
Design and Optimization for

Resilient Energy Efficient
Computing

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Mohammad Saber Golanbari

aus dem Iran

Tag der mündlichen Prüfung: 05.02.2019

Erster Gutachter: Prof. Dr. Mehdi B. Tahoori, KIT
Zweiter Gutachter: Prof. Dr. Ulf Schlichtmann, TUM

Acknowledgement

I would like to use this opportunity to express my gratitude to everyone who supported me
throughout my Ph.D. study.

I want to sincerely thank my advisor Prof. Dr. Mehdi Baradaran Tahoori for his continuous
support of my study and related research, for his patience, motivation, and immense knowledge.
His guidance helped me in all aspects of research and writing of this thesis. Furthermore, I
want to thank Prof. Dr.-Ing. Ulf Schlichtmann for taking the Korreferat and his useful and
helpful comments.

Special thanks to my family. Words cannot express how grateful I am to my parents for all
of their support throughout my entire life. I want to express my deepest gratitude to my wife
Mahdieh for her love and encouragement during my Ph.D.; without her support and sacrifice,
it was not possible to complete this journey.

Furthermore, I would like to thank my colleagues and friends in the Chair of Dependable
Nano Computing at Karlsruhe Institute of Technology for their support and encouragement.
In particular, I would like to express my gratitude to Dr.-Ing. Saman Kiamehr and Dr.-Ing.
Mojtaba Ebrahimi, for all their help, support, constructive criticism, and for all the great
personal and professional experiences we had together.

I also want to especially thank Dr. Sani R. Nassif, Dr.-Ing. Fabian Oboril, Dr.-Ing.
Rajendra Bishnoi, Dr.-Ing. Farzad Samie, Anteneh Gebregiorgis, Arunkumar Vijayan, and
Nour Sayed for their contributions to parts of my research and their stimulating discussions
and friendly advices.

Finally, thank you for reading my dissertation.

iii

Mohammad Saber Golanbari
Weiherstr. 18
76227 Karlsruhe

Hiermit erkläre ich an Eides statt, dass ich die von mir vorgelegte Arbeit selbstständig verfasst
habe, dass ich die verwendeten Quellen, Internet-Quellen und Hilfsmittel vollständig angegeben
haben und dass ich die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen
- die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind,
auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Karlsruhe, Dezember 2018
Mohammad Saber Golanbari

v

Abstract

Modern electronic devices are an indispensable part of our everyday life. A major enabler
for such integration is the exponential increase of the computation capabilities as well as the
drastic improvement in the energy efficiency over the last 50 years, commonly known as Moore’s
law. In this regard, the demand for energy-efficient digital circuit, especially for application
domains such as the Internet of Things (IoT), has faced an enormous growth. Since the power
consumption of a circuit highly depends on the supply voltage, aggressive supply voltage scaling
to the near-threshold voltage region, also known as Near-Threshold Computing (NTC), is an
effective way of increasing the energy efficiency of a circuit by an order of magnitude.

Along with the attractive energy benefits, the NTC comes with a variety of design chal-
lenges. Reducing the supply voltage to the near-threshold voltage region also increases the
sensitivity of the circuits to different variabilities, such as process variation, voltage fluctuation,
and temperature variation, by more than one order of magnitude. Such large variation impacts
hinder the reliability of the NTC circuits and are the main challenges towards widespread us-
age of NTC circuits. The traditional method of dealing with variabilities and the conventional
designs and methods which are typically used in the nominal voltage range are inefficient for
NTC circuit design, because they cannot deal with large performance variation and sensitivity
of circuits in the near-threshold voltage region. Therefore, dealing with the NTC challenges
requires a new design paradigm as well as design automation flow for the NTC.

The objective of this thesis is to provide a holistic approach for NTC design by tackling the
major challenges, in the form of comprehensive design and design automation flow for NTC,
mostly at circuit and logic levels. This also includes an in-depth analysis of the reliability issues
for the NTC, as well as proposing optimization techniques for better reliability, performance,
and energy efficiency. The contributions of this thesis are:

Variation-aware logic synthesis and timing closure: Satisfying timing and reliability require-
ments for NTC circuits is a challenging task. The impact of variabilities might be seen as large
performance variation, which mandates expensive timing margins, or as high functional failure
rates, for example, due to hold-time violations. The traditional approach to deal with circuit
performance variation is to increase timing margins. However, this is inefficient for the NTC
due to the extent of variations and the increased contribution of leakage energy.

This thesis proposes a variation-aware synthesis and timing closure, which reduces the sen-
sitivity to variation and improves energy-efficiency, performance, and reliability while reducing
the overheads of timing closure [1, 2]. Simulation results show that our proposed flow reduces
the delay variation by 87% and improves the performance and energy efficiency by 25% and
7.4%, respectively, at the expense of only 4.8% area overhead.

Cross-layer reliability, energy efficiency, and performance optimization of data paths:
Cross-layer analysis of processor data paths, from compiler all the way to circuit design, could
reveal potential optimization approaches. A data path is a combination of several functional
units with the ability to execute various instructions. Our analysis shows that the required
time for executing an instruction at low supply voltage could be widely different which allows
categorizing the instructions into fast and slow instructions. Moreover, the functional unit
instructions can be categorized into frequently used and rarely used instructions.

vii

Abstract

This thesis proposes an instruction multi-cycling method to improve energy efficiency and
resiliency of functional units [3]. In addition, we propose a functional unit partitioning method,
in which a functional unit is partitioned into several smaller units to support fine-grained
power-gating of the units which implement the rarely used instructions [4]. The proposed
methods significantly improve the circuit timing, and at the same time considerably limit
leakage energy, by employing a combination of circuit redesign and code replacement tech-
niques. Simulation results show that the proposed methods improve performance and energy
efficiency of an Arithmetic Logic Unit by 19% and 43%, respectively. Furthermore, the im-
proved performance of the optimized circuits can be traded to improving the reliability [5, 6].

Post-fabrication calibration and runtime tuning: Process and runtime variations greatly
affect the Minimum Energy Point (MEP) of NTC circuits, i.e., the supply voltage which leads
to the best energy efficiency. Therefore, it is necessary to calibrate each NTC circuit to the
correct operating condition (its MEP) based on variations to improve the energy efficiency.

This thesis proposes a post-fabrication and runtime tuning method which calibrates each
digital circuit to its best MEP based on the post-fabrication measurements, such as speed and
power consumption. The proposed method obtains the MEP in a per-chip basis to account for
the impacts of process variation, and dynamically adapts supply voltage and frequency to ac-
count for time-dependent variations, such as workload and temperature. For this, the firmware
of a chip is updated with a regression model which can determine the best MEP based on the
data collected during the runtime about workload and temperature. The regression model is
unique for each chip and is created based on the post-fabrication measurements. Simulation
results show that the proposed method has high prediction accuracy and energy efficiency
similar to hardware-implemented methods, but without imposing hardware overhead [7, 8].

Selective flip-flop optimization Ultra-low-voltage circuits may need to operate at nominal
supply voltage mode to satisfy timing constraints required by running applications. In this
case, the circuit is exposed to aging impact which degrades the transistors by increasing their
threshold voltages. Our analysis shows that some flip-flops store a constant value, either ‘0’ or
‘1’, for a long time leading to a severe impact of aging. Compared to other components, the
flip-flops are more sensitive to the aging impact and may fail to store a value correctly within
the timing constraints. Furthermore, a slight voltage-drop could lead to timing violations if
the aging-affected flip-flops are parts of the critical paths.

For this, this thesis proposes a selective flip-flop optimization methodology, in which the
circuit is optimized for resiliency against the impacts of static aging and voltage drop. The
proposed method first generates optimized variation-resilient flip-flops and adds them to the
standard cell library. Then, timing-critical flip-flops that experience severe aging or voltage-
drop impacts are replaced by the variation-resilient versions to improve the timing and reli-
ability [9, 10]. Simulation results show that the proposed method prolongs the lifetime of a
processor by 37% while imposing less than 0.1% leakage overhead.

While the NTC potentially offers large energy efficiency, the aforementioned challenges of
the NTC design including high sensitivity to variations leading to reliability issues prevent
the widespread application of the NTC to the emerging applications such as the IoT. In this
dissertation, we proposed methods to address such challenges by improving the reliability and
efficiency of NTC designs. Therefore, the contributions in this thesis, and other published
work not included in this thesis [11–17], are key elements in making the NTC designs widely
acceptable in the mainstream.

[18–25]

viii

Zusammenfassung

Heutzutage sind moderne elektronische Systeme ein integraler Bestandteil unseres Alltags.
Dies wurde unter anderem durch das exponentielle Wachstum der Integrationsdichte von in-
tegrierten Schaltkreisen ermöglicht zusammen mit einer Verbesserung der Energieeffizienz,
welche in den letzten 50 Jahren stattfand, auch bekannt als Moore‘s Gesetz. In diesem Zusam-
menhang ist die Nachfrage von energieeffizienten digitalen Schaltkreisen enorm angestiegen,
besonders in Anwendungsfeldern wie dem Internet of Things (IoT). Da der Leistungsverbrauch
von Schaltkreisen stark mit der Versorgungsspannung verknüpft ist, wurden effiziente Ver-
fahren entwickelt, welche die Versorgungsspannung in den nahen Schwellenspannung-Bereich
skalieren, zusammengefasst unter dem Begriff Near-Threshold-Computing (NTC). Mithilfe
dieser Verfahren kann eine Erhöhung der Energieeffizienz von Schaltungen um eine ganze
Größenordnung ermöglicht werden.

Neben der verbesserten Energiebilanz ergeben sich jedoch zahlreiche Herausforderungen was
den Schaltungsentwurf angeht. Zum Beispiel führt das Reduzieren der Versorgungsspannung
in den nahen Schwellenspannungsbereich zu einer verzehnfachten Erhöhung der Sensibilität der
Schaltkreise gegenüber Prozessvariation, Spannungsfluktuationen und Temperaturveränderun-
gen. Die Einflüsse dieser Variationen reduzieren die Zuverlässigkeit von NTC Schaltkreisen und
sind ihr größtes Hindernis bezüglich einer umfassenden Nutzung. Traditionelle Ansätze und
Methoden aus dem nominalen Spannungsbereich zur Kompensation von Variabilität können
nicht effizient angewandt werden, da die starken Performance-Variationen und Sensitivitäten
im nahen Schwellenspannungsbereich dessen Kapazitäten übersteigen. Aus diesem Grund
sind neue Entwurfsparadigmen und Entwurfsautomatisierungskonzepte für die Anwendung
von NTC erforderlich.

Das Ziel dieser Arbeit ist die zuvor erwähnten Probleme durch die Bereitstellung von
ganzheitlichen Methoden zum Design von NTC Schaltkreisen sowie dessen Entwurfsautoma-
tisierung anzugehen, welche insbesondere auf der Schaltungs- sowie Logik-Ebene angewandt
werden. Dabei werden tiefgehende Analysen der Zuverlässigkeit von NTC Systemen mitein-
bezogen und Optimierungsmethoden werden vorgeschlagen welche die Zuverlässigkeit, Perfor-
mance und Energieeffizienz verbessern. Die Beiträge dieser Arbeit sind wie folgt:

Schaltungssynthese und Timing Closure unter Einbezug von Variationen: Das Einhal-
ten von Anforderungen an das zeitliche Verhalten und Zuverlässigkeit von NTC ist eine
anspruchsvolle Aufgabe. Die Auswirkungen von Variabilität kommen bei starken Performance-
Schwankungen, welche zu teuren zeitlichen Sicherheitsmargen führen, oder sich in Hold-Time
Verstößen ausdrücken, verursacht durch funktionale Störungen, zum Vorschein. Die konven-
tionellen Ansätze beschränken sich dabei alleine auf die Erhöhung von zeitlichen Sicherheits-
margen. Dies ist jedoch sehr ineffizient für NTC, wegen dem starken Ausmaß an Variationen
und den erhöhten Leckströmen.

In dieser Arbeit wird ein Konzept zur Synthese und Timing Closure von Schaltkreisen
unter Variationen vorgestellt, welches sowohl die Sensitivität gegenüber Variationen reduziert
als auch die Energieeffizienz, Performance und Zuverlässigkeit verbessert und zugleich den
Mehraufwand von Timing Closures [1, 2] verringert. Simulationsergebnisse belegen, dass unser
vorgeschlagener Ansatz die Verzögerungszeit um 87% reduziert und die Performance und En-

ix

Abstract

ergieeffizienz um 25% beziehungsweise 7.4% verbessert, zu Kosten eines erhöhten Flächenbe-
darfs von 4.8%.

Schichtübergreifende Zuverlässigkeits-, Energieeffizienz- und Performance-Optimierung von
Datenpfaden: Schichtübergreifende Analyse von Prozessor-Datenpfaden, welche den ganzen
Weg spannen vom Kompilierer zum Schaltungsentwurf, kann potenzielle Optimierungsansätze
aufzeigen. Ein Datenpfad ist eine Kombination von mehreren funktionalen Einheiten, welche
diverse Instruktionen verarbeiten können. Unsere Analyse zeigt, dass die Ausführungszeiten
von Instruktionen bei niedrigen Versorgungsspannungen stark variieren, weshalb eine Klas-
sifikation in schnelle und langsame Instruktionen vorgenommen werden kann. Des Weiteren
können funktionale Instruktionen als häufig und selten genutzte Instruktionen kategorisiert
werden.

Diese Arbeit stellt eine Multi-Zyklen-Instruktionen-Methode vor, welche die Energieef-
fizienz und Belastbarkeit von funktionalen Einheiten erhöhen kann [3]. Zusätzlich stellen wir
einen Partitionsalgorithmus vor, welcher ein fein-granulares Power-gating von selten genutzten
Einheiten ermöglicht [4] durch Partition von einzelnen funktionalen Einheiten in mehrere
kleinere Einheiten. Die vorgeschlagenen Methoden verbessern das zeitliche Schaltungsverhal-
ten signifikant, und begrenzen zugleich die Leckströme beträchtlich, durch Einsatz einer Kom-
bination von Schaltungs-Redesign- und Code-Replacement-Techniken. Simulationsresultate
zeigen, dass die entwickelten Methoden die Performance und Energieeffizienz von arithmetisch-
logischen Einheiten (ALU) um 19% beziehungsweise 43% verbessern. Des Weiteren kann der
Zuwachs in Performance der optimierten Schaltungen in eine Verbesserung der Zuverlässigkeit
umgewandelt werden [5, 6].

Post-Fabrication und Laufzeit-Tuning: Prozess- und Laufzeitvariationen haben einen starken
Einfluss auf den Minimum Energy Point (MEP) von NTC-Schaltungen, welcher mit der en-
ergieeffizientesten Versorgungsspannung assoziiert ist. Es ist ein besonderes Anliegen, die
NTC-Schaltung nach der Herstellung (post-fabrication) so zu kalibrieren, dass sich die Schal-
tung im MEP-Zustand befindet, um die beste Energieeffizient zu erreichen.

In dieser Arbeit, werden Post-Fabrication und Laufzeit-Tuning vorgeschlagen, welche die
Schaltung basierend auf Geschwindigkeits- und Leistungsverbrauch-Messungen nach der Her-
stellung auf den MEP kalibrieren. Die vorgestellten Techniken ermitteln den MEP per Chip-
Basis um den Einfluss von Prozessvariationen mit einzubeziehen und dynamisch die Ver-
sorgungsspannung und Frequenz zu adaptieren um zeitabhängige Variationen wie Workload
und Temperatur zu adressieren. Zu diesem Zweck wird in die Firmware eines Chips ein
Regression-Modell integriert, welches den MEP basierend auf Workload- und Temperatur-
Messungen zur Laufzeit extrahiert. Das Regressions-Modell ist für jeden Chip einzigartig und
basiert lediglich auf Post-Fabrication-Messungen. Simulationsergebnisse zeigen das der en-
twickelte Ansatz eine sehr hohe prognostische Treffsicherheit und Energieeffizienz hat, ähnlich
zu hardware-implementierten Methoden, jedoch ohne hardware-seitigen Mehraufwand [7, 8].

Selektierte Flip-Flop Optimierung: Ultra-Low-Voltage Schaltungen müssen im nominalen
Versorgungsspannungs-Mode arbeiten um zeitliche Anforderungen von laufenden Anwendun-
gen zu erfüllen. In diesem Fall ist die Schaltung von starken Alterungsprozessen betroffen,
welche die Transistoren durch Erhöhung der Schwellenspannungen degradieren. Unsere tiefge-
henden Analysen haben gezeigt das gewisse Flip-Flop-Architekturen von diesen Alterungser-
scheinungen beeinflusst werden indem fälschlicherweise konstante Werte (

’
0‘ oder

’
1‘) für eine

lange Zeit gespeichert sind. Im Vergleich zu anderen Komponenten sind Flip-Flops sensi-
tiver zu Alterungsprozessen und versagen unter anderem dabei einen neuen Wert innerhalb

x

Abstract

des vorgegebenen zeitlichen Rahmens zu übernehmen. Außerdem kann auch ein geringfügiger
Spannungsabfall zu diesen zeitlichen Verstößen führen, falls die betreffenden gealterten Flip-
Flops zum kritischen Pfad zuzuordnen sind.

In dieser Arbeit wird eine selektiver Flip-Flop-Optimierungsmethode vorgestellt, welche die
Schaltungen bezüglich Robustheit gegen statische Alterung und Spannungsabfall optimieren.
Dabei werden zuerst optimierte robuste Flip-Flops generiert und diese dann anschließend in
die Standard-Zellen-Bibliotheken integriert. Flip-Flops, die in der Schaltung zum kritischen
Pfad gehören und Alterung sowie Spannungsabfall erfahren, werden durch die optimierten
robusten Versionen ersetzt, um das Zeitverhalten und die Zuverlässigkeit der Schaltung zu
verbessern [9, 10]. Simulationsergebnisse zeigen, dass die erwartete Lebenszeit eines Prozessors
um 37% verbessert werden kann, während Leckströme um nur 0.1% erhöht werden.

Während NTC das Potenzial hat große Energieeffizienz zu ermöglichen, ist der Einsatz
in neue Anwendungsfeldern wie IoT wegen den zuvor erwähnten Problemen bezüglich der
hohen Sensitivität gegenüber Variationen und deshalb mangelnder Zuverlässigkeit, noch nicht
durchsetzbar. In dieser Dissertation und in noch nicht publizierten Werken [11–17], stellen
wir Lösungen zu diesen Problemen vor, die eine Integration von NTC in heutige Systeme
ermöglichen.

xi

Contents

Glossary xvii

List of Figures xix

List of Tables xxiii

1 Introduction 1

1.1 Motivation and objective . 2

1.2 Contributions of this thesis . 3

1.2.1 Design flows and methodologies . 3

1.2.2 Design optimization . 4

1.2.3 Post-fabrication and runtime tuning . 4

1.2.4 Wide-voltage operation . 5

1.3 Structure of this Thesis . 5

2 Preliminaries and State-of-the-Art 7

2.1 VLSI technology: from transistors to circuits 7

2.2 Variability sources . 10

2.2.1 Process variation . 11

2.2.2 Supply voltage fluctuation . 12

2.2.3 Temperature variation . 13

2.2.4 Aging . 14

2.2.5 Soft-Errors . 18

2.3 Near-Threshold Computing . 18

2.3.1 NTC challenges . 20

2.4 State-of-the-art in resilient energy-efficient computing 24

2.5 Summary . 25

3 Variation-aware circuit synthesis and timing closure 27

3.1 Introduction, motivation, and contributions . 27

3.2 Related Work . 29

3.3 Circuit timing in the NTV region . 30

3.3.1 Impact of variation on hold-time constraints 30

3.3.2 Hold-time analysis results . 32

3.4 Variation-aware logic synthesis and timing closure methodology 34

3.4.1 Cell library engineering . 35

3.4.2 Logic synthesis . 36

3.4.3 Hold-time analysis and fixing flow . 39

3.5 Buffer optimization for NTC . 40

3.6 Results and discussion . 42

3.6.1 Simulation setup . 42

3.6.2 Logic synthesis results . 43

3.6.3 Hold-time fixing results . 46

3.7 Summary . 49

xiii

Contents

4 Cross-layer reliability, energy efficiency, and performance optimization of data paths 51

4.1 Introduction, motivation, and contributions . 51

4.2 Related work . 53

4.3 Cross-layer data path optimization . 54

4.3.1 Instruction multi-cycling . 54

4.3.2 Functional unit partitioning . 57

4.4 Results and discussion . 61

4.4.1 Implementation flow . 61

4.4.2 Reliability analysis . 63

4.4.3 Simulation setup . 64

4.4.4 ALU multi-cycling results . 64

4.4.5 ALU partitioning results . 68

4.5 Summary . 70

5 Post-fabrication calibration and runtime tuning for energy efficiency 73

5.1 Introduction, Motivation, and Contributions . 73

5.1.1 Related work . 75

5.2 Post-fabrication calibration and runtime MEP adaptation of NTC circuits . . . 75

5.2.1 MEP analysis . 75

5.2.2 MEP tuning based on process and temperature variations 79

5.3 Runtime adjustment of IoT SoCs . 83

5.3.1 Voltage and frequency islands in SoC . 83

5.3.2 Regression model for runtime adjustment of SoC 84

5.3.3 Implementation flow . 85

5.4 Results and discussions . 88

5.4.1 Circuit results . 88

5.4.2 SoC results . 92

5.5 Summary . 97

6 Selective flip-flop optimization for circuit reliability 99

6.1 Introduction, motivation, and contributions . 99

6.2 Variability impact on flip-flops . 100

6.2.1 Flip-flop timing . 100

6.2.2 Runtime variation impacts on flip-flops 101

6.2.3 Significance of flip-flops in circuit reliability 103

6.3 Reliability-aware flip-flop design . 104

6.3.1 Aging resilient flip-flop design . 104

6.3.2 Voltage-drop resilient flip-flop design . 105

6.3.3 Aging and voltage-drop resilient flip-flop design 106

6.3.4 Problem formulation for flip-flop resiliency optimization 106

6.3.5 Reliability-aware flip-flop optimization flow 107

6.4 Selective flip-flop optimization . 108

6.4.1 Aging and voltage-drop analysis . 109

6.4.2 Selective flip-flop replacement . 110

6.5 Results and discussions . 111

6.5.1 Simulation Setup . 111

6.5.2 Detailed optimization results of C2MOS flip-flop 111

6.5.3 Optimization results for other flip-flops 114

6.5.4 Delay-leakage trade-off . 115

6.5.5 Delay-area trade-off . 115

xiv

Contents

6.5.6 Circuit level results . 115
6.6 Comparison with the related work . 118
6.7 Summary . 119

7 Concluding Remarks 121
7.1 Summary . 121

Bibliography 123

xv

Glossary

AES Advanced Encryption Standard.

AHC Agglomerative Hierarchical Clustering.

ALU Arithmetic Logic Unit.

BRR Bayesian Ridge Regression.

BTI Bias Temperature Instability.

CDF Cumulative Distribution Function.

CMOS Complementary Metal Oxide Semiconductor.

CPS Cyber-Physical-Systems.

CTS Clock Tree Synthesis.

DIBL Drain-induced Barrier Lowering.

DRV Design Rule Violation.

DVFS Dynamic Voltage and Frequency Scaling.

ECO Engineering Change Order.

ECSM Effective Current Source Model.

EDA Electronic Design Automation.

EDP Energy-Delay Product.

EM Electromigration.

FDSOI Fully-Depleted Silicon-On-Insulator.

FPU Floating Point Unit.

GIDL Gate-Induced-Drain-Leakage.

HCI Hot Carrier Injection.

IoT Internet of Things.

ISA Instruction Set Architecture.

LER Line-Edge Roughness.

xvii

Glossary

LUT Look-Up-Tables.

MBU Multiple Bit Upsets.

MEP Minimum Energy Point.

MGG Metal Grain Granularity.

MOS Metal Oxide Semiconductor.

MOSFET Metal-Oxide-Semiconductor Field Effect Transistor.

MTTF Mean Time To Failure.

NTC Near-Threshold Computing.

NTV Near-Threshold Voltage.

OLS Ordinary Least Square.

OTF Oxide Thickness Fluctuation.

PCHIP Piecewise Cubic Hermite Interpolating Polynomial.

PDN Power Delivery Network.

RDF Random Dopant Fluctuation.

RMSE Root Mean Square Error.

RSCE Reverse Short Channel Effect.

RTN Random Telegraph Noise.

S-BTI Static BTI.

SCE Short-Channel Effect.

SGBRT Stochastic Gradient Boosted Regression Trees.

SoC Systems-on-Chip.

SP Signal Probability.

SQP Sequential Quadratic Programming.

SSTA Statistical Static Timing Analysis.

STA Static Timing Analysis.

TDDB Time Dependent Dielectric Breakdown.

VCD Voltage Change Dump.

VLSI Very-Large-Scale Integration.

WPE Well-Proximity Effect.

xviii

List of Figures

1.1 Scope and contributions of this thesis regarding NTC design challenges. 3

2.1 MOSFET transistor (NMOS) . 7

2.2 Basic inverter and nand gates . 9

2.3 nand gate characteristics stored as Look-Up-Tables 10

2.4 Variability sources impacting digital circuits . 11

2.5 Average switching activity of Leon3 flip-flops in different clock cycles, running
“bitcount” workload from MiBench benchmark. 12

2.6 Threshold voltage shift (∆Vth) due to Bias Temperature Instability (BTI) under
Dynamic (alternating) and Static stress. 15

2.7 The impact of Negative BTI (NBTI) on the threshold voltage of a single PMOS
for different stress duty cycles in 5 years. 17

2.8 MEP exploration for circuit c499 from ISCAS’85 benchmark [26, 27]. Minimum
energy per operation is achieved where Vdd is close to Vth. 19

2.9 Power breakdown of the IA32 processor presented in [28] highlights a significant
increase in the relative contribution of the leakage power of logic components
to the total power consumption, when supply voltage is reduced towards near-
threshold and sub-threshold regimes. The rest of the power consumption is due
to the memory (8%, 20%, and 63% in the super-threshold, near-threshold, and
sub-threshold region, respectively.) . 22

2.10 Process variation impact on the MEP of some ISCAS’85 benchmark circuits. . 23

2.11 Temperature variation impact on the MEP of some ISCAS’85 benchmark cir-
cuits. 23

2.12 Workload variation impact on the MEP. The change in the V MEP
dd versus the

ratio of dynamic to leakage energy at nominal Vdd. The realistic change in the
input switching activity α is displayed by the light blue box (0.062 ≤ α ≤ 0.108)
according to Section 5.2.1. 24

3.1 Path delay w/o considering the impact of process variation i.e. nominal delay
(blue), and considering the variation (hatched area). 30

3.2 (a) Flip-flops hold-time constraints for correct circuit operation. (b) Distribu-
tions of AT and RT in the NTV region. 31

3.3 Dependencies between different variables leading to a positive correlation be-
tween AT and RT . 32

3.4 The number of violations for Vdd ∈ {0.45, 0.6, 1.1} extracted based on SSTA. . 33

3.5 The hold-time worst negative slack (WNS) for Vdd ∈ {0.45, 0.6, 1.1} extracted
based on SSTA. 34

3.6 Energy per Delay (E/D) vs delay for the buffers of a commercial 65nm library
in the super-threshold region. 34

3.7 a) Paths’ delays of a circuit synthesized without variation information, and the
impact of process variation on each path. b) Paths’ delays of the same circuit
after variation-aware synthesis. 35

xix

List of Figures

3.8 Iterative variation-aware synthesis and hold-time violation fixing flow consists
of three parts: 1) library characterization, 2) iterative synthesis optimization
loop, 3) iterative hold-time fixing. 36

3.9 a) According to the timing of endpoint i calculated by the SSTA (di,SSTA) in
iteration k, a tighter constraint is applied to this endpoint for iteration k + 1,
b) According to the timing of endpoint j calculated by the SSTA (dj,SSTA) in
iteration k, a looser constraint is applied to this endpoint for iteration k + 1. . 38

3.10 Different buffer structures. a) TG1: an always-on TG between two inverters
[29]. b) TG2: a TG controlled by the input signal [30]. 40

3.11 Properties of different buffers versus supply voltage. Total energy, delay, transi-
tion time and E/D are normalized to the corresponding values of an optimized
CMOS buffer for the NTC. 42

3.12 b06 circuit evolution over iterations: from baseline to iteration 22 (Vdd = 0.45,
γ = 0.05). All values are normalized to the baseline. 43

3.13 Clock period comparison of ITC’99 benchmark circuits with different methods
(Vdd = 0.45, γ = 0.05). The contributions of nominal delay and variation for
baseline are also presented. 46

3.14 Average improvement of ITC’99 benchmark circuits over different supply volt-
ages. 47

4.1 Conceptual illustration of the impact of a short clock period (clks) and multi-
cycle operations (e.g. OPA) on runtime and “wasted” leakage. Leakage is illus-
trated by . 52

4.2 Conceptual illustration of the impact of partitioning on a functional unit execut-
ing OPA instruction, and its impact on “wasted” leakage. Leakage is illustrated
by . 52

4.3 The nominal case delay without considering the impact of process variation
and the worst case delay (with process variation) for the instructions of an
ALU synthesized with typical and loose timing constraints. Worst case delay
is extracted by SSTA as µ + 3σ of the instruction delay. All the numbers
are normalized to the maximum nominal delay of the Tight ALU which is the
nominal delay of S8ADDQ in (a). (Vdd = 0.5V) 55

4.4 Instruction usage frequency in a 64-bit ALU for gzip workload. There are orders
of magnitude difference between utilization frequency of ’highly used instruc-
tions’ on the left and ’rarely used instructions’ on the right. 57

4.5 The temporal distance between LDA and ADDL instructions in ”bzip2” workload
(simulation for 2 million cycles). There are 19146 cases that the ADDL instruction
appeared right after LDA. The average distance is 2.97. 58

4.6 Implementation flows of a) Instruction multi-cycling, b) Functional unit parti-
tioning applied to an ALU. 62

4.7 Modifying the clock period of the ALU changes the set of 2-cycle and 3-cycle in-
structions which impacts the energy, performance and reliability improvements
significantly. The results are extracted for Loose ALU + INC/DEC running
workload ”equake”1at Vdd = 0.5V . The improvement values are relative to the
Tight ALU. Four pareto points are marked on the graph: P2 (R2) provides the
best energy and performance (best reliability) when ALU is limited to execute
all instructions in two clock cycles, and P3 (R3) provides the best energy and
performance (best reliability) when some instructions can be executed in three
clock cycles. 65

xx

List of Figures

4.8 Energy improvement over the baseline (Tight ALU). The additional improve-
ment is also calculated for when addition / subtract are replaced by increment
/ decrement when possible (clock period is 73ns and 49ns). 66

4.9 Dendrogram illustration of the proposed AHC method for some of the instruc-
tions. The instructions are merged bottom-up to form larger clusters. 68

4.10 Energy improvement of functional unit partitioning, on an ALU partitioned in
to 4 smaller units (4-ALU), for 10nm and 14nm technology nodes. 69

5.1 Average flip-flop switching activity of Leon3 under different MiBench workloads
changes in the range of 0.062 ≤ α ≤ 0.108, with µα = 0.085 (in red). This range
is used as the range of input switching activity variation (±27%). 78

5.2 The impact of process, temperature, and workload variations on V MEP
dd for

different benchmark circuits under full temperature range [−25°C, 100°C] and
the reasonable activity range. 79

5.3 Overall flow of the proposed MEP prediction method for NTC circuits. The flow
consists of three main parts: 1) Offline characterization and machine-learning,
2) Post-fabrication calibration, and 3) Runtime MEP adaptation. 80

5.4 Interpolation is used to find the MEP values for any intermediate temperature
value (Tx) which does not exist in the stored LUT on chip. 82

5.5 Overall flow of the proposed runtime adjustment of SoCs to minimum energy
operation. 85

5.6 (a), (b) V MEP
dd prediction performance for circuit b04 (r2 = 0.997, RMSE =

1.4mV). (c), (d) TMEP
clk prediction performance for circuit b04 (r2 = 0.999). . . 89

5.7 The impact of measurement error in temperature (up to ±10°C) and circuit
activity fluctuation (up to ±25% α error) on c2670 MEP prediction accuracy. 90

5.8 The imprecision energy associated with operating a circuit at a non-optimal sup-
ply voltage (with ∆V MEP

dd shift from optimum V MEP
dd) for selected ISCAS’85

and ITC’99 benchmark circuits. The circles demonstrate the average impre-
cision energy (µIE) over different operating conditions and the vertical bars
demonstrate the standard deviation σIE . 91

6.1 Different flip-flop timing parameters. The correct functionality is guaranteed
by considering the flip-flop delay as illustrated. 101

6.2 Separate internal LH/HL paths of the flip-flop (a), and delay of internal LH/HL
paths of an aged C2MOS flip-flop (optimized for PDP in the fresh state) for
different input SPs (b). 101

6.3 Comparison between the voltage-drop induced delay degradation of a flip-flop
and an inverter, which are aged under same condition (Aging under SP1 for 5
years). 102

6.4 (a) Input signal probabilities and (b) voltage-drop analysis of Leon3 flip-flops
executing MiBench Workloads . 103

6.5 Delay of a C2MOS flip-flop which is aged under SP=0 over 5 years for LH/HL
transitions, compared to the flip-flop optimized for SP=0 showing how the un-
balanced aging of internal LH/HL paths worsens the degradation in original
flip-flop. 105

6.6 Overall flow to find the optimum flip-flop sizing for under S-BTI stress and
voltage-drop at a specific working corner (voltage, temperature). 107

6.7 Circuit optimization flow using the proposed selective flip-flop optimization
method. 109

xxi

List of Figures

6.8 Performance of the original flip-flop vs. the flip-flop optimized by the proposed
method at SP0 and SP1, before and after aging (5 years). 114

6.9 Delay of C2MOS flip-flops optimized for SP0 aging using extra leakage (scenario
2). Delay degradation saturates as β increases (after β = 0.25). 115

6.10 Comparison of the aging-induced delay degradation under impact of voltage-
drop, for original flip-flop, optimized flip-flop with 0% extra area allowance
(scenario 2), and optimized flip-flop with 20% extra area allowance (scenario 3).
The voltage-drop induced delay increase may be compensated by 20% upsizing
of the flip-flop cell during the optimization. 116

6.11 The layout map of the Leon3 flip-flops during the execution of some MiBench
workloads on Leon3, showing relative voltage-drop criticality, timing criticality,
and aging criticality of different flip-flops. Values close to ’1’ correspond to
higher criticality, and values closer to ’0’ represents the non-critical parts. The
top-left part of the processor layout is filled by combinational gates. 116

6.12 Fresh delay (no-aging, no voltage-drop) vs. increased delay (aged and 10%
voltage-drop) of critical paths of Leon3 processor. The proposed selective flip-
flop optimization method replaces the original flip-flops under S-BTI (red) with
the optimized flip-flops (green) and suppresses the aging and voltage-drop degra-
dation of the most critical paths. 118

xxii

List of Tables

2.1 Summary of BTI predictive model parameters [31] 16
2.2 Summary of HCI predictive model parameters [31] 17

3.1 Comparison of the number of the hold-time violations obtained by nominal
analysis, corner analysis, and SSTA in the NTV region (Vdd = 0.45). The
number are normalized to the number of violations from the corresponding
nominal analysis. 33

3.2 Buffer comparison in the NTV region. (Normalized to CMOS buffer) 42
3.3 Optimization results for ITC’99 benchmark circuits(Vdd = 0.45, γ = 0.05). . . . 45
3.4 Hold-time violations of the circuits before fixing, and fixing overheads for dif-

ferent buffers. 48

4.1 Energy and performance improvements of executing the ”matrix manipulation”
workload with different data types . 67

4.2 Energy improvement results for 3-ALU and 4-ALU over Original ALU for 14nm
PTM [32] . 69

5.1 Library characterization setup for MEP analysis 76
5.2 Circuit characterization setup for MEP analysis 76
5.3 Regression parameters for MEP prediction . 81
5.4 Problem definition of the machine-learning model to find the most energy-

efficient system-wide voltage . 84
5.5 MEP prediction scores of the proposed method (higher r2 scores, lower RMSE,

and lower imprecision energy values are better). 92
5.6 Comparison of different Vdd tuning methods . 93
5.7 Simulation setup for testing the proposed method, including the circuit compo-

nents and the characterization setup . 93
5.8 Normalized energy overhead† of the proposed method and related work at dif-

ferent temperatures . 95
5.9 Normalized energy overhead at different power modes 95
5.10 Comparison of the proposed method and related work in terms of the features

and the capabilities . 96

6.1 Flip-flop Optimization Method Summary . 107
6.2 C2MOS flip-flop characteristics for 1) Original flip-flop (Optimized for PDP in

the fresh state), 2) Optimized flip-flop for PDP in post-aging [33], and optimized
by the proposed method for 3) only aging , and 4) for aging+vdrop. The results
are reported for “fresh”, “aged” and “aged+vdrop” states and under SP04 aging. 113

6.3 Processor delay comparison when 1) using only original flip-flops, and 2) using
proposed method . 117

xxiii

List of Own Publications

List of own publications included in this thesis

[1] M. S. Golanbari, S. Kiamehr, M. Ebrahimi, and M. B. Tahoori, “Variation-aware Near-
Threshold Circuit Synthesis,” in Design, Automation & Test in Europe Conference
(DATE), 2016.

[2] M. S. Golanbari, S. Kiamehr, and M. B. Tahoori, “Hold-time Violation Analysis and
Fixing in Near-Threshold Region,” in International Workshop on Power and Timing
Modeling, Optimization and Simulation (PATMOS), 2016.

[3] M. S. Golanbari, A. Gebregiorgis, F. Oboril, S. Kiamehr, and M. B. Tahoori, “A Cross-
Layer Approach for Resiliency and Energy Efficiency in Near Threshold Computing,” in
International Conference on Computer-Aided Design (ICCAD), 2016.

[4] M. S. Golanbari, A. Gebregiorgis, E. Moradi, S. Kiamehr, and M. B. Tahoori, “Balancing
resiliency and energy efficiency of functional units in ultra-low power systems,” in Asia
and South Pacific Design Automation Conference (ASP-DAC), 2018.

[5] M. S. Golanbari and M. B. Tahoori, “Design flows for resilient energy-efficient systems,”
in International Symposium on On-Line Testing and Robust System Design (IOLTS),
2017.

[6] M. S. Golanbari and M. B. Tahoori, “Optimizing Datapaths for Near Threshold Com-
puting,” in International Conference on Synthesis, Modeling, Analysis and Simulation
Methods and Applications to Circuit Design (SMACD), 2018.

[7] M. S. Golanbari, S. Kiamehr, F. Oboril, A. Gebregiorgis, and M. B. Tahoori, “Post- Fab-
rication Calibration of Near-Threshold Circuits for Energy Efficiency,” in International
Symposium on Quality Electronic Design (ISQED), 2017.

[8] M. S. Golanbari and M. B. Tahoori, “Runtime adjustment of IoT system-on-chips for
minimum energy operation,” in Design Automation Conference (DAC), 2018.

[9] M. S. Golanbari, S. Kiamehr, M. Ebrahimi, and M. B. Tahoori, “Aging guardband
reduction through selective flip-flop optimization,” in IEEE European Test Symposium
(ETS), 2015.

[10] M. S. Golanbari, S. Kiamehr, M. Ebrahimi, and M. B. Tahoori, “Selective Flip-Flop
Optimization for Reliable Digital Circuit Design,” submitted to IEEE Transactions on
Very Large Scale Integration (VLSI) Systems.

List of own publications not included in this thesis

[11] M. S. Golanbari, S. Kiamehr, M. B. Tahoori, and S. Nassif, “Analysis and optimization of
flip-flops under process and runtime variations,” in International Symposium on Quality
Electronic Design (ISQED), 2015.

[12] M. S. Golanbari, S. Kiamehr, and M. B. Tahoori, “Resilient Flip-Flop Design under
Process and Runtime Variations,” in SELSE, 2015.

[13] A. Gebregiorgis, M. S. Golanbari, S. Kiamehr, F. Oboril, and M. B. Tahoori, “Maximiz-
ing Energy Efficiency in NTC by Variation-Aware Microprocessor Pipeline Optimiza-
tion,” in International Symposium on Low Power Electronics and Design (ISLPED), pp.
272–277, 2016.

xxv

List of Own Publications

[14] S. Kiamehr, M. Ebrahimi, M. S. Golanbari, and M. B. Tahoori, “Temperature-aware
dynamic voltage scaling to improve energy efficiency of near-threshold computing,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 7, 2017.

[15] S. Kiamehr, M. S. Golanbari, and M. B. Tahoori, “Leveraging aging effect to improve
SRAM-based true random number generators,” in Design, Automation & Test in Europe
(DATE), pp. 882–885, 2017.

[16] M. S. Golanbari, N. Sayed, M. Ebrahimi, M. H. M. Esfahany, S. Kiamehr, and M. B.
Tahoori, “Aging-aware coding scheme for memory arrays,” in IEEE European Test Sym-
posium (ETS), 2017.

[17] M. S. Golanbari, S. Kiamehr, R. Bishnoi, and M. B. Tahoori, “Reliable memory PUF
design for low-power applications,” in International Symposium on Quality Electronic
Design (ISQED), 2018.

[18] M. Ebrahimi, M. H. Moshrefpour, M. S. Golanbari, and M. B. Tahoori, “Fault injection
acceleration by simultaneous injection of non-interacting faults,” in Design Automation
Conference(DAC), p. 25, 2016.

[19] S. M. Nair, R. Bishnoi, M. S. Golanbari, F. Oboril, and M. B. Tahoori, “VAET-STT: A
variation aware estimator tool for STT-MRAM based memories,” in Design, Automation
& Test in Europe (DATE), pp. 1460–1465, 2017.

[20] S. M. Nair, R. Bishnoi, M. S. Golanbari, F. Oboril, F. Hameed, and M. B. Tahoori,
“Vaet-stt: Variation aware stt-mram analysis and design space exploration tool,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 7, pp. 1396–1407, 2018.

[21] A. T. Erozan, M. S. Golanbari, R. Bishnoi, J. Aghassi-Hagmann, and M. B. Tahoori,
“Design and evaluation of physical unclonable function for inorganic printed electronics,”
in International Symposium on Quality Electronic Design (ISQED), pp. 419–424, 2018.

[22] F. Rasheed, M. S. Golanbari, G. C. Marques, M. B. Tahoori, and J. Aghassi-Hagmann,
“A smooth EKV-based DC model for accurate simulation of printed transistors and their
process variations,” IEEE Transactions on Electron Devices, vol. 65, no. 2, pp. 667–673,
2018.

[23] A. T. Erozan, G. C. Marques, M. S. Golanbari, R. Bishnoi, S. Dehm, J. Aghassi-
Hagmann, and M. B. Tahoori, “Inkjet-Printed EGFET-Based Physical Unclonable Function–
Design, Evaluation, and Fabrication,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, no. 99, pp. 1–12, 2018.

[24] G. Tshagharyan, G. Harutyunyan, Y. Zorian, A. Gebregiorgis, M. S. Golanbari, R. Bish-
noi, and M. B. Tahoori, “Modeling and Testing of Aging Faults in FinFET Memories
for Automotive Applications,” in IEEE International Test Conference (ITC), 2018.

[25] D. Weller, M. Hefenbrock, M. Golanbari, M. Beigl, and M. Tahoori, “Bayesian Optimized
Importance Sampling for High Sigma Failure Rate Estimation,” in Design, Automation
& Test in Europe (DATE), 2019.

xxvi

1 Introduction

Since the advent of electronic digital computing, relentless technology scaling has enabled
an exponential improvement in computation capability while decreasing the cost and power
consumption. Gordon Moore predicted in 1965 that the number of transistors in integrated
circuits would double every year1 to address the ever-increasing demand for higher computation
power [36]. Such continuous growth in computation capability over more than 5 decades
affected almost all aspects of human life, including but not limited to industry, business,
health-care, government, and society which effectively started the Information Age, and made
digital computing circuits inseparable part of our everyday life.

Moore’s law has faced several technological challenges and has been slowed down in the past
decade [34, 37, 38], however, still more transistors can be integrated on every new technology
generation down to 3nm node [39, 40]. To avoid exponential growth in the power density,
various parameters including supply voltage of digital circuits have been scaled according to
Dennard’s scaling law [41]. However, the supply voltage did not scale at the same pace for
about one decade (since 2005–2006) due to technological challenges associated with nanometer-
scale devices [42]. Since then, various architectural and design directions have been actively
explored including many-core computation, parallel processing, and 3D integration to provide
more computation power [38–40]. However, the main challenges caused by the end of Dennard’s
scaling are energy efficiency and power density, which cannot be addressed by such approaches
[43–45]. Without proper addressing of the increasing power density due to technology scaling,
it is not possible to utilize all the components of a chip at the same time due to overheating,
a problem commonly known as Dark Silicon [44, 46], which diminishes the benefits of scaling.
Therefore, reducing the power density through improving the energy efficiency is pivotal for
future digital circuits.

In fact, energy-efficient computing has already become a primary requirement in various
application domains. At one end of the spectrum, the growing Internet of Things (IoT)
applications, with an expected 20 billion connected devices by 2020 [47–50], are continually
looking for more energy efficiency. These IoT devices are expected to operate on limited energy
sources such as batteries or energy harvesting sources. High-performance servers and data
centers, at the other end, are responsible for a significant2 amount of consumed electricity
worldwide [51]. A large portion of the cost of data centers is directly or indirectly due to
the energy consumption of digital circuits [51]; hence, it is necessary to improve the energy
efficiency of high-performance computing as well.

Power consumption of digital circuits has two components: dynamic power consumption,
due to circuit activity and computation, and leakage power consumption, due to slight leakage
current of transistors. Reducing the power density can be achieved through various approaches
such as optimizing design techniques, employing power management strategies, improving
the technology, and scaling supply voltage [52]. Each of these approaches aims at reducing
dynamic power, leakage power, or both. In this regard, optimizing Instruction Set Architecture
(ISA), scheduling methods, pipeline design, and synthesis methodologies have already enabled
vast improvements in the energy efficiency [53]. Techniques such as clock-gating and power-

1This prediction was adjusted afterwards for a few times to reflect the real progress [34, 35].
2About 1.4% of the consumed electricity worldwide in 2011, and growing in much faster speed compared to
other electricity consumers

1

1 Introduction

gating are widely used in existing digital circuits to cut down dynamic and leakage power of
the idle components [54]. Dynamic Voltage and Frequency Scaling (DVFS) promotes supply
voltage and speed adaptation depending on the workload to reduce power consumption under
low workload [55, 56]. Aggressive supply voltage reduction down to sub-threshold region is
known as an important instrument which reduces power consumption by several orders of
magnitude and improves energy efficiency [45, 52, 57–59]. Intel has demonstrated ultra-low
power characteristics using such aggressive voltage scaling by its experimental IA32 processor,
which can run Windows and Linux on a small solar panel [28]. In addition to extensive
power reduction, voltage scaling degrades circuit speed significantly. Many applications have
performance constraints that prevent them from operating in the sub-threshold region.

By operating digital circuit at supply voltages close to the threshold voltage of the transis-
tors, which is known as Near-Threshold Computing (NTC), it is still possible to gain very high
energy efficiency and achieve enough performance for many applications in the IoT domain
[60, 61]. Additionally, many-core computation based on NTC is an attractive approach to
improve energy efficiency while satisfying the computational demands3 of data centers [43, 62–
64]. Therefore, NTC is considered an attractive paradigm for improving the energy efficiency
in modern technology nodes [65], if the associated reliability challenges are addressed. These
reliability challenges are typically caused by enormous sensitivity of NTC circuits to variability
sources and complicate NTC circuit design and operation.

1.1 Motivation and objective

In addition to energy efficiency, meeting high-reliability standards is a primary concern for
many modern applications of digital circuits including those in the area of Cyber-Physical-
Systems (CPS) [43, 66, 67]. As reported by NASA, product wearout and failure rates increase
due to technology scaling [68]. Safety standards such as ISO 26262 in the field of automotive
industry set high standards for the functional safety of electronic systems used in the pro-
duced automobiles. The reliability of digital circuits is threatened by variability sources, such
as process and runtime variations, as well as radiation-induced soft-errors [69]. The state of
transistors may change due to the accumulated charges generated by particle strikes, which
can flip the values stored in memory and the state of logic gates, and may induce transient
soft-errors in the circuit output [70]. Such soft-error problems can be avoided by incorporating
cross-layer analysis and mitigation methods through advanced error correction and detection
techniques [71]. Process variation during circuit fabrication results in a slight difference be-
tween the fabricated transistors, which is a major reliability concern in the nanometer era [72].
Moreover, runtime fluctuations in temperature and supply voltage as well as transistor aging
alter the behavior of the fabricated components, and may lead to catastrophic failures [73].

A primary barrier towards the NTC is that reliability issues aggravate when the supply
voltage is decreased, due to the higher sensitivity to noise and variations at lower supply volt-
ages [59]. Such elevated sensitivity to process and runtime variations brings about several
design challenges, including timing issues and high failure rate, which lead to daunting relia-
bility issues. For example, the variation in the delay of a gate in the Near-Threshold Voltage
(NTV) due to process variation is 20× larger than in the nominal supply voltage [60] and the
sensitivity of the circuit speed to temperature variation in the NTV region is shown to be
20× larger than the nominal supply voltage region [74]. In summary, modern NTC circuits
are susceptible to even slight process and runtime variations due to nanoscale dimension of
transistors and low supply voltage [60, 74].

3For highly parallel workloads.

2

1.2 Contributions of this thesis

Firmware

Architecture

Circuit

Gate

Device

Application
• Instruction pattern analysis

• Instruction replacement

• Data-type replacement

• MEP prediction & tuning

• Instruction set extension

• Instruction multi-cycling

• Data path partitioning

• Variation-aware synthesis

• Timing closure

• Selective flip-flop opt.

• Statistical characterization

• Variation-aware cell opt.

(a) Scope of this thesis and contributions at dif-
ferent abstraction levels

Design Flows &

Methodologies

Design

Optimization

Post-fabrication &

Runtime Tuning

E
n

e
rg

y
 E

ff
ic

ie
n

cy
R

e
li

a
b

il
it

y

T
im

in
g

cl

o
su

re

(h
o

ld
-t

im
e

 f
ix

in
g

)

V
a

ri
a

ti
o

n
-a

w
a

re
 c

ir
cu

it
 s

y
n

th
e

si
s

In
st

ru
ct

io
n

 m
u

lt
i-

cy
cl

in
g

D
a

ta
 p

a
th

p

a
rt

it
io

n
in

g

R
u

n
ti

m
e

 M
E

P

a
d

a
p

ta
ti

o
n

P
o

st
-f

a
b

ri
ca

ti
o

n

M
E

P
 c

a
li

b
ra

ti
o

n

S
e

le
ct

iv
e

 f
li

p
-f

lo
p

o
p

ti
m

iz
a

ti
o

n

Wide-Voltage

Operation

(b) Contributions at different optimization dimensions

Figure 1.1: Scope and contributions of this thesis regarding NTC design challenges.

Even though circuit designs and methodologies have been evolving over past decades to
adapt the need for continuous technology scaling, they are still inefficient in addressing vari-
ability impacts in the NTV region due to the extent of variations [74–76]. Therefore, designs
and methodologies for addressing the reliability issues need to be revisited for resilient and en-
ergy efficient NTC circuit design. The objective of this thesis is to provide a holistic approach
for NTC design by tackling the major challenges, in the form of comprehensive design and
design automation flow. This includes an in-depth analysis of the reliability issues in the NTV
region, followed by optimizing designs and methodologies for better reliability, performance,
and energy efficiency.

1.2 Contributions of this thesis

As stated before, the focus of this thesis is on the reliability challenges associated with the NTC.
We address the reliability challenges of NTC circuit design and improve the energy efficiency
at different abstraction-levels from circuit-level to application-level, as shown in Figure 1.1.
The contributions can be classified into four main categories, which collectively improve the
energy efficiency, reliability, and performance: I) Design flows and methodologies, II) Design
optimization, III) Post-fabrication and runtime tuning, and IV) Wide-voltage operation. In
each of these categories, we target a specific problem and propose methods to address that.

1.2.1 Design flows and methodologies

Electronic Design Automation (EDA) flows and methodologies have enabled large-scale in-
tegration of transistors on chips over past decades. They are used for analysis, design, and
optimization of digital circuits. These tools are widely used in various chip design stages from
system specification until manufacturing and test. Due to variability impacts, fabricated chips
may deviate from designated specifications. Some design automation tools can consider vari-
ability impacts through corner-case analysis, in which worst and best corners are introduced to
the tool. This approach is practical when variability impacts are not significant, hence, a full
statistical analysis is typically evaded due to its complexity. However, due to exorbitant varia-
tion in characteristics of NTC circuits, design automation tools and methodologies should pay
attention to statistical impacts of variability sources and consider them during circuit design

3

1 Introduction

and optimization.

An essential aspect of digital circuits is timing, which is heavily influenced by both process
and runtime variation in the NTV region. This results in undesired performance fluctuation
among the components, such as gates and flip-flops, which may cause timing violations or
functional failures. For that, it is necessary to perform accurate timing analysis and optimize
the circuit in order to minimize the timing variations and violations. Existing synthesis and
timing optimization tools rely on corner-case Static Timing Analysis (STA) for circuit opti-
mization and timing closure [77]. In addition to that, timing margins are considered to deal
with timing variations. However, such corner-case design methodology is very pessimistic in
the NTV region, as the gap between worst-case and best-case corners could be huge. There-
fore, this approach is either inefficient or too costly in the NTV region due to the extent of
variations [60].

This thesis tackles the timing challenge at circuit-level by proposing a synthesis and timing
closure methodology, which considers the variability impacts through standard cell library en-
gineering and Statistical Static Timing Analysis (SSTA). We show that such variation-aware
methodology is necessary for NTC design and can effectively improve circuit energy efficiency
and timing leading to better reliability.

1.2.2 Design optimization

Supply voltage scaling to the NTV region and below changes the assumptions for circuit design
and optimization [76]. Therefore, NTC designs need to be particularly optimized based on
new paradigms. As an example, leakage power constitutes a significant portion of total power
consumption in the NTV region due to the reduced supply voltage [28, 61]. This means that
reducing leakage power is more rewarding in NTC compared to the nominal supply voltage.

This thesis proposes a cross-layer approach to optimize NTC processor designs by improv-
ing the reliability, energy efficiency, and performance of data paths. A processor data path
includes various functional units and data processing units such as Arithmetic Logic Unit
(ALU) and consumes a significant amount of power and area [54]. A cross-layer analysis of
data paths from application-level to gate-level is performed to reveal the optimization op-
portunities for NTC operation. For example, instruction pattern analysis at application-level
reveals the frequently utilized instructions and rarely utilized instructions, and a timing anal-
ysis at circuit-level determines the required time to execute each instruction. Accordingly,
we propose functional unit partitioning and instruction multi-cycling methods which optimize
energy efficiency, reliability, and even speed of NTC data paths.

1.2.3 Post-fabrication and runtime tuning

Due to the extent of variability impacts, still large difference between fabricated chip instances
and under different temperatures are observed [61, 74]. As an example, the speed of the
circuit may change by ±2× under ±50◦C temperature variation. This will affect the energy
efficiency and reliability such that the most efficient operating voltage of an NTC circuit,
commonly known as its Minimum Energy Point (MEP), may fluctuate vastly [78]. Therefore, it
is necessary to calibrate each fabricated chip to the correct operating condition (supply voltage
and frequency at the MEP) and to the variations to improve the energy efficiency and reliability.
In this regard, the existing methods can be categorized into analytical methods, which are not
effective in NTC, and hardware-implemented closed-loop energy efficiency monitoring methods,
which could be too expensive for ultra-low power systems.

This thesis introduces a low-cost post-fabrication calibration and runtime tuning method,
with zero to negligible hardware cost. In this method, we predict the most energy-efficient point

4

1.3 Structure of this Thesis

for each fabricated chip based on a dataset of previously fabricated test chips. The prediction
is done using machine-learning techniques and based on post-fabrication measurements. Our
proposed method is implemented at firmware-level and can tune NTC circuits at runtime for
the best energy efficiency with high accuracy.

1.2.4 Wide-voltage operation

Ultra-low-voltage circuits may need to operate at super-threshold voltage mode to satisfy
specific timing constraints enforced by the running applications. In this case, the circuit is
exposed to several runtime variabilities such as transistor aging which degrade the transistors
by increasing their threshold voltages. Therefore, it is crucial to perform reliability analysis
to evaluate the impact of such variabilities on vulnerable circuit components such as flip-flops.
Such reliability analysis determines weak points of a design, i.e., the components which are
profoundly impacted by variabilities and are crucial to overall system reliability.

This thesis proposes a selective flip-flop optimization approach. Accordingly, we optimize
the reliability of a limited number of flip-flops, with the target of improving overall circuit
reliability and lifetime. Our analysis shows that some flip-flops store a constant value, either
‘0’ or ‘1’, for a long time leading to a severe impact of aging. Compared to other components,
the flip-flops are also more sensitive to the aging impact and may fail to store a value correctly
within the timing constraints. Furthermore, a slight voltage drop could lead to timing viola-
tions if the aging-affected flip-flops are parts of the critical paths. These vulnerable flip-flops
are then replaced with optimized counterparts, which are more resilient against aging and
voltage fluctuation. Simulation results show that this approach can significantly improve the
circuit lifetime.

1.3 Structure of this Thesis

This chapter presented the motivation and contributions of this thesis. The rest of the thesis
is organized in six chapters:

• Chapter 2 provides the preliminaries on reliability challenges associated with energy-
efficient computing. There, the most important variability sources for the NTC are
explained with an overview of their impacts on NTC circuits. Additionally, the state-of-
the-art related to resilient energy-efficient computing is reviewed.

• Chapter 3 presents the first contribution in the domain of design automation flows and
methodologies. We start with explaining the detrimental impact of variabilities on circuit
timing and present a variation-aware synthesis and timing closure methodology, which
improves the circuit resiliency under large variability impacts.

• In Chapter 4, several opportunities for NTC design optimization are explored. We per-
form an analysis on data paths from application-level down to gate-level. Then, we apply
a cross-layer methodology to co-optimize resiliency, energy efficiency, and performance
of processor data paths.

• We emphasize the need for adaptation of NTC circuits to process and runtime variations
in Chapter 5, by analyzing the impacts of variabilities on energy efficiency and reliability
of NTC chips. Based on this analysis, a post-fabrication calibration and runtime tun-
ing method is proposed. The proposed method exploits post-fabrication measurements
data to predict the best operating point for each fabricated chip during runtime, hence,
maximizing the energy efficiency with minimum overheads.

5

1 Introduction

• Chapter 6 studies the reliability issues with wide-voltage operation. Some reliability
challenges, such as transistor aging and supply voltage fluctuation, do not have any
significant impact in the NTV region; however, they are important once the circuit is
operating over a wide voltage range. This chapter proposes selective flip-flop optimization
method, which improves the overall circuit reliability by optimizing the flip-flops severely
affected by reliability issues.

• Finally, Chapter 7 concludes the thesis and provides an outlook for future research in
this regard.

6

2 Preliminaries and State-of-the-Art

Numerous challenges have to be addressed to reach the desired resiliency and energy efficiency
targets in modern Very-Large-Scale Integration (VLSI) technology. This chapter presents an
overview of the fundamentals of VLSI technology and explains the challenges towards resilient
energy-efficient computing. Additionally, NTC is studied as a promising design paradigm
for energy efficiency in both low-power and high-performance domains and the most relevant
approached towards NTC are reviewed.

2.1 VLSI technology: from transistors to circuits

Complementary Metal Oxide Semiconductor (CMOS) technology has been widely used for
more than three decades as the primary technology for digital VLSI circuit design. The idea
is to use complementary p-type and n-type Metal Oxide Semiconductor (MOS) transistors,
namely PMOS and NMOS, to perform logic operations and store bit values. The main ad-
vantages of CMOS are low static power (leakage), low noise, and the possibility for massive
integration [79].

MOSFET transistors

As the elementary blocks of CMOS technology, Metal-Oxide-Semiconductor Field Effect Tran-
sistor (MOSFET) has three terminals, namely source (S), Drain (D), and Gate (G) as shown
in Figure 2.1. The channel conductivity between the source and drain terminals is controlled
by the voltage applied to the gate terminal. Therefore, the behavior of a MOSFET can be
explained based on the voltages applied to these terminals. Three different operating regions
(or modes) are commonly considered for a MOSFET:

• Sub-threshold region, also known as cut-off region or weak inversion region, when the
applied gate to source voltage (Vgs) is less than the threshold voltage (Vth) of the tran-
sistor.

Oxide 𝑛+ 𝑛+

Source (S)

𝑝-substrate

Channel

region

Drain(D)

Gate (G)

Body (B)

Metal

 𝐿

Figure 2.1: MOSFET transistor (NMOS)

7

2 Preliminaries and State-of-the-Art

• Linear region, also known as triode region or ohmic region, when the channel is formed
due to Vgs > Vth and the transistor behaves similar to a resistor. In this region, strong
inversion happens near drain because Vds < Vgs − Vth (or simply Vgd > Vth).

• Saturation region, or active region, when the channel is formed due to Vgs > Vth. How-
ever, the formed channel comes to a sharp tip close to the drain because Vds > Vgs − Vth

(or simply Vgd < Vth). In this region, the current passing from drain to source (Ids) is
not dependent on the drain voltage.

In the sub-threshold region, the transistor is considered to be turned off. However, drain-
source leakage current (Ids) is exponentially dependent on Vgs as:

Ids = I0
W

L
e

Vgs−Vth
nVT (1− e

−Vds
VT), VT = KBT/q. (2.1)

Here, n is a process-dependent parameter. VT is the thermal voltage, with Boltzmann constant
(KB), temperature in Kelvin (T), and charge of an electron (q). W is the channel width and
L is the channel length of the MOSFET transistor (i.e. transistor dimensions). Therefore,
the leakage current is dependent on various process-related parameters as well as operating
conditions. In the linear region, Ids of a MOSFET follows:

Ids = µCox
W

L
(Vgs − Vth −

Vds

2
)Vds, (2.2)

which shows a strong dependency on Vds. However, in the saturation region, the current is
mostly independent of Vds:

Ids = µCox
W

L

(Vgs − Vth)
2

2
. (2.3)

In the above equations, µ represent the carrier mobility in the channel and Cox is the capaci-
tance between gate and channel (per unit area). Please note that in Equations (2.1) to (2.3)
the threshold voltage Vth also depends on drain voltage and body voltage as follows:

Vth = Vth0 − λdsVds − γbsVbs. (2.4)

Various parameters and phenomena, such as Drain-induced Barrier Lowering (DIBL), Gate-
Induced-Drain-Leakage (GIDL), Short-Channel Effect (SCE), Reverse Short Channel Effect
(RSCE), and Well-Proximity Effect (WPE), affect the characteristics of a transistor, espe-
cially in nano-scale transistors. However, the overall characteristics can be explained with
the above equations. The behavior of modern devices which have replaced the conventional
bulk-MOSFET devices at sub 28nm nodes, such as FinFET and Fully-Depleted Silicon-On-
Insulator (FDSOI), can also be explained by the same equation with minor modifications to
reflect technology dependent parameters of these new technologies.

CMOS gates

MOSFET transistors are utilized as switches to perform logic operation in CMOS gates, which
are the building blocks of modern digital circuits. Figure 2.2 shows the internal circuit of two
basic gates: inverter and nand. Typical logic gates employ MOSFET transistors in pull-up
and pull-down networks in order to transfer specific input signal combinations to logic level
’0’, which is the ground voltage level, and logic level ’1’, which is the supply voltage level.

8

2.1 VLSI technology: from transistors to circuits

VDD

A Y

(a) inverter gate (Y = A)

VDD

B

A

A B

Y

(b) nand gate (Y = A.B)

Figure 2.2: Basic inverter and nand gates

Delay and power consumption

A logic gate needs time and energy to transfer input signal combinations to output logic
levels. The propagation delay of a gate can be generally defined as the required time since an
input signal switches until the logic result appears at the gate outputs. As an example, the
propagation delay of an inverter is defined as the difference in time between when the input of
inverter reaches Vdd/2 (falling or rising) until the moment that the output crosses Vdd/2 in the
reverse direction (rising or falling). Propagation delay of simple gates can be approximated as
follows, for rising tp,LH and falling tp,HL outputs:

tp,LH ≈ kfCL
Vdd

IPMOS
ds

, tp,HL ≈ kfCL
Vdd

INMOS
ds

. (2.5)

Here, CL is the load capacitor on the output, kf is a fitting coefficient, and IPMOS
ds and INMOS

ds

are the on-currents of gate PMOS and NMOS transistors which are pulling-up/-down the
output (see Equation (2.3)). According to [80] the coefficient kf may be around 0.5 depending
on the effective drive current of transistors.

When a gate output toggles due to an input transition, it has dynamic and short-circuit
power consumption. Dynamic power consumption, due to charging/discharging of the load
capacitance, can be calculated as:

Pdyn,sw = αfCLV
2
dd, (2.6)

where f is the clock frequency of the circuit (in which the inverter is used) and α is the average
number of 0 → 1 transitions per clock cycle. During each switching, there could be a time
in which both pull-up (consisting of PMOS transistors) and pull-down (consisting of NMOS
transistors) networks are partially or fully turned on. This leads to a short-circuit current
passing through pull-up and pull-down networks for a short period of time. As a result, there
would be a short circuit power as follows [81]:

Pdyn,sc = ÎscVddtscαf, (2.7)

where Îsc is the average short-circuit current, and tsc is the time in which the short-circuit
current passes through pull-up and pull-down networks. When the gate does not execute any
transition a small current leaks through transistors leading to a leakage power, which can be
calculated as:

Pleak = IleakVdd, Ileak = I0
W

L
e
− Vth

nVT (1− e
−Vdd

VT). (2.8)

9

2 Preliminaries and State-of-the-Art

A: ‘0’→’1’
B: ‘1’ Y: ‘1’→’0’𝐶𝐿

𝑡𝑟 𝑡𝑓
(a) NAND gate A → Y arc at ′1′ →

′ 0′

output transition

𝐶𝐿1 𝐶𝐿2 𝐶𝐿3𝑡𝑟1𝑡𝑟2𝑡𝑟3
𝑡𝑓1,1 𝑡𝑓1,2 𝑡𝑓1,3𝑡𝑓2,1 𝑡𝑓2,2 𝑡𝑓2,3𝑡𝑓3,1 𝑡𝑓3,2 𝑡𝑓3,3

(b) LUT stores output fall transition (tf)
based on input rise transition (tr) and
load capacitance (CL)

Figure 2.3: nand gate characteristics stored as Look-Up-Tables

For an inverter, the leakage current Ileak can be calculated based on Equation (2.1), depending
on which transistor is leaking. The above equations approximate the behavior of digital gates
for long-channel transistors operating at deep saturation region. However, they are not accu-
rate anymore at modern technology nodes or when Vdd is close to Vth, i.e. the near-threshold
region. In such cases, we need to employ SPICE circuit simulation tools which incorporate
accurate transistors models to calculate the circuit behavior.

Digital circuit design

Digital circuits, depending on their size and functionality, may contain up to billions of gates,
in various types and sizing, to satisfy the power and timing constraints. In other words, the
overall power consumption and delay of a digital circuit can be approximated based on the
delay and power consumption of its gates. Therefore, EDA tools and design flows are necessary
to facilitate the design and fabrication of such complex circuits. For that, EDA tools are used at
different abstraction levels: Technology, Device, Circuit, Gate, RTL, Algorithm, and System.
Circuit characteristics at each abstraction level are abstracted and stored in databases to be
used by EDA tools. For examples, standard cell libraries contain delay, timing, and power
characteristics of gates. Since these parameters depend on the structure and size of gates
as well as input signal timing and load capacitance, the standard cell libraries are typically
complicated and large. This information is stored in Look-Up-Tables (LUT) format, as shown
in Figure 2.3. For each transition arc, which is a specific signal propagation path from a
gate input to a gate output (e.g. A → Y) and at a specific output transition direction (e.g.
′1′ →′ 0′), a LUT is created based on input signal transition time tr and output capacitance
(CL) values. In addition to that, process corner, statistical characteristics such as mean and
standard deviation of parameters’ distributions, temperature, and supply voltage are also
considered into standard cell libraries. These libraries are then used by various EDA tools
such as synthesis and STA to design and optimized circuits.

2.2 Variability sources

Process and runtime variations strongly impact the functionality of circuits in the nanoscale
technology nodes [82]. Figure 2.4 introduces the most important variation sources. The pro-
cess of fabricating integrated circuits involves various parameters. Lithography, etching, ion
implantation, growth, and almost all other processes bring variations to transistors and make
them distinguishable from each other. This translates into variation in important transistor

10

2.2 Variability sources

parameters, such as Vth, Weff , and Leff , and eventually impact the circuits by changing the
timing and power characteristics. On top of that, the behavior of the fabricated circuit can
change due to fluctuation in parameters such as temperature and supply voltage. Addition-
ally, electronic circuits age over time meaning that their behaviors slightly change over time
depending on the operating condition.

The combined impact of these variation sources brings about many reliability challenges
including yield problems after fabrication and functional failures in the field [82]. In this part of
the thesis, the most important variability sources are introduced and their impacts on circuits
are studied.

2.2.1 Process variation

As a result of manufacturing process, fabricated components of electronic circuits such as
transistors, interconnects, and vias become slightly different from what they were designed.
This category of variations is generally called process variation, but also named as intrinsic
variation or time-zero variation. Process variation could be due to different sources and dif-
ferentiates the fabricated devices at wafer, die, and transistor levels. The systematic process
variation, which directly affects the yield, has been the subject of research in the past [83].
In modern technology nodes, the random variation is increasingly more important because of
strengthened random variability [83].

Random variation could happen between every two fabricated transistors. This may be due
to Random Dopant Fluctuation (RDF), Line-Edge Roughness (LER), Metal Grain Granularity
(MGG), Oxide Thickness Fluctuation (OTF), and many other reasons. The most important
variability source in the plain MOSFET structure is known to be RDF, which is the change
in the number and placement of dopant atoms inside the transistor channel [84–86]. However,
in modern technologies such as FD-SOI and FinFET, other sources such as MGG and LER
have become the dominant source of variability [87–89].

The threshold voltage of a transistor can be explained as a statistical parameter with
standard deviation σVth. In case of RDF, σVth can be described based on Pelgrom’s model
[90], that is:

σVth =
Avt

√

WeffLeff

, (2.9)

where Avt is a process-dependent coefficient, and Weff and Leff are effective width and length
of the transistor [83]. This equation holds for different transistor designs but the parameters in
Equation (2.9) need to be adjusted accordingly [91]. For MGG, a fix σVth can be assumed de-
pending on the technology [92]. Finally, the impacts of all random variations can be aggregated
as independent random variables into:

σV 2
th,total = σV 2

th,RDF + σV 2
th,MGG. (2.10)

Additionally, LER and OTF affect other parameters of a transistor such as Leff and tox and
can be considered as σLeff or σtox.

Variations

Process

Systematic Random

Runtime

Temperature Voltage Aging

Figure 2.4: Variability sources impacting digital circuits

11

2 Preliminaries and State-of-the-Art

0

50
00

10
00

0

15
00

0

20
00

0

clock cycles (arb.)

0.200

0.225

0.250

0.275

0.300

av
er

ag
e

sw
itc

hi
ng

 a
ct

iv
ity

 (p
er

 c
yc

le
) 10

00
0

11
00

0

12
00

0

0.200

0.225

0.250

0.275

0.300

av
er

ag
e

sw
itc

hi
ng

 a
ct

iv
ity

 (p
er

 c
yc

le
)

Figure 2.5: Average switching activity of Leon3 flip-flops in different clock cycles, running “bitcount”
workload from MiBench benchmark.

2.2.2 Supply voltage fluctuation

Modern digital circuits may have a power consumption in the order of tens of watts, with high
power density [93], which is supplied through Power Delivery Network (PDN). Supplying such
amount of power under frequently changing workload is associated with various thermal and
power supply fluctuation challenges and is considered as a source of variation [94].

Supply voltage fluctuation is caused by power consumption fluctuation of VLSI components
at runtime, and is composed of two major factors, IR drop and di/dt noise. IR drop is the
voltage-drop due to the current flow over parasitic resistances of the PDN, whereas di/dt
noise is due to the PDN inductive and capacitive properties. Therefore, spatial and temporal
changes in current drawn from various PDN nodes result in a supply voltage fluctuation at the
sink nodes. In other words, the supply voltage at the circuit’s gates and flip-flops fluctuates
due to the component activities.

Figure 2.5 shows the average switching activity of the flip-flops of a synthesized Leon3
processor running “bitcount” workload (from MiBench benchmark [95]). As presented, the
average switching activity of the flip-flops is changing by about ±20% during the illustrated
20k cycles. Please note that the change in the activity could be much larger at specific locations
in the circuit layout. Such runtime variations, shown in the figure, cause fluctuations in the
power consumption and the supply voltage at PDN nodes.

As the delay of digital gates is inversely proportional to the supply voltage, transient voltage-
drops may cause supply voltage emergency conditions [96, 97], when the voltage-drop exceeds
a certain threshold. In this situation, the circuit may not operate in the safe condition which
results in timing errors. Such errors are typically fixed by optimizing the PDN, e.g. by
including decap capacitors in the layout, and by considering voltage-drop timing margins in
the overall timing margin of the circuit. In fact, modern digital designs require the voltage-
drop to stay below 10% of the supply voltage [94]. However, in modern technology nodes,

12

2.2 Variability sources

supply voltage fluctuation aggravates due to the abrupt changes in the power consumption of
the components (and as a result of higher speed). Furthermore, fewer resources are available
for optimizing the PDN at modern technology nodes [98]. Therefore, it is becoming more
important to additionally optimize other parts of the circuit to mitigate the voltage fluctuation
effect. For example, various techniques at different abstraction levels have been proposed to
prevent such voltage-drops by limiting the change in the power consumption of components
[96, 99] or by redistributing the peak current on a longer period [100, 101].

Reducing the supply voltage significantly decreases the power consumption and speed (or-
ders of magnitude lower than above threshold), and diminishes impact of workload on supply
voltage fluctuation [76]. Therefore, low-power circuits operating at low supply voltages do
not need very sophisticated PDN design, as required for high-performance digital circuits.
However, it is still needed to scrutinize the impact of external supply voltage fluctuation in
low-power circuits, especially if the circuit is expected to operate over a wide-voltage range.

2.2.3 Temperature variation

The temperature of digital circuits is influenced by both environmental temperature and self-
heating due to the dissipation of the consumed electric power. The operating temperature
range for digital circuits is quite broad spanning over more than 100°C. For example, in
the automotive, circuits are expected to operate from −40°C to 125°C. Additionally, on-chip
spatial temperature gradient puts different stress on the circuit components. The amount of
on-chip spatial temperature difference based on simulation [102, 103], sensor measurements
[104], and thermal camera [103] is reported to be up to ∼ 20°C.

Many physical parameters in digital circuits are fundamentally dependent on temperature.
As a general rule, the resistance of materials increases by increasing temperature, affecting
interconnects and vias resistance. Unintentional mechanical stress happens due to different
thermal expansion coefficient of the materials used in a chip, which may affect the electrical
properties of semiconductors as well [105, 106]. Energy band-gap is an important parameter
in semiconductors which decreases by increasing temperature. Intrinsic carrier concentration
in semiconductor ni has a very strong dependency on temperature. Carrier mobility µ directly
affects transistor current (see Equations (2.1) to (2.3)) and has a complicated dependency
on temperature, which is based on various scattering phenomena such as phonon scattering,
surface roughness scattering, and Coulombic scattering due to interface charges or ionized
impurities [107]. However, due to the opposing effects of scattering phenomena, mobility is
reduced at low and high temperatures with a peak at intermediate temperature.

The threshold voltage of MOSFET transistors Vth is defined as [108]:

Vth0 = VFB + 2φF + γ
√

2φF , (2.11)

where VFB is the flat band voltage, γ is the body effect parameter and φF is the Fermi
energy. In the above equation, Vth0 is dramatically impacted by temperature. From the above
parameters, VFB and φF vary with temperature depending on thermal voltage VT and intrinsic
carrier concentration ni. Temperature dependence of threshold voltage is commonly explained
as a linear model at common temperature values [108], with a slope as big as 4% per every
10°C [109].

According to Equation (2.1), the sub-threshold current of transistors is exponentially depen-
dent on the threshold voltage and temperature, doubling by every 10°C increase. Drain-source
current in the saturation and linear regime is also dependent on the temperature through mo-
bility and threshold voltage, as presented in Equations (2.2) and (2.3). However, the impact
of temperature in the sub-threshold region is much more pronounced compared to the super-
threshold region, which is also supported by measurement results [110]. The change in the

13

2 Preliminaries and State-of-the-Art

current of the transistors is mapped to circuit delay through Equations 2.5. Therefore, tem-
perature has a significant impact on circuit performance, leakage power, and dynamic power.
This is confirmed by measurement results, as Intel [110] demonstrated that the variation in
maximum frequency of a processor when the supply voltage is below Vth is much larger than
when the supply voltage is above Vth.

In addition, high temperature is responsible for accelerating various reliability issues, such
as transistor aging. Due to the issues caused by temperature hot-spots in digital circuits, many
methods have been proposed to address the temperature variation issues [111, 112].

2.2.4 Aging

The properties of integrated circuits change over time due to aging. Aging phenomena such
as Bias Temperature Instability (BTI), Hot Carrier Injection (HCI), Electromigration (EM),
and Time Dependent Dielectric Breakdown (TDDB) have been studied since their discovery
as early as the 60s[113–117]. Due to aggressive scaling of device geometries and using new
materials and processes such as High-K and metal-gate [117, 118], aging effects pose serious
reliability threats in modern integrated circuits. Recent studies have shown that failures
can be observed in SRAM memories used in automotive industry as early as one year1 [24].
Therefore, researchers are actively looking for design methods to make digital circuits more
resilient against aging threats.

BTI, HCI, and TDDB impact the transistors in a chip whereas EM affects wires and vias.
BTI and HCI alter the threshold voltage of transistors over time leading to degraded perfor-
mance and noise margin. This eventually causes timing failure in logic circuits or noise margin
issues in the SRAM memories. TDDB modifies the gate oxide characteristics and creates a
leakage path in the gate-oxide which grows over time, leading to a hard breakdown of MOS-
FET transistor. EM is caused by continuous contact of high-energy electrons with material
atoms due to high current density, which displaces the atoms. As a result of EM, the resistance
of a wire increases to the point that it breaks and causes a permanent failure [112].

In the following, these important aging effects are discussed and shown to be highly de-
pendent on the applied electric field and current density, which in fact depend on the supply
voltage in digital circuits. In addition, temperature is a very important factor in the aging
rate, which is also correlated with the supply voltage and workload due to self-heating and
high power dissipation in digital circuits.

Bias Temperature Instability (BTI)

BTI happens in both PMOS and NMOS transistors, known as Negative Bias Temperature
Instability (NBTI) and Positive Bias Temperature Instability (PBTI), respectively. Both NBTI
and PBTI are important in modern transistors [117, 119]. BTI consist of two phases: I) stress
and II) recovery. During the stress phase, the transistor is turned on and a high electric field
is applied to its oxide (Vgs > Vth), which eventually increases the threshold voltage of the
transistor. When the transistor is turned off and the electric field is removed, the recovery
phase starts in which the threshold voltage is partially recovered towards the original value.

Two prevailing models exist which explain the physical reason behind the threshold voltage
change: Reaction/Diffusion (RD) and Trapping/Detrapping (TD) [120, 121]. The RD model
explains the increase and decrease in the threshold voltage based on the generation and dif-
fusion of interface traps due to the perpendicular electric field in the gate oxide. According
to this theorem, a strong electric field can break some of the passivated Si-H bonds at the
Si-SiO2 interface and form some Hydrogen related species (atoms or molecules). Then, these

1Based on the assumptions in the cited paper

14

2.2 Variability sources

Stress Recovery Stress Recovery

Time

Δ𝑉 𝑡ℎ Dynamic BTI

Static BTI

Figure 2.6: Threshold voltage shift (∆Vth) due to Bias Temperature Instability (BTI) under Dynamic
(alternating) and Static stress.

species can move into the dielectric and increase the threshold voltage. When the electric
field is removed, the Hydrogen related species diffuse back outside the oxide and the threshold
voltage is recovered to its original value. However, according to the TD model [121–124], dur-
ing the device fabrication, some traps are formed inside the oxide. These traps can capture
a charge during the stress phase, which increases the threshold voltage. According to this
model, the captured charges are released during the recovery phase resulting in the recovery of
the threshold voltage. In general, the RD model can correctly predict the long-term behavior
[125] while the TD model is suitable to explain the short-term behaviors [123].

BTI impact on the threshold voltage highly depends on temperature, supply voltage, and
input stress condition [31]. Figure 2.6 demonstrates the impact of input stress condition on
BTI. When the BTI stress is continuously applied to the transistor, its threshold voltage
undergoes a significant threshold voltage shift due to the Static BTI (S-BTI). However, under
a Dynamic BTI condition, i.e. alternating stress and recovery phases, due to a partial recovery
of threshold voltage during the recovery phase, the overall impact of BTI is much smaller [126,
127]. The threshold voltage shift caused by S-BTI can be modeled as:

∆Vth = A
(

(1 + δ)tox +
√
Ct

)2n
, (2.12)

∝ tn.

In the above equation, n is the time exponent determined based on the technology. The
vertical electric field Eox in the gate oxide with thickness tox is also caused by the overdrive
voltage (Vgs − Vth):

Eox =
Vgs − Vth

tox
. (2.13)

Other parameters in Equation (2.12) are explained in Table 2.1. In a long-term Dynamic BTI
scenario, alternating stress and recovery phases occur with a BTI stress duty cycle η. This
means that in a system with clock period Tclk, a stress time equal to ηTclk exists in each clock
period. In this situation, the shift in the threshold voltage can be modeled as [126]:

∆Vth = A
(

√
CηTclk

1− β(t)1/2n

)2n
, (2.14)

where β(t) is dependent on time, as shown in Table 2.1. In the long-term, where t > 1000s,

15

2 Preliminaries and State-of-the-Art

Table 2.1: Summary of BTI predictive model parameters [31]

K 8× 104 (s−0.25.C−0.5.nm−2)

E0 0.335 (V
nm)

Ea 0.49 (eV)

δ 0.5

To 10−8(s
nm2)

n 1/6 for H2 and 1/4 for H

ξ1 0.9

ξ2 0.5

η Stress duty cycle (Stress duration in each clock period divided by Tclk)

Eox
Vgs−Vth

tox

A qtox
ǫox

(

K2Cox(Vgs − Vth)e
2Eox
E0

)2n

C 1
To
e
− Ea

KBT

β(t) 1− 2ξ1te+
√

ξ2C(1−η)Tclk

2tox+
√
Ct

Static BTI ∆Vth = A
(

(1 + δ)tox +
√
Ct

)2n

Dynamic BTI ∆Vth = A
(√

CηTclk

1−β(t)1/2n

)2n t > 1000s≈ A
(

n2ηCt1t
ξ2
1
t2ox(1−η)

)n
, 0 < η < 1

Equation (2.14) is independent of clock frequency and can be further simplified into [126]:

∆Vth ≈ A
(n2ηCt

ξ21t
2
ox(1− η)

)n
, η < 1 (2.15)

∝
(tη

1− η

)n
.

Equation (2.15) has a strong dependency on the duty cycle η. Therefore, the impact of BTI
is much more pronounced at large stress duty cycles, as shown in Figure 2.7. Please note that
this equation is only valid when η < 1, hence, Equation (2.12) should be used for calculating
the S-BTI impact. When stress duty factor is less than 1.0, the transistor frequently goes into
stress and recovery phase (Dynamic BTI), but when it is 1.0, the transistor is always under
BTI stress (i.e. S-BTI). By increasing the stress duty cycle from 0.9 towards 1.0, ∆Vth rises
rapidly, because the recovery phase becomes very short. As a consequence of such BTI stress,
the delay degradation can be much higher.

Hot Carrier Injection (HCI)

When a transistor is turned on, i.e. Vgs > Vth , the charge carriers in the channel move from
source to drain (electrons) or vice versa (holes). The lateral electric field in the MOSFET
channel due to Vds may give some carriers enough energy such that they can break the interface
potential barrier between Si and gate oxide. Such hot carriers, may penetrate into the oxide
and change the threshold voltage of the transistor [128]. This effect is called HCI and is
considered an important reliability issue in modern technology nodes [129]. NMOS transistors
are more susceptible to HCI compare to PMOS transistors because of the difference between
the mean free paths of carriers and the potential barrier [130].

16

2.2 Variability sources

0.0 0.2 0.4 0.6 0.8 1.0

stress duty cycle

20

40

60

80

100

120

140

|∆
V
th
|

(m
V

)

PMOS S-BTI

Region

Figure 2.7: The impact of Negative BTI (NBTI) on the threshold voltage of a single PMOS for different
stress duty cycles in 5 years.

Table 2.2: Summary of HCI predictive model parameters [31]

K2 1.7× 108 (nm
C0.5)

E02 0.8 (V
nm)

φit 3.7 (eV)

λ 7.8(nm)

l 17(nm)

n′ 0.45

Em
Vds−Vdsat

l

HCI Vth,HCI = q
Cox

K2

√

Cox(Vgs − Vth)e
Eox
E02 e

− φit
qλEm (t.α.f)n

′

In digital circuits, the HCI impact on threshold voltage is dependent on a number of pa-
rameters, such as the switching activity at the gate α and the clock frequency f . In addition,
the impact of HCI is more significant at higher temperature [129, 131]. The threshold voltage
shift due to HCI can be modeled as [31, 132]:

∆Vth,HCI =
q

Cox
K2

√

Cox(Vgs − Vth)e
Eox
E02 e

− φit
qλEm (t.α.f)n

′

, (2.16)

∝ (t.α.f)n
′

.

Table 2.2 presents the parameters in Equation (2.16) for 65nm technology [31].

It is worth mentioning that the HCI happens only when a current passes through the
transistor, however, BTI impact exists whenever the transistor is turned on. Therefore, BTI
is a significant effect on both logic and memory, however, the impact of HCI in memory is less
significant. Especially, there could be memory cells or logic gates storing a specific value for
a long time. In this case, a strong S-BTI is observed, however, HCI has no impact when the
stored value is not toggled.

Time-Dependent Dielectric Breakdown (TDDB)

A soft TDDB causes a slight leakage through the gate oxide. However, the leakage increase
over time and leads to a hard TDDB, in which the gate oxide breaks and allows a strong
current to pass. In this case, the transistor is destroyed and cannot function anymore, which
causes a permanent failure [113, 133]. A resistor between gate and drain RGS can emulate the

17

2 Preliminaries and State-of-the-Art

impact of TDDB as follows [134, 135]:

RGD ∝ 1

(η.t)P
, P ≈ 5. (2.17)

The resistance decreases over time. Similar to BTI, there is a dependency on η in TDDB as
well, which means RGD decreases faster at higher stress duty cycle values. Several models
have been proposed to evaluate the Mean Time To Failure (MTTF) due to TDDB [133]. In
all the models, there is a strong dependency on oxide field Eox and temperature [133]. Also,
Weibull distribution can explain the statistical behavior of TDDB [133].

Electromigration (EM)

Electromigration is the forced movement of the atoms in a conductor material due to a current
passing through the material [136]. It is especially important when current density is high and
there is a sensitivity to the change in the resistance of the wire. Known for more than 100
years [137], EM impact has extensively increased in the advanced technology nodes, where the
interconnects are very small and current density is high. As a result of EM, atoms are depleted
from one side of wire creating a void, which causes timing errors and eventually makes an open
circuit, and deposited at another side creating a hillock or whisker, which may cause a short
circuit. An empirical equation, known as Black’s equation, was proposed to model wire MTTF
[138] as follows:

MTTF = AJ−ne
Ea,em
KBT , J =

I

twireWwire
, (2.18)

where A is an empirical constant, Ea,em is the activation energy, and n = 2 is according to
[138]. J is the current density which is calculated based on wire thickness twire and wire width
Wwire. The values for A and Ea,em are presented in [139] for Cu interconnect at 90nm. In
addition, EM is highly dependent on the wire shape and temperature, which brings additional
complexity to MTTF calculation [113].

2.2.5 Soft-Errors

Soft-errors are transient errors in memory or logic caused by particle strikes. When an ionizing
particle, such as an electron, alpha, or cosmic rays (neutron), hits a sensitive node, it generates
some amount of free charge, which may temporarily flip the state of that node. Such transient
errors at nodes may propagate to the output of circuit, causing faults in the normal system
operation [140]. Soft-errors have been known for a long time as a source of unreliability
in circuits, especially in aeronautics applications [141]. The soft-error induced failure rate
has been increasing since then due to scaling [142–145], and has become a major reliability
challenge in various application domains [16, 146]. Furthermore, soft-error rate increases by
supply voltage scaling [144, 145, 147, 148]. The reason is that the critical charge required for
a bit-flip reduces by voltage scaling [149].

Soft-errors in memory can be addressed by error detection and correction codes, such as
parity bit. However, it is much more difficult to address the errors in logic [71]. Furthermore,
more errors appear as Multiple Bit Upsets (MBU) in advanced technology nodes [150–152].
Therefore, methods with the capability to detect and correct MBUs should be employed to
prevent catastrophic in field failures [71].

2.3 Near-Threshold Computing

As explained in Chapter 1, various methodologies at different abstraction-levels have been
proposed and employed [52–56, 153–155] to improve the energy efficiency and overcome the

18

2.3 Near-Threshold Computing

0.2 0.4 0.6 0.8 1.0
Supply Voltage (V)

10−2

10−1

100

101

102

Po
w

er
 (μ

W
)

circuit c499 (α=0.1)

10−1

100

101

102

103

C
lo

ck
 c

yc
le

 (n
s)

dynamic power
leakage power
clock period

(a) Circuit power and clock period versus supply voltage
(Vdd)

0.2 0.4 0.6 0.8 1.0
Supply Voltage (V)

0

25

50

75

100

125

150

En
er

gy
 p

er
 O

pe
ra

tio
n

(fJ
)

circuit c499 (α=0.1)

total energy
dynamic energy
leakage energy
MEP

(b) Minimum Energy Point (MEP)

Figure 2.8: MEP exploration for circuit c499 from ISCAS’85 benchmark [26, 27]. Minimum energy per
operation is achieved where Vdd is close to Vth.

power wall challenge caused by the end of Dennard’s scaling [42–45]. Aggressive supply voltage
scaling down to sub-threshold region [45, 52, 57–59] is also presented as an effective way to
reduce the power consumption by several orders of magnitude, however, the speed of digital
circuits at that supply voltage range is poor. In the following, we present a promising approach
towards supply voltage scaling, called NTC, which also retains enough performance for many
applications.

Near-Threshold Computing is a paradigm in which the supply voltage is reduced close
to the threshold voltage of transistors to gain large energy efficiency while retaining enough
performance for many applications. However, there are various challenges towards NTC mainly
in the area of reliability and energy efficiency, which can nullify the benefits of NTC if not
addressed correctly. This thesis focuses on the NTC and its challenges.

From a circuit-level point of view, the total power consumption of a circuit can be calculated
as:

Ptotal = Pdyn,sw + Pdyn,sc + Pleak, (2.19)

where Pdyn,sw, Pdyn,sc, and Pleak are dynamic switching power, dynamic short-circuit power,
and leakage power, respectively, which can be calculated based on Equations (2.6) to (2.8).
In the nominal supply voltage, the Pdyn,sw is the dominant power consumption, which is
quadratically dependent on the supply voltage, as shown in Figure 2.8a. Therefore, reducing
the supply voltage can quadratically reduce the overall power consumption. In the same supply
voltage regime, the speed of a circuit is linearly dependent on the supply voltage, based on
Equations (2.5), (2.3), and (2.2). The energy consumption is calculated based on:

Etotal = Ptotal × Tclk = Edyn,sw + Edyn,sc + Eleak (2.20)

Therefore, by slightly reducing the supply voltage from the nominal voltage, it is possible to
reduce the energy consumption, linearly. As shown in Figure 2.8b, this energy improvement
holds as long as the rate of total power consumption reduction is higher than the rate of speed
degradation. When Vdd goes below Vth, the speed degradation becomes exponential because the
current has an exponential relation with supply voltage according to Equation (2.1). Therefore,
energy consumption starts to increase due to higher rate of speed degradation. As a result,
the supply voltage leading to minimum energy consumption is somewhere close the threshold

19

2 Preliminaries and State-of-the-Art

voltage of transistors. Such operating condition leading to the best energy efficiency, i.e. the
lowest energy consumption, is commonly known as the MEP and is shown in Figure 2.8b for
c499 circuit from ISCAS’85 benchmark circuits [26, 27].

MOSFET model in the Near-Threshold Voltage region

The conventional three-region long-channel MOSFET model, presented in Equations (2.1),
(2.2), and (2.3), as well as the alpha-power model [156] are piece-wise models with a disconti-
nuity at the threshold voltage of transistors, which makes them inappropriate for NTC circuit
analysis. However, it is possible to explain the characteristics of MOSFET based on continuous
models such as EKV [157–159]. Accordingly, a simplified trans-regional model for digital NTC
CMOS circuits is proposed in [160] which facilitates analytical analysis. Based on this model,
the MOSFET on-current can be obtained based on the overdrive voltage Vov as follows:

Ids,NTC = Ixk0e
k1

Vov
nVT

+k2

(

Vov
nVT

)2

, Vov = Vgs − Vth, (2.21)

where Ix depends on process parameters and transistor dimensions (W,L), whereas k0, k1, and
k2 are process independent fitting parameters [160]. In the above equation, it is assumed that
Vds ≫ VT , therefore, the term depending on Vds is eliminated (see Equation (2.1)). However, it
is possible to consider the threshold voltage dependency on Vds and body-biasing according to
Equation (2.4). Based on this model, the propagation delay of a gate in the NTV is obtained
as:

tp,NTC =
kfCLVdd

Ixk0
e
−k1

Vdt
nVT

−k2

(

Vdt
nVT

)2

, Vdt = Vdd − Vth. (2.22)

Similarly, energy and power consumption of digital circuits can be calculated in the NTV
region [160].

Process, Voltage, and Temperature Variation in NTC

The impacts of process, supply voltage, and temperature variations (PVT) are more pro-
nounced in the NTV region [60, 74, 161]. Authors of [162] showed that the sensitivity of the
drain-source current of a transistor (Ids) to changes in Vth and Vdd increases by about 10×
when the supply voltage is reduced from the super-threshold region to the sub-threshold region.
Equation (2.22) also demonstrates that propagation delay in the NTV region is exponentially
dependent on supply and threshold voltages. Intel [74] reported that while the process and
temperature variations cause 18% and 5% performance variation in the super-threshold region,
their impacts aggravate to 2× performance variation in the NTV region.

The power consumption of NTC circuits is orders of magnitude smaller than the super-
threshold region. As a result, runtime supply voltage fluctuation caused by power consumption
also decreases by the same scale, which makes it insignificant in NTC circuits, even considering
the large sensitivity to fluctuations. Moreover, the temperature of NTC circuits is solely
determined by the ambient temperature since the power dissipation is very small and has a
negligible impact on circuit temperature fluctuation [14].

2.3.1 NTC challenges

Reliability

Aggressive supply voltage scaling to the NTV region has benefits and drawbacks in terms of
reliability. Reducing the supply voltage to the NTV region greatly reduces internal electric

20

2.3 Near-Threshold Computing

fields and current density compared to the super-threshold region, which helps to protect the
circuits from some aging phenomena and their associated reliability problems.

Nevertheless, the exponential sensitivity to PVT in the NTV region severely affects the
circuit behavior and may lead to large performance variation or reliability issues, in terms
of functional failure or timing violations. As presented in [74], ±2× performance variation
is observed between different fabricated NTC cores only due to process variation, whereas
this variation was limited to ±18% at the nominal voltage. Techniques such as adaptive
body biasing [60] and supply voltage scaling [110] are presented to address such performance
fluctuation. Similarly, the maximum clock frequency of an NTC circuit may change by ±2×
due to 110°C temperature fluctuation, while the impact of such temperature fluctuation on
performance is only 5%2 at the nominal voltage [74]. An unwanted performance fluctuation at
gate-level may lead to timing violations. Setup-time violations can be addressed by increasing
the clock period Tclk (i.e. reducing clock speed f), which inflicts performance and energy
efficiency loss. Various timing error detection and correction methods have also been proposed
to address setup-time issues [73, 163–166], which may be costly as the number of timing
errors increases rapidly in the NTV region. However, a hold-time violation cannot be fixed
by changing the clock speed and leads to a functional failure. As an example, the number of
hold-time violations increases by up to 16× when operating in the NTV region compared to the
nominal voltage [2]. In order to fix these timing violations, many buffers have to be inserted
into the violating paths to delay the arrival times of such short paths. Therefore, the overhead
of buffer insertion in the NTV region is significantly larger than that of the super-threshold
region.

Reduced noise margin due to voltage scaling is a major challenge in storage component
design for NTC. Conventional 6T SRAM memory cells cannot operate correctly in the NTV
region without redesigning [167], and 8T or 10T SRAMs are preferred due to better noise
margin and resiliency to variations [168–171]. In addition, due to low activity of memory cells,
the optimum supply voltage may be considerably higher than core logic. Therefore, voltage
level converters may be needed to interface memory and core cells which brings additional
complexity to routing and PDN design. Similarly, flip-flops have issues due to reduced noise
margin and high sensitivity to variations [60, 74]. Therefore, various flip-flop designs have been
studied for low-voltage operation and are optimized for NTC [60, 61, 74, 172–174]. The soft-
error rate of storage components is dependent on the critical charge, which decreases by 5×
in the NTV region [147]. Therefore, more soft-errors are observed in the NTV region in both
logic and memory components. Various methods have been proposed at different abstraction
levels from device to architecture-level to address the faults caused by soft-errors for NTC
[175–182].

Energy efficiency

The energy efficiency of NTC circuits is highly dependent on design, process variation, and
runtime parameters. Scaling down the supply voltage changes the ratio of dynamic and leak-
age power consumption significantly, causing a paradigm shift in design and optimization.
Figure 2.9 presents the power consumption of an IA32 processor. The contribution of logic
dynamic power decreases from 81% in the super-threshold region to 4% in the sub-threshold
region, whereas the contribution of logic leakage power increases from 11% to 33% [28]. There-
fore, leakage power reduction techniques at architecture-level (e.g. by power-gating schemes)
down to device-level (e.g. by incorporating advanced technologies such as FinFET) are more
rewarding in the NTV region compared to the super-threshold region, in which leakage power
has a smaller contribution.

2The measurement is done for a 65nm typical die.

21

2 Preliminaries and State-of-the-Art

8
1

1
1

5
3

2
7

4

3
3

L O G I C D Y N A M I C L O G I C L E A K A G E

P
O

W
E

R
 C

O
N

S
U

M
P

T
IO

N
 (

%
)

Super-threshold Near-threshold Sub-threshold

Figure 2.9: Power breakdown of the IA32 processor presented in [28] highlights a significant increase
in the relative contribution of the leakage power of logic components to the total power
consumption, when supply voltage is reduced towards near-threshold and sub-threshold
regimes. The rest of the power consumption is due to the memory (8%, 20%, and 63% in
the super-threshold, near-threshold, and sub-threshold region, respectively.)

The methods used for addressing the variation-induced reliability challenges affect the en-
ergy efficiency as well. Some of the methods commonly used in the super-threshold region
for controlling the impact of variations are too expensive in the NTV region. As an example,
adding timing margin to compensate for variation-induced timing fluctuation is energy ineffi-
cient in the NTV region due to the extent of variations. Therefore, it is necessary to design the
circuits to be more resilient against timing variation, e.g., by variation-aware circuit synthesis.

The MEP of a circuit points to a specific supply voltage V MEP
dd and the maximum speed

fMEP (inversely proportional to clock period TMEP
clk = 1/fMEP) at that supply voltage. A num-

ber of factors impact the MEP of a circuit including technology, internal activity, workload, and
process and runtime variations. FinFET technology offers close to 60mV/dec sub-threshold
slope leading to better Ion/Ioff ratio, which is very useful in reducing the MEP and improving
the energy efficiency. It has been shown that the MEP may move from sub-threshold voltage
region to super-threshold voltage region depending on the circuit structure and circuit internal
switching activity [183]. For example, the contribution of leakage power to the total power, i.e.
Pleak/Ptotal, is typically larger in SRAM arrays compared to the core logic. Therefore, the MEP
of SRAM arrays is higher than core logic [183]. This also means that workloads which cause
higher internal switching activity (high dynamic power), will reduce the MEP of a circuit.
Process and runtime variations significantly contribute to MEP fluctuation. Therefore, design
optimization and runtime tuning are also necessary to achieve high energy efficiency in the
NTV region.

The average impact of process variation on V MEP
dd of the benchmark circuits is displayed

in Figure 2.10a. The shift in V MEP
dd due to process variation is on average 66mV for the

benchmark circuits. This shift in V MEP
dd may lead to significant performance variation and

energy overheads. Moreover, the speed (TMEP
clk) of some circuits is also highly affected by

process variation. Figure 2.10b demonstrates that TMEP
clk of a circuit may change by about

one order of magnitude when it is under different process variation impacts.
The impact of temperature variation is shown in Figure 2.11, where the MEP is plotted

for different temperatures ranging from −25°C to 100°C. The clock period corresponding to
the MEP (TMEP

clk) is also greatly affected by the change in the circuit temperature, with an
exponential dependency. Comparing Figure 2.10 and Figure 2.11 reveals that the impact of

22

2.3 Near-Threshold Computing

b0
4

b0
7

b1
1

b1
3

c1
90
8

c2
67
0

c4
32

c4
99 al
l

circuits

0.00

0.05
ΔV

M
EP

dd
(V
)

(a) Process variation can change V
MEP
dd on average

by 66mV.

FF TT SS
Process corners

5000

10000

TM
EP

cl
k

 (n
s)

c1908
c2670

c432
c499

(b) Process variation can change T
MEP
Clk by up to an

order of magnitude over different process corners.

Figure 2.10: Process variation impact on the MEP of some ISCAS’85 benchmark circuits.

−25 0 25 50 75 100
Temperature (∘C)

0.30

0.35

V
M
EP

dd
 (V

)

c1908
c2670

c432
c499

(a) Up to 80mV variation in V
MEP
dd is observed over

125°C temperature change.

−25 0 25 50 75 100
Temperature (∘C)

102

103

104

105

TM
EP

cl
k

 (n
s)

c1908
c2670

c432
c499

(b) More than 2 orders or magnitude variation in T
MEP
clk

is observed over 125°C temperature change.

Figure 2.11: Temperature variation impact on the MEP of some ISCAS’85 benchmark circuits.

temperature could be much stronger than the impact of the process variation. This is also in
line with the reported process and temperature variation sensitivities as in [60, 61, 74, 110].

Figure 2.12 shows the change in V MEP
dd for circuit c499 of ISCAS’85 benchmark due to

change in the internal switching activity. The x-axis of the figure represents the ratio of the
dynamic energy to the leakage energy of the circuit (Dynamic/Leakage), when the circuit is
operating at the nominal supply voltage (V NOM

dd). The Dynamic/Leakage value has an inverse
relation with V MEP

dd as demonstrated in Figure 2.12. According to this figure, if the input
switching activity α changes from 0.01 to 0.1, the V MEP

dd can vary from 0.49V down to 0.35V
as Dynamic/Leakage increases. In a pure combinational circuit such as c499, the impact of
workload variation could be very high as the dynamic power consumption Pdyn is dependent
on the input switching activity α. However, in sequential circuits, a large portion of dynamic
power consumption is related to the clock network. In such cases, Pdyn variation due to α
fluctuation is typically less than in combinational circuits. Therefore, workload variation can
also have a significant impact on energy efficiency, depending on the circuit architecture.

In summary, the energy efficiency of NTC circuits is highly affected by PVT. Design op-
timization methods can effectively improve energy efficiency by reducing the leakage power.
Runtime tuning methods can adapt the circuit to operate at the MEP which fluctuates at
runtime due to temperature and workload fluctuation.

Wide-voltage resiliency

Some NTC circuits are required to operate at different supply voltage modes, due to runtime
MEP tuning, ultra-low power requirements, or speed constraints (super-threshold). When a
task with specific timing constraints executes on the NTC circuit, the supply voltage may be
increased to the super-threshold region to meet the performance constraints. However, this

23

2 Preliminaries and State-of-the-Art

0.0 0.2 0.4 0.6 0.8 1.0

Dynamic/Leakage (a.u.)

0.30

0.35

0.40

0.45

0.50

V
M
E
P

d
d

(V
)

α=0.01

α=0.02

α=0.05

α=0.1

α=0.2

α=0.5α=1.0

c499 TT

Figure 2.12: Workload variation impact on the MEP. The change in the V MEP
dd versus the ratio of

dynamic to leakage energy at nominal Vdd. The realistic change in the input switching
activity α is displayed by the light blue box (0.062 ≤ α ≤ 0.108) according to Section 5.2.1.

brings reliability issues associated with super-threshold voltage, such as aging, into considera-
tion as the circuit may operate in that mode for some time. For example, an IoT edge device
may be assigned to process some data within a specific amount of time and send them to an
IoT gateway. Therefore, it is necessary to take the aging issues into consideration if a device
is expected to operate over a wide-voltage range as this may have deteriorating impact on the
device operation when it is switched back to the NTV region or even in the super-threshold
voltage region.

Other challenges

STA tools are typically utilized to evaluate circuit timing. Conventional logic synthesis tools
leverage STA to further optimize digital circuits and resolve timing issues. They rely on a
corner analysis, which means that the circuit timing is evaluated for best and worst process and
temperature corners. However, given the extent of variation in the NTC circuits, this approach
is too pessimistic. Therefore, Statistical STA (SSTA) should be used to determine the timing
of NTC circuits. Conventional SSTA tools propagate random variables, i.e. such as threshold
voltage and transistor dimensions, to extract the distribution of output timing. This can be
done based on Monte-Carlo analysis, which is extremely time-consuming, or analytical analysis.
Based on Equation (2.22), given that Vdd or Vth are statistical parameters with a normal
(Gaussian) distribution, the resulting delay distribution would be log-normal [160]. Therefore,
the SSTA tools used for NTC circuits may need to consider such exponential sensitivity by
propagating log-normal distributions, which makes the SSTA tools quite complicated.

2.4 State-of-the-art in resilient energy-efficient computing

As explained, keeping up with reliability requirements while gaining high energy efficiency is
a major challenge for NTC design. Many researchers have focused on these issues to enable
widespread use of NTC in various application domains. In this regard, the state-of-the-art can
be divided into:

• Design flow and methodology optimization: Due to high integration and the complexity
associated with circuit design in modern technologies, EDA tools are extensively used to
enable circuit design and optimization. Hence, efforts have been focused on improving
the EDA tools for NTC. Kaul et al [74] provided a list of challenges for NTC circuit de-
sign, from device modeling to test, and desired design technologies. Recent works have
addressed some of the NTC challenges in device modeling [87, 160], variation modeling

24

2.5 Summary

[157, 184, 185], synthesis [186], leakage power management [186, 187], and system-level
modeling [75]. There are still major shortcomings in variation-aware library characteri-
zation, verification, and testing.

• Design optimization for NTC: Various methods have been proposed to improve the design
for NTC, from device-level to architecture-level. At circuit-level, robust standard cell
libraries [28], memories [167, 169–171] and flip-flops [60, 74] are optimized for NTC. Level
shifter designs have been vastly studied for interfacing between different voltage islands
[173], and clock networks are redesigned for low-voltage operation [184]. Additionally,
timing error correction methods such as [163, 188, 189] can be used to mitigate timing
variations at runtime. At architecture-level, caches [190], processor pipeline [13, 191–
193] and ISA [194] can be optimized, and other leakage power reduction methods are
also investigated [28]. However, there are still many opportunities for cross-layer design
optimization.

• Runtime optimization and tuning: Since the MEP is dependent on process and runtime
variations, runtime optimization and tuning could be required depending on the running
application and the operating environment. Therefore, various runtime tuning methods
have been studied, mostly based on a closed-loop hardware-implemented monitoring
circuit. It is proposed by many researchers to measure the circuit power online and take
actions to maximize the energy efficiency by adapting the supply voltage in a closed-loop
feedback [78, 195–198]. Supply voltage and threshold voltage tuning is also recommended
to balance the speed of different cores [74, 185, 199]. However, closed-loop adaptation
techniques are associated with additional circuitry for measuring the circuit power and
applying the adaptation strategies, which may be too costly for NTC circuits. Therefore,
low-cost adaptation methods are highly desirable for NTC.

• Wide-voltage reliability challenges: The impact of aging and supply voltage fluctuation
(due to internal activity) is negligible in the NTV region due to low electric field, low
current density, and low power consumption; however, operating over a wide-voltage
range, from the near-threshold region to the super-threshold region may be required
to satisfy performance constraints. In this case, aging phenomena affect the circuit in
the super-threshold voltage region, which deteriorates the reliability. Therefore, it is
necessary to address such aging challenges when applicable.

2.5 Summary

This chapter provided preliminary information regarding CMOS technology and energy-efficient
computing. We started by explaining transistor and gates in digital circuits and explained the
impact of voltage scaling on the energy efficiency of digital circuit. The challenges associated
with voltage scaling towards NTV region were further discussed and the most important vari-
ability sources in NTC circuits were reviewed. Additionally, we provided an overview of the
existing work and open challenges.

25

3 Variation-aware circuit synthesis and timing
closure

Design and optimization of circuits are done using EDA tools. Due to the extensive impact of
variability in the NTC circuits, EDA tools and methodologies for NTC should also consider
the variabilities and their associated impacts. Unfortunately, the design automation methods
which are typically used in the nominal voltage range are inefficient for NTC circuit design, as
they are not meant to deal with such extreme variations. Therefore, in most cases, a statistical
analysis is required. In this chapter, we approach this problem from the point of view of circuit
timing and propose a variation-aware circuit synthesis and timing closure methodology [1, 2]
to improve the reliability, energy efficiency, and performance.

The rest of this chapter is organized as follows. Section 3.1 presents a short introduction
of the timing issues of NTC circuits, motivates the proposed method, and briefly explains the
contributions. Section 3.2 reviews the most relevant work in this regard and the corresponding
design automation challenges. Section 3.3 studies circuit timing in the NTV region under
variability impacts. The variation-aware circuit synthesis and timing closure is presented in
Section 3.4, and Section 3.5 proposes optimized buffers for fixing hold-time violation in NTC.
The results of the proposed methodology are discussed in Section 3.6. Finally, Section 3.7
concludes the chapter.

3.1 Introduction, motivation, and contributions

The performance variation of NTC circuits due to global process variation is up to 20× larger
than that of the nominal voltage range [60], while temperature variation can lead to as large
as ±2× fluctuation in circuit speed[74]. Such escalated sensitivity to variabilities at reduced
supply voltages forces the designers to add very conservative and expensive timing margins to
achieve acceptable yield and reliability, which in fact erodes the benefits of the NTC.

In order to deal with huge performance variations, statistical information regarding the
variation of circuit elements has to be considered during the logic synthesis phase. In the library
pruning technique proposed in [28, 200], cells which exhibit higher performance variation are
eliminated from the standard cell library in order to reduce the delay variation of synthesized
circuits. However, by applying such a technique, cells with higher energy efficiency such as
minimum sized cells are eliminated from the library for the sake of reducing the performance
variation (as proposed by [28]). Hence, the energy efficiency of a circuit is limited when
synthesized with a pruned library. Gate-sizing is another technique to improve the energy
efficiency of the circuits in the near-threshold region [201]. However, gate-sizing techniques
work on a fixed circuit topology after logic synthesis and technology mapping, and because of
this limitation, their impact could be limited. In summary, a generic synthesis approach to
address the huge variations in NTC is still missing.

Evaluation and fixing of hold-time violations is an important challenge for the NTC [76].
In a synchronous circuit, a hold-time violation occurs when a flip-flop is not able to correctly
capture the input signal because the signal is not kept stable for long enough. This happens
when the signal changes too early in a short path ending at the flip-flop [202]. It is well
accepted that the sub-threshold circuit operation imposes a lot of hold-time violations due to

27

3 Variation-aware circuit synthesis and timing closure

the large extent of variations [184, 203–206]. Our hold-time analysis in the NTV region shows
that hold-time violations are also significant in the NTV region, similar to the sub-threshold
region. Due to the magnified impact of process variation on delay in the NTV region, the clock
tree buffers would have different propagation times which results in a considerably large clock
skew [206, 207]. In addition to that, the hold-time and the propagation delay of the circuit flip-
flops, as well as the delay of the short paths, vary significantly [208, 209]. Therefore, performing
a corner analysis, which considers the maximum and minimum delays under process variation,
as typically done in the super-threshold region for finding and fixing the hold-time violations
in the NTV region leads to too much pessimism which may negate the benefits of the NTC.

This chapter presents our variation-aware synthesis and timing closure methodology for
NTC circuits. We show that it is inefficient to perform synthesis and timing violation fixing
without accurate statistical information about the impact of variability sources. Therefore,
the proposed design flow optimizes the statistical delay of NTC circuits and finds and fixes
timing violations by incorporating statistical delay variation of the circuit into account. The
main idea is to apply additional timing constraints for both synthesis and timing violation
fixing based on the information collected by performing an SSTA aiming at reducing the
variation impact and improving the reliability, energy efficiency, and performance. An SSTA
based on properly characterized standard cell library for the NTC can accurately extract the
circuit timing by considering the statistical distribution of the delays. The cost of applying
the SSTA might be too high if a Monte-Carlo technique is applied [208] because too many
samples are required to make a reasonable approximation of the tails of the distributions.
However, much faster block-based SSTA techniques could be used with better tractability at
the expense of slight inaccuracy [210]. By comparing the results of the conventional approaches
and the SSTA, we show that the SSTA is necessary to correctly find the timing violations in
the NTV region, without imposing much pessimism. Then, the proposed circuit synthesis and
timing closure methodology is applied to improve circuit timing and reliability, and find and fix
timing violations with minimum overhead (energy, area) and runtime. The proposed method
is wrapped around the standard (commercial) logic synthesis and timing closure tools and
utilizes them in an iterative flow. Since the internal optimization engine of the synthesis tool
is exploited, the proposed flow will automatically include all possible synthesis optimization
techniques such as gate sizing, path restructuring, and logic borrowing.

Hold-time violations are typically fixed by increasing the path delay, e.g., by inserting delay
elements in the short paths. However, due to the large number of hold-time violations in
the NTV region, fixing them by buffer insertion imposes significant overhead due to the ineffi-
ciency of the conventional buffers originally designed for the super-threshold region [211]. This
necessitates the use of efficient buffers for violation fixing in the NTV region. Transmission-
Gate (TG) based cells offer reasonable energy efficiency as well as variation resiliency in sub-
threshold circuits [212]; however, their efficiency in the NTV region has not been studied so
far. Therefore, we optimize and compare several TG-based buffers for the NTV region, and
evaluate the impact of using different buffer designs at the circuit level.

Optimization results show that the proposed flow can reduce the delay variation by 86.6%,
which translates into 24.9% better performance, and improve energy efficiency by 7.4%, at
the expense of modest 4.8% area overhead. It is also possible to trade off energy efficiency
and performance in this variation-aware flow. Additionally, we demonstrate the advantages of
using TG-buffers, since these buffers reduce the energy overhead of the hold-time violations
fixing by 43.3% on average, compared to only using the standard CMOS buffers.

28

3.2 Related Work

3.2 Related Work

Logic synthesis

The performance variation in NTC could be addressed by several techniques [74, 184, 186].
Since our proposed design flow lies within the synthesis and hold-time fixing, we review the
techniques which are at the same abstraction-level.

The main idea of library pruning methods [28] is to remove the cells with high-performance
variation from the standard cell library, which eventually results in a smaller circuit perfor-
mance variability. For example, it is suggested to remove the cells with high sensitivity to
supply voltage variation [200]. In this technique, cells which exhibit a performance variation
beyond a certain limit are excluded from the library. Another approach towards library prun-
ing is to eliminate cells based on their size and structure [28], as the delay variation of a cell
is correlated with its size and structure. As a result, small cells which exhibit higher variation
are eliminated from the cell library. However, the eliminated small cells are beneficial, as they
consume considerably less power compared to the larger cells. These cells could be used in
shorter paths of a circuit to save the energy, without affecting the performance of the circuit
determined by the timing of critical paths. Therefore, this method cannot exploit the full
capabilities of a circuit in terms of performance and energy efficiency.

Gate-sizing is a well-known technique to reduce the energy consumption of a circuit. A
specific gate-sizing technique is proposed in [201], which employs As-Soon-As-Possible/As-
Late-As-Possible (ASAP/ALAP) analysis to identify the cells which are not timing-critical.
However, the improvement from this method is limited, as it does not incorporate other syn-
thesis techniques, such as restructuring.

In addition to the aforementioned methods which aim at improving the circuit via synthesis,
there are other techniques for improving the performance or energy efficiency of a circuit
in NTC such as cell library optimization ([213, 214]), dual-Vdd operation ([186]) and body
biasing ([185]). Since these methods analyze and improve a circuit from perspectives other
than synthesis, they are orthogonal to the library pruning and gate-sizing and can be applied
in parallel.

Hold-time fixing

Hold-time violation fixing in the super-threshold region has been studied, extensively. Majority
of the work in the super-threshold region identify the hold-time violations by considering
minimum and maximum path delays, i.e. corner analysis. Since the variability is not huge in
the super-threshold region, this is an acceptable assumption. Therefore, the focus has been
on reducing the number of inserted buffers [203, 215–219]. For example, linear programming
techniques or a combined hold-time/setup-time fixing approach are proposed to minimize the
number of the required buffers. However, variability impacts are much stronger in the NTV
region and the benefits of these methods vanish due to performing corner analysis for finding the
violations. In the NTV region, the impact of variation is much larger compared to the super-
threshold region. All the delay distributions have long tails due to the exponential dependency
of the transistor current on Vth, as explained by Equation (2.21). Therefore, the corner analysis
is not an acceptable option as it leads to too much pessimism [208, 220]. Efforts have been
made to minimize the power overhead or meet power requirements without considering the
statistical delay distributions [204]. Additionally, alternative methods for designing robust
clock-tree networks are proposed in order to minimize the timing violations without explicitly
fixing remaining timing violations [206, 221]. A Monte-Carlo hold-time finding and fixing flow
is proposed in [208], with the objective of reducing the overhead of Monte-Carlo simulations.

29

3 Variation-aware circuit synthesis and timing closure

However, since delay distributions have long tails, still many samples are required to make a
good approximation of the tails.

3.3 Circuit timing in the NTV region

In this section, we begin by explaining variation impacts on NTC circuits, and discuss our
proposed approach which mitigates the impacts. For that, we first need to define some key
terms. Figure 3.1 demonstrates the impact of performance variation on the delay of a path.
The nominal delay of a path is the delay of that path without considering any variation.
When considering a statistical variation, a path delay forms a statistical distribution. In this
case, the path delay should be considered in such a way that the required yield is satisfied. For
example µ+3σ of the delay distribution can be considered as the worst case which satisfies the
yield constraints (µ and σ are the mean and the standard deviation of the delay distribution,
respectively). We refer to this value as the corner delay of the path. The difference between
corner delay and nominal delay is considered as the delay variation.

+3𝜎−3𝜎
nominal delay

corner delay

Figure 3.1: Path delay w/o considering the impact of process variation i.e. nominal delay (blue), and
considering the variation (hatched area).

Delay variation impacts short and long paths, resulting in hold-time violation and circuit
delay variation. Circuit delay is determined based on the delay of the critical paths, i.e.,
long paths. Therefore, considerable circuit delay variation imposes performance degradation,
because longer clock period is required to avoid timing violations. Accordingly, addressing the
impacts of variation on long paths reduces circuit delay variation and improves the speed. On
the other hand, hold-time violations are critical from the reliability perspective, as they lead to
permanent failures. Therefore, it is necessary to find and fix all the hold-time violations during
the design time. As a simple illustration, in a circuit with two flip-flops and a combinational
logic in between (Figure 3.2a), the hold-constraint for the second flip-flop can be defined as:

actual arrival time AT = Dclk−q1 +Dcomb., (3.1)

required arrival time RT = Dhold2 +∆Dclk,

hold-slack H = AT −RT ≥ 0,

where Dhold2 is the hold-time of the second flip-flop (FF2), Dclk−q1 is the propagation delay
of the first flip-flop (clock-to-q), ∆Dclk is the clock skew, and Dcomb. is the delay of the combi-
national logic (depicted in Figure 3.2a). In an extreme case, where there is no combinational
logic (e.g. shift register), the hold-slack depends on the hold-time and propagation delay of
the flip-flops and the clock-skew.

3.3.1 Impact of variation on hold-time constraints

According to Equation (3.1), any increase in the required time (RT) or decrease in the ar-
rival time (AT) reduces the hold-slack, which can lead to a functional failure in the circuit.
Therefore, an additional margin has to be considered to prevent such failure (i.e. by increas-
ing Dcomb). Since a single-corner nominal hold-time analysis is not able to capture the entire
distribution of the variables, it cannot find all the hold-time violations.

30

3.3 Circuit timing in the NTV region

±Δ𝐷𝑐𝑙𝑘

Comb.

logic

𝐶𝑙𝑘
𝐷 𝑄 𝑄
FF1 𝐷 𝑄 𝑄

FF2

𝑅𝑇
𝐴𝑇

(a) Flip-flop timing constraints

𝐴𝑇𝑅𝑇

margin

P
ro

b
a

b
il
it

y

time

(b) Timing constraints in NTV

Figure 3.2: (a) Flip-flops hold-time constraints for correct circuit operation. (b) Distributions of AT
and RT in the NTV region.

In the super-threshold region, it is possible to find the required margins for fixing the hold-
time violations with a corner analysis (i.e. considering the smallest AT and the largest RT).
This is because the variations in AT and RT are not significant, and considering the hold-slack
of flip-flop i as:

Hi = ATi,min −RTi,max (3.2)

would not impose much pessimism. Therefore, a hold-time violation happens when Hi < 0.
When the variation is not significant, the parameters of Equation (3.1) can be extracted by a
corner analysis, as given in Equation (3.2).

In the NTV region, the amount of timing variation is much larger than that of the super-
threshold region [60, 76]. The clock-to-q and the hold-time of the flip-flops also vary signifi-
cantly due to the supply voltage reduction [209]. Another well-known timing variation is the
large clock-skew in the circuits operating in low supply voltage [221]. All of these variations
dramatically affect the hold constraints. Due to the large extent of the variations, the corner
analysis is not applicable anymore, as it imposes large pessimism to the design by putting all
the cells in either fast or slow corners [76].

The impact of large variation on Equation (3.1) is shown in Figure 3.2b, where parameters
AT and RT are statistical variables. The shaded area demonstrates the region in which the
hold-slack is negative, thus the circuit would fail without fixing hold-time violations. By
considering AT and RT as statistical variables, the mean and the standard deviation of the
hold-slack (H) can be calculated based on the mean and the standard deviation of AT and
RT :

µH = µAT − µRT (3.3)

σ2
H = σ2

AT + σ2
RT − 2ρσATσRT (3.4)

⇒ hold-slack Hvar = µH − 3σH > 0 (3.5)

where ρ represents the correlation between AT and RT .
A corner analysis to extract the hold-slacks, as presented by Equation (3.2), considers

the worst cases of both distributions (ATi,min and RTi,max). This means that in a corner
analysis, the correlation between AT and RT is pessimistically assumed to be −1, which
translates into the maximum standard deviation of the hold-slack in Equation (3.4). However,
we can even argue that the correlation coefficient ρ is a positive number, because both AT
and RT are affected by the transition time at FF1 input. In the NTV region, the output
transition times of the cells are large due to the supply voltage reduction. This negatively

31

3 Variation-aware circuit synthesis and timing closure

𝐴𝑇 = 𝐷𝑐𝑙𝑘−𝑞1 + 𝐷𝑐𝑜𝑚𝑏.𝑅𝑇 = 𝐷ℎ𝑜𝑙𝑑2 + Δ𝐷𝑐𝑙𝑘
FF1 input

transition time

FF1 output

transition time

Comb. output

transition time
+

+

+

+

+

Figure 3.3: Dependencies between different variables leading to a positive correlation between AT and
RT .

affects the consecutive cells, by increasing the timing parameters such as propagation delay
or hold-time/setup-time. Figure 3.3 explains the impacts of FF1 input transition time on the
parameters of Equation (3.1) ({Dclk−q1, Dcomb., Dhold2}). Please note that, since hold-time
violations typically happen at short paths which contain small combinational logic (or even
no logic), the impact of the input transition time at the start of these paths (e.g. FF1 output
transition time) would be reflected at the end of these paths (combinational output transition
time). Therefore, Figure 3.3 describes the positive correlation between RT and AT .

Due to the large amount of variation in the NTV region (large σAT and σRT) and the non-
negative correlation between AT and RT , the corner analysis imposes significant pessimism to
the design, and is not efficient anymore in the NTV region. To reduce the amount of pessimism
and its associated costs, it is required to conduct statistical analysis by SSTA to extract the
parameters presented in Equations (3.3) to (3.5). In order to be more realistic in our analysis,
we calculate the hold-slacks of all flip-flops by considering ρ = 0 in Equation (3.4).

3.3.2 Hold-time analysis results

Comparison of nominal analysis, corner analysis, and SSTA: We have extracted the
number of hold-time violations with nominal analysis, corner analysis, and SSTA for some
large circuits in the super-threshold and near-threshold region. The violations are calculated
after Clock Tree Synthesis (CTS) with the method proposed in [221]. As reported in Table 3.1,
the SSTA finds 30.7x more violations compared to nominal analysis in the NTV region. Due
to the large variation in this region, the violations not detected by nominal analysis lead to
field failures. On the other hand, the corner analysis reports more violations compared to the
SSTA (38.1x versus 30.7x) including many false violations, which are due to the pessimistic
approach. Fixing these false hold violations imposes large overhead to the design. For this
reason, we only consider the violations extracted by the SSTA.

Impacts of NTV operation on violations: Increased variability in the circuit timing
leads to more timing violations. Since the distributions of AT and RT widen due to the
increased delay variation, more constraints fall into the shaded region of Figure 3.2b, leading
to more timing violations. Figure 3.4 demonstrates the increase in the number of hold-time
violations for several benchmark circuits. The number of violations in the NTV region (Vdd =
0.45) is on average 7x more than in the nominal supply voltage range (Vdd = 1.1). In order to
fix the large number of violations, many buffers have to be inserted into the violating paths to
delay the arrival times (AT) of short paths. Therefore, the overhead of buffer insertion in the
NTV region is significantly higher than that of the super-threshold region.

In addition to the increased number of violations, the worst negative slack (i.e. the largest
negative hold-slack of all the constraints) also grows by reducing the supply voltage as shown
in Figure 3.5. In order to effectively address this issue, buffers with large propagation delay
are required. Without such buffers, several buffers with smaller propagation delay have to be

32

3.3 Circuit timing in the NTV region

Table 3.1: Comparison of the number of the hold-time violations obtained by nominal analysis, corner
analysis, and SSTA in the NTV region (Vdd = 0.45). The number are normalized to the
number of violations from the corresponding nominal analysis.

circuit

violations

(normalized to nominal)

SSTA corner analysis

b18 60.0× 83.7×
b19 73.5× 83.8×

Leon3 15.1× 17.1×
OR1200 3.2× 3.7×
DMA 1.9× 2.0×

average 30.7× 38.1×

b18 b19 leon3mp or1200 DMA average

0

2

4

6

8

10

12

14

16

18

circuits

#
 v

io
la

ti
o

n
s

(n
o

rm
a

li
ze

d
 t

o
 V

d
d

=
1

.1
) 0.45v

0.6v

1.1v

Figure 3.4: The number of violations for Vdd ∈ {0.45, 0.6, 1.1} extracted based on SSTA.

inserted to provide the required delay for hold-time fixing, which increases the overhead of
hold-time fixing.

Considering the considerable number of violations and the large worst negative slack in
the NTV region, many buffers should be inserted to fix hold-time violations, which inflicts
significant energy and area overheads. This clearly shows the need for the design and use of
energy-efficient buffers for hold-time violation fixing in the NTV region. When the Energy per
Delay (E/D) of a buffer is lower, the overhead of hold-fixing with that buffer would be less,
as it provides a larger delay at the cost of smaller energy. Figure 3.6 demonstrates the E/D
for different buffers of a 65nm commercial library operating in the super-threshold region.
The numbers are normalized to the corresponding values of a CMOS buffer cell from the
same library. As shown, the buffers have large E/D specifically for small delay values, but
the buffers with larger delays have lower E/D. These buffers are not optimized for the NTV
region, nevertheless, the overhead of hold-fixing with these buffers is still high due to the large
E/D (specifically for lower delays).

Several techniques have been proposed for different voltage ranges to reduce the overhead
of hold-time fixing by minimizing the number of inserted delay elements [204, 215]; however, it
is essential to design and use the buffers which have lower E/D for NTC. In the next section,
we study different buffer structures for near-threshold hold-time fixing, and optimize buffers
for the NTV region.

33

3 Variation-aware circuit synthesis and timing closure

b18 b19 leon3mp or1200 DMA average

0

5

10

15

20

25

30

circuits
W

N
S

(n
o

rm
a

li
ze

d
 t

o
 V

d
d

=
1

.1
) 0.45v

0.6v

1.1v

Figure 3.5: The hold-time worst negative slack (WNS) for Vdd ∈ {0.45, 0.6, 1.1} extracted based on
SSTA.

0 5 10 15 20 25 30

0

1

2

3

4

5

6

normalized delay

n
o

rm
a

li
z
e

d
 E

/D

Figure 3.6: Energy per Delay (E/D) vs delay for the buffers of a commercial 65nm library in the super-
threshold region.

3.4 Variation-aware logic synthesis and timing closure methodology

The amount of timing variation of a path is dependent on the number of cells in the path
and their types, and therefore, the timing variation can be considerably different from one
path to another. A balanced circuit timing at the design time can become unbalanced due to
variations (see Figure 3.7a).

When no statistical information regarding the delay variation of the cells is provided to the
synthesis tool, it tries to balance all path delays by loosening the shorter paths and tightening
the critical paths according to their nominal delays measured by STA. In this case, since the
synthesis tool is not aware of the corner delay of the paths (considering the delay variations),
it cannot effectively improve the actual circuit timing, considering the delay variations. By
incorporating the accurate information regarding the path delays extracted by SSTA, the
synthesis tool is able to save area and energy by loosening the short paths and spend the saved
area and energy on the critical paths to improve the circuit performance. By doing so, the
resulting timing of the synthesized circuit would improve as shown in Figure 3.7b.

Accordingly, we propose an iterative variation-aware synthesis and hold fixing flow shown in
Figure 3.8, which reduces the impact of variation on the circuit through better circuit synthesis,
and reduces the overhead of hold-violation fixing by considering the statistical information of
the circuit. The flow consists of three main parts: library characterization, variation-aware
logic synthesis flow, and hold analysis and fixing flow, which are explained as follows.

34

3.4 Variation-aware logic synthesis and timing closure methodology

O
p

eratio
n

al clo
ck

(o
rig

in
al)

Shorter

paths

Near-critical

and

Critical paths

(a)

Timing

improvement

(b)

O
p

eratio
n

al clo
ck

(o
p

tim
ized

)

Synthesis

clock

Optimization

Nominal delay

(w/o variation)

Added delay

variation

Figure 3.7: a) Paths’ delays of a circuit synthesized without variation information, and the impact of
process variation on each path. b) Paths’ delays of the same circuit after variation-aware
synthesis.

3.4.1 Cell library engineering

As shown in Figure 3.8, gates and flip-flops from Nangate cell library [222] are characterized
based on their SPICE netlist and variation parameters, such as Avt in Pelgrom’s Model as
explained in Equation (2.9), to obtain the variation library. The cells with more than three
stacking transistors and specific cells which do not operate correctly in the NTV region are
excluded from the cell library [28]. For this, we employ Cadence Variety tool [223] and Synopsys
HSpice [224] and perform the characterization in the NTV region (Vdd = 0.45). The variation
library contains nominal as well as statistical information of the cell delays, i.e. mean µ and
standard deviation σ. Therefore, the characterized library is created in the format of Effective
Current Source Model (ECSM) [225], which is capable of storing both nominal and statistical
information. The SSTA tool uses this variation library to find the nominal and the statistical
behaviors of the synthesized circuit. Although all variation information is available in the
variation library, the synthesis tool is not aware of the performance variation because it uses
the nominal delay values as the metric. Therefore, we generate a combined library, which
contains the statistical information, for the purpose of logic synthesis. The combined library,
which is solely used for synthesis, contains a weighted sum of the mean and standard deviation
of the delay values (i.e. µ + βσ) instead of the nominal delay values. The flow for obtaining
the cell libraries is illustrated in Figure 3.8.

35

3 Variation-aware circuit synthesis and timing closure

Start Synthesize

Combined

library

Constraints

Gate level

netlist SSTA

Variation library

characterization

Variation

library

Refine

constraints

Timing &

power

reports

Circuit

Verilog

Timing & power

constraints, yield

SPICE netlists

Vth variation

Combined

library

generation

Lib
ra

ry

C
h

a
ra

cte
riza

tio
n

V
a

ria
tio

n
-a

w
a

re

Lo
g

ic S
y

n
th

e
sis F

lo
w

Improvement

saturated

yes

end

more

violations?

Layout &

Placement

Hold-analysis

(STA and SSTA)

Add extra

hold-time

constraints

Fix hold-time

violations

remove extra

hold-time

constraints

H
o

ld
-T

im
e

 A
n

a
ly

sis

a
n

d
 F

ix
in

g
 F

lo
w

Clock-Tree

Synthesis

Setup-time &

DRV fixing

yes

Hold-time reports

(STA & SSTA)

Figure 3.8: Iterative variation-aware synthesis and hold-time violation fixing flow consists of three parts:
1) library characterization, 2) iterative synthesis optimization loop, 3) iterative hold-time
fixing.

3.4.2 Logic synthesis

In the proposed iterative variation-aware synthesis flow, two techniques are employed to inform
the synthesis tool about the delay variation of the cells: First, the combined library is used for
synthesis, which contains the variation information of all the cells in the standard cell library.
Second, SSTA is used to evaluate the performance of the synthesized circuits. Afterwards, the
variation information from the SSTA is fed back to the synthesis tool by adjusting the timing
constraints. In our approach, the synthesis tool is free to use any cell that operates correctly
in NTC to improve the performance or the energy efficiency. However, by carefully adjusting
the timing constraints and providing variation information to the synthesis tool, the overall
timing of the circuit (corner delay including variation) is improved.

A large circuit might have millions of paths. Therefore, it is not practical to apply con-
straints path by path. However, the paths end at circuit endpoints which are primary outputs,
or flip-flop inputs. Fortunately, the number of endpoints is several orders of magnitude smaller
than the number of paths. Therefore, instead of setting constraints for specific paths, only the
endpoints of the circuits are constrained. We can define the nominal delay and corner delay
for each endpoint similar to the way they are defined for a path.

Figure 3.8 presents the proposed iterative variation-aware synthesis flow. The goal of each
iteration is to make the path delays more balanced considering the delay variations. In each
iteration:

36

3.4 Variation-aware logic synthesis and timing closure methodology

1. The circuit is synthesized with the combined library considering the constraints deter-
mined by the previous iteration (or no constraint for the first iteration).

2. The performance of the synthesized circuit under process variation is evaluated using
SSTA. This gives the timing of all the circuit endpoints, i.e. di,SSTA.

3. Constraints are refined according to the extracted timing of each endpoint (based on
SSTA). The constraints of those endpoints which have a positive slack are relaxed while
the constraints of endpoints with a negative slack are tightened for the next iteration.

This loop continues until timing improvement saturates in several subsequent iterations. More
details regarding each step are provided below.

Synthesis with the combined library

Synthesis tools implement an abstract circuit design with logic gates. The abstract design is
commonly specified using VHDL or Verilog languages. During the process of synthesis, the
circuit is also optimized for area and power consumption based on a set of constraints (such
as timing and area). For this purpose, the synthesis tool takes the circuit specification, the
associated constraints, and a standard cell library, and tries to find the best possible imple-
mentation by applying various optimization algorithms such as gate sizing, logic restructuring,
time borrowing [226]. It reads the delay and power information as well as the load capacitance
of the cells from the library, but it does not consider the corresponding variations. Based on
this information, it decides which cell should be used and where. One way of providing the
variation information to the synthesis tool is, by providing min-max libraries each containing
minimum and maximum delays of each cell, respectively. This method is effective in the super-
threshold region, where the amount of variation is small. However, all NTC cells have huge
variations, and therefore, the result of min-max synthesis (and analysis) would give either too
optimistic or too pessimistic results, which are not very helpful.

In order to effectively provide the variation information to the synthesis tool, we use the
combined library during synthesis. The combined library feeds a combination of the mean and
standard deviation of the delay values instead of the nominal delay values to the synthesis tool
in order to guide it to choose more appropriate cells. Accordingly, we create the combined
library by replacing each delay value in the cell library with µ + βσ, where β is a coefficient
specifying the contribution of variation in the delays of the combined library, and µ and σ are
the mean and the standard deviation of the respective delay value from the variation library.
In order to clarify, suppose that µ = 100ps and σ = 20ps for a specific cell in the lookup
table inside the variation library. If β = 1, the delay value which appears at the same location
in the combined library would be 100ps + 1 × 20ps = 120ps. Please note that the combined
library is only used for synthesis, as it contains information regarding variation. The reason
is that, during synthesis, if the library contains no information regarding the variation of each
cell (nominal library), the decisions of the synthesis tool are made based on the nominal cell
timings. Therefore, the resulting performance variation of a circuit synthesized with such a
library is not known. However, by providing the combined library (which already contains the
effect of the delay variation of each cell) to the synthesis tool, the synthesis tool can make
more informed decisions on the choice of cells and the resynthesis strategies.

Performance evaluation with SSTA

After each synthesis iteration, an SSTA is carried out. The SSTA uses the variation library
for timing analysis and produces accurate variation-aware timing reports regarding the per-
formance of the circuit. The statistical information from the SSTA will be used to adjust the

37

3 Variation-aware circuit synthesis and timing closure

Desired delay𝐷 = 1− 𝛾 𝑇Endpoint delay for

iteration 𝑘

Endpoint delay from

SSTA: 𝑑𝑖,𝑆𝑆𝑇𝐴
Maximum delay

for iteration 𝑘 + 1 𝑠𝑖,𝑆𝑆𝑇𝐴
Tighter constraint for iteration 𝑘 + 1: tightened by 𝑠𝑖,𝑆𝑆𝑇𝐴

(a) Tightening a constraint

iteration 𝑘
iteration 𝑘 + 1

Endpoint delay for

iteration 𝑘

Endpoint delay from

SSTA: 𝑑𝑗,𝑆𝑆𝑇𝐴
Maximum delay

for iteration 𝑘 + 1 𝑠𝑗,𝑆𝑆𝑇𝐴
Looser constraint for iteration 𝑘 + 1: loosened by 𝑠𝑗,𝑆𝑆𝑇𝐴

(b) Loosening a constraint

iteration 𝑘 + 1
iteration 𝑘

Figure 3.9: a) According to the timing of endpoint i calculated by the SSTA (di,SSTA) in iteration k, a
tighter constraint is applied to this endpoint for iteration k+1, b) According to the timing
of endpoint j calculated by the SSTA (dj,SSTA) in iteration k, a looser constraint is applied
to this endpoint for iteration k + 1.

timing constraints for the next iteration. The circuit delay is the maximum of the corner de-
lays of all the endpoints, and the slack of each endpoint is calculated as the difference between
the corner delays of the circuit and the given endpoint.

Timing constraints optimization

In each iteration, the target is to improve the timing slightly (i.e., reduce circuit corner delay
to target delay). Based on the target delay, the constraints are updated for the next iteration,
such that the timing and power are improved in the next iteration. These constraints are
then fed back to the synthesis tool again. This loop continues until the improvement saturates
i.e. no improvement is achieved in several subsequent iterations. Please note that, although
spending more time on the synthesis phase might lead to a better result due to its heuristic
nature, the limited time budget for finding the optimum result necessitates the termination of
the optimization loop when the improvement saturates.

The method to refine the constraints for the circuit endpoints is demonstrated in Figure 3.9.
Timing constraints are adjusted based on the SSTA timing reports for all endpoints. Suppose
that T is the circuit corner delay calculated using the SSTA. This is calculated as the maximum
of all the endpoints’ corner delays (considering the variations). We want to reduce T by a factor
of γ in each iteration (improving the performance). Therefore, the target delay (D) for the
next iteration would be:

D = (1− γ)T. (3.6)

Based on D and the endpoint delays calculated by the SSTA, we can update the endpoint
slacks for the next iteration:

si,SSTA = D − di,SSTA (3.7)

38

3.4 Variation-aware logic synthesis and timing closure methodology

where di,SSTA is the delay of endpoint i calculated by the SSTA, and si,SSTA is the statistical
slack of endpoint i, respectively. When in iteration k, the slack of an endpoint is negative
(di,SSTA > D) as in Figure 3.9a, the paths ending to that endpoint should be tightened.
However, if the slack is positive (di,SSTA < D) as in Figure 3.9b, the paths ending to the
endpoint should be relaxed. Therefore, the constraints of all the endpoints for iteration k + 1
are tightened or relaxed by the corresponding amount of si,SSTA, respectively.

3.4.3 Hold-time analysis and fixing flow

After the placement of the synthesized circuit and performing CTS, several violations appear.
In a typical design flow, the hold-time violations are addressed after fixing the setup-time
violations [220]. In NTC circuits, the number and amount of hold-time violations is vastly
increased due to large clock-skew variation as well as combinational gates and flip-flops delay
variation, as shown in Section 3.3.2. Here, we present an iterative hold-time fixing flow (shown
in Figure 3.8) developed around existing static hold-violation fixing methods which further
improves them by considering accurate statistical variation during the analysis and fixing.

As shown in Figure 3.8, the circuits are initially synthesized for NTV operation based on the
aforementioned methodology in Section 3.4.2, and the placement and the CTS are performed
using Cadence Encounter Digital Implementation (EDI) [227] afterwards. The CTS policy that
worked out the best is to use the least clock buffer levels while using large cells to enhance
the driving current, similar to the proposed methods for the ultra-low voltage circuits [221].
After the CTS, the circuit is analyzed and the setup-time and Design Rule Violation (DRV)
are fixed. Then, the hold-time analysis and fixing flow is executed which is explained in details
in the next subsection. Fixing the violations changes the netlist and the timing of the circuit,
therefore it might generate new violations (setup-time/hold-time/DRV), which necessitates to
repeat the violation finding and fixing steps.

The existing hold-fixing methodologies (such as [203, 204, 215]) do not perform SSTA
to calculate the hold-slacks. As shown in Section 3.3.1, without such statistical approach,
the hold-fixing would be too pessimistic or too optimistic, leading to either large overhead
or functional failures. The proposed flow for fixing the violations incorporates impacts of
statistical variation into the existing hold-time fixing methodologies. The technique is to
modify the timing constraints of the circuit in the STA, such that the STA timing reports
reflect the timing slacks reported by SSTA, and then apply a hold-violation fixing method.
In other words, by modifying the timing constraints we guide a typical hold-violation fixing
method, which is designed to fix the violations discoverable by STA, to also fix the hold-time
violations which are only discoverable by SSTA. The variation library, which contains both
nominal and variation information, is used to perform both analyses (STA and SSTA). The
iterative SSTA-aware hold-time analysis and fixing flow is presented in Figure 3.8. The goal
of each iteration is to fix the hold-time violations considering the statistical variation. In each
iteration:

1. The hold-time slacks of all the endpoints of the circuit are extracted with STA and
SSTA (hi,STA, hi,SSTA for ith endpoint). The statistical hold-time slacks (hi,SSTA) are
calculated using Equation (3.5).

2. The differences between the hold-slacks in the STA report and the SSTA report (∆si =
si,STA − si,SSTA) are calculated for all the endpoints. Variable ∆si declares the addi-
tional delay required at ith endpoint to ensure the correct operation of the circuit under
variation. All paths ending to this endpoint should be delayed by the corresponding ∆si
value (new constraints).

39

3 Variation-aware circuit synthesis and timing closure

Q1

Q2

Input Output

Vdd

(a) TG1

Q1

Q2

Input Output

(b) TG2

Figure 3.10: Different buffer structures. a) TG1: an always-on TG between two inverters [29]. b) TG2:
a TG controlled by the input signal [30].

3. These new constraints for all the endpoints are applied to the design using set min delay

command in the STA tool. As a result, the hold-time slacks in the STA report are
updated according to the SSTA analysis.

4. The hold-time violations are fixed by running a conventional hold-time fixing technique
(e.g. [203, 204, 215]) which inserts several buffers into the circuit to satisfy the timing
constraints.

5. The added constraints (by set min delay) are removed from the design, and the circuit
timing is restored to the original state.

A variation-unaware fixing method does not consider the statistical behavior of the inserted
buffers; however, the buffers are also subjected to large variation in the NTV region. Therefore,
it is required to check the timing to confirm the correct timing closure. Performing SSTA at
this point determines the remaining violations. In case violations exist in the design, the flow
is executed again from setup-time and DRV fixing.

3.5 Buffer optimization for NTC

A hold-time violation can be fixed by increasing the delay of the violating path, and buffer
insertion is one of the common techniques to do that [203]. However, it imposes energy and
area overhead to the circuit. In order to further enhance the effectiveness of the method, we
optimize buffers specifically for hold-time violation fixing. In this section, we optimize the
existing buffer designs [29, 211, 228] for the NTV region by appropriate transistor sizing.

A buffer is more efficient for hold-time fixing when it provides a large delay at the expense
of small energy and area overhead. Therefore, we use energy per delay as a metric of efficiency.
In addition to that, fixing the hold-time violations should have minimum impact on the rest
of the circuit. However, many short paths might be parts of larger paths [215, 228] and
inserting buffers into the short paths might deteriorate the timing of the critical paths. In
order to minimize such a negative impact, the output transition time of the buffer should be
as small as possible, to reduce the negative aspects of buffer insertion on the consecutive gates.
Accordingly, the characteristics of the buffers are compared by 1) delay, 2) output transition
time, and 3) energy per delay (E/D). Since the previous studies [29, 211] did not consider the
change in the transistor model for the NTV region [160], the result of their analysis is not
accurate for this region.

Review of the existing buffers

A cascaded inverter buffer (CMOS buffer), which is the most common buffer structure, is
created by cascading two (or more) CMOS inverters. In the super-threshold region, this buffer

40

3.5 Buffer optimization for NTC

is commonly used because it provides a good trade-off between energy and delay and has a
good output transition time and driving capabilities.

In the sub-threshold region, Transmission Gate (TG) based gates are advantageous in
terms of energy efficiency, area, and variation resilience [212]. Unlike a CMOS gate, a TG-
based gate does not have a direct leakage path from the supply line to the ground line, hence,
it consumes less power compared to a CMOS gate. Moreover, balancing the size of PMOS
and NMOS transistors of TG is not mandatory because both transistors are always operating
in parallel. Therefore, they can be of the same size [212]. These properties make TG-based
gates a suitable candidate for the NTV region, where delay variation is large and the energy
efficiency is important. The schematics of two TG-based buffers, namely TG1 [29] and TG2
[30], are presented in Figure 3.10. TG1 buffer adds an always-on TG between the two inverters
of a CMOS buffer, and thus increases the delay by increasing the time constant of the RC
network. Although this is an efficient method to increase the delay, the output transition time
also increases for the same reason [211] which would have a negative impact on the delay of
the consecutive gates [215]. TG2 buffer [30] uses a structure similar to TG1 but since both
transistors are controlled with the input signal, only one transistor is turned on in each state
(input low or input high). As a result, the resistance is further increased, leading to a larger
delay compared to TG1. Similar to TG1, this buffer also has a large output transition time.

Buffer optimization method

Cells are normally optimized to have minimum Energy Delay Product (EDP). The EDP op-
timization target is to minimize both energy and delay, hence, the cells optimized for the
EDP would have small delay which is not desirable for hold-time fixing. As discussed in the
previous section, a buffer is more efficient for hold-time fixing when it provides the maximum
delay at the cost of minimum energy (and area). Furthermore, an optimized buffer in the
super-threshold region is not efficient for hold-timing fixing in the NTV region due to two
reasons: 1) it is optimized for a minimum EDP not a minimum E/D, and 2) it is optimized
for the super-threshold region while the optimum ratio of the widths of PMOS to NMOS tran-
sistors depends on the supply voltage [212]. We used Predictive Technology Model (PTM)
45nm transistors and optimized the size of the buffer transistors by a non-linear least square
optimization algorithm (Levenberg-Marquardt) to achieve the minimum E/D as well as the
minimum output transition time in the NTV region (Vdd = 0.45) [229]. All buffers are designed
to have the same area to be fair in our comparison.

Figure 3.11 compares different parameters of all buffers extracted from accurate SPICE
simulations. The CMOS ST buffer is optimized for the super-threshold region and the EDP,
while other buffers are optimized for the NTC and E/D. We normalized all the parameters
to the CMOS buffer for easy comparison. In order to evaluate the energy overhead of buffer
insertion, we insert a buffer into a chain of inverters, and the reported total energy in Figure
3.11 is the effective energy overhead caused by the buffer insertion. The CMOS ST has higher
E/D compared to the other buffers optimized for the NTV region, which shows that the buffers
optimized for the super-threshold region are not efficient in the NTV region. However, the
results of our study show that the CMOS buffer which is optimized for the NTC is also not as
energy-efficient as other types of buffers (see Figure 3.11 and Table 3.2), and thus, cascaded
inverter buffer might not be the best choice for the NTC.

The energy of NTV-optimized TG-based buffers is very close to that of CMOS buffer.
However, TG1 and TG2 provide significantly larger delay and better energy efficiency (lower
E/D) compared to the CMOS buffer. The main weakness of the TG-based buffers is their
large transition time; however, using the TG-based buffers in combination with the CMOS
buffers which have better transition time will mitigate this issue. The characteristics of the

41

3 Variation-aware circuit synthesis and timing closure

0.4 0.6 0.8 1.0

0.9

1.0

1.1

1.2

1.3

to
ta

l
e
n
e
rg

y
0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

3.0

d
e
la

y

0.4 0.6 0.8 1.0
Vdd

1.0

1.5

2.0

2.5

3.0

tr
a
n
si

ti
o
n
 t

im
e

0.4 0.6 0.8 1.0
Vdd

0.2

0.4

0.6

0.8

1.0

1.2

e
n
e
rg

y
 p

e
r

d
e
la

y

CMOS CMOS_ST TG1 TG2

Figure 3.11: Properties of different buffers versus supply voltage. Total energy, delay, transition time
and E/D are normalized to the corresponding values of an optimized CMOS buffer for the
NTC.

Table 3.2: Buffer comparison in the NTV region. (Normalized to CMOS buffer)

buffer

near-threshold, Vdd=0.45

delay energy
energy

per delay

transition

time

TG1 2.65× 0.92× 0.35× 2.80×
TG2 3.07× 1.07× 0.35× 2.79×

TG buffers are summarized in Table 3.2 for a specific supply voltage (Vdd = 0.45).

3.6 Results and discussion

In order to show the effectiveness of our proposed flow, we applied it to different circuits from
IWLS 2005 benchmark1 [234]. We have also compared it with the library pruning technique
presented in [200].

3.6.1 Simulation setup

The cells from Nangate 45nm Open Cell Library are characterized for different supply voltages,
ranging from 0.45V to 1.1V with Cadence Virtuoso Variety [223] and Synopsys HSpice [224].
The threshold voltages of NMOS and PMOS transistors of Nangate library are 471mV and -
423mV, respectively. Therefore, the specified supply voltage range covers both super-threshold
and near-threshold regions. The variation library is created in the ECSM [225]. This library
is then converted into the combined library as described in Section 3.4.1. The optimum β

1IWLS 2005 benchmark contains 84 circuits from ISCAS’85 [26], ISCAS’89 [230], ITC’99 [231], Faraday
technology [232], Gaisler Research [233], and OpenCores.

42

3.6 Results and discussion

b
as

el
in

e 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

iteration

0.5

1.0

1.5

2.0 Best EDP
Best Freq.

b06 evolution over iterations

frequency

energy

EDP

Figure 3.12: b06 circuit evolution over iterations: from baseline to iteration 22 (Vdd = 0.45, γ = 0.05).
All values are normalized to the baseline.

coefficient for creating such a library is dependent on the circuit and the cell library. We tried
a range of coefficients and empirically determined β = 0.5 to work the best for our synthesis.
Synopsys Design Compiler is used for synthesis, and Cadence Encounter Timing System [227]
is used for SSTA. The energy per cycle is then calculated based on the reported leakage power,
dynamic power, circuit nominal delay, and circuit corner delay (from SSTA).

3.6.2 Logic synthesis results

This section explains the detailed result for a single circuit. Thereafter, the results for all
circuits are presented in less detail for brevity.

Detailed results for a single circuit

Figure 3.12 shows the evolution of b6 benchmark circuit over the optimization iterations.
Frequency, energy (per clock cycle) and Energy-Delay Product (EDP) are normalized with
respect to the baseline in order to easily follow the improvement compared to the baseline.
The baseline is the synthesized circuit using the traditional flow (with a normal library).

As shown in this figure, the maximum frequency of the circuit follows a rising trend over
iterations, which means the performance of the circuit is improving compared to the baseline.
On the other hand, the energy initially drops, but after some iterations it increases again.
This means that by applying new constraints in each iteration, the synthesis tool can reduce
the corner delay of the critical paths while retaining the power from shorter paths. However,
after a certain iteration the synthesis tool has to increase the energy of the circuit in order to
apply the new constraints. Therefore, there is an optimum point considering both energy and
timing. This point can be discovered by calculating the EDP of the circuit. At the best EDP
iteration shown in Figure 3.12, the maximum frequency is improved by 50.3% and the energy
is reduced by 25.8%.

Another optimization target marked in this figure represents the iteration with the best
performance i.e. best frequency. Although this leads to a 100% performance improvement,
the energy overhead is also 50% which is not in line with the energy efficiency expected in
NTC. For this circuit, we can conclude that iteration 6 is the optimal result for this circuit.
Our target is to optimize both energy efficiency and performance i.e. optimize the EDP.

43

3 Variation-aware circuit synthesis and timing closure

Results for all benchmarks

The optimization results for all ITC’99 benchmark circuits are presented in Table 3.3. We also
implemented the library pruning method proposed in [200] for the sake of comparison. For
each benchmark circuit, frequency, area, and energy per cycle of all circuits before optimization
(i.e. baseline) and after optimization are extracted. For the optimized circuits, these values
are presented as improvement percentages i.e. frequency (performance) improvement, area
improvement, and energy improvement over the baseline synthesis. The presented variation
improvement is calculated as:

variation improvement (%) =
(

1−
corner delayoptimized − nominal delaybaseline
corner delaybaseline − nominal delaybaseline

)

× 100 (3.8)

For the presented simulation setup, the main improvement of the library pruning technique
is the energy efficiency (9.7%), since it is not able to effectively improve the timing (just
2.5%). Our investigation reveals that by applying the library pruning technique, some fast
cells are eliminated from the cell library, which prevents the synthesis tool from achieving
better performance. In addition to that, when the library has fewer cells (as in the pruned
library), the synthesis tool has fewer options for improvement. In contrast, our proposed
method reduces the variation by 86.6% which corresponds to 24.9% better performance, as
well as 7.4% better energy efficiency on average.

We have found that our proposed variation-aware synthesis flow can reduce the corner
delay to be even smaller than the nominal delay achieved by the conventional synthesis flow
for the largest benchmarks (i.e. b14, b17-b22), where the variation improvement calculated by
Equation (3.8) is more than 100%, as shown in Table 3.3. The reason is that the synthesis tool
puts a limited effort to optimize a circuit, and this effort is distributed over different endpoints
to satisfy the constraints. In case the circuit is small, a considerable effort is put on each
endpoint during the synthesis, which fiercely optimizes the circuit from the very first iteration.
Therefore, for small circuits the synthesis flow usually saturates in a few iterations (b01-b13).
For circuit b03 and b12, since no improvement is observed over iterations, the synthesis flow
sticks to the baseline. The synthesis effort is initially distributed among all the endpoints which
leads to a limited improvement when just one synthesis is performed (i.e. the baseline or the
library pruning method). By defining constraints for the endpoints, we direct the synthesis
tool to put more efforts on the critical endpoints (considering variations). As a result, the
improvement from the iterative variation-aware synthesis is considerably large. Especially
for large circuits which have a wide variety of short and critical paths, the improvement
is comparatively higher. This highlights the scalability of the proposed approach and its
effectiveness for large circuits. In summary, the energy efficiency of NTC is maintained while
improving the performance.

The runtime overhead of the iterative variation-aware synthesis flow is on average 4.5×
more than the conventional synthesis. Since the incremental synthesis feature of the synthesis
tool is exploited, the runtime overhead is considerably smaller than the number of the required
iterations to find the optimum EDP point. In each optimization iteration, the full state of the
synthesis environment is loaded from the previous optimization iteration, and an incremental
synthesis is performed with the new constraints.

As presented in Table 3.3, the number of the iterations and consequently the runtime is
higher for larger circuits. Because these circuits are large, there might be many opportunities
for improving their performance or energy efficiency. As a result, the synthesis tool is able

44

3.6 Results and discussion

T
ab

le
3.
3:

O
p
ti
m
iz
at
io
n
re
su
lt
s
fo
r
IT

C
’9
9
b
en
ch
m
ar
k
ci
rc
u
it
s(
V
d
d
=

0.
4
5
,
γ
=

0.
0
5
).

b
en

ch
m
a
rk
s

im
p
ro
ve
m
en
ts

fr
om

li
b
ra
ry

p
ru
n
in
g
[2
00

]

im
p
ro
ve
m
en
ts

fr
om

p
ro
p
os
ed

m
et
h
o
d

ci
rc
u
it

g
at
es

fl
ip
-fl
op

s
fr
eq
.

(M
H
z)

ar
ea

(µ
m

2
)

en
er
gy

p
er

cy
cl
e
(f
J
)

va
ri
at
io
n

(%
)

fr
eq
.

(%
)

ar
ea

(%
)

en
er
gy

(%
)

b
es
t
E
D
P

it
er
at
io
n

va
ri
at
io
n

(%
)

fr
eq
.

(%
)

ar
ea

(%
)

en
er
gy

(%
)

ru
n
ti
m
e

ov
er
h
ea
d

b
0
1

65
5
35

8.
68

61
.7
1

0.
31

27
.3

10
.5

-9
.5

-7
.0

7
36

.6
14

.5
2.
2

12
.2

5.
0×

b
0
2

32
4
44

4.
84

28
.2
0

0.
10

5.
3

2.
1
-1
5.
1

-3
.8

2
36

.0
16

.6
-1
.9

-3
.2

1.
1
×

b
0
3

18
5

30
3
31

.2
4

1
9
3.
12

1.
03

-7
.1

-2
.3

12
.0

11
.4

0
0

0
0

0
0.
8×

b
0
4

1
07

1
66

1
15

.8
2

10
7
0
.9
2

11
.5
0

-1
6.
1

-3
.8

15
.0

16
.6

2
14

.2
3.
6

8.
9

11
.0

2.
0×

b
0
5

2
17

6
34

80
.4
7

21
0
7
.2
5

26
.7
0

23
.8

5.
6

5.
3

13
.8

15
10

6.
2

31
.4

-3
.3

10
.3

7.
4
×

b
0
6

74
9
27

3.
60

74
.4
8

0.
38

63
.4

28
.1

9.
3

12
.9

6
96

.8
50

.3
10

.7
25

.8
4.
0×

b
0
7

56
0

44
1
74

.0
3

5
7
7.
22

3.
72

27
.7

8.
8

-3
.7

1.
8

7
55

.9
19

.6
-9
.5

-0
.4

4.
0
×

b
0
8

20
4

21
2
53

.1
0

2
1
9.
98

1.
28

-2
9.
3

-7
.7

11
.5

10
.5

2
-1
4.
3

-3
.9

8.
22

6.
02

1.
0
×

b
0
9

22
4

28
2
43

.9
0

2
3
9.
40

1.
59

-3
3.
8
-1
0.
1

22
.4

22
.7

9
56

.3
23

.2
-2
2.
0

-1
1.
2

6.
5
×

b
1
0

22
7

17
2
22

.2
2

2
2
3.
71

1.
24

-1
1.
6

-3
.4

11
.2

8.
5

7
82

.4
32

.8
-3
1.
5

-1
4.
1

2.
8
×

b
1
1

86
5

30
1
52

.9
1

9
2
9.
67

7.
17

-1
1.
4

-3
.4

10
.3

15
.7

2
29

.1
10

.0
0.
9

7.
5

2.
7×

b
1
2

1
56

1
1
20

17
2
.0
3

15
2
3.
91

9.
30

-2
5.
2

-7
.0

15
.5

19
.9

0
0

0
0

0
0.
5×

b
1
3

36
4

48
2
67

.8
8

3
7
6.
39

1.
75

24
.9

9.
3

8.
1

9.
6

2
17

.2
6.
2

8.
5

13
.1

2.
0×

b
1
4

12
5
30

21
5

23
.1
6

12
6
8
1.
02

48
8.
33

67
.4

13
.3

2.
2

14
.6

9
14

3.
7

33
.3

-9
.1

8.
5

3.
3
×

b
1
5

9
21

5
4
17

70
.4
9

9
28

7
.6
6

10
7.
84

-3
6.
4

-7
.7

5.
8

4.
1

12
67

.1
18

.2
-5
.3

5.
1

3.
5
×

b
1
7

26
5
09

13
1
7

63
.2
6

2
73

5
6
.2
4

34
0.
88

-3
8.
7

-7
.9

3.
8

-0
.2

27
10

2.
1

29
.3

-8
.5

7.
9

6.
4
×

b
1
8

89
0
49

30
2
0

19
.3
9

9
01

6
7
.0
8

34
71

.5
3

-1
.6

-0
.3

2.
7

4.
3

28
18

1.
6

43
.5

-9
.0

15
.6

10
.0
×

b
1
9
16

45
5
2

6
04

2
17

.9
1
16

8
5
36

.0
0

69
00

.4
9

34
.7

5.
8

3.
5

10
.3

24
23

4.
2

58
.0

-7
.0

23
.7

13
.4
×

b
2
0

26
2
26

43
0

20
.7
2

26
6
6
0.
91

11
79

.3
0

41
.1

7.
1

3.
8

12
.7

19
20

6.
7

50
.4

-1
1.
2

14
.6

6.
3
×

b
2
1

25
8
47

43
0

21
.2
9

26
3
3
0.
81

11
37

.9
9

79
.0

15
.0

3.
5

16
.8

25
19

5.
4

47
.6

-1
2.
4

12
.1

7.
4
×

b
2
2

39
4
51

61
3

22
.0
1

39
9
8
2.
73

16
67

.5
3

5.
5

0.
9

3.
9

8.
8

12
17

1.
0

37
.5

-8
.9

10
.4

4.
4
×

av
er
ag

e
9.
0

2.
5

5.
8

9.
7

10
.3

86
.6

24
.9

-4
.8

7.
4

4.
5
×

45

3 Variation-aware circuit synthesis and timing closure

b
0
1

b
0
2

b
0
3

b
0
4

b
0
5

b
0
6

b
0
7

b
0
8

b
0
9

b
1
0

b
1
1

b
1
2

b
1
3

b
1
4

b
1
5

b
1
7

b
1
8

b
1
9

b
2
0

b
2
1

b
2
2

av
er

ag
e

0.6

0.7

0.8

0.9

1.0

1.1

1.2

cl
o

ck
p

er
io

d
(n

o
rm

al
iz

ed
to

co
rn

er
d

el
ay

o
f

b
as

el
in

e) Timing optimization results (ITC’99 benchmark circuits)

nominal delay (baseline) variation (baseline) corner delay (library pruning) corner delay (proposed)

Figure 3.13: Clock period comparison of ITC’99 benchmark circuits with different methods (Vdd = 0.45,
γ = 0.05). The contributions of nominal delay and variation for baseline are also presented.

to continue the optimization process for many iterations. This can be fixed by considering a
higher γ coefficient e.g. 0.1, which can effectively decrease the number of iterations. However,
since for the other circuits in Table 3.3, the results are reported for γ = 0.05, for the sake of
consistency, the results for large circuits are also reported for the same γ.

Figure 3.13 compares the timing improvement of all ITC’99 benchmark circuits. The corner
delay of the library pruning and our proposed flow are also shown in this figure. As illustrated,
the corner delays of b17-b21 circuits optimized with the proposed flow are even smaller than the
nominal delay of the respective baselines (i.e. without considering the variations). Although
for these circuits the flow imposes an area overhead, the performance and energy improvements
are also significant (see Table 3.3).

Improvement of the proposed method with Vdd reduction

Figure 3.14 presents the average of the improvements (performance and energy) of the bench-
mark circuits for different supply voltages. The average performance improvement is maxi-
mized at Vdd = 0.45, where the amount of variation is higher comparatively. The energy im-
provement is also better for the same supply voltage. When the amount of variation is larger,
the difference between the corner delays of the endpoints is also larger. Thus, by improving
a smaller number of critical endpoints (in terms of timing), a large performance improvement
can be achieved. At the same time, the energy efficiency can be improved by loosening the
shorter paths without affecting the performance of the circuit. However, when the amount of
variation is smaller, the synthesis flow needs to deal with many critical or near-critical end-
points. This means that the synthesis tool needs to distribute the optimization effort among
many paths, which usually leads to a smaller improvement. Therefore, we can conclude that
on average the improvement of our method increases as the supply voltage reduces.

3.6.3 Hold-time fixing results

The major variability sources which affect the hold-time violations are flip-flop hold-time
variation, path delay variation, and the clock skew. Since the clock skew is significant only
in large circuits, we choose large benchmark circuits for our analysis (b17, b18, b19, DMA
controller, Leon3 processor, and OpenRISC 1200 processor) which have many flip-flops (>1K)
and large clock-tree structures. Table 3.4 reports the number of gates and flip-flops, the
number of hold-time violations, and the total power consumption before performing any hold-
time violation fixing.

46

3.6 Results and discussion

0.40 0.45 0.50 0.55 0.60 0.65

Vdd

−5

0

5

10

15

20

25

30

%

Average improvement of ITC’99 circuits

frequency improvement

energy improvement

Figure 3.14: Average improvement of ITC’99 benchmark circuits over different supply voltages.

We execute the flow presented in Figure 3.8 for different types of buffers. The proposed
hold-time violation fixing flow was able to successfully fix all hold-time violations irrespective
of the type of buffers used. During the execution of the flow for a given buffer type, the
hold-time violation fixing flow is forced to use only that type of buffer. Therefore, the impact
of each buffer on the hold-time violation fixing is evaluated separately. Additionally, we run
the flow with all types of buffers allowed to evaluate the impact of using all types of buffers
together. Table 3.4 presents the results of these experiments, containing the power and area
overheads due to the fixing.

As discussed in Section 3.5 and shown in Table 3.4, CMOS buffer is not efficient for hold-
time fixing in NTC due to the energy inefficiency. Hold-time violation fixing with this buffer
imposes comparatively larger energy and area overhead. Although a CMOS buffer has much
better transition time compared to the other buffers, its energy inefficiency negates its benefits.
The overheads of hold violation fixing with any of the presented TG buffers are smaller than
those of CMOS buffers. Therefore, we can conclude that using TG buffers for fixing the hold-
time violations is beneficial in the NTV region due to energy and area efficiency. The last
column of this table demonstrates the result when all buffer types are used together. Allowing
the violation fixing flow to use all types of buffers would provide the opportunity to leverage
the benefits of all buffers while avoiding their drawbacks. A large output transition time of a
buffer has a negative impact on the timing of the consecutive cells in the path. However, using
energy-efficient TG-buffers in combination with CMOS buffer which has better transition time
proves to be advantageous. In our experiment, this leads to slightly better results. In a real
world scenario, this would be the preferred approach since it also provides more opportunities
for fixing other types of violation (setup-time/DRV).

47

3 Variation-aware circuit synthesis and timing closure

T
ab

le
3.
4:

H
ol
d
-t
im

e
v
io
la
ti
on

s
of

th
e
ci
rc
u
it
s
b
ef
or
e
fi
x
in
g,

an
d
fi
x
in
g
ov
er
h
ea
d
s
fo
r
d
iff
er
en
t
b
u
ff
er
s.

ci
rc
u
it
s

B
ef
or
e
F
ix
in
g

H
ol
d
v
io
la
ti
on

fi
x
in
g
u
si
n
g
d
iff
er
en
t
b
u
ff
er

st
ru
ct
u
re
s

C
M
O
S

T
G
1
[2
9]

T
G
2
[3
0]

al
l
b
u
ff
er
s

en
d
p
oi
n
ts

fl
ip
-fl
op

s
ga

te
s
p
ow

er

(µ
W

)
v
io
la
ti
on

s

en
er
gy

ov
er
h
ea
d

(%
)

ar
ea

ov
er
h
ea
d

(%
)

en
er
gy

ov
er
h
ea
d

(%
)

ar
ea

ov
er
h
ea
d

(%
)

en
er
gy

ov
er
h
ea
d

(%
)

ar
ea

ov
er
h
ea
d

(%
)

en
er
gy

ov
er
h
ea
d

(%
)

ar
ea

ov
er
h
ea
d

(%
)

b
17

14
13

13
1
7

33
1
19

46
.2

71
9

6.
51

3.
40

4.
93

2.
51

5.
30

2.
51

4.
33

2.
43

b
18

30
42

30
2
0
10

4
1
43

1
30

.1
21

61
4.
00

2.
88

2.
92

2.
40

2.
92

2.
40

2.
69

2.
31

b
19

60
72

60
4
2
20

6
2
19

2
49

.7
52

89
6.
17

4.
48

3.
64

3.
12

7.
46

3.
12

3.
56

3.
11

L
eo
n
3

33
99

30
7
4

49
1
73

49
.1

27
15

15
.2
5

13
.5
0

8.
37

9.
12

10
.4
6

9.
12

8.
12

7.
45

O
R
1
20

0
30

54
26

2
8

43
4
91

67
.2

22
96

17
.7
5

14
.9
9

9.
54

9.
89

11
.1
7

9.
89

10
.2
0

10
.2
4

D
M
A

23
93

21
3
8

16
6
14

43
.7

21
11

23
.3
9

21
.0
2

13
.6
1

15
.5
1

16
.7
2

15
.5
1

12
.5
3

13
.4
2

av
er
ag

e
–

12
.1
8

10
.0
5

7.
17

7.
09

9.
00

7.
09

6.
91

6.
49

im
p
ro
ve
m
en
t

ov
er

C
M
O
S

–
–

41
.1
%

29
.4
%

26
.0
%

29
.4
%

43
.3
%

35
.4
%

48

3.7 Summary

3.7 Summary

This chapter presented optimized design automation methodologies for circuit timing improve-
ment to address various NTC design challenges. The proposed synthesis and timing closure
methodology can successfully reduce the impact of variations and improve the performance
of NTC designs. The results show that the proposed method can reduce the variation by
86.6% (which means 24.9% better performance), and additionally improve energy efficiency by
7.4% with a small area overhead (4.8%). Furthermore, we showed that hold-time violations
are much more severe in the NTV region compared to the super-threshold region, due to the
increased effect of variations and the increased clock-skew, and the overhead of traditional hold
violation fixing is significant which necessitates the use of SSTA for the hold-time violation
analysis and fixing. Additionally, we optimized TG-based buffers and studied their applica-
bility for fixing the hold-time violation in NTC, and proposed an iterative hold-time violation
fixing flow for NTC based on SSTA. The simulation results demonstrate that incorporating
TG-buffers reduces the energy overhead of hold-time fixing by 43.3% compared to traditional
CMOS buffers.

49

4 Cross-layer reliability, energy efficiency, and
performance optimization of data paths

Operating in the NTV region changes the circuit design paradigm as the assumptions for
performance, power consumption, and variation impacts in this operating region are totally
different from those of the nominal operating voltage [76]. Therefore, circuits should be specif-
ically optimized for this operating region to satisfy the required energy-efficiency, speed, and
reliability constraints. In this chapter, we discuss cross-layer design optimization techniques
for NTC with a focus on processor data paths [3, 4, 6]. A processor data path comprises of
several functional units such as ALU, Floating Point Unit (FPU), and multipliers. Therefore,
we evaluate the effectiveness of the proposed methods on a 64-bit ALU, as a case study.

The rest of this chapter is organized as follows. Section 4.1 introduces the challenges of
circuit design in the NTV region, motivates the proposed methods, and briefly explains the
contributions. Section 4.2 reviews the state-of-the-art and their shortcomings. The optimiza-
tion approaches based on instruction multi-cycling [3] and functional unit partitioning [4] are
presented in Section 4.3, while Section 4.4 discusses the optimization results. Finally, Sec-
tion 4.5 concludes the chapter.

4.1 Introduction, motivation, and contributions

Along with the enormous energy benefits, NTC comes with a variety of design challenges. The
most obvious one is performance reduction of 10× compared to the super-threshold domain,
which may limit the applicability of NTC [60]. In addition, the escalated sensitivity to variabil-
ity (such as process and voltage variation) at reduced supply voltages forces designers to add
very conservative and expensive timing margins to achieve acceptable yield and reliability [74].
Moreover, in the NTV region leakage energy becomes comparable to dynamic energy, thus ap-
proaches to minimize leakage are of uttermost importance for NTC designs. Hence, although
conventional designs can technically operate in the NTC domain, due to these challenges, new
design paradigms have to be developed for NTC to harness its full potentials.

Data paths are core components of any processing element such as processor cores and
accelerators. A data path consists of various functional units, such as ALU and Floating Point
Unit (FPU), whose timing and power consumption characteristics significantly impact the
overall performance of the processor. Therefore, optimizing the reliability, energy efficiency,
and performance of data paths is of decisive importance.

To save leakage energy, it is important to reduce the time a circuit is powered on but idle,
i.e., the time a circuit is performing no operation. For this purpose, the timing slack under
all operation conditions has to be trimmed. This is a very challenging task, in particular
for functional units, which are fundamental components of data paths. In functional units,
different operations have different timing criticalities and slacks. For instance, in an ALU,
some operations need only a fraction of a clock cycle (e.g.,logic operations), whereas others
require a full clock cycle (e.g.,addition operation with long operands). Consequently, whenever
an operation of the first category is executed energy is “wasted” due to leakage, as the clock
period is defined according to the slowest operation. Instead, it is much more efficient to

51

4 Cross-layer reliability, energy efficiency, and performance optimization of data paths

OPA OPB OPC

Time0 1𝑐𝑙𝑘𝑙 2𝑐𝑙𝑘𝑙 3𝑐𝑙𝑘𝑙1𝑐𝑙𝑘𝑠 2𝑐𝑙𝑘𝑠 3𝑐𝑙𝑘𝑠 4𝑐𝑙𝑘𝑠 5𝑐𝑙𝑘𝑠 6𝑐𝑙𝑘𝑠

End 𝑐𝑙𝑘𝑙
End 𝑐𝑙𝑘𝑠

OPA OPB OPC

Performance

improvement
Single-cycle

execution

Multi-cycle

execution

Figure 4.1: Conceptual illustration of the impact of a short clock period (clks) and multi-cycle opera-

tions (e.g. OPA) on runtime and “wasted” leakage. Leakage is illustrated by .

ResultsOPA

Instruction

Data

Functional Unit

(a) Executing instruction OPA on original functional
unit, and the associated leakage dissipation by
unexercised components

Results

Instruction

Data

M
U

X

D
E

M
U

X

Power

gated

OPA

Partitioned

Functional Unit

FU1

FU2

(b) Executing instruction OPA on the partitioned
functional unit and power-gating of smaller
units

Figure 4.2: Conceptual illustration of the impact of partitioning on a functional unit executing OPA

instruction, and its impact on “wasted” leakage. Leakage is illustrated by .

execute operations of the second category at multiple cycles, which reduces the overall idle
time of the functional unit, as conceptualized in Figure 4.1.

Additionally, when an instruction is being executed by a functional unit, some parts of the
functional unit are idle as they are not exercised by the executing instruction. To tackle this
issue and improve the overall energy efficiency and reliability, we revisit the structure of the
functional unit by partitioning it into multiple smaller and simpler units, to enable fine-grain
power gating of unexercised functional units. If a particular functional unit is not utilized by
a long sequence of instruction stream, it can safely be power-gated to save leakage energy, as
shown in Figure 4.2. Proper clustering of the instructions into several smaller functional units
allows maximizing the power-down intervals of multiple functional units, and hence reducing
the leakage energy. At the same time, simplifying the functional unit can reduce timing
uncertainties and improve a reliable operation of NTC processors under process and runtime
variations.

This chapter presents two cross-layer functional units optimization opportunities based on 1)
instruction multi-cycling and 2) functional unit partitioning, which improve energy-efficiency,
reliability, and performance. We evaluate our methodology by using an ALU implemented
for Alpha ISA. Our results show that the proposed approach can effectively improve energy
efficiency and reliability. For example, instruction multi-cycling effectively removes the extra
timing slacks and improves the energy efficiency of a circuit by up to 34%. Furthermore, the
functional unit partitioning approach can improve the energy efficiency of an ALU by 43.4%
while having positive impacts on the reliability and performance as well.

52

4.2 Related work

4.2 Related work

Adjusting the supply voltage of the circuit to its MEP depending on the process and runtime
variations can improve energy efficiency. However, these techniques do not reduce the idle
time of the circuit, when it is not doing any specific task but is wasting leakage power. As the
leakage power constitutes a considerable portion of the total power consumption, it is crucial
to reduce the idle time of circuits to improve energy efficiency.

Although many methods have been proposed to analytically find the MEP [59, 235] or
track it during the runtime [78, 196, 197], finding the MEP point does not necessarily lead
to the maximum energy efficiency as a global supply voltage is assigned to the whole circuit
(coarse-grained supply voltage assignment). Fine-grained supply voltage assignment methods
always lead to better improvement though imposing overheads [186, 236].

Performance variations in the NTV region can be addressed by using conservative tech-
niques such as structural duplication, voltage and frequency margining [237]. However, such
approaches can impose significant area and energy overhead. Moreover, the conservative tim-
ing margin will increase the idle period of the structures and potentially reduce the energy
benefits of the NTC. Soft edge clocking [238, 239] and body biasing [240] are two other well-
known approaches to deal with process variation at NTC. Several methods have been already
proposed [1, 186], which incorporate synthesis techniques to improve the circuit characteristics
for NTC.

Dynamic input vector variation is another source of variation [241]. By applying different
input vectors, different parts of the circuits are activated, leading to different propagation delay
from inputs to outputs. There are so-called better-than-worst-case design techniques to improve
circuit performance or energy considering dynamic input vector variations [73, 163, 164]. In
these approaches, the timing margin of the circuit is reduced to a value smaller than the
conservative worst-case margin, and possible timing errors are detected and corrected on-the-
fly to achieve error resiliency on top of improved performance and energy. However, traditional
designs try to balance the circuit and hence there is a critical point called ”path walls” which
reducing the delay beyond this point leads to a huge number of timing failures. In order
to reduce timing errors, and hence further improving the efficiency of better-than-worst-case
designs, re-timing techniques to avoid path walls are introduced in the literature [165, 166].
However, such techniques are not effective in NTC because of the increased amount of timing
errors.

For some circuits, such as ALU, there is a difference between the execution time of slow
instructions (SI) and fast instructions (FI) due to dynamic input vector variation. Based
on this fact, an aging-aware instruction scheduling is proposed in [242, 243] to execute each
instruction group (FI or SI) with its own specialized functional units to improve lifetime.

In NTC, the delay difference between FI and SI is more pronounced. This means that if the
clock cycle is set according to SI propagation delay, there is a considerable waste of leakage
energy during the execution of FIs. Based on this, we propose a technique in which the clock
cycle is significantly reduced close to the propagation delay of FI instructions to reduce the
wasted leakage energy. In this approach, SIs are executed in multiple cycles to avoid possible
timing failures.

At super-threshold domain, various coarse-grained power-gating techniques have been pro-
posed to turn-off idle cores [244–246]. The cores are turned-off when determined idle time
is observed. However, such approaches require state preservation mechanism and typically
impose a long wake-up latency which is costly at NTC. Furthermore, two methods based on
the power-gating of execution units are proposed in [247]. These techniques allow the power
gating of an entire execution unit. However, some of the instructions of an execution unit are
utilized rarely by the running applications. Therefore, analyzing the instruction utilization

53

4 Cross-layer reliability, energy efficiency, and performance optimization of data paths

pattern could reveal opportunities for fine-grained power-gating.

4.3 Cross-layer data path optimization

Overview

As explained in Chapter 2, leakage and dynamic energy are comparable in the NTV region.
Therefore, it is crucial to control the amount of leakage power to leverage the benefits of the
NTC. This section presents cross-layer methodologies to optimize energy efficiency, perfor-
mance, and reliability of NTC functional units based on reducing the idle time.

The leakage power can be reduced by reducing the idle time of a circuit. A circuit may
become idle within a clock cycle, for example when it has extra timing slack, or over consecutive
clock cycles. The former may be avoided by modifying the circuit design to reduce the timing
slack for all conditions, and the latter can be avoided by power-gating the circuit when possible.

The timing-slack minimization can be done by circuit synthesis techniques which are tailored
for NTC circuits [1, 186]. However, these approaches are not much efficient when dealing
with functional units (e.g., adders, multipliers, or complete ALUs) as the timing slacks of
the instructions may be widely different [3]. For example, a simple instruction such as a
Bitwise-AND only needs a fraction of the clock cycle, whereas an ADD instruction could use a
large portion of the clock cycle. As the delays of these instructions are intrinsically different, the
NTC synthesis techniques are not able to effectively balance the delay of these two instructions.
We propose to execute the slow instructions in multiple cycles and the fast instructions in a
single clock cycle (instruction multi-cycling) as the solution to this problem [3]. Applying
other optimization techniques such as opportunistic circuit synthesis, instruction replacement,
and data type manipulation can further improve the effectiveness of the proposed method.

In a real-world scenario, the running application may utilize only a fraction of the instruc-
tions implemented inside a functional unit. This means that during the execution of such
applications, those gates of the functional unit which are exclusively used by the non-exercised
instructions of the functional unit are not utilized. The leakage power from these gates con-
tributes to the wasted energy of the system. On the other hand, it is not feasible to power off
the entire functional unit because any of the instructions can be called at a time. We propose
to address this by redesigning the entire functional unit to allow power-gating [4]. In this
approach, a large functional unit such as an ALU is partitioned into several smaller functional
units such that each unit can be power-gated separately (functional unit partitioning). For
this purpose, the instructions need to be clustered properly into different groups. A number
of parameters such as the instruction utilization pattern, the temporal distance between the
instructions inside an application instruction stream, and intrinsic similarity between the in-
structions need to be considered for a proper clustering. Accordingly, the instruction stream of
various applications has to be analyzed to extract the required information for clustering [4].

4.3.1 Instruction multi-cycling

This scheme consists of four main ideas to fully enable the potential of NTC:

1. We classify the instructions into slow (with little timing slack) and fast (with large timing
slack), based on the time required to execute the instructions. The slow instructions
are executed in multiple clock cycles, to reduce the leakage power while executing fast
instructions within one clock cycle.

2. In contrary to the super-threshold regime, we use relaxed timing constraints for the
synthesis of functional units in the NTV region. While this increases the delay of the

54

4.3 Cross-layer data path optimization

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
8

A
D

D
Q

M
S

K
L

L

S
4

A
D

D
Q

A
D

D
Q

L
D

A

L
D

A
H

B
IS

M
S

K
B

L

IN
S

B
L

M
S

K
W

L

IN
S

W
L

A
D

D
L

S
4

A
D

D
L

S
U

B
L

S
4

S
U

B
L

S
8

A
D

D
L

S
8

S
U

B
L

A
D

D
L
/V

S
U

B
L
/V

A
D

D
Q

/V

S
U

B
Q

/V

IN
S

Q
L

S
8

S
U

B
Q

S
U

B
Q

IN
S

L
L

S
4

S
U

B
Q

M
S

K
Q

L

C
M

P
E

Q

C
M

P
L
E

C
M

P
L

T

C
M

P
U

L
T

A
N

D

X
O

R

S
E

X
T

B

C
M

P
U

L
E

E
X

T
Q

H

IN
S

W
H

IN
S

L
H

IN
S

Q
H

E
X

T
L
H

C
M

P
B

G
E

E
X

T
W

H

E
X

T
W

L

E
X

T
L
L

E
X

T
Q

L

E
X

T
B

L

M
S

K
Q

H

M
S

K
W

H

S
E

X
T

W

Z
A

P

Z
A

P
N

O
T

M
S

K
L

H

E
Q

V

B
IC

A
M

A
S

K

O
R

N
O

T

D
e

la
y

 (
n

o
rm

a
li

ze
d

)

Instruction

Nominal delay (w/o variation)

Worst case delay

(a) An ALU synthesized with typical timing constraints (Tight ALU).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
U

B
Q

S
4

S
U

B
Q

S
8

S
U

B
Q

A
D

D
Q

L
D

A

L
D

A
H

S
4

A
D

D
Q

S
8

A
D

D
Q

C
M

P
L

T

C
M

P
L
E

C
M

P
E

Q

C
M

P
U

L
T

S
U

B
L

S
U

B
L
/V

S
U

B
Q

/V

S
4

S
U

B
L

S
8

S
U

B
L

A
D

D
L

A
D

D
L

/V

A
D

D
Q

/V

C
M

P
U

L
E

S
4

A
D

D
L

S
8

A
D

D
L

D
E

C
Q

IN
C

Q

IN
S

W
H

IN
S

Q
H

IN
S

L
H

E
X

T
Q

H

E
X

T
L

H

E
X

T
W

H

C
M

P
B

G
E

IN
S

W
L

IN
S

B
L

E
X

T
W

L

E
X

T
L

L

E
X

T
Q

L

IN
S

Q
L

IN
S

L
L

E
X

T
B

L

M
S

K
Q

L

M
S

K
W

L

M
S

K
B

L

M
S

K
Q

H

M
S

K
L

L

M
S

K
W

H

M
S

K
L

H

Z
A

P

Z
A

P
N

O
T

S
E

X
T

B

S
E

X
T

W

E
Q

V

X
O

R

A
N

D

B
IS

B
IC

D
e

la
y

 (
n

o
rm

a
li

ze
d

)

Instruction

Nominal delay (w/o variation)

Worst case delay

(b) An ALU synthesized with loose timing constraints (Loose ALU).

Figure 4.3: The nominal case delay without considering the impact of process variation and the worst
case delay (with process variation) for the instructions of an ALU synthesized with typical
and loose timing constraints. Worst case delay is extracted by SSTA as µ + 3σ of the
instruction delay. All the numbers are normalized to the maximum nominal delay of the
Tight ALU which is the nominal delay of S8ADDQ in (a). (Vdd = 0.5V)

most critical path, it avoids that all instructions have similar delays and belong to the
same category. By that means, the scheme of point 1 is much more efficient.

3. Finally, the clock period is not only set according to points 1 and 2 but also by considering
the sensitivity of the functional unit to variations. As a result, it is possible to co-optimize
energy, performance, and reliability.

4. In order to reduce the number of “slow” multi-cycle operations, we propose to employ
instruction- and compiler-level optimization approaches to replace some of these instruc-
tions in the code with fast single-cycle instructions, which further improves energy and
performance.

Energy improvement through instruction multi-cycling

The propagation delay of functional units is typically dependent on input vectors. For example
in an ALU, the instructions can be categorized into slow instruction and fast instructions and
the delay gap between fast and slow instructions might be significant. The logical operations
such as inversion can be executed very fast while the execution of arithmetic operations
such as addition and subtract requires more time. Figure 4.3a shows the normalized delay
of various instructions of an ALU at 0.5V (according to the simulation setup presented in
Section 4.4). The synthesis tool balances as many paths as possible to optimize the energy
given the timing constraints. In this case, 26 instructions are balanced to be critical or near-
critical in terms of timing (slow instructions); however, the rest of the instructions require less
time for completion (fast instructions).

55

4 Cross-layer reliability, energy efficiency, and performance optimization of data paths

In a traditional design approach, the delay of the unit is determined by the delay of the
slowest instruction. Therefore, during the execution of the fast instructions, the ALU finishes
the execution early and leaks for the rest of the clock cycle. The ”wasted” leakage energy
is more important in the NTC because 1) the leakage energy is significant and constitutes a
significant portion of the total energy, 2) the delay gap between the fast instructions and the
slow instructions is even more pronounced due to the impact of process variation. As shown in
Figure 4.3a, the amount of variation induced delay (the difference between the nominal delay
and the worst-case delay) is larger for the slow instructions which significantly increase the
delay gap between the slow and fast instructions in the near-threshold regime.

Our proposed idea is to reduce the leakage energy by using a shorter clock period and
executing the slow instructions in multiple cycles. For example in the presented ALU in
Figure 4.3a, it is possible to reduce the clock period to half of the delay of the slowest instruction
and execute the slow instructions (from S8ADDQ to CMPULE - totally 35 instructions) in two cycles
and the rest of the instructions in one cycle. Therefore, once a fast instruction is executed
the amount of the wasted leakage energy would be much smaller compared to the traditional
approach. This would also improve performance because fast instructions require less time for
execution.

For the execution of the slow instructions which may require more than one cycle, there
is no need to insert any flip-flops or latches into the circuit. During the execution of such
instructions, the inputs of the circuit are kept unchanged in order to allow the circuit to
complete the execution of the slow instructions in more than one clock cycle. Therefore, it is
needed to make some modifications in the microprocessor as discussed in Section 4.4.4.

We propose a set of cross-layer techniques from logic synthesis to compiler level in or-
der to leverage the maximum benefits from the proposed method by moving more executed
instructions to the ”fast” category.

In order to show the impact of the logic synthesis on the ALU, we synthesized the same
ALU with two different strategies. First, the ALU is synthesized with tight timing and area
constraints which is the default strategy in the super-threshold region. From now on, we refer to
this synthesized ALU as Tight ALU. As the results depicted in Figure 4.3a show, the synthesis
tool balanced the delay of many instructions (mostly arithmetic instructions) to maximize the
energy efficiency and performance. However, there are still many instructions (mostly logic
instructions) which are too short to be balanced similar to the slow instructions. Furthermore,
there is a sharp transition from the delay of slow instructions to the fast instructions.

Then, the same ALU is synthesized with loose timing and area constraints (Loose ALU).
The results of this synthesis are shown in Figure 4.3b. Since the synthesis tool is not under
tight constraints, the delays of the slow instructions are larger compared to the Tight ALU,
and there is a smooth transition from the delay of the slow instructions to the fast instructions.

The synthesis results show that the performance of the Tight ALU is better than the Loose
ALU by 13% considering the variations; however, due to the wide spectrum of the delays of
the instructions in the Loose ALU, there are more opportunities for improving the ALU with
the envisioned multi-cycling technique. The reason is that fewer instructions are critical in
terms of timing and by cleverly choosing the clock period we can gain in terms of energy and
performance as shown later in Section 4.4.

High-level optimization techniques

From the above discussion, we observe that some ALU instructions are slower with longer
execution time, while other instructions are faster with shorter execution time. Therefore, the
aim is to exploit high-level optimization techniques such as data type conversion and instruction
replacement to replace slower instructions of an application by fast ones wherever possible,

56

4.3 Cross-layer data path optimization

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

LD
A

A
D

D
Q

B
IS

S
U

B
Q

LD
A

H
A

N
D

A
D

D
L

S
LL

Z
A

P
N

O
T

R
E

T
C

M
P

E
Q

JS
R

S
R

L
S

R
A

S
8

A
D

D
Q

S
4

S
U

B
Q

C
M

P
U

LT
C

M
P

U
LE

E
X

T
B

L
S

U
B

L
H

W
_

R
E

I
S

4
A

D
D

Q
C

M
O

V
N

E
C

M
P

LE B
IC

C
M

P
LT

IN
S

B
L

M
S

K
B

L
LD

L
B

N
E

S
8

S
U

B
Q

X
O

R
C

M
O

V
LB

S
B

E
Q

E
X

T
Q

H
R

C
B

S
R

C
M

O
V

LT B
R

O
R

N
O

T
R

P
C

C
C

M
O

V
E

Q
C

M
O

V
G

E
E

X
T

W
L

IN
S

W
L

IN
S

LL
C

M
P

B
G

E
B

LE
E

X
T

Q
L

B
LB

S
IN

S
Q

H
C

M
O

V
LB

C
C

M
O

V
G

T
C

T
LZ

IN
S

Q
L

JM
P

C
M

O
V

LE
M

S
K

Q
H

M
S

K
Q

L
S

8
A

D
D

L
A

M
A

S
K

IM
P

LV
E

R
Z

A
P

U
S

A
G

E
 F

R
E

Q
U

E
N

C
Y

 (
%

)

INSTRUCTIONS

Highly used instructions Rarely used instructions

Figure 4.4: Instruction usage frequency in a 64-bit ALU for gzip workload. There are orders of mag-
nitude difference between utilization frequency of ’highly used instructions’ on the left and
’rarely used instructions’ on the right.

so that the overall energy demand will be reduced further. Since the slower instruction are
executed in multiple clock cycles, replacing them with faster instruction can also improve the
performance by reducing the Cycle Per Instruction of the applications.

Data type conversion The selection of data types for variables has a huge impact on the
instruction binary generated by the compiler. The data types such as short (1-byte), char (2-
byte), int (4-byte) and long (8-byte) does not only specify the storage space size of variables
but also the type of operation on the variables (e.g., 64-bit arithmetic such as ADDQ vs. 32-
bit arithmetic such as ADDL). This affects the occurrence rate of slower and faster instructions
within an application. Hence, in addition to memory optimization, a clever data type selection
will help to save energy by using fast instructions (e.g., ADDL in Figure 4.3b) instead of the
slow ones (e.g., ADDQ in Figure 4.3b).

Instruction replacement Many applications such as sorting and matrix multiplication algo-
rithms spend most of the execution time in loops. Hence, simple instructions such as increasing
loop counters and array indexes significantly contribute to the overall instruction count. If such
instructions are not assigned appropriate data type and operation, they can impose signifi-
cant performance and energy overhead. For instance, since modern ALUs have a dedicated
increment/decrement circuitry, the usage of increment/decrement instructions plays a vital
role in improving the performance and energy efficiency by reducing the number of slower
instructions. This and other instruction replacements (e.g. shift instead of multiplication) can
be achieved either by the programmer or using different compiler optimization techniques.

4.3.2 Functional unit partitioning

Fine-grained power-gating has been known as an effective solution for reducing the leakage
power consumption of a system by cutting the supply lines of the idle components [247].
However, it is costly to power-on and power-gate the components in terms of execution time
as each power-gating cycle mandates a minimum time between power-on and power-off cycles.
Once a component is put to sleep, its functionality cannot be used. Therefore, the components
should to be carefully tailored towards power-gating.

One opportunity for power-gating of the components is to determine the unused parts
of a circuit based on the running application and power-gate those specific parts instead of
the entire component. For ALUs executing several instructions, unused parts of the ALU
corresponding to the instructions not executed for a long time could be safely power-gated.

57

4 Cross-layer reliability, energy efficiency, and performance optimization of data paths

1
9

1
4

6

1
0

8
3

2

1
1

8
6

0

2
3

3
5

1
7

6
6

4
9

6
1

1
9

2
5

3
2

0
6

2
6

8
9

1
7

2
7

5 3
6

3 2
4

2
8

4 1 7 1 1 1 1 1

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
9

2
0

2
2

2
6

2
7

3
1

3
3

3
6

4
5

6
0

#
 O

C
C

U
R

R
E

N
C

E

LDA-ADDL DISTANCE

Figure 4.5: The temporal distance between LDA and ADDL instructions in ”bzip2” workload (simulation
for 2 million cycles). There are 19146 cases that the ADDL instruction appeared right after
LDA. The average distance is 2.97.

Figure 4.4 presents the usage frequency of a 64-bit ALU (for Alpha ISA). As shown in the
figure, there are orders of magnitude difference between the usage frequency of a highly used
instruction such as LDA and a rarely used instruction such as ZAP. If both of the mentioned
instructions are implemented in a single ALU, the circuitry for ZAP is leaking most of the time
while being at idle state. In other words, the gates which are implemented exclusively for the
rarely used instructions are in the idle state most of the time and are contributing to the total
leakage of the ALU.

Our proposed solution is to partition a functional unit like an ALU into multiple smaller
ALUs. This allows us to power-gate some of the ALUs based on the utilization of their
instructions by turning off the ALUs which are not used at the moment. The original ALU
could be partitioned based on different parameters such as the instruction utilization frequency,
instruction similarity, and instruction temporal proximity.

In summary, this scheme synergistically exploits NTC in conjunction with a fine-grained
power-gating of functional units to enable energy-efficient operation of devices designed for IoT
applications. A hierarchical clustering algorithm groups the instructions into smaller functional
units by considering the frequent instruction sequences, obtained by application profiling, in
order to maximize power-gating intervals. Accordingly,

1. We characterize the instruction flow of representative workloads and analyze the instruc-
tion stream in order to obtain instructions’ utilization frequency and temporal distance.

2. The instructions are then partitioned into several groups according to the metrics ex-
tracted from the instruction stream analysis as well as the inherent similarity of the
instruction.

3. Each set of instructions residing in the same partition will be implemented by a dedicated
functional unit, and they form a complete functional unit altogether.

4. To reduce the leakage power, only the functional unit corresponding to the running
instruction partition is activated while other units are power-gated.

58

4.3 Cross-layer data path optimization

Instruction pattern analysis

A careful analysis of the instruction patterns on a set of representative workloads provides
information regarding the ALU partitioning. For this purpose, we first simulate the execution
of a set of representative workloads by an architectural simulation tool as explained in Section
4.4, and then based on the extracted instruction streams the utilization frequency and the
temporal distance of different instructions are extracted.

Instruction utilization frequency The instruction utilization frequencies presented in Figure
4.4 shows a significant difference in utilization among the instructions. The instruction utiliza-
tion frequency has an inverse relation with the power-gating feasibility for the ALUs associated
with the instructions. For example, the ALUs which contain instructions ADDQ and BIS are
less likely to be power-gated because these instructions appear in the instruction buffer on
average every 10 cycles. However, it is more likely to power-gate the ALUs implementing the
rarely used instructions on the right side of Figure 4.4 such as S8ADDL.

The utilization frequency of an instruction can be simply defined as the number of cycles
in which the instruction is executed divided by total cycles. For a given instruction stream S,
which is a sequence containing N = |S| instructions, we can define the frequency of instruction
A as:

FreqA =
#Si ∈ S such that Si = A

N

where Si is the i-th element (instruction) of S. If an instruction is used rarely, it can be easily
grouped into any existing ALUs. However, we need to be more cautious in grouping frequently
used instruction because the grouping strategy might improve or deteriorate the power-gating
capability of the ALUs. Based on this analysis, we can define the frequency distance metric
between two instructions A and B as the geometric mean:

distfreqA-B =
√

FreqA ∗ FreqB.

Such definition facilitates the partitioning of rarely used instructions into a single ALU.

Instruction temporal distance Some instructions are more likely to appear next to each other
in an application. For example, from ”bzip2” workload, we observed that ADDL appears after
LDA on average every 2.97 instructions (see Figure 4.5). In these cases, it could be beneficial
to group these neighboring instructions inside one ALU in order to improve the power-gating
interval for other ALUs.

The temporal distance between two instructions A and B can be extracted based on the
number of cycles between any occurrences of A and B. For example, according to the results
presented in Figure 4.5, there are 19146 LDA instructions which are directly followed by an
ADDL instruction, and there are 11860 LDA instructions which are followed by an ADDL instruc-
tion after three cycles. Based on the workload analysis, a distribution is extracted for every
instruction pairs A-B which explains the percentage of the A-B pairs that are far from each
other by k cycles. The Survival Function (SF) 1 of these temporal distance distributions is
useful in the clustering problem definition in Section 4.3.2.

We define a temporal distance set which contains the indexes of consequent instructions A
and B and their corresponding distances (i, k):

TemporalA-B =
{

(i, k)
∣

∣ 0 < i, 0 < k, Si = A, Si+k = B, ∄j, 0 < j < k, Si+j ∈ {A, B}
}

.

1is defined as 1− CDF of a distribution

59

4 Cross-layer reliability, energy efficiency, and performance optimization of data paths

Accordingly, the Probability Mass Function (PMF) based on distance k is calculated as:

PMFA-B(k) =

∣

∣{(i, r)|(i, r) ∈ TemporalA-B, r = k}
∣

∣

|TemporalA-B|
.

The extracted PMF is then used to find the SF as follows:

CDFA-B(k) =
k

∑

i=1

PMFA-B(i),

SFA-B(k) = 1− CDFA-B(k).

In a fictitious scenario where only instructions A and B exist, and they are divided into
two ALUs, the SF can explain the power-gating possibility. In this case, if the minimum
number of cycles required to perform a power-gating (power-gating threshold) is PGTH, then
SFA-B(PGTH) obtains the power-gating probability. Therefore,

disttemporal
A-B = SFA-B(PGTH)

can be used as the temporal distance metric between two instructions A and B.

Instruction similarity Many instructions share some gates in ALU mostly due to their simi-
larity. For example, an ALU could have different addition and subtraction instructions which
are inherently similar. As a result, these instructions share a large portion of gates in the
synthesized netlist. Therefore, implementing these instructions in separate ALUs would im-
pose redundant structures leading to undesirable leakage and area overhead. Therefore, it is
preferable to group such instructions into one ALU to reduce the associated overheads.

We introduce dissimilarity metric defined as the structural dissimilarity between instruc-
tions (distdissimilarity

A-B). For example, distdissimilarity
ADDL-ADDQ = 0.0 as both addition instructions imple-

ment similar functionality. However, distdissimilarity
ADDL-ORNOT = 1.0 as the corresponding instructions

implement two completely different logic structures. The dissimilarity values are assigned
based on the knowledge we have about the logic implementation of different instructions.

Some of the above parameters may lead to contradictory grouping of instructions into
ALUs. For example, instructions S8ADDL and ADDL should be grouped into one ALU because
of similarity ; however, according to their utilization frequencies they should be placed into
different ALUs to allow power-gating. In the next section, we define a formal clustering
problem considering the aforementioned parameters and solve it to find the best instruction
grouping strategy.

Instruction clustering problem definition

The problem of partitioning a large ALU into smaller ALUs can be defined as a clustering
problem, in which the distance between the instructions is explained by temporal proximity,
utilization frequency, and similarity of instructions. The goal of such clustering algorithm is to
maximize the distance between ALUs while minimizing the distance between instructions of
each ALU. This allows us to increase the overall power-gating likelihood of ALUs which leads
to lower leakage and better energy efficiency.

For this purpose we apply Agglomerative Hierarchical Clustering (AHC) algorithm [248]
to cluster the instructions into several groups, each group implemented in one ALU. AHC is
suitable for our problem because we can provide pairwise distances between each and every
two instructions. We create the pairwise distance matrix needed for the AHC algorithm
based on the frequency distance metric (distfreqA-B), temporal distance metric (disttemporal

A-B), and

60

4.4 Results and discussion

structural similarity (distsimilarity
A-B) introduced in the previous section. Finally, the elements

of the pairwise distance matrix (pdist) are obtained as (Cartesian distance on a 3D space):

pdist2A-B = (β.distfreqA-B)2 + (γ.disttemporal
A-B)2 + (λ.distdissimilarity

A-B)2. (4.1)

Here, β, γ, λ are coefficients to scale all the metrics into the same scale.
We consider single-linkage clustering method on the AHC. In a single-linkage method, the

linkage function D(X,Y), which is the distance between two clusters X and Y , is defined as
the minimum distance between every two members of the clusters:

D(X,Y) = min
A∈X,B∈Y

pdistA-B.

Therefore, maximizing the distance between clusters X and Y will allow the maximum power
gating possibility of the corresponding ALU implementations and improves the energy effi-
ciency.

Fine-grained power-gating prediction

Once the inactive phase for a component is detected at architecture-level, the component can
be power-gated by asserting a sleep signal on the header/footer sleep transistors. Although
the power-gating can effectively reduce the wasted leakage energy, it has to be done when the
functional unit is not utilized for a minimum number of cycles (PGTH) to break-even the
associated overheads. This value is estimated to be around 10 cycles for a typical technol-
ogy [247].

The inactive phase of a functional unit can be predicted based on several techniques at
runtime. In order to determine the inactive interval of each functional unit and decide whether
to power gate it or not, it is possible to monitor the instruction buffer for a number of upcoming
instructions while considering the branch prediction buffer. However, the power-gating signal
for a given functional unit can be mispredicted due to branch misprediction. As a result of
misprediction, the entire pipeline may be needed to be flushed to reload the correct instructions.
This provides some time to properly power up the required functional units without imposing
much overhead due to pipeline stall. It is worth mentioning that sub-threshold and near-
threshold processors typically have a deeper pipeline to benefit in terms of performance and
energy efficiency [249]. In such processors, there is enough time for functional unit power up
after misprediction due to deeper pipeline design.

4.4 Results and discussion

This section presents the methodology and simulation setup for the proposed data path op-
timization approaches. We evaluate the effectiveness of the proposed approaches by applying
them to an ALU.

4.4.1 Implementation flow

Input vector dependent timing and power analysis As explained in Section 4.3.1, the time
and power required by a functional unit to complete an operation execution is different from
one instruction to another. Here, we use the flow illustrated in Figure 4.6a to extract the
detailed timing and power information for each instruction. Therefore, for an ALU as a case
study:

1. Synthesis: The synthesis step of Figure 4.6a is executed with timing constraints to obtain
the gate level netlist of the synthesized ALU.

61

4 Cross-layer reliability, energy efficiency, and performance optimization of data paths

Power &

Timing

Reports

Synthesis

Convert OPCODE

Inputs to Internal

Wires

Assign Value to

OPCODE Wires

Timing and Power

Analysis (STA &

SSTA)

Start

End

ALU

(HDL)

ALU Netlist

(.v)

N
e

tl
is

t
M

o
d

if
ic

a
ti

o
n

S
y
n

th
e

si
s

A
n

a
ly

si
s

Instructions

OPCODE

Timing

constraints

(a) Implemented flow for extracting the timing
and power information of each ALU instruc-
tion.

Energy/Performance/Reliability Analysis

Instruction

Pattern Analysis

Instruction Clustering

& ALU generation

Start

End

ALU

generation

Hierarchical

Clustering

Algorithm

Workloads

Instruction

stream

SPEC

workload

benchmarks

Architectural

workload

simulation

ALU

(HDL)

Instructions’
Temporal

Distance

Instructions’
Dissimilarity

Instructions’
Utilization

Freq.

Power and

Timing Reports

Timing and

Power Analysis

(STA & SSTA)

ALU Synthesis
Standard cell

library for

STA & SSTA

Energy

efficiency &

Reliability

analysis

(b) Flow of the proposed functional unit paritioning
for ALU optimization.

Figure 4.6: Implementation flows of a) Instruction multi-cycling, b) Functional unit partitioning applied
to an ALU.

2. Netlist modification: The synthesized netlists of the ALUs are modified such that the
OPCODE input signals which determine the instruction to be executed are changed
to internal wires. For each instruction, the OPCODE signals are assigned to associated
values inside the Verilog netlist. This will effectively deactivate the rest of the instruction
paths in the ALU and force the STA tool to evaluate only the paths associated with the
execution of the given instruction. This is because the rest of the paths (which belong
to other instructions) are deactivated, and any change in the output pins of the ALU is
only due to the paths belonging to the given instruction.

3. Timing and power analysis: The timing and power analyses are performed on the mod-
ified netlists, and the delay of the instructions considering the variation as well as the
dynamic power and the leakage power for each instruction are extracted.

The change in the leakage power from one instruction to another is negligible because even
the inactive gates which are not part of the propagation paths are leaking. However, if the
execution time is different from one instruction to another, the amount of the leakage energy
would be different proportionally. The dynamic energy for each instruction is also calculated
based on the dynamic power value.

62

4.4 Results and discussion

Functional unit partitioning flow Figure 4.6b shows the overall flow of the proposed func-
tional unit partitioning method applied to an ALU. The flow consists of three distinct steps:

1. Instruction Pattern Analysis: In this step, the instruction stream extracted from running
representative workloads are analyzed to extract instruction temporal distance and uti-
lization frequency. Instruction dissimilarity is also defined based on the field knowledge
about the implementation of logic units.

2. Instruction Clustering and ALU generation: With the help of the information collected
from the previous step, instructions are grouped into n clusters, and each cluster is
implemented as a new ALU. Moreover, all the partitioned ALUs are combined with a
circuit for multiplexing their outputs to form a union ALU, as shown in Figure 4.2b.

3. Energy, Performance and Reliability Analysis: The union ALU generated from the pre-
vious step is evaluated in terms of timing and performance, and finally, its reliability is
evaluated when it is used instead of the original ALU.

4.4.2 Reliability analysis

Various sources of delay variation, e.g. process variation, aging, temperature and voltage
variations, can potentially lead to timing failures. Therefore, timing failure is presented as
a stochastic metric which is dependent on the value of additional timing margin and hence
the allocated clock period. Therefore, statistical information regarding the circuit delay can
be used to evaluate the reliability. Accordingly, Reliability is the probability of not having a
timing failure due to variation effects.

In a functional unit such as an ALU, the Failure Probability of a circuit caused by timing
issues can be modeled as a function of the allowed time for instruction execution T , based on
the delay distributions of the instructions:

Reliability = CDFALU (T) =

{all instructions}
∏

INST

CDFdelay,INST(T), (4.2)

where CDFdelay,INST is the Cumulative Distribution Function (CDF) of delay of instruction
INST. Accordingly, the Failure Probability is obtained as:

Failure Probability = 1− Reliability. (4.3)

There is a trade-off between reliability and performance as explained in the above equation.
A larger clock period (T) results in higher reliability and lower failure probability at the cost
of speed.

In a multi-cycling scenario, the allowed time for instruction execution T is dependent on
the number of cycles allocated by each instruction. For a single-cycle instruction T is equal
to the clock period Tclk; however, a two-cycle instruction is allowed to be executed for 2Tclk.
Therefore, Equation (4.2) is modified as follows:

CDFALU (Tclk) =

{all instructions}
∏

INST

CDFdelay,INST(nINST × Tclk). (4.4)

In the above equation, nINST is the number of cycles allocated for instruction INST obtained
based on the distribution of the instruction delays:

nINST = ⌈dINST
Tclk

⌉. (4.5)

63

4 Cross-layer reliability, energy efficiency, and performance optimization of data paths

dINST is the instruction delay considering the variation, i.e a point in the tail of the delay
distribution referring to very low failure probability. Please note that slow instructions have
large logic depth, i.e. there are many gates in the critical paths of these instructions. According
to the Central Limit Theorem [250], the delay distribution of such instructions is approximately
normal (Gaussian). In such case, we can use parameters such as the mean (µ) and standard
deviation (σ) of instruction delay to approximate its CDF function. Therefore, we may choose
µ+3σ of the instruction delay as dINST which corresponds to less than 0.135% failure probability.

We perform SSTA to evaluate the impact of process variation [83] on the timing of the
circuit. The SSTA tool reads variation information from the variation library (see Section 3.4.1)
containing variation information at cell-level. The SSTA extracts accurate delay distribution
for each instruction of the ALU represented by their CDF (i.e. CDFdelay,INST). Based on these
distribution functions and Equation (4.4), we extract the reliability of the ALU.

4.4.3 Simulation setup

The proposed approaches are applied to a 64-bit ALU. For this purpose, we synthesize a 64-bit
ALU with loose and tight timing constraints and characterize it for the NTC by a Statistical
Static Timing Analysis (SSTA) to extract the power and delay of each instruction as well as
the reliability as explained in Section 4.4.1. The same methodology is applied to synthesize
and analyze the partitioned ALUs generated by the functional unit partitioning method.

Additionally, we extract the instruction stream for SPEC2000 benchmark workloads using
gem5 architectural simulator [251]. The result of the architectural simulation is used to evalu-
ate the impact of the proposed instruction multi-cycling approach and to perform instruction
pattern analysis and clustering in the proposed functional unit partitioning approach. The
results of both approaches are compared to the baseline, which is a conventional functional
unit design, i.e. conventional synthesis with tight constraints.

4.4.4 ALU multi-cycling results

Multi-cycling improvement

By reducing the clock period below the delay of the slowest instruction, some instructions
need to be executed in multiple clock cycles. The number of the required clock cycles can
be calculated from Equation (4.5). The delay of the slowest instruction is 146ns, hence, the
minimum clock period for running all instructions in one cycle is also 146ns.

We changed the clock period of the Loose ALU and extracted the instructions which should
be executed in multiple cycles for each clock period. Here, the clock period is swept from 49ns
(one-third of the delay of the most critical instruction) to 100ns to explain the impact of clock
period on the circuit characteristics. As shown in Figure 4.7a, some instructions need to be
executed in three cycles when the clock period is below 73ns (which is half the delay of the
most critical instruction - marked by a vertical dashed line in the Figure).

The energy and performance improvement of the ALU executing workload ”equake” are
plotted in Figure 4.7b for various clock periods. The improvement numbers are calculated
in comparison with the Tight ALU which executes all instructions in one clock cycle. When
the clock period is reduced, the energy and performance improvements increase because the
delay slacks of the instructions are trimmed. However, when any change in the sets of 1-cycle,
2-cycle or 3-cycle instructions happens due to the clock period reduction, i.e. some 1-cycle
instructions become 2-cycle instructions or some 2-cycle instructions need to be executed in
three cycles, the improvements suddenly drop. The maximum energy improvement (34%) and
performance improvement (19%) are achieved when the clock period is 49ns.

64

4.4 Results and discussion

0

5

10

15

20

25

45 50 55 60 65 70 75 80 85 90 95 100

#
 i
n

ct
ru

ct
io

n
s

(2
-c

y
cl

e
s

&
 3

-c
y
cl

e
s)

Clock period (ns)

2-cycle instructions

3-cycle inctructions

(a) Number of 2-cycle and 3-cycle instructions for different clock period values

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

-20

-10

0

10

20

30

40

45 50 55 60 65 70 75 80 85 90 95 100

R
e

li
a

b
il
it

y
 I

m
p

ro
v

e
m

e
n

t
(X

)

Im
p

ro
v
e

m
e

n
t

(%
)

Clock period (ns)

energy improvement (%)

performance improvement (%)

Reliability improvement (X)

R2

P2

P3 R3

(b) Energy, performance and reliability improvements for different clock period values

Figure 4.7: Modifying the clock period of the ALU changes the set of 2-cycle and 3-cycle instructions
which impacts the energy, performance and reliability improvements significantly. The
results are extracted for Loose ALU + INC/DEC running workload ”equake”2at Vdd = 0.5V .
The improvement values are relative to the Tight ALU. Four pareto points are marked on
the graph: P2 (R2) provides the best energy and performance (best reliability) when ALU
is limited to execute all instructions in two clock cycles, and P3 (R3) provides the best
energy and performance (best reliability) when some instructions can be executed in three
clock cycles.

Impact of workload on the improvement ratio

Executing a slow instruction has no performance or energy benefits because it utilizes the ALU
for several clock cycles. However, executing a fast instruction which can be executed in fewer
clock cycle(s) will save some energy and improve performance. Since each workload execution
specific set of instructions, the amount of improvement is highly dependent on the profile of
the instructions utilized by a workload. Workloads which frequently execute fast instructions
will have better improvements using the proposed approach. We measured the amount of
energy improvement for different workloads as shown in Figure 4.8. The clock period is once
set to 73ns which means all instructions are executed in at most two clock cycles, and then
set to 49ns to evaluate the results for when the instructions can occupy three clock cycles.
The hatched bars in this figure show the amount of energy improvement in different workloads
compared to the baseline. The improvement is smaller for workloads which frequently execute
slow instructions (applu, mgrid, swim), and larger for workloads with more executions of
fast instructions (equake, mesa, mcf, twolf). For example, 76% of the executed instructions in
”applu” are among the 8 slowest instructions (addq, lda, ldah, s4addq, s4subq, s8addq,

2For other workloads the improvement plots show similar trend.

65

4 Cross-layer reliability, energy efficiency, and performance optimization of data paths

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

e
n

e
rg

y
 i
m

p
ro

v
e

m
e

n
t

(%
)

workloads

Loose ALU (T=49ns) Inst. Replacement (T=49ns)

Loose ALU (T=73ns) Inst. Replacement (T=73ns)

Figure 4.8: Energy improvement over the baseline (Tight ALU). The additional improvement is also
calculated for when addition / subtract are replaced by increment / decrement when
possible (clock period is 73ns and 49ns).

s8subq, subq as depicted in Figure 4.3b). However, this is only 45% for workload ”equake”.
The average energy improvement and the performance improvement over all workloads are
20.8% and 1.7%, respectively.

High-level optimization improvements

As explained, when the fast instructions are more utilized by the workload the improvements
are even higher. This concept can be incorporated at higher level e.g. application and compiler
optimization, to improve energy efficiency and performance further. This can be done in
various ways as discussed in Section 4.3.1.

Our analysis of the ALU instruction stream shows that in some workloads a number of
add/subtract instructions can be replaced by increment/decrement. In workloads such as
”bzip2” and ”gzip” which utilizes add and subtract a lot, it is possible to change up to 11%
of all instructions to increment/decrement. Since increment/decrement instructions are
faster compared to add/subtract instructions, the improvement in energy and performance
is considerable for these types of workloads. The energy improvements and the boost from
applying the instruction replacement are depicted in Figure 4.8 for two clock periods: 73ns (all
instructions are executed in at most two clock cycles) and 49ns (three clock cycles). For 49ns,
the energy and performance improvements are 3% and 4.3% higher for ”bzip2” and ”gzip”
when instruction replacement technique is applied. The technique is still applicable to other
workloads; however, the improvements are less (approximately 1%). Applying the instruction
replacement technique increases the average energy and performance improvements to 29.3%
and 12.8% when the clock period is 49ns (21.4% and 2.4% on average when the clock period
is 73ns).

In order to show the benefits of data type conversion, we executed a simple ”matrix ma-
nipulation” application which calculates M1 + M2 ∗ 2 for given matrices M1 and M2. The
corresponding results are presented in Table 4.1 for two clock periods: 73ns and 49ns. With a
clock period of 49ns and 2-byte data type used for ”matrix manipulation”, the energy and per-
formance improvements of the multi-cycled Loose ALU over the baseline are 26.5% and 8.6%,
respectively. However, changing the data type to a 1-byte data type increases the energy and

66

4.4 Results and discussion

Table 4.1: Energy and performance improvements of executing the ”matrix manipulation” workload
with different data types

baseline proposed multi-cycling approach

clock

period

data

type

energy

(nJ)

time

(µs)

energy

(nJ)

time

(µs)

energy

improvement

performance

improvement

73ns

short

(2-bytes)
27.9 502 22.2 502 20.3% 0.1%

char

(1-byte)
22.5 404 17.6 396 21.5% 2%

Overall improvement

(baseline - short → multi-cycling - char)
36.9% 21.1%

49ns

short

(2-bytes)
27.9 502 20.5 459 26.5% 8.6%

char

(1-byte)
22.5 404 15.9 356 29.0% 12%

Overall improvement

(baseline - short → multi-cycling - char)
42.9% 29.2%

performance improvements to 29.0% and 12% over the baseline.

Furthermore, the 1-byte data type is inherently more energy-efficient compared to the 2-byte
data type (22.5 nJ vs 27.9 nJ). Therefore, the cumulative energy improvement of changing the
data type from 2-byte data type to 1-byte data type is 42.9% (going from 27.9nJ to 15.9nJ).
Additionally, the performance also improves by 29.2% (going from 502µs to 356µs).

Energy/performance/reliability trade-off

In the near-threshold voltage region, each instruction has a much wider delay distribution
compared to the super-threshold region with a longer tail. Therefore, changing the clock period
affects the tail of the distribution contributing to failures. We calculate the failure probability
for each clock period according to Equation (4.3) and obtain the reliability improvement as
the ratio of the failure probability between the baseline and the optimized ALU:

Reliability improvement (Tclk) =
Failure Probability of baseline ALU (Tclk)

Failure Probability of optimized ALU (Tclk)
. (4.6)

The reliability improvement is depicted in Figure 4.7b versus the clock period. There are points
where the reliability improvement worsens which are mostly points with very high energy and
performance improvement. This is due to the fact that for these points of clock periods the
timing margins of most of the instructions are very small, leading to a significant probability
of failure even larger than the baseline. However, there are several points with orders of
magnitude better reliability. For example, the reliability improvement ratio is ≈ 1.3 × 1010

when the clock period is 57.7ns or 22891 when the clock period is 71.5ns. The performance
and energy improvement is also significant in these points. The reason for such large reliability
improvements is that the baseline has many critical or near-critical instructions with zero or
minimal slack. However, the multi-cycling strategy is able to provide enough timing margin
for many instructions such that the provided time for the execution of each instruction marks
very high sigma values on the tails of all the delay distributions. Therefore, the designer is

67

4 Cross-layer reliability, energy efficiency, and performance optimization of data paths

ZA
P

CM
OV

NE XO
R

CM
OV

EQ
OR

NO
T

CM
OV

LB
C

BI
S

AN
D

CM
PE

Q
IM

PL
VE

R
BI

C
AM

AS
K

IN
SQ

H
M

SK
QH

M
SK

QL
IN

SB
L

IN
SL

L
SR

A
EX

TW
L

EX
TB

L
SR

L
IN

SQ
L

M
SK

BL
IN

SW
L

ZA
PN

OT SL
L

EX
TQ

H
DE

CQ
IN

CQ
SE

XT
W

SE
XT

B
XX

XX
X

EX
TL

H
IN

SL
H

M
SK

LH
EX

TW
H

IN
SW

H
M

SK
W

H
XT

QL
EX

TL
L

M
SK

LL
M

SK
W

L
EQ

V
M

OV
LB

S
SU

BQ
/V

AD
DQ

/V
SU

BL
/V

AD
DL

/V
S8

SU
BL

S4
AD

DL
S4

SU
BL

CM
PU

LT
S4

AD
DQ

CM
PL

E
AD

DL
CM

PL
T

CM
PU

LE
CM

OV
GE

CM
OV

LT
CM

PB
GE

CM
OV

GT LD
A

S8
AD

DL
S8

AD
DQ

AD
DQ

LD
AH

CM
OV

LE
S8

SU
BQ

SU
BL

SU
BQ

S4
SU

BQ

Instructions

0.00

0.25

0.50

0.75

1.00

1.25

M
in

 C
lu

st
er

 D
ist

an
ce

Figure 4.9: Dendrogram illustration of the proposed AHC method for some of the instructions. The
instructions are merged bottom-up to form larger clusters.

able to find a good trade-off among energy efficiency, performance and reliability according to
the design requirements.

Discussion

It is evident from the results analyzed before that the multi-cycling approach can provide
considerable energy and performance benefits, as well as reliability improvements. In that
regard it is important to note that these results represent the ideal case, where the clock
period can be adjusted without any constraints. However, in a real processor (or an ASIC),
there may be other timing critical components, limiting the freedom for modifying the clock
period. Hence, another operation point in Figure 4.7b might be chosen. Moreover, in such a
scenario, to exploit a short clock period for the ALU, the entire processor has to operate at
a higher frequency. In fact, this may require additional design tweaks for other parts of the
processor. For this purpose, timing critical components of the processor can be split up into
multiple “short-cycle” components. Consequently, this results in a deeper pipeline, requiring
more control logic and more registers. However, this overhead should be compensated by
the overall leakage savings of the entire processor due to the runtime benefits of our novel
multi-cycling approach. In case a multi-cycle instruction has to be executed by the ALU, the
pipeline frontend of the microprocessor is stopped (through using a no-operation instruction,
or clock gating), such that the ALU can work for multiple cycles without change of the input
vector.

An alternative solution is to execute multiple short instructions in the ALU per clock cycle.
By that means, no major modifications of other processor components are necessary. For
instance, to execute two instructions in a clock cycle, the high and low levels of the clock
signal can be exploited as it was done in the Intel Pentium 4 [252]. On the other hand, to
execute more than two instructions in one cycle, additional shifted clock signals are required.
Hence, this scheme is only feasible for processors featuring reservation stations to execute
multiple instructions per clock cycle.

4.4.5 ALU partitioning results

Clustering results

The distance metrics are extracted based on the analysis of the SPEC benchmark workloads.
The temporal distance metric is extracted for PGTH = 100. The dendrogram in Figure 4.9
illustrates the results of the AHC method. As shown in this figure, most of the rarely used

68

4.4 Results and discussion

Table 4.2: Energy improvement results for 3-ALU and 4-ALU over Original ALU for 14nm PTM [32]

Area
overhead

(%)

Performance
improvement

(%)

Vdd(V)

Energy Saving for

Power-Gating Threshold (PGTH) in %

10

cycles

20

cycles

50

cycles

100

cycles

500

cycles

3-ALU 17

11 0.80 (super-Vth) 22.8 19.7 19.5 19.4 17.7

7.0 0.35 (near-Vth
3) 24.6 21.4 21.2 21.1 19.2

5.5 0.25 (sub-Vth) 27.7 24.4 24.1 24.0 21.8

4-ALU 19

11 0.80 (super-Vth) 43.1 38.6 32.1 27.6 15.1

7.0 0.35 (near-Vth) 43.4 38.9 33.0 28.9 17.3

5.5 0.25 (sub-Vth) 44.1 39.6 34.5 31.1 20.6
4

3
.4

%

2
8

.9
%

1
5

.7
%

4
2

.5
%

2
7

.2
%

1
3

.2
%

1 0 1 0 0 1 0 0 0

E
N

E
R

G
Y

 I
M

P
R

O
V

E
M

E
N

T
 (

%
)

POWER-GATING THRESHOLD (CYCLES)

14nm 10nm

Figure 4.10: Energy improvement of functional unit partitioning, on an ALU partitioned in to 4 smaller
units (4-ALU), for 10nm and 14nm technology nodes.

instruction in Figure 4.4 are either grouped together or grouped with other closely similar
structures.

The original ALU can be partitioned into n smaller ALUs according to the dendrogram.
One can determine the best n value, based on inconsistency coefficients [253]. However, as the
overhead of hardware implementation increases with the number of clusters, we only have to
limit n to have at most 4 clusters (ALUs). Here, we present results for partitioning the ALU
into three and four smaller ALUs as the energy improvement for two ALUs vanishes away as
the power-gating threshold (PGTH) increases.

Circuit-level results

Based on the clustering method, the original ALU is partitioned into three ALUs (3-ALU) and
four ALUs (4-ALU). Table 4.2 reports the area overhead and performance improvement of the
3-ALU and 4-ALU compared to the original ALU at 14nm. In the performance improvement
calculation, we also considered the delay of the extra multiplexer/demultiplexer circuit for
both 4-ALU and 3-ALU designs. Both 3-ALU and 4-ALU designs occupy more area compared
to the original ALU as expected. However, they perform faster because the logic implemented
in each of the partitioned ALUs is simpler and more coherent. By reducing the supply voltage,
the performance gain diminishes slowly, because the impact of process variation on the shorter

3In this technology Vth is close to 0.35V.

69

4 Cross-layer reliability, energy efficiency, and performance optimization of data paths

critical paths of smaller ALU is more than the long critical path in the original ALU.

Additionally, the overall energy improvement achieved by the proposed ALU partitioning
method is extracted and reported in Table 4.2. This is done by calculating the percentage of
the time that each smaller ALU can be power-gated based on a given power-gating threshold
(PGTH) and for each workload. As presented in Table 4.2, there is a significant energy
improvement even at super-threshold region (Vdd = 0.80V). The reason is that one of the
partitioned ALUs is mostly in sleep mode because its instructions are rarely used (see Figures
4.9 and 4.4). The percentage of the time an ALU is power-gated for a specific PGTH is
the same for all supply voltages; however, the energy improvement by the proposed ALU
partitioning technique is slightly more at lower supply voltages. The reason is that the leakage
power contribution to the overall power consumption grows significantly by reducing the supply
voltage. Therefore, reducing the same amount of leakage results in a larger percentage of energy
saving at lower supply voltages.

Figure 4.10 compares the energy improvement results for 4-ALU at near-threshold region
(0.35V) in two technology nodes: 10nm and 14nm. As shown, the energy improvement results
for these technology nodes resemble closely. A similar trend is observed for the rest of the
results.

Performance and reliability trade-off

The performance improvement of the functional unit partitioning, shown in Table 4.2, could
be traded for reliability at low supply voltages, similar to what explained for instruction multi-
cycling in Section 4.4.4. According to the results, it is possible to enjoy maximum performance
improvement (for example 11% at 0.80V) or invest the achieved speed on reliability to get up to
109 times lower failure probability. At the near-threshold supply voltage (0.35V) the maximum
achievable reliability improvement is 11.5× (by trading 7% performance improvement from
Table 4.2) because the delay distribution of the union ALU becomes wider than the original
ALU due to its shorter critical path.

4.5 Summary

The assumptions and optimization targets for NTC circuit design are different from the con-
ventional super-threshold design, due to large impact of variabilities as well as comparable
contributions of leakage power and dynamic power. This chapter presented two cross-layer
design optimization approaches for NTC circuits to co-optimize energy-efficiency, reliability,
and performance.

In the instruction multi-cycling approach, the idle time of the functional units is reduced by
executing slow instructions in multiple clock cycles and fast instructions in one clock cycle. This
approach consists of circuit redesign for smoother slack distribution across instructions (circuit
level), multi-cycle execution of slow instructions (architecture level) and code replacement
(compiler level). Our experimental results show that this approach achieves significant energy
(34%) and performance (19%) improvement while providing orders of magnitude reduction of
timing failure rate.

The proposed functional unit partitioning approach improves the energy efficiency and
reliability of functional units by exploiting fine-grained power-gating. For this purpose, a large
functional unit like an ALU is partitioned into several smaller (and faster) units based on the
instruction usage pattern of the running applications and the instructions inherent similarity.
As a result, the smaller functional units can be power-gated whenever they are not used for a
long time. Our simulation results show that the energy efficiency of an ALU can be improved

70

4.5 Summary

by up to 43.4% in the NTV region. Additionally, the performance can be improved by at least
7.0%, or the reliability can be improved by 11.5 times in the NTV region.

Therefore, by revisiting the design of functional units as important components of data
paths and utilizing cross-layer approaches, it is possible to optimize the energy-efficiency,
performance, and reliability of NTC designs.

71

5 Post-fabrication calibration and runtime
tuning for energy efficiency

The best energy-efficiency is achieved when a circuit operates in the NTV region; however, the
best operating point for maximum energy-efficiency could vary depending on post-fabrication
parameters (i.e., process corner) and runtime parameters (e.g., operating temperature and
workload). In addition, the power-gating state (power modes) of the components at runtime
affect the energy-efficiency of the Systems-on-Chip (SoC). Hence, the best operating point
must be determined after the fabrication and at runtime for each individual SoC.

This chapter proposes post-fabrication calibration and runtime tuning approaches based on
machine-learning to tune NTC circuits for MEP on a per-chip basis by considering process and
runtime variations [7, 8]. The presented methods do not require costly power measurement
circuitry on-chip or extra hardware, which makes them suitable for IoT edge chips. The simu-
lation results show that the proposed method has high MEP prediction accuracy and achieves
near-optimal energy-efficiency with low overhead while considering the runtime performance
and reliability constraints.

This chapter is organized as follows. We continue to Section 5.1 by presenting an intro-
duction, and motivating the necessity of post-fabrication calibration and runtime tuning in
NTC. Afterward, Section 5.2 and Section 5.3 present the proposed methods for individual
NTC circuits as well as SoCs, respectively. The effectiveness of the proposed methods is stud-
ied in Section 5.4, by discussing the simulation results. Section 5.5 concludes this chapter,
subsequently.

5.1 Introduction, Motivation, and Contributions

The supply voltage leading to the minimum energy consumption (best energy-efficiency), which
is known as MEP, is largely dependent on process and runtime variations as well as the
functionality of the circuit, as explained in Section 2.3.1. As an additional constraint, supply
voltage scaling can only be done to the level that the performance requirements allow because
operating the circuit at MEP drops the performance drastically [254]. Therefore, determining
the MEP of a circuit and the correct voltage scaling range is a challenging runtime decision as
it requires considering impacts of process and runtime variations.

Several methods have been proposed for obtaining the MEP point during design-time [235]
or runtime [78, 195, 197]. These methods are either inaccurate, because they cannot consider
all the important parameters affecting the MEP, or they are not very efficient, due to additional
hardware overhead, especially for NTC circuits with stringent energy-efficiency constraints.

Additionally, the impact of power-gating on the MEP, when the circuit is composed of
several components like SoCs, is mostly overlooked. In the IoT domain, SoCs are gaining pop-
ularity as they integrate commonly used components such as general purpose computing, ac-
celerators (e.g., multi-media or security accelerators), digital signal processors, communication
and transmission units, and analog/digital converters on a single chip with power management
features. Such integration brings additional complexity to the MEP tuning on SoCs because
of the additional parameters associated with the power management of the components such
as power-gating, clock-gating, and voltage-frequency islands [255]. Each SoC component has

73

5 Post-fabrication calibration and runtime tuning for energy efficiency

a unique power consumption profile while some components could share the same supply volt-
age. Depending on the requirements of the running application, some SoC components are
active whereas the rest are inactive or powered down. Additionally, supply voltage scaling
range of a SoC is constrained by the performance, functionality, and reliability requirements
of the running application [254]. Therefore, the system-wide MEP depends on the MEP of the
individual components and their states (power-gated, idle, fully utilized, etc.) and could vary
significantly at runtime.

This chapter presents two methods for optimizing the energy-efficiency, by accounting for
process and runtime variations with low cost:

• Post-fabrication calibration and runtime MEP adaptation method for individual circuits
[7]: This method can determine the MEP of a circuit with specific functionality, which
has a single supply voltage and clock frequency.

• Runtime adjustment of SoCs [8]: This method is applicable when various circuits are
operating together with different power modes on different voltage islands.

These methods complement each other at different levels, one for individual NTC circuits, and
the other one for SoCs containing several NTC circuits on different voltage islands.

In the post-fabrication calibration and runtime MEP adaptation method, we propose to pre-
dict the MEP based on a limited number of measurements performed during post-fabrication
test and calibration (e.g., speed and power consumption) using a trained machine-learning
model, and at runtime based on the operating temperature. Simulation results and experi-
mental measurements [74] show that temperature fluctuation is the most influential runtime
variability which significantly affects the MEP of NTC circuits. Therefore, this method ad-
dresses the MEP variation caused by temperature with minimum overhead to the circuit.

At the circuit level, the idea is to account for both process and temperature variation by
using a calibrated LUT which maps each runtime condition (i.e., temperature) to a specific
MEP (i.e., operating supply voltage and clock frequency). This LUT is generated using a
trained regression model during post-fabrication tests and stored on the chip. The calibrated
LUT is used to tune the supply voltage and clock frequency of the circuit to its MEP at
runtime, accounting for both process and temperature variations.

Due to the dependency of the system-wide MEP on numerous parameters, designing a single
model for all SoCs is not effective. Therefore, we propose a method for runtime adjustment
of IoT SoCs : to determine the MEP at the firmware-level using a trained machine-learning
model. The main advantage of the proposed technique is that it can be applied to any existing
SoC with voltage scaling capability without hardware overhead. Moreover, it is lightweight
and at the same time accurate enough to achieve a high energy-efficiency.

For the runtime adjustment of SoCs, we first need to evaluate the impact of various runtime
parameters such as temperature variation and power-gating of the components on the system-
wide MEP of SoCs. Then, a lightweight regression model is trained for predicting the MEP
of each SoC at the firmware-level during runtime. The prediction is done based on various
parameters including the power management states, sensors, and performance counters which
are already available on most SoCs. Finally, the SoC is tuned to the predicted MEP while
complying to the performance and reliability constraints.

The proposed methods can be implemented either in the hardware or software (as a part of
the firmware) and directly predict the MEP based on the temperature and the LUT. Therefore,
they have the flexibility of software (firmware) level, to be able to meet application perfor-
mance needs and components reliability constraints, and at the same time, are as accurate as
hardware-level monitoring, due to their detailed learning-based models. Therefore, the MEP is

74

5.2 Post-fabrication calibration and runtime MEP adaptation of NTC circuits

determined without implementing any closed-loop energy monitoring and supply voltage tun-
ing hardware as done in the state-of-the-art, which eliminates the costly additional circuitry.
The simulation results show that the proposed methods can tune circuits and SoCs to closely
track their MEP, resulting in a near-optimal energy-efficiency under the impact of runtime
variations.

5.1.1 Related work

The properties of the MEP have been studied by analytical models in the literature [59, 192,
235, 256, 257]. Such models cannot find the MEP accurately because they do not consider all
the aforementioned parameters affecting the MEP such as process and runtime variations.

In order to consider the impact of runtime variability sources, it is proposed in [78, 195–
198, 258, 259] to measure the circuit power online and take actions to maximize the energy
efficiency by adapting Vdd in closed-loop feedback. Despite demonstrating a high accuracy in
supply voltage tuning, all the closed-loop Vdd adaptation techniques are associated with costly
additional circuitry for measuring the circuit power and applying the adaptation strategies. In
addition, the resolution of online power measurement may not be high enough for fine-grained
MEP tracking. Furthermore, the impact of local variation cannot be correctly captured in the
methods that perform measurements on a limited circuit replica [195, 258]. Therefore, it is
crucial to have a low overhead solution for finding the MEP accurately on a per-chip basis,
considering the impacts of variabilities.

5.2 Post-fabrication calibration and runtime MEP adaptation of
NTC circuits

This section presents a method to calibrate each individual circuit to its MEP based on post-
fabrication measurements, and tune it at runtime based on temperature variation.

5.2.1 MEP analysis

We carried out experimental simulations to evaluate the impact of variability sources on the
MEP based on commercial 40nm standard cell library. Process variation is applied to MOSFET
transistors based on the Pelgrom’s law in Equation (2.9), and the process-dependent coefficient
is extracted from [83].

Standard cell library preparation

From the standard cell library, we used the cells which are suitable for ultra-low voltage
operation, i.e., cells with less than 3 cascading transistors as explained in [28], and characterized
them for NTC operation, using Cadence Liberate [260] and according to characterization setup
in Table 5.1 1. Therefore, the selected cells are characterized at supply voltages from 350mV
to 1.0V, temperatures between -25°C and 100°C, and at different process variation corners:
{typical, fast, slow}. A typical corner represents the average delay (µdelay) of a cell when
process variation is applied, whereas slow and fast corners correspond to ±3σdelay tails of the
delay distribution.

Since it is not feasible to characterize the entire library for all other temperature and voltage
values, we used Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) to extract all the
intermediate values similar to [261]. The PCHIP interpolation is applied on the logarithm

1In total, 3× 14× 9× 6 = 2268 characterization rounds executed.

75

5 Post-fabrication calibration and runtime tuning for energy efficiency

Table 5.1: Library characterization setup for MEP analysis

Corners TT, FF, SS (all transistor at “typical”, “fast”, and “slow” corners)

Cells
inverter (4 cells), nand (2 cells), nor (2 cells), xor (2 cells),

flip-flop (2 cells), and latch (2 cells): total 14 cells

Characterization

conditions

Voltages (V)
0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65,

0.8, 1.0

Temperature (°C) -25, 0, 25, 50, 75, 100

Table 5.2: Circuit characterization setup for MEP analysis

Circuits c432, c499, c1908, c2670, b04, b07, b11, b13

Corners N = 1000 Monte-Carlo Samples (representative sampling)

Characterization

conditions

Voltages (V)
0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65,

0.8, 1.0

Temperature (°C) -25, 0, 25, 50, 75, 100

Input Switching Activity (α) 0 (idle), 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1

Characterization

results

Dynamic Power
extracted using Synopsys

Design Compiler
Leakage Power

Clock period (fastest possible)

of the measured values, which significantly improves the interpolation quality for the NTC
libraries due to the wide scale of variations in the measured values.

Monte-Carlo analysis of benchmark circuits

The benchmark circuits for our simulation analysis are chosen from ISCAS’85 [26] and ITC’99
[231] and are synthesized using Synopsys Design Compiler based on the characterized cell
library. Then, we perform a statistical analysis to collect information regarding the impact of
variability sources on the MEP.

To do that, we follow a Monte-Carlo approach in which the samples (circuit instances)
required for the analysis are generated based on a Representative Sampling strategy. In this
approach, each cell of a circuit netlist is drawn from a few representative corners, namely
“typical”, “fast”, and “slow”. We follow these steps to generate a circuit instance using
representative sampling:

1. In the characterized standard cell libraries for different corners, supply voltages, and
temperatures, we add postfixes to the name of the cells according to the characterization
corner. For example, we will have NAND2 T, NAND2 F, and NAND2 S instead of a single
NAND2.

2. Each cell instance inside the netlist of the circuit is replaced with the same cell type but
from a random corner, based on the sampling strategy. For example, the following line
from the netlist file:

NAND2 U1 (.A1(N3), .A2(N6), .Y(n1));

76

5.2 Post-fabrication calibration and runtime MEP adaptation of NTC circuits

can be replaced with one of these lines:

NAND2 T U1 (.A1(N3), .A2(N6), .Y(n1));

NAND2 F U1 (.A1(N3), .A2(N6), .Y(n1));

NAND2 S U1 (.A1(N3), .A2(N6), .Y(n1));

Then, the generated circuit instance is characterized2 at different supply voltages, tem-
peratures, and input switching activity as explained in Table 5.2, and its power and timing
characteristics are extracted using Synopsys Design Compiler.

There are two reasons behind using such sampling strategy instead of a truly random
sampling, in which each cell is chosen from a truly random population. First, choosing the
cells only from the representative corners reduces the number of standard cell characterizations
significantly. Since the process of standard cell characterization is time-consuming, we have to
limit the cell samples population to a few representative corners to be timely feasible. Second,
it reduces the number of circuit instances required for reaching important samples which reflect
the tails of the distribution [262]. Since in this sampling we choose the cells from the most
important categories corresponding to average and tails of the distribution, it is more likely
to acquire important circuit instances instead of many circuit instances close the population
average. As a result, comparatively fewer circuit instances are required with such sampling
strategy compared to the normal sampling.

For the Monte-Carlo simulation, N circuit instances (netlists) are generated based on the
representative sampling strategy and are characterized under the conditions mentioned in
Table 5.1 and stored in a dataset. Since MEP is a function of process and runtime variation,
PCHIP interpolation is used to obtain the MEP of each circuit (to consider process variation)
under various runtime conditions (temperature and workload variations) by sweeping Vdd in
the range of 0.35 ≤ Vdd ≤ 1.0. Then a dataset is created which maps circuits and operating
conditions to MEP:

circuit, instance, T, α −→ V MEP
dd , TMEP

clk

This dataset and the interpolating PCHIP functions for each circuit are eventually used in
Section 5.2.2 to create the training and evaluation dataset for the proposed method.

Please note that we are giving equal weights to “typical”, “fast”, and “slow” corners in
the representative sampling strategy. However, in a truly random sampling, we would observe
abundant number samples close to “typical” and infrequent samples close to the “slow” and
“fast” tails. Therefore, the distribution of the circuits generated using the representative
sampling is much wider compared to random sampling. Although the distribution is perturbed
by such representative sampling, it is beneficial for our analysis, since we are also interested
in exploring the rare corners thoroughly.

MEP variations

The results of this MEP analysis show that the MEP fluctuates depending on the process
and runtime variations. As presented in Section 2.3.1, process, temperature, and workload
variations induce MEP fluctuation.

2Since 1000 samples for each of these 8 circuits are characterized at 9 voltages, 6 temperatures, and 8 activity
values, we executed in total 1000×8×9×6 = 432000 timing characterization rounds and 1000×8×9×6×8 =
3456000 power characterization rounds with Design Compiler

77

5 Post-fabrication calibration and runtime tuning for energy efficiency

0.00 0.02 0.04 0.06 0.08 0.10
Average FF switching activity

basicmath_small
bitcount_small

crc32
fft_small

qsort_large
sha_small

stringsearch_large
stringsearch_small

susan_smooth_small

Figure 5.1: Average flip-flop switching activity of Leon3 under different MiBench workloads changes in
the range of 0.062 ≤ α ≤ 0.108, with µα = 0.085 (in red). This range is used as the range
of input switching activity variation (±27%).

Process variation The amount of process variation is dependent on technology, circuit struc-
ture, and cell library. Circuits with large logic depth experience less process variation, leading
to less MEP variation from chip to chip. Using gates with smaller size also contributes to
higher process variation. In Chapter 3, we proposed a methodology to reduce the impact of
process variation using better EDA flow.

Temperature variation The temperature of NTC circuits is solely determined by ambient
temperature3. The range of temperature variation could vary significantly, depending on the
application and in-field conditions. For example, an implanted device has a very narrow
temperature fluctuation while the temperature fluctuation in automotive and environmental
sensing applications could vary in a wide range. Consequently, the impact of temperature
on the MEP could be small or large depending on the application. This encourages on-chip
or on-board temperature sensing and adapting the circuit to the temperature for circuits
experiencing large temperature variation. Please note that only one sensor is sufficient as
there is no temperature gradient due to power dissipation on the chip. Here, the temperature
is considered to change in the range of −25°C ≤ T ≤ 100°C, as it is completely dependent on
the ambient condition, i.e., there is no cooling/heating system to control the temperature.

Workload variation As explained in Section 2.3.1, the impact of workload is dependent on
the circuit structure as well as input switching activity α. To grasp a correct understanding
of the range of α variation in a real scenario, we executed several MiBench workloads [95] on
a Leon3 processor [233], which matches the characteristic of an IoT processor for low power
applications. The average input switching activity of the processor can be represented by
the switching activity of the flip-flops, which is shown in Figure 5.1 for different workloads.
According to this observation, the average input switching activity for different workloads can
vary by at most ±27% over different workloads. This means that in most cases, the change in
the MEP due to the dynamic to leakage ratio is not significant compared to the process and
temperature variations.

Figure 5.2 compares the relative impacts of process, temperature, and workload variations
on the V MEP

dd of various benchmark circuits. The results are extracted based on the aforemen-

3The ambient temperature does not necessarily relate to the air temperature. Especially in many-core systems,
if an NTC core is fabricated on the same die next to a high-performance core with high power consumption,
the temperature of the NTC core could be correlated to the activity of that high-performance core.

78

5.2 Post-fabrication calibration and runtime MEP adaptation of NTC circuits

b04 b07 b11 b13 c1908 c2670 c432 c499
circuits

0

50

100

150

200

ΔV
M
EP

dd
 (m

V)

process
temperature
workload

Figure 5.2: The impact of process, temperature, and workload variations on V MEP
dd for different bench-

mark circuits under full temperature range [−25°C, 100°C] and the reasonable activity range.

tioned Monte-Carlo simulation setup and under reasonable input switching activity variation,
i.e., ±27% α variation. As shown, temperature variation has the highest impact on the MEP,
followed by process variation. The workload variation impact in all circuits is much less than
the cumulative impacts of temperature and process variation.

Overall, due to the lower impact of the workload on the MEP as well as the high cost of
implementing a dedicated circuit for measuring the activity, in compact and low-power chips
designed for IoT applications, we can establish our MEP adaptation method only based on
process and temperature variations.

5.2.2 MEP tuning based on process and temperature variations

Considering the impact of workload variation for MEP adaptation imposes extra hardware
overhead because it is necessary to measure the amount of activity at runtime [78, 195–198,
258, 259]. The idea of the proposed method in this section is to achieve the best efficiency
without imposing such hardware overhead by predicting the MEP of an NTC circuit at runtime
only based on process and temperature variations.

We collect accurate information regarding the process corner of a fabricated chip and its
sensitivity to temperature during the post-fabrication measurements and test. Then, a LUT is
created and stored on the chip to facilitate the MEP tuning at runtime. This LUT maps each
temperature to a specific MEP condition and is created with the help of a pre-trained machine-
learning model. Therefore, it is possible to predict the MEP by reading the temperature at
runtime, easily.

Most modern IoT chips have temperature sensors or have facilities to collect temperature
information, such as Analog-to-Digital Converter (ADC). Therefore, the proposed method
does not impose extra circuit overhead for measurements. The temperature→MEP mapping
logic can be implemented in either hardware or software. Therefore, we eliminate the need for
an embedded closed-loop energy monitoring system, resulting in much less hardware overhead.

Since the proposed method relies on supervised machine-learning, we need to prepare a
training dataset. The training dataset is extracted by characterizing many instances of the
same circuit and includes important characteristics of the circuit instances such as speed and
power as well as the MEP. Once the machine-learning model is trained on the training dataset,
it can predict the MEP of any given instance of the circuit based on the circuit characteristics,

79

5 Post-fabrication calibration and runtime tuning for energy efficiency

Characterization &

MEP Measurement
Training

Dataset

O
ff

li
n

e

C
h

a
ra

ct
e

ri
za

ti
o

n

A
n

d
 M

a
ch

in
e

-L
e

a
rn

in
g

Train Machine-

Learning Algorithm

Post-Fabrication

Measurement

(Power, Clock, …)

R
u

n
ti

m
e

 M
E

P

 A
d

a
p

ta
ti

o
n

Sample Instances

Fabricated

Chip

P
o

st
-F

a
b

ri
ca

ti
o

n

C
a

li
b

ra
ti

o
n

Runtime Temperature

(𝑇) Measurement

MEP 𝑉𝑑𝑑 , 𝑓

Build Lookup Table

On-chip

MEP Lookup Table T → 𝑉𝑑𝑑 , 𝑓

MEP Lookup Table T → 𝑉𝑑𝑑 , 𝑓

Trained

Regression Model

Store Lookup Table

on chip

Figure 5.3: Overall flow of the proposed MEP prediction method for NTC circuits. The flow consists
of three main parts: 1) Offline characterization and machine-learning, 2) Post-fabrication
calibration, and 3) Runtime MEP adaptation.

which can be obtained using a limited number of measurements during the manufacturing
tests on a per-chip basis. Afterward, we create the LUT which maps the temperature to the
MEP using the trained machine. The LUT is finally stored on the chip to be used for MEP
adaptation at runtime. Eventually, the MEP tuning is done at runtime based on the calibrated
LUT.

The proposed method leverages the flattening of the energy-voltage curve around the MEP
(see Figure 2.8b). We will show in Section 5.4 that the energy inefficiency, caused by a small
inaccuracy in the MEP prediction due to ignoring the impact of workload variation, is negligible
(see Figure 5.8).

The overall flow of the proposed method is presented in Figure 5.3. The flow consists of
three steps (1) Offline characterization and Machine-learning training, (2) Post-fabrication
calibration, and (3) Runtime MEP adaptation, explained in the following.

Offline characterization and machine-learning training Enough number of randomly chosen
sample circuits are needed to make a training dataset which contains sample circuit charac-
teristics and the corresponding MEPs. Then, by training a regression model on the generated
training dataset, it is possible to predict the MEP (both V MEP

dd and TMEP
clk) based on any set

of input parameters.
Sample circuits: could be generated using a Monte-Carlo simulation (pre-silicon), or could

be fabricated chips (post-silicon). Here, we employ the sampling method presented in Sec-
tion 5.2.1 to create the circuit sample instances. These circuits are characterized at different
temperatures and voltages as mentioned in Table 5.1, and their power and timing properties

80

5.2 Post-fabrication calibration and runtime MEP adaptation of NTC circuits

Table 5.3: Regression parameters for MEP prediction

Process Variation Inputs (Predictors)

Parameters Leakage power (Pleak), Dynamic power (Pdyn), Clock period (Tclk)

at supply voltages Near-threshold (V NT
dd), Nominal(V NOM

dd)

at temperatures Low (TL), High (TH)

Regressions
V MEP
dd = f(Predictors,T)

TMEP
clk = g(Predictors,T)

are extracted.

Training dataset: maps predictors (or inputs) to targets (or outputs). According to the
analysis presented in Section 5.2.1, temperature and process variation are the most important
factors affecting the MEP. Therefore, the predictors are the parameters which represent process
variation and temperature of the circuits. The targets are circuit MEP parameters, which are:
{V MEP

dd , TMEP
clk }.

The process variation impact can be explained by: Dynamic power (Pdyn), Leakage power
(Pleak), and Clock period (Tclk). However, we need to measure these parameters at two
different supply voltages Vdd ∈ {V NT

dd , V NOM
dd } and two different temperatures (Low TL and

High TH) to contain information about the sensitivity of the MEP to both supply voltage
and temperature in the dataset. Table 5.3 summarizes the predictor parameters stored in the
dataset and used for building a regression model for MEP prediction.

In addition to the predictors, the target parameters are also included in the training dataset.
For each sample circuit, the MEP is discovered by sweeping Vdd from nominal voltage to below
threshold range, and by measuring the power and speed of the sample circuit. This process is
also done at different temperatures and input switching activity values. Finding the MEP of
the sample circuits is an exhaustive process; however, this step is a one-time process and can
be done offline.

Post-fabrication calibration In this step, the trained machine-learning model from the pre-
vious step can predict the MEP of any instance of the chip based on the predictor parameters
shown in Table 5.3. Therefore, for each fabricated chip, we need to measure these parameters
during the post-fabrication tests.

It is important to keep the measurement time as short as possible at this step because of the
corresponding costs. During a typical test phase, many of the parameters mentioned in Ta-
ble 5.3 are measured at different temperature and voltages in order to assure the functionality
of the circuit and to evaluate the specification of the chip. Therefore, the required predictor
measurements do not impose much overhead to the test phase.

Please note that the accuracy of the measurements during the post-fabrication testing is
rather high considering the use of external measurement tools and Automated Test Equipment
(ATE), and is sufficient for the MEP prediction.

Once all the predictors are measured, the regression models in Table 5.3 are used to obtain
the MEP for different temperature values (T). Accordingly, a LUT is created which maps
different T values to the corresponding MEP values. In the end, the generated LUT is stored
on the chip to be used for MEP tuning at runtime. As we ignore the fluctuation in the
workload while creating the LUT, for each circuit we assume the average activity α̂ and the
LUT is generated only for a single α̂ value.

81

5 Post-fabrication calibration and runtime tuning for energy efficiency

𝑻1 𝑻2 𝑻3 𝑻4 𝑻5

𝑉𝑑𝑑𝑀𝐸𝑃1

𝑉𝑑𝑑𝑀𝐸𝑃2

𝑉𝑑𝑑𝑀𝐸𝑃3

𝑉𝑑𝑑𝑀𝐸𝑃4

𝑉𝑑𝑑𝑀𝐸𝑃5

LUT points

Interpolation

𝑻𝑥

𝑉𝑑𝑑𝑀𝐸𝑃(𝑖𝑛𝑡𝑒𝑟𝑝)

Figure 5.4: Interpolation is used to find the MEP values for any intermediate temperature value (Tx)
which does not exist in the stored LUT on chip.

Runtime MEP adaptation At runtime, the temperature is measured, and with the help of
the LUT, the MEP is obtained. We use PCHIP linear interpolation to find the MEP for any
given value which does not exist in the LUT, as shown in Figure 5.4. We apply the PCHIP
interpolation on the logarithm of the values in order to improve the interpolation quality for
TMEP
clk interpolation (i.e., log-linear interpolation). Then, the supply voltage and frequency

are adapted according to the obtained MEP.

The runtime adaptation task does not need to be running all the time. Since the MEP
change is only significant due to temperature variation, the runtime adaptation is only invoked
when temperature changes significantly to predict the MEP and adapt circuit Vdd and Tclk

accordingly.

Creating the Look-Up-Table for MEP prediction

The LUT is a simple mapping of temperature to V MEP
dd and TMEP

clk . However, it needs to
consider the impact of the process variation as well. Therefore, we first train regression models
based on the training dataset, and then we use this regression model to extract the LUT. We
are interested in finding the regression models f and g, shown in Table 5.3, which predict the
MEP (V MEP,pred

dd , TMEP,pred
clk) based on the measured predictors at two different temperatures

(TL, TH) and two different supply voltages (V NT
dd , V NOM

dd).

In order to create the LUT, we put the measured predictors into the regression models f
and g to create two new regression models which are solely dependent on temperature (T):

V MEP
dd = F (T), (5.1)

TMEP
clk = G(T). (5.2)

The new regression models are in fact the LUT. Therefore, we evaluate F and G regression
models for a number of temperature values and store them on the chip as the LUT. At runtime,
a PCHIP interpolation method will find the values for all temperature values.

Machine-learning model building We use Bayesian Ridge Regression (BRR) to make the
regression models [263]. BRR is a linear model similar to an Ordinary Least Square (OLS)
fitting; however, it has properties which makes it suitable for our MEP prediction problem.
It is mathematically provable that a Ridge regression is more suitable for the problem with
collinearity [264, 265], i.e. when a predictor variable can be predicted from other predictors

82

5.3 Runtime adjustment of IoT SoCs

with good accuracy. Since we most probably have such relation between the predictors (the
measured parameters), it is necessary to use a regression model which is able to handle such
problems. Despite an OLS which finds a set of parameters which optimizes the error be-
tween predicted target values and real target values, a Bayesian regression model treats the
parameters as random variables and tries to find a set of hyper-parameters that optimizes the
posterior distribution. Therefore, it would lead to less over-fitting and better cross-validation
scores, which results in good interpolating and extrapolating characteristics. The fitting qual-
ity of BRR for ill-posed problems is also better than OLS, due to penalization of the size of
coefficients.

The prediction performance of the regression model can be substantially improved by using
logarithmic and polynomial transformation. The logarithmic transformation that we use for
this purpose is log-linear as follows:

log(V MEP
dd) = f(Predictors,T),

log(TMEP
clk) = g(Predictors,T),

This improves the accuracy of the regression model because it comprehends the exponential
change in circuit parameters in the NTV region [160]. Moreover, we can incorporate the inter-
dependency between the parameters with higher order polynomials. Therefore, we transform
the parameters space using a second order polynomial. Finally, we perform 5-fold cross-
validation to reduce the over-fitting.

5.3 Runtime adjustment of IoT SoCs

5.3.1 Voltage and frequency islands in SoC

Among different techniques to manage the power consumption of the SoCs, Voltage/Frequency
Island (VFI) is popular because it allows the designer to maintain performance while controlling
the power consumption and temperature [255]. Depending on the running workload, some
SoC components are utilized whereas the unused components are power-gated. However,
having multiple VFI increases the design complexity of SoC integration, as it necessitates to
design multiple Power Delivery Networks (PDN) and to add extra components such as voltage
regulators, PLLs, and voltage level shifters. Therefore, in a typical IoT SoC, the number of
VFIs is typically limited. As the overhead of having multiple VFI could be high in ultra-low
power SoCs, several SoC components could reside on the same voltage island, sharing the
same supply voltage. This means that changing the supply voltage of a VFI affects several
components. Additionally, each SoC component could have a unique power consumption
pattern. For example, the leakage power of a cache memory dominates its power consumption,
while on the contrary, the dynamic power is predominant in a cryptography co-processor.
The voltage scaling capabilities of the components are also widely different; Memories and
communication components are known to have a limited voltage scaling whereas the supply
voltage of the combinational circuits can be scaled down easier. Moreover, the performance
requirements for each component, dictated by the running application demands or functional
constraints, could impede the VFI voltage-scaling.

As a result, any envisioned methodology for voltage-scaling of the VFIs has to consider a
considerable number of parameters, which overly complicates the problem if the voltage-scaling
method is going to be implemented as a hardware component.

83

5 Post-fabrication calibration and runtime tuning for energy efficiency

Table 5.4: Problem definition of the machine-learning model to find the most energy-efficient system-
wide voltage

Objective: Find the energy-efficient system-wide V MEP,chip
dd given the SoC parameters

and constraints

Parameters affecting V MEP,chip
dd of SoC (also called ”features”)

S = [si], si ∈ {0, 1} Power-gating states of the SoC components

U = [ui], 0 6 ui 6 1 Utilizations of the SoC components

T Temperature of the SoC

Constraints from application (performance) or functional requirements

V min
dd = [V min

i] Minimum voltage of the SoC components

Approach: Predict V MEP,chip
dd using a machine-learning based regression model trained

on the parameters of the SoC:

V MEP,chip
dd = argmin

Vdd

Energy(Vdd) subject to {S,U,T , V min
dd }

5.3.2 Regression model for runtime adjustment of SoC

In this section, we propose the method for tuning the supply voltage of SoCs for the best
energy efficiency.

Problem definition

The objective is to find the best supply voltage for each voltage island, which leads to the
best energy-efficiency for the entire SoC based on the SoC operating temperature and the
utilization of the SoC components. A SoC consists of different components, some of which
have the same supply voltage. They could also be fully/partially utilized, idle, or completely
power-gated during the runtime. We assume that the information regarding the power-gating
state and the utilization of the components is available at the firmware-level through hardware
registers, performance counters, and from the running application. Table 5.4 summarizes the
problem definition.

We propose to solve this problem by determining the MEP during the runtime at firmware-
level with the help of a supervised machine-learning model, which is trained offline on the
input parameters (S,U, T). Then, the supply voltage of the SoC is adapted to the determined

MEP value V MEP,chip
dd .

Without the loss of generality, we solve the problem for a SoC with one voltage island and
only for one process corner. The same approach can be applied to SoCs with several voltage
islands and different process corners4 by repeating the same methodology for individual voltage
islands.

Input parameters

The parameters and the constraints presented in Table 5.4 are accessible at firmware-level.

• The power-gating states of the SoC components (si ∈ {0, 1}) describe whether
a SoC component is power-gated (si = 0) or turned-on (si = 1). This information is
accessible via power-management registers.

4The process corner is typically extracted during the post-manufacturing tests [266].

84

5.3 Runtime adjustment of IoT SoCs

Fabricated SoC

CPU

M
u

lt
im

e

d
ia

Memory
 Put trained machine-learning

 algorithm on the firmware

OFFLINE CHARACTERIZATION AND TRAINING

SoC characterization

• Sweep 𝑉𝑑𝑑 , 𝑇

• Measure (𝐷, 𝐿, 𝑇𝑐𝑙𝑘) Sample SoCs

CPU

M
u

lt
im

e

d
ia

Memory
P

E

Generate sample 𝑆, 𝑈, 𝑇 and extract 𝐸 𝑉𝑑𝑑

Obtain 𝑉𝑑𝑑𝑀𝐸𝑃.𝑐ℎ𝑖𝑝
 by

minimizing 𝐸 𝑉𝑑𝑑

Machine-learning

training

𝑉𝑑𝑑𝑀𝐸𝑃.𝑐ℎ𝑖𝑝
 prediction

Read temperature,

components states and

utilization (𝑆, 𝑈, 𝑇)

𝑉𝑑𝑑 adaptation
V. Regulator

RUNTIME OPTIMUM VOLTAGE PREDICTION AND ADAPTATION

Machine-Learning Dataset 𝑆, 𝑈, 𝑇 → 𝑉𝑑𝑑𝑀𝐸𝑃.𝑐ℎ𝑖𝑝

Curves

dataset
(Interpolation)

Figure 5.5: Overall flow of the proposed runtime adjustment of SoCs to minimum energy operation.

• The temperature of the chip (T) can be obtained from on-chip or off-chip sensors.
Most of the conventional IoT SoCs, which are designed to operate at NTC, contain
a temperature sensor or provide facilities to read it from an off-chip sensor because
temperature significantly affects NTC operation.

• The utilization of the SoC components under the running workload (0 6 ui 6

1) could range from idle (ui = 0) to fully utilized (ui = 1). There is no single recipe
to derive the utilization of the SoC components with an acceptable accuracy, as the
utilization value depends on the circuit type and structure. As an example, the average
power consumption of an Advanced Encryption Standard (AES) encoder when utilized
is not significantly dependent on the input data. Therefore, the utilization value of the
AES encoder is 1.0 when it is used. However, in the case of a processor, the utilization
highly depends on the input data and the running workload. Fortunately, there exist
numerous methods for extracting the utilization of various circuits, such as [267, 268] for
microprocessors, or [269] for utilization prediction of other circuits.

• Minimum supply voltage constraints (V min
dd) are also applied to the SoC depending

on the internal structure of SoC components, or due to the application performance
requirements.

5.3.3 Implementation flow

The overall flow of the proposed method is presented in Figure 5.5. The flow consists of two
steps:

85

5 Post-fabrication calibration and runtime tuning for energy efficiency

1. Offline characterization and training, in which samples of the SoC from the same process
corner are characterized, the training dataset is prepared based on the characterization
data, and the machine-learning model is trained.

2. Runtime optimum voltage prediction and adaptation: The trained machine-learning model
is put on the firmware of the fabricated chips. The optimum supply voltage is calculated
by the machine-learning model during runtime, according to the power-gating state and
utilization of the SoC components and the temperature. Afterward, the chip is adapted
to that voltage by tuning the voltage regulator.

Offline characterization and training

We collect samples of the SoC from the same process corner and characterize them to obtain
the dynamic power Pdyn, the leakage power Pleak, and the speed Tclk curves of the individual
components on the SoC. For this, the supply voltage of the voltage island is swept from the
above-threshold region to the sub-threshold region. For each supply voltage value, the dynamic
power Pdyn, the leakage power Pleak, and the speed Tclk of the SoC components are measured.
The temperature also needs to be swept over the operating range, and the aforementioned
curves are extracted. As it could be too costly to perform the characterization on many
different supply voltages and temperatures on each SoC, we perform the measurements on
a limited number of temperatures and supply voltage levels, and the rest of the points are
extracted by PCHIP interpolation [270]. Finally, representative dynamic power Pdyn(Vdd,T),
leakage power Pleak(Vdd,T), and speed Tclk(Vdd,T) curves are extracted as the average of the
curves of the measured SoCs. This process is an offline characterization and has to be done
only once to obtain the curves dataset.

The representative curves are used along with the power-gating states (S), the utilization
parameters (U), and the temperature (T) to approximate the power consumption of the SoC
chip:

Pleak,chip(Vdd,T) =

N
∑

i=1

si.Pleak,i(Vdd,T),

Pdyn,chip(Vdd,T) =

N
∑

i=1

ui.Pdyn,i(Vdd,T).

Here, Pdyn,chip and Pleak,chip are dynamic and leakage power consumption of the SoC chip.
Pdyn,i, Pleak,i, si, and ui are dynamic power, leakage power, power-gating state, and the
utilization of component i of the SoC chip. Furthermore, we can approximate the number of
operations performed by the SoC as:

fchip(Vdd,T) =
N
∑

i=1

wi.fi(Vdd,T),

where fchip is the number of operations done by the chip at a unit of time and fi is the
frequency of component i. The number of operations performed by a component is typically
proportional to the frequency of the component; however, it is not always the same value.
Therefore, the scale factor wi is introduced for each component to scale the frequency to the
number of operations. Consequently, the energy (per-cycle) for each temperature and supply
voltage is obtained as:

Energy(Vdd,T) =
Pleak,chip(Vdd,T) + Pdyn,chip(Vdd,T)

fchip(Vdd,T)
. (5.3)

86

5.3 Runtime adjustment of IoT SoCs

The optimum supply voltage of the SoC (V MEP,chip
dd) is calculated by minimizing Energy(Vdd, T)

in Equation (5.3), for a given power-gating state vector S, utilization vector U , and tempera-
ture T . Consequently, we make the machine-learning dataset as a LUT which maps all possible
combinations of power-gating state vector S, utilizations vector U , and temperature T to the
optimum supply voltage of the SoC (V MEP,chip

dd).

Machine-Learning Dataset :

{

Features: (S,U,T)

Target: V MEP,chip
dd

This dataset is used to train and validate a machine-learning model for predicting V MEP,chip
dd

based on the features (S,U,T). Therefore, this dataset is partitioned into a training dataset
and a validation dataset, where the former is used for training the machine-learning model,
and the latter is used for the validation of the trained machine-learning model and to extract
the accuracy results presented in Section 5.4.

In this work, we used Stochastic Gradient Boosted Regression Trees (SGBRT) [271] for

predicting V MEP,chip
dd during the runtime. SGBRT performs well for the model fitting problems,

which is the case for our problem, whereas a polynomial regression model fits poorly on our
dataset. It is important to control the evaluation cost of the trained SGBRT model because
the evaluation process is done at the firmware-level during runtime. The evaluation cost of
SGBRT is dependent on the number of trees and the depth of the tree. For a tree with depth
k, we only need k − 1 comparisons to get to the leaf value. Therefore, for an SGBRT model
containing m regression trees, we need at most (k− 1)×m comparisons and m− 1 additions.

Better prediction performance can be achieved by feature engineering techniques such as
considering the inter-relation between the features described in Table 5.4. In this regard, we
introduce additional features by considering the multiplications of every two features (second
order polynomial feature transformation). Moreover, a feature selection method based on
information criterion is applied to obtain the most important features out of the original (i.e.,
(S,U,T)) and the engineered features. Therefore, only a small subset of all features are used
for prediction in the final model. This significantly improves the performance of the machine-
learning model considering the cross-validation results, while shrinking the dimensions of the
regression trees.

To prevent over-fitting and under-fitting, the hyper-parameters of the SGBRT (e.g., k and
m) should be optimized. We perform a grid search on the hyper-parameter space and perform
5-fold cross-validation to evaluate the best hyper-parameters set, which does not overfit the
data5. We also consider the implementation overhead during the hyper-parameter optimization
by limiting the upper bounds of k and m.

Runtime optimum voltage prediction and adaptation

The trained machine-learning model from the previous step is stored on the firmware after
SoC fabrication. During the runtime, the machine-learning model on the firmware is called
to determine the V MEP,chip

dd . The predicted V MEP,chip
dd is then checked versus the minimum

supply voltage constraints of the active components. The supply voltage, to which the circuit
is tuned, should be greater than the minimum supply voltage of all active components:

Vdd = max
{

V MEP,chip
dd , max

1≤i≤n
ui.V

min
i

}

5A good hyper-parameter set maximizes the prediction accuracy in all 5 cross-validation folds and minimizes
the difference among the accuracy of the cross-validation folds [272].

87

5 Post-fabrication calibration and runtime tuning for energy efficiency

Then, the SoC is adapted to the Vdd obtained from the above equation by setting the pre-
dicted voltage on the voltage regulator. As a result, the proposed methodology considers the
performance requirements of the applications being executed on the SoC.

5.4 Results and discussions

5.4.1 Circuit results

In this section, we evaluate the accuracy of MEP prediction in the proposed method and
report the corresponding energy-efficiency. The experiment is done on circuits c432, c499
c1908, and c2670 from ISCAS’85 benchmark and circuits b04, b07, b11, and b13 from ITC’99
benchmark [26, 231]. N = 1000 samples are generated for each benchmark circuit using the
Monte-Carlo method presented in Section 5.2.1, and 30% of all samples are put aside for the
validation purpose (validation dataset) while the rest of them are used for training with cross-
validation (training dataset). The log-linear BRR model is then fitted on the training data.
The prediction results are evaluated on the validation dataset for different input switching
activity levels to extract the energy-efficiency of the proposed method.

We compare the state-of-the-art runtime MEP tuning methods with our proposed post-
fabrication calibration and runtime MEP adaptation methods. The post-fabrication calibration
method [7] is suitable for circuits which are under limited temperature variation; however, the
proposed runtime MEP adaptation method is applicable to the circuits which are under large
temperature variation.

MEP prediction accuracy

The predicted MEP values for each sample circuit are compared to the values from timing and
power reports extracted by Synopsys Design Compiler. The coefficient of determination (r2

score) and Root Mean Square Error (RMSE) are reported in order to present the quality of the
predictions [273]. The coefficient of determination explains the portion of the variance in the
dependable parameters (V MEP

dd and TMEP
clk) that is predictable from the predictor variables

(inputs in Table 5.3). Therefore, in our regression problem, a score close to 1.0 means that
the changes in the dependent variables (here V MEP

dd and TMEP
clk) can be better predicted based

on the predictor variables (i.e., the measured parameters during post-fabrication tests and
temperature).

The RMSE metric quantifies the prediction power of a model and can be calculated as:

RMSE =

√

√

√

√

1

n

n
∑

i=1

e2i , ei = yi,predicted − yi,actual. (5.4)

The RMSE is the standard deviation of the residuals (ei). We only report the RMSE for Vdd

because the range of variation in Tclk is very large and a single RMSE value is not meaningful
without considering the real Tclk for each condition. For Tclk we rely on the r2 score.

The fitting results for benchmark circuit b04 from ITC’99 are demonstrated in Figure 5.6.
The r2 score for predicting V MEP

dd is 0.997 and for TMEP
clk is 0.999 on the validation set, which

explains an excellent fitting. The RMSE for V MEP
dd is less than 1.4mV and the prediction has

less than 0.3% relative error. High r2 fitting scores and the low RMSE confirm the effectiveness
of the approach.

Table 5.5 summarizes the prediction accuracy of the proposed method for the tested bench-
mark circuits. The average prediction scores of r2 = 0.997 and the average RMSE = 1.1mV
(relative error of less than 0.3%) show a very high fitting quality. The prediction error is

88

5.4 Results and discussions

−2 0 2
MEP Prediction Error (mV)

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
lil

ity
 D

en
si

ty

MEP Prediction Error

(a) V MEP
dd prediction error (b) V MEP

dd prediction performance

−50 −25 0 25 50
MEP Prediction Error (ns)

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
lil

ity
 D

en
si

ty

MEP Prediction Error

(c) TMEP
clk prediction error (d) TMEP

clk prediction performance

Figure 5.6: (a), (b) V MEP
dd prediction performance for circuit b04 (r2 = 0.997, RMSE = 1.4mV).

(c), (d) TMEP
clk prediction performance for circuit b04 (r2 = 0.999).

∼ 10× and ∼ 50× smaller than the Vdd step-size in [78] and [197] (1.1mV compared to 10mV
and 50mV), respectively, which means far better accuracy and energy-efficiency.

Temperature measurement error impacts

Runtime temperature measurement is typically associated with some inaccuracies, which leads
to inaccuracy in the MEP prediction. Moreover, since the LUT is generated based on an
assumption on the circuit activity level, any deviation from that assumption may lead to
additional MEP prediction inaccuracy. Therefore, it is necessary to evaluate the impact of
such inaccuracies on the MEP prediction and energy-efficiency in a realistic scenario.

Figure 5.7 reports the impacts of such inaccuracies for c2670 circuit. As shown, a high
measurement error in temperature (≥ 5°C) leads to relatively high V MEP

dd prediction error.
Furthermore, additional inaccuracy in the circuit activity assumption (∆α = ±25%) could
deteriorate the MEP prediction quality, when the temperature measurement error is also high.

However, under a reasonable measurement temperature accuracy (≤ 2°C), the MEP pre-
diction error is limited to below 20mV, which does not significantly affect the energy-efficiency.
This is due to the small sensitivity of the energy-efficiency to the Vdd variations around the
MEP (see Figure 2.8b). Therefore, a fair temperature measurement accuracy helps to keep
the predicted Vdd close to the real V MEP

dd .

89

5 Post-fabrication calibration and runtime tuning for energy efficiency

0

5

10

15

20

25

30

35

40

45

50

-10 -5 0 5 10

Δα=0%

Δα=25%
Δα=-25%

𝑉 𝑑𝑑𝑀𝐸𝑃
p

re
d

ic
ti

o
n

 e
rr

o
r

(m
V

)

𝑻 measurement error (֯C)

Figure 5.7: The impact of measurement error in temperature (up to ±10°C) and circuit activity fluc-
tuation (up to ±25% α error) on c2670 MEP prediction accuracy.

Energy consumption of sub-optimal supply voltage

Operating a circuit at a supply voltage other than its V MEP
dd is associated with sub-optimal

energy. We refer to the amount of energy consumption due to the inaccurate prediction of the
MEP by ∆V MEP

dd as Imprecision Energy (IE), which is presented as a relative percentage num-
ber. Therefore, a lower IE corresponds to a better energy-efficiency and overall effectiveness
of the method.

Figure 5.8 explains the impact of ∆V MEP
dd on imprecision energy for selected ISCAS’85 and

ITC’99 benchmark circuits. According to this figure, the imprecision energy associated with
∆V MEP

dd = ±150mV could be as high as 276% on average with a standard deviation of 151%
(for c499). Therefore, the IE could be very large if the supply voltage is not tuned to V MEP

dd .
However, due to the flattening of energy curves at the MEP, a slight difference between the
supply voltage and the V MEP

dd does not lead to much IE:

|∆V MEP
dd | ≤ 50mV −→IEaverage ≤ 14%,

|∆V MEP
dd | ≤ 25mV −→IEaverage ≤ 3%.

Therefore, a slight inaccuracy in the V MEP
dd prediction may be traded for less complexity of

the V MEP
dd tuning method depending on the application.

We evaluate the imprecision energy of the benchmark circuits by considering the MEP
prediction inaccuracies due to temperature measurement error. The values are extracted for
two different scenarios:

1. Small T variation, in which the operating temperature is assumed to be in a limited
range, i.e., 25± 10°C.

2. Large T variation, in which the operating temperature can change from −25°C to 100°C.

In either case, we assume a reasonable circuit activity variation of ±25% α, as explained in
Section 5.2.1, and a temperature measurement error of ±2°C in energy calculations, to reflect
the real condition.

The imprecision energies of these scenarios are reported in Table 5.5, for our proposed
post-fabrication calibration method [7], and for the runtime MEP adaptation method. The
post-fabrication calibration method cannot adapt to the T variation and results in up to 74%

90

5.4 Results and discussions

−150 −100 −50 0 50 100 150

ΔVMEP
dd (mV)

0

100

200

300

400

Im
p

re
ci

si
o

n
 E

n
er

g
y

 (
%

)

c499

c2670

b04

b13

Figure 5.8: The imprecision energy associated with operating a circuit at a non-optimal supply voltage
(with ∆V MEP

dd shift from optimum V MEP
dd) for selected ISCAS’85 and ITC’99 benchmark

circuits. The circles demonstrate the average imprecision energy (µIE) over different oper-
ating conditions and the vertical bars demonstrate the standard deviation σIE .

imprecision energy for combinational circuits (c432 and c2670). However, the runtime MEP
adaptation method correctly reflects the impact of temperature on the predicted V MEP

dd and
can keep the imprecision energy well below 2.6%. Please note that since the runtime MEP
adaptation method adapts to T variation, the associated imprecision energy under small and
large T variations are similar. Hence, only the results for large T variation scenario are
reported in the table.

Hardware overhead

In the NTC circuits, the most important runtime variability, which is ambient temperature
variation, changes slowly. Therefore, it is not necessary to monitor and tune the supply
voltage with high frequency. As a result, it is favorable to implement the MEP prediction
at the software level when possible, which eliminates the entire monitoring and MEP finding
hardware overhead. However, the calibrated LUT, which maps the temperature to the MEP,
has to be stored somewhere in the permanent memory. The required memory size is dependent
on the resolution of temperature, V MEP

dd , and TMEP
clk values stored the LUT. For example, if we

consider 1°C resolution in the LUT temperature values, we need to have 126 values of V MEP
dd

and TMEP
clk for a full range of [−25, 100]°C. In this case, we may assume one-byte resolution

for both V MEP
dd and TMEP

clk values, which means that the size of the LUT is 2 × 126 = 252
bytes. This amount of memory is allocable in almost all modern IoT chips. In case of limited
allowable memory for the LUT, it is also possible to have less temperature resolution (e.g.,
5°C) and use the PCHIP interpolation instead, which reduces the size of the LUT to only 50
bytes (for 5°C resolution).

Comparison with the state-of-the-art

Table 5.6 compares the proposed method based on post-fabrication calibration and runtime
MEP adaptation, and the state-of-the-art hardware-based closed-loop Vdd tuning method in
different scenarios. The post-fabrication calibration method [7], which extracts a single best
MEP on a per-chip basis during the post-fabrication tests, is effective under small T variation.

91

5 Post-fabrication calibration and runtime tuning for energy efficiency

Table 5.5: MEP prediction scores of the proposed method (higher r2 scores, lower RMSE, and lower
imprecision energy values are better).

Circuit

Prediction Scores Worst-case Imprecision Energy (%)

V MEP
dd TMEP

clk

post-fabrication

calibration [7]

runtime MEP

adaptation

r2 RMSE (%) r2
Small T

variation

Large T

variation

Large T

variation

c432 0.999 0.9mV (0.2%) 0.999 4.5% 74% 2.3%

c499 0.999 0.6mV (0.2%) 0.999 3.0% 40% 1.3%

c1908 0.999 0.9mV (0.2%) 0.999 3.5% 48% 2.6%

c2670 0.999 0.9mV (0.2%) 0.999 4.5% 73% 2.4%

b04 0.997 1.4mV (0.3%) 0.999 0.69% 26% 0.38%

b07 0.997 1.0mV (0.3%) 0.999 0.10% 11% 0.12%

b11 0.995 1.6mV (0.4%) 0.999 0.24% 15% 0.35%

b13 0.994 1.2mV (0.3%) 0.999 0.10% 8.1% 0.97%

average 0.997 1.1mV (0.3%) 0.999 2.1% 37% 1.2%

As this method does not adapt to runtime variations and only considers the impact of process
variation, there is no hardware overhead associated with it. Nevertheless, it does not result in
high energy-efficiency when temperature variation is significant.

The proposed runtime MEP adaptation method can adapt the MEP to temperature and
process variation, resulting in high energy-efficiency in all scenarios. It monitors the tempera-
ture and tunes Vdd accordingly, which does not impose much hardware overhead. Furthermore,
this task can be done at the software level (or firmware level). By implementing the proposed
method at the firmware level we have the opportunity to check Vdd for performance constraints
as well (for applications which demand specific speed).

The existing closed-loop Vdd tuning approaches as in [78, 195, 197, 198, 258, 259] constantly
monitor the energy-efficiency of the circuit by evaluating the energy consumption of the circuit
at different supply voltages in order to find the best supply voltage which maximizes the
energy-efficiency. However, they require extra circuitry to measure the power consumption
and find the V MEP

dd . Additionally, other constraints such as performance constraints cannot
be implemented in such techniques.

5.4.2 SoC results

We assume that a SoC contains n different components. Here, we assumed a SoC with four
components: 1) a processor core (Leon3mp), 2) a security coprocessor (AES), 3) an FFT core,
and 4) the digital part of a communication interface (ZigBee). The details of the components
are described in Table 5.7.

Each component is synthesized by Design Compiler. As these components are supposed
to operate at near-threshold voltage range, all the cells which are not suitable for NTC (e.g.,
cells which contain more than three stacking transistors) are eliminated from the library [28].
Furthermore, we characterize the cell library for various supply voltages and temperatures in
Table 5.7. These libraries are used to obtain power and timing reports of the components at
the supply voltages and temperatures in Table 5.7 using Synopsys Design Compiler.

In order to extract a more accurate estimation of the power consumption from Synopsys

92

5.4 Results and discussions

Table 5.6: Comparison of different Vdd tuning methods

Scenario Small T variation Large T variation

Proposed post-fabrication

calibration method [7]

+ Accuracy

+ Energy-efficiency

+ Zero hardware overhead

– Inefficient

Proposed runtime MEP

adaptation method

+ Accuracy

+ Energy-efficiency

= Small hardware overhead

+ Accuracy

+ Energy-efficiency

= Small hardware overhead

Closed-loop Vdd tuning

[78, 195, 197]

+ Accuracy

+ Energy-efficiency

– High hardware overhead

+ Accuracy

+ Energy-efficiency

– High hardware overheads

Table 5.7: Simulation setup for testing the proposed method, including the circuit components and the
characterization setup

Circuits

Gates # Flip-flops

Leon3mp 37030 2364

AES 21725 530

FFT 10414 705

ZigBee 6097 480

Characterizations

Supply Voltages
(V)

0.3, 0.35, 0.4, 0.45,

0.5, 0.55, 0.6, 0.65,

0.7, 0.75, 0.9, 1.05

Temperatures
(◦C)

-25, 0, 25, 50, 75

Design Compiler, we execute relevant workloads on each component in ModelSim [274], for
example MiBench workloads on the Leon3mp core and several rounds of encryption on the
AES module, and calculate the average switching activity of each component in the SAIF
format for power calculation.

The collected dataset is divided into a training set and a validation set. The SGBRT
regression model is trained on the training set (including the cross-validations for model hyper-
parameters evaluation), and finally, the prediction accuracy is evaluated on the validation
dataset.

Similar to circuit results, two statistical metrics explain the accuracy of our results: 1) the
coefficient of determination (R2 score) which defines the ability of the model in explaining the
variance in the predicted variable and 2) RMSE which explains the standard deviation of the
residual errors [272]. The RMSE of the model is 7mV, which means 99.7% of the predictions
are done with the accuracy of 3 ∗ RSME = 21mV . As explained for the circuit result in
Section 5.4.1, the impact of supply voltage miss-prediction on energy-efficiency is very small
considering that around the MEP point the energy-efficiency is not compromised by a small
amount of error.

Comparison with the state-of-the-art

The energy improvement achieved by the proposed method is compared with three different
scenarios:

1. Offline methods: No runtime MEP adaptation scheme is used (i.e., one predefined
supply voltage is applied to all chips) [235],

93

5 Post-fabrication calibration and runtime tuning for energy efficiency

2. Runtime MEP adaptation methods: A runtime Vdd adaptation scheme is applied
as in [78, 195, 197] and Vdd is adapted to the running workload and environmental
conditions,

3. Golden scenario: Supply voltage is always set to the MEP.

In order to be fair, we assume that the overhead of the voltage regulator is the same for all
methods, hence, we only compare the amount of energy-efficiency achieved based on the accu-
racy of the V MEP

dd finding methods. We calculate the energy-efficiency of the above scenarios
and compare them to our method:

• For the offline methods, we determine Vdd during design time as the average MEP of all
(S,U,T) combinations in the training dataset.

• For the runtime adaptation methods, we make a random deviation from the MEP as the
uniform distribution in range [−res/2,+res/2] where res is the resolution of the runtime
MEP finding method.

• For our proposed method, we obtain Vdd from our machine-learning model.

Tables 5.8 and 5.9 compare the normalized energy-efficiency of the proposed method to
the state-of-the-art at different temperatures and power modes, respectively. The results
are presented as the additional energy overhead compared to the golden scenario; therefore,
lower values are better. As reported, The energy consumption of the offline methods is on
average 83% larger than the golden scenario, because the supply voltage is not adapted to the
runtime variations (workload and temperature). Our proposed method and the runtime MEP
adaptation method in [197] have the lowest overall energy overhead (less than 0.1%), because
of high prediction accuracy. Our proposed method outperforms other runtime adaptation
methods that have resolutions larger than 10mV (presented in [78, 195]) because the prediction
accuracy of the proposed method is much better than those runtime adaptation techniques.
In contrast, the runtime adaptation methods suffer from a uniform error distribution.

Table 5.10 compares the features and capabilities of all methods. Despite all hardware-based
runtime adaptation methods ([78, 195, 197]), our proposed method comes with no hardware
overhead or extra power-management design complexity, as it operates based on the MEP
prediction at firmware-level. Another important advantage of our proposed method is that it
is implemented in software. As a result, it can easily incorporate voltage scaling constraints,
such as those imposed by the running application performance or reliability requirements.
However, hardware-based runtime adaptation schemes [78, 195, 197] search for the absolute
MEP by adjusting Vdd and measuring the energy-efficiency. Hence, they may pick a Vdd which
is not suitable for some components in terms of reliability (leading to failures). In addition,
they might miss the performance targets of the running application since they do not consider
such constraints into account.

In practice, some input parameters of the proposed machine-learning model such as tem-
perature, utilization of the components, and process corners are subject to inaccuracies. This
will lead to inaccuracy in the predicted MEP; however, the impact of these inaccuracies are
not significant as long as the inaccuracy in the input parameters is not too large. This can
be attributed to the nature of the proposed machine-learning model in which the prediction is
done with the help of many weak regression trees.

Runtime prediction overheads

The implemented machine-learning method is limited to have only 50 regression trees with
a maximum depth of 5, i.e., k = 5,m = 50. Although this may reduce the accuracy of the

94

5.4 Results and discussions

Table 5.8: Normalized energy overhead† of the proposed method and related work at different temper-
atures

Method
Offline

methods [235]

Runtime MEP adaptation

V MEP
dd resolution:

Proposed

method
20mV [195] 10mV [197]

T=-25°C 49% 0.9% 0.1% 0.1%

T=25°C 38% 0.4% 0.1% 0.1%

T=75°C 163% 0.6% 0.1% 0.1%

overall 83% 0.6% 0.1% 0.1%

† Compared to the golden scenario when the circuit is always oper-
ating at most the energy-efficient supply voltage. Lower values are
better.

Table 5.9: Normalized energy overhead at different power modes

Energy overhead (%) (different power modes)

Power Mode

(active components)
Leon3mp

Leon3mp

ZigBee

Leon3mp

FFT

Leon3mp

ZigBee

AES

Leon3mp

AES

Runtime MEP [197] 0.1% 0.1% 0.1% 0.1% 0.1%

Proposed method 0.2% 0.2% 0.1% 0.1% 0.2%

prediction to some extent, it can limit the number of operations required for predicting the
supply voltage to 200 comparison and 49 addition operations. Considering memory address
calculation and load operations, an efficient implementation of the method can evaluate each
tree with 5k+4 operations. Therefore, the optimum Vdd can be calculated with approximately
1500 operations on a typical SoC firmware. A trained SGBRT model containing m regression
trees with depth k has at most m ∗ (2k − 1) nodes and leaves. Therefore, the overall memory
footprint for storing the parameters of our model is about 6KB, which is a reasonable value
for common IoT devices.

95

5 Post-fabrication calibration and runtime tuning for energy efficiency

Table 5.10: Comparison of the proposed method and related work in terms of the features and the
capabilities

Offline

methods [235]

Runtime MEP

adaptation methods [78, 195, 197]

Proposed

method

Implemented at Design-time Hardware Firmware

Implementation

overheads
-

Extra circuitry

(hardware) required
Software

Can adapt to

runtime variations?
NO YES YES

Performance

constraints

can be applied?

NO

(could lead to application errors)
YES

Reliability

constraints

can be applied?

YES

pessimistic

margins

NO

(always seeking for the

best energy-efficiency)

YES

96

5.5 Summary

5.5 Summary

Variability sources such as process variation, workload variation, and temperature affect the
Minimum Energy Point (MEP) of circuits operating in the NTV region. For maximum energy-
efficiency, it is required to determine the MEP and operate the circuit at the MEP (voltage and
frequency). We demonstrated that the temperature and process variations are the dominant
factors in determining the MEP of NTC circuits, whereas the energy-efficiency of a SoC and
the corresponding optimum supply voltage is mainly dependent on runtime parameters in-
cluding the operating temperature, power-gating states of the SoC internal components, their
utilization, as well as performance requirements of the running application.

Accordingly, we proposed a machine-learning based techniques for tuning the MEP of NTC
circuits at runtime using a calibrated LUT, generated during post-fabrication tests, to account
for both process and temperature variations. Therefore, the best operating point leading to
the maximum energy-efficiency is found considering the process variation on a per-chip basis,
and temperature variation at runtime. For SoCs, the LUT is calibrated to also consider power-
gating states of the SoC internal components and their utilization.

The hardware implementation overhead of the proposed method is minimal compared to
conventional closed-loop supply voltage tuning methods due to the elimination of embedded
energy measurement and voltage tuning circuitry. Monte-Carlo analysis shows that the pro-
posed method can effectively track the MEP of NTC circuits to achieve near-optimal energy-
efficiency. A firmware level implementation of the proposed method can predict the MEP with
high accuracy, and can easily incorporate performance and reliability constraints into voltage
prediction flow.

97

6 Selective flip-flop optimization for circuit
reliability

Some NTC circuits are required to operate in a wide supply voltage range in order to achieve
both energy efficiency, by operating in the NTV region, or satisfy timing constraints, by
operating in the super-threshold voltage region. When utilized in the super-threshold region,
runtime variability sources such as aging and supply voltage fluctuation affect both timing and
functionality of the circuit. Therefore, it is important to address these effects, as the overall
reliability of the circuit is threatened by them.

This chapter proposes a selective flip-flop optimization method [9, 10], in which the timing
and reliability of the VLSI circuits are improved by optimizing the timing critical components
under severe impact of runtime variations. As flip-flops are vulnerable to aging and supply
voltage fluctuation, it is necessary to address these reliability issues in order to improve the
overall system lifetime. In the proposed method, we first extend the standard cell libraries
by adding optimized versions of the flip-flops designed for better resiliency against severe BTI
impact and/or supply voltage fluctuation. Then, we optimize the VLSI circuit by replacing
the aging-critical and voltage-drop critical flip-flops of the circuit with optimized versions to
improve the timing and reliability of the entire circuit in a cost-effective way. Simulation
results show that incorporating the optimized flip-flops in a processor can prolong the circuit
lifetime by 36.9%, which translates into better reliability.

This chapter is organized as follows. Section 6.1 introduces wide-voltage operation reliability
issues and motivates the proposed selective flip-flop optimization approach. The impacts
of runtime variations on flip-flops are explained in Section 6.2. Consequently, Section 6.3
presents cell-level optimization of the flip-flops. The proposed selective flip-flop optimization
methodology is described in Section 6.4, and optimization results are discussed in Section 6.5.
Finally, Section 6.7 concludes the chapter.

6.1 Introduction, motivation, and contributions

VLSI circuits are influenced by several sources of process and runtime variabilities [39]. Among
them, supply voltage fluctuation and transistor aging due to BTI are the most important
factors [275–277]. They degrade the performance of VLSI circuits by increasing the delay, and
consequently deteriorate lifetime.

The impacts of both voltage-drop and aging are significant on sequential elements such as
flip-flops and latches. Due to particular aspects of flip-flops, such as the internal feedback
structure, degradation of the transistors of a flip-flop as well as supply voltage fluctuation
may lead to serious timing degradation or even functional failure (inability to capture the
input independent of timing) [278]. Furthermore, many flip-flops are on the critical paths of
a circuit because logic synthesis tools balance the delays of circuit paths to achieve the best
performance, area, and power. Therefore, it is necessary to employ design-time mitigation
techniques to consider and control such gradual degradation, e.g. by adding appropriate
timing margins (aging and voltage-drop guardband) [279, 280].

Our analysis shows that in a typical digital design such as a microprocessor, based on the
functionality of different components, some flip-flops operate under static or near-static BTI

99

6 Selective flip-flop optimization for circuit reliability

stress, irrespective of the workload. These flip-flops experience large timing degradation be-
cause the flip-flop input Signal Probability (SP) is very close to 0.0 or 1.0. Being subject to
severe BTI stress, the aforementioned flip-flops degrade faster, imposing a large aging guard-
band to the entire circuit. Flip-flops also experience a large temporally localized voltage-drop,
because they are synchronized with the clock edge and supposedly operate at the same time (at
clock edge), hence, drawing substantial current leading to a significant voltage-drop over PDN
[97]. Moreover, recent studies have shown that the voltage-drop impact gets more severe by
technology scaling [98, 277, 281]. Therefore, in a conventional design flow, costly voltage-drop
timing guardband is considered for reliable circuit operation [97].

In this chapter, we explore methods to improve circuit reliability by addressing the timing
degradation of flip-flops under severe aging1 and voltage-drop, i.e. selective flip-flop optimiza-
tion. The idea is to find timing-critical flip-flops under high aging and/or voltage-drop impact,
and selectively re-optimize them for operating under such stress by appropriately sizing their
transistors. This effectively improves the reliability and lifetime of circuits without imposing
much overhead, because these flip-flops constitute a small portion of all flip-flops.

Simulation results obtained by applying the proposed method to a processor show that
the flip-flops optimized with the proposed method exhibit much less delay degradation, while
imposing less than 0.1% leakage power overhead to the processor. As a result, the required
timing guardband of the processor using the proposed method is significantly less compared to
the original processor. Therefore, given a specific clock period, the optimized processor design
with the proposed method has 36.9% longer lifetime and better reliability compared to the
original processor design.

6.2 Variability impact on flip-flops

6.2.1 Flip-flop timing

Flip-flop timing metrics such as setup-time (U), hold-time (H), clock-to-q (DCQ), and data-to-
q (DDQ) are well discussed in [282, 283]. When the setup-time is large enough, the clock-to-q
value is almost constant, but further reduction of the setup-time will increase the clock-to-q
value monotonously until a value after which the flip-flop is unable to capture and latch the
input [282]. Based on this, the optimum setup-time is defined as the setup-time value which
causes the clock-to-q value to increase by 10% from its minimum value [284]. Moreover, each
flip-flop has two internal paths; one for transferring the input state ‘zero’ to the output i.e.
High-to-Low (HL) input transition, and the other for transferring the input state ‘one’ to the
output i.e. Low-to-High (LH) input transition. Basically, the timing parameters for these two
internal paths can be different [278] as shown in Figure 6.1, meaning that there are two sets
of timing parameters for internal LH and HL paths of a flip-flop:

{ULH , DCQLH
, DDQLH

} for LH transition,

{UHL, DCQHL
, DDQHL

} for HL transition.

Flip-flop delay should be defined such that the correct functionality of the flip-flop will be
guaranteed, disregard of the transition. Therefore, we define the flip-flop delay as the summa-
tion of the worst setup-time and the worst clock-to-q of both transitions as shown in Figure 6.1.

delay = max{ULH , UHL}+max{DCQLH
, DCQHL

}. (6.1)

This guarantees that in both transitions the input signal is correctly captured and propagated
to the flip-flop output.

1We consider the impact of NBTI on PMOS transistors, and PBTI on NMOS transistors.

100

6.2 Variability impact on flip-flops

Cl
oc

k
ed

ge

Clock-to-q (LH)

Clock-to-q (HL)

Setup-time (LH)

Setup-time(HL)

LH
transition

HL
transition

Data-to-q (LH)

Data-to-q (HL)

FF delay = Setup-time (LH)
+ Clock-to-q (HL)

Flip-flop
INPUT (D)

Flip-flop
OUTPUTS

(Q, QB)

Figure 6.1: Different flip-flop timing parameters. The correct functionality is guaranteed by considering
the flip-flop delay as illustrated.

ck

ckb

ckb

ck

ckb

ck

ck

ckb

D Q

(a) Internal LH (red), and HL (blue) paths of a C2MOS
flip-flop [282]

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
li

p
-f

lo
p

 d
el

ay
 i

n
cr

ea
se

 (
%

)

Input Signal Probability (SP)

LH delay increase

HL delay increase

(b) Delay of internal LH and HL paths of an aged
C2MOS flip-flop after 5 years

Figure 6.2: Separate internal LH/HL paths of the flip-flop (a), and delay of internal LH/HL paths of
an aged C2MOS flip-flop (optimized for PDP in the fresh state) for different input SPs (b).

6.2.2 Runtime variation impacts on flip-flops

Several parameters such as supply voltage, workload, and temperature affect the performance
of flip-flops in a circuit. Parameters such as temperature and supply voltage affect all the
transistors of a flip-flop in the same way, whereas the impact of the input SP is different for
the transistors of a flip-flop [135]. This results in an asymmetric aging of transistors according
to their stress duty cycles. Therefore, the delay degradation of internal LH and HL paths
inside an aged flip-flop depends on the input SP [278].

In the C2MOS flip-flop2 depicted in Figure 6.2a, the internal LH and HL paths consist
of two separate groups of transistors, which makes the aging of these two paths independent
according to the input SP. Figure 6.2b illustrates the delay of LH and HL transitions of an
aged C2MOS flip-flop [282] for different input SPs. When the flip-flop is aged under input
SP = 0.0 (SP0), the worst delay degradation happens on the flip-flop HL path, however, the
delay of the flip-flop LH path is only slightly affected. On the other hand, an aging under input
SP = 1.0 (SP1) greatly degrades the delay of the flip-flop LH path while slightly affecting the

2A C2MOS flip-flop design is a master-slave flip-flop built of two connected C2MOS latches. It is one of the
commonly used flip-flops in modern processor designs [282].

101

6 Selective flip-flop optimization for circuit reliability

10.07.55.02.50.0

Voltage drop (%)

0

5

10

15

20

25

D
el

ay
in

cr
ea

se
(%

)

Inverter

Flip-Flop

Figure 6.3: Comparison between the voltage-drop induced delay degradation of a flip-flop and an in-
verter, which are aged under same condition (Aging under SP1 for 5 years).

delay of the flip-flop HL path. For moderate aging condition, i.e. 0.1 < SP < 0.9, the delay
degradation of both LH and HL paths is moderate. The reason is that under SP0 and SP1
conditions, S-BTI asymmetrically alters the threshold voltages leading to unbalanced aging of
LH and HL paths of the flip-flop as the stress duty cycle of some transistors is 1.0, i.e., always
under BTI stress. However, in moderate aging condition, the transistors can partially recover
as the stress duty cycle is less than 1.0.

The impact of supply voltage fluctuation on the flip-flops of a circuit depends on the work-
load variation and dynamic power consumption of the circuit. Therefore, each flip-flop may
experience a specific amount of voltage-drop. A voltage-drop causes performance degradation
of the flip-flops, which is typically larger than the degradation of simpler combinational gates
in the standard cell library. Figure 6.3 compares the impact of a voltage-drop up to 10% on the
delay of an aged flip-flop and an aged inverter. Compared to a no-voltage-drop condition, the
delay of the flip-flop increases by 23.6% whereas the delay of the inverter is increased by 15%.

Moreover, the flip-flops of a circuit generally experience higher amount of voltage-drop
compared to combinational gates [285]. As a result of temporally localized switching of flip-
flops at the positive (or negative) edge of clock signal, the instantaneous current drawn from
PDN at the synchronized clock edge is comparatively high. This leads to high voltage-drop
at the clock-edge, when the flip-flops are processing their input signals. This peak current
consumption is damped over the rest of the clock period, when the combinational cells are
active. Therefore, in this work we focus on dealing with the impact of voltage fluctuation on
the flip-flops.

Temporal and spatial temperature variations can also affect the circuit performance. The
temporal temperature change could be rather high and has been the subject of research since
it affects the reliability of the VLSI circuits. It is demonstrated in [61] that the circuit perfor-
mance can be changed by up to 10% for 110°C temperature variation. Therefore, in order to
meet the reliability constraints, the circuit timing should be adjusted according to the worst
temperature corner, which is typically at high temperature. On-chip spatial temperature gra-
dient puts different stress on circuit components across a chip. The amount of on-chip spatial
temperature difference (only on cores) based on simulation [102, 103], sensor measurements
[104], and thermal camera [103] is reported to be up to ∼ 30°C. Since the delay change is ap-
proximately 4% for every 40°C [61, 286], the overall difference between the delay degradation
of core flip-flops due to such spatial temperature gradient is expected to be less than 3%, and
hence, much smaller compared to voltage-drop variation [287].

The combined impact of voltage-drop and aging significantly degrades the performance of
flip-flops. As an example, the delay of a fresh flip-flop optimized with balanced HL/LH delay
increases from 98.5ps to 165.7ps due to the combined impact of voltage-drop (10%) and S-

102

6.2 Variability impact on flip-flops

SP
=

0

0
<

SP ≤
0
.01

0
.01

<

SP ≤
0
.1

0
.1
<

SP ≤
0
.5

0
.5
<

SP ≤
0
.9

0
.9
<

SP ≤
0
.99

0
.99

<

SP ≤
1

SP
=

1

0

100

200

300

400

500

600
#

o
f

F
li

p
-fl

o
p

s

24

26

28

30

32

34

36

38

F
li

p
-fl

o
p

d
el

ay
in

cr
ea

se
(%

)

delay increase

(a) The average flip-flop SPs during the execution of some
MiBench workloads on Leon3, and the corresponding
delay degradation in 5 years. In order to be fair in the
analysis, the flip-flops which are not exercised by the
workloads are excluded from this analysis.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Voltage drop (relative to maximum voltage drop)

0

100

200

300

400

#
F

F
s

(b) The distribution of voltage-drop on the Leon3
flip-flops. The voltage-drop values are normal-
ized to the maximum voltage-drop across the
processor.

Figure 6.4: (a) Input signal probabilities and (b) voltage-drop analysis of Leon3 flip-flops executing
MiBench Workloads

BTI (5-years under SP0). This is equivalent to 68% delay increase. If such a flip-flop is in a
critical path of the circuit, a large timing guardband is required for timing closure considering
the reliability constraints. Therefore, it is necessary to find such flip-flops at design-time and
optimize them for operating under such conditions.

6.2.3 Significance of flip-flops in circuit reliability

In a properly designed circuit, the timing of circuit paths are balanced during the synthesis
process. Therefore, many flip-flops are timing-critical as they lie on the circuit critical paths.
Studies [9, 285] have shown that in VLSI circuits, some flip-flops are under severe static BTI
leading to a large timing degradation over time. Furthermore, the impact of voltage-drop on
flip-flops could be very high as a result of localized power consumption at a specific time (e.g.
positive clock-edge) or at a specific location on the circuit layout.

The large impact of S-BTI and voltage-drop on flip-flops has a significant impact on the
reliability of a circuit when such flip-flops are timing-critical. In order to investigate the
likelihood of having such a scenario in a typical digital design, we use the flow presented in
Section 6.4 to extract the voltage-drop and the aging of the Leon3 flip-flops by executing six
MiBench workloads [95] namely stringsearch, qsort, basicmath, bitcount, fft, and crc32 on
Leon3 processor [233]. In order to be fair, we excluded the flip-flops belonging to the parts
which are not exercised by the employed workloads such as interrupt handler, timers, and
UART controller. The synthesized netlist of the Leon3 processor has 2,352 flip-flops, but the
results demonstrated in this section contain only 1,686 flip-flops belonging to the parts which
are exercised by all employed workloads.

Figure 6.4a demonstrates the input SP distribution of the aforementioned 1,686 flip-flops.
The results show that 181 flip-flops always experience input SP0, whereas 29 flip-flops are
under input SP1. Our analysis shows that the flip-flops with such behavior typically belong
to either the error checking and exception handling registers or higher bits of address registers
which are constant due to temporal and spatial locality of the executed instructions. Besides,
the SP of a considerable number of flip-flops is very close to either 0.0 or 1.0. Please note that
the results reported in Figure 6.4a are the average of six employed workloads, and hence, the
flip-flops with SP=0 or SP=1 have such SP across all executed workloads. Similar experiment
has been carried out in [288] to study the impact of workload in real systems, which shows
that some flip-flops are always under S-BTI across different workloads.

103

6 Selective flip-flop optimization for circuit reliability

Figure 6.4b shows the distribution of the maximum voltage-drop impacting the flip-flops
of Leon3 processor compared to the peak voltage-drop across all the executed workloads.
Please note that it is necessary to consider the maximum voltage-drop over the execution of
all workloads, because it eventually impacts the flip-flop characteristics. A significant portion
of flip-flops experience on average 41% of the maximum amount of voltage-drop, however,
there are flip-flops at the right side tail of the distribution which experience large voltage-drop
comparable to the maximum voltage-drop in the circuit.

According to the observations in Figure 6.4, there are flip-flops experiencing both S-BTI
and high voltage-drop which leads to high degradation. If such flip-flops are on a critical
path of the processor (i.e. timing-critical flip-flops), the degradation of the flip-flops should be
reflected in the timing guardband of the circuit. Timing-critical flip-flops can be categorized
into different groups base on the impact of voltage-drop and aging as follows:

• low voltage-drop and low aging,

• low voltage-drop but S-BTI aging (SP0/SP1)*

• high voltage-drop but typical aging*

• high voltage-drop and S-BTI aging (SP0/SP1)*

Therefore, we propose to generate flip-flops specifically optimized for such high-degradation
conditions (marked by *) and add them to the standard cell library. Using the proposed flow
in Section 6.4, we determine such high-degradation and timing-critical flip-flops and replace
them with the optimized versions to improve the timing and reliability of the circuit.

6.3 Reliability-aware flip-flop design

In a typical reliability-aware circuit design, one should consider the delay of the elements
under variation impacts to ensure the correct functionality of the circuit during the expected
lifetime. Therefore, higher delay degradation of timing-critical flip-flops imposes a large timing
guardband. In our proposed methodology, we create optimized versions of the flip-flops for
different stress conditions based on aging and voltage fluctuations, and use these optimized
versions only when a flip-flop is timing-critical and subject to such stress conditions to avoid
unnecessary over design. This means that in the cell library, we add the following resilient
versions of the flip-flops:

• Aging-resilient flip-flops, optimized for different aging corners (SP0 and SP1),

• Voltage-drop resilient flip-flops, optimized to have lower performance degradation under
voltage fluctuation,

• Aging and voltage-drop resilient flip-flops.

6.3.1 Aging resilient flip-flop design

When the fresh delays of internal paths of a flip-flop (i.e., LH and HL paths) are designed to
be similar (depicted as solid lines in Figure 6.5), the internal path with higher degradation
rate eventually becomes dominant and determines the total delay of the flip-flop. In this
case, a significant aging in flip-flop characteristics is observed over time (corresponding to the
internal path with higher degradation). On the other hand, if the internal path with higher
degradation rate is initially faster (by design) than the internal path with lower degradation

104

6.3 Reliability-aware flip-flop design

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1
E

-0
8

0
.0

0
0

0
0

0
1

0
.0

0
0

0
0

1

0
.0

0
0

0
1

0
.0

0
0

1

0
.0

0
1

0
.0

1

0
.1 1

1
0

D
el

ay
 (

n
o

rm
al

iz
ed

 t
o

 f
re

sh
)

time (year)

Normalized HL (original)

Normalized HL (original)

Normalized HL (optimized)

Normalized LH (optimized)

Delay

Improvement

Figure 6.5: Delay of a C2MOS flip-flop which is aged under SP=0 over 5 years for LH/HL transitions,
compared to the flip-flop optimized for SP=0 showing how the unbalanced aging of internal
LH/HL paths worsens the degradation in original flip-flop.

rate, the dominant internal path would be the slower one, and hence the higher degradation rate
of the faster internal path is masked. Consequently, the overall aging of the flip-flop would
be rather small. The delay of the optimized flip-flop, shown in Figure 6.5 by dashed lines,
exhibits such characteristics. The post-aging delay of the optimized flip-flop would increase
by ∼10 ps, which is much lower than ∼40 ps increase in the delay of the original flip-flop. We
exploit this method for designing aging resilient flip-flops.

In order to decrease the overall BTI-induced aging inflicted to a flip-flop, our proposed
method balances the delay of internal HL and LH paths of the flip-flop for post-aging state
of the flip-flop, by resizing the transistors of internal HL and LH paths. In other words, the
proposed method increases the fresh delay (t = 0) of the flip-flop internal path which has lower
degradation rate in order to compensate the overall degradation of the flip-flop after aging.
Although the fresh delay of the optimized flip-flop might be slightly larger compared to the
fresh delay of the original flip-flop, the overall delay of the optimized flip-flop considering the
aging-induced timing margin would be smaller than those of the original flip-flop since the
aging rate is much smaller.

Please note that this method reduces the degradation for a given SP, but inevitably worsens
the aging at the other corners of SP. For example, if we optimize the flip-flop for SP0, the
degradation would be much higher if the optimized flip-flop operates at SP1. Nevertheless,
these flip-flops under S-BTI will not operate at other SP corners, because their SP is determined
by the circuit structure and functionality. Therefore, we only optimize for the given SP corner.
This means that we intentionally sacrifice other corners, which never occur due to the specific
functionality of the circuit, to gain a larger improvement.

6.3.2 Voltage-drop resilient flip-flop design

Other than aging, which affects each flip-flop transistor based on the input signal probability,
a drop in the supply voltage of the flip-flop slows down all flip-flop transistors in the same way.
However, a slight up-sizing of specific transistors can compensate the degradation in the flip-
flop timing. Therefore, we evaluate the delay of the flip-flop when operating under the impact
of voltage-drop, and optimize the flip-flop with the goal of improving the delay. Consequently,
the optimized flip-flop would have better timing at the cost of higher power consumption.

105

6 Selective flip-flop optimization for circuit reliability

6.3.3 Aging and voltage-drop resilient flip-flop design

The degradation in the flip-flop timing due to both S-BTI and voltage-drop is very large. Such
timing degradation may not be effectively compensated by resizing the transistors within a
flip-flop area without upsizing the entire flip-flop. Therefore, in addition to targeting for better
timing under the impact of the aging and voltage-drop, we allow the optimization algorithm to
increase the area of the flip-flop by a small percentage. Please note that an extra Engineering
Change Order (ECO) might be needed to replace the original flip-flop with the optimized
version in this case. However, since there exist only a few flip-flops under such degradation it
would not be an issue to perform an ECO on placement.

6.3.4 Problem formulation for flip-flop resiliency optimization

The delay of a flip-flop under a specific working condition (including temperature, voltage,
and input SP) can be presented as a function of the transistors’ widths:

delay = f (W) , W = [wi], (6.2)

where [wi] is a vector containing the width of flip-flop transistors. Here, delay is the delay
(Data-to-q) of the flip-flop, according to Equation (6.1), under variation impact, which could
be S-BTI stress, voltage-drop, or both depending on the optimization approach.

The delay function f is a complicated function of transistors’ widths. Our experimental
results for flip-flops with different sizing show that f cannot be presented with any general
linear function. Therefore, we use Sequential Quadratic Programming (SQP) which is a non-
linear programming technique [289]. In SQP, the problem is converted into quadratic sub-
problems and solved in order to find a better sizing in each iteration. For this purpose, we
follow an iterative approach in order to minimize the delay of Equation (6.2). Given an initial
sizing, the delay function f is approximated with a quadratic function:

f(W) ≈ f(W0) +▽f(W0)
T · (W −W0) +

1

2
(W −W0)

T ·Hf (W0) · (W −W0), (6.3)

where ▽f(W) and Hf (W) are the gradient and the Hessian of the delay function f , re-
spectively. Minimizing the quadratic approximation of Equation (6.3), with respect to some
constraints, which will be discussed later in this section, yields an optimized transistor sizing.
Thereafter, the obtained sizing is used as the initial sizing, and a new iteration is launched.
This cycle continues until the optimization reaches the required precision, i.e. the difference
between the optimized delays of two consecutive iterations becomes smaller than a predefined
threshold ǫdelay. Therefore, the solver continues by checking the precision of the resulting
delay:

|delayi−1 − delayi| < ǫdelay (6.4)

where delayi represents the delay of ith iteration.
Another reason to use the quadratic approximation is that the optimum result of a linear

problem always lies on the boundaries, while the optimum result of a quadratic problem can
be any point within the boundaries as well as the boundaries themselves. In Section 6.5, we
demonstrate that the optimum result does not necessarily lie on the boundaries, and hence a
non-linear programming technique is needed to find a better result. Table 6.1 summarizes the
optimization problem.

Several constraints are applied to the optimization problem, relating to transistors size,
flip-flop area, and leakage. The first constraint shown in Table 6.1 limits the minimum size
of transistors. The second constraint limits the area of the optimized flip-flop. In case of
optimizing for S-BTI or voltage-drop, we consider λ = 0 to keep the flip-flop area within the

106

6.3 Reliability-aware flip-flop design

Table 6.1: Flip-flop Optimization Method Summary

Parameters W = (w1, . . . , wn)

Initial guess W0 = optimized W for PDP (fresh)

Constraints wi ≥ wmin
∑n

1 wi ≤ (1 + λ)
∑

W0

power(W) ≤ (1 + β) power(W0)

Target minimize: delay = f(W)

Constants wmin minimum size

λ acceptable excessive area

β acceptable excessive leakage

Flip-Flop

Netlist

Aged Flip-

Flop Netlist

Voltage (V)

Temperature (T)

Input SP

Leakage

Area

Calculate

Transistor Duty

Cycle (SPICE)

Calculate 𝚫𝑽𝒕𝒉

and Back-annotate to

Netlist

Characterize

Aged Flip-Flop

considering

Voltage Drop

Aged Flip-Flop

Netlist with sizing 𝑾

Optimum sizing

found

Create and

solve quadratic

sub-problem

Find new sizing 𝑾 = 𝒘𝒊 and

back-annotate to

Aged Netlist

Enough

Precision?

Characterize

Aged Flip-Flop

Considering

Voltage Drop

Yes

No

Sequential Quadratic Programming (SQP)

Start

End

Data Flow

Process Flow

Figure 6.6: Overall flow to find the optimum flip-flop sizing for under S-BTI stress and voltage-drop at
a specific working corner (voltage, temperature).

area of the original flip-flop which also facilitates keeping the aspect ratio almost equal to
the aspect ratio of the original flip-flop. This way, the optimized flip-flop can easily replace
the original flip-flop without any layout modifications at the circuit level. This is achieved
by limiting the summation of transistor widths wi. However, for flip-flops under S-BTI and
voltage-drop, we assume a λ > 0 value to compensate the delay degradation better. The third
constraint sets an upper limit for the excessive leakage of the flip-flop by parameter β. This
constraint is applied to the optimization problem to limit the leakage power of the optimized
flip-flops within an acceptable range. The initial guess of optimization W0 is the optimum
sizing for minimum PDP in the fresh state.

6.3.5 Reliability-aware flip-flop optimization flow

Figure 6.6 presents our proposed reliability-aware optimization flow. For a given input SP,
the SP of all transistors are once calculated using SPICE simulations. Afterwards, based on
the extracted SP for transistors and the operating corner of the flip-flop (temperature, supply
voltage, etc.), the BTI-induced threshold voltage shifts of all transistors (∆Vth) are obtained.

107

6 Selective flip-flop optimization for circuit reliability

Then, the ∆Vth values are back annotated into the original flip-flop SPICE netlist, and the
SPICE netlist of aged flip-flop is generated.

In each SQP iteration, the quadratic sub-problems are created and solved to generate
further improved flip-flop sizing. Subsequently, the new sizing is back-annotated into the aged
flip-flop netlist extracted before, and a new aged flip-flop with the given sizing is generated.
Then, Cadence Virtuoso Liberate [260] is used to characterize the new flip-flop and extract its
delay and power consumption. When the improvement is small enough and the condition in
Equation (6.4) is met, the SQP method terminates and returns the last sizing as the optimum
solution for the problem.

As the process is executed at a specific supply voltage (Vdd), it can inherently be used
to optimize for a voltage-drop as well, when the given supply voltage includes the impact of
the voltage-drop. We can also create voltage-drop resilient version of a flip-flop for typical
aging, by considering input SP of 0.5. Therefore, we execute the flow presented in Figure 6.6
for these conditions in order to create variation-resilient versions of the flip-flop, assuming a
supply voltage of Vdd and a maximum voltage-drop of R%:

Supply Voltage (V) Aging Condition

Aging Vdd S-BTI (SP0, SP1)

voltage-drop: (1− R
100)Vdd Typical aging (SP=0.5)

Aging and voltage-drop: (1− R
100)Vdd S-BTI (SP0, SP1)

After optimization process, it is necessary to re-characterize the flip-flops for different supply
voltage ((1− R

100)Vdd to Vdd) and aging conditions (0 ≤ SP ≤ 1). The characterization results
are then used to obtain overall circuit timing under supply voltage fluctuation and aging
impacts.

6.4 Selective flip-flop optimization

This section explains how the optimized flip-flops in Section 6.3 can be employed to improve the
reliability of a circuit. The idea is to find the flip-flops affected by S-BTI and/or voltage-drop
impacts which are also influential on circuit reliability, i.e. the timing-critical flip-flops, and
replace them with the optimized versions. The reason for this selective flip-flop optimization
is that the reliability-aware flip-flop optimization is costly in terms of leakage overhead per
flip-flop. Therefore, flip-flop replacement should be done only for the timing-critical flip-flops
which experience S-BTI and/or large voltage-drop to be cost effective. Since they constitute
a small subset of the all flip-flops in the design, the proposed method is able to reduce the
overall timing guardband in a cost-effective way.

The overall flow of the proposed selective flip-flop optimization methodology is presented
in Figure 6.7. The flow uses the results of the Synthesis and Place & Route steps of a VLSI
design flow and is composed of I) Aging and Voltage-Drop Analysis and II) Selective Flip-flop
Replacement steps. The optimization flow updates the gate-level netlist and the circuit layout
to improve the reliability of the circuit under voltage-drop and aging impacts. The outputs of
the optimization method can be further used in the rest of the VLSI design flow. Therefore,
the proposed method is transparent to the VLSI design flow and can be easily integrated into
it.

108

6.4 Selective flip-flop optimization

S
e

le
ct

iv
e

 F
li

p
-f

lo
p

 R
e

p
la

ce
m

e
n

t
A

g
in

g
 &

 V
o

lt
a

g
e

 D
ro

p
 A

n
a

ly
si

s

Circuit HDL Synthesis and

Place and Route

Gate-level Netlist,

Timing info.

Placement

and Layout

info.

Representative

Workloads
Gate-level

Simulation

Power

Estimation

Voltage Drop

Estimation

Signal Probability (SP),

Switching Activity (SA) of

all nets

Voltage Drop

-critical

Flop-Flops

Aging-critical

Flip-Flops

Timing-

critical

Flip-Flops

Voltage Drop &

Aging-aware

timing analysis

Layout ECO

Updated

Gate-level

Netlist

Updated

Layout

Any flip-Flop

replaced?

Yes

End

Selective

Flip-flop

Replacement

Maximum

Voltage Drop

Map

Figure 6.7: Circuit optimization flow using the proposed selective flip-flop optimization method.

6.4.1 Aging and voltage-drop analysis

In this step, the results of Synthesis and Place & Route steps of the VLSI design flow are used
to discover the flip-flops which are aging-critical, voltage-drop critical, and timing-critical.

Aging-critical flip-flops are those flip-flops which experience large impact of aging, i.e. flip-
flops under S-BTI. To find the aging-critical flip-flops we need to extract the SP of the flip-flops.
Therefore, we perform a gate-level simulation running some representative workloads. The
representative workloads are pieces of workloads which are typically executed on the circuit.
The result of the gate-level simulation is the Voltage Change Dump (VCD) of all nets inside
the circuit. Based on this information we can collect SP of all flip-flops and determine the
aging-critical flip-flops.

Dynamic power profiles of circuit components can be extracted from the VCD reports. We
estimate the dynamic voltage-drop in the circuit based on the power profiles and the layout
and packaging of the circuit. This accounts for the resistive and inductive components of the
voltage fluctuation. We generate a voltage-drop map of the circuit by evaluating the maximum
voltage-drop of each cell (gates, flip-flops, etc.) over the time and over different workloads. As a

109

6 Selective flip-flop optimization for circuit reliability

result, we find the maximum amount of voltage-drop that each flip-flop experiences over time.
Accordingly, the flip-flops which experience a large amount of voltage-drop are extracted.

Furthermore, the gate-level simulation results are used to perform a voltage-drop and aging-
aware timing analysis which obtains the delay of circuit paths under variability impacts. We
extended the aging-aware timing analysis in [290] by considering voltage-drop related informa-
tion. This is done by characterizing the cells at two different supply voltages: the nominal Vdd

and the supply voltage considering the maximum drop (1− R
100)Vdd. Then, for each gate/flip-

flop in the gate-level netlist, based on the amount of voltage-drop on the gate, we perform a
linear interpolation among the standard cell library entries for two supply voltages and find
the corresponding timing information. The linear interpolation is a valid method under the
assumption of limited change in the supply voltage, as shown in Figure 6.3. For a more ag-
gressive voltage fluctuation, it could be necessary to characterize the standard cell libraries
for a few intermediate supply voltage values and employ a PCHIP method. Accordingly, we
find the timing-critical flip-flops, which are parts of the critical and near-critical paths of the
circuit considering the impact of variations.

6.4.2 Selective flip-flop replacement

In the Selective Flip-flop Replacement step, we replace the flip-flops which are timing-critical,
aging-critical, or voltage-drop-critical with their optimized counterparts for such aging and/or
voltage-drop conditions. Although a small portion of the flip-flops are replaced during the
flip-flop replacement process, the circuit layout, timing, and power properties change since the
replaced flip-flops are timing-critical and may have different area and power characteristics.
Therefore, the proposed flip-flop replacement is an iterative process which replaces a number
of flip-flops with the optimized versions in each iteration. The iterative process continues until
no flip-flop needs to be replaced by an optimized version anymore.

In iteration i of the method, we assume that the circuit delay is Di based on timing analysis
results, and dij is the maximum delay of the paths terminating at flip-flop j (including the delay
of the flip-flop as well). Therefore, in each iteration:

1. we choose the timing-critical flip-flops with a timing slack value of less than k% of the
circuit delay, i.e. when:

dij ≥ (1− k

100
)Di, j : index of flip-flops.

2. Among these flip-flops, those which are also included in the aging-critical and/or voltage-
drop-critical flip-flops, are replaced with the optimized versions.

3. A trial voltage-drop and aging-aware timing analysis is performed and the circuit delay
(Di++) is determined considering the replaced flip-flops.

4. We keep the optimized flip-flops only when the corresponding path delay of the flip-flops
before optimization is larger than a percentage of the evaluated circuit delay (Di++):

dij > r ×Di++ =⇒ FFj → FFj,opt (6.5)

The rest of the updated flip-flops in this iteration are rolled back to the original versions.
Please note that we also consider a ratio r < 1 into Equation (6.5) to compensate for
the calculation errors due to simulation.

5. The layout and gate-level netlist of the circuit are updated. The layout is only updated
if a cell with larger area is used (particularly applicable to the flip-flops under both aging
and voltage-drop as explained in Section 6.3).

110

6.5 Results and discussions

6. In case any flip-flop is replaced by an optimized version during this iteration, we need
to start a new iteration because the timing and power specification of the circuit are
modified. This is done by re-executing the aging and voltage-drop analysis, as explained
in Section 6.4.1. The gate-level simulation, which is a time consuming process, does not
need to be repeated as its results are not affected by the flip-flop replacement.

The above flow replaces minimum number of flip-flops with the optimized versions and impose
minimum amount of overhead to the circuit. In our simulations the flow is terminated within
a few iterations, since the changes in the circuit layout, power, and timing are not extensive.

6.5 Results and discussions

In this section, we evaluate the efficiency of the proposed selective flip-flop optimization based
on simulation results.

6.5.1 Simulation Setup

We applied the method to several flip-flop topologies, namely C2MOS latch, Dynamic/Static
Single Transistor Clocked latch (DSTC/SSTC), and Semi-Dynamic flip-flop (SDFF) [282].
The flip-flops are implemented using 45nm Bulk CMOS Predictive Technology Model (PTM)
transistors [291]. All flip-flops are initially optimized for the minimum PDP in the fresh state
(original design). The aging parameters of the model proposed in [126] are tuned so that the
post-aging delay of a Fan-Out 4 (FO4) inverter increases by 10% at SP=0.5 over 5 years. For
delay and leakage measurements, the output load of flip-flops is set to FO4, and the cells are
characterized at room temperature and at different supply voltages, ranging from 80% to 100%
of the nominal supply voltage of the technology node.

We used Leon3 processor as a case study for our proposed method. We used Nangate 45nm
open cell library for combinational logic, and aging assumptions are the same as described at
the beginning of this section. The processor is synthesized using Synopsys Design Compiler
and placement and routing is done using Cadence EDI [227].

We executed various MiBench workloads on the synthesized Leon3 processor and extracted
the VCD files. Based on the VCD files, the SP of each node of the synthesized circuit is
calculated and the power consumption of the gates and flip-flops are calculated using Synopsys
Power Compiler. The voltage-drop map of the processor is also extracted using VoltSpot
tool [98], which is able to extract the voltage-drop caused by both resistive and inductive
components.

Please note that the proposed technique is not restricted to a specific working condition
or flip-flop topology. We proceed with presenting detailed results and analysis for a C2MOS
flip-flop. Then, we discuss the results for other types of flip-flops concisely. Afterwards, the
dependency of the improvement achieved by the proposed method to the excessive leakage will
be investigated. At the end of this section, the impact of using optimized flip-flops on a Leon3
processor lifetime will be demonstrated.

6.5.2 Detailed optimization results of C2MOS flip-flop

We apply the proposed optimization flow presented in Section 6.3.5 (see Figure 6.6) to C2MOS
flip-flop design to create optimized flip-flops for aging and voltage-drop resilience. In order
to create the aging-resilient versions of the C2MOS flip-flop, we let the optimizer to consider
designs with up to 25% more leakage compared to the original flip-flop by setting the coefficient
β in Table 6.1 to 0.25. At this point, we limit the area of the flip-flop to the the area of the

111

6 Selective flip-flop optimization for circuit reliability

original flip-flop, i.e. λ = 0. Please note that the total overhead of the leakage power for
the entire circuit would be negligible since the number of optimized flip-flops in the design
would be limited. For example, if according to Section 6.2.3, 12.45% of flip-flops are working
under S-BTI, and the leakage overhead of an optimized flip-flop would be less than 25%,
the leakage overhead imposed on the flip-flops would be at most 3.11% (much less overhead
when considering the entire processor design). The aging and voltage-drop resilient version of
the C2MOS flip-flop can be created by assuming an extra area up to 20% and more leakage
overhead. For this, we assume λ = 0.2, β = 1. Using the extra area, the optimizer is able to
find a better design for those flip-flops which are timing-critical and are under large impact of
aging and voltage-drop. Since these flip-flops are very rare, but have significant impact on the
overall processor lifetime and reliability, it is effective to spend more area for large reliability
and lifetime gains.

Table 6.2 compares the characteristics of an original and optimized C2MOS flip-flop (such
as setup-time (U), clock-to-q (DCQ), data-to-q (DDQ), delay, and leakage) in three different
optimization scenarios:

Scenario 1 post-aging PDP, optimized for PDP in post-aging.

Scenario 2 The proposed method (optimized for aging), in which the flip-flop is optimized
for aging resiliency, by minimizing its delay for post-aging. The acceptable excessive area
and leakage are 0% and 25%, respectively (β = 0.25, λ = 0).

Scenario 3 The proposed method (optimized for aging+vdrop), in which the flip-flop is
optimized for aging and voltage-drop resiliency, by minimizing its delay for post-aging
and under voltage-drop impact. The acceptable excessive area and leakage are 20% and
100%, respectively (β = 1, λ = 0.2).

The optimization results in Table 6.2 are reported for “fresh” state (no aging or voltage-
drop), for “aged” state (under S-BTI aging SP0 for 5 years), and for “aging+vdrop” state
(when the flip-flop is aged under S-BTI for 5 years, and when the supply voltage is dropped
by 10%). Setup-time, clock-to-q, and data-to-q values are presented for LH/HL transitions
and the delay is calculated according to Section 6.2.1. The delay degradation is the relative
post-aging delay increase of a design compared to the fresh delay of the original design (marked
as bold in the table):

delay degradation =
delayopt.,aged − delayorig.,fresh

delayorig.,fresh
. (6.6)

Since the optimized flip-flop will replace the corresponding flip-flop in the design, the delay
degradation is compared to the fresh delay of the original flip-flop in order to give a better
understanding of how close the aged delay of the optimized flip-flop is to the fresh delay of the
original design.

Basically, scenario 1 is similar to the methods proposed in many flip-flop optimization meth-
ods such as [11, 33] in the sense that they consider a multiplication of energy and delay (e.g,
the PDP or the EDP) as the optimization target. Scenario 1 is able to effectively reduce the
PDP by increasing the delay and reducing the leakage, but this may result in an unacceptable
timing for S-BTI corners. Table 6.2 shows that due to not considering the flip-flop delay as
the optimization target, the PDP methods cannot find the optimum aging-resilient sizing for
S-BTI corners.

As presented, for the original flip-flop, the fresh delay of LH and HL paths are almost
identical (see DDQ,LH and DDQ,HL), but after aging HL path is much slower than LH path.

112

6.5 Results and discussions

T
ab

le
6.
2:

C
2M

O
S
fl
ip
-fl
op

ch
ar
ac
te
ri
st
ic
s
fo
r
1)

O
ri
gi
n
al

fl
ip
-fl
op

(O
p
ti
m
iz
ed

fo
r
P
D
P
in

th
e
fr
es
h
st
a
te
),
2
)
O
p
ti
m
iz
ed

fl
ip
-fl
o
p
fo
r
P
D
P
in

p
o
st
-a
g
in
g
[3
3
],

an
d
op

ti
m
iz
ed

b
y
th
e
p
ro
p
os
ed

m
et
h
o
d
fo
r
3)

on
ly

ag
in
g
,
an

d
4)

fo
r
ag
in
g+

v
d
ro
p
.
T
h
e
re
su
lt
s
a
re

re
p
o
rt
ed

fo
r
“
fr
es
h
”
,
“
a
g
ed
”
a
n
d
“
a
g
ed
+
v
d
ro
p
”

st
at
es

an
d
u
n
d
er

S
P
04

ag
in
g.

O
ri
gi
n
al

P
os
t-
ag

in
g
P
D
P

P
ro
p
os
ed

m
et
h
o
d

(o
p
ti
m
iz
ed

fo
r
fr
es
h
P
D
P
)

(s
im

il
ar

to
[3
3]
)

op
ti
m
iz
ed

fo
r
ag

in
g

op
ti
m
iz
ed

fo
r
ag

in
g+

v
d
ro
p

(S
ce
n
ar
io

1)
(S
ce
n
ar
io

2)
(S
ce
n
ar
io

3)

P
a
ra
m
et
er
s
3

fr
es
h

ag
ed

ag
ed

+
v
d
ro
p
2
fr
es
h

ag
ed

ag
ed

+
v
d
ro
p

fr
es
h

ag
ed

ag
ed

+
v
d
ro
p

fr
es
h

ag
ed

ag
ed

+
v
d
ro
p

U
L
H

(p
s)

20
.2

2
2.
6

29
.2

25
.6

30
.0

32
.9

23
.0

24
.6

30
.3

30
.0

30
.0

37
.7

D
C
Q
,L

H
(p
s)

78
.3

10
1
.8

12
3.
3

91
.8

97
.6

11
7.
5

83
.3

88
.8

10
3.
9

72
.5

77
.5

92
.2

D
D
Q
,L

H
(p
s)

98
.5

12
4
.4

15
2.
5
11

7.
4
12

5.
6

15
0.
4
10

6.
3
11

3.
4

13
4.
2
10

2.
5
10

7.
6

12
9.
9

U
H
L
(p
s)

16
.6

3
0.
8

42
.4

13
.7

28
.2

39
.6

16
.0

30
.6

40
.6

11
.1

24
.6

30
.6

D
C
Q
,H

L
(p
s)

78
.1

10
0
.5

12
1.
0

82
.9

97
.9

11
7.
2

75
.9

88
.5

10
6.
4

65
.8

75
.6

91
.7

D
D
Q
,H

L
(p
s)

94
.7

13
1
.3

16
3.
4

96
.6

12
6.
1

15
6.
8

91
.9

11
9.
1

14
7.
0

76
.9

10
0.
2

12
2.
3

d
el
ay

(p
s)

(S
ec
ti
o
n
6.
2.
1
)

9
8
.5

13
2
.6

16
5.
7
11

7.
4
12

6.
1

15
7.
1
10

6.
3
11

9.
4

14
7.
0
10

2.
5
10

7.
6

12
9.
9

le
a
ka
ge

(n
W

)
44

.3
3
0.
7

15
.5

42
.0

27
.9

14
.1

46
.4

31
.4

15
.8

67
.8

46
.1

23
.1

P
D
P

4
3
68

40
7
4

25
73

49
36

35
25

22
15

49
28

37
44

23
18

69
52

49
63

30
00

d
el
ay

d
eg
ra
d
at
io
n
,
E
q
.
(6
.6
)
1

–
35

%
68

%
–

28
%

60
%

–
21

%
49

%
–

9.
2%

32
%

ex
ce
ss
iv
e
le
ak
ag

e
–

-5
.2
%

4.
7%

53
%

1
T
h
e
re
fe
re
n
ce

fo
r
ca
lc
u
la
ti
n
g
th
e
d
el
ay

d
eg
ra
d
at
io
n
is

98
.5

p
s
(O

ri
gi
n
al
,
fr
es
h
fl
ip
-fl
op

).
2
M
ea
su
re
m
en
ts

ar
e
d
on

e
u
n
d
er

1
0%

d
el
ay

d
eg
ra
d
at
io
n
as
su
m
p
ti
on

(S
ec
ti
on

6.
5.
1)

an
d
10

%
vo
lt
ag

e-
d
ro
p
.

3
D
y
n
am

ic
p
ow

er
is

n
ot

re
p
or
te
d
b
ec
au

se
it
is

ir
re
le
va
n
t
fo
r
fl
ip
-fl
op

s
u
n
d
er

S
-B

T
I
as

th
es
e
fl
ip
-fl
op

s
d
o
n
ot

ch
an

ge
st
at
e
fr
eq
u
en
tl
y.

4
O
p
ti
m
iz
a
ti
on

re
su
lt
s
fo
r
S
P
1
ar
e
m
u
ch

b
et
te
r.

F
or

ex
am

p
le
,
th
e
d
el
ay

d
eg
ra
d
at
io
n
of

th
e
p
ro
p
os
ed

m
et
h
o
d
fo
r
ag

in
g
is
on

ly
11

%
(f
or

S
P
0

it
is

21
%
).

113

6 Selective flip-flop optimization for circuit reliability

SP0 SP1

0

1

n
o

rm
al

iz
ed

d
el

ay

SP0 SP1

C2MOS

0

20

40

le
ak

ag
e

(n
W

)
SP0 SP1

0

1

Original (Fresh)

Original (Aged)

Optimized (Fresh)

Optimized (Aged)

SP0 SP1

SDFF

0

25

50

Original Optimized

SP0 SP1

0

1

SP0 SP1

SSTC

0

25

50

Figure 6.8: Performance of the original flip-flop vs. the flip-flop optimized by the proposed method at
SP0 and SP1, before and after aging (5 years).

This leads to 35% delay degradation due to only aging and about 68% when aging and voltage-
drop affects the flip-flop. When this flip-flop is optimized for scenario 1, the delay is not reduced
well enough because the main concern is PDP not delay. On the other hand, in scenario 2
(proposed method, only for aging), the optimizer alters the sizing to equalize the post-aging
delay of the LH/HL paths to achieve the smallest possible post-aging delay with respect to
the constraints (119.4 ps). In this case, the post-aging delay is increased by 21% compared to
the fresh delay of the original flip-flop. Also the leakage overhead is limited to 4.7%. Since the
flip-flop operates in S-BTI zone, the switching rate of the flip-flop is very small. This means
that its dynamic power is almost negligible. Therefore, the total power in of flip-flops under
S-BTI is determined by the leakage power.

Even though scenario 2’s design is much better for flip-flops which are only under the aging
impact compared to the original and the state-of-the-art [33] flip-flop designs, the impact
of 10% voltage-drop is significant on the delay, i.e. 49% delay degradation. The flip-flop
optimization results for scenario 3 show that such flip-flops are more resilient against both
aging and voltage-drop impacts. These flip-flops consume about 53% more leakage, however,
the delay degradation is only 32% under both aging and voltage-drop. Please note that the
number of flip-flops under such condition is very small. Therefore, using flip-flops optimized
by scenario 3 has negligible impact on the overall processor power consumption.

6.5.3 Optimization results for other flip-flops

Figure 6.8 provides the optimization results for a set of representative flip-flops. It compares
the delay and the leakage of the original and optimized flip-flops, for both fresh and post-aging
states. All delay values are normalized to the fresh delay of the corresponding original flip-flops
(which are 114.8 ps for C2MOS, 28.5 ps for SDFF, and 71.0 ps for SSTC).

For C2MOS flip-flop, the proposed method reduces the delay degradation in Equation (6.6)
to 21%, while the delay degradation of the original design is 35% (14% improvement). This
flip-flop has a symmetric structure, which means it can have balanced timing for LH/HL
transitions (shown in Figure 6.2b), while some flip-flop topologies such as SDFF, always have
an unbalanced timing for LH/HL transitions due to their internal structure. For example, in
an SDFF, the delay of HL transition is always smaller than the LH transition. The reason is
that, an intermediate precharged node in this flip-flop should be discharged in LH transition in
order to transfer the input ‘one’ to the output, while for the HL transition no such discharging

114

6.5 Results and discussions

20%

25%

30%

35%

D
el

ay
 d

eg
ra

d
at

io
n
 (

%
)

Delay degradation

Figure 6.9: Delay of C2MOS flip-flops optimized for SP0 aging using extra leakage (scenario 2). Delay
degradation saturates as β increases (after β = 0.25).

is required. Hence, the slower path is always the LH path. This may worsen the aging if it is
coupled with unbalanced aging. For these flip-flops, the optimizer minimizes the delay of the
slower path by taking as much area as it can from the faster path, and giving the area to the
slower path. For SDFF, this is attained with 15.8% additional leakage at SP0, but it leads to
better S-BTI resiliency.

6.5.4 Delay-leakage trade-off

In order to understand the trade-off between additional leakage and delay, we optimized
a C2MOS flip-flop with several excessive leakage amounts ranging from 0% to 50% (i.e.
β ∈ {0, 0.125, 0.25, 0.5}). As shown by Figure 6.9, lower delay degradation can be achieved
by allowing the optimization method to design flip-flops with higher leakage. However, the
improvement saturates as β increases. Hence, providing extra leakage to the optimizer is only
beneficial until about 25%, because the improvement in the delay is not significant. Please
note that the designed flip-flops with looser leakage constraints, i.e. higher β, do not necessar-
ily have very high leakage. As shown in Table 6.2, the optimized flip-flop in scenario 2 (only
aging) has only 4.7% extra leakage while providing much better resiliency against S-BTI aging
compared to the original flip-flop and scenario 1 (state-of-the-art work).

6.5.5 Delay-area trade-off

The impact of a small amount of extra area on the resiliency of the flip-flops against both aging
and voltage-drop impacts are studied by changing parameter excessive area overhead λ (see
Table 6.1). We run the optimization flow in Section 6.3 for λ ∈ {0, 0.2} values and compare the
results to the original flip-flop design. Based on the results shown in Figure 6.10, the flip-flop
designs with no extra area, i.e. scenario 2, exhibits good resiliency against aging, however,
under the impact of 10% voltage-drop it has up to 49% delay degradation. Under the impact
of voltage-drop, the flip-flop designed with 20% extra area exhibit much better characteristics
with maximum 32% delay degradation. This observation confirms that using flip-flops with
20% extra area can be beneficial for the cases when both aging and voltage-drop impacts are
severe.

6.5.6 Circuit level results

The proposed selective flip-flop optimization method presented in Section 6.4 is applied to
Leon3 processor with the setup presented in Section 6.5.1 to evaluate the overall impact on
the processor timing and reliability. The “original flip-flop” designs are optimized for different

115

6 Selective flip-flop optimization for circuit reliability

0%

10%

20%

30%

40%

50%

60%

70%

SP0 SP1 SP0 SP1

D
el

ay
 d

eg
ra

d
at

io
n

 (
%

)

Original

Optimized - 0% extra area

Optimized - 20% extra area E
x
tr

a
ar

ea

im
p

ro
v
e
m

e
n
t

0% Voltage Drop 10% Voltage Drop

Figure 6.10: Comparison of the aging-induced delay degradation under impact of voltage-drop, for orig-
inal flip-flop, optimized flip-flop with 0% extra area allowance (scenario 2), and optimized
flip-flop with 20% extra area allowance (scenario 3). The voltage-drop induced delay in-
crease may be compensated by 20% upsizing of the flip-flop cell during the optimization.

0.0

0.2

0.4

0.6

0.8

1.0

(a) Relative voltage-drop criticality
of flip-flops

0.0

0.2

0.4

0.6

0.8

1.0

(b) Relative timing criticality of
flip-flops

0.0

0.2

0.4

0.6

0.8

1.0

(c) Relative aging-criticality of flip-
flops

Figure 6.11: The layout map of the Leon3 flip-flops during the execution of some MiBench workloads
on Leon3, showing relative voltage-drop criticality, timing criticality, and aging criticality
of different flip-flops. Values close to ’1’ correspond to higher criticality, and values closer
to ’0’ represents the non-critical parts. The top-left part of the processor layout is filled
by combinational gates.

output loads for minimum PDP in the fresh state, while the “optimized flip-flop” designs for
“aging” and “aging+vdrop” are obtained by applying the proposed method. Therefore, per
each original flip-flop design for a specific output load, there are different optimized designs
for S-BTI corners SP0 and SP1 as well as no-vdrop and max-vdrop conditions (according to
Section 6.3.5).

The timing of Leon3 processor is evaluated using the “aging and voltage-drop analysis”
step of the proposed flow (see Figure 6.7). This incorporates using an improved version of
an aging-aware timing analysis tool [290] which also considers the impact of supply voltage
variation as explained in Section 6.4.1. This timing analysis determines the processor delay
under runtime variation impacts.

Figure 6.11 illustrates the timing of Leon3 flip-flops on the processor layout as well as the
calculated impacts of voltage-drop and aging on the processor timing. The presented plots are
all normalized to the maximum values (maximum voltage-drop, maximum delay, maximum
aging) for better visualization. Therefore, higher values (darker colors) represents a critical
situation. Figure 6.11a presents voltage-drop of the flip-flops extracted using the “aging and

116

6.5 Results and discussions

Table 6.3: Processor delay comparison when 1) using only original flip-flops, and 2) using proposed
method

processor delay

in fresh state

processor delay

after 7 years

+ voltage-drop

delay

degradation

guardband

reduction

equivalent

lifetime

improvement

Using original flip-flops 1,389.6 ps 1,528.2 ps 9.97 % – –

Proposed

(only aging)
1,391.3 ps 1,494.8 ps 7.44 % 33.4 ps 30.8%

Proposed

(aging + voltage-drop)
1,379.7 ps 1,486.7 ps 7.75 % 41.5 ps 36.9%

voltage-drop analysis” step. The voltage-drop values are normalized to the maximum voltage-
drop value extracted during the simulations. As shown, many flip-flops experience at least a
moderate voltage-drop during the workload execution. However, the flip-flops on the top-left
corner of the layout experience heavy voltage-drop. The timing criticality of the flip-flops is
also shown in Figure 6.11b. The flip-flops with lower timing slack have values closer to 1.0 in
this figure (darker). Interestingly, some of the flip-flops on the top-left corner are also timing-
critical. Additionally, the aging-criticality of the flip-flops is presented in Figure 6.11c. It is
shown that many flip-flops which are under S-BTI are also timing-critical. Most importantly,
a few timing-critical flip-flops are affected by both aging and voltage-drop impacts.

Table 6.3 presents processor delays obtained in fresh state, i.e. no aging or voltage-drop,
and when under aging and voltage-drop impacts. We compare the delay of original processor
(before applying the proposed method) with the delay of the optimized processors, under
runtime variation impacts (aging and voltage-drop) after 7 years. The results are reported for:

1. “Original processor”: using only original flip-flops,

2. “Optimized processor for aging”: when only the impact of aging is considered during
optimization,

3. “Optimized processor for aging and voltage-drop”: when the impacts of aging and
voltage-drop are considered during optimization.

The “original processor” is synthesized using the original flip-flops designs in Table 6.2.
Then, we apply the proposed selective flip-flop optimization in two modes: I) when only aging
is considered, and II) when both aging and voltage-drop are considered. This obtains two
versions of the optimized processor, i.e. “Optimized processor for aging” and “Optimized
processor for aging and voltage-drop”. In the optimization flow presented in Section 6.4.2, we
assume k = 0.15. Therefore, all flip-flops with a slack value less than 15% of the processor
delay are assumed as timing-critical flip-flops. Additionally, we assume r = 0.95, which means
up to 5% calculation error guardband in the timing analysis method is acceptable. In fact,
r value depends on the accuracy of the timing analysis method. After replacing the critical
flip-flops according to the proposed method, the processor delay is obtained again using the
“aging and voltage-drop analysis” step.

According to the table, delay of the “original processor” is increased by 9.97% after 7
years. This translates into 138.6ps timing guardband for 7 years of circuit operation, i.e.
Tclk ≥ 1528.2ps. The “optimized processor for aging” has better delay 1494.8ps under the
impacts of aging and voltage-drop which reduces the required timing guardband by 33.4ps for

117

6 Selective flip-flop optimization for circuit reliability

1.20 1.25 1.30 1.35 1.40

Fresh delay (ns)

1.30

1.35

1.40

1.45

1.50

A
g

ed
d

el
ay

af
te

r
7

y
ea

rs
(n

s)

Dynamic BTI (Original)

S-BTI (Original)

S-BTI (Optimized)

Figure 6.12: Fresh delay (no-aging, no voltage-drop) vs. increased delay (aged and 10% voltage-drop)
of critical paths of Leon3 processor. The proposed selective flip-flop optimization method
replaces the original flip-flops under S-BTI (red) with the optimized flip-flops (green) and
suppresses the aging and voltage-drop degradation of the most critical paths.

7 years of operation, hence optimizing the performance. Therefore, the degradation rate of this
optimized processor is such that it can operate for 9.2 years (30.8% lifetime improvement), if it
is used with the timing margins of Tclk = 1528.2ps. Finally, the required timing guardband of
“Optimized processor for aging and voltage-drop” is further reduced by 41.5ps compared to the
original processor. Therefore, the lifetime of the processor is improved by 36.9% (9.6 years).

The reason for the achieved improvements in Table 6.3 is explained by Figure 6.12. Here,
we only plotted the delay of timing-critical flip-flops with a slack smaller than 15% of the
processor delay (under aging and voltage-drop impacts). With this assumption, there are
261 timing-critical flip-flops. Among the timing-critical flip-flops, 92 flip-flops are under S-
BTI impact (i.e. 0 ≤ SP < 0.01 or 0.99 < SP ≤ 1), 235 flip-flops experience at least 33%
relative voltage-drop. After applying the selective flip-flop optimization method, 96 flip-flops
are replaced with optimized versions, from which 39 flip-flops are upsized (due to both aging
and voltage drop impact).

As the optimized flip-flops constitute about 4% of all flip-flops in Leon3, the overall leakage
overhead with this method is 0.22% according to power analysis results using Synopsys Design
Compiler. Moreover, there is virtually no dynamic power overhead because the replaces flip-
flops are mostly under S-BTI impact and they rarely switch. The additional area overhead is
also very negligible because only 39 flip-flops are replaced by the upsized versions (less than
0.1% area overhead). The ECO process easily fits these flip-flops into the existing layout by
slightly moving other cells. Please note that the impact of the voltage-drop and aging on the
driving logic paths is much less compared to the flip-flops. Therefore, these paths are degraded
at a much lower rate.

6.6 Comparison with the related work

Various methods have been proposed to address the impact of aging and voltage-drop on flip-
flops [11, 33, 135, 292]. For example, [33] proposes a method to improve flip-flop reliability for a
set of corners with different working conditions such as temperatures and voltages by altering
the sizing of transistors. These studies mostly optimize flip-flops for dynamic BTI stress
condition, and flip-flops under static BTI are mostly overlooked. As explained, the traditional
optimization techniques such as optimization for the PDP, or EDP cannot effectively address
the delay increase of flip-flops under such stress. There are techniques to reduce the overall
impact of voltage-drop on VLSI circuits by skewing the clock input of the flip-flops at design-

118

6.7 Summary

time in order to reduce the peak current at clock edge [101, 293]. However, these methods are
not applicable to flip-flops with zero (or close to zero) timing slack on the critical paths. The
techniques at high abstraction level by software-guided thread scheduling [99] or by voltage
emergency prediction [96] also impose additional overhead at another abstraction level than
circuit-level, in order to address a circuit-level problem.

6.7 Summary

In many cases, NTC circuits are required to operate over a wide voltage range in order to
achieve energy efficiency and satisfy performance constraints as needed. Therefore, an NTC
circuit may be exposed to reliability issues such as aging and voltage drop which are significant
in the super-threshold region.

In this chapter, we discussed that a non-negligible portion of circuit flip-flops may be un-
der severe aging or large voltage-drop impact, which leads to timing and functional failures.
Therefore, these flip-flops need to be treated separately and specific stress-tolerant designs
should be used in order to improve the reliability and lifetime. Accordingly, we propose a
method to selectively optimize the flip-flops operating under severe aging stress and/or voltage-
drop conditions. The proposed optimization flow resizes the flip-flop transistors to obtain the
variability-resilient cells. Then, flip-flops which are under the impact of aging and/or voltage-
drop are determined using a variation-aware static timing analysis tool, and are replaced by
the optimized flip-flops which can withstand aging and voltage-drop impacts much better.
Simulation results show that the proposed selective flip-flop optimization method can reduce
Leon3 processor timing guardband, and improve the lifetime of the processor by 36.9%, with
negligible power and area overhead.

119

7 Concluding Remarks

7.1 Summary

Aggressive downscaling of supply voltage down to the near-threshold voltage region, commonly
known as Near-Threshold Computing (NTC), can improve the energy efficiency of circuits by
one order of magnitude. This is especially interesting when the circuit is under stringent energy
constraints, such as devices which are supposed to run on a limited energy budget.

However, along with the enormous energy benefits, NTC comes with a variety of design
challenges. The higher sensitivity to process and runtime variations, caused by aggressive
voltage scaling, reduces the reliability of NTC circuits extensively. The traditional methods of
dealing with such variabilities which are applied in the nominal voltage range are not efficient
in the near-threshold voltage region due to the extent of variations. Additionally, the circuit
design and optimization approaches for the nominal voltage range are not applicable to NTC,
as the initial assumptions and optimization objectives are different. Therefore, new design and
optimization paradigms are required to overcome NTC challenges.

In this thesis, we addressed important challenges of NTC in a comprehensive framework, but
from different perspectives. This includes enhancing the design automation flows for NTC cir-
cuit design, cross-layer co-optimization of energy/reliability/performance, post-fabrication and
runtime calibration of NTC circuits, and optimizing for wide-voltage operation. We presented
in-depth analyses of the reliability issues for the NTC and proposed optimization techniques
to overcome the challenges associated with the NTC. More specifically, the contributions of
this thesis are as follows:

• The timing of circuits is highly impacted when operating in the near-threshold voltage
region, leading to large performance variation, due to critical-path delay fluctuation, or
functional failures, due to hold-time violations. In Chapter 3, a “variation-aware circuit
synthesis and timing closure methodology” is proposed which significantly reduces the
impact of variations on NTC circuits and can efficiently find and fix timing violations.

• Careful cross-layer analysis from circuit-level to application-level in Chapter 4 reveals var-
ious optimization opportunities for improving circuit in the NTC domain. We exploited
these opportunities and presented two optimization schemes, namely “instruction multi-
cycling” and “functional unit partitioning,” to co-optimize energy efficiency, reliability,
and performance of processor data paths.

• We showed that the energy efficiency of NTC circuits is highly dependent on the operating
condition and process variation. Therefore, post-fabrication and runtime tuning methods
are needed in the NTC domain to adapt the NTC circuit to process and runtime variation.
Chapter 5 of this thesis presented a very lightweight approach for tuning NTC circuits
to the best operating condition based on machine-learning methods. This approach
can achieve near-perfect energy efficiency with minimal hardware overhead, which is
applicable to NTC circuits and SoCs in application domains such as the Internet of
Things.

• In many cases, NTC circuits are required to operate over a wide voltage range in order to
achieve both energy efficiency and performance constraints as needed. Operating in the

121

7 Concluding Remarks

super-threshold region introduces various runtime challenges such as aging and supply
voltage fluctuation. The “selective flip-flop optimization method”, proposed in Chapter
6, addresses the reliability issues of digital circuits, by optimizing the reliability of vul-
nerable flip-flops, which are under high impact of aging or supply voltage fluctuation.
The proposed methodology replaces such flip-flops with variation-resilient versions to
improve the overall reliability and lifetime of digital circuits with minimum overheads.

We demonstrate that reliability is a first-class challenge for the NTC, which needs to be
considered in circuit design optimization and methodologies. In fact, many applications in
the domain of the Internet of Things and Cyber-Physical Systems design can benefit from
maximum energy efficiency offered by the NTC, if the associated reliability issues are addressed.
The contributions in this thesis facilitate design NTC circuits by improving their reliability,
energy efficient, and even performance. Some of the proposed methods can be also utilized
to optimize for other reliability issues. For example, the variation-aware synthesis and timing
closure methodology can be slightly modified to consider the runtime variations caused by
Random Telegraph Noise (RTN), or the selective flip-flop optimization can be extended to
address the reliability issues in both gates and flip-flops. Technology scaling trends show that
reliability and energy efficiency remain as the two most challenging issues in the upcoming
years [39, 40]. Therefore, the methodologies presented in this thesis are useful in addressing
both challenges for future technology nodes.

122

Bibliography

[1] M. S. Golanbari, S. Kiamehr, M. Ebrahimi, and M. B. Tahoori, “Variation-aware near threshold
circuit synthesis,” in Design, Automation & Test in Europe Conference (DATE), 2016.

[2] M. S. Golanbari, S. Kiamehr, and M. B. Tahoori, “Hold-time Violation Analysis and Fixing in
Near-Threshold Region,” in International Workshop on Power and Timing Modeling, Optimiza-
tion and Simulation (PATMOS), 2016.

[3] M. S. Golanbari, A. Gebregiorgis, F. Oboril, S. Kiamehr, and M. B. Tahoori, “A Cross-Layer
Approach for Resiliency and Energy Efficiency in Near Threshold Computing,” in International
Conference on Computer-Aided Design (ICCAD), 2016.

[4] M. S. Golanbari, A. Gebregiorgis, E. Moradi, S. Kiamehr, and M. B. Tahoori, “Balancing re-
siliency and energy efficiency of functional units in ultra-low power systems,” in Asia and South
Pacific Design Automation Conference (ASP-DAC), 2018.

[5] M. S. Golanbari and M. B. Tahoori, “Design flows for resilient energy-efficient systems,” in
International Symposium on On-Line Testing and Robust System Design (IOLTS), 2017.

[6] M. S. Golanbari and M. B. Tahoori, “Optimizing Datapaths for Near Threshold Computing,” in
International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applica-
tions to Circuit Design (SMACD), 2018.

[7] M. S. Golanbari, S. Kiamehr, F. Oboril, A. Gebregiorgis, and M. B. Tahoori, “Post-Fabrication
Calibration of Near-Threshold Circuits for Energy Efficiency,” in International Symposium on
Quality Electronic Design (ISQED), 2017.

[8] M. S. Golanbari and M. B. Tahoori, “Runtime adjustment of IoT system-on-chips for minimum
energy operation,” in Design Automation Conference (DAC), 2018.

[9] M. S. Golanbari, S. Kiamehr, M. Ebrahimi, and M. B. Tahoori, “Aging guardband reduction
through selective flip-flop optimization,” in IEEE European Test Symposium (ETS), 2015.

[10] M. S. Golanbari, S. Kiamehr, M. Ebrahimi, and M. B. Tahoori, “Selective Flip-Flop Optimiza-
tion for Reliable Digital Circuit Design,” submitted to IEEE Transactions on Very Large Scale
Integration (VLSI) Systems.

[11] M. S. Golanbari, S. Kiamehr, M. B. Tahoori, and S. Nassif, “Analysis and optimization of flip-
flops under process and runtime variations,” in International Symposium on Quality Electronic
Design (ISQED), 2015.

[12] M. S. Golanbari, S. Kiamehr, and M. B. Tahoori, “Resilient Flip-Flop Design under Process and
Runtime Variations,” in SELSE, 2015.

[13] A. Gebregiorgis, M. S. Golanbari, S. Kiamehr, F. Oboril, and M. B. Tahoori, “Maximizing Energy
Efficiency in NTC by Variation-Aware Microprocessor Pipeline Optimization,” in International
Symposium on Low Power Electronics and Design (ISLPED), pp. 272–277, 2016.

[14] S. Kiamehr, M. Ebrahimi, M. S. Golanbari, and M. B. Tahoori, “Temperature-aware dynamic
voltage scaling to improve energy efficiency of near-threshold computing,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 25, no. 7, 2017.

[15] S. Kiamehr, M. S. Golanbari, and M. B. Tahoori, “Leveraging aging effect to improve SRAM-
based true random number generators,” in Design, Automation & Test in Europe (DATE), pp.
882–885, 2017.

123

Bibliography

[16] M. S. Golanbari, N. Sayed, M. Ebrahimi, M. H. M. Esfahany, S. Kiamehr, and M. B. Tahoori,
“Aging-aware coding scheme for memory arrays,” in IEEE European Test Symposium (ETS),
2017.

[17] M. S. Golanbari, S. Kiamehr, R. Bishnoi, and M. B. Tahoori, “Reliable memory PUF design
for low-power applications,” in International Symposium on Quality Electronic Design (ISQED),
2018.

[18] M. Ebrahimi, M. H. Moshrefpour, M. S. Golanbari, and M. B. Tahoori, “Fault injection ac-
celeration by simultaneous injection of non-interacting faults,” in Design Automation Confer-
ence(DAC), p. 25, 2016.

[19] S. M. Nair, R. Bishnoi, M. S. Golanbari, F. Oboril, and M. B. Tahoori, “VAET-STT: A variation
aware estimator tool for STT-MRAM based memories,” in Design, Automation & Test in Europe
(DATE), pp. 1460–1465, 2017.

[20] S. M. Nair, R. Bishnoi, M. S. Golanbari, F. Oboril, F. Hameed, and M. B. Tahoori, “Vaet-stt:
Variation aware stt-mram analysis and design space exploration tool,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 7, pp. 1396–1407, 2018.

[21] A. T. Erozan, M. S. Golanbari, R. Bishnoi, J. Aghassi-Hagmann, and M. B. Tahoori, “Design
and evaluation of physical unclonable function for inorganic printed electronics,” in International
Symposium on Quality Electronic Design (ISQED), pp. 419–424, 2018.

[22] F. Rasheed, M. S. Golanbari, G. C. Marques, M. B. Tahoori, and J. Aghassi-Hagmann, “A smooth
EKV-based DC model for accurate simulation of printed transistors and their process variations,”
IEEE Transactions on Electron Devices, vol. 65, no. 2, pp. 667–673, 2018.

[23] A. T. Erozan, G. C. Marques, M. S. Golanbari, R. Bishnoi, S. Dehm, J. Aghassi-Hagmann, and
M. B. Tahoori, “Inkjet-Printed EGFET-Based Physical Unclonable Function–Design, Evaluation,
and Fabrication,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, no. 99,
pp. 1–12, 2018.

[24] G. Tshagharyan, G. Harutyunyan, Y. Zorian, A. Gebregiorgis, M. S. Golanbari, R. Bishnoi, and
M. B. Tahoori, “Modeling and Testing of Aging Faults in FinFET Memories for Automotive
Applications,” in IEEE International Test Conference (ITC), 2018.

[25] D. Weller, M. Hefenbrock, M. Golanbari, M. Beigl, and M. Tahoori, “Bayesian Optimized Im-
portance Sampling for High Sigma Failure Rate Estimation,” in Design, Automation & Test in
Europe (DATE), 2019.

[26] F. B. Fujiwara, “H. A Neutral Netlist of 10 Combinational Benchmark Circuits,” in International
Symposium on Circuits and Systems (ISCAS), pp. 695–698, 1985.

[27] F. Brglez, P. Pownall, and R. Hum, “Accelerated ATPG and fault grading via testability analysis,”
in International Symposium on Circuits and Systems (ISCAS), pp. 695–698, 1985.

[28] S. Jain, S. Khare, S. Yada, V. Ambili, P. Salihundam, S. Ramani, S. Muthukumar, M. Srinivasan,
A. Kumar, S. K. Gb et al., “A 280mV-to-1.2 V wide-operating-range IA-32 processor in 32nm
CMOS,” in International Solid-State Circuits Conference (ISSCC), pp. 66–68, 2012.

[29] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, 4th ed. USA:
Addison-Wesley, 2010.

[30] M. R. Choudhury, Q. Zhou, and K. Mohanram, “Soft Error Rate Reduction Using Circuit Op-
timization and Transient Filter Insertion,” Journal of Electronic Testing, vol. 25, no. 2-3, pp.
197–207, 2009.

[31] W. Wang, V. Reddy, A. T. Krishnan, R. Vattikonda, S. Krishnan, Y. Cao et al., “Compact
modeling and simulation of circuit reliability for 65-nm CMOS technology,” IEEE Transactions
on Device and Materials Reliability, vol. 7, no. 4, p. 509, 2007.

124

Bibliography

[32] S. Sinha, G. Yeric, V. Chandra, B. Cline, and Y. Cao, “Exploring sub-20nm FinFET design with
predictive technology models,” in Design Automation Conference (DAC), pp. 283–288, 2012.

[33] H. Abrishami, S. Hatami, and M. Pedram, “Multi-corner, energy-delay optimized, NBTI-aware
flip-flop design,” in International Symposium on Quality Electronic Design (ISQED), pp. 652–659,
2010.

[34] G. E. Moore et al., “Progress in digital integrated electronics,” in International Electron Devices
Meeting (IEDM), vol. 21, pp. 11–13, 1975.

[35] D. C. Brock and G. E. Moore, Understanding Moore’s law: four decades of innovation. Chemical
Heritage Foundation, 2006.

[36] G. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8,
Apr. 1965.

[37] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, no. 4, pp. 23–29, 1999.

[38] M. Bohr, “The new era of scaling in an SoC world,” in International Solid-State Circuits Con-
ference (ISSCC), pp. 23–28, Feb 2009.

[39] International Technology Roadmap for Semiconductors (ITRS). [Online]. Available: http:
//www.itrs2.net

[40] International Roadmap for Devices and Systems (IRDS). [Online]. Available: https://irds.ieee.org

[41] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of
ion-implanted MOSFET’s with very small physical dimensions,” IEEE Journal of Solid-State
Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[42] M. Bohr, “A 30 year retrospective on Dennard’s MOSFET scaling paper,” IEEE Solid-State
Circuits Society Newsletter, vol. 12, no. 1, pp. 11–13, 2007.

[43] S. Borkar and A. A. Chien, “The Future of Microprocessors,” Communications of the ACM,
vol. 54, no. 5, pp. 67–77, May 2011.

[44] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, “Dark silicon and
the end of multicore scaling,” in International Symposium on Computer Architecture (ISCA), pp.
365–376, 2011.

[45] L. Chang, D. J. Frank, R. K. Montoye, S. J. Koester, B. L. Ji, P. W. Coteus, R. H. Dennard, and
W. Haensch, “Practical Strategies for Power-Efficient Computing Technologies,” Proceedings of
the IEEE, vol. 98, no. 2, pp. 215–236, Feb 2010.

[46] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Power Limitations
and Dark Silicon Challenge the Future of Multicore,” ACM Transactions on Computer Systems
(TOCS), vol. 30, no. 3, pp. 11:1–11:27, Aug. 2012.

[47] D. Evans, “The Internet of Things: How the Next Evolution of the Internet Is Changing Every-
thing,” CISCO white paper, pp. 1–11, April 2011.

[48] H. Vestburg, “CEO to shareholders: 50 billion connections 2020,” Ericsson PRESS RELEASE,
April 2010.

[49] A. Ericsson, “enabling the internet of things,” Ericsson mobility report: On the pulse of the
Networked Society, p. 10, November 2015.

[50] P. Middleton, “Forecast Analysis: Internet of Things – Endpoints, Worldwide, 2016
Update,” Gartner, February 2017. [Online]. Available: https://www.gartner.com/doc/3597469/
forecast-analysis-internet-things-

125

Bibliography

[51] M. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data centre energy consumption under
the European code of conduct for data centre energy efficiency,” Energies, vol. 10, no. 10, p. 1470,
2017.

[52] M. Pedram, “Power minimization in IC design: Principles and applications,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 1, no. 1, pp. 3–56, 1996.

[53] M. Pedram, “Low power design methodologies and techniques: An overview,” Microprocessor
Report, vol. 486, p. 66, 1999.

[54] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez, “Reducing Power in High-
performance Microprocessors,” in Design Automation Conference (DAC), pp. 732–737, 1998.

[55] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas, and M. L.
Scott, “Energy-efficient processor design using multiple clock domains with dynamic voltage
and frequency scaling,” in International Symposium on High-Performance Computer Architec-
ture (HPCA), pp. 29–40, 2002.

[56] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, “A dynamic voltage scaled
microprocessor system,” IEEE Journal of Solid-State Circuits, vol. 35, no. 11, pp. 1571–1580,
2000.

[57] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power CMOS digital design,” IEEE
Journal of Solid-State Circuits, vol. 27, no. 4, pp. 473–484, April 1992.

[58] H. Soeleman, K. Roy, and B. C. Paul, “Robust subthreshold logic for ultra-low power operation,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 9, no. 1, pp. 90–99,
2001.

[59] R. Gonzalez, B. M. Gordon, and M. A. Horowitz, “Supply and threshold voltage scaling for low
power CMOS,” IEEE Journal of Solid-State Circuits, vol. 32, no. 8, pp. 1210–1216, Aug 1997.

[60] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge, “Near-threshold com-
puting: Reclaiming moore’s law through energy efficient integrated circuits,” Proceedings of the
IEEE, vol. 98, no. 2, pp. 253–266, 2010.

[61] H. Kaul, M. A. Anders, S. K. Mathew, S. K. Hsu, A. Agarwal, R. K. Krishnamurthy, and
S. Borkar, “A 320 mv 56 µw 411 gops/watt ultra-low voltage motion estimation accelerator in 65
nm cmos,” IEEE Journal of Solid-State Circuits, vol. 44, no. 1, pp. 107–114, 2009.

[62] A. Pahlevan, J. Picorel, A. P. Zarandi, D. Rossi, M. Zapater, A. Bartolini, P. G. Del Valle,
D. Atienza, L. Benini, and B. Falsafi, “Towards near-threshold server processors,” in Design,
Automation & Test in Europe Conference (DATE), pp. 7–12, 2016.

[63] R. Dreslinski Jr, “Near Threshold Computing: From Single Core to Many-Core Energy Efficient
Architectures.” Ph.D. dissertation, University of Michigan, Ann Arbor, 2011.

[64] V. De, “Fine-grain power management in manycore processor and System-on-Chip (SoC) de-
signs,” in International Conference on Computer-Aided Design (ICCAD), pp. 159–164, Nov 2015.

[65] B. Zhai, R. G. Dreslinski, D. Blaauw, T. Mudge, and D. Sylvester, “Energy Efficient Near-
threshold Chip Multi-processing,” in International Symposium on Low Power Electronics and
Design (ISLPED), pp. 32–37, 2007.

[66] E. A. Lee, “Cyber physical systems: Design challenges,” in IEEE Symposium on Object Oriented
Real-Time Distributed Computing (ISORC), pp. 363–369, 2008.

[67] S. K. Khaitan and J. D. McCalley, “Design techniques and applications of cyberphysical systems:
A survey,” IEEE Systems Journal, vol. 9, no. 2, pp. 350–365, 2015.

126

Bibliography

[68] M. White and Y. Chen, “Scaled cmos technology reliability users guide,” Pasadena, CA: Jet
Propulsion Laboratory, National Aeronautics and Space Administration, 2010., Tech. Rep., 2010.

[69] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, M. Tahoori, and N. Wehn, “Reli-
able On-chip Systems in the Nano-era: Lessons Learnt and Future Trends,” in Design Automation
Conference (DAC), pp. 99:1–99:10, 2013.

[70] R. C. Baumann, “Radiation-induced soft errors in advanced semiconductor technologies,” IEEE
Transactions on Device and Mterials Reliability, vol. 5, no. 3, pp. 305–316, 2005.

[71] M. Ebrahimi, “Cross-layer Soft Error Analysis and Mitigation at Nanoscale Technologies.” Ph.D.
dissertation, Karlsruhe Institute of Technology, 2016.

[72] S. Borkar, “Designing reliable systems from unreliable components: the challenges of transistor
variability and degradation,” IEEE Micro, vol. 25, no. 6, pp. 10–16, 2005.

[73] K. Bowman, J. Tschanz, C. Wilkerson, S.-L. Lu, T. Karnik, V. De, and S. Borkar, “Circuit
techniques for dynamic variation tolerance,” in Design Automation Conference (DAC), pp. 4–7,
July 2009.

[74] H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar, “Near-threshold
voltage (NTV) design: opportunities and challenges,” in Design Automation Conference (DAC),
pp. 1153–1158, 2012.

[75] U. R. Karpuzcu, N. S. Kim, and J. Torrellas, “Coping with parametric variation at near-threshold
voltages,” IEEE Micro, vol. 33, no. 4, pp. 6–14, 2013.

[76] M. Alioto, “Ultra-Low Power VLSI Circuit Design Demystified and Explained,” TCSI, vol. 59,
no. 1, pp. 3–29, 2012.

[77] Synopsys Design Compiler. [Online]. Available: https://www.synopsys.com

[78] Y. K. Ramadass and A. P. Chandrakasan, “Minimum energy tracking loop with embedded DC–
DC converter enabling ultra-low-voltage operation down to 250 mV in 65 nm CMOS,” IEEE
Journal of Solid-State Circuits, vol. 43, no. 1, pp. 256–265, 2008.

[79] R. Zimmermann and W. Fichtner, “Low-power logic styles: CMOS versus pass-transistor logic,”
IEEE Journal of Solid-State Circuits, vol. 32, no. 7, pp. 1079–1090, July 1997.

[80] M. Na, E. Nowak, W. Haensch, and J. Cai, “The effective drive current in CMOS inverters,” in
International Electron Devices Meeting (IEDM), pp. 121–124, 2002.

[81] H. J. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on the design
of buffer circuits,” IEEE Journal of Solid-State Circuits, vol. 19, no. 4, pp. 468–473, 1984.

[82] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, “Parameter variations
and impact on circuits and microarchitecture,” in Design Automation Conference (DAC), pp.
338–342, 2003.

[83] K. J. Kuhn, M. D. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar, S. T. Ma, A. Maheshwari,
and S. Mudanai, “Process technology variation,” IEEE Transactions on Electron Devices, vol. 58,
no. 8, pp. 2197–2208, 2011.

[84] Y. Ye, S. Gummalla, C.-C. Wang, C. Chakrabarti, and Y. Cao, “Random variability modeling
and its impact on scaled CMOS circuits,” Journal of computational electronics, vol. 9, no. 3-4,
pp. 108–113, 2010.

[85] G. Roy, A. R. Brown, F. Adamu-Lema, S. Roy, and A. Asenov, “Simulation study of individual
and combined sources of intrinsic parameter fluctuations in conventional nano-MOSFETs,” IEEE
Transactions on Electron Devices, vol. 53, no. 12, pp. 3063–3070, 2006.

127

Bibliography

[86] K. J. Kuhn, “Reducing variation in advanced logic technologies: Approaches to process and de-
sign for manufacturability of nanoscale CMOS,” in IEEE International Electron Devices Meeting
(IEDM), pp. 471–474, 2007.

[87] S. Markov, A. S. M. Zain, B. Cheng, and A. Asenov, “Statistical variability in scaled generations
of n-channel UTB-FD-SOI MOSFETs under the influence of RDF, LER, OTF and MGG,” in
IEEE International SOI Conference (SOI), pp. 1–2, 2012.

[88] X. Wang, A. R. Brown, B. Cheng, and A. Asenov, “Statistical variability and reliability in
nanoscale FinFETs,” in IEEE International Electron Devices Meeting (IEDM), pp. 5–4, 2011.

[89] G. Leung and C. O. Chui, “Interactions between line edge roughness and random dopant fluc-
tuation in nonplanar field-effect transistor variability,” IEEE Transactions on Electron Devices,
vol. 60, no. 10, pp. 3277–3284, 2013.

[90] M. J. Pelgrom, A. C. Duinmaijer, and A. P. Welbers, “Matching properties of MOS transistors,”
IEEE Journal of Solid-state circuits, vol. 24, no. 5, pp. 1433–1439, 1989.

[91] L. Gerrer, S. M. Amoroso, S. Markov, F. Adamu-Lema, and A. Asenov, “3-D statistical simulation
comparison of oxide reliability of planar MOSFETs and FinFET,” IEEE Transactions on Electron
Devices, vol. 60, no. 12, pp. 4008–4013, 2013.

[92] V. B. Kleeberger, H. Graeb, and U. Schlichtmann, “Predicting future product performance: Mod-
eling and evaluation of standard cells in FinFET technologies,” in Design Automation Conference
(DAC), p. 33, 2013.

[93] W. Huang, M. R. Stan, S. Gurumurthi, R. J. Ribando, and K. Skadron, “Interaction of scaling
trends in processor architecture and cooling,” in IEEE Semiconductor Thermal Measurement and
Management Symposium (SEMI-THERM), pp. 198–204, 2010.

[94] H. H. Chen and D. D. Ling, “Power supply noise analysis methodology for deep-submicron VLSI
chip design,” in Design Automation Conference (DAC), pp. 638–643, 1997.

[95] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown, “MiBench:
A free, commercially representative embedded benchmark suite,” in IEEE International Work-
shop on Workload Characterization, pp. 3–14, 2001.

[96] V. J. Reddi, M. S. Gupta, G. Holloway, G.-Y. Wei, M. D. Smith, and D. Brooks, “Voltage emer-
gency prediction: Using signatures to reduce operating margins,” in International Symposium on
High-Performance Computer Architecture (HPCA), pp. 18–29, 2009.

[97] S. Nithin, G. Shanmugam, and S. Chandrasekar, “Dynamic voltage (IR) drop analysis and de-
sign closure: Issues and challenges,” in International Symposium on Quality Electronic Design
(ISQED), pp. 611–617, 2010.

[98] R. Zhang, K. Wang, B. H. Meyer, M. R. Stan, and K. Skadron, “Architecture implications of
pads as a scarce resource,” in International Symposium on Computer Architecture (ISCA), pp.
373–384, 2014.

[99] V. J. Reddi, S. Kanev, W. Kim, S. Campanoni, M. D. Smith, G.-Y. Wei, and D. Brooks, “Voltage
smoothing: Characterizing and mitigating voltage noise in production processors via software-
guided thread scheduling,” in International Symposium on Microarchitecture, pp. 77–88, 2010.

[100] V. Reddy, J. Carulli, A. Krishnan, W. Bosch, and B. Burgess, “Impact of negative bias tempera-
ture instability on product parametric drift,” in Interational Test Conference (ITC), pp. 148–155,
2004.

[101] J. P. Fishburn, “Clock skew optimization,” IEEE Transactions on Computers, vol. 39, no. 7, pp.
945–951, July 1990.

128

Bibliography

[102] J. Denney and C. Ramsey, “Comparison of finite-difference and spice tools for thermal modeling
of the effects of nonuniform power generation in high-power CPUs,” The Hewlett-Packard J.,
vol. 50, pp. 37–45, 1998.

[103] H. Amrouch, T. Ebi, J. Schneider, S. Parameswaran, and J. Henkel, “Analyzing the thermal
hotspots in FPGA-based embedded systems,” in International Conference on Field Programmable
Logic and Applications (FPL), pp. 1–4, 2013.

[104] C. Tradowsky, E. Cordero, T. Deuser, M. Hübner, and J. Becker, “Determination of on-chip
temperature gradients on reconfigurable hardware,” in International Conference on Reconfigurable
Computing and FPGAs (ReConFig), pp. 1–8, 2012.

[105] S. Marella, “Performance variations due to layout-dependent stress in VLSI circuits,” Ph.D.
dissertation, University of Minnesota, 2015.

[106] S.-Y. Kim, Y. M. Kim, K.-H. Baek, B.-K. Choi, K.-R. Han, K.-H. Park, and J.-H. Lee, “Tem-
perature dependence of substrate and drain–currents in bulk FinFETs,” IEEE transactions on
Electron Devices, vol. 54, no. 5, pp. 1259–1264, 2007.

[107] K. Chain, J.-h. Huang, J. Duster, P. K. Ko, and C. Hu, “A MOSFET electron mobility model
of wide temperature range (77-400 K) for IC simulation,” Semiconductor science and technology,
vol. 12, no. 4, p. 355, 1997.

[108] S. M. Sze and K. K. Ng, Physics of semiconductor devices. John wiley & sons, 2006.

[109] C.-H. Tsai and S.-M. S. Kang, “Standard cell placement for even on-chip thermal distribution,”
in International Symposium on Physical Design (ISPD), pp. 179–184, 1999.

[110] R. K. Krishnamurthy and K. Himanshu, “Ultra-low voltage technologies for energy-efficient
special-purpose hardware accelerators,” Intel Technology Journal, vol. 13, no. 4, pp. 102 – 117,
2009.

[111] Y.-K. Cheng, P. Raha, C.-C. Teng, E. Rosenbaum, and S.-M. Kang, “ILLIADS-T: An electrother-
mal timing simulator for temperature-sensitive reliability diagnosis of CMOS VLSI chips,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 17, no. 8, pp.
668–681, 1998.

[112] D. Wolpert and P. Ampadu, “Temperature effects in semiconductors,” in Managing temperature
effects in nanoscale adaptive systems. Springer, 2012, pp. 15–33.

[113] E. Maricau and G. Gielen, “CMOS reliability overview,” in Analog IC Reliability in Nanometer
CMOS. Springer, 2013, pp. 15–35.

[114] K. O. Jeppson and C. M. Svensson, “Negative bias stress of MOS devices at high electric fields
and degradation of MNOS devices,” Journal of Applied Physics, vol. 48, no. 5, pp. 2004–2014,
1977.

[115] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristics of the surface-state charge
(Qss) of thermally oxidized silicon,” Journal of the Electrochemical Society, vol. 114, no. 3, pp.
266–274, 1967.

[116] A. Goetzberger, A. Lopez, and R. Strain, “On the Formation of Surface States during Stress
Aging of Thermal Si-SiO2 Interfaces,” Journal of the Electrochemical Society, vol. 120, no. 1, pp.
90–96, 1973.

[117] S. Pae, M. Agostinelli, M. Brazier, R. Chau, G. Dewey, T. Ghani, M. Hattendorf, J. Hicks,
J. Kavalieros, K. Kuhn et al., “BTI reliability of 45 nm high-K+ metal-gate process technology,”
in IEEE International Reliability Physics Symposium (IRPS), pp. 352–357, 2008.

129

Bibliography

[118] G. Bersuker, J. Sim, C. S. Park, C. D. Young, S. V. Nadkarni, R. Choi, and B. H. Lee, “Mechanism
of Electron Trapping and Characteristics of Traps in HfO2 Gate Stacks,” IEEE Transactions on
Device and Materials Reliability, vol. 7, no. 1, pp. 138–145, 2007.

[119] S. Zafar, Y. Kim, V. Narayanan, C. Cabral, V. Paruchuri, B. Doris, J. Stathis, A. Callegari, and
M. Chudzik, “A comparative study of NBTI and PBTI (charge trapping) in SiO2/HfO2 stacks
with FUSI, TiN, Re gates,” in Symposium on VLSI Technology, pp. 23–25, 2006.

[120] A. W. Strong, E. Y. Wu, R.-P. Vollertsen, J. Sune, G. La Rosa, T. D. Sullivan, and S. E.
Rauch III, Reliability wearout mechanisms in advanced CMOS technologies. John Wiley & Sons,
2009, vol. 12.

[121] T. Grasser, Bias temperature instability for devices and circuits. Springer Science & Business
Media, 2013.

[122] K. B. Sutaria, J. B. Velamala, C. H. Kim, T. Sato, and Y. Cao, “Aging statistics based on
trapping/detrapping: Compact modeling and silicon validation,” IEEE Transactions on Device
and Materials Reliability, vol. 14, no. 2, pp. 607–615, 2014.

[123] T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehenberger, P.-J. Wagner,
F. Schanovsky, J. Franco, M. T. Luque et al., “The paradigm shift in understanding the bias
temperature instability: From reaction–diffusion to switching oxide traps,” IEEE Transactions
on Electron Devices, vol. 58, no. 11, pp. 3652–3666, 2011.

[124] J. B. Velamala, K. B. Sutaria, T. Sato, and Y. Cao, “Aging statistics based on trap-
ping/detrapping: Silicon evidence, modeling and long-term prediction,” in IEEE International
Reliability Physics Symposium (IRPS), pp. 2F–2, 2012.

[125] V. Huard, C. Parthasarathy, C. Guerin, T. Valentin, E. Pion, M. Mammasse, N. Planes, and
L. Camus, “NBTI degradation: From transistor to SRAM arrays,” in IEEE International Relia-
bility Physics Symposium (IRPS), pp. 289–300, 2008.

[126] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula, “Predictive modeling of the
NBTI effect for reliable design,” in Custom Integrated Circuits Conference (CICC), pp. 189–192,
2006.

[127] W. Wang, S. Yang, S. Bhardwaj, R. Vattikonda, S. Vrudhula, F. Liu, and Y. Cao, “The impact
of NBTI on the performance of combinational and sequential circuits,” in Design Automation
Conference (DAC), pp. 364–369, 2007.

[128] K.-L. Chen, S. A. Saller, I. A. Groves, and D. B. Scott, “Reliability effects on MOS transistors
due to hot-carrier injection,” IEEE Transactions on Electron Devices, vol. 32, no. 2, pp. 386–393,
1985.

[129] A. Bravaix, C. Guerin, V. Huard, D. Roy, J. Roux, and E. Vincent, “Hot-carrier acceleration
factors for low power management in DC-AC stressed 40nm NMOS node at high temperature,”
in IEEE International Reliability Physics Symposium (IRPS), pp. 531–548, 2009.

[130] E. Takeda, C. Y. Yang, and A. Miura-Hamada, Hot-carrier effects in MOS devices. Academic
Press, 1995.

[131] W.-K. Yeh, W.-H. Wang, Y.-K. Fang, and F.-L. Yang, “Temperature dependence of hot-carrier-
induced degradation in 0.1 µm SOI nMOSFETs with thin oxide,” IEEE Electron Device Letters,
vol. 23, no. 7, pp. 425–427, 2002.

[132] F. Oboril and M. B. Tahoori, “Cross-layer approaches for an aging-aware design of nanoscale
microprocessors: Dissertation summary: IEEE TTTC EJ McCluskey doctoral thesis award com-
petition finalist,” in IEEE International Test Conference (ITC), pp. 1–10, 2015.

[133] J. McPherson, “Time dependent dielectric breakdown physics–Models revisited,” Microelectronics
Reliability, vol. 52, no. 9-10, pp. 1753–1760, 2012.

130

Bibliography

[134] B. Kaczer, R. Degraeve, P. Roussel, and G. Groeseneken, “Gate oxide breakdown in FET devices
and circuits: From nanoscale physics to system-level reliability,” Microelectronics Reliability,
vol. 47, no. 4-5, pp. 559–566, 2007.

[135] C. Nunes, P. F. Butzen, A. I. Reis, and R. P. Ribas, “BTI, HCI and TDDB aging impact in
flip-flops,” Microelectronics Reliability, vol. 53, no. 9-11, pp. 1355–1359, 2013.

[136] H. Ceric and S. Selberherr, “Electromigration in submicron interconnect features of integrated
circuits,” Materials Science and Engineering: R: Reports, vol. 71, no. 5-6, pp. 53–86, 2011.

[137] P. S. Ho and T. Kwok, “Electromigration in metals,” Reports on Progress in Physics, vol. 52,
no. 3, p. 301, 1989.

[138] J. R. Black, “Electromigration—A brief survey and some recent results,” IEEE Transactions on
Electron Devices, vol. 16, no. 4, pp. 338–347, 1969.

[139] C.-K. Hu, L. Gignac, B. Baker, E. Liniger, R. Yu, and P. Flaitz, “Impact of Cu microstructure
on electromigration reliability,” in International Interconnect Technology Conference, pp. 93–95,
2007.

[140] R. Aitken, E. H. Cannon, M. Pant, and M. B. Tahoori, “Resiliency challenges in sub-10nm
technologies,” in VLSI Test Symposium (VTS), pp. 1–4, 2015.

[141] T. C. May and M. H. Woods, “A new physical mechanism for soft errors in dynamic memories,”
in Annual Reliability Physics Symposium, pp. 33–40, 1978.

[142] R. Baumann, “The impact of technology scaling on soft error rate performance and limits to
the efficacy of error correction,” in International Electron Devices Meeting (IEDM), pp. 329–332,
2002.

[143] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi, “Modeling the effect of
technology trends on the soft error rate of combinational logic,” in International Conference on
Dependable Systems and Networks (DSN), pp. 389–398, 2002.

[144] N. Seifert, B. Gill, S. Jahinuzzaman, J. Basile, V. Ambrose, Q. Shi, R. Allmon, and A. Bramnik,
“Soft error susceptibilities of 22 nm tri-gate devices,” IEEE Transactions on Nuclear Science,
vol. 59, no. 6, pp. 2666–2673, 2012.

[145] N. Seifert, P. Slankard, M. Kirsch, B. Narasimham, V. Zia, C. Brookreson, A. Vo, S. Mitra,
B. Gill, and J. Maiz, “Radiation-induced soft error rates of advanced CMOS bulk devices,” in
IEEE International Reliability Physics Symposium Proceedings (IRPS), pp. 217–225, 2006.

[146] J.-L. Autran and D. Munteanu, Soft Errors: from particles to circuits. CRC Press, 2015.

[147] V. Chandra and R. Aitken, “Impact of technology and voltage scaling on the soft error suscepti-
bility in nanoscale CMOS,” in IEEE International Symposium on Defect and Fault Tolerance of
VLSI Systems, pp. 114–122, 2008.

[148] J. Tonfat, J. R. Azambuja, G. Nazar, P. Rech, C. Frost, F. L. Kastensmidt, L. Carro, R. Reis,
J. Benfica, F. Vargas et al., “Analyzing the influence of voltage scaling for soft errors in SRAM-
based FPGAs,” in European Conference on Radiation and Its Effects on Components and Systems
(RADECS), pp. 1–5, 2013.

[149] F. L. Kastensmidt, J. Tonfat, T. Both, P. Rech, G. Wirth, R. Reis, F. Bruguier, P. Benoit,
L. Torres, and C. Frost, “Voltage scaling and aging effects on soft error rate in SRAM-based
FPGAs,” Microelectronics Reliability, vol. 54, no. 9-10, pp. 2344–2348, 2014.

[150] E. Ibe, H. Taniguchi, Y. Yahagi, K.-i. Shimbo, and T. Toba, “Impact of scaling on neutron-
induced soft error in SRAMs from a 250 nm to a 22 nm design rule,” IEEE Transactions on
Electron Devices, vol. 57, no. 7, pp. 1527–1538, 2010.

131

Bibliography

[151] N. Seifert, B. Gill, K. Foley, and P. Relangi, “Multi-cell upset probabilities of 45nm high-k+ metal
gate SRAM devices in terrestrial and space environments,” in IEEE International Reliability
Physics Symposium (IRPS), pp. 181–186, 2008.

[152] A. D. Tipton, J. A. Pellish, R. A. Reed, R. D. Schrimpf, R. A. Weller, M. H. Mendenhall,
B. Sierawski, A. K. Sutton, R. M. Diestelhorst, G. Espinel et al., “Multiple-bit upset in 130 nm
CMOS technology,” IEEE Transactions on Nuclear Science, vol. 53, no. 6, pp. 3259–3264, 2006.

[153] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou, “Precomputation-based
sequential logic optimization for low power,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 2, no. 4, pp. 426–436, 1994.

[154] L. Benini, G. De Micheli, and E. Macii, “Designing low-power circuits: practical recipes,” IEEE
Circuits and Systems magazine, vol. 1, no. 1, pp. 6–25, 2001.

[155] L. Wei, Z. Chen, M. Johnson, K. Roy, and V. De, “Design and optimization of low voltage
high performance dual threshold CMOS circuits,” in Design Automation Conference (DAC), pp.
489–494, 1998.

[156] T. Sakurai and A. R. Newton, “Alpha-power law MOSFET model and its applications to CMOS
inverter delay and other formulas,” IEEE Journal of solid-state circuits, vol. 25, no. 2, pp. 584–
594, 1990.

[157] D. Markovic, C. C. Wang, L. P. Alarcon, T. Liu, and J. M. Rabaey, “Ultralow-Power Design in
Near-Threshold Region,” Proceedings of the IEEE, vol. 98, no. 2, pp. 237–252, Feb 2010.

[158] C. C. Enz, F. Krummenacher, and E. A. Vittoz, “An analytical MOS transistor model valid
in all regions of operation and dedicated to low-voltage and low-current applications,” Analog
integrated circuits and signal processing, vol. 8, no. 1, pp. 83–114, 1995.

[159] M. Bucher, A. Bazigos, F. Krummenacher, J.-M. Sallese, and C. Enz, “EKV3. 0: An advanced
charge based MOS transistor model. A design-oriented MOS transistor compact model,” in Tran-
sistor Level Modeling for Analog/RF IC Design. Springer, 2006, pp. 67–95.

[160] S. Keller, D. M. Harris, and A. J. Martin, “A compact transregional model for digital CMOS
circuits operating near threshold,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 22, no. 10, pp. 2041–2053, 2014.

[161] N. Drego, A. Chandrakasan, and D. Boning, “Lack of spatial correlation in MOSFET threshold
voltage variation and implications for voltage scaling,” IEEE Transactions on Semiconductor
Manufacturing, vol. 22, no. 2, pp. 245–255, 2009.

[162] S. Hanson, B. Zhai, K. Bernstein, D. Blaauw, A. Bryant, L. Chang, K. K. Das, W. Haensch,
E. J. Nowak, and D. M. Sylvester, “Ultralow-voltage, minimum-energy CMOS,” IBM Journal of
Research and Development, vol. 50, no. 4.5, pp. 469–490, 2006.

[163] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, and K. Flautner, “Razor:
circuit-level correction of timing errors for low-power operation,” IEEE Micro, vol. 24, no. 6, pp.
10–20, 2004.

[164] B. Greskamp and J. Torrellas, “Paceline: Improving single-thread performance in nanoscale CMPs
through core overclocking,” in International Conference on Parallel Architecture and Compilation
Techniques, pp. 213–224, 2007.

[165] S. G. Ramasubramanian, S. Venkataramani, A. Parandhaman, and A. Raghunathan, “Relax-
and-retime: A methodology for energy-efficient recovery based design,” in Design Automation
Conference (DAC), p. 111, 2013.

[166] Y. Liu, R. Ye, F. Yuan, R. Kumar, and Q. Xu, “On logic synthesis for timing speculation,” in
International Conference on Computer-Aided Design (ICCAD), pp. 591–596, 2012.

132

Bibliography

[167] B. Zhai, S. Hanson, D. Blaauw, and D. Sylvester, “A variation-tolerant sub-200 mV 6-T sub-
threshold SRAM,” IEEE Journal of Solid-State Circuits, vol. 43, no. 10, p. 2338, 2008.

[168] L. Chang, R. K. Montoye, Y. Nakamura, K. A. Batson, R. J. Eickemeyer, R. H. Dennard,
W. Haensch, and D. Jamsek, “An 8T-SRAM for variability tolerance and low-voltage operation
in high-performance caches,” IEEE Journal of Solid-State Circuits, vol. 43, no. 4, pp. 956–963,
2008.

[169] L. Chang, D. M. Fried, J. Hergenrother, J. W. Sleight, R. H. Dennard, R. K. Montoye, L. Sekaric,
S. J. McNab, A. W. Topol, C. D. Adams et al., “Stable SRAM cell design for the 32 nm node
and beyond,” in Symposium on VLSI Technology, pp. 128–129, 2005.

[170] J. P. Kulkarni, K. Kim, and K. Roy, “A 160 mV, fully differential, robust schmitt trigger
based sub-threshold SRAM,” in International Symposium on Low Power Electronics and De-
sign (ISLPED), pp. 171–176, 2007.

[171] B. H. Calhoun and A. Chandrakasan, “A 256kb sub-threshold SRAM in 65nm CMOS,” in Inter-
national Solid-State Circuits Conference (ISSCC), pp. 2592–2601, 2006.

[172] J. Hu and X. Yu, “Low voltage and low power pulse flip-flops in nanometer CMOS processes,”
Current Nanoscience, vol. 8, no. 1, pp. 102–107, 2012.

[173] N. Pinckney, D. Blaauw, and D. Sylvester, “Low-power near-threshold design: Techniques to
improve energy efficiency,” IEEE Solid-State Circuits Magazine, vol. 7, no. 2, pp. 49–57, 2015.

[174] H. Fuketa, K. Hirairi, T. Yasufuku, M. Takamiya, M. Nomura, H. Shinohara, and T. Sakurai,
“12.7-times energy efficiency increase of 16-bit integer unit by power supply voltage (V DD) scaling
from 1.2 V to 310mV enabled by contention-less flip-flops (CLFF) and separated V DD between
flip-flops and combinational logics,” in International Symposium on Low Power Electronics and
Design (ISLPED), pp. 163–168, 2011.

[175] E. H. Cannon, D. D. Reinhardt, M. S. Gordon, and P. S. Makowenskyj, “SRAM SER in 90, 130
and 180 nm bulk and SOI technologies,” in IEEE International Reliability Physics Symposium
Proceedings (IRPS), pp. 300–304, 2004.

[176] P. Hazucha, T. Karnik, S. Walstra, B. A. Bloechel, J. W. Tschanz, J. Maiz, K. Soumyanath,
G. E. Dermer, S. Narendra, V. De et al., “Measurements and analysis of SER-tolerant latch in a
90-nm dual-V/sub T/CMOS process,” IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp.
1536–1543, 2004.

[177] R. Naseer and J. Draper, “DF-DICE: a scalable solution for soft error tolerant circuit design.” in
International Symposium on Circuits and System (ISCAS), pp. 3890–3893, 2006.

[178] M. Zhang, S. Mitra, T. Mak, N. Seifert, N. J. Wang, Q. Shi, K. S. Kim, N. R. Shanbhag, and
S. J. Patel, “Sequential element design with built-in soft error resilience,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 14, no. 12, pp. 1368–1378, 2006.

[179] Q. Zhou and K. Mohanram, “Transistor sizing for radiation hardening,” in International Relia-
bility Physics Symposium (IRPS), pp. 310–315, 2004.

[180] M. Ebrahimi, P. M. B. Rao, R. Seyyedi, and M. B. Tahoori, “Low-cost multiple bit upset cor-
rection in SRAM-based FPGA configuration frames,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 24, no. 3, pp. 932–943, 2016.

[181] I. J. Chang, J.-J. Kim, S. P. Park, and K. Roy, “A 32 kb 10T sub-threshold SRAM array with bit-
interleaving and differential read scheme in 90 nm CMOS,” IEEE Journal of Solid-State Circuits,
vol. 44, no. 2, pp. 650–658, 2009.

[182] X. Fu, T. Li, and J. A. B. Fortes, “Soft error vulnerability aware process variation mitigation,”
in International Symposium on High Performance Computer Architecture (HPCA), pp. 93–104,
Feb 2009.

133

Bibliography

[183] B. Zhai, R. G. Dreslinski, D. Blaauw, T. Mudge, and D. Sylvester, “Energy efficient near-
threshold chip multi-processing,” in International Symposium on Low Power Electronics and
Design (ISLPED), pp. 32–37, 2007.

[184] M. Seok, G. Chen, S. Hanson, M. Wieckowski, D. Blaauw, and D. Sylvester, “CAS-FEST 2010:
Mitigating variability in near-threshold computing,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 1, no. 1, pp. 42–49, 2011.

[185] S. Hanson, B. Zhai, M. Seok, B. Cline, K. Zhou, M. Singhal, M. Minuth, J. Olson, L. Nazhandali,
T. Austin et al., “Performance and variability optimization strategies in a sub-200mV, 3.5 pJ/inst,
11nW subthreshold processor,” in IEEE Symposium on VLSI Circuits, pp. 152–153, 2007.

[186] M. R. Kakoee, A. Sathanur, A. Pullini, J. Huisken, and L. Benini, “Automatic synthesis of near-
threshold circuits with fine-grained performance tunability,” in International Symposium on Low
Power Electronics and Design (ISLPED), pp. 401–406, 2010.

[187] J. Myers, A. Savanth, R. Gaddh, D. Howard, P. Prabhat, and D. Flynn, “A subthreshold ARM
cortex-M0+ subsystem in 65 nm CMOS for WSN applications with 14 power domains, 10T
SRAM, and integrated voltage regulator,” IEEE Journal of Solid-State Circuits, vol. 51, no. 1,
pp. 31–44, 2016.

[188] S. Kim, I. Kwon, D. Fick, M. Kim, Y.-P. Chen, and D. Sylvester, “Razor-lite: A side-channel
error-detection register for timing-margin recovery in 45nm SOI CMOS,” in International Solid-
State Circuits Conference (ISSCC), pp. 264–265, 2013.

[189] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge, “Opportunities and challenges for better than
worst-case design,” in Asia and South Pacific Design Automation Conference (ASP-DAC), pp.
2–7, 2005.

[190] A. Gebregiorgis, R. Bishnoi, and M. B. Tahoori, “A Comprehensive Reliability Analysis Frame-
work for NTC Caches: A System to Device Approach,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2018.

[191] B. Zhai, S. Pant, L. Nazhandali, S. Hanson, J. Olson, A. Reeves, M. Minuth, R. Helfand,
T. Austin, D. Sylvester et al., “Energy-efficient subthreshold processor design,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 8, pp. 1127–1137, 2009.

[192] B. Zhai, S. Hanson, D. Blaauw, and D. Sylvester, “Analysis and mitigation of variability in sub-
threshold design,” in International Symposium on Low Power Electronics and Design (ISLPED),
pp. 20–25, 2005.

[193] A. Gebregiorgis and M. B. Tahoori, “Fine-Grained Energy-Constrained Microprocessor Pipeline
Design,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 3, pp.
457–469, 2018.

[194] L. Nazhandali, B. Zhai, J. Olson, A. Reeves, M. Minuth, R. Helfand, S. Pant, T. Austin,
and D. Blaauw, “Energy optimization of subthreshold-voltage sensor network processors,” ACM
SIGARCH Computer Architecture News, vol. 33, no. 2, pp. 197–207, 2005.

[195] Y. Ikenaga, M. Nomura, Y. Nakazawa, and Y. Hagihara, “A circuit for determining the optimal
supply voltage to minimize energy consumption in LSI circuit operations,” IEEE Journal of
Solid-State Circuits, vol. 43, no. 4, pp. 911–918, 2008.

[196] L. Koskinen, M. Hiienkari, J. Mäkipää, and M. J. Turnquist, “Implementing minimum-energy-
point systems with adaptive logic,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 24, no. 4, pp. 1247–1256, 2016.

[197] N. Mehta and K. A. Makinwa, “Minimum energy point tracking for sub-threshold digital CMOS
circuits using an in-situ energy sensor,” in International Symposium on Circuits and Systems
(ISCAS), pp. 570–573, 2013.

134

Bibliography

[198] N. Mehta and B. Amrutur, “Dynamic supply and threshold voltage scaling for CMOS digital
circuits using in-situ power monitor,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 20, no. 5, pp. 892–901, 2012.

[199] A. Wang, A. P. Chandrakasan, and S. V. Kosonocky, “Optimal supply and threshold scaling for
subthreshold CMOS circuits,” in IEEE Computer Society Annual Symposium on VLSI, pp. 7–11,
2002.

[200] J. Crop, R. Pawlowski, N. Moezzi-Madani, J. Jackson, and P. Chaing, “Design automation
methodology for improving the variability of synthesized digital circuits operating in the sub/near-
threshold regime,” in International Green Computing Conference and Workshops, pp. 1–6, 2011.

[201] N. Conos, S. Meguerdichian, S. Wei, M. Potkonjak et al., “Maximizing yield in Near-Threshold
Computing under the presence of process variation,” in International Workshop on Power and
Timing Modeling, Optimization and Simulation, pp. 1–8, 2013.

[202] V. Stojanovic and V. G. Oklobdzija, “Comparative analysis of master-slave latches and flip-flops
for high-performance and low-power systems,” IEEE Journal of Solid-State Circuits, vol. 34,
no. 4, pp. 536–548, Apr 1999.

[203] G. Neuberger, G. Wirth, and R. Reis, Protecting Chips Against Hold Time Violations Due to
Variability. Springer, 2014.

[204] W.-P. Tu, C.-H. Chou, S.-H. Huang, S.-C. Chang, Y.-T. Nieh, and C.-Y. Chou, “Low-Power
Timing Closure Methodology for Ultra-Low Voltage Designs,” in International Conference on
Computer-Aided Design (ICCAD), pp. 697–704, 2013.

[205] Y. Zhang and B. H. Calhoun, “Hold Time Closure for Subthreshold Circuits Using a Two-Phase,
Latch Based Timing Method,” in S3S, pp. 1–2, 2013.

[206] X. Zhao, J. R. Tolbert, S. Mukhopadhyay, and S. K. Lim, “Variation-Aware Clock Network
Design Methodology for Ultralow Voltage (ULV) Circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 31, no. 8, pp. 1222–1234, 2012.

[207] D. Bol et al., “Robust and Energy-Efficient Ultra-Low-Voltage Circuit Design under Timing
Constraints in 65/45 nm CMOS,” Journal of Low Power Electronics and Applications, vol. 1,
no. 1, pp. 1–19, 2011.

[208] J. Kwong, Y. K. Ramadass, N. Verma, and A. P. Chandrakasan, “A 65 nm sub-microcontroller
with integrated SRAM and switched capacitor DC-DC converter,” IEEE Journal of Solid-State
Circuits, vol. 44, no. 1, pp. 115–126, 2009.

[209] N. Lotze, M. Ortmanns, and Y. Manoli, “Variability of Flip-Flop Timing at Sub-Threshold
Voltages,” in International Symposium on Low Power Electronics and Design (ISLPED), pp.
221–224, 2008.

[210] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statistical timing analysis: From ba-
sic principles to state of the art,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 27, no. 4, pp. 589–607, 2008.

[211] N. R. Mahapatra, A. Tareen, and S. V. Garimella, “Comparison and analysis of delay elements,”
in Midwest Symposium on Circuits and Systems (MWSCAS), vol. 2, pp. II–II, 2002.

[212] N. Reynders and W. Dehaene, Ultra-Low-Voltage Design of Energy-Efficient Digital Circuits.
Springer, 2015.

[213] J. Zhou, S. Jayapal, B. Büsze, L. Huang, and J. Stuyt, “A 40 nm dual-width standard cell library
for near/sub-threshold operation,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 59, no. 11, pp. 2569–2577, 2012.

135

Bibliography

[214] Q. Xie, X. Lin, Y. Wang, M. J. Dousti, A. Shafaei, M. Ghasemi-Gol, and M. Pedram, “5nm Fin-
FET standard cell library optimization and circuit synthesis in near-and super-threshold voltage
regimes,” in IEEE Computer Society Annual Symposium on VLSI, pp. 424–429, 2014.

[215] P.-C. Wu, M. D. Wong, I. Nedelchev, S. Bhardwaj, and V. Parkhe, “On timing closure: Buffer
insertion for hold-violation removal,” in Design Automation Conference (DAC), pp. 1–6, 2014.

[216] S. Chowdhury and J. Lillis, “Repeater insertion for concurrent setup and hold time violations
with power-delay trade-off,” in International Symposium on Physical Design (ISPD), pp. 59–66,
2007.

[217] S. Held et al., “Timing closure in chip design,” Ph.D. dissertation, Research Institute for Discrete
Mathematics, University of Bonn, 2008.

[218] S.-H. Huang, C.-H. Cheng, C.-M. Chang, and Y.-T. Nieh, “Clock period minimization with
minimum delay insertion,” in Design Automation Conference (DAC), pp. 970–975, 2007.

[219] Y.-M. Yang, K. H. Tam, and I. H.-R. Jiang, “Criticality-dependency-aware timing characteriza-
tion and analysis,” in Design Automation Conference (DAC), p. 167, 2015.

[220] A. B. Kahng, “New game, new goal posts: A recent history of timing closure,” in Design Au-
tomation Conference (DAC), pp. 1–6, 2015.

[221] M. Seok, D. Blaauw, and D. Sylvester, “Robust clock network design methodology for ultra-low
voltage operations,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 1, no. 2, pp. 120–130, 2011.

[222] NanGate FreePDK45 Open Cell Library. [Online]. Available: http://www.nangate.com

[223] Cadence Virtuoso Variety Statistical Characterization Solution. [Online]. Available: http:
//www.cadence.com

[224] HSPICE: The Gold Standard for Accurate Circuit Simulation. [Online]. Available: https:
//www.synopsys.com/verification/ams-verification/hspice.html

[225] ECSM Specification. [Online]. Available: https://www.si2.org

[226] G. D. Micheli, Synthesis and Optimization of Digital Circuits, 1st ed. McGraw-Hill Higher
Education, 1994.

[227] Cadence Encounter Timing System. [Online]. Available: http://www.cadence.com

[228] S. Chowdhury and J. Lillis, “Repeater Insertion for Concurrent Setup and Hold Time Violations
with Power-delay Trade-off,” in International Symposium on Physical Design (ISPD), pp. 59–66,
2007.

[229] K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Quar-
terly of applied mathematics, vol. 2, no. 2, pp. 164–168, 1944.

[230] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of sequential benchmark cir-
cuits,” in International Symposium on Circuits and Systems (ISCAS), pp. 1929–1934, 1989.

[231] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks and first ATPG results,”
IEEE Design & Test of computers, vol. 17, no. 3, pp. 44–53, 2000.

[232] Faraday Technology Corporation - Silicon IP. [Online]. Available: https://www.faraday-tech.com

[233] A. Gaisler and S. Göteborg, “Leon3 multiprocessing cpu core,” Aeroflex Gaisler, February, 2010.

[234] C. Albrecht, “IWLS 2005 benchmarks,” in International Workshop for Logic Synthesis (IWLS),
2005.

136

Bibliography

[235] B. H. Calhoun, A. Wang, and A. Chandrakasan, “Modeling and sizing for minimum energy
operation in subthreshold circuits,” IEEE Journal of Solid-State Circuits, vol. 40, no. 9, pp.
1778–1786, 2005.

[236] U. R. Karpuzcu, A. Sinkar, N. S. Kim, and J. Torrellas, “EnergySmart: toward energy-efficient
manycores for near-threshold computing,” in International Symposium on High-Performance
Computer Architecture (HPCA), pp. 542–553, 2013.

[237] S. Seo, R. G. Dreslinski, M. Woh, Y. Park, C. Charkrabari, S. Mahlke, D. Blaauw, and T. Mudge,
“Process variation in near-threshold wide SIMD architectures,” in Design Automation Conference
(DAC), pp. 980–987, 2012.

[238] M. Wieckowski, Y. M. Park, C. Tokunaga, D. W. Kim, Z. Foo, D. Sylvester, and D. Blaauw,
“Timing yield enhancement through soft edge flip-flop based design.” in Custom Integrated Cir-
cuits Conference (CICC), pp. 543–546, 2008.

[239] V. Joshi, D. Blaauw, and D. Sylvester, “Soft-edge flip-flops for improved timing yield: design and
optimization,” in International Conference on Computer-Aided Design (ICCAD), pp. 667–673,
2007.

[240] G. Gammie, A. Wang, M. Chau, S. Gururajarao, R. Pitts, F. Jumel, S. Engel, P. Royannez,
R. Lagerquist, H. Mair et al., “A 45nm 3.5 g baseband-and-multimedia application processor
using adaptive body-bias and ultra-low-power techniques,” in International Solid-State Circuits
Conference (ISSCC), pp. 258–611, 2008.

[241] E. Krimer, R. Pawlowski, M. Erez, and P. Chiang, “Synctium: a near-threshold stream processor
for energy-constrained parallel applications,” IEEE Computer Architecture Letters, vol. 9, no. 1,
pp. 21–24, 2010.

[242] F. Oboril, F. Firouzi, S. Kiamehr, and M. B. Tahoori, “Negative bias temperature instability-
aware instruction scheduling: A cross-layer approach,” Journal of Low Power Electronics, vol. 9,
no. 4, pp. 389–402, 2013.

[243] F. Oboril, F. Firouzi, S. Kiamehr, and M. Tahoori, “Reducing NBTI-induced processor wearout
by exploiting the timing slack of instructions,” in CODES+ISSS, pp. 443–452, 2012.

[244] M. Annavaram, “A case for guarded power gating for multi-core processors,” in International
Symposium on High-Performance Computer Architecture (HPCA), 2011.

[245] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis, “Power management
of datacenter workloads using per-core power gating,” Computer Architecture Letters, 2009.

[246] P. Bose, A. Buyuktosunoglu, J. A. Darringer, M. S. Gupta, M. B. Healy, H. Jacobson, I. Nair,
J. A. Rivers, J. Shin, A. Vega et al., “Power management of multi-core chips: Challenges and
pitfalls,” in Design, Automation & Test in Europe Conference (DATE), 2012.

[247] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose, “Microarchitec-
tural techniques for power gating of execution units,” in International Symposium on Low Power
Electronics and Design (ISLPED), pp. 32–37, 2004.

[248] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduction to cluster analysis.
John Wiley & Sons, 2009, vol. 344.

[249] D. Jeon, M. Seok, C. Chakrabarti, D. Blaauw, and D. Sylvester, “A super-pipelined energy
efficient subthreshold 240 ms/s fft core in 65 nm cmos,” IEEE Journal of Solid-State Circuits,
vol. 47, no. 1, pp. 23–34, 2012.

[250] M. H. DeGroot and M. J. Schervish, Probability and statistics. Pearson Education, 2012.

137

Bibliography

[251] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower,
T. Krishna, S. Sardashti et al., “The gem5 simulator,” ACM SIGARCH Computer Architecture
News, vol. 39, no. 2, pp. 1–7, 2011.

[252] G. Hinton, D. Sager, M. Upton, D. Boggs, D. P. Group, and I. Corp, “The Microarchitecture of
the Pentium 4 Processor,” Intel Technology Journal, vol. 1, p. 2001, 2001.

[253] P.-N. Tan et al., Introduction to data mining. Pearson Education India, 2007.

[254] M. Severson, K. Yuen, and Y. Du, “Not so fast my friend: Is near-threshold computing the
answer for power reduction of wireless devices?” in Design Automation Conference (DAC), pp.
1164–1166, 2012.

[255] D. E. Lackey, P. S. Zuchowski, T. R. Bednar, D. W. Stout, S. W. Gould, and J. M. Cohn, “Man-
aging power and performance for system-on-chip designs using voltage islands,” in International
Conference on Computer-Aided Design (ICCAD), pp. 195–202, 2002.

[256] A. Wang and A. Chandrakasan, “A 180-mV subthreshold FFT processor using a minimum energy
design methodology,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 310–319, 2005.

[257] A. Wang, A. P. Chandrakasan, and S. V. Kosonocky, “Optimal supply and threshold scaling for
subthreshold CMOS circuits,” in IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pp. 5–9, 2002.

[258] S. V. Gubbi and B. Amrutur, “All Digital Energy Sensing for Minimum Energy Tracking,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 4, pp. 796–800, April
2015.

[259] T. Lin, K. S. Chong, J. S. Chang, and B. H. Gwee, “An Ultra-Low Power Asynchronous-Logic
In-Situ Self-Adaptive VrmDD System for Wireless Sensor Networks,” IEEE Journal of Solid-State
Circuits, vol. 48, no. 2, pp. 573–586, Feb 2013.

[260] “Cadence Virtuoso Liberate Characterization Solution,” http://www.cadence.com/products/cic/
liberate/pages/default.aspx.

[261] S. Kiamehr, P. Weckx, M. Tahoori, B. Kaczer, H. Kukner, P. Raghavan, G. Groeseneken, and
F. Catthoor, “The impact of process variation and stochastic aging in nanoscale VLSI,” in IEEE
International Reliability Physics Symposium (IRPS), pp. CR–1–1–CR–1–6, April 2016.

[262] A. Singhee and R. A. Rutenbar, “Why Quasi-Monte Carlo is Better Than Monte Carlo or Latin
Hypercube Sampling for Statistical Circuit Analysis,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 29, no. 11, pp. 1763–1776, Nov 2010.

[263] D. J. MacKay, “Bayesian interpolation,” Neural computation, vol. 4, no. 3, pp. 415–447, 1992.

[264] D. E. Farrar and R. R. Glauber, “Multicollinearity in regression analysis: the problem revisited,”
The Review of Economic and Statistics, pp. 92–107, 1967.

[265] R. H. Myers and R. H. Myers, Classical and modern regression with applications. Duxbury press
Belmont, CA, 1990, vol. 2.

[266] M. Bhushan, A. Gattiker, M. B. Ketchen, and K. K. Das, “Ring oscillators for CMOS process
tuning and variability control,” IEEE Transactions on Semiconductor Manufacturing, vol. 19,
no. 1, pp. 10–18, 2006.

[267] R. Rodrigues, A. Annamalai, I. Koren, and S. Kundu, “A study on the use of performance
counters to estimate power in microprocessors,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 60, no. 12, pp. 882–886, 2013.

[268] F. Oboril, J. Ewert, and M. B. Tahoori, “High-resolution online power monitoring for modern
microprocessors,” in Design, Automation & Test in Europe Conference (DATE), pp. 265–268,
2015.

138

Bibliography

[269] A. Vijayan, A. Koneru, S. Kiamehr, K. Chakrabarty, and M. B. Tahoori, “Fine-Grained Aging-
Induced Delay Prediction Based on the Monitoring of Run-Time Stress,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2016.

[270] G. Birkhoff and C. R. De Boor, “Piecewise polynomial interpolation and approximation,” Ap-
proximation of functions, pp. 164–190, 1965.

[271] J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Annals of statis-
tics, pp. 1189–1232, 2001.

[272] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning. Springer series
in statistics New York, 2001, vol. 1.

[273] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning. Springer series
in statistics New York, 2001, vol. 1.

[274] ModelSim. [Online]. Available: https://www.mentor.com/products/fv/modelsim/

[275] C. Schlunder, S. Aresu, G. Georgakos, W. Kanert, H. Reisinger, K. Hofmann, and W. Gustin,
“HCI vs. BTI? - Neither one’s out,” in IEEE International Reliability Physics Symposium (IRPS),
pp. 2F.4.1–2F.4.6, 2012.

[276] W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu, and Y. Cao, “The Impact of NBTI Effect
on Combinational Circuit: Modeling, Simulation, and Analysis,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 18, no. 2, pp. 173–183, Feb. 2010.

[277] A. H. Ajami, K. Banerjee, A. Mehrotra, and M. Pedram, “Analysis of IR-drop scaling with
implications for deep submicron P/G network designs,” in International Symposium on Quality
Electronic Design (ISQED), pp. 35–40, 2003.

[278] K. Ramakrishnan, X. Wu, N. Vijaykrishnan, and Y. Xie, “Comparative analysis of NBTI effects
on low power and high performance flip-flops,” in International Conference on Computer Design
(ICCD), pp. 200–205, 2008.

[279] A. T. Krishnan, F. Cano, C. Chancellor, V. Reddy, Z. Qi, P. Jain, J. Carulli, J. Masin, S. Zuhoski,
S. Krishnan et al., “Product drift from NBTI: Guardbanding, circuit and statistical effects,” in
International Electron Devices Meeting, pp. 4–3, 2010.

[280] V. Reddy, J. Carulli, A. Krishnan, W. Bosch, and B. Burgess, “Impact of negative bias temper-
ature instability on product parametric drift,” in International Conferce on Test, pp. 148–155,
Oct 2004.

[281] A. V. Mezhiba and E. G. Friedman, “Scaling trends of on-chip power distribution noise,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 4, pp. 386–394, 2004.

[282] V. Stojanovic and V. G. Oklobdzija, “Comparative analysis of master-slave latches and flip-flops
for high-performance and low-power systems,” IEEE Journal of Solid-State Circuits, vol. 34,
no. 4, pp. 536–548, 1999.

[283] S. H. Unger et al., “Clocking schemes for high-speed digital systems,” IEEE transactions on
computers, no. 10, pp. 880–895, 1986.

[284] S. Sundareswaran, “Statistical characterization for timing sign-off : from silicon to design and
back to silicon,” Ph.D. dissertation, UT Austin, 2009.

[285] J.-K. Wu, T.-Y. Wu, L.-Y. Lu, and K.-Y. Chen, “IR drop reduction via a flip-flop resynthesis
technique,” in International Symposium on Quality Electronic Design (ISQED), pp. 78–83, 2008.

[286] T. Sato, J. Ichimiya, N. Ono, K. Hachiya, and M. Hashimoto, “On-chip thermal gradient analysis
and temperature flattening for SoC design,” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. 88, no. 12, pp. 3382–3389, 2005.

139

Bibliography

[287] D. R. E. Gnad, F. Oboril, S. Kiamehr, and M. B. Tahoori, “An Experimental Evaluation and
Analysis of Transient Voltage Fluctuations in FPGAs,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 26, no. 10, pp. 1817–1830, Oct 2018.

[288] S. Kiamehr, M. Ebrahimi, F. Firouzi, and M. B. Tahoori, “Extending Standard Cell Library for
Aging Mitigation,” IET Computers & Digital Techniques, vol. 9, no. 4, pp. 206–212, 2015.

[289] D. Kraft, “A software package for sequential quadratic programming,” Forschungsbericht-
Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt, vol. 88-28, pp. 1–33, July
1988.

[290] M. Ebrahimi, F. Oboril, S. Kiamehr, and M. B. Tahoori, “Aging-aware Logic Synthesis,” in
International Conference on Computer-Aided Design (ICCAD), pp. 61–68, 2013.

[291] W. Zhao and Y. Cao, “New generation of predictive technology model for sub-45nm design
exploration,” in International Symposium on Quality Electronic Design (ISQED), pp. 585–590,
2006.

[292] V. G. Rao and H. Mahmoodi, “Analysis of reliability of flip-flops under transistor aging effects
in nano-scale CMOS technology,” in International Conference on Computer Design (ICCD), pp.
439–440, 2011.

[293] A. Vittal, H. Ha, F. Brewer, and M. Marek-Sadowska, “Clock Skew Optimization for Ground
Bounce Control,” in International Conference on Computer-Aided Design (ICCAD), pp. 395–399,
1996.

140

	Glossary
	List of Figures
	List of Tables
	Introduction
	Motivation and objective
	Contributions of this thesis
	Design flows and methodologies
	Design optimization
	Post-fabrication and runtime tuning
	Wide-voltage operation

	Structure of this Thesis

	Preliminaries and State-of-the-Art
	VLSI technology: from transistors to circuits
	Variability sources
	Process variation
	Supply voltage fluctuation
	Temperature variation
	Aging
	Soft-Errors

	Near-Threshold Computing
	NTC challenges

	State-of-the-art in resilient energy-efficient computing
	Summary

	Variation-aware circuit synthesis and timing closure
	Introduction, motivation, and contributions
	Related Work
	Circuit timing in the NTV region
	Impact of variation on hold-time constraints
	Hold-time analysis results

	Variation-aware logic synthesis and timing closure methodology
	Cell library engineering
	Logic synthesis
	Hold-time analysis and fixing flow

	Buffer optimization for NTC
	Results and discussion
	Simulation setup
	Logic synthesis results
	Hold-time fixing results

	Summary

	Cross-layer reliability, energy efficiency, and performance optimization of data paths
	Introduction, motivation, and contributions
	Related work
	Cross-layer data path optimization
	Instruction multi-cycling
	Functional unit partitioning

	Results and discussion
	Implementation flow
	Reliability analysis
	Simulation setup
	ALU multi-cycling results
	ALU partitioning results

	Summary

	Post-fabrication calibration and runtime tuning for energy efficiency
	Introduction, Motivation, and Contributions
	Related work

	Post-fabrication calibration and runtime MEP adaptation of NTC circuits
	MEP analysis
	MEP tuning based on process and temperature variations

	Runtime adjustment of IoT SoCs
	Voltage and frequency islands in SoC
	Regression model for runtime adjustment of SoC
	Implementation flow

	Results and discussions
	Circuit results
	SoC results

	Summary

	Selective flip-flop optimization for circuit reliability
	Introduction, motivation, and contributions
	Variability impact on flip-flops
	Flip-flop timing
	Runtime variation impacts on flip-flops
	Significance of flip-flops in circuit reliability

	Reliability-aware flip-flop design
	Aging resilient flip-flop design
	Voltage-drop resilient flip-flop design
	Aging and voltage-drop resilient flip-flop design
	Problem formulation for flip-flop resiliency optimization
	Reliability-aware flip-flop optimization flow

	Selective flip-flop optimization
	Aging and voltage-drop analysis
	Selective flip-flop replacement

	Results and discussions
	Simulation Setup
	Detailed optimization results of C2MOS flip-flop
	Optimization results for other flip-flops
	Delay-leakage trade-off
	Delay-area trade-off
	Circuit level results

	Comparison with the related work
	Summary

	Concluding Remarks
	Summary

	Bibliography

