
KIT –  The Research University in the Helmholtz Association  www.kit.edu 

Institute for Applied Materials – Applied Materials Physics (IAM-AWP) 

C. Ziebert, N. Uhlmann, W. Zhao, M. Rohde, H. J. Seifert 

Improving BMS and TMS by combined 

Battery Calorimetry and modelling  

18 - 20 September, 2018 | NH Collection, Frankfurt am Main, Germany 

5th International Conference 



KIT, IAM-AWP 2 

Increase of safety and reliability of lithium-ion batteries for EV/HEV 

Aim: Improvement of TMS and BMS by determination of quantitative data using 
battery calorimetry in combination with modelling and simulation 

Motivation 

Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 

→ For improving battery management system  
     (BMS) and thermal management system (TMS)        
     electrochemical and thermal behavior of the  
     cells have to be thoroughly studied  

Feng et al., Energy Storage Materials 10 (2018) 246 
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Possible conditions in an Accelerating Rate Calorimeter (ARC) 
An ARC provides isoperibolic and adiabatic conditions  

Under isoperibolic conditions the 
environmental temperature is kept 

constant. 

𝑅𝑡ℎ defined 

𝑇𝐶  constant 

𝑇𝑆 𝑡 = 𝑇𝑆0 + 𝛼 ∙ 𝑡 

𝑻𝑪 

𝑻𝑺 

Under adiabatic conditions the heaters follow 
immediately any change of the bomb thermocouple thus 

preventing that the cell can transfer heat to the walls. 

𝑅𝑡ℎ very high 

𝑇𝐶  = 𝑇𝐶 𝑡  
                = 𝑇𝐶0 + 𝛼 ∙ 𝑡 

𝑻𝑪 

𝑻𝑺 

Short introduction to battery calorimetry 

Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 
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At IAM-AWP: Europe`s Largest Calorimeter Center 

Accelerating Rate Calorimeter(ARC) 

Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 

Equipment: 6 ARC‘s (THT); 2 Tian-Calvet calorimeters (C80, Alexys1000: Setaram); DSC (Netzsch), TGA+STA 
(TAG, Setsys, Setaram); IR camera (FLIR); 12 Temperature chambers; 10 Cyclers; EIS (Ref3000, Gamry)  

http://www.google.de/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwjlo9ezzfzWAhUJPxoKHRp8DVYQjRwIBw&url=http://us.setaram.com/en/setaram-products/calorimetry/calorimetry-calorimetry/alexsys/&psig=AOvVaw2Ef2CE7c23oo16RE7p6XWC&ust=1508499684896720
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Discharge parameter: 
- method: constant current (CC) 
- Umin = 3.0V 
- I = 5A  → C/8-rate 

 

Charge parameter: 
- method: constant current,  
      constant voltage (CCCV) 
- Umax = 4.1V 
- I = 5A  → C/8-rate 
- Imin = 0.5A 

Adiabatic Measurements 

Tst = 23°C (RT) 

Adiabatic and Isoperibolic Measurements 

Worst Case Conditions 
 

→ Cell in a pack surrounded by other cells 

→ after each electrochemical cycle the cell  
     temperature increases further 

Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 
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Isoperibolic Measurements 

temperature coefficient  

negative! 

→ after one electrochemical cycle the cell   
     temperature reaches its initial value again 

Discharge parameter: 
- method: constant current (CC) 
- Umin = 3.0V 
- I = 5A  → C/8-rate 

 

Charge parameter: 
- method: constant current,  
      constant voltage (CCCV) 
- Umax = 4.1V 
- I = 5A  → C/8-rate 
- Imin = 0.5A 

Ideal conditions  
 

→ Single cell 

Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 
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Conversion of thermal data (temperature, temperature rate) to heat (Joule) and 

power (Watt) with the aim of understanding  of heat release to determine heat 

removal requirements for thermal management. 
 

To be measured: 

Heat generation of the cell during charging and discharging –  

Key data for thermal management and safety 

Methods for the determination of total generated heat 

 Cell effective specific heat capacity 

 Heat transfer coefficient 

 Reversible heat rate 

 Irreversible heat rate 

Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 
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Measurement of effective specific heat capacity cp 

e.g. at 30 °C     𝑐𝑝 = 1.095 
𝐽
𝑔 ∙ 𝐾  

Sandwich setup 
for pouch cells 

Control of the current applied to the heater 
mat to ensure a constant heating rate 

𝑐𝑝 =
∆𝑄

𝑚 ∙ ∆𝑇𝑎𝑑
=
 𝑈 ∙ 𝐼 𝑑𝑡

𝑚 ∙ ∆𝑇𝑎𝑑
 

               m: Mass of the cell 

         ∆𝑇𝑎𝑑: Temperature difference under 
                     adiabatic conditions 

Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 
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Measurement of heat transfer coefficient h with heat flux sensors 
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gSKIN®-XP [1]      
(10mm x 10mm)  

Tiny, serially connected semiconductor piles inside 
the sensor generate a voltage, which is proportional 
to the heat passing through the surface. The voltage 
is read out and depending on the sensor‘s sensitivity 
the results are converted into the heat flux [2]. 

Working principle of heat flux sensor 

 ℎ =
 
𝑈𝑠𝑒𝑛𝑠𝑜𝑟
𝑆(𝑇)

𝑑𝑡 

 
 
(𝑇 − 𝑇𝐶) 𝑑𝑡

𝑡

0

  

𝑆 𝑇 = 𝑆0 + 𝑇 − 22.5 °𝐶  ∙ 𝑆𝐶   

𝑆0 = 10.04
𝑚𝑉 ∙ 𝑚2

𝑊
 𝑆𝐶 = 0.0049 ∙  

𝑚𝑉 ∙ 𝑚2

𝑊 ∙ °𝐶
 

Sensitivity: 

Temperature correction factor Room temperature sensitivity 

[1] http://shop.greenteg.com/shop/products-rd/gskin-xp/ 
[2] https://www.greenteg.com/faq-heat-flux-sensing/  

Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 
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𝑅𝑖 =
∆𝑉𝑖

𝐼  

𝑄 𝑖𝑟𝑟𝑒𝑣 𝑆𝑂𝐶 = 0.6 = 1.4 𝑊 

𝑄 𝑖𝑟𝑟𝑒𝑣 = −𝐼2𝑅𝑖  

Irreversible heat measurement: Current interruption technique (CIT) 
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Reversible heat (entropy) measurement: Potentiometric method 

@ SOC 20% 

∆𝑆 = 𝑛𝐹
𝑑𝐸0

𝑑𝑇
= −14.14 𝐽

𝑚𝑜𝑙∙𝐾   

n: number of electrons, F: Faraday constant 96485.3365 C/mol 
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Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 
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Comparison of the values for the generated heat 
determined by three different methods 

Conclusion: good agreement between the values determined by the different methods 
Source: E. Schuster, C. Ziebert, A. Melcher, M. Rohde, H.J. Seifert, J. Power Sources 268 (2015) 580-589 

𝑄 𝑔 = 𝑚𝑐𝑝
𝑑𝑇

𝑑𝑡
  

𝑄 𝑔 = 𝑚𝑐𝑝
𝑑𝑇

𝑑𝑡
+ 𝐴ℎ ∙ 𝑇𝑆 − 𝑇𝐶   

2) Isoperibolic Measurement 

1) Adiabatic Measurement 

𝑄 𝑔 = −𝐼 𝐸0 − 𝐸 − 𝐼𝑇
𝑑𝐸0

𝑑𝑇
  

3) Measurement of irreversible  
     and reversible heat 

E0: Open circuit voltage (OCV), E: cell potential 

Discharge half cycles 

T = 30 °C 
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Influence of ageing phenomena on different modes of heat generation 

Comparison between fresh 18650 cells and the 3 cell groups (each consisting of 3 cells) after cyclic (G1) 
or calendaric (G2, G3) ageing for 30d. 
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Influence of ageing phenomena on different modes of heat generation 

Comparison between fresh 18650 cells and the cell groups (each consisting of 3 cells) after cyclic (G1) 
or calendaric (G2, G3) ageing for 30d: (a) Entropy curves          (b) Inner resistances as function of SOC. 
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Comparison between fresh 18650 cells and the cell groups (each consisting of 3 cells) after cyclic (G1) 
or calendaric (G2, G3) ageing for 30d: (a) Isoperibolic cycling  (b) Adiabatic cycling in the ARC. 
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Conclusion: Recording of temperature profile can be used as a “fingerprint” for the SOH and as 
   a fast and reliable method for the characterization of aging processes 

Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 
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Nail penetration test in the ARC on a 2.5 Ah pouch cell 
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a) Mechanical abuse: Nail penetration test 

Safety tests 

Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 
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Comparison of different SOC 
SOC 80 SOC 70 

a) Mechanical abuse: Nail penetration test 

Safety tests 

 𝑇max = 366.24 °C  𝑇0 =  24.60 °C  
 

𝐻 = 17.08 kJ       

Nail penetration test in the ARC on a 2.5 Ah pouch cell 

cp = 1.0 J/g K      m = 50.0 g 

𝐻 = m ∙ cp ∙ 𝑇  Heat of reaction 

 𝑇max = 98.13 °C  𝑇0 =  23.65 °C 
 

𝐻 = 3.73 kJ  

Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 
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b) Thermal Abuse: Heat-Wait-Seek(HWS) Method 

Example of a Heat-Wait-Seek step 

Seek 

C. Ziebert, A. Melcher, B. Lei, W.J. Zhao, M. Rohde, H.J. Seifert, Electrochemical-thermal characterization and thermal modeling for batteries, in:  
L.M. Rodriguez, N. Omar, Eds., EMERGING NANOTECHNOLOGIES IN RECHARGABLE ENERGY STORAGE SYSTEMS, Elsevier Inc. 2017, ISBN  978032342977. 

Exotherm 

dT/dt<onset 

Wait 

Seek 

dT/dt<onset 

Idle 

dT/dt>onset 

Cool 

If T>Tf 

Heat 
If T>Tf 

end test 

Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 
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Thermal Runaway: 18650 cells with different cathode materials 

80<T<130°C:      low rate reaction, 0.02 - 0.05 °C/min: exothermic decomposition of the SEI 
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130<T<200°C:   medium rate reaction, 0.05 - 25 °C/min:  solvent reaction, exothermic reaction between   
                            embedded Li ions and electrolyte   => reduction of electrolyte at negative electrode 

T > 200°C:          high rate reaction, higher than 25 °C/min: Exothermic reaction between active positive 
              material and electrolyte at positive electrode   => rapid generation of oxygen 

Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 
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Study of ageing effects of PHEV1 cells by thermal runaway tests 
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Development of internal pressure measurement methods 
 for 18650 cells 

Pressure line (Ø 1.5 mm) 

Internal pressure could be used in BMS for early prediction of processes leading to thermal runaway 
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Opening of safety vent 

B. Lei, W. Zhao, C. Ziebert, A. Melcher, M. Rohde, H.J. Seifert, Batteries 2017, 3, 14, doi:10.3390/batteries3020014. 

Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 
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c) Electrical abuse: Overcharge test 

Overcharging measurement inside an accelerating rate calorimeter with 264 mAh pouch cells without (a) and with 
vacuum control (b). Depicted from bottom to top are cell temperatures for both sides, calorimeter temperature (top 
and side temperature), the cell voltage and the vacuum control. 

Cell tests during thermal runaway caused by 
overcharging at 10 C. (a) Overcharging 
experiment without prevention. (b) During 
thermal runaway vacuum is applied by a 
vacuum pump. 

A. Hofmann, N. Uhlmann, C. Ziebert,  O. Wiegand, A. Schmidt, Th. Hanemann, Applied Thermal Engineering, 124 (2017) 539-544. 

Conclusion:  Pressure reduction of pouch cells as safety measure for thermal runaway prevention 

Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 
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Step 1 - BMS  

Detection of mechanical, thermal, 

electrical abuse 

Step 2 – Cell :  

Venting, CID, PTC 

Step 3 – Pack  

Passive propagation prevention 

The three-level strategy of reducing the hazard of thermal runaway 

Feng et al., Energy Storage Materials 10 (2018) 246 

Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 
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Optimized Multilayer: HKO-Defensor ML 14 
 

• Extended time for propagation: 9 min 

• Improved heat protection: temperature on top of battery 
box < 80 °C during thermal runaway 

Gray: protective material for cell 4 and lid of  battery box 
Red:   heater mat for thermal runaway initiation 

         Material qualification for passive propagation prevention 
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Modelling and Simulation 

Equivalent 
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Microstructure 
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Molecular 

Dynamics 
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Density 

Functional Theory 

based  models 

(DFT) 

Complexity: 
• Length/time scales 
• Physics 
• Mathematics 
• Amount of parameters  
• Amount of equations 
• Dimension 
• Simulation/computation time 
• Realtime computation 

Electrochemical- 

Thermal Models 

(ETM) 

Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 
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Thermal runaway (MSMD with Arrhenius-type exothermal extensions) 

Comparison of experimental and simulation results for 18650 cells 
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a model for ramp heating with ODEs representing: 
 

 the decomposition rates 
 the energy balance 
 the ideal gas flow equations 
 the burst condition for the trigger pressure 
 the partial ejection of the jelly roll 

Source:  P.T. Coman, S. Rayman, R. E. White, 
               J. of Power Sources 307 (2016) 56. 

Electrochemical-Thermal Model: Lumped Matlab ODE model for ramp 
heating with venting 

Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 
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Thermal runaway including internal pressure evolution 

Comparison of experimental and simulation results for 18650 cells 

Simulation (Ramp Heating) 
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IKEBA Project  
Integrated Components and Integrated Design of Energy Efficient Battery Systems 

5 cooperating partners 

Duration: 05/2013-07/2016 

Budget:   7 Million Euro 

Equivalent Circuit Model 

Battery  

Monitoring 

Battery                

Management       

Software              

Battery  

Monitoring 

Automotive uC 

ECM Cell 
Modelling 
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Modelling Workflow 

Measurements in battery 

calorimeters on cell and pack 

6s1p 

Pack 

Battery model in BMS design platform 

Cell Model Implementation Cell Model Parametrization 

BMS Demonstrator 

Cell Model Validation Cell Model Optimization 

measured 
simulated 

Dr. C. Ziebert – Automotive BMS, Frankfurt, 18.-20.09.2018 



KIT, IAM-AWP 32 

Comparison of measurements and simulations by using current 
profile based on NEDC 

ΔV < 30 mV 

ΔT < 0.5 K 

measured 

simulated 

Single Cell 6s1p Battery Pack 
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Summary: Possible measurements with a battery calorimeter 

Normal conditions of use  
 Isoperibolic or adiabatic measurement 

 Measurement of temperature curve and temperature distribution during cycling (full cycles, 
or application-specific load profiles), ageing studies 

 Determination of the generated heat, Separation of heat in reversible and irreversible parts 

 For each: 

Abuse conditions 

 Thermal abuse: Heat-wait-seek test, ramp heating test, thermal propagation test 

 External short circuit, nail penetration test 

 Overcharge, deep discharge 

 Temperature measurement 

 External or internal pressure measurement  

 Gas collection, Post Mortem Analysis, Ageing studies 

 For each: 

Contact: 

Phone:  ++49/721608-22919 

E-Mail: Carlos.Ziebert@kit.edu 

Important data for BMS, TMS and safety 
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Thank You 
For Your Kind Attention 

This work has been partially funded by the Federal Ministry for Education and Research 
(BMBF) within the framework “IKT 2020 Research for Innovations” under the grant 
16N12515 and is supervised by the Project  Management  Agency VDI|VDE|IT.  
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