ−j decays in the negative z-direction.

2.3.1.1. Completeness

In this thesis, I assume without proof2 that the set of PVWFs, including the evanescent
waves, is complete in the following sense:

If a domain D ⊂ R3 is

• bounded by two z-planes, i.e., D = {r|z1 ≤ z ≤ z2} with −∞ ≤ z1 < z2 ≤ ∞
(see figure 2.2),

2For a rigorous analysis of the plane-wave spectrum representation, see [131].
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2. Electromagnetic waves

• source-free and homogeneous, i.e., filled with a material (or vacuum) of con-
stant refractive index,

and E (r) is a field that

• is divergence-free,

• fulfills the Helmholtz equation for r ∈ D,

then there exist functions g±1 (κ, α) and g±2 (κ, α) such that for r ∈ D

E (r) =
2∑

j=1

∫

R2

d2k‖
(
g+
j (κ, α)Φ+

j (κ, α; r) + g−j (κ, α)Φ−j (κ, α; r)
)

(2.18)

=
2∑

j=1

∫

R2

d2k‖
[
Φ+
j (κ, α; r),Φ−j (κ, α; r)

]
·
[
g+
j (κ, α)
g−j (κ, α)

]
, (2.19)

where d2k‖ is a short-hand notation for dkxdky = dκκ dα. In the second line of the
above equation, I have introduced a two-vector notation for the coefficients of the
forward and backward going waves for later convenience.

If z1 = −∞, i.e., all sources and inhomogeneities are located above z2, then g+
j (κ, α)

must vanish for all (κ, α) in order to fulfill the Silver-Müller radiation condition. Anal-
ogously, for z2 = ∞ we have g−j (κ, α) = 0. In either of these cases, the plane-wave
spectrum is uniquely determined if we know the electric field at a single z-surface,
the so-called scan plane [131].

2.3.1.2. Energy flux through a z-surface

The time-averaged electromagnetic power of a monochromatic field radiated through
a surface z = const can be evaluated using the complex Poynting vector:

〈P (z)〉 = Re

∫

R2

d2r‖ S (r) · êz (2.20)

with
S (r) =

1

2
E (r)×H∗ (r) . (2.21)

Inserting (2.18) into (2.5), one can see after a lengthy derivation (see Appendix A):

〈P (z)〉 =
2π2

ωµ0

2∑

j=1

∫

R2

d2k‖

{
Re (kz)

(∣∣g+
j (κ, α)

∣∣2 −
∣∣g−j (κ, α)

∣∣2
)

−2 Im (kz) Im
(
g+
j (κ, α)g−∗j (κ, α)

)}
(2.22)
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2. Electromagnetic waves

From (2.22) we can see that the PVWFs are orthogonal in the sense that the power flux
through a z-surface only couples partial waves with the same j, κ and α.

In lossless dielectric media, kz is real for κ ≤ k and purely imaginary for κ > k.
Then, forward and backward propagating waves are decoupled with regard to energy
flux through z-surfaces, whereas the near field contributes to the power flux through
a coupling of forward and backward decaying evanescent waves. As a consequence, an
isolated object cannot radiate electromagnetic power through the near field.

In fact, in a dielectric medium above all sources and sinks, g−j must vanish, and we
can write

〈Ptop〉 =
2π2

ωµ0

2∑

j=1

∫

|k‖|≤k
d2k‖kz

∣∣g+
j (κ, α)

∣∣2, (2.23)

whereas below all sources and sinks,

〈Pbot〉 = − 2π2

ωµ0

2∑

j=1

∫

|k‖|≤k
d2k‖kz

∣∣g−j (κ, α)
∣∣2. (2.24)

I compare this expression to the definition of the far field radiant intensity IΩ,j :

〈Φ〉 =
2∑

j=1

∫
d2Ω IΩ,j(β, α), (2.25)

where 〈Φ〉 is the time-averaged total radiant flux and Ω = (β, α) is the solid angle.
Thus,

IΩ,j(β, α) =
2π2

ωµ0

kk2
z

{∣∣g+
j (κ, α)

∣∣2 for β ∈
[
0, π

2

]
∣∣g−j (κ, α)

∣∣2 for β ∈
[
π
2
, π
] , (2.26)

for κ = k sin β. In the above, d2k‖ = ±kkzd2Ω has been used.

2.3.1.3. Expansion of the dyadic Green’s function in PVWFs

The dyadic Green’s function can be expanded in terms of plane waves [132]:

G(r, r′) =
i

8π2

2∑

j=1

∫

R2

d2k‖
1

kz
Φ±j (κ, α; r)⊗Φ±†j (κ, α; r′) for z ≷ z′, (2.27)

where ⊗ denotes the (dyadic) tensor product3 and the daggered PVWFs Φ±†j are de-
fined by replacing the explicit i in (2.15) with −i.
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rG

w

z

circular Gaussian

field profile

Figure 2.3. – Left: Gaussian beam. Right: Tilted “beam with Gaussian footprint”.

2.3.1.4. Expansion of a Gaussian beam in PVWFs

A Gaussian beam, propagating parallel to the z-axis (either in positive or in negative
z-direction) is characterized by the width w of the beam waist, the focus coordinates
rG = (xG, yG, zG) and the electric field amplitude vector AG (oriented in the xy-plane)
in the focus. By definition, the transverse electric field profile in the focus plane z = zG

is then:

EG(r) = exp

[
−(x− xG)2 + (y − yG)2

w2

]
AG for z = zG. (2.28)

In the angular spectrum representation [89] the field can be written as

EG(r) =

∫

R2

d2k‖ eik±·rT(kx, ky) (2.29)

with

T(kx, ky) =
w2

4π
exp

[
−(k2

x + k2
y)
w2

4
− ik± · rG

]
AG, (2.30)

where, as usual, k± is the wavevector with a z-component of ±
√
k2 − k2

x − k2
y and

the plus or minus sign is selected for beams propagating in the positive or negative
z-direction, respectively. Defining the polarization angle αG and the beam amplitude
AG by the relation

AG = (− sinαGêx + cosαGêy)AG, (2.31)

the amplitude vector can be approximated as

AG ≈ (cos(α− αG)êα + sin(α− αG)êβ)AG

3Simply, a⊗ b is an operator that maps c 7→ a(b · c).
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for β ≈ 0, such that (2.29) can be approximated as

EG(r) ≈
2∑

j=1

∫

R2

d2k‖g
±
G,j(κ, α)Φ±j (κ, α; r) (2.32)

with

g±G,j(κ, α) =
AGw

2

4π
e−

w2

4
κ2−ik±·rG(cos(α− αG)δj1 ± sin(α− αG)δj2). (2.33)

Although the right hand side of (2.32) is only an approximation to (2.28), it exactly
solves the Maxwell equations.

For oblique incident angles, we generalize (2.32) and (2.33) to the case of a beam with
Gaussian footprint, that is, a beam with amplitude AG that propagates along the solid
angle ΩG = (βG, αG) with a beam polarization jG, and that still fulfils (2.28), by set-
ting

g±G,j(κ, α) =
AGw

2

4π
exp

[
−w

2

4

(
(kx − kG,x)2 + (ky − kG,y)2)

]
e−ik±·rG×

(
cos
(
α− αG + δjG2

π

2

)
δj1 ± sin

(
α− αG + δjG2

π

2

)
δj2

)
,

(2.34)

where kG,x = k cos βG sinαG and kG,y = k sin βG sinαG are the in-plane Cartesian coor-
dinates belonging to the k-vector that corresponds to ΩG. Note that the oblique beam
with Gaussian footprint is . . .

• not really a Gaussian beam, because it has a Gaussian electric field profile in the
plane z = 0, but not in the beam’s tilted cross section. It is thus more an elliptical
beam.

• an exact solution of Maxwell’s equations.

• polarized transverse to the beam’s direction of propagation. For jG = 1, the elec-
tric field is approximately oriented in the xy-plane (transverse electric), whereas
for jG = 2, the electric field is oriented in the ΩGz-plane (transverse magnetic).

2.3.2. Spherical vector wave functions

Like the PVWFs, the spherical vector wave functions (SVWFs) Ψ
(ν)
plm build a basis

set of solutions to the homogeneous Helmholtz equation. They are separable in the
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spherical coordinate system. I use the definition of the SVWFs given in [133]4

Ψ
(ν)
1lm (r) =

exp (imφ)√
2l (l + 1)

z
(ν)
l (kr)

(
imπ

|m|
l (cos θ)êθ − τ |m|l (cos θ)êφ

)
(2.35)

Ψ
(ν)
2lm (r) =

exp (imφ)√
2l (l + 1)



l(l + 1)

z
(ν)
l (kr)

kr
P
|m|
l (cos θ)êr

+
∂kr

(
krz

(ν)
l (kr)

)

kr

(
τ
|m|
l (cos θ)êθ + imπ

|m|
l (cos θ)êφ

)




(2.36)

The SVWFs come in two versions, ν = 1, 3. The only difference between them is the
radial function z(ν)

l (kr) which is given by either the spherical Bessel functions in case
of the regular SVWFs (ν = 1) or the spherical Hankel functions of first kind in case of
the outgoing SVWFs (ν = 3):

regular SVWFs Ψ(1) : z
(1)
l (kr) = jl(kr) (2.37)

outgoing SVWFs Ψ(3) : z
(3)
l (kr) = hl(kr) (2.38)

The indices (plm) of the SVWFs stand for: p, the polarization where p = 1 refers to
spherically transverse electric (i.e., E ⊥ r) and p = 2 stands for spherically trans-
verse magnetic (H ⊥ r). l,m, the polar and azimuthal index. These indices reveal
that the SVWFs are closely related to the well known spherical harmonics functions
Ylm(θ, φ).

The normalized associated Legendre functions Pm
l (x) read

Pm
l =

√
(2l + 1) (l −m)!

2 (l +m)!

(
1− x2

)m
2

dmP̃l (x)

dxm
, (2.39)

where P̃l(x) denotes the l-th Legendre polynomial, and the angular functions πml (x)
and τml (x) are defined as

πml (cos θ) =
Pm
l (cos θ)

sin θ
(2.40)

τml (cos θ) = ∂θP
m
l (cos θ) . (2.41)

2.3.2.1. Completeness

The set of regular and outgoing SVWFs is complete in the following sense:

If a domain D ⊂ R3 is
4In that book, the functions Ψ

(ν)
1lm and Ψ

(ν)
2lm are denoted by M

(ν)
ml and N

(ν)
ml , which is the more common

notation in literature. For the sake of a tidy notation, I prefer to have a single symbol Ψ for the
SVWFs and refer to the polarization through the index p.

35



2. Electromagnetic waves

r1
r2

D

Figure 2.4. – In a homogeneous domainD bounded by two spherical surfaces, every solution
of the homogeneous Maxwell’s equations can be expanded in spherical waves.

• bounded by two spherical surfaces centered at r = 0, i.e., D = {r|r1 ≤ r ≤ r2}
with 0 ≤ r1 < r2 ≤ ∞,

• source-free and homogeneous, i.e., filled with a material (or vacuum) of con-
stant refractive index,

and E (r) is a field that

• is divergence-free,

• fulfills the Helmholtz equation for r ∈ D,

then there exist two sequences aplm and bplm such that for r ∈ D

E (r) =
2∑

p=1

∞∑

l=1

l∑

m=−l

(
aplmΨ

(1)
plm (r) + bplmΨ

(3)
plm (r)

)
. (2.42)

In the following, I will use a multi-index notation (plm)→ n,

E (r) =
∞∑

n=1

(
anΨ

(1)
n (r) + bnΨ

(3)
n (r)

)
. (2.43)

For a proof of the completeness of the SVWFs, see for example [134].

If r1 = 0, i.e., when representing the electric field inside a sphere, the coefficients bn
must vanish, as the outgoing SVWFs are singular at r = 0, which would lead to
unphysical fields. On the contrary, if r2 =∞, i.e., when representing the electric field
outside a sphere, the Silver-Müller radiation condition requires an = 0 for all n.
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2.3.2.2. Expansion of the dyadic Green’s function in SVWFs

The dyadic Green’s function (2.12) can be written as a series of SVWFs [132, 133,
135]:

G(r, r′) =
ik

π

∑

n

{
Ψ

(3)
p,l,m(r)⊗Ψ

(1)
p,l,−m(r′) |r| < |r′|

Ψ
(1)
p,l,m(r)⊗Ψ

(3)
p,l,−m(r′) |r| > |r′| (2.44)

2.3.3. Transformations and translations

As a consequence of the completeness, a PVWF can be expressed in terms of SVWFs
and vice versa. I will need the following formulae (compare [132]):

Ψ(3)
n (r) =

1

2π

2∑

j=1

∫

R2

d2k‖
kzk

eimαBnj(±kz/k)Φ±j (κ, α; r) for z ≷ 0 (2.45)

and

Φ±j (κ, α; r) = 4
∑

n

e−imαB†nj(±kz/k)Ψ(1)
n (r) (2.46)

with

Bnj(x) = − 1

il+1

1√
2l(l + 1)

(iδj1 + δj2)
(
δpjτ

|m|
l (x) + (1− δpj)mπ|m|l (x)

)
. (2.47)

The operator B† has all explicit i in (2.47) changed to −i.

A translation of the coordinate origin is just a trivial phase shift in the case of
PVWFs:

Φ±j (r + d) = eik±·dΦ±j (r) . (2.48)

In the case of SVWFs, I will make use of the following translation formula which is
also called the SVWF addition theorem:

Ψ(3)
n (r + d) =

∑

n′

Ann′(d)Ψ
(1)
n′ (r) for |r| < |d|. (2.49)

As the translation operator Ann′ involves quite messy expressions, I have post-
poned its definition to the appendix, see Appendix B. It can be constructed either
from explicit expressions involving Wigner-3j symbols [135], or from an iterative
scheme [133]. Another useful compilation of transformation properties can be found
in [132].
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Figure 2.5. – A planarly layered (stratified) medium with layer anchor points ri.

2.4. Stratified media

A stratified medium, or planarly layered medium, is a collection of N + 1 layers Λi ⊂ R3,
i = 0, . . . , N . The layers are separated by N z-surfaces, (i.e., planes parallel to the
xy-plane), located at z1 < . . . < zN . The outermost layers are semi-infinite in size.
Each layer is filled with a homogeneous medium such that it is characterized by its
thickness di and refractive index ni. If there are no sources or inhomogeneities, the
electric field can be expanded in terms of PVWFs inside each layer:

E (r) =
2∑

j=1

∫

R2

d2k‖
[
Φ+
j (κ, α; r− ri),Φ

−
j (κ, α; r− ri)

]
·
[
g+
i,j(κ, α)
g−i,j(κ, α)

]
for r ∈ Λi, (2.50)

i.e., g±i,j(κ, α) are the coefficients of an expansion in terms of forward and backward-
going PVWFs relative to the layer anchor point ri = (0, 0, zi) for i ≥ 1 and r0 = r1, see
Fig. 2.5. Reflection and transmission at the plane interfaces only couple partial waves
with identical polarization and in-plane wavevector, i.e., with identical j and (κ, α),
such that the propagation through the layered system can be studied separately for
each pair of forward and backward propagating partial waves.

2.4.1. Transfer Matrix Scheme

The value of the PVWF-coefficients g±i,j(κ, α) for neighboring layers are linked by
transfer matrices, which are constructed to meet the boundary conditions for the par-
allel components of the electromagnetic fields (2.10):

[
g+
i,j(κ, α)
g−i,j(κ, α)

]
= I i,i+1

j (κ)

[
g+
i+1,j(κ, α)
g−i+1,j(κ, α)

]
(2.51)
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where [136]

I i,i+1
j (κ) =

{
Di,i+1
j (κ) for i = 0

P i (κ)Di,i+1
j (κ) else,

(2.52)

Di,i+1
j (κ) =

1

ti,i+1,j (κ)

[
1 ri,i+1,j (κ)

ri,i+1,j (κ) 1

]
, (2.53)

and

P i (κ) =

[
exp (−ikz,idi) 0

0 exp (ikz,idi)

]
. (2.54)

The z-component of the wave vector depends on the refractive index in the respective
layer, and can be complex: kz,i =

√
k2
i − κ where ki = niω/c. The Fresnel amplitude

reflection and transmission coefficients read

ri,i+1,1 (κ) =
kz,i − kz,i+1

kz,i + kz,i+1

(2.55)

ri,i+1,2 (κ) =
n2
i+1kz,i − n2

i kz,i+1

n2
i+1kz,i + n2

i kz,i+1

(2.56)

ti,i+1,1 (κ) =
2kz,i

kz,i + kz,i+1

(2.57)

ti,i+1,2 (κ) =
2nini+1kz,i

n2
i+1kz,i + n2

i kz,i+1

, (2.58)

respectively.

The forward and backward propagating field coefficients of any two layers i1 < i2 are
related via [

g+
i1,j

(κ, α)
g−i1,j (κ, α)

]
=I i1,i1+1

j (κ) . . . I i2−1,i2
j (κ)

[
g+
i2,j

(κ, α)
g−i2,j (κ, α)

]
(2.59)

=I i1,i2j (κ)

[
g+
i2,j

(κ, α)
g−i2,j (κ, α)

]
(2.60)

The above formula defines the so called transfer matrix of the layer subsystem
Λi1 , ..., Λi2 . However, for larger film thicknesses, it is known to be numerically un-
stable for evanescent field propagation, see figure 2.6. Then, the slightly more com-
plicated scattering matrix formalism can lead to a better stability.

2.4.2. Scattering Matrix Scheme

For two layers i1 < i2, the scattering matrix is defined by the relation
[
g+
i2,j

(κ, α)
g−i1,j (κ, α)

]
=Si1,i2j (κ)

[
g+
i1,j

(κ, α)
g−i2,j (κ, α)

]
. (2.61)
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Figure 2.6. – Reflectivity of an examplary layered medium consisting of eleven layers with
thickness 1 µm and alterning refractive index of 1 and 2 + 0.01i, respectively.
The vacuum wavelength is 550 nm. The transfer matrix scheme (dashed blue)
breaks down at an in-plane wavenumber of 7 times the vacuum wavenum-
ber. The scattering matrix scheme (solid red) is stable also for large in-plane
wavenumbers.

In contrast to the transfer matrix, it links the incoming fields of the layer system be-
tween zi1 and zi2 , represented by the forward propagating wave coefficients ofΛi1 and
the backward propagating wave coefficient of Λi2 to the ’outgoing’ fields, given by
the backward propagating wave in Λi1 and the forward propagating wave in Λi2 . The
construction of the scattering matrix follows an iterative scheme presented in [137],
see also [138]. Starting from

Si1,i1j (κ) =

[
1 0
0 1

]
, (2.62)

we successively construct the scattering matrix S ′ = Si1,i+1
j (κ) from the preceding

scattering matrix S = Si1,ij (κ) by using the relations

S ′11 =
S11

I11 − S12I21

(2.63)

S ′12 =
S12I22 − I12

I11 − S12I21

(2.64)

S ′21 = S22I21S
′
11 + S21 (2.65)

S ′22 = S22I21S
′
12 + S22I22, (2.66)

for i = i1, . . . , i2 − 1. In the above, I denotes the layer transition matrix between the
layers Λi and Λi+1, i.e. I i,i+1

j (κ).
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Figure 2.7. – An excitation (source or scattering center) in a layered medium.

2.4.3. Excitation and response

I now turn to the case that an electromagnetic radiation source or a scattering center is
located in a domain Dexc inside one of the layers (say, layer number iexc): Dexc ⊂ Λiexc ,
see Fig. 2.7. For layer iexc, the conditions for (2.18) are not fulfilled and consequently,
there exists no expansion of E in PVWFs that holds everywhere in Λiexc .

However, the transfer matrix scheme and the scattering matrix scheme are based on
the continuity conditions at the layer interfaces, and it is sufficient to have the elec-
tric field’s PVWF expansion there. The idea is to split up the electric field into the
excitation Eexc and the layer system response ER

exc:

E (r) = δiiexcEexc (r) + ER
exc (r) for r ∈ Λi, (2.67)

One can think of Eexc (r) as the solution of the Maxwell equations if the radiation
source was placed in an infinite homogeneous medium of refractive index niexc ,
whereas ER

exc refers to the reflection/transmission of Eexc from/through the layer sys-
tem interfaces. For a formal definition of Eexc and ER

exc, see Appendix C. The expan-
sion of the exciting field in PVWFs defines the coefficients g±exc,j(κ, α)

Eexc (r) =
2∑

j=1

∫

R2

d2k‖

{
Φ+
j (κ, α; r− riexc)g

+
exc,j(κ, α) for r ∈ Λiexc and z ≥ z↑

Φ−j (κ, α; r− riexc)g
−
exc,j(κ, α) for r ∈ Λiexc and z ≤ z↓,

(2.68)

where z+ bounds the excitation from above and z− bounds the excitation from below,
see Figure C.1. On the other hand, the expansion of the response field in PVWFs
defines the coefficients gR±

exc,i,j(κ, α)

ER
exc (r) =

2∑

j=1

∫

R2

d2k‖
[
Φ+
j (κ, α; r− ri),Φ

−
j (κ, α; r− ri)

]
·
[
gR+

exc,i,j(κ, α)

gR−
exc,i,j(κ, α)

]
for r ∈ Λi

(2.69)
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with PVWF coefficients

[
g+exc,j
g−exc,j

]
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effect: field in layer i1
with PVWF coefficients

[
gR+
exc,i1,j

gR−
exc,i1,j

]
= Li1,i0

j

[
g+exc,j
g−exc,j

]

Figure 2.8. – Cause and effect: The layer response matrix

2.4.3.1. The layer system response matrix

Due to the (assumed) linearity of all materials, the propagated electric field must be
a linear function of the excitation, such that we can define the matrix Li,iexcj (κ) by the
relation

[
gR,+

exc,i,j (κ, α)

gR,−
exc,i,j (κ, α)

]
= Li,iexcj (κ)

[
g+

exc,j (κ, α)
g−exc,j (κ, α)

]
, (2.70)

see figure 2.8.

In order to determine the layer system response matrix, I employ the scattering
matrix formalism for the layer subsystems consisting of the layers Λ0, . . . , Λiexc and
Λiexc , . . . , ΛN , respectively. For the lower subsystem, the incident partial waves from
Λiexc are given by the PVWF expansion that is valid below the excitation (more pre-
cisely, in D↓, see Appendix C), such that

[
gR,+

exc,iexc,j
(κ, α)

gR,−
exc,0,j (κ, α)

]
=S0,iexc

j (κ)

[
0

g−exc (κ, α) + gR,−
exc,iexc,j

(κ, α)

]
. (2.71)

In other words, the fields that are incident on the lower subsystem consist of the direct
field from the excitation, as well as the (still unknown) total reflections from the upper
subsystem. Both terms are incident from Λiexc and propagating downwards.

On the other hand, for the upper subsystem the PVWF expansion valid in D↑ is used,
such that

[
gR,+

exc,0,j (κ, α)

gR,−
exc,iexc,j

(κ, α)

]
=Siexc,Nj (κ)

[
g+

exc (κ, α) + gR,+
exc,iexc,j

(κ, α)
0

]
. (2.72)

Solving (2.71) and (2.72) for gR,±
exc,iexc,j

(κ, α) yields the expansion coefficients of the
layer system response in the excitation layer.
[
gR,+

exc,iexc,j
(κ, α)

gR,−
exc,iexc,j

(κ, α)

]
=

(
1−

[
0 S0,iexc

12

Siexc,N21 0

])−1 [
0 S0,iexc

12

Siexc,N21 0

] [
g+

exc,j (κ, α)
g−exc,j (κ, α)

]
, (2.73)

42



2. Electromagnetic waves

[
g+j
g−j

]
=

[
0

g−exc,j

]
+

[
gR+
exc,iexc,j

gR−
exc,iexc,j

]

[
g+j
g−j

]
=

[
g+exc,j
0

]
+

[
gR+
exc,iexc,j

gR−
exc,iexc,j

]

[
g+j
g−j

]
=

[
gR+
exc,iexc−1,j

gR−
exc,iexc−1,j

]

[
g+j
g−j

]
=

[
gR+
exc,iexc+1,j

gR−
exc,iexc+1,j

]

Figure 2.9. – Plane wave expansion coefficients of the electric field below and above the
particle.

where the polarization index j and the parallel wave vector dependency κ were sup-
pressed for a clearer notation. By comparison to (2.70), one finds

Liexcj (κ) =

(
1−

[
0 S0,iexc

12

Siexc,N21 0

])−1 [
0 S0,iexc

12

Siexc,N21 0

]
. (2.74)

Here, Lij abbreviates the layer system transition matrix from layer i into itself, i.e.,
Li,ij .

To evaluate the response in layer i 6= iexc, the field coefficients need to be propagated
into that layer, e.g. by means of the transfer matrix relation (2.59):

Li,iexcj (κ) =





(
I iexc,ij (κ)

)−1

(
Liexcj (κ) +

[
1 0

0 0

])
for i > iexc

I i,iexcj (κ)

(
Liexcj (κ) +

[
0 0

0 1

])
for i < iexc.

(2.75)

2.4.4. Waveguide modes

Waveguide modes in planarly layered media (slab waveguides) are solutions of
Maxwell’s equations that decay exponentially for z → ±∞, see figure 1.5. A waveg-
uide mode of polarization jwg and in-plane propagation vector k‖,wg can be con-
structed by setting

[
g+

0,j(κ, α)
g−0,j(κ, α)

]
= δj,jwgδ

2(k‖ − k‖,wg)

[
0
1

]
. (2.76)
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In order to decay exponentially for z → +∞, also

g−N,jwg

(
k‖,wg

)
= 0 (2.77)

needs to be fulfilled. Equations (2.76) and (2.77) can be rephrased as the condition
that the amplitude reflection coefficient

Rjwg(κ) =
g+
N,jwg

(κ, α)

g−N,jwg
(κ, α)

(2.78)

of the layer system has a singularity at κ =
∣∣k‖,wg

∣∣. A robust algorithm to detect
waveguide modes through the usage of Cauchy’s theorem was proposed in [139].
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3. Scattering particles in planarly
layered media

This chapter introduces a framework to describe and compute electromagnetic scattering by
particles inside a planarly layered medium on the basis of the so called T-matrix method, in
combination with the analytical treatment of wave propagation in stratified media as described
in chapter 2. Sections 3.1 and 3.2 precise the statement of the problem and the definition of
important concepts such as the incoming field, the scattered field and the initial field. The
T-matrix formalism is introduced in section 3.3. Section 3.4 can be viewed as the theoretical
centerpiece of the multiple scattering derivations: It yields the coupling operators that are then
used in sections 3.5 and 3.6 for the computation of the initial field coefficients and the particle
interaction coefficients, respectively. Gathering all derivations up to this point, section 3.7
collects the linear system of equations that need to be solved in order to compute the scattered
field coefficients. The post processing of the scattered field coefficients into the actual quantities
of interest like the electric field distribution or the radiated far field intensity are discussed in
sections 3.8 and 3.9, respectively. Finally, section 3.10 provides a discussion about aspects of
numerical efficiency.

3.1. Statement of the problem

The following constituents define the scattering problem:

1. A stratified medium, consisting of N + 1 layers Λi ⊂ R3, i = 0, . . . , N . The
layers are separated by N planes which are parallel to the xy-plane and located
at z1 < . . . < zN . The outermost layers are semi-infinite in size. Each layer is
filled by a homogeneous medium such that it is characterized by its thickness
di and refractive index ni.

2. A set of scattering particles. NS denotes the total number of particles. The
symbol S (in italic) will be used as an index that refers to each particle. In
that sense, DS ⊂ R3 denotes the volume occupied by scattering particle par-
ticle S, rS is the center of its circumscribing sphere, which has a radius of
rmax,S = lim supr∈DS |r− rS|, and nS is the refractive index (which is constant
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3. Scattering particles in planarly layered media

in DS). In other words, the refractive index as a function of position reads

n (r) =

{
nS if there is some S such that r ∈ DS

ni otherwise, with r ∈ Λi.
(3.1)

Each particle S is located entirely in one layer iS , i.e., DS ⊂ ΛiS . Further, the
particles do not overlap with each other’s circumscribing spheres: |r− rS′ | >
rmax,S′ for r ∈ DS .

3. An initial field Einit, originating from layer iinit and feeding energy into the sys-
tem. It can be given either by an explicit field expression (like a plane wave
or a Gaussian beam coming from infinity), or it can be caused by a source cur-
rent distribution j (r) located inside one or several layers. In this work, I will
consider point dipole sources, representing luminescent molecules. However,
in that case I require that the source current vanishes inside the particles’ cir-
cumscribing spheres, unless it is located in a different layer than the respective
particle,

j (r) = 0 if r ∈ ΛiS and |r− rS| < rmax,S for some S. (3.2)

The task is to determine the electric field E (r) that fulfills the wave equation and
boundary conditions1 specified in section 2.1.

3.2. Initial field, incoming field and scattered field

An important concept used throughout the rest of this chapter is that the total electric
field in layer i can be decomposed into a sum of four constituents, the initial field Einit,
the scattered field Escat and the layer system response ER

init and ER
scat to each of them:

E (r) = δiiinitEinit (r) + ER
init (r) +

∑

S

(
δiiSE

S
scat (r) + ER,S

scat (r)
)
, r ∈ Λi. (3.3)

The initial field Einit is known a priori. It is the primary excitation that feeds energy
into the system and is part of the problem definition. It can either be a field coming
from infinity, like a plane wave or a beam, or it can be the field excited by a current
distribution. Further, ER

init is the layer system response to the initial field in the sense
of section 2.4.3. According to the definitions given there, Einit (r) = 0 for r /∈ Λiexc ,
because ER

init (r) includes the field transmitted through the layer interfaces. The initial
field together with the layer system response would solve the wave equation and
boundary conditions if the particles were absent.

1If the initial field is given by a field expression Einit (r) (e.g., a plane wave or a Gaussian beam)
rather than a source current, the radiation boundary condition is required for E (r)−Einit (r).
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DS

Figure 3.1. – The shaded area indicates the domain D̃S in which (3.4) is valid.

The scattered field on the other hand is, heuristically speaking, the reaction of a spe-
cific particle on the incoming field approaching it. A more precise definition of the scat-
tered field relies on the expansion of the electric field in a spherical shell D̃S around
some particle S such that no other particle or layer interface intersects, see figure 3.1.
Using the completeness of the SVWFs (compare section 2.3.2.1), the electric field can
be written as

E (r) =
∑

n

(
aSnΨ(1)

n (r− rS) + bSnΨ(3)
n (r− rS)

)
for r ∈ D̃S. (3.4)

Then, the direct scattered field of particle S is the outgoing part of this expansion,

ES
scat (r) =

∑

n

bSnΨ(3)
n (r− rS) , (3.5)

whereas ER,S
scat is the layer system response to ES

scat as defined in section 2.4.3.

Finally, the incoming field ES
inc of each particle S is defined as the regular part of the

expansion (3.4).

ES
inc (r) =

∑

n

aSnΨ(1)
n (r− rS) (3.6)

It includes:

• the initial field

• the layer system response to the initial field

• the (direct) scattered field from the other particles S ′ 6= S

• the layer system response for the scattered field of all particles, including the
selected particle S
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ES
inc (r) = δiSiinitEinit (r) + ER

init (r) +
∑

S′ 6=S

δiSiS′E
S′

scat (r) +
∑

S′

ER,S′

scat (r) (3.7)

Accordingly, the expansion coefficients are written as a sum of four contributions:

aSn = aS,init
n + aS,R,init

n +
∑

S′

(
aS,S

′

n + aS,R,S
′

n

)
(3.8)

with aS,Sn = 0. The superscript notation should be interpreted by reading from right
to left, for example, aS,R,S′n is the coefficient that corresponds to the field scattered by
particle S ′, then propagated through (or reflected by) the layer system (R), and finally
received by particle S.

Note that unlike the initial field, the incoming field is defined separately for each sphere
and is not known a priori.

3.3. The T-matrix

The T-matrix [2] was at first introduced in the context of single particle scattering
in a homogeneous background medium, and later its use was extended to the case
of multiple particles [4] and to particles near planar interfaces [5, 6]. It maps the
expansion coefficients an of the incoming field to the expansion coefficients bn of the
scattered field:

bSn =
∞∑

n′=1

T Snn′a
S
n′ . (3.9)

Therefore, the T-matrix incorporates the complete information about the scattering
behaviour of the scatterer, and its knowledge enables the solution of any scattering
problem involving S. Due to the convergence of (3.4), T can in praxis always be
approximated by a finite matrix, i.e., (3.9) can be truncated at some n = ntrunc that
corresponds to some cut-off multipole order l = ltrunc. In this sense, we can regard
the T-matrix as an economical, encapsulated (i.e., modular) representation of the scat-
tering behaviour of each scatterer.

The computation of the T-matrix for a general scattering particle is a difficult task,
but this is not part of this thesis. In fact, after a short overview on the most common
methods for its computation in section 3.3.1, I will treat the T-matrix in the following
as a ”black box” and just assume that it is precisely known.
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3.3.1. Computing the T-matrix

Traditionally, the T-matrix method is associated with the so called null field method
for its computation2, but in fact, any numerical method for the solution of Maxwell’s
equation can be used to construct the T-matrix, by solving the single particle scatter-
ing problem with particle S in a homogeneous background medium with refractive
index n = niS and with Einit (r) = Ψ

(1)
n′ as the initial field, then expressing the resulting

scattered field in terms of outgoing SVWFs. This means that in total ntrunc scattering
problems need to be solved.

A comprehensive database of papers that deal with the T-matrix method can be
found in [140–146]. Methods that are used to compute the T-matrix include (but are
not restricted to) the Mie formulae (in the case of spherical particles), the Null field
method (NFM) [2], the Null field method with discrete sources (NFM-DS) [133, 147],
the Discrete dipole approximation (DDA) [148] or Volume integral equation method
(VIEM) [149] and the Finite element method (FEM) [150].

In the following, I will briefly sketch the Mie solution, the NFM and the NFM-DS. The
latter is very important for this thesis, as all T-matrices for non-spherical particles
in the application examples presented in chapters 4 and 5 are computed with that
method.

Mie’s solution for spheres In case of spherical scattering particles, the T-matrix
method reduces to the famous Mie solution [151, 152]. The T-matrix is then diagonal
and only depends on l and p, but not on m:

Tnn′ =δpp′δmm′δll′Qpl (3.10)

with

Q1l =
jl (kR) ∂kSR (kSRjl (kSR))− jl (kSR) ∂kR (kRjl (kR))

jl (kSR) ∂kR (kRhl (kR))− hl (kR) ∂kSR (kSRjl (kSR))

Q2l =
k2jl (kR) ∂kSR (kSRjl (kSR))− k2

Sjl (kSR) ∂kMR (kRjl (kR))

k2
Sjl (kSR) ∂kR (kRhl (kR))− k2hl (kR) ∂kSR (kSRjl (kSR))

.

(3.11)

In the above, R is the radius of the sphere and kS and k are the wavenumbers inside
and outside the scattering particle, respectively, whereas jl and hl denote the spherical
Bessel and spherical Hankel function of the first kind.

2Often, the terms T-matrix method and null field method are used synonymously. Here, we stick to
the broader definition of the term ”T-matrix method” according to [140].
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Null field method The Null field method (NFM, also called the extended boundary
condition method, EBCM) was introduced by Waterman [2] and relies on an expansion
of the internal field inside the particle as well as the scattered field and the incoming
field in SVWFs:

ES
int(r) =

∑

n

cSnΨ
(1)
1lm(rS′ − rS). (3.12)

Exploiting the boundary conditions (2.10) at the surface of the scattering particle and
using the so called vector Green’s identity, linear relations can be derived between the
expansion coefficients for the incoming field and the internal field as well as for the
scattered field and the internal field:

aSn =
∑

n′

QS
n,n′c

S
n′ (3.13)

bSn =
∑

n′

−RgQS
n,n′c

S
n′ (3.14)

such that the T-matrix can be computed as

T S = −RgQS
(
QS
)−1

. (3.15)

Null field method with discrete sources The Null field method with discrete
sources (NFM-DS) [133, 147] is an extension of the Null field method, aiming at an
improved stability in the case of particles that deviate strongly from the shape of a
sphere, e.g., spheroids with large aspect ratios. To this end, the fields are approx-
imated by equivalent sources outside the respective domain where the solution is
sought. In this respect, it is related to the class of generalized multipole methods. In
order to exploit axial symmetry, the discrete sources for oblate particles can be placed
on the imaginary continuation of the z-axis.

3.4. The incoming field

As defined in section 3.2, the incoming field includes the initial field and the scattered
field from all other particles, as well as the layer system response to the initial field
and the scattered field from all particles. In the context of the T-matrix method (see
section 3.3), the incoming field needs to be expanded in terms of regular SVWFs. We
will face the following task:

Given a source (an excitation) of an electromagnetic field located at position rexc

(or at infinity, as in the case of an initial plane wave), construct the total electric
field E caused by that excitation as an expansion in regular spherical vector wave
functions relative to a receiver location rrec which can be in the same or a different
layer than rexc.
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Here, the excitation can either be given in terms of a plane wave expansion, or in
terms of an outgoing spherical wave expansion relative to rexc. The goal of this section
is thus to derive coupling operators V , V R, W and WR which do this job:

• The PWE to SWE coupling operators V and V R map the plane wave expan-
sion coefficients of an excitation (e.g., located at infinity) to the regular spherical
wave expansion coefficients of the direct and layer system mediated resulting
field relative to rrec.

• The SWE to SWE coupling operators W and WR map the outgoing spherical
wave expansion coefficients of a localized excitation to the regular spherical
wave expansion coefficients of the direct and layer system mediated resulting
field relative to rrec.

As a starting point, the electric field at rrec is written as

E(rrec) = δirec,iexcEexc(rrec) + ER
exc(rrec), (3.16)

compare (2.67), where Eexc denotes the exciting field and ER
exc denotes the layer sys-

tem response whereas iexc and irec refer to the layers containing the excitation (“exc”)
and the receiver (“rec”), respectively.

Expanding3 the field in regular SVWFs around rrec,

Eexc (r) =
∑

n

arec,exc
n Ψ(1)

n (r− rrec) (3.17)

ER
exc (r) =

∑

n

arec,R,exc
n Ψ(1)

n (r− rrec), (3.18)

the task is now to construct the coefficients arec,R,exc
n (the response coefficients) and, if

rrec is located in the same layer as rexc, also arec,exc
n (the direct coefficients).

3.4.1. Excitation as plane wave expansion

One relevant case (mostly for sources located at infinity, zexc = ±∞) is that the excita-
tion is given in terms of a plane wave expansion with coefficients g±exc,j(κ, α):

Eexc (r) =
2∑

j=1

∫

R2

d2k‖

{
Φ+
j (κ, α; r− riexc)g

+
exc,j

(
k‖
)

for z ≥ zexc

Φ−j (κ, α; r− riexc)g
−
exc,j

(
k‖
)

for z ≤ zexc.
(3.19)

3In general, this expansion is valid only in the vicinity of rrec.
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3.4.1.1. Direct coefficients

If r is in the same layer as rexc, the direct coefficients can be constructed with the
following procedure: First, the reference point of the PVWF is translated to rrec using
(2.48),

Φ±j (κ, α; r− riexc) = eik±iexc ·(riexc−rrec)Φ±j (κ, α; r− rrec). (3.20)

Then, (2.46) is used to expand the PVWFs in regular SVWFs, which leads to (3.17)
with

arec,exc
n = 4

2∑

j=1

∫

R2

d2k‖g
±
exc,j

(
k‖
)
e−imαeik±iexc ·(riexc−rrec)B†nj

(±kz,iexc
kiexc

)
, (3.21)

where from ± the plus sign is to be selected if zrec > zexc and the minus sign is to be
selected if zrec < zexc.

Introducing the PWE to SWE coupling operator V ±,rec,exc
n,j

(
k‖
)
, the above can be rewrit-

ten as

arec,exc
n =

2∑

j=1

∫

R2

d2k‖
[
V +
n,j

(
rrec, rexc; k‖

)
, V −n,j

(
rrec, rexc; k‖

)]
·
[
g+

exc,j

(
k‖
)

g−exc,j

(
k‖
)
,

]
, (3.22)

with

V ±n,j
(
rrec, rexc; k‖

)
=

{
4e−imαeik±iexc ·(riexc−rrec)B†nj

(
±kz,iexc
kiexc

)
if zrec ≷ zexc

0 else
(3.23)

Note that in the above derivation, the order of two limiting processes (the sum over n
and the integral over d2k‖) was changed which I assume for the moment to be a valid
operation.

3.4.1.2. Response coefficients

First, the layer system response to (3.17) is written as (compare (2.69))

ER
exc (r) =

2∑

j=1

∫

R2

d2k‖
[
Φ+
j

(
k‖; r− rirec

)
,Φ−j

(
k‖; r− rirec

)]
·
[
gR+

exc,irec,j

(
k‖
)

gR−
exc,irec,j

(
k‖
)
]
, (3.24)

where the coefficients gR±
exc,irec,j

(κ, α) are constructed according to

[
gR+

exc,irec,j

(
k‖
)

gR−
exc,irec,j

(
k‖
)
]

= Lirec,iexcj (κ)

[
g+

exc,j

(
k‖
)

g−exc,j

(
k‖
)
]
. (3.25)
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using the layer system response matrix, see section 2.4.3.1. In analogy to section
3.4.1.1, the reference point of the PVWFs in (3.24) is translated from rirec to rrec us-
ing (2.48) and then the PVWFs are expanded in SVWFs using (2.46) to yield (3.18)
with

arec,R,exc
n = 4

2∑

j=1

∫

R2

d2k‖e
−imα

[
eik+

irec
·(rrec−rirec )B†nj

(
kz,irec
kirec

)
,

eik−irec ·(rrec−rirec )B†nj

(−kz,irec
kirec

)]

· Lirec,iexcj (κ) ·
[
g+

exc,j

(
k‖
)

g−exc,j

(
k‖
)
]
. (3.26)

For convenience, I define the symbols

β±exc,n,j(κ) = e∓ikz,iexc (zexc−ziexc )Bnj(±kz,iexc/kiexc) (3.27)

β±,†rec,n,j(κ) = e±ikz,irec (zrec−zirec )B†nj(±kz,irec/kirec) (3.28)

to rewrite the above as

arec,R,exc
n = 4

2∑

j=1

∫

R2

d2k‖e
−imαeik‖·rrec,‖ (3.29)

×
[
β+,†

rec,n,j(κ), β−,†rec,n,j(κ)
]
· Lirec,iexcj (κ) ·

[
g+

exc,j

(
k‖
)

g−exc,j

(
k‖
)
]
,

where r‖,irec = 0 was used, or, introducing the layer system mediated PWE to SWE
coupling operator V R,±

n,j

(
rrec, rexc; k‖

)
, as

arec,R,exc
n =

2∑

j=1

∫

R2

d2k‖

[
V R,+
n,j

(
rrec, rexc; k‖

)
, V R,−

n,j

(
rrec, rexc; k‖

)]
·
[
g+

exc,j

(
k‖
)

g−exc,j

(
k‖
)
]
, (3.30)

with
[
V R,+
n,j

(
rrec, rexc; k‖

)
, V R,−

n,j

(
rrec, rexc; k‖

)]
= 4e−imαeik‖·rrec,‖ (3.31)

×
[
β+,†

rec,n,j(κ), β−,†rec,n,j(κ)
]
· Lirec,iexcj (κ).

3.4.2. Excitation as spherical wave expansion

The other relevant case is when the excitation is given in terms of a spherical wave
expansion with coefficients bexc

n :

Eexc (r) =
∑

n′

bexc
n′ Ψ

(3)
n′ (r− rexc) (3.32)
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3.4.2.1. Direct coefficients

If r is in the same layer as rexc, the direct coefficients can be computed using the SVWF
addition theorem (2.49):

Eexc (r) =
∑

n′

bexc
n′

∑

n

An′n(rrec − rexc)Ψ
(1)
n (r− rrec) for |r− rrec| < |rexc − rrec|.

(3.33)

which, by comparison to (3.17) yields

arec,exc
n =

∑

n′

Wn,n′(rrec, rexc)b
exc
n′ (3.34)

with the direct coupling matrix

Wn,n′(rrec, rexc) = An′n(rrec − rexc) (3.35)

3.4.2.2. Response coefficients

The first step is to transform the SVWFs in (3.32) to a PVWFs by using (2.45), and to
translate the reference point of the PVWFs to the layer anchor point riexc :

Eexc (r) =
∑

n′

bn′Ψ
(3)
n′ (r− rexc) (3.36)

=
1

2π

2∑

j=1

∑

n′

bn′

∫

R2

d2k‖
kz,iexckiexc

eim′αBn′j(±kz,iexc/kiexc) (3.37)

× e−ik±iexc ·(rexc−riexc )Φ±j (κ, α; r− riexc) for z ≷ zexc.

Inserting (3.28) yields

Eexc (r) =
1

2π

2∑

j=1

∑

n′

bn′

∫

R2

d2k‖
kz,iexckiexc

eim′αe−ik‖·(rexc,‖−riexc,‖) (3.38)

× β±exc,n′,j(κ)Φ±j (κ, α; r− riexc) for z ≷ zexc,

and recognizing that (3.38) has the form of (3.19) with

g±exc,j(κ, α) =
1

2π

e−ik‖·rexc,‖

kz,iexckiexc

∑

n′

bn′e
im′αβ±exc,n′,j(κ) (3.39)

allows us to follow the derivation presented in section 3.4.1.2 to find

arec,R,exc
n =

2

π

2∑

j=1

∑

n′

bn′

∫

R2

d2k‖
kz,iexckiexc

ei(m′−m)αeik‖·(rrec,‖−rexc,‖) (3.40)

×
[
β+,†

rec,n,j(κ), β−,†rec,n,j(κ)
]
· Lirec,iexcj (κ) ·

[
β+

exc,n′,j(κ)

β−exc,n′,j(κ)

]
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which can be rewritten as

aR
n =

∑

n′

WR
n,n′(rrec, rexc)b

exc
n′ , (3.41)

with the response coupling matrix

WR
n,n′(rrec, rexc) =

2

π

2∑

j=1

∫

R2

d2k‖
kz,iexckiexc

ei(m′−m)αeik‖·(rrec,‖−rexc,‖) (3.42)

×
[
β+,†

rec,n,j(κ), β−,†rec,n,j(κ)
]
· Lirec,iexcj (κ) ·

[
β+

exc,n′,j(κ)

β−exc,n′,j(κ)

]

Substituting d2k‖ = dκκ dα, and using

k‖ ·
(
r‖,rec − r‖,exc

)
= κρexc,rec cos (α− φexc,rec) (3.43)

where (ρexc,rec, φexc,rec) denote the polar coordinates of rrec,‖ − rexc,‖, as well as
∫ 2π

0

dα eiναeix cos (α−φ) = 2πi|ν|J|ν|(x)eiνφ, (3.44)

where Jn(x) denotes the Bessel function of the first kind and order n, the α-dependent
part of the integral can be split off and evaluated analytically:

WR
n,n′(rrec, rexc) =

2

π

2∑

j=1

∫ ∞

0

dκκ

kz,iexckiexc
(3.45)

×
[
β+,†

rec,n,j(κ), β−,†rec,n,j(κ)
]
· Lirec,iexcj (κ) ·

[
β+

exc,n′,j(κ)

β−exc,n′,j(κ)

]

×
∫ 2π

0

dα ei(m′−m)αeik‖·(r‖,rec−r‖,exc)

= 4i|m
′−m|ei(m′−m)φexc,rec

2∑

j=1

∫ ∞

0

dκκ

kz,iexckiexc
J|m′−m|(κρexc,rec) (3.46)

×
[
β+,†

rec,n,j(κ), β−,†rec,n,j(κ)
]
Lirec,iexcj (κ)

[
β+

exc,n′,j(κ)

β−exc,n′,j(κ)

]
.

3.5. Initial field coefficients

The direct and the layer system mediated initial field coefficients are derived for the
cases of plane wave excitation (exc = init = P ), focused beam excitation (exc = init =
G, “Gaussian beam”) and point dipole excitation (exc = init = D). In either case, the
formalism derived in section 3.4 is applied ot obtain the expansion of the initial field
in terms of regular SVWFs around rS .
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3.5.1. Plane wave excitation

A plane wave is incident either from the bottom layer (iP = 0) or from the top layer
(iP = N ), with a linear polarization jP , an amplitude AP and a propagation direction
given by the polar and azimuth angle (βP , αP ). The wavevector of the incident field
is

kP,iP =







κP cosαP

κP sinαP

−kP,z,iP


 for top illumination, iP = N



κP cosαP

κP sinαP

kP,z,iP


 for bottom illumination, iP = 0,

(3.47)

where κP = kiP sin βP and kP,z,iP =
√
k2
iP
− κ2

P . The initial field reads

EP (r) = AP

{
Φ−jP (κP , αP ; r) iP = N

Φ+
jP

(κP , αP ; r) iP = 0,
for r ∈ ΛiP (3.48)

which has the form of (2.68) for

z+ = z− =

{
+∞ iP = N

−∞ iP = 0
(3.49)

[
g+
P,j (κ, α)
g−P,j (κ, α)

]
= AP δj,jP δ

2
(
k‖,kP,‖

)
eikP,iP ·riP

[
1
1

]
(3.50)

Inserting this into (3.22) and (3.30) yields

aS,Pn = AP eikP,iP ·riP
(
V +
n,jP

(
rS, rP ; kP,‖

)
,+V −n,jP

(
rS, rP ; kP,‖

))
(3.51)

and

aS,R,Pn = AP eikP,iP ·riP
(
V R,+
n,jP

(
rS, rP ; kP,‖

)
,+V R,−

n,jP

(
rS, rP ; kP,‖

))
(3.52)

for rP = (0, 0,±∞) for the case of top and bottom illumination, respectively.

3.5.2. Focused beam excitation

A beam with Gaussian footprint (see section 2.3.1.4) is defined through its complex
amplitude AG, the direction of propagation (βG, αG) with 0 ≤ βG < π/2 for beams
incident from the bottom layer (iG = 0) and π/2 < βG ≤ π for beams incident from
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the top layer (iG = N ) and finally the polarization jG. In the layer of excitation, i.e.,
for r ∈ ΛiG , the initial field takes the form of (2.68) for

z+ = z− =

{
+∞ iG = N

−∞ iG = 0
(3.53)

and g±G,j (κ, α) as defined in (2.34). Inserting into (3.22) and (3.30) yields

aS,Gn =
2∑

j=1

∫

R2

d2k‖
(
V +
n,j

(
rS, rG; k‖

)
g+
G,j

(
k‖
)

+ V −n,j
(
rS, rG; k‖

)
g−G,j

(
k‖
))

(3.54)

and

aS,R,Gn =
2∑

j=1

∫

R2

d2k‖

(
V R,+
n,j

(
rS, rG; k‖

)
g+
G,j

(
k‖
)

+ V R,−
n,j

(
rS, rG; k‖

)
g−G,j

(
k‖
))

(3.55)

for rP = (0, 0,±∞) for the case of top and bottom illumination, respectively. The right
hand sides of (3.54) and (3.55) are evaluated by means of numerical integration.

3.5.3. Point dipole sources

The radiative decay of excited molecular states is modeled by means of electric point
dipole sources, see section 1.3.2.2. For an emitter with a transition dipole moment of
deg at location rD in layer iD one has:

j(r) = −iωδ(r− rD)deg (3.56)

The field excited by this source can be evaluated using the dyadic Green function
(2.12)

ED (r) = ω2µ0G(r, rD) · deg. (3.57)

Expanding the dyadic Green function in terms of SVWFs (see (2.44)),

G(r, rD) = G(r− rD,0) (3.58)

=
ik

π

∑

n

Ψ
(3)
p,l,m(r− rD)⊗Ψ

(1)
p,l,−m(0) (3.59)

such that (3.57) has the form of (3.32) with

bDn = ω2µ0
ik

π
Ψ

(1)
p,l,−m(0) · deg (3.60)

and the direct and layer system mediated initial field coefficients read

aS,Dn =
∑

n′

Wn,n′(rS, rD)bDn′ , (3.61)

aS,R,Dn =
∑

n′

WR
n,n′(rS, rD)bDn′ , (3.62)
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3.6. Multiple scattering coefficients

Multiple scattering implies that the scattered field (including the layer system re-
sponse) from some particle S ′ acts as an incoming field at another particle S. As
the scattered field is in general represented in terms of an outgoing spherical wave
expansion, the SWE to SWE coupling operator as constructed in section 3.4.2 can di-
rectly be applied. In the vicinity of rS ,

ES′

scat (r) =
∑

n

aS,S
′

n Ψ(1)
n (r− rS) S 6= S ′ (3.63)

ER,S′

scat (r) =
∑

n

aS,R,S
′

n Ψ(1)
n (r− rS) (3.64)

with

aS,S
′

n =
∑

n′

Wnn′(rS, rS′) S 6= S ′ (3.65)

aS,R,S
′

n =
∑

n′

WR
nn′(rS, rS′), (3.66)

compare (3.34) and (3.41).

3.7. Linear system

A priori, both the incoming field coefficients aSn and the scattered field coefficients bSn
are unknown. For the solution of the scattering problem, it is necessary to truncate
the series expansions in SVWFs at some multipole order lmax:

∞∑

l=1

→
lmax∑

l=1

(3.67)

This yields a finite set of unknowns a1
1, . . . , a

NS
nmax

and b1
1, . . . , b

NS
nmax

with nmax =
2lmax(lmax + 2) such that the total number of unknowns is 4NSlmax(lmax + 2). On the
other hand, we have the same number of equations connecting the coefficients aSn and
bSn , namely the T-matrix equation (3.9)

bSn =
∑

n′

T Snn′a
S
n′ , (3.68)

where T Snn′ is the T-matrix of particle S, and the incoming field equation (3.8)

aSn = aS,init
n + aS,R,init

n +
∑

S′

∑

n′

(
Wn,n′(rS, rS′) +WR

n,n′(rS, rS′)
)
bS
′

n′ . (3.69)
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Inserting (3.69) into (3.68), the incoming field coefficients aSn are eliminiated to end up
with one set of equations for the scattered field coefficients as unknowns:

∑

S′

∑

n′

MS,S′

n,n′ b
S′

n′ =
∑

n′

T Sn,n′
(
aS,init
n′ + aS,R,init

n′

)
(3.70)

with

MS,S′

n,n′ = δSS′δnn′ −
∑

n′′

T Sn,n′′
(
Wn′′,n′(rS, rS′) +WR

n′′,n′(rS, rS′)
)
. (3.71)

Thereby, the multiple scattering problem has been reduced to the solution of a linear
set of 2NSlmax(lmax + 2) equations.

The solution of (3.70) provides us with the scattered field coefficients bSn from which
all quantities of interest (electric near- and far-field, power flux, cross sections) can be
derived.

3.8. Scattered far field

The far field intensity distribution of the scattered field in the top and bottom layer
can be evaluated according to (compare (2.26))

IΩ,j(β, α) =
2π2

ωµ0

kk2
z

{∣∣g+∞
scat,j(κ, α)

∣∣2 for β ∈
[
0, π

2

]
∣∣g−∞scat,j(κ, α)

∣∣2 for β ∈
[
π
2
, π
] , (3.72)

where g±∞scat,j(κ, α) are the PVWF expansion coefficients of the scattered field at z →
±∞. They read

g+∞
scat,j(κ, α) =

∑

S

(
δNiSg

+
S,j(κ, α) + gR,+

S,N,j(κ, α)
)

(3.73)

g−∞scat,j(κ, α) =
∑

S

(
δ0iSg

−
S,j(κ, α) + gR,−

S,0,j(κ, α)
)
, (3.74)

with (compare (3.39))

g±S,j(κ, α) =
1

2π

e−ik‖·rS,‖

kz,iSkiS

∑

n′

bSn′e
im′αβ±S,n′,j(κ) (3.75)

and (compare 2.70)
[
gR+
S,i,j (κ, α)

gR−
S,i,j (κ, α)

]
= Li,iSj (κ)

[
g+
S,j (κ, α)
g−S,j (κ, α)

]
. (3.76)
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scattered field

transmitted wave

(diminished by extinction)

incoming

wave

reflected wave

(diminished by

extinction)

Figure 3.2. – Extinction of a plane wave by a particle on a substrate: The transmitted and the
reflected wave are diminished due to scattering in other directions. The dashed
line indicates the projected area A (bottom interface area).

3.8.1. Cross sections

If the initial excitation is given by a plane wave, it is natural to discuss the far field
properties of a scattering structure in terms of the differential and total scattering cross
section, as the incoming wave is specified by an intensity (power per area), whereas
the scattered field is characterized by a power, such that the scattered signal divided
by the initial signal yields an area. Without loss of generality I assume that the ini-
tial plane wave is incident from the (dielectric) bottom layer and propagating in the
forward direction, see figure 3.2:

iP = 0 (3.77)

βP <
π

2
(3.78)

k0 ∈ R (3.79)

3.8.1.1. Scattering cross section

The power of the plane wave per bottom interface area reads

IA,init =
dPinit

dA
=

k0

2ωµ0

cos βP |AP |2. (3.80)

The differential scattering cross section (DSC) can then be defined as

σΩ,scat(β, α) = I−1
A,init

d
〈
Φscat,iβ

〉

dΩ

= I−1
A,init

2∑

j=1

IΩ,j(β, α), (3.81)
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where iβ = N for β < π/2 and iβ = 0 for β > π/2 and 〈Φscat,i〉 is the time-averaged
radiant flux of the scattered field in layer i, compare (2.25).

If the top layer is absorbing, no far field exists in that layer, such that

σΩ,scat(β, α) = 0 for β <
π

2
(3.82)

The total scattering cross section is simply the integral over the differential cross sec-
tion:

σscat =

∫
d2ΩσΩ,scat(β, α) (3.83)

The above definitions are similar to the usual definition of the scattering cross section
for particles in free space. The most important difference is that the intensity of the
initial wave refers to the area of the planar interfaces and not to the area of the in-
coming wave fronts, such that an additional factor of cos βP appears. Note that other
publications might employ a different definition [153].

3.8.1.2. Extinction cross section

Usually, the extinction cross section is defined as the sum of scattering and absorption
cross section. However, the definition or evaluation of the latter is not straightforward
in the context of particles inside a planarly layered medium. I therefore prefer to
use what is commonly referred to as the “optical theorem” for the definition of the
extinction cross section. It also comes closer to the very meaning of extinction which
is to take away4 power from the initial wave. The starting point is expression (2.24)
for the bottom far field power:

〈Pbot〉 = − 2π2

ωµ0

2∑

j=1

∫

|k‖|≤k0
d2k‖kz,0

∣∣g−∞j (κ, α)
∣∣2, (3.84)

where g−∞j denotes the plane wave expansion coefficients of the total downgoing field
in the bottom layer. It is the sum of the reflected initial wave and the scattered field
propagated to the bottom layer:

g−∞j (κ, α) = gR−
P,j (κ, α) + g−∞scat,j(κ, α) (3.85)

Accordingly,

∣∣g−∞j (κ, α)
∣∣2 =

∣∣gR−
P,j (κ, α)

∣∣2 +
∣∣g−∞scat,j(κ, α)

∣∣2 + 2 Re
(
gR−
P,j (κ, α)g−∞∗scat,j(κ, α)

)
, (3.86)

4It turns out that in the context of lossy layered media, the extinction can be negative such that
the scattering particles lead to more reflection compared to the pure layered medium without the
particles.
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with the asterisk denoting complex conjugation. The first two terms in the right hand
side of (3.86) correspond to the reflected initial wave and to the scattered field’s ra-
diant intensity, respectively. The third term (“cross term”), on the other hand, cor-
respond to the extinction of the reflected initial wave through scattering. For the
reflected initial wave, we have

gR−
P,j (κ, α) = rjP (κP )AP δj,jP δ

2
(
k‖,kP,‖

)
eikP,iP ·riP , (3.87)

compare (3.50), where rjP (κ) denotes the amplitude reflection coefficient of the pla-
narly layered medium for a plane wave incident from the bottom. It can be computed
by means of the scattering matrix algorithm, compare section 2.4.2. Thus, the contri-
bution of the cross terms to the right hand side of (3.84) evaluates to

〈Pbot,extinct〉 = −4π2kz,0
ωµ0

Re
(
AP rjP (κP ) eikP,iP ·riP g−∞∗scat,j(κP , αP )

)
. (3.88)

If the top layer is lossless, too, the concept of extinction can also be applied to the
transmitted wave. We start from the top layer far field power:

〈Ptop〉 =
2π2

ωµ0

2∑

j=1

∫

|k‖|≤kN
d2k‖kz,N

∣∣g+∞
j (κ, α)

∣∣2 (3.89)

with
∣∣g+∞
j (κ, α)

∣∣2 =
∣∣gR+
P,N,j(κ, α)

∣∣2 +
∣∣g+∞

scat,j(κ, α)
∣∣2 + 2 Re

(
gR+
P,N,j(κ, α)g+∞∗

scat,j(κ, α)
)
, (3.90)

where this time

gR−
P,N,j(κ, α) = tjP (βP )AP δj,jP δ

2
(
k‖,kP,‖

)
eikP,iP ·riP , (3.91)

corresponds to the transmitted initial wave with tjP (κP ) denoting the layer system’s
amplitude transmission coefficient which can again be evaluated with the scattering
matrix formalism.

The extinction of the transmitted wave thus reads in analogy to (3.88)

〈Ptop,extinct〉 =
4π2kz,N
ωµ0

Re
(
AP tjP (κP ) eikP,iP ·riP g+∞∗

scat,j(κP , αP )
)
. (3.92)

This allows us to finally define the reflection extinction cross section

σrefl = I−1
A,init 〈Pbot,extinct〉 (3.93)

and the transmission extinction cross section

σtransm = I−1
A,init 〈Ptop,extinct〉 . (3.94)
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3. Scattering particles in planarly layered media

In the case of scattering in free space, the conservation of energy for a lossless scatter-
ing particle implies that the extinction cross section equals the scattering cross section.
This is not the case in the presence of a planarly layered medium. Even if all materi-
als are lossless, the incoupling of power into waveguide modes can cause an effective
absorption. However, in the case lossless materials and a layer system that does not
support waveguide modes, the conservation of energy yields

σscat = σrefl + σtransm (3.95)

3.9. Scattered near field

The total electric field at any point r (the fieldpoint, located in layer i) is given by
the sum of the initial field (propagated through the layer system) plus the scattered
field of all particles (also propagated through the layer system). If the fieldpoint is
in the same layer as the source of the initial excitation or the scattering particles, the
respective direct term has to be added, compare (3.3).

Whereas the direct scattered field ES
scat (r) of each particle is directly evaluated from

bSn using (3.5), the layer system mediated scattered field ER,S
scat (r) is evaluated through

its PVWF expansion

ER
S (r) =

2∑

j=1

∫

R2

d2k‖
[
Φ+
j

(
k‖; r− ri

)
,Φ−j

(
k‖; r− ri

)]
·
[
gR+
S,i,j

(
k‖
)

gR−
S,i,j

(
k‖
)
]
, (3.96)

with gR±
S,i,j

(
k‖
)

computed according to (3.75) and (3.76).

The so computed scattered near field is valid everywhere except inside the circum-
scribing sphere of the particles, where (3.5) does in general not converge.

3.10. Numerical considerations

In the simulation of scattering layers with a large number of scattering centers, the
time that is needed obtain a solution of (3.70), as well as its accuracy, critically de-
pend on a numerically favorable implementation. Consider for example a scattering
layer model includingNS = 5000 spheres and a truncation multipole order of lmax = 3
which corresponds to nmax = 30. Accordingly, the master matrix M is of dimension
NSnmax = 150, 000. However, the computation of each entry involves the numeri-
cal quadrature of a one-dimensional integral (compare (3.46)) such that in total 22.5
billion so called Sommerfeld integrals would have to be evaluated, resulting in a
considerable computational effort. Another complication arises from memory limita-
tions: the full matrix M , stored in (complex) single precision, would already require
180 GB.
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3. Scattering particles in planarly layered media

Figure 3.3. – Single volumetric (left) and flat (right) scattering layer.

3.10.1. Lookup table for particle coupling matrices

The layer system mediated coupling matrix W S,R,S′

n,n′ depends on the positions of both
particles, S and S ′, in the layer system. Due to the lateral translation symmetry, only
the relative lateral displacement counts, such that W S,R,S′

n,n′ depends on four position
parameters: ρS′S , φS′S (the polar coordinates of r‖,S − r‖,S′), zS and zS′ . In fact, it can
be written as

W S,R,S′

n,n′ = 4i|m
′−m|ei(m−m′)φS′S

2∑

j=1

Ij,n,n′ (ρS′S, zS, zS′) (3.97)

with the Sommerfeld integral

Ij,n,n′ (ρS′S, zS, zS′) =

∫ ∞

0

dκκ

kz,iS′kiS′
J|m′−m|(κρS′S)× (3.98)

[
β+,†
S,n,j, β

−,†
S,n,j

]
L
iS ,iS′
j (κ)

[
β+
S′,n′,j(κ)

β−S′,n′,j(κ)

]
,

compare (3.46).

3.10.1.1. Single volumetric scattering layers

If we assume that the particles S and S ′ are located in the same layer iS = iS′ , the
Sommferfeld integral can be split into two parts, depending on zS + zS′ and zS − zS′ ,
respectively:

Ij,n,n′ (ρS′S, zS, zS′) = I+
j,n,n′ (ρS′S, zS + zS′) + I−j,n,n′ (ρS′S, zS − zS′) (3.99)

with

I±j,n,n′ (ρ, z) =

∫ ∞

0

dκκ

kz,iSkiS
J|m′−m|(κρ)f±j,n,n′(z) (3.100)
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3. Scattering particles in planarly layered media

and

f+
j,n,n′(z) =

[
LiSj (κ)

]
1,2
B†n,j(kz,iS/kiS)Bn′,j(−kz,iS/kiS)eikz,iS(z−2ziS)+ (3.101)

[
LiSj (κ)

]
2,1
B†n,j(−kz,iS/kiS)Bn′,j(kz,iS/kiS)e−ikz,iS(z−2ziS)

f−j,n,n′(z) =
[
LiSj (κ)

]
1,1
B†n,j(kz,iS/kiS)Bn′,j(kz,iS/kiS)eikz,iS z+ (3.102)

[
LiSj (κ)

]
2,2
B†n,j(−kz,iS/kiS)Bn′,j(−kz,iS/kiS)e−ikz,iS z.

The integrals I±n,n′ thus only depend on two parameters each, which allows to com-
pute them on a grid (ρi, zi) and then evaluate the actual Sommerfeld integrals by
means of interpolation from the so generated lookup table. This approach can greatly
reduce the number of integrals that needs to be computed and thereby enhance the
speed of the overall simulation time for scattering layers by orders of magnitude. The
dimension of the grid (ρi, zi) is 2diSρmax/∆z∆ρ such that the lookup table in (complex)
single precision occupies 32diSρmax/∆z∆ρ bytes of the main memory. For example,
to model a scattering layer with thickness diS = 5 µm up to a cylindrical radius of
ρmax = 10 µm with a lookup table resolution ∆ρ = ∆z = 1 nm, 1.6 GB are required.
The size of the lookup table can be a limiting factor if very thick scattering layers
are modeled and the calculations are performed on a graphics processing unit, with
typically less memory compared to the host RAM.

3.10.1.2. Flat scattering layers

In some applications, all scattering particles are aligned at the same height zS = z. I
refer to this case as flat scattering layers. Then, the Sommerfeld integrals for the particle
coupling only depend on a single parameter, the radial coordinate ρ:

Ij,n,n′ (ρS′S, zS, zS′) = Ij,n,n′ (ρS′S) . (3.103)

This does not only save memory, but also leads to a much faster evaluation of the
particle coupling, as only a one dimensional interpolation is necessary compared to a
two dimensional interpolation in the case of volumetric scattering layers.

3.10.2. Evaluation of Sommerfeld integrals

Integrals of type (3.46) are called Sommerfeld integrals with reference to a famous arti-
cle by Arnold Sommerfeld about wireless telegraphy [91].
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Figure 3.4. – Branch cuts and waveguide mode singularities in the complex κ plane for a
3-layer system comprising a substrate (n = 1.52 + 0.01i), a 300 nm core layer
(n = 2) and a metal topping (n = 1 + 6.6i) at a vacuum wavelength of 550 nm.

3.10.2.1. Singularities of the layer system response

A straightforward approach to the numeric integration would be to evaluate the in-
tegrand along an equidistant grid κi = i∆κ for i = 0, . . . , κmax/∆κ and then apply e.g.
the trapezoidal rule to compute the integral. However, in the vicinity of waveguide
mode and branch point singularities the integrand is a rapidly varying function of κ
such that a very fine sampling of the integrand would be required in order to achieve
a reasonable accuracy. A simple strategy to avoid the vicinity of the singularities is
to integrate along a complex contour C(γ) which is deflected away from the real axis
into the lower complex half plane, see figure 3.4. As the waveguide mode singular-
ities as well as the branch cuts associated with square roots are located in the upper
complex half plane, the integrand is an analytical function in the lower half plane. By
virtue of Cauchy’s theorem, the integral along the deflected contour thus yields the
same result as along the real axis, but it is better suited for numerical evaluation.

The above described approach is easy to implement and suitable from a practical
perspective. Note that more sophisticated methods exist, and in fact a large body of
literature is devoted to the numerical evaluation of Sommerfeld integrals or their
analytical approximation, see for example [127, 154–156]. Some key concepts are
the extraction and analytical treatment of singular terms, or the integration along
a steepest-descent path to achieve fast convergence. However, these methods require
a considerable analytical and programmatic effort, such as book-keeping of singu-
larities. But thanks to the lookup table approach described above, the evaluation of
Sommerfeld integrals is not the computational bottleneck during the simulation of
scattering layers including many particles. Therefore, the simple deflection of the in-
tegral path together with the trapezoidal rule (which can efficiently be implemented
in terms of matrix-vector products) is a good choice.
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3. Scattering particles in planarly layered media

Figure 3.5. – Oblate particle near interface.

3.10.2.2. Truncation of the plane wave expansion

Another issue in the numerical evaluation of Sommerfeld integrals is the decision
where to truncate, that is, up to which maximal wavenumber kmax the integrand is
considered:

∫ ∞

0

dκ→
∫ kmax

0

dκ (3.104)

The range between κ = 0 and κ = kiexc (the wavenumber in the excitation layer)
corresponds to propagating waves, whereas in-plane wavenumbers κ > kiexc corre-
spond to evanescent waves which are relevant for the excitation’s near field. Thus,
the integral should not be truncated at a value κ < kiexc . Further, if the plane wave
expansion is truncated at a too low κ > kiexc , the near field of the excitation is not cor-
rectly accounted for. This is tolerable, if the nearest interface is not close. However,
for particles very close to an interface, a larger portion of the evanescent part of the
angular spectrum needs to be accounted for to correctly evaluate the reflection of the
field by that interface.

On the other hand, special care has to be taken in the case of oblate particles close to
an interface. As the expansion of the scattered field in outgoing SVWFs is in general
not valid inside the circumscribing sphere of the particle, the case that the circum-
scribing sphere intersects with the interface (compare figure 3.5) is critical [157]. Even
in this case, the presented formalism can be applied, as in contrast to the expansion
in SVWFs, the expansion in PVWFs is valid also in the near field [158]. But the an-
gular spectrum converges only point-wise with increasing multipole order lmax. As a
consequence, it is important to choose kmax within the regime where convergence of
the angular spectrum has already occurred [159]. As a rule of thumb, one can use the
estimate [160]

kmax = (0.38lmax + 1)R−1 + 0.03k2R, (3.105)

where lmax is the SVWF truncation order, R is the radius of the circumscribing sphere
of the particle and k is the wavenumber outside the particle.

To conclude, the Sommerfeld integral truncation should not be chosen too small (for
fields originating from close to an interface) and not too large (for oblate scattering
particles close to an interface) for a fixed SVWF truncation order lmax.
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3. Scattering particles in planarly layered media

3.10.3. Solution of the linear system

For moderate particle numbers, the system of linear equations (3.70) can be solved
by means of direct methods, for example using LU-factorization. As the coefficients
of the linear system MS,S′

n,n′ depend only on the T -matrices and the coupling matrices
W S,S′

n,n′ andW S,R,S′

n,n′ , this approach has the advantage that for repeated simulations with
modified initial field coefficients aSinit,n and aS,Rinit,n, the LU-factorization can be reused
- for example during a sweep over the incident angle of an initial beam or over the
position of an initial dipole.

For very large particle numbers, it is favourable to use iterative solvers like the gen-
eralized minimal residual method (GMRES) which can approximate the solution of the
linear system to the required accuracy with fewer operations than would be necessary
to exactly solve it. As only matrix-vector products are performed, the linear coeffi-
cients can be computed “on the fly” during each iteration. This allows the solution
of systems with so many unknowns that the coupling matrices cannot be stored in
memory. Clearly, the computational bottleneck of such simulations is the evaluation
of matrix-vector products of the type

∑

S′

∑

n′

MS,S′

n,n′ x
S′

n′ (3.106)

and a suitable implementation of this operation is critical for the performance in the
case of large particle numbers.
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4. The Smuthi software package

This chapter introduces Smuthi, a simulation software for light scattering by particles near
planar interfaces. It covers possible use cases, gives an overview on the program structure
(section 4.1) and discusses the validation of simulation results (section 4.2)

Smuthi1 is a free Python package for the simulation of scattering of plane waves,
Gaussian beams or point dipole emission by spherical, spheroidal or cylindrical par-
ticles near or between planar layer interfaces. It was developed during the doctor-
ate research in preparation of this thesis with the aim to allow the simulation of
OLEDs with internal scattering layers – but its use is not restricted to that configu-
ration. Other possible use cases include solar cells with scattering layers, the design
of nano structures for surface enhanced Raman spectroscopy, meta-surfaces for a tai-
lored scattering response and any other application with particles on or close to a
substrate or inside a system of planar layers.

In fact, Smuthi succeeds an unpublished prototype code that was previously imple-
mented in Matlab and that was used to compute the results published in [78,126,127,
159]. The decision to reimplement the software from the scratch was guided by the
aim to make it ...

• accessible: Smuthi requires no proprietary software and can be downloaded
from the Python Package Index (PyPI) and installed with the pip package manage-
ment system using a single command: pip install smuthi.

• easy: The usage should be straightforward also without programming experi-
ence. The online documentation [161] contains detailed instructions how to run
a simulation.

• transparent: Other programmers should be able to understand the data struc-
ture without too much effort. The software is designed following an object
oriented programming style. Using the Sphinx Python Documentation Gener-
ator package [162] with the autodoc extension, a detailed documentation of
the Smuthi application programming interface (API) is maintained and can
be viewed either directly in the source code or from the online documenta-
tion [161]. Contributions from other programmers can be added through pull
requests to the Git online repository [163].

1The acronym stands for “Scattering by multiple particles in thin-film systems”
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4. The Smuthi software package

Figure 4.1. – Smuthi flowchart

• reliable: An extensive set of unit tests and system tests ensures that the individ-
ual modules behave as expected. However, no software that is complex enough
is free of bugs, and I cannot guarantee correct behaviour in all possible cases. In
addition, Smuthi does not grant input testing, and sloppy parameter input or
the usage out of the intended scope (for example, overlapping particles) lead to
wrong simulation results.

• efficient: Especially for the case of many scattering particles, emphasis was laid
on an efficient implementation, such that simulations involving several thou-
sand wavelength scale scattering particles in a thin-film system are feasible in
a reasonable computation time. Here, the two most important features are the
evaluation of particle coupling by interpolation from a precomputed lookup ta-
ble (see section 3.10.1) and shifting computationally heavy tasks to the graphics
processing unit (GPU).

• flexible: Smuthi has a built-in interface to the NFM-DS Fortran code by Adrian

70



4. The Smuthi software package

Simulation

layer system

particle list

initial field

linear system

post processing

. . .

run()

. . .

LayerSystem
. . .
. . .

Particle
. . .
. . .

InitialField
. . .
. . .

LinearSystem
. . .
. . .

PostProcessing
. . .
. . .

Figure 4.2. – Aggregation of the simulation class. Only a selection of class attributes and
methods are shown.
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Figure 4.3. – Inheritance structure of the particle classes. Only class attributes are shown,
whereas methods are hidden.

Doicu, Thomas Wriedt and Yuri Eremin [133]. This interface was implemented
in collaboration with Dominik Theobald (see also his Master thesis [164]) and al-
lows the simulation of speroidally and cylindrically shaped scattering particles.
In general, due to Smuthi’s object oriented design paradigm (see next section), it
is relatively easy to add new functionality (like for example special beam shapes
as the initial field).
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Figure 4.4. – Inheritance structure of the initial field classes. Only class attributes are shown,
whereas methods are hidden.

4.1. Program structure

Smuthi was implemented following an object oriented programming style. Its data
structure relies on the following classes:

Simulation: The central simulation object, gathering all information at one spot.
Figure 4.2 shows how this class has instances of other classes as attributes. It has a
run() method that triggers the the solution of (3.70), and the post processing to yield
the desired output quantities like far field power flux, cross sections, near field distri-
bution or dipole dissipated power. Figure 4.1 illustrates the sequence of calculations
as a program flowchart.

LayerSystem: This class manages everything that has to do with the propagation of
fields through the planarly layered background medium. It contains the layer thick-
nesses and refractive indices as attributes and provides a response() method that
evaluates the layer system response equation (2.70).

Particle: The particle class, which decays into subclasses as shown in figure 4.3,
manages all properties of an individual particle. Its attributes include the geomet-
ric and material parameters, but also the T-matrix as well as the incoming and scat-
tered field at the particle. The latter are instances of the SphericalWaveExpansion
class.

InitialField: This class also decays into subclasses as shown in figure 4.4.
It manages the initial excitation and provides methods to compute a regular
SphericalWaveExpansion, see section 3.5, as well as a PlaneWaveExpansion.
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Figure 4.5. – Inheritance structure of the field expansion classes. Only class attributes are
shown, whereas methods are hidden.

FieldExpansion: This class is an abstract representation of an expansion of the
electric field in some basis function. It can be a SphericalWaveExpansion like in
(2.42) or a plane wave expansion like in (2.18). In either case, an instance of the re-
spective class contains the expansion coefficients as attributes and provides methods
to evaluate the electric field at a given point. There also exist functions to convert
spherical into plane wave expansions and vice versa, according to the formulas pre-
sented in section 2.3.3. In addition, there exist also PiecewiseFieldExpansion
which reflect the fact that no field expansion is valid everywhere – for example a
plane wave expansion is in general valid only in one of the layers. An object of the
PiecewiseFieldExpansion contains a list of FieldExpansion objects as an at-
tribute, together with the information about the respective domains of validity. See
figure 4.5 for an inheritance diagram.

LinearSystem: This class manages the assembly and the solution of the mas-
ter equation (3.70). Its attributes include the system t matrix as well as the sys-
tem coupling matrix which are represented as instances of the SystemMatrix
class.

SystemMatrix: A system matrix is a matrix of full system size, i.e., of dimension
2NSlmax(lmax + 2), like for example the master matrix MS,S′

n,n′ of (3.70). Depending
on the simulation geometry (volumetric or flat scattering layer?) and on the solu-
tion strategy, a system matrix can either be stored explicitly in memory or as an ab-
stract linear operator providing a matrix vector product method. Accordingly, the
SystemMatrix class decays in several subclasses which specify to the different so-
lution strategies.
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Figure 4.6. – Screenshot of the COMSOL model geometry.

4.2. Validation

The validation process should verify that the software correctly solves Maxwell’s
equation and returns correct power, near- and far-field figures. This can be done
either by testing the internal consistency in terms of energy conservation or by com-
parison to results from other established software packages.

bottom layer refractive index: 1 + 6i
middle layer refractive index: 2
top layer refractive index: 1.5
particle refractive index: 3 or 1 + 6i
vacuum wavelength: 550 nm
middle layer thickness: 500 nm
sphere radius: 120 nm
oblate spheroid horizontal half axis: 150 nm
oblate spheroid vertical half axis: 80 nm
prolate spheroid horizontal half axis: 80 nm
prolate spheroid vertical half axis: 150 nm
cylinder radius: 100 nm
cylinder height: 200 nm

Table 4.1. – Parameters of the validation model.

4.2.1. Conservation of energy

If conservation of energy is fulfilled for a lossless structure, it is still not guaranteed
that the solution is correct, but many errors can be ruled out by this consistency check.
Note that a lossless structure means that
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real part, Smuthi real part, Comsol

imag. part, Smuthi imag. part, Comsol

Figure 4.7. – Ey as computed with Smuthi (left) and COMSOL (right) for dielectric scattering
particles (n = 3).

1. All layers have a real refractive index.

2. All particles have a real refractive index.

3. The layer system does not support waveguiding, because power coupled into
waveguide modes does not appear in the far field balance.

In the context of plane wave excitation, conservation of energy means that the extinc-
tion cross section equals the scattering cross section (optical theorem), see sections
3.8.1.1 and 3.8.1.2. For Gaussian beam excitation, conservation of energy means that
the total reflected power plus the total transmitted power equals the total power of
the initial beam. Finally, for a point dipole source or a collection of such, conserva-
tion of energy means that the dissipated power equals the integrated radiative power
according to Poynting’s theorem, see section 1.3.2.2. Three Python test modules that
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real part, Smuthi real part, Comsol

imag. part, Smuthi imag. part, Comsol

Figure 4.8. – Ey as computed with Smuthi (left) and COMSOL (right) for metallic scattering
particles (n = 1 + 6i).

verify the conservation of energy in each case are listed in appendix D. In each case,
the conservation of energy is confirmed to very good accuracy.

4.2.2. Comparison to other codes

Another important validation strategy is to simulate the same problem with different
tools and compare the results. One comparison of that kind has been conducted in
the context of scattering by flat particles on a substrate and published in a journal
paper [160]. Smuthi results were compared to results from Yuri Eremin’s discrete
sources method with excellent agreement.

In addition, we have recently used the finite-element software COMSOL Multi-
physics [105] to compute the electromagnetic fields of a more general scattering prob-
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Figure 4.9. – Real part (blue solid line) and imaginary part (red dashed line) of Ey along a
probing line computed with Smuthi. The corresponding COMSOL results are
shown as filled circles. Left plot: dielectric scattering particles (n = 3), right
plot: metallic scattering particles (n = 1 + 6i).

lem. Afterwards, the same configuration was simulated using Smuthi. Figure 4.6
shows the scattering configuration which consists of a three-layer geometry incor-
porating a sphere, a cylinder, an oblate spheroid and a prolate spheroid. The initial
excitation is given by a point dipole source located in the middle of the center layer.
Table 4.1 lists some of the parameters describing the model.

Figures 4.7 and 4.8 display the y-component of the electric field in a plane parallel to
the layer interfaces, 250 nm inside the top layer, for dielectric scattering particles (n =
3) and for metallic scattering particles (n = 1 + 6i), respectively. The y component of
the electric field is most interesting because it vanishes for the initial dipole field and
is thus most sensitive to a correct treatment of (multiple) scattering. By looking at the
figures it is evident that the qualitative features of the scattered field are identical.

Figure 4.9 shows Ey along a line, again 250 nm inside the top layer, and allows for
a quantitative comparison. The agreement between the results is good, although not
perfect. Note however that the deviation between Smuthi and COMSOL is within the
range of fluctuations of the COMSOL results that occur when varying for example
the distance between the so called perfectly matched layer and the scattering particles.
I suspect that residual reflections from the perfectly matched layer cannot be avoided
due to the fact that the layer interfaces intersect it. To conclude, it can be assumed
that the agreement is constrained by the accuracy of the COMSOL results and not of
the Smuthi results.
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5. Simulation of disordered internal
scattering layers in OLEDs

This chapter illustrates the application of the formalism presented in chapter 3 to disordered
scattering layers in OLEDs. First, a realistic example OLED stack is introduced and opti-
mized with respect to extraction efficiency by tuning the layer thicknesses and the location of
the emission zones (section 5.1). In the following, this OLED stack serves as a starting point
and as a reference for the simulation of OLEDs with scattering layers, which are described in
section 5.2. Section 5.3 is dedicated to an error analysis in order to provide a sense of how
reliable simulation results for the given problem can be expected to be. Finally, simulation
results for OLEDs with internal disordered scattering layers are presented (section 5.4).

The leading question that I will pursue in this chapter, is the following:

How much can the extraction efficiency of OLED stacks that are already optimized
with respect to the stack design (see section 5.1) be improved by adding disordered
internal scattering layers?

It is a well-known fact that large relative enhancement factors can be achieved by
adding outcoupling structures to an optically “bad OLED”, where a high fraction
of the generated photons are in waveguide modes. On the contrary, if the OLED is
already designed to emit most light into the escape cone of the substrate, the addition
of a scattering layer leads to less dramatic enhancement factors. It is important to
clarify from a theoretical perspective, what can realistically be expected in that case.

Tuning the optical cavity defined by the OLED thin film system, the extraction pat-
tern can be significantly changed. A reasonable stack design is thus essential for an
efficient OLED. The following section will thus discuss the optimization of the layer
thicknesses and the emission zone location for two realistic OLED stacks. These op-
timized stacks will then later on serve as reference devices during the simulation of
OLEDs with scattering layer.

5.1. Stack optimization

The example OLED stack is given by a white OLED with isotropically oriented tran-
sition dipoles. The thin-film system is modeled as a substrate, a transparent electrode
(ITO), a thick layer that gathers the various organic functional layers such as charge
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Figure 5.1. – Example OLED stack with variable organic layer thickness and dipole position.
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Figure 5.2. – Left: Typical spectra of OLED emitter materials for blue, green orange and red
emission. Right: A superposition of the four spectra yields warm-white emis-
sion with good color rendering quality. The blue and red, as well as the green
and orange portion of the emission are gathered to combined emitter systems,
respectively [165].

injection, charge transport and emitter layers, and finally a metallic electrode (silver),
see figure 5.1.

With regard to the concept of exciton recycling [165], we assume a system of four
emitters (blue, green, orange and red, see figure 5.2) which are grouped in two com-
bined layers of blue/red and green/orange. The relative weight of the respective
spectra is tuned such that the overall internal spectrum P0(λ) represents a warm-
white color.

With regard to the orientation of the emitter dipoles, it is common praxis to model
the isotropic case as the incoherent addition of a horizontal and a vertical dipole,
weighted with 2/3 and 1/3, respectively [166].

Three parameters are varied to optimize the structure: the total organic thickness
dorg, and the locations zdip,br and zdip,go of the emitter zone for the blue/red and the
green/orange system, respectively (compare the left of figure 5.1). This is a simpli-
fication as in a real optimization problem the production process and requirements
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Figure 5.3. – Outcoupling (quantum) efficiency for the blue/red (left) and for the green/orange
(right) emitter system, as a function of the total organics thickness and the z-
position of the emitter systems.
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Figure 5.4. – External quantum efficiency and loss channels for the optimized white OLED
as a function of the wavelength for the blue/red emitter system (left) and the
green/orange emitter system (right), respectively.

connected to the electrical properties would impose restrictions to the variation of
these parameters.

The optimization goal is a high outcoupling efficiency. This can be efficiently
achieved by first calculating the extraction pattern (see section 1.3.1) as a function
of the optimization parameters, Xair

j (dorg, zdip,br, zdip,go;λ, β), and storing it in a table.
Then, the optimal outcoupling efficiency can be evaluated as

ηmax
out = max

dorg,zdip,br,zdip,go

2∑

j=1

∫
dλP γ

0 (λ)
∫

dβ Xair
j (dorg, zdip,br, zdip,go;λ, β)∫
dλP γ

0 (λ)
. (5.1)

Figure 5.3 shows ηout as a function of dorg and zdip for the blue/red and the green/or-
ange emitter system, respectively. It turns out that the optimal outcoupling efficiency
is achieved for a total organic thickness of dorg = 310 nm with an emission zone of
the blue/red emitter system at zdip,br = 265 nm and an emission zone of the green/o-
range emitter system at zdip,go = 235 nm. Then, the overall outcoupling efficiency is
ηmax

out = 23.6 %.
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Figure 5.5. – Investigated OLED structure with scattering layer made of cylindrical holes
etched into the glass substrate, then planarized with TiO2.

Figure 5.4 shows the outcoupling efficiency (green area) as well as the contributions to
the various optical loss channels as a function of wavelength for the optimized OLED
stack. It can be verified that the spectral outcoupling efficiency for the green/orange
system roughly coincides with the center of mass of the emitter spectrum, whereas
the maximum of the spectral outoupling efficiency for the blue/red system is less
pronounced (due to the double-peaked emitter spectrum).

5.2. The scattering layer

In previous papers, we have treated scattering layers comprising high refractive in-
dex nano particles embedded in a host polymer layer [78, 126, 127]1, where the parti-
cles were modeled as spheres. Here, I want to address the simulation of flat scattering
layers comprising a laterally disordered array of nano holes planarized by a material
of different refractive index.

Such layers can be fabricated using bottom-up approaches like polymer blend tech-
nology [49–57]: Two polymer materials, typically polystyrene (PS) and poly(methyl
methacrylate) (PMMA), are dissolved and mixed together in a mutual solvent. A
small volume of the mixture is then processed on a substrate. During evaporation of
the solvent, the polymers separate and form islands of the one material surrounded
by domains of the other material2. The morphology of the structure can be tailored
by tuning the fabrication process parameters (including material concentrations and
molecular weights, annealing temperature, humidity) [50,52,56,57]. After selectively
removing one of the materials, either nano pillars or a film with nano holes can be
obtained. These structures can either be directly used as scattering layers, or be trans-
ferred into a different material using lift-off, etching or stamping processes [50,56].

1These studies were conducted using a prototype Matlab code preceding Smuthi
2Other topologies like 2D network structures are possible, too.
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Figure 5.6. – Top left: SEM image of a nano pillar structure fabricated from polymer blend.
Top right: Generated bidisperse disc packings with constant filling fraction (ff)
of 20%. The spatial correlation is tuned by varying the packing fraction (pf)
between 20% and 80%. Bottom left: Pair correlation function. Bottom right:
Pillar radius distribution.

For this study, I assume the following OLED fabrication process that was identified
by Christian Stamm [167] as a robust and well feasible route to planarized disordered
scattering layers for outcoupling from OLEDs:

1. A PMMA layer with nano holes is fabricated on a glass substrate using polymer
blend phase separation.

2. Using dry etching, the nano holes are transferred into a glass substrate, and the
remaining PMMA is removed.

3. The glass substrate with nano holes is covered with a titania nanoparticle layer3

3The optical constants of the titania layer are taken from measurements performed by Jurana Het-
terich in collaboration with Christian Stamm. Due to the nano porosity of the titania material, the
refractive index is smaller than that of bulk titania [167]. For a wavelength of 550 nm, the refractive
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filling up and planarizing the holes.

4. On top, the optimized OLED stacks discussed in section 5.1 are processed.

To model the scattering particles, I assume further that

• the nano holes have a perfectly cylindrical shape and are entirely filled with
titania

• the depth of the nano holes can be deliberately tuned through the dry etching
dose

• the distribution of hole radii and their lateral spatial distribution follow the
same statistics as the structure depicted in the scanning electron microscopy
(SEM) image shown in the top left of figure 5.6.

In order to allow simulations with arbitrary particle numbers and scattering layer lat-
eral dimensions, I approximate the distribution of circles displayed in the top left of
figure 5.6 with artificially generated disc packings, which were prepared by Lorenzo
Pattelli using molecular-dynamics codes provided by Monica Skoge et al. [168] and
based on the Lubachevsky-Stillinger algorithm. All packings have a filling fraction of
20 %, which is similar to that of the original particle distribution shown in the top left
of figure 5.6. Regarding the disc radii, the measured distribution is approximated by
a bidisperse distribution of 100 nm and 150 nm to equal parts, see the bottom right
of figure 5.6. Finally, the pair correlation function of the generated packings are ad-
justed following the same procedure as described in [169]: during the generation of
the point pattern, the excluded volume is tuned by setting larger than the actual disc
radii, leading to a packing fraction between 20 % and 80 %. After the algorithm has ter-
minated, the disc radii are “deflated” to their actual values yielding the desired filling
fraction but with a pair correlation function corresponding to a higher packing frac-
tion. The top right of figure 5.6 shows the artificially generated bidisperse packings,
whereas the bottom left of figure 5.6 shows the pair correlation function estimated
for the SEM image using Ilya Valmianski’s Matlab code [170] in comparison to that
estimated for the artificial samples. For a packing fraction of 60 %, the pair correlation
function fairly approximates the one estimated for the SEM image, although it shows
some spiky amorphous features lacking in the original curve.

5.3. Accuracy analysis

The idea is to use the simulation approach described in this thesis in order to estimate
the outcoupling efficiency from the OLEDs with scattering layers. However, before
we can proceed to the simulation results, it is important to assess the reliability of the
approach.

index is around ∼ 2.04.
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Three classes of errors need to be considered: The bare numerical errors of the scatter-
ing simulations, the error related to the sample averaging of the random distributions
and finally the error implied by considering only a finite number of scattering parti-
cles. Each of the following three sections deals with one of these categories.

5.3.1. Numerical errors

Simulation results are not exact, and their accuracy depends on a number of numer-
ical parameters that trade precision with computation time. Table 5.1 lists a selection
of these parameters.

symbol parameter default reference
lmax truncation multipole degree variable 10
mmax truncation multipole order variable 10
neff,max truncation effective refractive index 3 3
neff,imag imaginary contour deflection 0.01 0.01
∆neff Sommerfeld integral sampling 2× 10−3 1× 10−3

∆α azimuthal angle resolution 1◦ 0.25◦

∆β polar angle resolution 1◦ 0.25◦

∆ρ lookup table resolution 5 nm 2 nm
tol iterative solver tolerance 5× 10−4 1× 10−5

Table 5.1. – Parameters critical for numerical accuracy

A default set of parameters is selected (the third column of table 5.1). In order to
confirm that these settings are appropriate, the influence of each parameter on the
accuracy for a toy model including NS = 1000 particles is evaluated. Each parameter
is varied whereas all other parameters are fixed to their default values (exception: for
lmax < 3, mmax needs to be reduced because always mmax ≤ lmax). The relative accu-
racy of the substrate coupling efficiency4 is then estimated by comparison to an ac-
curate reference simulation with very conservative parameter settings, see the fourth
column of table 5.1.

The most important parameters are the multipole expansion truncation parameters
lmax and mmax. They strongly influence both the accuracy and the numerical effort
as they determine the number of unknowns per particle and thereby the dimension
of the linear system (3.70). In the shown example, it turns out that for lmax ≥ 6 and
mmax ≥ 3 the numerical errors drop below 0.5 % such that these values seem justified
for an acceptable numerical accuracy in the shown example. As a consequence, this
choice limits the accuracy to ∼ 10−3 such that the relative error from all other param-
eter sweeps cannot be lower than that value. The shown curves merely illustrate in

4the electromagnetic power radiated into the substrate, see section 2.3.1.2, divided by the total dissi-
pated dipole power, see section 1.3.2.2
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Figure 5.7. – Influence of numerical parameters on the accuracy of the substrate coupling
efficiency. The vertical grey line marks the default value of the parameter.
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what regime some parameter starts to limit the accuracy to values worse than 10−3,
i.e., when a a parameter becomes prohibiting. This way, it can be verified that the
selected parameters allow an accuracy better than 0.5 %.

Special care has to be taken when addressing the complex contour truncation neff,max

and its imaginary deflection neff,imag, as they don’t follow a simple “the-larger-the-
more-accurate” logic. For the imaginary deflection, the accuracy for low values is
limited because the integrand then passes nearby waveguide mode resonances, see
section 3.10.2. On the other hand, when using too large imaginary deflection, the
complex Bessel function grows to large values which again limits the numerical ac-
curacy of the integral. For the contour truncation, the issue with too large values is
due to a relative convergence phenomenon that occurs for flat particles near a planar
interface [159, 160].

The choice of a suitable lmax andmmax depends on the size of the nano holes as well as
the wavelength. These parameters are thus fixed for each set of simulations individ-
ually, whereas the other parameters are globally set to the “default” values as shown
in table 5.1.

5.3.2. Sample averaging

One wave optics simulation can cover only a single random realization of an infinite
set of possible simulation geometries with different dipole orientation in space, as
well as different scattering particle configurations. Therefore, one needs to average
over these distributions in order to obtain an estimate for the statistical expectation
value of the outcoupling efficiency rather than a random simulation result. In order
to do so, I repeat the wave optics simulations several times, and each time draw the
dipole orientation from a uniform random distribution of points on the unit sphere,
and the dipole position from a uniform random distribution of locations relative to a
fixed particle distribution5. The resulting substrate coupling efficiency is then aver-
aged incoherently over the random simulations,

ηsub =
1

Nsim

∑

sim

ηsub,sim ∆ηsub =
σ√
Nsim

, (5.2)

where Nsim is the number of simulations,
∑

sim is a sum over all simulations, ηsub,sim

is the substrate coupling efficiency for one simulation, ∆ηsub is the standard error of
the mean substrate coupling efficiency and σ is the standard deviation of ηsub,sim.

In order to reduce the number of necessary simulations, arrays of point dipole sources
can be considered instead of single point dipoles. The advantage is that with many

5I assume that this is sufficient to mimic a true averaging over particle distributions, as the random-
ness of the particle constellation has the strongest influence in the local environment of the dipole
source.
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Figure 5.8. – Averaging the substrate coupling efficiency over many random realizations for
an isotropic dipole and a scattering domain spanning 20µm in diameter. Left:
single dipole simulations. Middle: simulations with groups of 9 dipoles. Right:
Groups of 16 dipoles.

dipoles in a single simulation, the most significant source of fluctuations can already
be eliminated: the local configuration of a point dipole with the scattering particle
pattern. For example, if the lateral position of a particle coincides with that of the
dipole, a different (probably smaller) substrate coupling efficiency must be expected
compared to a dipole that is not “covered” with any particle. To approximate an in-
coherent superposition of dipole sources, the relative phase of each dipole amplitude
is also drawn from a random distribution, such that any interference effects between
the sources are averaged over [47].

dipoles per sim-
ulation

standard devia-
tion σ

Nsim to achieve
∆ηsub = 0.005

dipoles total

1 0.053 111 111
9 0.023 21 189
16 0.017 12 192

Table 5.2. – With more dipoles per simulation, fewer simulations are needed to achieve the
same accuracy of ηsub.

Figure 5.8 shows the distribution of simulation results regarding the substrate cou-
pling efficiency for a scattering domain with a radius of 10 micron. In the left panel,
each simulation contained a single dipole source, whereas the middle and right panel
correspond to arrays of 9 and 16 dipoles, respectively. It can be verified that the result-
ing mean values are consistent within the standard error, supporting the assumption
that a random initial phase can eliminate any systematic interference effect. In addi-
tion, one can see that due to the reduced fluctuation of the results, the same standard
error ∆ηsub = 0.005 of the mean efficiency can be accomplished with fewer simula-
tions if more dipoles are considered per simulation.
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Figure 5.9. – Sweeping the scattering domain radius from ρ = 10micron to ρ = 30micron.

5.3.3. Particle number truncation

When a finite number of scattering particles is considered, the scattering sample is
restricted to a certain domain, for example a circular area with radius ρ, see figure
5.9. The extraction of power from thin-film guided modes is thus systematically un-
derestimated, as the outcoupling contribution from scattering particles beyond the
ensemble domain is not considered in the simulation.

In order to overcome this limitation, a phenomenological model [78,171] can be used
to extrapolate the substrate coupling efficiency:

ηsub(ρ) = A−Be−Cρ, (5.3)

where C corresponds to an effective waveguide mode extinction length. By adapting the
model parameters A,B,C such that the model fits the simulation data, the substrate
coupling efficiency can be extrapolated to

lim
ρ→∞

ηsub = A, (5.4)

compare figure 5.10. Such a sweep over the domain radius can be achieved using
only a single wave optics simulation by applying the following trick:

1. Run a full simulation for a large number of particles NS.

2. Compute the far field power according to (3.72).

3. Approximate the far field power for a consecutive series of smaller subsets Σρ

of particles by truncating the sum in (3.73) at the respective particle numbers:
∑

S

→
∑

S∈Σρ

with Σρ =
{
S|r‖,S ≤ ρ

}
(5.5)
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Figure 5.10. – Left: Substrate coupling efficiency as a function of the scattering domain ra-
dius for an array of 25 randomly oriented dipoles. The red symbols are simu-
lation results, the blue line is the fit model (5.3). The dashed gray line indicates
the extrapolated value for ρ → ∞. The gray rectangle marks the domain
[ρmin, ρmax] of domain radii that were used to calibrate the fit model. Right:
An estimate of the absolute error introduced by using a finite scattering par-
ticle domain truncated at ρmax (red dashed line) or by using the extrapolation
calibrated with simulation data for a maximal particle domain ρmax (blue line).

4. Fit the model parameters

As the fit model is not valid for small ρ [78,171], some uncertainty remains regarding
the minimal domain radius ρmin above which simulations are used for the calibration
of the fit model, and the extrapolated results thus remain somehow vague. Neverthe-
less, I assume that this extrapolation scheme in general enhances the accuracy of the
estimated substrate coupling efficiency compared to simply using the values taken
from a finite particle number simulation.

5.4. Results

After the quantitative reliability of the suggested simulation method has been as-
sessed in the previous section, I will now present the results of the example study,
which aims at an estimation of the outcoupling efficiency enhancement when insert-
ing a disordered scattering layer into an already optimized white OLED stack. In or-
der to cover the whole emission spectrum, the simulation wavelength is varied from
450 nm to 750 nm in steps of 50 nm. In addition, the depth of the nano holes is varied
between h = 220 nm, h = 260 nm, 300 nm and h = 340 nm. The lateral radius of the
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scattering sample was limited to ρ = 20 micron which corresponds to circa NS ∼ 5000
particles.

5.4.1. Radiation into the substrate

For each pair of wavelengths and nano hole dephts, the radiation into the substrate
is computed with Smuthi by averaging over five simulations each of which contains
a random realization of the scattering configuration and a random realization of 36
isotropically oriented dipole emitters. This has to be done twice – once for the optimal
emission zone of the blue/red emitter system and once for the optimal emission zone
of the green/orange emitter system, see section 5.1, which leads to a total number of
7× 4× 5× 2 = 280 simulations.

Figure 5.11 shows the simulated radiation pattern into the substrate for a nano hole
depth of h = 260 nm as a function of the emission angle. Recall that the radiation
pattern corresponds to the power emitted into a polar angle interval and is thus pro-
portional to the emitted intensity times sin β, which explains why the curves go to
zero for β → 0. The scattering layer enhances the efficiency of the initial emission
into the substrate significantly. The integral over the radiation pattern with respect
to the emission angle yields the substrate coupling efficiency which is depicted in
figure 5.12. Due to the coarse sampling of wavelengths in steps of 50 nm, the simu-
lation results need to be interpolated (extrapolated) between (beyond) the simulated
wavelengths.

5.4.2. Diffuse and specular reflection

In order to evaluate the polar BRDF Roled
j,j′ (λ, β, β′) as defined in section 1.3.3, a series

of simulations with Gaussian beams as the initial field is performed. The incident
propagation angle of the beam hitting the OLED structure from the substrate side is
varied from 0 degree to 80 degree in steps of 10 degree. Covering both TE and TM
polarization, this leads to a number of 18 simulations per wavelength and scattering
layer geometry. The beam waist was set to 10 micron covering many scattering cen-
ters, such that the local configuration of the scattering centers is already effectively
averaged over in only one simulation shot. Thus, in total 18 × 7 × 4 = 504 Smuthi
simulations are done. In addition, I assume that waveguide mode extraction is not
critical in the BRDF simulations, because it is only a second order effect: for power to
be extracted from a waveguide mode, two scattering events are necessary – one cou-
pling the power into the mode and the other one to extract it6. As a consequence, an
extrapolation of the reflected power to an infinite scattering domain radius is not nec-
essary. In order to compensate for the intrinsic divergence of the initial beam, a small

6This is different from simulations with dipole sources where a substantial part of the initial power
is in waveguide modes.
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Figure 5.11. – Radiation patterns into the substrate for the white OLED stack with a disor-
dered scattering layer with a nano hole depth of h = 260 nm at a packing frac-
tion of pf = 60%. The light grey lines refer to individual simulations, whereas
the thick dashed lines are the average over five simulations. The thin dashed
lines refer to the bare OLED stack without scattering particles (but with the
planarization layer). The left column corresponds to dipoles located at the
optimal red/blue emission zone at zdip = 265 nm, whereas the right column
corresponds to dipoles located at the optimal green/orange emission zone at
zdip = 235 nm, see section 5.1.
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Figure 5.12. – Simulated substrate coupling efficiency (symbols) for isotropic emission from
the optimal red/blue (left) and green/orange (right) emission zone for h =
260 nm and pf = 60%. Dashed black lines: OLED stack without scattering
layer. Shaded areas: internal photon number spectrum P γ0 .
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Figure 5.13. – Specular and diffuse reflection from the OLED stack with scattering layer.

but finite solid angle around the specular direction is defined, and light reflected into
this solid angle is attributed to specular reflection [78].

Figure 5.14 shows the resulting diffuse and specular reflectivity for the white refer-
ence OLED stack with a scattering layer at pf = 60 % packing fraction and a nano hole
depth of h = 260 nm. With growing wavelength the diffuse reflectivity is suppressed
because the size of the nano holes becomes smaller compared to the wavelength,
which leads to a reduced scattering strength. Further, the total reflectivity is in gen-
eral smaller than without scattering centers (light gray curves), due to incoupling of
light into waveguide modes, leading to an enhanced absorption. Nevertheless, the
net effect of scattering for the extraction of light from the substrate is always positive,
because it is the diffuse rather than the total reflectivity which enhances the outcou-
pling.
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Figure 5.14. – Specular and diffuse unpolarized reflectivity for the white OLED stack with
a disordered scattering layer with a nano hole depth of 260 nm at a packing
fraction of pf = 60%. The light grey lines refers to the reflection from the bare
OLED stack without scattering centers but with the planarization layer.
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Figure 5.15. – Simulated air coupling efficiency (symbols) for isotropic emission from the op-
timal red/blue (left) and green/orange (right) emission zone for h = 260 nm and
pf = 60%. Dashed black lines: OLED stack without scattering layer. Shaded
areas: internal photon number spectrum P γ0 .
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Figure 5.16. – Simulated extraction efficiency and substrate coupling efficiency as a function
of nano hole depth. Reference values from the optimized OLED without scat-
tering layer are shown for comparison.

5.4.3. Radiation into the ambient

The initial emission into the substrate, together with the polar BRDF allow the com-
putation of the emission into air by first computing the radiation pattern in the sub-
strate using (1.9) and (1.20), and then using (1.6) to evaluate the radiation pattern in
air. The integral over the radiation pattern, weighted with the intrinsic photon num-
ber spectrum then yields the final outcoupling (quantum) efficiency for the white
OLED with scattering layer. The extraction efficiency as a function of emission wave-
length is shown in figure 5.15 for a nano hole depth of h = 260 nm. A significant
enhancement of the extraction efficiency is visible for all wavelengths. Again, the
photon number spectrum of internal light generation is illustrated with a shaded
area.

Finally, figure 5.16 depicts the spectrally integrated extraction efficiency for nano hole
depths of 220 nm, 260 nm, 300 nm and 340 nm, respectively. It turns out that with the
proposed scattering layer, the extraction efficiency can be enhanced by a factor of
∼ 1.6 from ∼ 23 % to ∼ 36 %. It is noteworthy that both internal and external outcou-
pling contribute to the enhanced efficiency, as can be seen in table 5.3.

The here presented study is meant to be a realistic estimate of what can be expected from
adding a scattering layer to an already optimized white OLED stack with isotropic
dipole orientation. Somewhat higher enhancement factors are probably possible by
optimizing the scattering layer and OLED stack parameters together in an extensive
experimental or simulative parameter study, instead of first optimizing the OLED
stack and then adding a scattering layer.
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5. Simulation of disordered internal scattering layers in OLEDs

hole depth OLED→ substrate substrate→ air OLED→ air
reference 46.8 % 50.4 % 23.6 %
220 nm 59.9 % 56.1 % 33.6 %
260 nm 60.6 % 58.4 % 35.4 %
300 nm 61.0 % 61.0 % 37.2 %
340 nm 60.6 % 60.7 % 36.8 %

Table 5.3. – Contribution of the internal and external extraction to the total outcoupling effi-
ciency.
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6. Discussion

This PhD project was like a journey. It took me more than five years, and during that time
some questions were answered (section 6.1), but at least the same number of questions re-
mained unanswered (section 6.2).

6.1. Conclusions

New insight could be obtained with regard to the following topics:

Modeling of planar OLEDs: For OLEDs without a scattering layer, a semi quantum
mechanical modeling approach was compared to the state of the art classical model-
ing approach. Based on the classical approach, an exemplary white OLED configura-
tion was optimized with regard to layer thickness and emission zones.

Outcoupling efficiency for OLEDs with disordered internal scattering layers:
Through an extensive numerical study it was demonstrated that an optimized white
OLED with isotropically oriented dipole emitters can be improved by a factor of∼ 1.6
in terms of outcoupling efficiency when adding a flat internal disordered scattering
layer.

T-matrix method for particles inside planarly layered media: With the formalism
presented in this thesis, the T-matrix method for light scattering by wavelength scale
particles has been extended to multiple particles inside planarly layered media. This
was achieved by complementing the spherical-wave based approach that is inher-
ent to the T-matrix method with a plane-wave based treatment of the propagation
through the stratified background geometry. The transformation of the one field rep-
resentation into the other builds a cornerstone of the new method.

Flat particles near planar interfaces: Due to the divergence of the spherical wave
expansion of the scattered field inside the circumscribing sphere of a particle, it was
commonly believed that the T-matrix method cannot be rigorously applied to flat par-
ticles near interfaces. By means of an analysis of the underlying convergence proper-
ties we have demonstrated that with a careful truncation of the Sommerfeld integrals,
valid simulation results can be achieved. This technique has been elaborated in our
recent paper [160] and was here applied to the case of disordered ensembles of nano
pillars in a thin-film system.
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6. Discussion

Smuthi: A simulation code was introduced and released for free use. It has been
demonstrated to obtain valid simulation results both by checking the conservation of
energy to a high precision, as well as by comparison of results to established simula-
tion software. The simulation of OLEDs with scattering layers are only one example
of the wide range of possible applications, which also include scattering layers in
solar cells, total internal reflection scattering microscopy, surface enhanced Raman
spectroscopy, meta-surfaces, photonic crystal slabs and many other systems involv-
ing particles near interfaces.

Computational efficiency: The presented formalism was optimized for an efficient
treatment of many particles. A significant speedup was achieved by means of a
lookup table approach for the evaluation of the Sommerfeld integrals as well as by
shifting the arithmetic workload from the central processing unit (CPU) to the graph-
ics processing unit (GPU).

6.2. Outlook

For a continuation of this work, I see the following opportunities:

Periodic structures: Can the proposed formalism and the software be extended to
cover periodic systems? The state of the art in the simulation of disordered scat-
tering layers in solar cells and OLEDs is to model the system as a laterally periodic
geometry with a large disordered unit cell. The underlying assumption is that if the
dimension of the unit cell is chosen large enough, the scattering properties approach
that of an infinite disordered scattering layer. While this assumption is for sure rea-
sonable in the case of solar cells, where the initial field is periodic (up to a phase for
oblique incidence), one issue with periodic layers for OLEDs is that the source is not
periodic. One approach to resolve this issue could be a Floquet decomposition of the
dipole field [111]. It would be interesting to study how these concepts can be realized
together with the T-matrix method.

Internal plus external scattering: One advantage of disordered internal scattering
layers is that they address both, the internal1 and the external2 light extraction. An
open question is: can the addition of an external structure like a micro lens array at
the substrate-air interface improve the extraction efficiency compared to a configura-
tion with only an internal scattering layer? In principle, this could be the case if the
scattering strength needed for an efficient external extraction is higher than the scat-
tering strength needed for the internal extraction. It would be interesting to study
this with simulations.

1Internal extraction: Extracting photons from the OLED thin film system into the substrate.
2External extraction: Extracting photons from the substrate into the ambient.
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6. Discussion

Comparison to other simulation approaches: I believe that the simulation of internal
scattering layers by means of the here presented approach is one of the most accurate
and best justified simulation strategies, as it was derived from Maxwell’s equations
with the least amount of additional assumptions compared to other commonly ap-
plied approaches. However, despite the efforts to reduce the numerical workload,
the full simulation of an OLED with internal scattering layer over the whole emission
spectrum involves a considerable numerical effort, scaling in days rather than hours.
Other, approximate simulation strategies like for example Monte Carlo ray tracing or
approaches based on the radiative transfer transfer equation promise a much faster
simulation time. It can be expected that in the limit of thick and dilute volumetric
scattering layers, the coherent multiple scattering effects should become negligible
such that the above-mentioned approximate methods are justified. A comparison
of the here presented rigorous simulation method to these approximate approaches
could shed light on the respective range of applicability.

More efficient multiple scattering in the limit of large particle numbers: The com-
putational complexity of the iterative solution of equation (3.70) is proportional to
the effort of a matrix-vector product of type

∑
S′
∑

n′M
S,S′

n,n′ b
S′

n′ , which naively scales
quadratically with the particle number. So, even with lookup tables for the Sommer-
feld integral and with execution on the graphics processing unit, in the limit of very
large NS the solution of (3.70) is no longer feasible. However, there are algorithms
that reduce the complexity from N2

S to NS logNS:

1. The multi-level Fast Multipole Method (FMM) relies on the hierarchical aggrega-
tion of scattering centers to larger units and the expansion of the joint scattered
field in SVWFs relative to the center of these aggregates. This algorithm has
been applied in various disciplines since the late 1980s [172] and was introduced
in the context of the (acoustic) superposition T-matrix method by Gumerov
and Duraiswami [173], and later for the electromagnetic superposition T-matrix
method by Gimbutas and Greengard [174] and by Markkanen and Yuffa [175].
For flat scattering layers in a planarly layered medium, the FMM has been ap-
plied by Pissoort et al. [124], however they used an expansion in cylindrical
vector wave functions rather than spherical vector wave functions. It would
be interesting to study if and how the FMM can be used in the context of the
T-matrix method for many particles inside a stratified medium.

2. Another approach to achieve NS logNS scaling is to first translate the particle
positions to a regular grid (which is an operation with effort ∼ NS) and to then
accelerate the evaluation of the particle interaction by means of the Fast Fourier
Transform. This approach has been widely applied in the context of the discrete
dipole apprixmation (DDA) [176] and was later applied also to the superpo-
sition T-matrix method [99, 177]. Although the presence of a planarly layered
background medium breaks the translational symmetry of the problem, it was
demonstrated in the context of the DDA that the FFT acceleration can still be
used, as the layered medium Green’s function can be written as the sum of a
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6. Discussion

term that depends on z1 − z2 and one term that depends on z1 + z2 [117, 178]
(see also section 3.10.1.1), where z1 and z2 are the z-coordinates of the emitter
and receiver, respectively. This method should thus be applicable also to the
formalism presented in this thesis. It would be interesting to study how much
it can accelerate the computing time for systems with many particles.
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A. PVWF expansion: energy flux

The purpose of this appendix is to derive an expression for the electromagnetic power
flux through a planar layer interface. The starting point is an electromagnetic field
expanded in PVWFs, such that the electric field reads (compare (2.18)):

E (r) =
2∑

j=1

∫

R2

d2k‖
(
g+
j (κ, α)Φ+

j (κ, α; r) + g−j (κ, α)Φ−j (κ, α; r)
)
. (A.1)

The magnetic field then takes the form:

H =
1

iωµ0

∇× E (A.2)

=
1

ωµ0

2∑

j=1

∫
d2k‖

(
g+
j (κ, α)k+ ×Φ+

j (κ, α; r) + g−j (κ, α)k− ×Φ−j (κ, α; r)
)

Knowing the electric and magnetic fields, the complex (conjugated) Poynting vector
is defined as

S∗ =
1

2
E∗ ×H. (A.3)

It can be used to calculate the time averaged energy flux through an interface z =
z0:

〈Pz〉 = Re

∫
d2r‖ S

∗ · êz

= Re
1

2ωµ0

∑

j,j′

∫
d2r‖

∫
d2k‖

∫
d2k′‖

((
g+∗
j′ (κ′, α′)Φ+∗

j′ (κ′, α′; r) + g−∗j′ (κ′, α′)Φ−∗j′ (κ′, α′; r)
)

×
(
g+
j (κ, α)k+ ×Φ+

j (κ, α; r) + g−j (κ, α)k− ×Φ−j (κ, α; r)
))
z
. (A.4)

Inserting the definition of the PVWFs (see (2.15)), one can see that the term depending
on r‖ is given by exp

(
i
(
k‖ − k′‖

)
· r‖
)

and the r‖-integral yields

∫
d2r‖ exp

(
i
(
k‖ − k′‖

)
· r‖
)

= 4π2δ2
(
k‖ − k′‖

)
. (A.5)
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A. PVWF expansion: energy flux

Carrying out the k′‖ integral then yields

〈Pz〉 = Re
2π2

ωµ0

∑

j

∑

j′

∫
d2k‖

{(
g+∗
j′ (κ, α)ê+∗

j′ + g−∗j′ (κ, α)ê−∗j′
)

×
(
g+
j (κ, α)k+ × ê+

j + g−j (κ, α)k− × ê−j
)}

z
.

(A.6)

Further, recall that

k± =



κ cosα
κ sinα
±kz


 , ê±1 =



− sinα
cosα

0


 , ê±2 =

1

k



±kz cosα
±kz sinα
−κ


 (A.7)

such that

k± × ê1 = −kê±2 (A.8)
k± × ê±2 = kê1 (A.9)

ê∗1 × ê±2 = −1

k
k± (A.10)

ê±∗2 × ê1 =
1

k
k±∗ (A.11)

ê∗1 × ê1 = 0 (A.12)(
ê±∗2 × ê±2

)
z

= 0. (A.13)

Therefore, ê∗1 ×
(
k± × ê±2

)
= 0 and (ê∗2 × (k± × ê1))z = 0 such that only in the case

j = j′ a non zero integrand remains. I evaluate

ê∗1 ×
(
k± × ê1

)
= −kê∗1 × ê±2
= k± (A.14)

ê+∗
2 ×

(
k± × ê±2

)
= kê+∗

2 × ê1

= k∗ (A.15)

ê−∗2 ×
(
k± × ê±2

)
= k−∗. (A.16)

to finally find

〈Pz〉 =
2π2

ωµ0

Re

∫
d2k‖

{
kz
(
g+∗

1 (κ, α) + g−∗1 (κ, α)
) (
g+

1 (κ, α)− g−1 (κ, α)
)

+k∗z
(
g+∗

2 (κ, α)− g−∗2 (κ, α)
) (
g+

2 (κ, α) + g−2 (κ, α)
)}

=
2π2

ωµ0

2∑

j=1

∫

R2

d2k‖

{
Re (kz)

(∣∣g+
j (κ, α)

∣∣2 −
∣∣g−j (κ, α)

∣∣2
)

−2 Im (kz) Im
(
g+
j (κ, α)g−∗j (κ, α)

)}

Note that the integrand is not an analytic function of κ such that a deflection of the
integration contour into the complex plane is not permitted.
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B. SVWF addition theorem

I use the expressions given in the appendix of [135] that have been adapted to the
normalization conventions used in this document:

Ψ(3)
n (r + d) =

∑

n

Ann′(d)Ψ
(1)
n′ (r) , |r| < |d|, (B.1)

for

An,n′ (d) = δpp′Aml,m′l′ (d) + (1− δpp′)Bml,m′l′ (d) (B.2)

with

Aml,m′l′ (d) = ei(m−m′)φd
l+l′∑

λ=|l−l′|

a5 (l,m|l′,m′|λ)h
(1)
λ (kd)P

|m−m′|
λ (cos θd) (B.3)

Bml,m′l′ (d) = ei(m−m′)φd
l+l′∑

λ=|l−l′|+1

b5 (l,m|l′,m′|λ)h
(1)
λ (kd)P

|m−m′|
λ (cos θd) , (B.4)

where

a5 (l,m|l′,m′|p) = i|m−m
′|−|m|−|m′|+l′−l+p (−1)m−m

′

√
(2l + 1) (2l′ + 1)

2l (l + 1) l′ (l′ + 1)

× (l (l + 1) + l′ (l′ + 1)− p (p+ 1))
√

2p+ 1

×
(
l l′ p
m −m′ − (m−m′)

)(
l l′ p
0 0 0

)
(B.5)

b5 (l,m|l′,m′|p) = i|m−m
′|−|m|−|m′|+l′−l+p (−1)m−m

′

√
(2l′ + 1) (2l + 1)

2l (l + 1) l′ (l′ + 1)

×
√

(l + l′ + 1 + p) (l + l′ + 1− p) (p+ l − l′) (p− l + l′) (2p+ 1)

×
(
l l′ p
m −m′ − (m−m′)

)(
l l′ p− 1
0 0 0

)
(B.6)

and (d, θd, φd) are the spherical coordinates of d, whereas
(
. . .
. . .

)
denote the Wigner-

3j symbols.
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C. Excitation and response (formal
definition)

For a formal definition of Eexc and ER
exc (see section 2.4.3), let z↓ and z↑ denote two

z-surfaces that bound the source domain Dexc from below and above, i.e.,

z↓ < z < z↑ for all r ∈ Dexc.

The regions (see figure C.1)

D↓ = {r ∈ Λiexc|z < z↓}

and

D↑ = {r ∈ Λiexc|z > z↑}

are homogeneous and source-free and thus allow for an expansion of the electric field
in PVWFs. I denote the coefficients of these PVWF expansions by g±↓,j and g±↑,j , respec-
tively.

Dexc

z↑

z↓

ziexc

ziexc+1

D↓

D↑

Figure C.1. – Regions D↑ and D↓.

The formal decomposition of E into excitation and response is now guided by the
idea that for the excitation, no downgoing component should exist aboveDexc and no
upgoing component below Dexc, whereas for the response, the expansion in PVWFs
should be valid in the whole layer Λiexc such that the coefficients above Dexc should
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C. Excitation and response (formal definition)

match those below Dexc. This leads to the following definition:

Eexc (r) =
2∑

j=1

∫

R2

d2k‖

{
Φ+
j (κ, α; r− riexc)g

+
exc,j(κ, α) for z ≥ z+

Φ−j (κ, α; r− riexc)g
−
exc,j(κ, α) for z ≤ z−.

ER
exc (r) =

2∑

j=1

∫

R2

d2k‖
[
Φ+
j (κ, α; r− riexc),Φ

−
j (κ, α; r− riexc)

]
·
[
gR+

exc,iexc,j
(κ, α)

gR−
exc,iexc,j

(κ, α)

]

for r ∈ Λiexc and with

gR+
exc,iexc,j

(κ, α) = g+
↓,j(κ, α) (C.1)

gR−exc,iexc,j
(κ, α) = g−↑,j(κ, α) (C.2)

and

g+
exc,j(κ, α) = g+

↑,j(κ, α)− g+
↓,j(κ, α) (C.3)

g−exc,j(κ, α) = g−↓,j(κ, α)− g−↑,j(κ, α). (C.4)

In the other layers i 6= iexc, the electric field is source-free and can thus be expanded
in PVWFs, with coefficients that I denote by gR±

exc,i,j :

E (r) =
2∑

j=1

∫

R2

d2k‖
[
Φ+
j (κ, α; r− ri),Φ

−
j (κ, α; r− ri)

]
·
[
gR+

exc,i,j(κ, α)

gR−
exc,i,j(κ, α)

]
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D. Tests for the conservation of
energy

The following code shows a test for the scattering of a plane wave by three spheres in
a medium consisting of three planar layers.
import numpy as np
import smuthi.particles as part
import smuthi.layers as lay
import smuthi.initial_field as init
import smuthi.coordinates as coord
import smuthi.simulation as simul
import smuthi.scattered_field as sf

vacuum_wavelength = 550

# set complex contour
coord.set_default_k_parallel(vacuum_wavelength, neff_max=3)

# initialize particle objects
sphere1 = part.Sphere(position=[100, 100, 150],

refractive_index=2.4 + 0.0j,
radius=110,
l_max=4, m_max=4)

sphere2 = part.Sphere(position=[-100, -100, 250],
refractive_index=1.9 + 0.0j,
radius=120,
l_max=3, m_max=3)

sphere3 = part.Sphere(position=[-200, 100, 300],
refractive_index=1.7 + 0.0j,
radius=90,
l_max=3, m_max=3)

particle_list = [sphere1, sphere2, sphere3]

# initialize layer system object
lay_sys = lay.LayerSystem(thicknesses=[0, 400, 0],

refractive_indices=[2, 1.3, 2])

# initialize initial field object
init_fld = init.PlaneWave(vacuum_wavelength=vacuum_wavelength,
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D. Tests for the conservation of energy

polar_angle=np.pi * 7/8,
azimuthal_angle=np.pi * 1/3,
polarization=0,
amplitude=1,
reference_point=[0, 0, 400])

# initialize and run simulation
simulation = simul.Simulation(layer_system=lay_sys,

particle_list=particle_list,
initial_field=init_fld)

simulation.run()

# scattering cross section
scs = sf.scattering_cross_section(initial_field=init_fld,

particle_list=particle_list,
layer_system=lay_sys)

# extinction cross section
ecs = sf.extinction_cross_section(initial_field=init_fld,

particle_list=particle_list,
layer_system=lay_sys)

def test_optical_theorem():
relerr = abs((sum(scs.integral()) - ecs[’top’] - ecs[’bottom’])

/ sum(scs.integral()))
print(’error: ’, relerr)
assert relerr < 1e-4

if __name__ == ’__main__’:
test_optical_theorem()

The following code shows a test for the scattering of a Gaussian beam by the same
configuration as before.
import numpy as np
import smuthi.particles as part
import smuthi.layers as lay
import smuthi.initial_field as init
import smuthi.coordinates as coord
import smuthi.simulation as simul
import smuthi.scattered_field as sf

vacuum_wavelength = 550

# set complex contour
coord.set_default_k_parallel(vacuum_wavelength, neff_max=3)

# initialize particle object
sphere1 = part.Sphere(position=[100, 100, 150],
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D. Tests for the conservation of energy

refractive_index=2.4 + 0.0j,
radius=110,
l_max=4, m_max=4)

sphere2 = part.Sphere(position=[-100, -100, 250],
refractive_index=1.9 + 0.0j,
radius=120,
l_max=3, m_max=3)

sphere3 = part.Sphere(position=[-200, 100, 300],
refractive_index=1.7 + 0.0j,
radius=90, l_max=3, m_max=3)

particle_list = [sphere1, sphere2, sphere3]

# initialize layer system object
lay_sys = lay.LayerSystem(thicknesses=[0, 400, 0],

refractive_indices=[2, 1.4, 2])

# initialize initial field object
beam_k_parallel = (np.linspace(0, 2, 501, endpoint=False)

* coord.angular_frequency(vacuum_wavelength))

init_fld = init.GaussianBeam(vacuum_wavelength=vacuum_wavelength,
polar_angle=np.pi * 7/8,
azimuthal_angle=np.pi * 1/3,
polarization=0,
amplitude=1,
reference_point=[200, 200, 200],
beam_waist=1000,
k_parallel_array=beam_k_parallel)

# initialize and run simulation
simulation = simul.Simulation(layer_system=lay_sys,

particle_list=particle_list,
initial_field=init_fld)

simulation.run()

total_far_field,_,_ = sf.total_far_field(initial_field=init_fld,
particle_list=particle_list,
layer_system=lay_sys)

def test_power():
relerr = abs(sum(total_far_field.integral())

/ sum(init_fld.initial_intensity(lay_sys).integral()) - 1)
print(relerr)
assert relerr < 1e-4

if __name__ == ’__main__’:
test_power()
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D. Tests for the conservation of energy

The following code shows a test for the scattering of the field of three arbitrary dipole
sources by the same configuration as before.
import smuthi.initial_field as init
import smuthi.particles as part
import smuthi.coordinates as coord
import smuthi.simulation as simul
import smuthi.layers as lay
import smuthi.scattered_field as sf

vacuum_wavelength = 550

coord.set_default_k_parallel(vacuum_wavelength, neff_max=3)

# initialize particle object
sphere1 = part.Sphere(position=[200, 200, 300],

refractive_index=2.4 + 0.0j,
radius=110,
l_max=3, m_max=3)

sphere2 = part.Sphere(position=[-200, -200, 300],
refractive_index=2.4 + 0.0j,
radius=120,
l_max=3, m_max=3)

sphere3 = part.Sphere(position=[-200, 200, 300],
refractive_index=2.5 + 0.0j,
radius=90,
l_max=3, m_max=3)

part_list = [sphere1, sphere2, sphere3]

# initialize layer system object
lay_sys = lay.LayerSystem(thicknesses=[0, 400, 0],

refractive_indices=[2, 1.3, 2])

# initialize dipole objects
dipole_collection = init.DipoleCollection(vacuum_wavelength)

dipole1 = init.DipoleSource(vacuum_wavelength,
dipole_moment=[1+1j,2+2j,3+3j],
position=[100,-100,130])

dipole_collection.append(dipole1)

dipole2 = init.DipoleSource(vacuum_wavelength,
dipole_moment=[3,-2,1],
position=[-100,100,70])

dipole_collection.append(dipole2)

dipole3 = init.DipoleSource(vacuum_wavelength,
dipole_moment=[-2,3,1],
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D. Tests for the conservation of energy

position=[-100,100,-100])
dipole_collection.append(dipole3)

# initialize and run simulation
simulation = simul.Simulation(layer_system=lay_sys,

particle_list=part_list,
initial_field=dipole_collection)

simulation.run()

# dissipated power
power_list = simulation.initial_field.dissipated_power(part_list,

lay_sys)
power = sum(power_list)

# radiated power
ff_tup = sf.total_far_field(initial_field=simulation.initial_field,

particle_list=simulation.particle_list,
layer_system=simulation.layer_system)

ff_power = sum(ff_tup[0].integral())

def test_energy_conservation():
err = abs((power - ff_power) / ff_power)
print(’far field power:’, ff_power)
print(’dissipated power:’, power)
print(’relative error:’, err)
assert err < 1e-4

if __name__ == ’__main__’:
test_energy_conservation()
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schenbild geprägt. Die Zeit am LTI wird mir dadurch in bester Erinnerung bleiben.

Ein ganz besonderes Dankeschön gilt Siegfried Kettlitz für seine Freundschaft und
Kollegialität. Er hat diese Arbeit sowohl auf fachlicher als auch auf moralischer Ebene
wesentlich unterstützt.

Guillaume Gomard danke ich für die freundschaftliche und fruchtbare Zusamme-
narbeit. Besonders die Antragsphase des LAMBDA-Projektes wird mir in diesem
Zusammenhang in Erinnerung bleiben.

Thomas Wriedt ist in vielerlei Hinsicht eine wichtige Quelle von Unterstützung gewe-
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Lüssem, and Karl Leo. Highly efficient white organic light-emitting diodes
based on fluorescent blue emitters. J. Appl. Phys., 108(11):113113, dec 2010.

[166] Norbert Danz, Jörg Heber, Andreas Bräuer, and Richard Kowarschik. Fluo-
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