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Abstract

In this thesis we prove the well-posedness of the viscoelastic wave equation for the
generalized standard linear solid under given initial values and certain homoge-
neous boundary conditions. Also we show, that the solution of this equation is
Fréchet-differentiable for the material parameters, the initial values and the ex-
ternal force density and stress rate. Finally, we derive the adjoint of the bounded
linear operator given by this derivative at some parameter point.

A key concept in these proofs is the application of a variable transformation.
It transforms the viscoelastic equation into an alternative form, which might be of
interest in its own right. All results are formulated in terms of the original as well
as the transformed variables.
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Chapter 1

Introduction

In this thesis we prove the unique solvability of the viscoelastic initial-boundary
value problem

ρ(x)∂tv(x, t) = divσ(x, t) + f(x, t) ,

∂tσ(x, t) = C

(
µH(x) +

L∑
l=1

µM,l(x) , κH(x) +
L∑
l=1

κM,l(x)

)
ε(v)(x, t)

+
L∑
l=1

ηl(x, t) + g(x, t) , (1.1)

τσ,l(x)∂tηl(x, t) = −C
(
µM,l(x) , κM,l(x)

)
ε(v)(x, t) − ηl(x, t) , l = 1, . . . , L ,

x ∈ D, t ∈ [0, t1],

v(x, 0) = v(0)(x) , σ(x, 0) = σ(0)(x) , ηl(x, 0) = η
(0)
l (x) , l = 1, . . . , L ,

x ∈ D,

v(x, t) = 0 , x ∈ ∂DD , t ∈ [0, t1] , n(x)>σ(x, t) = 0 , x ∈ ∂DN , t ∈ [0, t1] ,

with ∅ 6= D ⊆ R3 open, ∂D = ∂DD∪̇∂DN and n denoting the outer unit normal
vector, for the velocity v, the stress σ and the memory variables ηl in a weak sense
in space and a classical sense in time. The parameter functions will be explained
in detail later. To achieve this goal we interpret (1.1) as the evolution equation

u′(t) = −Au(t) + f(t) , t ∈ [0, t1] ,

u(0) = u0

(1.2)

with a linear operator A : X ⊇ D(A) → X on a Hilbert space
(
X, (. , .)X

)
. The

crucial idea is the application of a variant of the Theorem of Hille-Yosida under

1



2 CHAPTER 1. INTRODUCTION

the premise that A is maximal monotone with respect to a certain weighted scalar
product (. , .)T on X. To determine this scalar product we perform the variable
transformation

v
σH
σM,1

...
σM,L

 := T


v
σ
η1
...
ηL

 :=


v

σ +
∑L

l=1 τσ,lηl
−τσ,1η1

...
−τσ,LηL

 ,

which converts (1.1) into the initial-boundary value problem

ρ(x)∂tv(x, t) = div
(
σH +

L∑
l=1

σM,l

)
(x, t) + f(x, t) ,

∂tσH(x, t) = C
(
µH(x) , κH(x)

)
ε(v)(x, t) + g(x, t) ,

∂tσM,l(x, t) = C
(
µM,l(x) , κM,l(x)

)
ε(v)(x, t) − 1

τσ,l(x)
σM,l(x, t) ,

l = 1, . . . , L , (1.3)

x ∈ D, t ∈ [0, t1],

v(x, 0) = v(0)(x) , σH(x, 0) = σ
(0)
H (x) , σM,l(x, 0) = σ

(0)
M,l(x) , l = 1, . . . , L ,

x ∈ D,

v(x, t) = 0 , x ∈ ∂DD , n(x)>
(
σH +

L∑
l=1

σM,l

)
(x, t) = 0 , x ∈ ∂DN ,

t ∈ [0, t1].
From an abstract, functional analytic point of view this variable transformation

can be considered as the application of the bounded and boundedly invertible linear
operator T ∈ L(X) which converts the evolution equation (1.2) into the evolution
equation

w′(t) = −Bw(t) + Tf(t) , t ∈ [0, t1] ,

w(0) = Tu0

on the basis of the linear operator B : X ⊇ D(B)→ X with B = TAT−1. System
(1.3) in turn can easily physically be interpreted as a model for wave propagation
in the standard linear solid. Also the form of the corresponding physical energy
scalar product (. , .)E becomes evident.
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The operator B is of the form −P1Q + P2 where P1, P2 ∈ L(X) are bounded
linear operators on X which depend on the material parameters of the medium,
whereas Q : X ⊇ D(B)→ X is an unbounded linear operator which is independent
of the material parameters. In addition P1 is invertible. It turns out that (. , .)E =
(P−1

1 . , .)X and B is maximal monotone with respect to (. , .)E. On the other hand,
the appropriate energy scalar product (. , .)T with respect to which A is a maximal
monotone operator, is given by back transforming (. , .)E as (. , .)T = (T · , T ·)E.

Working with these two scalar products, that is the scalar product (. , .)T in
connection with the operator A and the scalar product (. , .)E in connection with
the operator B, has several benefits. Besides the property of turning A and B into
maximal monotone operators and therefore serving as the basis of our existence
and uniqueness result, it becomes also possible to quantify the exact energy loss
over time.

In a second part of this thesis we show that the solution
(
v,σ, (ηl)l

)>
of equa-

tion (1.1) is a Fréchet-differentiable function of its material parameters, initial

value und right-hand side. The same applies for the solution
(
v,σH , (σM,l)l

)>
of

(1.3).
For gradient based methods used in seismic imaging (see e.g. [17], [18] and

[19]) also the adjoint Fréchet derivative at any parameter point is needed, which
we derive, too. For its computation we need the adjoint operator A∗ of A or B∗

of B. As a further advantage of the use of (. , .)T and (. , .)E it turns out that P1Q
is skew symmetric and P2 is symmetric with respect to (. , .)E. In the same way A
is the sum of a skew-symmetric and a symmetric operator with respect to (. , .)T
since A = −T−1P1QT + T−1P2T . Thus the adjoint operators only differ by some
minus signs from the original ones and the same numerical implementation can be
used to evaluate both of them.

The fundamental theoretical basis for this thesis is [14]. Concerning the ap-
plication of semigroups and maximal monotone operators to prove existence and
uniqueness of the solution of the evolution equation in question and also the meth-
ods to prove differentiability for parameters in the abstract setting of evolution
equations, this thesis can be considered as an application and slide variation of
the ideas and methods presented there.





Chapter 2

Viscoelasticity: The Model

In this section we list some common forms of viscoelastic equations and also explain
how they are related to each other. All calculations are done in an informal way
without mathematical rigor.

2.1 Formulation as an Integro-Differential Equa-

tion

To describe viscoelastic wave propagation in a material whose parameters do not
depend on time, [20] states the following equation. We use a slightly different
notation:

ρ(x)
∂2ui
∂t2

(x, t) =
3∑
r=1

∂σir
∂xr

(x, t) + fi(x, t) , (2.1)

σij(x, t) =

∫ ∞
−∞

3∑
r,s=1

Ψijrs(x, t− t′)
∂ur
∂xs

(x, t′) dt′ + g̃ij(x, t) , (2.2)

i, j = 1, 2, 3.
Here, the space variable x = (x1, x2, x3) can be assumed to range over a subset

D of R3 and the time variable t is assumed to be an element of the real axis R.
The solution of this equation consists of the pair (u,σ), where u = (ui)i=1,2,3 :

D×R→ R3 denotes the displacement vector and σ = (σij)i,j=1,2,3 : D×R→ R3×3
sym

is the stress tensor.
As material parameters the equation contains the mass density ρ : D → R and

the rate-of-relaxation function Ψ = (Ψijrs)i,j,r,s=1,2,3 : D × R→ R3×3×3×3. Instead
of a function, Ψ can also be a distribution, in which case the integral in (2.2) has
to be formally interpreted as a convolution. Restrictions on Ψ are causality, that

5



6 CHAPTER 2. VISCOELASTICITY: THE MODEL

is Ψ(·, t) = 0 for t < 0, and the symmetries

Ψijrs = Ψjirs = Ψrsij = Ψijsr = Ψjirs ,

i, j, r, s = 1, 2, 3, where the last two equalities are a consequence of the first two.
Finally, (2.1) and (2.2) contain the external volume force density f = (fi)i=1,2,3 :

D × R→ R3 and external stress g̃ = (g̃ij)i,j=1,2,3 : D × R→ R3×3
sym.

2.2 Formulation for the Generalized Standard

Linear Solid

As a special case of system (2.1), (2.2) we derive the equation system describing
the generalized standard linear solid:

ρ(x)
∂vi
∂t

(x, t) =
3∑
r=1

∂σir
∂xr

(x, t) + fi(x, t) , (2.3)

∂σij
∂t

(x, t) =
3∑

r,s=1

aijrs(x)
∂vr
∂xs

(x, t) +
L∑
k=1

ηkij(x, t) + gij(x, t) , (2.4)

∂ηlij
∂t

(x, t) = − 1

τσ,l(x)

( 3∑
r,s=1

clijrs(x)
∂vr
∂xs

(x, t) + ηlij(x, t)
)
, (2.5)

with the external stress rate g = (gij)i,j=1,2,3 := ∂g̃/∂t and l = 1, . . . , L with an
L ∈ N. It is explained and used in [4], [1], [6], [12].

Its solution consists in the tuple
(
v,σ, (ηl)l=1,...,L

)
, where (vi)i=1,2,3 = v :=

∂u/∂t is the time derivative of the displacement vector, also called “velocity”, and
ηl = (ηlij)i,j=1,2,3 : D × R→ R3×3

sym, l = 1, . . . , L are so called memory tensors.
The parameters a = (aijrs)i,j,r,s=1,2,3, cl = (clijrs)i,j,r,s=1,2,3 : D → R3×3×3×3

are elastic stiffness tensors and the parameters τσ,l : D → R are so called stress
relaxation times for every index l respectively.

To derive (2.3)–(2.5) from (2.1), (2.2) in an informal way, we choose

Ψijrs(x, t) = aijrs(x)δ(t) +
L∑
l=1

blijrs(x, t)H(t) (2.6)

with

blijrs(x, t) := −clijrs(x)

τσ,l(x)
e−t/τσ,l(x) .

In (2.6) (by an abuse of notation) δ(t) stands for the delta distribution on the real
axis.
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Equation (2.3) and equation (2.1) only differ in the notation on the left-hand
side. To get (2.4), we plug (2.6) and vr = ∂ur/∂t into the time derivative of (2.2)
like

∂σij
∂t

(x, t) =

∫ ∞
−∞

3∑
r,s=1

∂Ψijrs

∂t
(x, t− t′)∂ur

∂xs
(x, t′) dt′ +

∂g̃ij
∂t

(x, t)

=

∫ ∞
−∞

3∑
r,s=1

Ψijrs(x, t− t′)
∂vr
∂xs

(x, t′) dt′ + gij(x, t)

=
3∑

r,s=1

aijrs(x)
∂vr
∂xs

(x, t) +
L∑
l=1

ηlij(x, t) + gij(x, t) ,

where we define

ηlij(x, t) :=

∫ t

−∞

3∑
r,s=1

blijrs(x, t− t′)
∂vr
∂xs

(x, t′) dt′ .

And finally, ηlij solves the initial value problem:

∂ηlij
∂t

(x, t) = − 1

τσ,l(x)

( 3∑
r,s=1

clijrs(x)
∂vr
∂xs

(x, t) + ηlij(x, t)
)
,

η(x, 0) = ηlij,0(x) :=

∫ 0

−∞

3∑
r,s=1

blijrs(x,−t′)
∂vr
∂xs

(x, t′) dt′ ,

which can by proven by a direct calculation or via the intermediate step

ηlij(x, t) = e−t/τσ,l(x)ηlij,0(x) −
3∑

r,s=1

clijrs(x)

τσ,l(x)

∫ t

0

e−(t−t′)/τσ,l(x) ∂vr
∂xs

(x, t′) dt′ .

So equation (2.5) holds, too.

2.3 Formulation for Isotropic Materials

In the isotropic case one can further simplify the elastic stiffness tensors a and cl
by introducing pairs of Lamé-parameters µ̃a, λa and µ̃c,l, λc,l, respectively, which
are functions D → R such that µ̃a, µ̃c,l > 0, λa > −(2/3)µ̃a and λc,l > −(2/3)µ̃c,l,
l = 1, . . . , L. Then

aijrs(x) = λa(x)δijδrs + µ̃a(x)
(
δirδjs + δjrδis

)
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and
clijrs(x) = λc,l(x)δijδrs + µ̃c,l(x)

(
δirδjs + δjrδis

)
,

l = 1, . . . , L, where δij = 1 for i = j and δij = 0 otherwise, is the Kronecker-
symbol.

In three space dimensions Lamé’s First Parameter λa and λc,l can be expressed
as λa = κ̃a − (2/3)µ̃a and λc,l = κ̃c,l − (2/3)µ̃c,l by the shear modulus µ̃a and µ̃c,l
and the bulk modulus κ̃a and κ̃c,l, respectively (see [13] for example).

2.4 Formulation Using Scaling Variables

By additionally introducing scaling variables τS and τP for the shear and bulk
modulus respectively like done in [2] and setting µ̃a = µ̃(1 + LτS), λa = κ̃(1 +
LτP) − (2/3)µ̃(1 + LτS) and µ̃c,l = µ̃τS, λc,l = κ̃τP − (2/3)µ̃τS for l ∈ {1, . . . , L}
we arrive at the equation which has been the starting point for this thesis:

ρ∂tv = divσ + f ,

∂tσ = 2µ̃(1 + LτS) dev ε(v) + κ̃(1 + LτP) div vI +
L∑
l=1

ηl + g ,

τσ,l∂tηl = −2µ̃τS dev ε(v) − κ̃τP div vI − ηl , l = 1, . . . , L .

(2.7)

Here and in the sequel, I is the constant unit matrix in R3×3. The differential
operators div and ε on the right hand side of (2.7) are defined as follows:

div v(x, t) =
3∑
i=1

∂xivi(x, t) , where v(x, t) = (vi(x, t))i=1,2,3 ,

divσ(x, t) =
3∑
j=1

∂xjσ∗j(x, t) with σ∗j(x, t) = (σij(x, t))i=1,2,3 , j = 1, 2, 3 ,

ε(v)(x, t) =
1

2

(
Dxv(x, t) + (Dxv(x, t))>

)
with the Jacobian Dxv w.r.t. x .

For any Matrix M ∈ R3×3, the deviatoric part dev M is defined as

dev M = M− 1

3
trace (M)I . (2.8)

2.5 Formulation Used in This Thesis

For the formulation for isotropic materials used in this thesis we introduce the
linear maps

C(m, k) : R3×3 → R3×3 , C(m, k)M = mM +
k −m

3
trace (M)I (2.9)



2.5. FORMULATION USED IN THIS THESIS 9

depending on two real parameters m and k. So

C(m, k)M = m dev M + k
trace (M)

3
I .

Note that C(m, k) maps R3×3
sym into R3×3

sym.

Using this notation and the definition f̃ := f/ρ and taking into account that
trace

(
ε(v)

)
= div v, we can write equation (2.7) in the form

∂tv =
1

ρ
divσ + f̃ ,

∂tσ = C
(

2µ̃(1 + LτS) , 3κ̃(1 + LτP)
)
ε(v) +

L∑
l=1

ηl + g ,

∂tηl = − 1

τσ,l
C
(

2µ̃τS , 3κ̃τP

)
ε(v) − 1

τσ,l
ηl , l = 1, . . . , L .

(2.10)

After rescaling µ̃ and κ̃ to

µ := 2µ̃ , κ := 3κ̃ (2.11)

equation (2.10) takes the form

∂tv =
1

ρ
divσ + f̃ ,

∂tσ = C
(
µ(1 + LτS) , κ(1 + LτP)

)
ε(v) +

L∑
l=1

ηl + g ,

∂tηl = − 1

τσ,l
C
(
µτS , κτP

)
ε(v) − 1

τσ,l
ηl , l = 1, . . . , L .

(2.12)

Yet, we admit more degrees of freedom in the parameters than (2.7) by allowing
µτS and κτP to depend on l ∈ {1, . . . , L}. Accordingly we denote them by µM,l

and κM,l respectively and replace LµτS by
∑L

l=1 µM,l and LκτP by
∑L

l=1 κM,l.
Furthermore we define

µH := µ , κH := κ , ϑ :=
1

ρ
, ωσ,l :=

1

τσ,l
, l = 1, . . . , L .

Then (2.12) reads

∂tv = ϑ divσ + f̃ ,

∂tσ = C

(
µH +

L∑
l=1

µM,l , κH +
L∑
l=1

κM,l

)
ε(v) +

L∑
l=1

ηl + g ,

∂tηl = −ωσ,lC
(
µM,l , κM,l

)
ε(v) − ωσ,lηl , l = 1, . . . , L .

(2.13)
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For further use we abbreviate

η := (η1, . . . ,ηL)> .

As before the solution (v,σ,η)> of (2.13) depends on the space variable x =
(x1, x2, x3) ∈ D ⊆ R3 as well as the time variable t ∈ R which we restrict to
t ∈ [0, t1] with some t1 > 0 from now on. Also the inhomogeneity consisting of f̃
and g depends on x and t, whereas the material parameters ϑ, µH , µM,l, κH , κM,l,
ωσ,l only depend on x.

2.6 Formulation as an Evolution Equation

To treat equation (2.13) in a mathematically sound way we formulate it as an evo-
lution equation. This means we will interpret the solution (x, t) 7→ (v,σ,η)>(x, t)
as a function from the time interval [0, t1] into a Hilbert space X, which maps a
point t in time to the function (v,σ,η)>(·, t) in the space variable x ∈ D. By an
abuse of notation we henceforth denote this function itself by (v,σ,η)>(t).

For every point t in time the right-hand side of (2.13) can be seen as the sum
of the negative image of (v,σ,η)>(t) under a linear operator A on X and the

inhomogeneity f(t) :=
(
f̃(t),g(t),0

)>
. The operator A then has the form

A


v
σ
η1
...
ηL

 = −


ϑ divσ

C
(
µH +

∑L
l=1 µM,l , κH +

∑L
l=1 κM,l

)
ε(v) +

∑L
l=1 ηl

−ωσ,1C
(
µM,1 , κM,1

)
ε(v) − ωσ,1η1

...
−ωσ,LC

(
µM,L , κM,L

)
ε(v) − ωσ,LηL

 . (2.14)

By ′ we denote the derivative of a function of one variable. With the notation
u(t) := (v,σ,η)>(t) and by adding an initial-value u0 = (v(0),σ(0),η(0))> which
is to be understood as a function in the space variable x, equation (2.13) takes on
the form of an evolution equation:

u′(t) = −Au(t) + f(t) , t ∈ [0, t1] ,

u(0) = u0 .
(2.15)

The following two sections recall some basic facts about the solvability of such an
equation.



Chapter 3

Basic Facts on Abstract Evolution
Equations

Throughout this chapter we assume
(
X, (. , .)

)
to be a general real Hilbert space,

‖.‖ the norm induced by the scalar product (. , .), R : X ⊇ D(R) → X a linear
but not necessarily bounded operator with domain of definition D(R) and t1 > 0
a real constant. By ′ we denote the derivative of any function v : I → X on a real
interval I ⊆ R with values in X.

The purpose of this section is to collect some facts on abstract evolution equa-
tions of the form

v′(t) = −Rv(t) + f(t) , t ∈ [0, t1] ,

v(0) = v0

(3.1)

for the special case of R being maximal monotone (see Definition 1) and v0 and
f having several degrees of regularity. At least we assume v0 ∈ X and f ∈
L1
(
(0, t1), X

)
. In particular we prove existence, uniqueness and regularity of a

function v : [0, t1] → X solving (3.1). These results are needed in later chapters
and are especially presented to serve those purposes.

3.1 The Homogeneous Equation

To prove existence, uniqueness and stability of the solution of the homogeneous
evolution problem

v′(t) = −Rv(t) , t ∈ [0,∞) ,

v(0) = v0

(3.2)

on the unrestricted interval [0,∞) we are going to make use of Theorem 3 and
Theorem 4. Both statements are formulated and proven in [5] as Theorem 7.4
(Hille-Yosida). They are based on the following definition.

11
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Definition 1. A linear operator R : X ⊇ D(R)→ X is called monotone, if

(Rv, v) ≥ 0 , v ∈ D(R) . (3.3)

If in addition
R(Id +R) = X , (3.4)

where Id denotes the identity map on D(R) and Id+R is considered as an operator
from D(R) to X, it is called maximal monotone. �

Lemma 2. For a maximal monotone operator R : X ⊇ D(R)→ X it holds

(a) D(R) is dense in X.

(b) R is closed.

(c) For every α > 0, the operator Id + αR : D(R) → X is bijective. Moreover
(Id + αR)−1 :

(
X, ‖.‖

)
→
(
D(R), ‖.‖

)
is bounded with

∥∥(Id + αR)−1
∥∥ ≤ 1.

Proof. This is proven in [5] as Proposition 7.1.

Theorem 3. Let R : X ⊇ D(R)→ X be a maximal monotone linear operator and
v0 ∈ D(R). Then there exists a unique v ∈ C1

(
[0,∞), X

)
∩C
(
[0,∞),D(R)

)
, which

solves (3.2). Here, D(R) is equipped with the graph norm ‖x‖R := ‖x‖ + ‖Rx‖,
x ∈ D(R).

Proof. For a proof we refer to [5], Theorem 7.4.

Theorem 4. Let R : X ⊇ D(R) → X be maximal monotone, v0 ∈ D(R), I =
[0,∞) or I = [0, t1], and let v ∈ C1(I,X) ∩ C

(
I,D(R)

)
be a solution of

v′(t) = −Rv(t) , t ∈ I ,
v(0) = v0 .

Then

d

dt
‖v(t)‖2 = −2

(
Rv(t), v(t)

)
≤ 0 , t ∈ I . (3.5)

In particular it holds

‖v(t)‖ ≤ ‖v0‖ , t ∈ I . (3.6)

Proof. The simple proof is part of the proof of Theorem 3 in [5]:

d

dt

∥∥v(t)
∥∥2

= 2
(
v′(t) , v(t)

)
= −2

(
Rv(t) , v(t)

)
≤ 0 , t ∈ I ,

since R is monotone. So t 7→
∥∥v(t)

∥∥ is monotonically non-increasing on I, from
which (3.6) follows.
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Theorem 3 guarantees the existence of a unique solution of (3.2) on the interval
[0,∞). Such a solution can be restricted to yield a solution of (3.2) on the restricted
interval [0, t1], where we chose t1 > 0 arbitrarily. That even on [0, t1] the solution
of (3.2) is unique, is the content of the following lemma.

Lemma 5. Let R : X ⊇ D(R) → X be maximal monotone, v0 ∈ D(R), and let
v, ṽ ∈ C1

(
[0, t1], X

)
∩ C

(
[0, t1],D(R)

)
be solutions of

v′(t) = −Rv(t) , t ∈ [0, t1] ,

v(0) = v0

(3.7)

Then v = ṽ.

Proof. As v, ṽ ∈ C1
(
[0, t1], X

)
∩ C

(
[0, t1],D(R)

)
are solutions of (3.7) and R and

the derivative are linear, the function v − ṽ ∈ C1
(
[0, t1], X

)
∩C

(
[0, t1],D(R)

)
is a

solution of (3.7) with v0 = 0. Thus by (3.6) we have ‖v(t)− ṽ(t)‖ = 0, t ∈ [0, t1].
So v = ṽ.

In the sequel the following definition will play a central role. It is taken from
[10] and [5].

Definition 6. A family of bounded linear operators
(
S(t)

)
t∈[0,∞)

on X which sat-

isfies

S(s+ t) = S(s)S(t) , s, t ∈ [0,∞) ,

S(0) = Id ,

lim
s→t

S(s)v0 = S(t)v0 , t ∈ [0,∞) , v0 ∈ X ,

(3.8)

is called a strongly continuous semigroup or C0-semigroup. If S(·) is de-
fined on all of R and (3.8) is satisfied for all s, t ∈ R, it is called a strongly
continuous group or C0-group.

If a C0-semigroup
(
S(t)

)
t∈[0,∞)

satisfies∥∥S(t)v0

∥∥ ≤ ‖v0‖ , t ∈ [0,∞) , v0 ∈ X ,

it is called a contraction semigroup. �

Definition 7. For a maximal monotone operator R : X ⊇ D(R) → X we define
the family of linear operators

(
SR(t)

)
t∈[0,∞)

by

SR(t) :
(
D(R), ‖.‖

)
→
(
X, ‖.‖

)
, v0 7→ v(t) (3.9)
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for every t ∈ [0,∞), where v is the unique solution of the evolution equation

v′(t) = −Rv(t) , t ∈ [0,∞) ,

v(0) = v0 ,
(3.10)

in the space C1
(
[0,∞), X

)
∩C

(
[0,∞),D(R)

)
, which by Theorem 3 exists. Due to

(3.6), each SR(t) is bounded with ‖SR(t)‖ ≤ 1, and according to Lemma 2(a) the
space D(R) is dense in X. Therefore we can continuously extend SR(t) to

SR(t) :
(
X, ‖.‖

)
→
(
X, ‖.‖

)
.

t ∈ [0,∞). �

Lemma 8. For a maximal monotone operator R : X ⊇ D(R) → X, the fam-
ily
(
SR(t)

)
t∈[0,∞)

introduced in Definition 7 forms a contraction semigroup. In

particular it is ∥∥SR(t)v0

∥∥ ≤ ‖v0‖ , v0 ∈ X , t ∈ [0,∞) . (3.11)

Proof. In a first step let v0 ∈ D(R). Then SR(0)v0 = v0 follows from (3.10)
and lims→t SR(s)v0 = SR(t)v0, t ∈ [0,∞) follows from SR(·)v0 ∈ C1

(
[0,∞), X

)
∩

C
(
[0,∞),D(R)

)
by definition. Also, for fixed s ∈ [0,∞), both SR(·)SR(s)v0 and

SR( · + s)v0 solve v′ = −Rv, v(0) = SR(s)v0. So they are equal. Finally we recall
(3.6) from which ‖SR(t)v0‖ ≤ ‖v0‖, t ∈ [0,∞) follows.

Now let v0 ∈ X. Since D(R) is dense in X there is (vn)n∈N in D(R) with
limn→∞ vn = v0. For the family

(
SR(t)

)
t∈[0,∞)

of continuous extensions to X it

follows

SR(0)v0 = lim
n→∞

SR(0)vn = lim
n→∞

vn = v0 .

In the same way we prove SR(s+ t)v0 = SR(s)SR(t)v0, s, t ∈ [0,∞) and (3.11).
Finally we need to show that SR(·)v0 still is continuous. So let t ∈ [0,∞) and

ε > 0. There is u0 ∈ D(R) with ‖v0−u0‖ < ε/3. Since SR(·)u0 is continuous there
is δ > 0 such that

∥∥SR(s)u0 − SR(t)u0

∥∥ < ε/3 whenever |s − t| < δ. Now from
(3.11) it follows that∥∥SR(s)v0 − SR(t)v0

∥∥
≤
∥∥SR(s)(v0 − u0)

∥∥ +
∥∥SR(s)u0 − SR(t)u0

∥∥ +
∥∥SR(t)(u0 − v0)

∥∥
≤ 2 ‖v0 − u0‖ +

∥∥SR(s)u0 − SR(t)u0

∥∥
< ε

for |s− t| < δ.
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Lemma 9. For a maximal monotone operator R : X ⊇ D(R)→ X it holds

D(R) =
{
v0 ∈ X : lim

h→0+

SR(h)v0 − SR(0)v0

h
exists.

}
. (3.12)

Proof. This is stated by Theorem 3.15 (Lumer, Phillips, 1961) in [10].

Lemma 10. For the semigroup
(
SR(t)

)
t∈[0,∞)

defined by a maximal monotone

operator R : X ⊇ D(R)→ X on a real Hilbert space
(
X, (. , .)

)
, the following holds

true:

(a) The map [0,∞)×X → X, (t, v0) 7→ SR(t)v0 is continuous.

(b) d
dt
SR(t)v0 = −RSR(t)v0 , t ∈ [0,∞), v0 ∈ D(R) .

(c) SR(t)Rv0 = RSR(t)v0 , t ∈ [0,∞), v0 ∈ D(R) .

(d)
∥∥RSR(t)v0

∥∥ ≤ ‖Rv0‖ , t ∈ [0,∞), v0 ∈ D(R) .

Proof. To prove part (a) we fix t0 ∈ [0,∞) and v0 ∈ X and use the continuity of
SR(·)v0, which is implied by Lemma 8, as well as (3.11). This yields∥∥SR(t)v − SR(t0)v0

∥∥ ≤ ∥∥SR(t)(v − v0)
∥∥ +

∥∥SR(t)v0 − SR(t0)v0

∥∥
≤ ‖v − v0‖ +

∥∥SR(t)v0 − SR(t0)v0

∥∥
→ 0 , (t, v)→ (t0, v0) .

Part (b) directly follows from the definition of
(
SR(t)

)
t∈[0,∞)

.

To prove (c), let v0 ∈ D(R) and t ∈ [0,∞). Then

lim
h→0+

1

h

(
SR(h)SR(t)v0 − SR(t)v0

)
= lim

h→0+

1

h

(
SR(h+ t)v0 − SR(t)v0

)
= lim

h→0+

1

h

(
SR(t)SR(h)v0 − SR(t)v0

)
= lim

h→0+
SR(t)

(1

h

(
SR(h)v0 − v0

))
= SR(t)

(
lim
h→0+

1

h

(
SR(h)v0 − v0

))
= −SR(t)Rv0

due to (b). So from (3.12) it follows that SR(t)v0 ∈ D(R) and again by (b) it is
−RSR(0)SR(t)v0 = −SR(t)Rv0, so RSR(t)v0 = SR(t)Rv0.

Finally, (d) is a consequence of (c) and (3.11).



16 CHAPTER 3. BASIC FACTS ON ABSTRACT EVOLUTION EQUATIONS

3.2 The Inhomogeneous Equation

In this section we study the inhomogeneous evolution equation (3.1), that is

v′(t) = −Rv(t) + f(t) , t ∈ [0, t1] ,

v(0) = v0

(3.13)

with a maximal monotone operator R on the real Hilbert space
(
X, (. , .)

)
and v0

and f having multiple degrees of regularity.
In the sequel we are going to need an integral notion for functions mapping a

real interval into a Hilbert space and also some basic facts on integrable functions
of this kind. To this end we refer to the appendix.

The most natural solution concept for (3.13) is the following.

Definition 11. For f ∈ C
(
[0, t1], X

)
and v0 ∈ D(R) a function

v ∈ C1
(
[0, t1], X

)
∩ C

(
[0, t1],D(R)

)
which satisfies (3.13) is called a classical solution of (3.13). �

To define a second notion of solutions of equation (3.13) we need the following
basic technical lemma.

Lemma 12. Let
(
SR(t)

)
t∈[0,∞)

be as in Definition 7 and f ∈ L1
(
(0, t1), X

)
. Then

for every t ∈ [0, t1] it holds

SR(t− •)f ∈ L1
(
(0, t), X

)
.

Proof. Let t ∈ [0, t1].
We need to prove that g := SR(t− •)f is Bochner integrable as formulated in

Definition A.1.
Since f ∈ L1

(
(0, t1), X

)
by assumption, there is a sequence (fn)n∈N of simple

functions converging pointwise to f almost everywhere on (0, t1) and also it is∫ t1
0
‖f(s)‖ ds <∞. We define the functions

τn :=
n−1∑
k=1

k
t

n
1[
k t
n
, (k+1) t

n

) ,
n ∈ N, which have only finitely many values and map (0, t) into itself. It is
limn→∞ τn(s) = s, s ∈ (0, t). Now gn := SR

(
t − τn(•)

)
fn is a simple function for

every n ∈ N and limn→∞ gn(s) = g(s) for almost all s ∈ (0, t) because of Lemma
10(a). So g is measurable. With (3.11) it holds

‖g(s)− gn(s)‖ ≤ ‖g(s)‖ + ‖gn(s)‖ ≤ ‖f(s)‖ + ‖fn(s)‖ ≤ 2 ‖f(s)‖+ 1
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for almost all s ∈ (0, t) and n sufficiently large. Since 2‖f‖+1 is integrable it follows
from the theorem of dominated convergence that limn→∞

∫ t
0
‖g(s)− gn(s)‖ ds = 0.

Thus g is Bochner integrable.

Definition 13. For f ∈ L1
(
(0, t1), X

)
and v0 ∈ X the function

v(t) = SR(t) v0 +

∫ t

0

SR(t− s)f(s) ds , t ∈ [0, t1] , (3.14)

is called the mild solution of (3.13). �

By Lemma 12 the mild solution of (3.13) is well-defined.

Lemma 14. The mild solution v defined in (3.14) has the properties

v ∈ C
(
[0, t1], X

)
and

‖v(t)‖ ≤ ‖v0‖+ ‖f‖L1((0,t),X) , t ∈ [0, t1] . (3.15)

Proof. The continuity of the first summand in (3.14) follows from Lemma 10(a).
To prove the continuity of the second summand we assume t, s ∈ [0, t1] and without
loss of generality s ≤ t. Then∥∥∥∫ t

0

SR(t− τ)f(τ) dτ −
∫ s

0

SR(s− τ)f(τ) dτ
∥∥∥

≤
∥∥∥∫ s

0

(
SR(t− τ)− SR(s− τ)

)
f(τ) dτ

∥∥∥ +
∥∥∥∫ t

s

SR(t− τ)f(τ) dτ
∥∥∥

≤
∫ t1

0

∥∥∥(SR(t− τ)− SR(s− τ)
)
f(τ)

∥∥∥︸ ︷︷ ︸
≤ 2‖f(τ)‖

dτ +

∫ t

s

∥∥f(τ)
∥∥ dτ .

Now we apply the theorem of dominated convergence to see that for s → t and
also for t→ s both terms converge to 0.

Finally estimate (3.15) is proven by applying the triangle inequality to (3.14).

The concept of mild solutions generalizes the notion of classical solutions as
the following lemma shows.

Lemma 15. Let f ∈ C
(
[0, t1], X

)
, v0 ∈ D(R) and let v be a classical solution of

(3.13). Then v also is a mild solution of (3.13).
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Proof. Let v be a classical solution of (3.13). For t = 0, (3.14) holds because of
SR(0) = Id. For fixed t ∈ (0, t1], we define an auxiliary function

g(s) := SR(t− s)v(s) , s ∈ [0, t] ,

and prove that g is differentiable with

g′(s) = SR(t− s)f(s) , s ∈ [0, t] . (3.16)

Therefore we also fix s ∈ [0, t]. For r ∈ [0, t] \ {s} we then have

1

s− r
(
g(s)− g(r)

)
=

1

s− r
(
SR(t− s)v(s)− SR(t− r)v(r)

)
=

1

s− r

([
SR(t− s)− SR(t− r)

]
v(s) + SR(t− r)

[
v(s)− v(r)

])
=

1

s− r
[
SR(t− s)− SR(t− r)

]
v(s) + SR(t− r)

( 1

s− r
[
v(s)− v(r)

])
−−→
r→s

SR(t− s)Rv(s) + SR(t− s)v′(s)

= SR(t− s)Rv(s) + SR(t− s)
[
−Rv(s) + f(s)

]
= SR(t− s)f(s) .

Here the first summand converges according to Lemma 10(b) and the second sum-
mand converges because of Lemma 10(a).

Now we integrate (3.16) to get

v(t) − SR(t)v0 = g(t) − g(0) =

∫ t

0

g′(s) ds =

∫ t

0

SR(t− s)f(s) ds

which concludes the proof.

Remark 16. By construction, a mild solution of (3.13) trivially is unique. �

Next we prove the existence of a classical solution of (3.13) provided the right-
hand side f is an element of W 1,1

(
(0, t1), X

)
.

Lemma 17. Let f ∈ W 1,1
(
(0, t1), X

)
, v0 ∈ D(R) and let v be the mild solution

of (3.13). Then v also is a classical solution of (3.13).
Furthermore, with the graph norm

‖x‖R = ‖x‖ + ‖Rx‖ , x ∈ D(R) ,



3.2. THE INHOMOGENEOUS EQUATION 19

of the operator R it holds

d

dt
v(t) = SR(t)

[
f(0)−Rv0

]
+

∫ t

0

SR(t− s)f ′(s) ds , t ∈ [0, t1] , (3.17)∥∥∥dv
dt

(t)
∥∥∥ ≤ ‖f(0)−Rv0‖+

∥∥f ′∥∥
L1((0,t),X)

, t ∈ [0, t1] , (3.18)

‖v(t)‖R ≤ ‖v0‖R + (2 cCW + 1) ‖f‖W 1,1((0,t1),X) , t ∈ [0, t1] , (3.19)

with cCW = max{1/t1, 1} from (A.1).

Proof. First we show that v ∈ C1
(
[0, t1], X

)
∩C

(
[0, t1],D(R)

)
. As v0 ∈ D(R) the

first summand SR(•)v0 of (3.14) is an element of C1
(
[0, t1], X

)
∩ C

(
[0, t1],D(R)

)
by definition of SR, and with Lemma 10 (b) and (c) it holds

d

dt
SR(t)v0 = −SR(t)Rv0 , t ∈ [0, t1] . (3.20)

By applying the variable substitution s′ = t−s, the second summand of (3.14) can
be written as

∫ t
0
SR(s)f(t− s) ds . To show that

∫ •
0
SR(s)f(•− s) ds is an element

of C1
(
[0, t1], X

)
and that

d

dt

∫ t

0

SR(s)f(t− s) ds = SR(t)f(0) +

∫ t

0

SR(s)f ′(t− s) ds , (3.21)

t ∈ [0, t1], holds, we approximate f in W 1,1
(
(0, t1), X

)
by smooth functions (ϕn)n∈N

according to Lemma A.4. Then (3.21) holds for f being substituted by ϕn for every
n ∈ N. It is∥∥∥∫ t

0

SR(s)ϕn(t− s) ds −
∫ t

0

SR(s)ϕm(t− s) ds
∥∥∥

≤
∫ t

0

∥∥ϕn(t− s)− ϕm(t− s)
∥∥ ds

≤ ‖ϕn − ϕm‖L1((0,t1),X) ,

t ∈ [0, t1], and with Lemma A.2 it also holds∥∥∥ d
dt

∫ t

0

SR(s)ϕn(t− s) ds − d

dt

∫ t

0

SR(s)ϕm(t− s) ds
∥∥∥

≤
∥∥SR(t)

(
ϕn(0)− ϕm(0)

)∥∥ +

∫ t

0

∥∥SR(s)
(
ϕ′n(t− s)− ϕ′m(t− s)

)∥∥ ds
≤

∥∥ϕn(0)− ϕm(0)
∥∥ +

∫ t

0

∥∥ϕ′n(t− s)− ϕ′m(t− s)
∥∥ ds

≤ (cCW + 1) ‖ϕn − ϕm‖W 1,1((0,t1),X) ,
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t ∈ [0, t1]. So
( ∫ •

0
SR(s)ϕn(• − s) ds

)
n∈N is a Cauchy sequence in C1

(
[0, t1], X

)
and therefore convergent with(∫ •

0

SR(s)f(• − s) ds
)′

=
(

lim
n→∞

∫ •
0

SR(s)ϕn(• − s) ds
)′

= lim
n→∞

(∫ •
0

SR(s)ϕn(• − s) ds
)′

= lim
n→∞

(
SR(•)ϕn(0) +

∫ •
0

SR(s)ϕ′n(• − s) ds
)

= SR(•)f(0) +

∫ •
0

SR(s)f ′(• − s) ds ,

where the limits are taken with respect to the norm ‖.‖C([0,t1],X). Hence we have
v ∈ C1

(
[0, t1], X

)
and (3.21) which in combination with the variable substitution

s′ = t− s in the integrand and (3.20) yields (3.17).
Next we prove that for every t ∈ [0, t1] the second summand of (3.14) is an

element of D(R). Because of (3.12) we calculate

1

h

[
SR(h)− Id

] ∫ t

0

SR(t− s)f(s) ds

=
1

h

(∫ t+h

0

SR(t+ h− s)f(s) ds−
∫ t

0

SR(t− s)f(s) ds

)
− 1

h

∫ t+h

t

SR(t+ h− s)f(s) ds ,

t ∈ [0, t1], h > 0. For h → 0 the first summand converges to SR(t)f(0) +∫ t
0
SR(s)f ′(t− s) ds due to (3.21).
The second summand converges as well which can be seen as follows. Let

ε > 0. Because f and (s, x) 7→ SR(s)x are continuous there is δ > 0 such that for
t ≤ s ≤ t+ h < t+ δ it holds

‖SR(t+ h− s)f(s)− f(t)‖ = ‖SR(t+ h− s)f(s)− SR(0)f(t)‖ < ε .

For those h < δ it then also holds∥∥∥1

h

∫ t+h

t

SR(t+ h− s)f(s) ds − f(t)
∥∥∥

=
∥∥∥1

h

∫ t+h

t

SR(t+ h− s)f(s)− f(t) ds
∥∥∥

≤ 1

h

∫ t+h

t

∥∥SR(t+ h− s)f(s)− f(t)
∥∥ ds
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≤ 1

h

∫ t+h

t

ε ds

= ε .

So also the second summand converges and its limit is −f(t). Thus v(t) ∈ D(R),
and Lemma 10(b), where t = 0, together with Lemma 10(c) yield

−Rv(t) = −SR(t)Rv0 + SR(t)f(0) +

∫ t

0

SR(s)f ′(t− s) ds− f(t)

= SR(t)
(
f(0)−Rv0

)
+

∫ t

0

SR(s)f ′(t− s) ds− f(t)

= v′(t)− f(t) ,

t ∈ [0, t1], where the last equality follows from (3.17). From this equality and
v(0) = v0 we see that v solves (3.13) and also that v ∈ C

(
[0, t1], (D(R), ‖.‖R)

)
.

Hence v is a classical solution of (3.13).

Now estimate (3.18) is proven by using the triangle inequality together with
‖SR(s)‖L(X) ≤ 1, s ∈ [0,∞). Estimate (3.19) is proven like this:

‖v(t)‖R = ‖Rv(t)‖ + ‖v(t)‖ ≤
∥∥dv
dt

(t)
∥∥ + ‖f(t)‖ + ‖v(t)‖

≤ ‖f(0)−Rv0‖ +
∥∥f ′∥∥

L1((0,t),X)

+ ‖f(t)‖ + ‖v0‖ + ‖f‖L1((0,t),X)

≤ ‖v0‖R + (2 cCW + 1) ‖f‖W 1,1((0,t1),X) ,

t ∈ [0, t1], where we used (3.15), (3.18) and (A.1).

Corollary 18. Let f ∈ W 1,1
(
(0, t1), X

)
and v0 ∈ D(R). Then the inhomogeneous

evolution equation (3.13) has a unique classical solution.

Proof. The statement of this corollary is a combination of the first part of Lemma
17 and Remark 16.

Example 19. If we only have f ∈ C
(
[0, t1], X

)
and v0 ∈ D(R), a classical solution

of (3.13) does not have to exist as this example will show. It can be found in [10],
Example 7.9.

Here we assume, that
(
SR(t)

)
t∈R even is a group, z0 ∈ X \ D(R) and f(t) :=

SR(t)z0, t ∈ R. Then f is continuous but not differentiable in any point t0 ∈ R.
Otherwise SR(·)z0 would also be differentiable in t = 0, which in the case t0 > 0
can be seen by time reversal since

(
SR(t)

)
t∈R is a group. And this would be a
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contradiction to z0 /∈ D(R) and (3.12). Now

v(t) :=

∫ t

0

SR(t− s)f(s) ds =

∫ t

0

SR(t− s)SR(s)z0 ds

=

∫ t

0

SR(t)z0 ds =

∫ t

0

f(t) ds = tf(t) , t ∈ [0, t1] ,

is the mild solution of

v′(t) = −Rv(t) + f(t) , t ∈ [0, t1] , v(0) = 0 .

And v is not differentiable at any point t > 0. Otherwise also f(t) = 1
t
v(t) would

be differentiable as a function of t. But we have seen in the beginning of this
example, that it is not. �

Lemma 20. Let f ∈ W 2,1
(
(0, t1), X

)
, v0 ∈ D(R) and f(0) − Rv0 ∈ D(R). Then

for the mild solution v of (3.13), which by Lemma 17 is also classical, it even holds
v ∈ C2

(
[0, t1], X

)
∩ C1

(
[0, t1],D(R)

)
. Furthermore, we have

‖v‖C1([0,t1],D(R)) ≤ ‖v0‖R + ‖f(0)−Rv0‖R
+ (4 cCW + 2) ‖f‖W 2,1((0,t1),X)

(3.22)

with cCW = max{1/t1, 1} from (A.1).

Proof. With f̃ := f ′, ṽ0 := f(0)− Rv0 ∈ D(R) and ṽ := v′ equation (3.17) can be
written in the form ṽ(t) = SR(t)ṽ0 +

∫ t
0
SR(t− s)f̃(s) ds, t ∈ [0, t1]. That means ṽ

is the mild solution of

ṽ′ + Rṽ = f̃ , ṽ(0) = ṽ0 . (3.23)

With f ∈ W 2,1
(
(0, t1), X

)
it holds f̃ ∈ W 1,1

(
(0, t1), X

)
. So from Lemma 17 it

follows that
ṽ ∈ C1

(
[0, t1], X

)
∩ C

(
[0, t1],D(R)

)
(3.24)

and ṽ is even a classical solution of (3.23).
Because ṽ is the derivative of v with respect to the norm ‖.‖ it follows im-

mediately from (3.24) that v ∈ C2
(
[0, t1], X

)
. We need to prove that v is also

differentiable with respect to the norm ‖.‖R. Then it also follows from (3.24) that
v ∈ C1

(
[0, t1],D(R)

)
. So we calculate∥∥∥v(t+ h)− v(t)

h
− ṽ(t)

∥∥∥
R

=
∥∥∥v(t+ h)− v(t)

h
− ṽ(t)

∥∥∥ +
∥∥∥Rv(t+ h)−Rv(t)

h
−Rṽ(t)

∥∥∥ ,
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t, t+ h ∈ [0, t1]. For h→ 0 the first summand converges to 0 by the definition of
ṽ. Using v′ = −Rv + f , the second summand can be written∥∥∥Rv(t+ h)−Rv(t)

h
−Rṽ(t)

∥∥∥
=
∥∥∥−v′(t+ h) + v′(t)

h
+
f(t+ h)− f(t)

h
−Rṽ(t)

∥∥∥ , (3.25)

t, t + h ∈ [0, t1]. As f ′ ∈ W 1,1
(
(0, t1), X

)
↪→ C

(
[0, t1], X

)
by Lemma A.2, it is

f ∈ C1
(
[0, t1], X

)
. Taking furthermore into account v ∈ C2

(
[0, t1], X

)
we see that

for h→ 0 the right-hand side of (3.25) tends to∥∥− v′′(t) + f ′(t)−Rṽ(t)
∥∥ =

∥∥− ṽ′(t) + f̃(t)−Rṽ(t)
∥∥ = 0 ,

t ∈ [0, t1], where the last equality follows from (3.23).
Finally, (3.19) yields

‖v′(t)‖R = ‖ṽ(t)‖R
≤ ‖ṽ0‖R + (2 cCW + 1) ‖f̃‖W 1,1((0,t1),X)

≤ ‖f(0)−Rv0‖R + (2 cCW + 1) ‖f ′‖W 1,1((0,t1),X) ,

t ∈ [0, t1]. Again with (3.19) applied to v, estimate (3.22) follows.

A more general statement than Lemma 20 and its proof can be found in [14],
Theorem 2.6.





Chapter 4

Abstract Auxiliary Results

4.1 An Abstract Variable Transformation

Throughout this section let
(
X, (. , .)X

)
denote a real Hilbert space, ‖.‖X the norm

induced by (. , .)X and let t1 > 0.
In section 3.1 we saw, that if R : X ⊇ D(R) → X is maximal monotone with

respect to a scalar product (. , .) on X with corresponding norm ‖.‖, the evolution
equation

v′(t) = −Rv(t) , t ∈ [0, t1] ,

v(0) = v0 ,

has a unique solution in the space C1
(

[0, t1],
(
X, ‖.‖

))
∩ C

(
[0, t1],

(
D(R), ‖.‖R

))
.

To find a scalar product (. , .) with this property for some given R, it can be helpful
to subject the unknown v to a variable transformation. What this means on an
abstract level, is what we would like to study in this section.

Definition 21. Let R1 : X ⊇ D(R1) → X, R2 : X ⊇ D(R2) → X be not
necessarily bounded, linear operators with domain of definition D(R1) and D(R2)
respectively and S : X → X a bounded and boundedly invertible linear operator.
Furthermore, let (. , .)1 and (. , .)2 be two scalar products on X. We call the pairs(
R1 , (. , .)1

)
and

(
R2 , (. , .)2

)
similar (via S), iff

R2 = SR1S
−1

and D(R2) = S
(
D(R1)

)
and (u1, u2)1 = (Su1, Su2)2 , u1, u2 ∈ X.

(4.1)

�

Lemma 22. Similarity as defined in Definition 21 is an equivalence relation.

25
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Proof. To check the reflexivity of this relation we take S = Id in the notation of
Definition 21. Symmetry holds because if

(
R1 , (. , .)1

)
and

(
R2 , (. , .)2

)
are similar

via S, then we easily calculate that
(
R2 , (. , .)2

)
and

(
R1 , (. , .)1

)
are similar via

S−1. And finally, similarity is transitive because if
(
R1 , (. , .)1

)
and

(
R2 , (. , .)2

)
are similar via S1 and

(
R2 , (. , .)2

)
and

(
R3 , (. , .)3

)
are similar via S2 it obviously

holds that
(
R1 , (. , .)1

)
and

(
R3 , (. , .)3

)
are similar via S2S1.

Throughout this section we assume the following.

Assumption 23. Let A : X ⊇ D(A) → X be a linear not necessarily bounded
operator with domain of definition D(A), T : X → X an invertible bounded linear
operator (then by the open mapping theorem also T−1 ∈ L(X)) and (. , .)E an
alternative scalar product on X which is equivalent to (. , .)X . In addition we define
the linear operator B := TAT−1 with domain of definition D(B) := T

(
D(A)

)
and

the scalar product

(u, v)T := (Tu, Tv)E , u, v ∈ X . (4.2)

So
(
A , (. , .)T

)
and

(
B , (. , .)E

)
are similar via T . �

Lemma 24. (. , .)T defined in (4.2) actually is a scalar product on X which is
equivalent to (. , .)X . With ‖.‖E and ‖.‖T denoting the norms induced by (. , .)E
and (. , .)T , respectively, also the pairs ‖ · ‖B,X := ‖ · ‖X + ‖B · ‖X and ‖ · ‖B,E :=
‖ ·‖E +‖B · ‖E as well as ‖ ·‖A,X := ‖ ·‖X +‖A · ‖X and ‖ ·‖A,T := ‖ ·‖T +‖A · ‖T
of graph norms are equivalent.

Furthermore,

C1
(

[0, t1], (X, ‖.‖E)
)
∩ C

(
[0, t1],

(
D(B), ‖.‖B,E

))
= C1

(
[0, t1], (X, ‖.‖X)

)
∩ C

(
[0, t1],

(
D(B), ‖.‖B,X

))
and

C1
(

[0, t1], (X, ‖.‖T )
)
∩ C

(
[0, t1],

(
D(A), ‖.‖A,T

))
= C1

(
[0, t1], (X, ‖.‖X)

)
∩ C

(
[0, t1],

(
D(A), ‖.‖A,X

))
.

Therefore we simply write C1
(
[0, t1], X

)
∩ C

(
[0, t1],D(B)

)
, etc. in this situa-

tion, since the specific norm does not matter.

Proof. As (· , ·)E is a scalar product also (· , ·)T is symmetric and positive semi-
definite, and its bilinearity follows from the linearity of T . Now let u ∈ X with
(u, u)T = 0. Then Tu = 0 and as by definition T is one-to-one, it follows that
u = 0. So (· , ·)T is definite and hence a scalar product.
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Since (. , .)E is equivalent to (. , .)X there are cE, CE > 0 with

cE ‖w‖X ≤ ‖w‖E ≤ CE ‖w‖X , w ∈ X .

Together with the boundedness of T and T−1 with respect to ‖ · ‖X it follows

‖u‖T = ‖Tu‖E ≤ CE ‖Tu‖X ≤ CE ‖T‖L(X,‖.‖X) ‖u‖X

and

cE ‖T−1‖−1
L(X,‖.‖X) ‖u‖X = cE ‖T−1‖−1

L(X,‖.‖X) ‖T
−1Tu‖X ≤ cE ‖Tu‖X

≤ ‖Tu‖E = ‖u‖T ,

u ∈ X. So also (. , .)T is equivalent to (. , .)X .
All other statements are direct consequences.

Lemma 25. The operator

T :
(
X, ‖.‖T

)
→
(
X, ‖.‖E

)
as well as its restriction

T :
(
D(A), ‖.‖A,T

)
→
(
D(B), ‖.‖B,E

)
are isometries.

Proof. Since T : X → X is bijective the first statement holds due to the definition
of ‖.‖T . The second statement follows from the injectivity of T , the definition of
D(B) and the definition of B since

‖Tu‖B,E = ‖Tu‖E + ‖BTu‖E = ‖Tu‖E + ‖TAu‖E = ‖u‖T + ‖Au‖T
= ‖u‖A,T ,

u ∈ D(A).

Lemma 26. The linear map

T̃ : C1
(

[0, t1], (X, ‖.‖T )
)
∩ C

(
[0, t1],

(
D(A), ‖.‖A,T

))
→ C1

(
[0, t1], (X, ‖.‖E)

)
∩ C

(
[0, t1],

(
D(B), ‖.‖B,E

))
,(

T̃ u
)
(t) := T

(
u(t)

)
, t ∈ [0, t1] ,

(4.3)

is well-defined and isometric with respect to the pairs of norms

u 7→ max
t∈[0,t1]

(∥∥u(t)
∥∥
T

+
∥∥u′(t)∥∥

T

)
and w 7→ max

t∈[0,t1]

(∥∥w(t)
∥∥
E

+
∥∥w′(t)∥∥

E

)
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as well as

u 7→ max
t∈[0,t1]

∥∥u(t)
∥∥
A,T

and w 7→ max
t∈[0,t1]

∥∥w(t)
∥∥
B,E

.

The derivative of T̃ u with respect to t is given by(
T̃ u
)′

(t) = T
(
u′(t)

)
, t ∈ [0, t1] . (4.4)

Proof. Since the statement of this lemma even holds true for unbounded transfor-
mations T , we give a proof for this more general case.

Let u ∈ C1
(

[0, t1], (X, ‖.‖T )
)
∩ C

(
[0, t1],

(
D(A), ‖.‖A,T

))
. We need to prove

that T̃ u ∈ C1
(

[0, t1], (X, ‖.‖E)
)
∩ C

(
[0, t1],

(
D(B), ‖.‖B,E

))
.

First we prove the differentiability of T̃ u. Let t0 ∈ [0, t1]. From the differentia-
bility of u with respect to ‖.‖T and Lemma 25 it follows

lim
t→t0
‖.‖E

(
T̃ u
)
(t)−

(
T̃ u
)
(t0)

t− t0
= lim

t→t0
‖.‖E

T
(
u(t)

)
− T

(
u(t0)

)
t− t0

= lim
t→t0
‖.‖E

T
(u(t)− u(t0)

t− t0

)
= T lim

t→t0
‖.‖T

u(t)− u(t0)

t− t0

= T
(
u′(t0)

)
,

which in particular proves (4.4).
Furthermore this derivative is continuous: For t0 ∈ [0, t1] we have

lim
t→t0

∥∥T (u′(t))− T (u′(t0)
)∥∥

E
= lim

t→t0

∥∥T (u′(t)− u′(t0)
)∥∥

E
= 0

by the continuity of u′ with respect to ‖.‖T and Lemma 25 again. So T̃ u ∈
C1
(
[0, t1], (X, ‖.‖E)

)
.

Secondly we prove T̃ u ∈ C
(

[0, t1],
(
D(B), ‖.‖B,E

))
. Let t0 ∈ [0, t1]. Then

lim
t→t0

∥∥(T̃ u)(t)− (T̃ u)(t0)
∥∥
B,E

= lim
t→t0

∥∥T(u(t)− u(t0)
)∥∥

B,E
= 0 ,

which follows from u ∈ C
(

[0, t1],
(
D(A), ‖.‖A,T

))
and the second statement of

Lemma 25.
Now by finally using Lemma 25 again we find that T̃ is isometric with respect

to the two pairs of norms in question.
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Theorem 27. Let u0 ∈ D(A) and f : [0, t1]→ X. A function u ∈ C1
(
[0, t1], X

)
∩

C
(
[0, t1],D(A)

)
solves

u′(t) = −A
(
u(t)

)
+ f(t) , t ∈ [0, t1] ,

u(0) = u0 ,
(4.5)

iff w := T̃ u ∈ C1
(
[0, t1], X

)
∩ C

(
[0, t1],D(B)

)
solves the transformed evolution

equation

w′(t) = −B
(
w(t)

)
+ T

(
f(t)

)
, t ∈ [0, t1] ,

w(0) = Tu0 .
(4.6)

Proof. Let u0 ∈ D(A) and u ∈ C1
(
[0, t1], X

)
∩ C

(
[0, t1],D(A)

)
. On the one hand,

by (4.4), we have (
T̃ u
)′

(t) = T
(
u′(t)

)
, t ∈ [0, t1] , (4.7)

and on the other hand, by the definition of B and T̃ , we get

T
(
− A

(
u(t)

))
= −TA

(
u(t)

)
= −BT

(
u(t)

)
= −B

((
T̃ u
)
(t)
)
, (4.8)

t ∈ [0, t1]. Furthermore, by the definition of T̃ , it holds(
T̃ u
)
(0) = T

(
u(0)

)
. (4.9)

So if u solves (4.5), then u′ = −Au+ f and u(0) = u0. Hence applying T for
every fixed t ∈ [0, t1] to both sides of (4.5) together with (4.7) – (4.9) yields that
T̃ u solves (4.6).

If vice versa T̃ u solves (4.6), then (T̃ u)′(t) = −B(T̃ u)(t) + T (f(t)), t ∈ [0, t1],
and (T̃ u)(0) = Tu0. Thus by applying T−1 for every fixed t ∈ [0, t1] to (4.6)
together with (4.7) – (4.9), we find that u solves (4.5).

Theorem 28. In the sense of Definition 1, the operator A : X ⊇ D(A) → X
is maximal monotone with respect to (. , .)T , iff B : X ⊇ D(B) → X is maximal
monotone with respect to (. , .)E.

Proof. Let B : X ⊇ D(B) → X be maximal monotone with respect to (. , .)E.
Then

(Au, u)T =
(
TAu, Tu

)
E

=
(
BTu, Tu

)
E
≥ 0 , u ∈ D(A) .

So A : X ⊇ D(A)→ X is monotone with respect to (. , .)T .
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Furthermore for each f ∈ X there is w ∈ D(B) with w + Bw = Tf . So
TT−1w + BTT−1w = Tf and therefore TT−1w + TAT−1w = Tf . Application of
T−1 yields T−1w + AT−1w = f , where T−1w ∈ D(A). So Id + A : D(A) → X is
onto. Overall A : X ⊇ D(A)→ X is maximal monotone with respect to (. , .)T .

The opposite direction follows from the symmetry of the similarity relation
which by Lemma 22 is an equivalence relation.

Remark 29. In our application the operator T will describe a transformation
of variables which transforms a concrete partial differential equation represented
by (4.5) into another one represented by (4.6). Both describe the same physical
process using different variables.

The physical energy of the state of the process corresponding to the solution
u of (4.5) at one point in time t is given by the expression 1

2
‖u(t)‖2

T . Described

in the other variables this physical process corresponds to the solution w = T̃ u of
(4.6). Here, the physical energy at time t has the form 1

2
‖w(t)‖2

E. Now Lemma 25
guarantees that

1

2
‖u(t)‖2

T =
1

2
‖w(t)‖2

E .

So the physical energy of this state is well defined no matter which system of
variables we use. �

Also we will have to apply a variable transformation to the derivative of the
solution of an evolution equation for parameters contained in the equation. As
we will see such a derivative is represented by the mild solution of an evolution
equation. For this purpose we need the following two corollaries.

Corollary 30. If A is maximal monotone with respect to (. , .)T in the sense of
Definition 1 and SA(·) the contraction semigroup generated by it according to Def-
inition 7, then

STAT−1(t) = TSA(t)T−1 , t ∈ [0,∞) .

Proof. By Theorem 28 the operator TAT−1 = B is maximal monotone with re-
spect to (. , .)E.

From Theorem 27 it follows that(
TSA(t)T−1

)
(Tu0) = TSA(t)u0 = STAT−1(t)(Tu0) , t ∈ [0,∞) , (4.10)

u0 ∈ D(A). As a consequence of the maximal monotonicity of B with respect to
(. , .)E, it is TD(A) = D(B) dense in X. Together with the continuity of TSA(t)T−1

and STAT−1(t) it therefore follows from (4.10), that(
TSA(t)T−1

)
w0 = STAT−1(t)w0 , t ∈ [0,∞) ,

w0 ∈ X.
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Corollary 31. Let A be maximal monotone with respect to (. , .)T , u0 ∈ X and f ∈
L1
(
(0, t1), X

)
. A function u ∈ C

(
[0, t1], X

)
is the mild solution of the evolution

equation

u′(t) = −A
(
u(t)

)
+ f(t) , t ∈ [0, t1] ,

u(0) = u0 ,
(4.11)

iff w := T̃ u ∈ C
(
[0, t1], X

)
is the mild solution of the transformed evolution equa-

tion

w′(t) = −B
(
w(t)

)
+ T

(
f(t)

)
, t ∈ [0, t1] ,

w(0) = Tu0 .
(4.12)

Proof. Let u be the mild solution of (4.11). Then u(t) = SA(t)u0 +
∫ t

0
SA(t −

s)f(s) ds, t ∈ [0, t1]. And with the continuity of T and Corollary 30 we get

(T̃ u)(t) = T
(
u(t)

)
= TSA(t)T−1Tu0 +

∫ t

0

TSA(t− s)T−1T
(
f(s)

)
ds

= SB(t)Tu0 +

∫ t

0

SB(t− s)T
(
f(s)

)
ds ,

t ∈ [0, t1]. So T̃ u is the mild solution of (4.12).
For the opposite direction we apply T̃−1 to the mild solution of (4.12) and use

Corollary 30 with A, B and T , T−1 interchanged, respectively.

Finally, we will derive adjoints of given bounded and unbounded linear oper-
ators in our application. In the remaining part of this section we therefore study
how a variable transformation affects the adjoint of an operator on an abstract
level.

Lemma 32. Let D(A) be dense in X and A∗ : X ⊇ D(A∗)→ X denote the adjoint
operator of A with respect to (. , .)T . Then also D(B) is dense in X, and the adjoint
of B with respect to (. , .)E is of the form B∗ = TA∗T−1 with D(B∗) = TD(A∗).

Proof. In our setting, ‖.‖X , ‖.‖E and ‖.‖T are equivalent. Yet, the following simple
proof for the density of D(B) in

(
X, ‖.‖E

)
provided D(A) is dense in

(
X, ‖.‖T

)
,

even holds for unbounded T .
Let D(A) be dense in

(
X, ‖.‖T

)
and x ∈ X be arbitrary. Then there is a

sequence (yn)n∈N in D(A), with limn→∞ ‖yn−T−1x‖T = 0. Hence, limn→∞ ‖Tyn−
x‖E = limn→∞ ‖yn − T−1x‖T = 0, which proves, that D(B) = TD(A) is dense in(
X, ‖.‖E

)
.
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Furthermore, for v ∈ X it holds

v ∈ D(A∗) ⇔ ∃y ∈ X : (Au, v)T = (u, y)T , u ∈ D(A)

⇔ ∃y ∈ X : (TAT−1Tu, Tv)E = (Tu, Ty)E , u ∈ D(A)

⇔ ∃z ∈ X : (Bw, Tv)E = (w, z)E , w ∈ D(B)

⇔ Tv ∈ D(B∗) .

If one of these equivalent statements holds true, then y and z are unique with this
property because of the density of D(A) and D(B) in X, and it is y = A∗v and
z = B∗Tv. So

B∗Tv = z = Ty = TA∗v = (TA∗T−1)Tv .

Together with the bijectivity of T , the last statement of this lemma follows.

Lemma 33. The operator A is symmetric with respect to (. , .)T , iff B is symmetric
with respect to (. , .)E. Analogously, A is skew-symmetric with respect to (. , .)T , iff
B is skew-symmetric with respect to (. , .)E.

Proof. At first let A be symmetric with respect to (. , .)T . Then

(Bv,w)E = (TAT−1v, TT−1w)E = (AT−1v, T−1w)T

= (T−1v,AT−1w)T = (v, TAT−1w)E = (v,Bw)E ,

v, w ∈ D(B). The other direction follows from the symmetry of the similarity
relation.

The second statement is proven analogously.

4.2 A Special Class of Operators

The following assumption is motivated by our application. The operator A of
section 4.1 will be of the form (2.14). Then B of section 4.1 will turn out to
have the form −P1Q+ P2 with two bounded linear operators P1, P2 ∈ L(X) with
additional beneficial properties, which depend on the material parameters, and an
unbounded operator Q : X ⊇ D(B) → X, which is independent of any material
parameter. We will see then that the energy scalar product (. , .)E corresponding
to the operator B is given by (P−1

1 · , ·)X .
In this short section we prove the well-definedness of such a scalar product

under given assumptions on P1 and also derive some norm estimates, which we
will apply to norms related to the operators B and A in later sections.
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Assumption 34. Throughout this section let
(
X, (. , .)X

)
be a non-trivial real

Hilbert space and ‖.‖X the norm induced by (. , .)X .
Let P1, P2, P̃1 ∈ L(X) and Q : X ⊇ D(Q) → X be a linear not necessarily

bounded operator with domain of definition D(Q). In addition let P1, P̃1 be bound-
edly invertible and P̃1 self-adjoint and monotone, that is (P̃1v, w)X = (v, P̃1w)X
and (P̃1w,w)X ≥ 0, v, w ∈ X.

We use the notation P := (P1, P2) and introduce the linear operator β(P ) :=
−P1Q+ P2 : X ⊇ D(Q)→ X. �

Lemma 35. (Cauchy-Schwarz Inequality for Positive Semidefinite Symmetric Bi-
linear Forms)

Let (. , .) be a positive semidefinite symmetric bilinear form on X. Then

|(v, w)| ≤
√

(v, v)
√

(w,w) , v, w ∈ X . (4.13)

Proof. Let v, w ∈ X. For every ε > 0 it follows from the positive semidefiniteness,
bilinearity and symmetry of (. , .), that

0 ≤
(
v − (v, w)

(w,w) + ε
w , v − (v, w)

(w,w) + ε
w
)

= (v, v) − 2
(v, w)2

(w,w) + ε
+

(v, w)2(w,w)(
(w,w) + ε

)2 ,

which is equivalent to√
2− (w,w)

(w,w) + ε
|(v, w)| ≤

√
(v, v)

√
(w,w) + ε .

For ε → 0, the right-hand side of this inequality tends to the right-hand side of
(4.13). If (w,w) 6= 0, also the left-hand side of this inequality tends to the left-
hand side of (4.13), which is therefore proven in this case. If on the other hand
(w,w) = 0, the left-hand side of the last inequality is equal to

√
2 |(v, w)|, from

where it follows that (v, w) = 0. So also in this case (4.13) is true.

Lemma 36. The scalar product (v, w)P̃ := (P̃−1
1 v, w)X , v, w ∈ X, is well-defined.

For the norm ‖.‖P̃ induced by it, it holds

1√
‖P̃1‖L(X,‖.‖X)

‖w‖X ≤ ‖w‖P̃ ≤
√
‖P̃−1

1 ‖L(X,‖.‖X) ‖w‖X , (4.14)

w ∈ X. So (. , .)P̃ is equivalent to (. , .)X .
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Furthermore, for the graph norms ‖ · ‖Q,X := ‖Q · ‖X + ‖ · ‖X and ‖ · ‖β(P ),P̃ :=
‖β(P ) · ‖P̃ + ‖ · ‖P̃ it holds

kP,P̃ ‖w‖Q,X ≤ ‖w‖β(P ),P̃ ≤ KP,P̃ ‖w‖Q,X , (4.15)

w ∈ D(Q), with

kP,P̃ :=

(√
‖P̃1‖L(X,‖.‖X)

max
{
‖P−1

1 ‖L(X,‖.‖X) , ‖P−1
1 ‖L(X,‖.‖X)‖P2‖L(X,‖.‖X) + 1

})−1

,

KP,P̃ :=
√
‖P̃−1

1 ‖L(X,‖.‖X) max
{
‖P1‖L(X,‖.‖X) , ‖P2‖L(X,‖.‖X) + 1

}
.

For every d > 0 there is c > 0 such that

1

c
‖w‖Q,X ≤ ‖w‖β(P ),P̃ ≤ c ‖w‖Q,X , (4.16)

w ∈ D(Q), holds for all P1, P2, P̃1 as in Assumption 34 with

‖P1‖L(X,‖.‖X) , ‖P2‖L(X,‖.‖X) , ‖P−1
1 ‖L(X,‖.‖X) , ‖P̃−1

1 ‖L(X,‖.‖X) ≤ d .

Proof. Since P̃1 is self-adjoint we have

(P̃−1
1 v, w)X = (P̃−1

1 v, P̃1P̃
−1
1 w)X = (P̃1P̃

−1
1 v, P̃−1

1 w)X = (v, P̃−1
1 w)X

= (P̃−1
1 w, v)X ,

v, w ∈ X. So (P̃−1
1 . , .)X is symmetric.

As P̃−1
1 is linear, (P̃−1

1 . , .)X is bilinear.
From the monotonicity of P̃1 it follows

(P̃−1
1 w,w)X = (P̃−1

1 w, P̃1P̃
−1
1 w)X ≥ 0 , w ∈ X .

To prove the definiteness of (P̃−1
1 . , .)X we apply Lemma 35 to the positive

semidefinite symmetric bilinear form (P̃−1
1 . , .)X and calculate

‖w‖2
X =

(
P̃−1

1 P̃1w,w
)
X
≤

√(
P̃−1

1 P̃1w, P̃1w
)
X

√(
P̃−1

1 w,w
)
X
, (4.17)

w ∈ X, and by again using the Cauchy-Schwarz inequality we get(
P̃−1

1 P̃1w, P̃1w
)
X

= (w, P̃1w)X ≤ ‖w‖X ‖P̃1w‖X
≤ ‖P̃1‖L(X,‖.‖X) ‖w‖2

X ,
(4.18)



4.2. A SPECIAL CLASS OF OPERATORS 35

w ∈ X. By plugging (4.18) into (4.17) we get

‖w‖2
X ≤

√
‖P̃1‖L(X,‖.‖X) ‖w‖X

√
(P̃−1

1 w,w)X , w ∈ X . (4.19)

From this inequality it follows that whenever (P̃−1
1 w,w)X = 0 for one w ∈ X also

‖w‖2
X = 0 and therefore w = 0. So (P̃−1

1 . , .)X actually is a scalar product.

The norm ‖.‖P̃ induced by (P̃−1
1 . , .)X has the form ‖w‖P̃ =

√
(P̃−1

1 w,w)X ,

w ∈ X. So we simply need to divide (4.19) by ‖w‖X and
√
‖P̃1‖L(X,‖.‖X) 6= 0 to

arrive at the left inequality of (4.14).
The right inequality of (4.14) follows with the Cauchy-Schwarz inequality from

‖w‖2
P̃

=
(
P̃−1

1 w,w
)
X
≤ ‖P̃−1

1 w‖X‖w‖X ≤ ‖P̃−1
1 ‖L(X,‖.‖X) ‖w‖2

X ,

w ∈ X, by taking the root of both sides.
To prove (4.15), let w ∈ X. With (4.14) we get

‖w‖Q,X = ‖Qw‖X + ‖w‖X
=

∥∥P−1
1

[
(−P1Q+ P2)w − P2w

]∥∥
X

+ ‖w‖X
≤ ‖P−1

1 ‖L(X,‖.‖X)

∥∥β(P )w − P2w
∥∥
X

+ ‖w‖X

≤ ‖P−1
1 ‖L(X,‖.‖X)

(∥∥β(P )w
∥∥
X

+ ‖P2‖L(X,‖.‖X)‖w‖X
)

+ ‖w‖X

≤
√
‖P̃1‖L(X,‖.‖X)

(
‖P−1

1 ‖L(X,‖.‖X)

(∥∥β(P )w
∥∥
P̃

+ ‖P2‖L(X,‖.‖X)‖w‖P̃
)

+ ‖w‖P̃
)

≤ 1

kP,P̃
‖w‖β(P ),P̃ .

On the other hand we have

‖w‖β(P ),P̃

=
∥∥β(P )w

∥∥
P̃

+ ‖w‖P̃

≤
√
‖P̃−1

1 ‖L(X,‖.‖X)

(∥∥β(P )w
∥∥
X

+ ‖w‖X
)

=
√
‖P̃−1

1 ‖L(X,‖.‖X)

(∥∥(−P1Q+ P2)w
∥∥
X

+ ‖w‖X
)

≤
√
‖P̃−1

1 ‖L(X,‖.‖X)

(
‖P1‖L(X,‖.‖X)‖Qw‖X + ‖P2‖L(X,‖.‖X)‖w‖X + ‖w‖X

)
≤ KP,P̃ ‖w‖Q,X .

Finally, a direct estimate yields (4.16) for c :=
√
d (d+ 1)2.





Chapter 5

Viscoelasticity: Unique Existence,
Energy

In this chapter we apply the abstract theory developed in chapters 3 and 4 to
the initial-boundary value problem given by the viscoelastic partial differential
equation

∂tv(x, t) = ϑ(x) divσ(x, t) + f̃(x, t) ,

∂tσ(x, t) = C

(
µH(x) +

L∑
l=1

µM,l(x) , κH(x) +
L∑
l=1

κM,l(x)

)
ε(v)(x, t)

+
L∑
l=1

ηl(x, t) + g(x, t) , (5.1)

∂tηl(x, t) = −ωσ,l(x)C
(
µM,l(x) , κM,l(x)

)
ε(v)(x, t)

− ωσ,l(x)ηl(x, t) , l = 1, . . . , L ,

x ∈ D, t ∈ [0, t1], introduced in (2.13), together with initial values

v(x, 0) = v(0)(x) , σ(x, 0) = σ(0)(x) , ηl(x, 0) = η
(0)
l (x) , l = 1, . . . , L ,

x ∈ D, and boundary values

v(x, t) = 0 , x ∈ ∂DD , t ∈ [0, t1] , n(x)>σ(x, t) = 0 , x ∈ ∂DN , t ∈ [0, t1] .

Here, D ⊆ R3 denotes a non-empty open set with its boundary decomposed as
∂D = ∂DD∪̇∂DN , n is the outer unit normal vector and t1 > 0. We recall that
f̃ = ϑf .

According to section 2.6, we interpret problem (5.1) as an evolution equation

u′(t) = −Au(t) + f(t) , t ∈ [0, t1] ,

u(0) = u0

(5.2)

37
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with u = (v,σ,η)> and η = (η1, . . . ,ηL)>, u0 = (v(0),σ(0),η(0))> and η(0) =

(η
(0)
1 , . . . ,η

(0)
L )>, f = (f̃ ,g,0)>, and the linear operator A : X ⊇ D(A)→ X,

A


v
σ
η1
...
ηL

 = −


ϑ divσ

C
(
µH +

∑L
l=1 µM,l , κH +

∑L
l=1 κM,l

)
ε(v) +

∑L
l=1 ηl

−ωσ,1C
(
µM,1 , κM,1

)
ε(v) − ωσ,1η1

...
−ωσ,LC

(
µM,L , κM,L

)
ε(v) − ωσ,LηL

 , (5.3)

(v,σ,η)> ∈ D(A), on a suitable Hilbert space X and domain of definition D(A).
The purpose of the next section is to define these spaces.

5.1 Function Spaces

Notation 37. We assume D ⊆ R3 to be any non-empty open set. Furthermore
let ∂DD ⊆ ∂D be an arbitrary subset of its boundary ∂D and ∂DN := ∂D \ ∂DD.

On the vector space R3 we make use of the canonical scalar product

a · b :=
3∑
i=1

aibi , a = (ai)i=1,2,3 , b = (bi)i=1,2,3 ∈ R3 .

On the spaces R3×3 and R3×3
sym we use the Frobenius inner product which is defined

as

M : N :=
3∑

i,j=1

mijnij , M = (mij)i,j=1,2,3 , N = (nij)i,j=1,2,3 ∈ R3×3 .

Having these scalar products we can define the vector spaces

L2(D,R3) :=
{

v : D → R3 : v is measurable and

∫
D

v(x) · v(x) dx < ∞ .
}

and

L2(D,R3×3
sym) :=

{
σ : D → R3×3

sym : σ is measurable and

∫
D

σ(x) : σ(x) dx < ∞ .
}

together with scalar products(
v(1),v(2)

)
L2(D,R3)

:=

∫
D

v(1)(x) · v(2)(x) dx , v(1),v(2) ∈ L2(D,R3)
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and(
σ(1),σ(2)

)
L2(D,R3×3

sym)
:=

∫
D

σ(1)(x) : σ(2)(x) dx , σ(1),σ(2) ∈ L2(D,R3×3
sym)

respectively.
Now for the Hilbert space on which A in (5.3) acts we choose

X := L2(D,R3)× L2(D,R3×3
sym)× L2(D,R3×3

sym)L (5.4)

with

(u1, u2)X :=
(
v(1),v(2)

)
L2(D,R3)

+
(
σ(1),σ(2)

)
L2(D,R3×3

sym)
+

L∑
l=1

(
η

(1)
l ,η

(2)
l

)
L2(D,R3×3

sym)
,

(5.5)
u1 = (v(1),σ(1),η(1)), u2 = (v(2),σ(2),η(2)) ∈ X. The norm on X induced by the
scalar product (· , ·)X is denoted by ‖.‖X .

Also we make use of spaces of k-times continuously differentiable functions with
compact support

Ck
c (Ω, R3) :=

{
ϕ ∈ Ck(Ω,R3) : supp(ϕ) ⊆ Ω is compact.

}
,

Ck
c (Ω, R3×3

sym) :=
{
ψ ∈ Ck(Ω,R3×3

sym) : supp(ψ) ⊆ Ω is compact.
}
,

where Ω ⊆ R3 is any open set, k ∈ N0 ∪ {∞} and C0(Ω, . . . ) stands for merely
continuous functions. �

Lemma 38.

(a) The space C∞c (D,R3) is dense in L2(D,R3).

(b) The space C∞c (D,R3×3
sym) is dense in L2(D,R3×3

sym).

Proof. We demonstrate the proof for (b). Let σ = (σij)i,j=1,2,3 ∈ L2(D,R3×3
sym).

Then σij ∈ L2(D,R), i, j = 1, 2, 3. By the analogous result for scalar valued

functions which is a special case of Corollary 3.5 in [15] there is
(
σ

(n)
ij

)
n∈N ∈

C∞c (D,R)N with limn→∞ ‖σ(n)
ij − σij‖L2(D,R) = 0 for each (i, j) ∈ {1, 2, 3}2 with

j ≥ i. With σ
(n)
ij := σ

(n)
ji , n ∈ N for j < i and σ(n) := (σ

(n)
ij )i,j=1,2,3, n ∈ N, it holds

σ(n) ∈ C∞c (D,R3×3
sym), n ∈ N, and

lim
n→∞

‖σ(n) − σ‖L2(D,R3×3
sym) = lim

n→∞

√√√√ 3∑
i,j=1

‖σ(n)
ij − σij‖2

L2(D,R) = 0 .

In the same way, (a) can be shown.
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Notation 39. For v = (vi)i=1,2,3 ∈ C1
c (Ω, R3) and σ ∈ C1

c (Ω, R3×3
sym) we define

ε(v), div v and divσ as done in section 2.4 by ε(v) :=
(
Dv + (Dv)>

)
/2 with the

Jacobian matrix Dv, div v =
∑3

i=1 ∂ivi and divσ =
∑3

j=1 ∂jσ∗j . �

Lemma 40. (Partial Integration)
Let Ω ⊆ R3 be a Lipschitz domain, n its exterior unit normal vector field,

v ∈ C1
c (R3,R3) and σ ∈ C1

c (R3,R3×3
sym). Then∫

Ω

σ : ε(v) + div (σ) · v dx =

∫
∂Ω

(n>σ) v ds , (5.6)

where ds indicates integration with respect to the two-dimensional surface measure.

Proof. For v = (vi)i=1,2,3, σ = (σij)i,j=1,2,3 and divσ = (di)i=1,2,3 we use the
symmetry of σ to calculate

div (σv) =
3∑
j=1

∂i

( 3∑
j=1

σijvj

)
=

3∑
i,j=1

σij(∂ivj) +
3∑

i,j=1

(∂iσij)vj

=
1

2

( 3∑
i,j=1

σij(∂ivj) +
3∑

i,j=1

σji(∂ivj)
)

+
3∑

i,j=1

(∂iσji)vj

=
3∑

i,j=1

σij
∂ivj + ∂jvi

2
+

3∑
j=1

djvj

= σ : ε(v) + div (σ) · v .

On the other hand with n = (ni)i=1,2,3 it is

(σv) · n =
3∑

i,j=1

σijvjni = (n>σ) v .

Now (5.6) follows from the Gauß divergence theorem, which can be found as The-
orem 3.34 in [15].

Notation 41. Motivated by (5.6) we can define ε and div in a weak sense in the
usual way.

More precisely, for any v ∈ L2(D,R3) we say, ε(v) exists in the weak sense, iff
there is g ∈ L2(D,R3×3

sym) such that∫
D

v · div (Ψ) dx = −
∫
D

g : Ψ dx , Ψ ∈ C∞c (D,R3×3
sym) . (5.7)
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If it exists, g is unique with this property because by Lemma 38, the space
C∞c (D,R3×3

sym) is dense in L2(D,R3×3
sym) . In this case, g is denoted by ε(v).

In this way we introduce the set

H(ε,D,R3) :=
{

v ∈ L2(D,R3) : ε(v) exists in the weak sense.
}
.

It forms a vector space and can be equipped with the scalar product(
v(1),v(2)

)
V

:=
(
v(1),v(2)

)
L2(D,R3)

+
(
ε(v(1)), ε(v(2))

)
L2(D,R3×3

sym)
, (5.8)

v(1),v(2) ∈ H(ε,D,R3) . The norm induced by it is denoted by ‖.‖V .
In the same way for any σ ∈ L2(D,R3×3

sym) we say, divσ exists in the weak
sense, iff there is h ∈ L2(D,R3) such that∫

D

σ : ε(ϕ) dx = −
∫
D

h ·ϕ dx , ϕ ∈ C∞c (D,R3) .

In this case h is unique, since C∞c (D,R3) is dense in L2(D,R3) due to Lemma 38,
and we denote h by divσ.

In this way we define the vector space

H( div , D,R3×3
sym) :=

{
σ ∈ L2(D,R3×3

sym) : divσ exists in the weak sense.
}
.

It can be equipped with the scalar product(
σ(1),σ(2)

)
S

:=
(
σ(1),σ(2)

)
L2(D,R3×3

sym)
+
(

divσ(1), divσ(2)
)
L2(D,R3)

,

σ(1),σ(2) ∈ H( div , D,R3×3
sym). The norm induced by (. , .)S is denoted by ‖.‖S. �

Lemma 42. The spaces
(
H(ε,D, R3), (. , .)V

)
and

(
H( div , D, R3×3

sym), (. , .)S
)

are
Hilbert spaces.

Proof. Let (vn)n∈N be a Cauchy sequence in
(
H(ε,D, R3), (. , .)V

)
. Since

‖vn − vm‖2
L2(D,R3) ,

∥∥ε(vn − vm)
∥∥2

L2(D,R3×3
sym)

≤ ‖vn − vm‖2
L2(D,R3) +

∥∥ε(vn − vm)
∥∥2

L2(D,R3×3
sym)

= ‖vn − vm‖2
V ,

n,m ∈ N, the sequences (vn)n∈N and
(
ε(vn)

)
n∈N are also Cauchy with respect

to ‖.‖L2(D,R3) and ‖.‖L2(D,R3×3
sym), respectively. Since

(
L2(D,R3), ‖.‖L2(D,R3)

)
and(

L2(D,R3×3
sym), ‖.‖L2(D,R3×3

sym)

)
are complete, there are both v ∈ L2(D,R3) and g ∈
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L2(D,R3×3
sym) such that ‖vn−v‖L2(D,R3) → 0, n→∞ and

∥∥ε(vn)−g
∥∥
L2(D,R3×3

sym)
→ 0,

n → ∞. Now for any fixed ψ ∈ C∞c (D,R3×3
sym) we can apply the Cauchy-Schwarz

inequality to prove∫
D

v · div (Ψ) + g : Ψ dx =

∫
D

( lim
n→∞

vn) · div (Ψ) +
(

lim
n→∞

ε(vn)
)

: Ψ dx

= lim
n→∞

∫
D

vn · div (Ψ) + ε(vn) : Ψ dx

= 0 .

So by definition, v ∈ H(ε,D,R3), and
(
H(ε,D, R3), (. , .)V

)
is complete.

The same argument applies to
(
H( div , D, R3×3

sym), (. , .)S
)
.

Notation 43. Let

V :=
{
ϕ ∈ C∞(D,R3) ∩H(ε,D,R3) : ∂DD ⊆ R3 \ supp(ϕ)

}‖.‖V
, (5.9)

where the bar stands for closure in
(
H(ε,D,R3), ‖.‖V

)
. Furthermore, let

S :=
{
σ ∈ H( div , D,R3×3

sym) : ∀ϕ ∈ V :

∫
D

ε(ϕ) : σ + ϕ · divσ dx = 0
}
.

(5.10)
Now, for the domain of definition of A in (5.3) we choose

D(A) := V × S × L2(D,R3×3
sym)L . (5.11)

This linear subspace of X can be equipped with the graph norm

‖u‖A,X := ‖u‖X + ‖Au‖X , u ∈ D(A) (5.12)

of A. �

Lemma 44. The space V together with the scalar product (. , .)V is a Hilbert space.

Proof. The set shown in (5.9) which the closure is taken of, is a vector space.
Because for two elements u and v and a scalar α ∈ R it holds

supp
(
αu + v

)
⊆ supp(αu) ∪ supp(v) ⊆ supp(u) ∪ supp(v)

⊆ R3 \ ∂DD .

So also αu + v is contained. Furthermore 0 is an element. Thus it is nonempty.
The closure of a linear subspace of any normed space is a vector space again.

Finally, by construction and Lemma 42, V is a closed subspace of the complete
space

(
H(ε,D,R3), ‖.‖V

)
. So it is a Hilbert space on its own.
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Lemma 45. The space
(
S, (. , .)S

)
is a Hilbert space.

Proof. For fixed ϕ ∈ V let

`ϕ : H( div , D,R3×3
sym) → R , σ 7→

∫
D

ε(ϕ) : σ + ϕ · divσ dx .

Then `ϕ obviously is linear. Furthermore it is bounded with respect to ‖.‖S,
because with the Cauchy-Schwarz inequality it follows∣∣`ϕ(σ)

∣∣ ≤
∫
D

∣∣ε(ϕ) : σ
∣∣ dx +

∫
D

∣∣ϕ · divσ
∣∣ dx

≤ ‖ε(ϕ)‖L2(D,R3×3
sym)‖σ‖L2(D,R3×3

sym) + ‖ϕ‖L2(D,R3)‖ divσ‖L2(D,R3)

≤
√
‖ϕ‖2

L2(D,R3) + ‖ε(ϕ)‖2
L2(D,R3×3

sym)

√
‖σ‖2

L2(D,R3×3
sym)

+ ‖ divσ‖2
L2(D,R3)

= ‖ϕ‖V ‖σ‖S ,

σ ∈ H( div , D,R3×3
sym).

Now
S =

⋂
ϕ∈V

`−1
ϕ

(
{0}
)
,

which is an intersection of closed normed subspaces of the complete normed space(
H( div , D,R3×3

sym), ‖.‖S
)

and therefore a closed and hence complete normed sub-
space itself.

Lemma 46. The space V is dense in L2(D,R3).

Proof. Since

C∞c (D,R3) ⊆
{
ϕ ∈ C∞(D,R3) ∩H(ε,D,R3) : ∂DD ⊆ R3 \ supp(ϕ)

}
this follows from Lemma 38(a).

In the same way, S is dense in L2(D,R3×3
sym). To prove this we could use Lemma

38 together with Lemma 40. Instead we postpone this result to Lemma 76 where
we will have an elegant method at hand to prove it.

Remark 47. With a look at (5.6) and the property v|∂DD = 0 of every v in the
dense subspace

{
ϕ ∈ C∞(D,R3)∩H(ε,D,R3) : ∂DD ⊆ R3 \ supp(ϕ)

}
of V used

in the definition (5.9), we see that the defining condition on the elements σ of the
subspace S of H( div , D,R3×3

sym) formulated in (5.10) is a variational interpretation
of the boundary condition n>σ|∂DN = 0.

It is worth noting that besides D being an open set, this construction does not
need any further assumptions on the regularity of D, the boundary ∂D of D as
well as the subsets ∂DD and ∂DN of ∂D. Of course the degenerate case D = ∅
does not matter in applications. �
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Remark 48. We further mention the space H1(D,R3) consisting of all v ∈
L2(D,R3) for which there is g ∈ L2(D,R3×3) such that∫

D

v (∇ϕ)> ds = −
∫
D

gϕdx , ϕ ∈ C∞c (D,R) .

If it exists, g is denoted by Dv. The vector space H1(D,R3) is endowed with the
norm

‖v‖H1(D,R3) :=
√
‖v‖2

L2(D,R3) + ‖Dv‖2
L2(D,R3×3) ,

v ∈ H1(D,R3).

In the special case where D is a bounded, connected Lipschitz domain, it is
stated in [7] (pp. 291-292) that

H(ε,D,R3) = H1(D,R3) .

To prove this theorem one shows that ‖.‖H(ε,D,R3) and ‖.‖H1(D,R3) are equivalent,
where one side is easily verified via the calculation

‖ε(v)‖2
L2(D,R3×3

sym)
=

∫
D

3∑
i,j=1

(∂ivj + ∂jvi)
2

4
dx ≤

∫
D

3∑
i,j=1

(∂ivj)
2 + (∂jvi)

2

2
dx

=

∫
D

3∑
i,j=1

(∂ivj)
2 dx = ‖Dv‖2

L2(D,R3×3) ,

v = (v1, v2, v3) ∈ H1(D,R3) ⊆ H(ε,D,R3). The other follows from Korn’s in-
equality, a proof of which can be found in [16] and which states that there is c > 0
such that also

‖Dv‖L2(D,R3×3) ≤ c ‖ε(v)‖L2(D,R3×3
sym) ,

v ∈ H1(D,R3). �

Finally, we choose spaces for the parameters in (5.3).

Assumption 49. We assume all material parameters to be positive, measurable
real-valued functions on D which are essentially bounded from above and below,
i.e.

ϑ, µH , µM,1, . . . , µM,L, κH , κM,1, . . . , κM,L, ωσ,1, . . . , ωσ,L

∈ L∞+ (D) :=

{
α ∈ L∞(D) : α > 0,

1

α
∈ L∞(D)

}
.

(5.13)
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For better readability we introduce the notation

ϑ0 :=
1

‖ 1
ϑ
‖L∞(D)

, µH,0 :=
1

‖ 1
µH
‖L∞(D)

, κH,0 :=
1

‖ 1
κH
‖L∞(D)

,

µM,l,0 :=
1

‖ 1
µM,l
‖L∞(D)

, κM,l,0 :=
1

‖ 1
κM,l
‖L∞(D)

, ωσ,l,0 :=
1

‖ 1
ωσ,l
‖L∞(D)

,

l = 1, . . . , L. Then

ϑ(x) ≥ ϑ0 > 0 , µH(x) ≥ µH,0 > 0 , κH(x) ≥ κH,0 > 0 ,

µM,l(x) ≥ µM,l,0 > 0 , κM,l(x) ≥ κM,l,0 > 0 , ωσ,l(x) ≥ ωσ,l,0 > 0 ,

for almost all x ∈ D and all l ∈ {1, . . . , L}.
Furthermore, we consider an initial value u0 = (v(0),σ(0),η(0))> ∈ D(A)

with D(A) as in (5.11), and inhomogeneities f ∈ W 1,1
(
(0, t1), L2(D,R3)

)
and

g ∈ W 1,1
(
(0, t1), L2(D,R3×3

sym)
)
. Then also f̃ = ϑf ∈ W 1,1

(
(0, t1), L2(D,R3)

)
. �

5.2 The Elastic Stiffness Tensor

Many of the following calculations will involve the elastic stiffness tensors, which
we defined by

C(m, k) : R3×3 → R3×3 , C(m, k)M = mM +
k −m

3
trace (M)I (5.14)

for m, k ∈ R in (2.9), where I ∈ R3×3 denotes the unit matrix. Therefore we need
some algebraic properties as well as estimates of these maps.

First we recall that

C(m, k)M = m dev M + k
trace (M)

3
I ,

m, k ∈ R, M ∈ R3×3, where the deviatoric part dev M = M− ( trace (M)/3) I of
M ∈ R3×3 has been introduced in (2.8).

Lemma 50. The set {C(m, k) : m, k ∈ R} forms a commutative subalgebra with
unity of L(R3×3) and L(R3×3

sym), respectively, and the maps

ι1 : R2 → L(R3×3) , (m, k) 7→ C(m, k) ,

ι2 : R2 → L(R3×3
sym) , (m, k) 7→ C(m, k)

(5.15)

are injective algebra homomorphisms. This follows from the following properties.
For m, m1, m2, k, k1, k2, λ ∈ R, M,N ∈ R3×3 it is
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(a) C(m1, k1) + C(m2, k2) = C(m1 +m2 , k1 + k2) ,

(b) C(0, 0) = 0L(R3×3) ,

(c) C(m1, k1)C(m2, k2) = C(m1m2 , k1k2) ,

(d) C(1, 1) = IdL(R3×3) ,

(e) λC(m, k) = C(λm , λk) ,

(f) C(m1, k1)C(m2, k2) = C(m2, k2)C(m1, k1) ,

(g) C(m, k)−1 = C
(

1
m
, 1
k

)
, provided m, k 6= 0 ,

(h) [C(m, k) M] : N = M : [C(m, k) N] ,

(i)
[
C(m, k) M

]
: M ≥ min{m, k}M : M ,

(j)
[
C(m, k) M

]
: M ≤ max{m, k}M : M .

(k) C(m, k) is diagonalizable. Its spectrum is {m, k}. The one-dimensional
eigenspace corresponding to the eigenvalue k is spanned by I. The eigenspace
corresponding to the eigenvalue m is given by {I}⊥ with respect to the Frobe-
nius inner product on R3×3 or R3×3

sym. This is the set of all matrices M with
trace (M) = 0.

(l)

max
M∈R3×3

sym ,M 6=0

√
[C(m, k)M] : [C(m, k)M]√

M : M
= max

{
|m|, |k|

}
and analogously for M ∈ R3×3.

Proof. Let m, k ∈ R, M1,M2 ∈ R3×3 and λ ∈ R. Then

C(m, k)(M1 + λM2)

= m(M1 + λM2) +
k −m

3
trace (M1 + λM2)I

= mM1 +
k −m

3
trace (M1)I + λ

(
mM2 +

k −m
3

trace (M2)I
)

= C(m, k)M1 + λC(m, k)M2 .

So C(m, k) ∈ L(R3×3). If M ∈ R3×3
sym we also have C(m, k)M ∈ R3×3

sym, so it even
holds C(m, k) ∈ L(R3×3

sym).
In the sequel let m, m1, m2, k, k1, k2, λ ∈ R and M,N ∈ R3×3.
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(a) (
C(m1, k1) + C(m2, k2)

)
M

= C(m1, k1)M + C(m2, k2)M

= m1M +
k1 −m1

3
trace (M)I

+ m2M +
k2 −m2

3
trace (M)I

= (m1 +m2)M +
(k1 + k2)− (m1 +m2)

3
trace (M)I

= C(m1 +m2, k1 + k2) M .

(b)

C(0, 0) M = 0 M +
0− 0

3
trace (M)I = 0 .

(c)

C(m1, k1)C(m2, k2) M

= C(m1, k1)
(
m2M +

k2 −m2

3
trace (M)I

)
= m1

(
m2M +

k2 −m2

3
trace (M)I

)
+

k1 −m1

3
trace

(
m2M +

k2 −m2

3
trace (M)I

)
I

= m1m2M +
m1k2 −m1m2

3
trace (M)I

+
k1 −m1

3

(
m2 trace (M) + (k2 −m2) trace (M)

)
I

= m1m2M +
k1k2 −m1m2

3
trace (M)I

= C(m1m2 , k1k2) M .

(d)

C(1, 1) M = 1M +
1− 1

3
trace (M)I = M .

(e)

λC(m, k) M = λ
(
mM +

k −m
3

trace (M)I
)

= λmM +
λk − λm

3
trace (M)I

= C(λm , λk) M .
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(f) According to part (c) ,

C(m1, k1)C(m2, k2) M = C(m1m2 , k1k2) M ,

which is symmetric in (m1, k1) and (m2, k2).

(g) Let m, k 6= 0. We use (c) and (d). Because of (f) it suffices to calculate

C
( 1

m
,

1

k

)
C(m, k) = C

( 1

m
m,

1

k
k
)

= C(1, 1) = IdL(R3×3) .

(h) Using the bilinearity of the Frobenius scalar product M : N and also I : N =
trace (N), we get

[C(m, k)M] : N =
(
mM +

k −m
3

trace (M)I
)

: N

= mM : N +
k −m

3
trace (M) trace (N) .

As the Frobenius scalar product is symmetric the last term is symmetric
in M and N and if we interchange M and N the first term is equal to
M :

[
C(m, k) N

]
. This proves the statement.

(i) and (j)[
C(m, k) M

]
: M =

(
mM +

k −m
3

trace (M)I
)

: M

= mM : M +
k −m

3
trace (M)2

= m
(
M : M− 1

3
trace (M)2

)
+
k

3
trace (M)2 .

We will show that M : M − 1
3

trace (M)2 ≥ 0 . Then
[
C(m, k) M

]
: M is

nondecreasing in m for fixed k and nondecreasing in k for fixed m. So[
C(m, k) M

]
: M ≥ min{m, k}

(
M : M− 1

3
trace (M)2

)
+

min{m, k}
3

trace (M)2

= min{m, k}M : M ,

which proves (i) and[
C(m, k) M

]
: M ≤ max{m, k}

(
M : M− 1

3
trace (M)2

)
+

max{m, k}
3

trace (M)2

= max{m, k}M : M ,
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which proves (j).

We are left with the proof of M : M − 1
3

trace (M)2 ≥ 0 . The Cauchy-
Schwarz inequality yields

trace (M)2 =

( 3∑
i=1

Mii

)2

=

( 3∑
i=1

1 ·Mii

)2

≤
( 3∑

i=1

12

)( 3∑
i=1

M2
ii

)
= 3

3∑
i=1

M2
ii .

Therefore

M : M− 1

3
trace (M)2 ≥ M : M−

3∑
i=1

M2
ii =

3∑
i,j=1
i 6=j

M2
ij ≥ 0 .

(k)

C(m, k) I = m I +
k −m

3
trace (I) I = m I + (k−m) I = k I .

As M : I = trace (M) it is M ∈ {I}⊥ equivalent to trace (M) = 0 . And
for M ∈ R3×3 with trace (M) = 0 it holds

C(m, k)M = mM +
k −m

3
trace (M)M = mM .

(l) It is C(m, k)I = kI. And for an eigenvector M ∈ R3×3
sym corresponding to the

eigenvalue m it is C(m, k)M = mM. So

max
N∈R3×3

sym , N6=0

√
[C(m, k)N] : [C(m, k)N]√

N : N

≥ max
N∈{I,M}

√
[C(m, k)N] : [C(m, k)N]√

N : N

= max
{
|m|, |k|

}
.

And from part (h), (c) and (j) it follows[
C(m, k)N

]
:
[
C(m, k)N

]
=

[
C(m2, k2)N

]
: N

≤ max{m2, k2} N : N

= max
{
|m|, |k|

}2
N : N ,

N ∈ R3×3. Therefore also

max
N∈R3×3, N6=0

√
[C(m, k)N] : [C(m, k)N]√

N : N
≤ max

{
|m|, |k|

}
.
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Finally, that ι1, ι2 from (5.15) are algebra homomorphisms and that the respective
image {C(m, k) : m, k ∈ R} of these maps forms a commutative subalgebra with
unity of L(R3×3) and L(R3×3

sym), respectively, follows from (a), (c), (d) and (e).
Furthermore, with (l) the statement ιi(m, k) = 0 implies (m, k) = 0 for i = 1, 2.
So ι1, ι2 actually are injective.

Lemma 51. For α, β ∈ L∞(D) the linear map

C̃(α, β) : L2(D,R3×3
sym) → L2(D,R3×3

sym) ,[
C̃(α, β)ψ

]
(x) := C

(
α(x), β(x)

)
ψ(x) , x ∈ D ,

is well-defined and bounded with

‖C̃(α, β)‖L(L2(D,R3×3
sym)) = max

{
‖α‖L∞(D) , ‖β‖L∞(D)

}
. (5.16)

Proof. For any ψ ∈ L2(D,R3×3
sym), Lemma 50 (h), (c) and (j) yield

‖C̃(α, β)ψ‖2
L2(D,R3×3

sym)
=

∫
D

[
C̃(α, β)ψ

]
:
[
C̃(α, β)ψ

]
dx

=

∫
D

[
C̃(α, β)2ψ

]
: ψ dx

=

∫
D

[
C̃
(
α2, β2

)
ψ
]

: ψ dx

≤
∫
D

max
{
α2 , β2

}
ψ : ψ dx

≤ max
{
‖α‖L∞(D) , ‖β‖L∞(D)

}2
∫
D

ψ : ψ dx .

Thus

‖C̃(α, β)ψ‖L2(D,R3×3
sym) ≤ max

{
‖α‖L∞(D) , ‖β‖L∞(D)

}
‖ψ‖L2(D,R3×3

sym)

and therefore

‖C̃(α, β)‖L(L2(D,R3×3
sym)) ≤ max

{
‖α‖L∞(D) , ‖β‖L∞(D)

}
.

To show that even equality holds, we proceed as follows.
In the case: max

{
‖α‖L∞(D) , ‖β‖L∞(D)

}
= ‖α‖L∞(D) we choose a constant

function ψ : D → R3×3
sym such that for every x ∈ D the matrix ψ(x) is an eigenvector

of C
(
α(x), β(x)

)
corresponding to the eigenvalue α(x). According to Lemma 50(k)

that means ψ(x) ∈ {I}⊥. A possible choice for ψ(x) =: (ψ(x)ij)i,j=1,2,3 would be:
ψ(x)13 = ψ(x)31 = 1 and ψ(x)ij = 0 for (i, j) /∈ {(1, 3), (3, 1)}. Let Dn := {x ∈ D :
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|α(x)|2 > ‖α‖2
L∞(D)−

1
n
} ∩B(δn, 0), n ∈ N, where B(δn, 0) is a ball around 0 with

a radius δn which is big enough for the Lebesgue measure λ3(Dn) > 0. Let 1Dn
denote the characteristic function of Dn and φn := 1

‖1Dnψ‖L2(D,R3×3
sym)

1Dnψ, n ∈ N.

Then ‖φn‖L2(D,R3×3
sym) = 1 and

‖C̃(α, β)φn‖2
L2(D,R3×3

sym)
=

‖α1Dnψ‖2
L2(D,R3×3

sym)

‖1Dnψ‖2
L2(D,R3×3

sym)

≥
(
‖α‖2

L∞(D) −
1

n

) ‖1Dnψ‖2
L2(D,R3×3

sym)

‖1Dnψ‖2
L2(D,R3×3

sym)

= ‖α‖2
L∞(D) −

1

n
, n ∈ N .

So

sup
n∈N
‖C̃(α, β)φn‖L2(D,R3×3

sym) ≥ ‖α‖L∞(D)

and therefore

‖C̃(α, β)‖L(L2(D,R3×3
sym)) ≥ ‖α‖L∞(D) = max

{
‖α‖L∞(D) , ‖β‖L∞(D)

}
.

In the case: max
{
‖α‖L∞(D) , ‖β‖L∞(D)

}
= ‖β‖L∞(D) we repeat this calculation

with ψ substituted by x 7→ I, since due to Lemma 50(k), for every x ∈ D the
matrix I is an eigenvector of C

(
α(x), β(x)

)
corresponding to the eigenvalue β(x).

Notation 52. Henceforth we drop the ˜ in the notation of the maps C̃(α, β)
defined in Lemma 51 and use the same notation for C(m, k) with m, k ∈ R and
C̃(α, β) with α, β ∈ L∞(D). It should be possible to distinguish the two kinds of
mathematical objects by the surrounding context. �

Lemma 53.

(a) The bounded linear maps C(µH , κH), C(µM,l , κM,l) ∈ L
(
L2(D,R3×3

sym)
)

are in-
vertible with

C(µH , κH)−1 = C
( 1

µH
,

1

κH

)
,

C(µM,l , κM,l)
−1 = C

( 1

µM,l

,
1

κM,l

)
for l = 1, . . . , L.
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(b) For ψ ∈ L2(D,R3×3
sym) the following estimates hold:

min
{ 1

µH
,

1

κH

}
ψ : ψ ≤

[
C(µH , κH)−1ψ

]
: ψ

≤ max
{ 1

µH
,

1

κH

}
ψ : ψ , (5.17)

min
{ 1

µM,l

,
1

κM,l

}
ψ : ψ ≤

[
C(µM,l , κM,l)

−1ψ
]

: ψ

≤ max
{ 1

µM,l

,
1

κM,l

}
ψ : ψ , (5.18)

l = 1, . . . , L, pointwise almost everywhere on D.

Proof. (a) As due to (5.13), µH , µM,1, . . . , µM,L and κH , κM,1, . . . , κM,L are greater
than 0 almost everywhere, this follows from Lemma 50(g) with (m, k) substi-
tuted by

(
µH(x), κH(x)

)
and

(
µM,l(x), κM,l(x)

)
, respectively, for any x ∈ D.

(b) This is the statement of Lemma 50(i) and (j) with (m, k) substituted by(
1/µH(x), 1/κH(x)

)
and

(
1/µM,l(x), 1/κM,l(x)

)
respectively for x ∈ D.

Lemma 54. The following expressions define scalar products on L2(D,R3×3
sym):(

C(µH , κH)−1σ(1) , σ(2)
)
L2(D,R3×3

sym)
,

(
C(µM,l , κM,l)

−1σ(1) , σ(2)
)
L2(D,R3×3

sym)

for all σ(1),σ(2) ∈ L2(D,R3×3
sym) and l = 1, . . . , L.

They are equivalent to (· , ·)L2(D,R3×3
sym), i.e.

qH (σ,σ)L2(D,R3×3
sym) ≤

(
C(µH , κH)−1σ , σ

)
L2(D,R3×3

sym)
≤ QH (σ,σ)L2(D,R3×3

sym) ,

σ ∈ L2(D,R3×3
sym) with

qH = min
{ 1

‖µH‖L∞(D)

,
1

‖κH‖L∞(D)

}
, (5.19)

QH = max
{ 1

µH,0
,

1

κH,0

}
(5.20)

and

qM,l (σ,σ)L2(D,R3×3
sym) ≤

(
C(µM,l, κM,l)

−1σ , σ
)
L2(D,R3×3

sym)

≤ QM,l (σ,σ)L2(D,R3×3
sym) ,
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σ ∈ L2(D,R3×3
sym) with

qM,l = min
{ 1

‖µM,l‖L∞(D)

,
1

‖κM,l‖L∞(D)

}
, (5.21)

QM,l = max
{ 1

µM,l,0

,
1

κM,l,0

}
, (5.22)

for l = 1, . . . , L.

Proof. Bilinearity follows from the linearity of the respective maps C(µH , κH)−1

and C(µM,l, κM,l)
−1, l = 1, . . . , L. Symmetry follows from Lemma 50(h), and the

estimates concerning the equivalence of the scalar products hold because of our
parameter restrictions (5.13) together with (5.17) and (5.18). This also proves the
positive definiteness of the newly defined scalar products.

Remark 55. We recall that in (2.11) we rescaled the physical shear modulus µ̃
and bulk modulus κ̃ as µ = 2µ̃ and κ = 3κ̃. Expressed in physical variables, the
elastic stiffness tensor therefore reads C(µ, κ) = C(2µ̃, 3κ̃).

Furthermore in section 2.3 we mentioned another material parameter: Lamé’s
First Parameter λ = κ̃ − (2/3)µ̃. Equivalently it holds 3κ̃ = 3λ + 2µ̃. Hence
C(µ, κ) = C(2µ̃, 3λ+ 2µ̃).

Widely spread in literature is the definition of the elastic stiffness tensor as
a function C ′ : { (µ̃, λ) : µ̃ > 0, λ > −(2/3)µ̃ } → L(R3×3

sym) depending on the two
material parameters µ̃ and λ. That is,

C ′(µ̃, λ)M := C(2µ̃, 3λ+ 2µ̃)M

= 2µ̃M +
(3λ+ 2µ̃)− 2µ̃

3
trace (M)I

= 2µ̃M + λ trace (M)I ,

M ∈ R3×3
sym, where we used (5.14).

In this parametrization, however, the concatenation of two such linear maps
reads

C ′(µ̃1, λ1)C ′(µ̃2, λ2)M = C ′(µ̃1, λ1)
(

2µ̃2M + λ2 trace (M)I
)

= 2(2µ̃1µ̃2)M + (2µ̃1λ2 + 2µ̃2λ1 + 3λ1λ2) trace (M)I

= C ′
(
2µ̃1µ̃2 , 2µ̃1λ2 + 2µ̃2λ1 + 3λ1λ2

)
M .

Also it is

IdL(R3×3
sym) = C(1, 1) = C ′

(1

2
, 0
)
.
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Consequently

C ′(µ̃, λ)−1 = C ′
( 1

4µ̃
, − λ

2µ̃(2µ̃+ 3λ)

)
.

With a look at Lemma 50 (c), (d) and (g) we see that in this parametrization
calculations are much more tedious than with the use of definition (5.14).1 �

5.3 Transformation of Variables

To prove existence, uniqueness and stability of the solution (v,σ,η)> of the initial-
boundary value problem (5.1),

v′(t) = ϑ divσ(t) + f̃(t) ,

σ′(t) = C

(
µH +

L∑
l=1

µM,l , κH +
L∑
l=1

κM,l

)
ε
(
v(t)

)
+

L∑
l=1

ηl(t) + g(t) ,

η′l(t) = −ωσ,lC
(
µM,l , κM,l

)
ε
(
v(t)

)
− ωσ,lηl(t) , l = 1, . . . , L , (5.23)

v(0) = v(0) , σ(0) = σ(0) , η(0) = η(0) ,

v(t)
∣∣
∂DD

= 0 , n>σ(t)
∣∣
∂DN

= 0 ,

t ∈ [0, t1], which we interpret as the evolution equation (5.2) on the spaces X as
in (5.4) and D(A) as in (5.11), we are going to apply Theorem 3 of section 3.1.

To find a suitable scalar product (. , .)T , for which the operator A in (5.3) is
monotone in the sense of (3.3), that is (Au, u)T ≥ 0, u ∈ D(A), we apply a variable
transformation T to (5.23) in a first step in this section. This transformation is a
concrete instance of the abstract transformation T in section 4.1. As we will see,
the new variables will have a physical meaning and also the mechanical energy of
the system and its decline over time can be clearly specified.

Definition 56. The linear transformation T : X → X is defined as

T


v
σ
η1
...
ηL

 =


v

σ +
∑L

l=1
1

ωσ,l
ηl

− 1
ωσ,1
η1

...
− 1
ωσ,L

ηL

 . (5.24)

�
1Many thanks to Johann Bitzenbauer. As an expert in mechanics he told me about µ̃ and κ̃

being the physically natural pair of material parameters. It turned out to be a good choice.
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Lemma 57. The linear operator T :
(
X, ‖.‖X

)
→
(
X, ‖.‖X

)
defined in (5.24) is

bounded and boundedly invertible with T−1 given by

T−1


v
σH
σM,1

...
σM,L

 =


v

σH +
∑L

l=1 σM,l

−ωσ,1σM,1
...

−ωσ,LσM,L

 . (5.25)

Proof. First we prove that T is invertible. For u = (v,σ,η)> ∈ X we have

T−1T u = T−1


v

σ +
∑L

l=1
1

ωσ,l
ηl

− 1
ωσ,1
η1

...
− 1
ωσ,L

ηL



=



v(
σ +

∑L
l=1

1
ωσ,l
ηl

)
+
∑L

l=1

(
− 1

ωσ,l
ηl
)

−ωσ,1
(
− 1

ωσ,1
η1

)
...

−ωσ,L
(
− 1

ωσ,L
ηL
)


=

(
v, σ, η1, . . . , ηL

)>
= u .

And for w = (v,σH ,σM)> ∈ X it holds

TT−1w = T


v

σH +
∑L

l=1 σM,l

−ωσ,1σM,1
...

−ωσ,LσM,L



=



v(
σH +

∑L
l=1 σM,l

)
+
∑L

l=1
1

ωσ,l

(
− ωσ,lσM,l

)
− 1
ωσ,1

(
− ωσ,1σM,1

)
...

− 1
ωσ,L

(
− ωσ,LσM,L

)


=
(
v, σH , σM,1, . . . , σM,L

)>
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= w .

Next we prove that T is bounded. For u = (v,σ,η)> ∈ X we have

‖Tu‖2
X

=

∥∥∥∥(v , σ +
L∑
l=1

1

ωσ,l
ηl , −

1

ωσ,1
η1 , . . . , −

1

ωσ,L
ηL

)>∥∥∥∥2

X

= ‖v‖2
L2(D,R3) +

∥∥∥σ +
L∑
l=1

1

ωσ,l
ηl

∥∥∥2

L2(D,R3×3
sym)

+
L∑
l=1

‖ − 1

ωσ,l
ηl‖2

L2(D,R3×3
sym)

≤ ‖v‖2
L2(D,R3) + (L+ 1)

(
‖σ‖2

L2(D,R3×3
sym)

+
L∑
l=1

∥∥∥ 1

ωσ,l
ηl

∥∥∥2

L2(D,R3×3
sym)

)

+
L∑
l=1

‖ − 1

ωσ,l
ηl‖2

L2(D,R3×3
sym)

≤ ‖v‖2
L2(D,R3) + (L+ 1)‖σ‖2

L2(D,R3×3
sym)

+ (L+ 2)
L∑
l=1

1

ω2
σ,l,0

‖ηl‖2
L2(D,R3×3

sym)

≤ max
{
L+ 1,

L+ 2

ω2
σ,1,0

, . . . ,
L+ 2

ω2
σ,L,0

}
‖u‖2

X .

Here the first estimate has been done by applying the Cauchy-Schwarz inequality
to the second summand.

Finally, the boundedness of T−1 follows from the open mapping theorem. Alter-
natively it can be proven in an elementary way as follows. For w = (v,σH ,σM)> ∈
X we get

‖T−1w‖2
X

=

∥∥∥∥(v , σH +
L∑
l=1

σM,l , −ωσ,1σM,1 , . . . , −ωσ,LσM,L

)>∥∥∥∥2

X

= ‖v‖2
L2(D,R3) +

∥∥∥σH +
L∑
l=1

σM,l

∥∥∥2

L2(D,R3×3
sym)

+
L∑
l=1

‖ − ωσ,lσM,l‖2
L2(D,R3×3

sym)

≤ ‖v‖2
L2(D,R3) + (L+ 1)

(
‖σH‖2

L2(D,R3×3
sym)

+
L∑
l=1

‖σM,l‖2
L2(D,R3×3

sym)

)
+

L∑
l=1

‖ωσ,l‖2
L∞(D)‖σM,l‖2

L2(D,R3×3
sym)

≤ ‖v‖2
L2(D,R3) + (L+ 1)‖σH‖2

L2(D,R3×3
sym)
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+
L∑
l=1

(
L+ 1 + ‖ωσ,l‖2

L∞(D)

)
‖σM,l‖2

L2(D,R3×3
sym)

≤
(
L+ 1 + max

{
‖ωσ,1‖2

L∞(D), . . . , ‖ωσ,L‖2
L∞(D)

})
‖w‖2

X .

Proposition 58. With A, D(A) and T from (5.3), (5.11) and (5.24), respectively,
we define

B := TAT−1 (5.26)

and
D(B) := TD(A) . (5.27)

in analogy to the abstract definitions in section 4.1. Then

D(B) =
{

(v,σH ,σM)> ∈ V × L2(D,R3×3
sym)× L2(D,R3×3

sym)L :

σH +
L∑
l=1

σM,l ∈ S
} (5.28)

with V from (5.9) and S from (5.10) and

B


v
σH
σM,1

...
σM,L

 = −


ϑ div

(
σH +

∑L
l=1 σM,l

)
C
(
µH , κH

)
ε
(
v
)

C
(
µM,1, κM,1

)
ε(v)− ωσ,1σM,1
...

C
(
µM,L, κM,L

)
ε(v)− ωσ,LσM,L

 , (5.29)

(v,σH ,σM)> ∈ D(B). Here and in the sequel we use the abbreviation

σM :=
(
σM,1, . . . ,σM,L

)>
.

Proof. First we prove (5.28).
“⊆”: For u = (v,σ,η)> ∈ D(A) = V × S × L2(D,R3×3

sym)L,
v
σH
σM,1

...
σM,L

 := Tu =


v

σ +
∑L

l=1
1

ωσ,l
ηl

− 1
ωσ,1
η1

...
− 1
ωσ,L

ηL

 ∈ V × L2(D,R3×3
sym)× L2(D,R3×3

sym)L
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and σH +
∑L

l=1 σM,l = σ ∈ S, so Tu is an element of the set on the right-hand
side of (5.28).

“⊇”: Vice versa, for w = (v,σH ,σM)> being an element of the set on the
right-hand side of (5.28) it holds

T−1w =


v

σH +
∑L

l=1 σM,l

−ωσ,1σM,1
...

−ωσ,LσM,L

 ∈ V × S × L2(D,R3×3
sym)L = D(A) .

So w = TT−1w ∈ D(B).

Now we show (5.29). With w = (v,σH ,σM)> ∈ D(B) and the formula for A
in (5.3), for T−1 in (5.25) and for T in (5.24) we simply calculate

TAT−1w

= TA


v

σH +
∑L

l=1 σM,l

−ωσ,1σM,1
...

−ωσ,LσM,L



= − T



ϑ div
(
σH +

∑L
l=1 σM,l

)
C
(
µH +

∑L
l=1 µM,l , κH +

∑L
l=1 κM,l

)
ε(v) −

∑L
l=1 ωσ,lσM,l

−ωσ,1C
(
µM,1 , κM,1

)
ε(v) + ω2

σ,1σM,1
...

−ωσ,LC
(
µM,L , κM,L

)
ε(v) + ω2

σ,LσM,L



= −


ϑ div

(
σH +

∑L
l=1 σM,l

)
C
(
µH , κH

)
ε
(
v
)

C
(
µM,1, κM,1

)
ε(v)− ωσ,1σM,1
...

C
(
µM,L, κM,L

)
ε(v)− ωσ,LσM,L

 ,

which is the expression on the right-hand side of (5.29).

Lemma 59. The linear operator B : X ⊇ D(B) → X defined in (5.26) can be
decomposed into

B = −P1Q+ P2 ,
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where P1, P2 : X → X,

P1w :=


ϑv

C(µH , κH)σH
C(µM,1, κM,1)σM,1

...
C(µM,L, κM,L)σM,L

 , P2w :=


0
0

ωσ,1σM,1
...

ωσ,LσM,L

 (5.30)

and Q : X ⊇ D(B)→ X,

Qw :=


div
(
σH +

∑L
l=1 σM,l

)
ε(v)
ε(v)

...
ε(v)

 , (5.31)

w = (v,σH ,σM)> ∈ D(B).

Proof. For w = (v,σH ,σM) ∈ D(B) we simply compare Bw in (5.29) with
(−P1Q+ P2)w by a direct calculation.

Lemma 60. The linear operators P1, P2 : (X, ‖.‖X)→ (X, ‖.‖X) defined in (5.30)
are bounded.

Proof. This follows from Lemma 51 together with ϑ, . . . , ωσ,L ∈ L∞(D) as assumed
in (5.13).

Lemma 61. The operator P1 defined in (5.30) is self-adjoint, monotone and
boundedly invertible with respect to (. , .)X .

Proof. The symmetry of P1 follows from Lemma 50(h), the monotonicity from
Lemma 50(i), the invertibility from Lemma 50(g), and the boundedness of P−1

1

from Lemma 50(j). Throughout we make use of (5.13).

Lemma 62. The scalar product

(w1, w2)E :=
(1

ϑ
v(1) , v(2)

)
L2(D,R3)

+

(
C
( 1

µH
,

1

κH

)
σ

(1)
H , σ

(2)
H

)
L2(D,R3×3

sym)

+
L∑
l=1

(
C
( 1

µM,l

,
1

κM,l

)
σ

(1)
M,l , σ

(2)
M,l

)
L2(D,R3×3

sym)

,

(5.32)

wi =
(
v(i),σ

(i)
H ,σ

(i)
M

)> ∈ X, i = 1, 2, is well-defined and provides a norm ‖.‖E
on X which is equivalent to ‖.‖X .
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Proof. Since (w1, w2)E = (P−1
1 w1, w2)X , w1, w2 ∈ X, with P1 as defined in (5.30),

this statement follows from Lemma 61 and Lemma 36.

Lemma 63. In analogy to section 4.1 we define the scalar product

(u1, u2)T

:= (Tu1, Tu2)E

=
(1

ϑ
v(1),v(2)

)
L2(D,R3)

(5.33)

+

(
C
( 1

µH
,

1

κH

)(
σ(1) +

L∑
l=1

1

ωσ,l
η

(1)
l

)
, σ(2) +

L∑
l=1

1

ωσ,l
η

(2)
l

)
L2(D,R3×3

sym)

+
L∑
l=1

(
1

ω2
σ,l

C
( 1

µM,l

,
1

κM,l

)
η

(1)
l , η

(2)
l

)
L2(D,R3×3

sym)

,

for ui =
(
v(i),σ(i),η(i)

)> ∈ X, i = 1, 2. The norm ‖.‖T induced by it is equiva-
lent to ‖.‖X .

Proof. That (. , .)T and (. , .)X are equivalent is stated in Lemma 24.

Notation 64. Again like in section 4.1 we endow D(A) and D(B) with the graph
norms ‖u‖A,T := ‖u‖T + ‖Au‖T , u ∈ D(A), and ‖w‖B,E := ‖w‖E + ‖Bw‖E,
w ∈ D(B). �

Theorem 65. (Stress Decomposition)

Let
(
v(0),σ(0),η(0)

)> ∈ D(A), f̃ : [0, t1] → L2(D,R3) and g : [0, t1] →
L2(D,R3×3

sym). A function (v,σ,η)> ∈ C1
(
[0, t1], X

)
∩C
(
[0, t1],D(A)

)
solves (5.23),

iff (v,σH ,σM)> ∈ C1
(
[0, t1], X

)
∩C
(
[0, t1],D(B)

)
with σH := σ+

∑L
l=1

1
ωσ,l
ηl and

σM,l := − 1
ωσ,l
ηl, l = 1, . . . , L, solves the transformed initial-boundary value prob-

lem

v′(t) = ϑ div
(
σH +

L∑
l=1

σM,l

)
(t) + f̃(t) ,

σ′H(t) = C(µH , κH) ε
(
v(t)

)
+ g(t) ,

σ′M,l(t) = C(µM,l , κM,l) ε
(
v(t)

)
− ωσ,lσM,l(t) , (5.34)

v(0) = v(0) , σH(0) = σ(0) +
L∑
l=1

1

ωσ,l
η

(0)
l , σM,l(0) = − 1

ωσ,l
η

(0)
l ,

v(t)
∣∣
∂DD

= 0 , n>
(
σH +

L∑
l=1

σM,l

)
(t)
∣∣∣
∂DN

= 0 ,

l = 1, . . . , L, t ∈ [0, t1].
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Proof. With u := (v,σ,η)>, u0 := (v(0),σ(0),η(0))>,

Tu0 =
(
v(0), σ(0) +

L∑
l=1

1

ωσ,l
η

(0)
l , − 1

ωσ,l
η

(0)
1 , . . . , − 1

ωσ,L
η

(0)
L

)>
,

f := (f̃ ,g,0)> and w := T̃ u = (v,σH ,σM)>, where (T̃ u)(t) = T
(
u(t)

)
, t ∈ [0, t1],

as in (4.3), we can write (5.34) as the evolution equation

w′(t) = −B w(t) + f(t) , t ∈ [0, t1] , w(0) = Tu0 .

Since by definition of T in (5.24) it holds

T
(
f(t)

)
= T

(
f̃(t),g(t),0

)>
= f(t) , t ∈ [0, t1] ,

this theorem is an application of Theorem 27.

Remark 66. The rheological model behind (5.23) is the Generalized Maxwell body
with one Hooke and L Maxwell elements connected in parallel which is also known
as Maxwell-Wiechert model (see [13] for example). It is diagrammatically illus-
trated in Figure 5.1.

A Hooke element can be thought of as an ideal spring. A Maxwell element
consists of a Hooke element and a Newton element, which is also called a dashpot,
connected in series.

For two such elements connected in series the strains of both sum up whereas
the stresses are equal in each element. For two elements connected in parallel in
turn the stresses sum up whereas the strains are equal.

As in chapter 2 we denote the overall displacement vector by u, such that the
overall velocity v is given by ∂u/∂t. Then the overall strain is described by ε(u).
By uH,1, . . . ,uH,L and uN,1, . . . ,uN,L and vH,1, . . . ,vH,L and vN,1, . . . ,vN,L we
denote the displacements and velocities of the Hooke and Newton parts of the in-
dividual Maxwell elements, respectively. The variables σM,1, . . . ,σM,L denote the

σH

ε(u)

σM,1

ε(uH,1)

ε(uN,1)

σM,2

ε(uH,2)

ε(uN,2)

σM,L

ε(uH,L)

ε(uN,L)

Figure 5.1: Generalized Maxwell Model
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stresses of the Maxwell elements, the variable σH denotes the sum of the stress
of the single Hooke element and the external stress g̃. (Note, that g = ∂g̃/∂t, as
introduced in section 2.2.) Furthermore, µM,1, . . . , µM,L and κM,1, . . . , κM,L are
the shear and the bulk moduli of the Hooke elements which are part of the Maxwell
elements. The shear and bulk modulus of the material related to the single Hooke
element is given by µH and κH .

For a Hooke element, stress depends linearly on strain. More precisely, the
Hooke elements which are part of the individual Maxwell elements, are character-
ized by

σM,l = C(µM,l , κM,l) ε
(
uH,l

)
, l = 1, . . . , L . (5.35)

For a Newton element in turn, stress depends linearly on strain velocity. That
is, the Newton element parts of the individual Maxwell elements have the property

σM,l =
1

ωσ,l
C(µM,l , κM,l) ε(vN,l) , l = 1, . . . , L . (5.36)

Moreover, the stress arising from the single Hooke element and the external
stress g̃ are subsumed to

σH = C(µH , κH) ε(u) + g̃ . (5.37)

From (5.35) – (5.37) we derive the second and third through (2+L)th equation of
(5.34) in the following way: The second equation of (5.34) is the time derivative
of (5.37). For each l ∈ {1, . . . , L}, the corresponding equation of (5.34) is the
sum of the time derivative of (5.35) with ωσ,l times (5.36). Here, we also use the
connections mentioned above,

u = uH,l + uN,l , l = 1, . . . , L .

Finally, the first equation of (5.34) is Newton’s second law:

ρv′ = div
(
σH +

L∑
l=1

σM,l

)
+ f ,

which reads

v′ = ϑ div
(
σH +

L∑
l=1

σM,l

)
+ f̃

in our notation ϑ = 1/ρ and f̃ = f/ρ. �

Remark 67. With a look at Lemma 50(k) we see2 that it would also be possible to
incorporate different stress relaxation times τσ,S,l and τσ,P,l with reciprocals ωσ,S,l

2Many thanks to Elena Cherkaev for a very inspiring discussion which led to this idea.
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and ωσ,P,l for the shear and the bulk parts of the stress components, respectively,
by substituting the last equation in (5.34) by

σ′M,l(t) = C(µM,l , κM,l) ε
(
v(t)

)
− C(ωσ,S,l , ωσ,P,l)σM,l(t) , l = 1, . . . , L ,

t ∈ [0, t1]. �

Remark 68. For each state w = (v,σH ,σM)> ∈ D(B) of (5.34), the value of the
mechanical energy of the physical system described by (5.34) is given by

1

2
‖w‖2

E =
1

2

(1

ϑ
v , v

)
L2(D,R3)

+
1

2

(
C(µH , κH)−1σH , σH

)
L2(D,R3×3

sym)

+
1

2

L∑
l=1

(
C(µM,l , κM,l)

−1σM,l , σM,l

)
L2(D,R3×3

sym)
.

In the case g = 0, this is the sum of the kinetic energy and the strain energy stored
within the individual Hooke elements.

In the original variables, the mechanical energy of a state u = (v,σ,η)> ∈
D(A) of the physical system described by the initial-boundary value problem (5.23)
has the form

1

2
‖u‖2

T =
1

2

(1

ϑ
v,v

)
L2(D,R3)

+
1

2

(
C(µH , κH)−1

(
σ +

L∑
l=1

1

ωσ,l
ηl

)
, σ +

L∑
l=1

1

ωσ,l
ηl

)
L2(D,R3×3

sym)

+
1

2

L∑
l=1

( 1

ω2
σ,l

C(µM,l , κM,l)
−1ηl , ηl

)
L2(D,R3×3

sym)
.

For u = T−1w, Lemma 25 assures that both are equal. �

5.4 Existence, Uniqueness, Energy Balance

To prove existence and uniqueness of the solution of (5.23) in the function space
C1
(
[0, t1], X

)
∩ C

(
[0, t1],D(A)

)
, we use Theorem 65 and apply the results of sec-

tions 3.1 and 3.2 to (5.34).
To show that the operator B in (5.29) generates a contraction semigroup, we

make use of Lemma 8 in Section 3.1, which is a consequence of the Theorem of
Hille-Yosida (Theorem 3 and Theorem 4). Consequently we are going to prove
that B is maximal monotone in the sense of Definition 1 with respect to the scalar
product (. , .)E defined in (5.32).
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Proposition 69. The operator B from (5.29) is monotone in the sense of (3.3)
with respect to the scalar product (. , .)E defined in (5.32). That is, (Bw,w)E ≥ 0,
w ∈ D(B), where D(B) is of the form (5.28).

Proof. For w = (v,σH ,σM) ∈ D(B) it is v ∈ V and (σH +
∑L

l=1 σM,l) ∈ S. So
from (5.10) and Lemma 50 (g) and (i) it follows

(Bw,w)E =

∫
D

− div
(
σH +

L∑
l=1

σM,l

)
· v − ε(v) : σH

−
L∑
l=1

(
ε(v)− ωσ,lC

( 1

µM,l

,
1

κM,l

)
σM,l

)
: σM,l dx

= −
∫
D

ε(v) :
(
σH +

L∑
l=1

σM,l

)
+ v · div

(
σH +

L∑
l=1

σM,l

)
−

L∑
l=1

ωσ,lC
( 1

µM,l

,
1

κM,l

)
σM,l : σM,l dx

=

∫
D

L∑
l=1

ωσ,lC
( 1

µM,l

,
1

κM,l

)
σM,l : σM,l dx

≥
∫
D

L∑
l=1

ωσ,l min
{ 1

µM,l

,
1

κM,l

}
σM,l : σM,l dx

≥ 0 .

Proposition 70. With B from (5.29) and D(B) as in (5.28), the operator

Id +B : D(B) → X

is onto.

Proof. Let f ∈ X. We need to prove the existence of an element w ∈ D(B) such
that (Id + B)w = f . With f = (f 1,f 2,f 3,1, . . . ,f 3,L)> and w = (v,σH ,σM)>

this explicitly reads

v − ϑ div
(
σH +

L∑
l=1

σM,l

)
= f 1 ,

σH − C(µH , κH) ε(v) = f 2 ,

σM,l − C(µM,l , κM,l) ε(v) + ωσ,lσM,l = f 3,l , l = 1, . . . , L .
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Solving the second equation for σH and the equations in the third line for σM,l

yields the equivalent system

v − ϑ div
(
σH +

L∑
l=1

σM,l

)
= f 1 , (5.38)

σH = f 2 + C(µH , κH) ε(v) , (5.39)

σM,l =
1

1 + ωσ,l

(
f 3,l + C(µM,l , κM,l) ε(v)

)
, (5.40)

l = 1, . . . , L. To derive the weak formulation of the first equation, we multiply
both sides by 1/ϑ and a test function ϕ ∈ V and integrate over D. This gives∫

D

1

ϑ
v ·ϕ − div

(
σH +

L∑
l=1

σM,l

)
·ϕ dx =

∫
D

1

ϑ
f 1 ·ϕ dx , (5.41)

ϕ ∈ V . Because V is dense in L2(D,R3), which was proven in Lemma 46, equation
(5.38) and equation (5.41) are equivalent.

Since we assumed (ϕ,σH ,σM)> ∈ D(B), it follows from (5.28) and (5.10) that
a partial integration of the second summand on the left-hand side of (5.41) results
in ∫

D

1

ϑ
v ·ϕ +

(
σH +

L∑
l=1

σM,l

)
: ε(ϕ) dx =

∫
D

1

ϑ
f 1 ·ϕ dx ,

ϕ ∈ V .
Now we plug in the second equation and the equations in the third line into

this weak form of the first one and get∫
D

1

ϑ
v ·ϕ +

((
f 2 + C(µH , κH) ε(v)

)
+

L∑
l=1

1

1 + ωσ,l

(
f 3,l + C(µM,l , κM,l) ε(v)

))
: ε(ϕ) dx

=

∫
D

1

ϑ
f 1 ·ϕ dx ,

(5.42)

ϕ ∈ V . After rearranging the terms, this equation takes the form∫
D

1

ϑ
v ·ϕ +

(
C(µH , κH) +

L∑
l=1

1

1 + ωσ,l
C(µM,l , κM,l)

)
ε(v) : ε(ϕ) dx

=

∫
D

1

ϑ
f 1 ·ϕ −

(
f 2 +

L∑
l=1

1

1 + ωσ,l
f 3,l

)
: ε(ϕ) dx ,

(5.43)
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ϕ ∈ V .
In order to prove the existence of a unique solution of this equation, we are

going to use the Lax-Milgram theorem (see [11], section 6.2.1, Theorem 1 for
example).

The left-hand side of (5.43) can be understood as a bounded bilinearform
V × V → R in the variables v and ϕ with respect to the scalar product (. , .)V
defined in (5.8), since with Lemma 50 (a) and (e), Lemma 51, the parameter
bounds prescribed in Assumption 49 and the Cauchy-Schwarz inequality, it holds∣∣∣∣ ∫

D

1

ϑ
v ·ϕ +

(
C(µH , κH) +

L∑
l=1

1

1 + ωσ,l
C(µM,l , κM,l)

)
ε(v) : ε(ϕ) dx

∣∣∣∣
≤

∥∥∥1

ϑ

∥∥∥
L∞(D)

‖v‖L2(D,R3) ‖ϕ‖L2(D,R3)

+ max

{∥∥∥µH +
L∑
l=1

µM,l

1 + ωσ,l

∥∥∥
L∞(D)

,
∥∥∥κH +

L∑
l=1

κM,l

1 + ωσ,l

∥∥∥
L∞(D)

}
∥∥ε(v)

∥∥
L2(D,R3×3

sym)

∥∥ε(ϕ)
∥∥
L2(D,R3×3

sym)

≤ max

{∥∥∥1

ϑ

∥∥∥
L∞(D)

,
∥∥∥µH +

L∑
l=1

µM,l

1 + ωσ,l

∥∥∥
L∞(D)

,
∥∥∥κH +

L∑
l=1

κM,l

1 + ωσ,l

∥∥∥
L∞(D)

}
‖v‖V ‖ϕ‖V ,

v,ϕ ∈ V . This bilinearform is even bounded from below, since with Lemma 50
(a), (e), (i) and the parameter bounds given by Assumption 49, it holds∫

D

1

ϑ
v · v +

(
C(µH , κH) +

L∑
l=1

1

1 + ωσ,l
C(µM,l , κM,l)

)
ε(v) : ε(v) dx

≥ 1

‖ϑ‖L∞(D)

(v,v)L2(D,R3)

+ min
{
µH,0 +

L∑
l=1

µM,l,0

1 + ‖ωσ,l‖L∞(D)

,

κH,0 +
L∑
l=1

κM,l,0

1 + ‖ωσ,l‖L∞(D)

}(
ε(v), ε(v)

)
L2(D,R3×3

sym)

≥ min
{ 1

‖ϑ‖L∞(D)

,

µH,0 +
L∑
l=1

µM,l,0

1 + ‖ωσ,l‖L∞(D)

, κH,0 +
L∑
l=1

κM,l,0

1 + ‖ωσ,l‖L∞(D)

}
(v,v)V ,
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v ∈ V .
The right-hand side of (5.43) in turn can be interpreted as a bounded linear

functional on (V, ‖.‖V ) in the variable ϕ, since∣∣∣∣ ∫
D

1

ϑ
f 1 ·ϕ −

(
f 2 +

L∑
l=1

1

1 + ωσ,l
f 3,l

)
: ε(ϕ) dx

∣∣∣∣
≤ 1

ϑ0

‖f 1‖L2(D,R3)‖ϕ‖L2(D,R3)

+
∥∥∥f 2 +

L∑
l=1

1

1 + ωσ,l
f 3,l

∥∥∥
L2(D,R3×3

sym)

∥∥ε(ϕ)
∥∥
L2(D,R3×3

sym)

≤

√√√√ 1

ϑ2
0

‖f 1‖2
L2(D,R3) +

∥∥∥f 2 +
L∑
l=1

1

1 + ωσ,l
f 3,l

∥∥∥2

L2(D,R3×3
sym)

‖ϕ‖V

ϕ ∈ V .
So by the Lax-Milgram theorem, there exists a unique solution v of (5.43).

With this distinct v, we define σH by (5.39) and σM,l by (5.40), l = 1, . . . , L.
To see that (v,σH ,σM)> is an element of D(B), we consider equation (5.42),

which is equivalent to equation (5.43). In (5.42) we reversely substitute the terms
on the right-hand sides of (5.39) and (5.40) by σH and σM,l, respectively. After
subtraction of the first term on the left-hand side, this yields∫

D

(
σH +

L∑
l=1

σM,l

)
: ε(ϕ) dx = −

∫
D

1

ϑ
(v − f 1) ·ϕ dx , (5.44)

ϕ ∈ V . Since this statement in particular holds for all ϕ ∈ C∞c (D,R3), the
term (1/ϑ) (v − f 1) ∈ L2(D,R3) by definition is div

(
σH +

∑L
l=1 σM,l

)
in weak

form. Now (5.44) explicitly assures, that σH+
∑L

l=1 σM,l satisfies the variationally
formulated boundary condition in (5.10).

Thus σH +
∑L

l=1 σM,l ∈ S, w := (v,σH ,σM)> ∈ D(B) and (Id + B)w = f .
This completes the proof.

Corollary 71. The operator B : X ⊇ D(B) → X from (5.29) with D(B) from
(5.28) is maximal monotone in the sense of Definition 1 in section 3.1 with respect
to the scalar product (. , .)E from (5.32).

Proof. This corollary only subsumes Proposition 69 and Proposition 70.

Now we are able to prove existence and uniqueness of the solution of the trans-
formed initial-boundary value problem (5.34). For the convenience of the reader,
we repeat the spaces in use.
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Theorem 72. Let ϑ, µH , κH , µM,l, κM,l, ωσ,l ∈ L∞+ (D), l = 1, . . . , L, where

L∞+ (D) =

{
α ∈ L∞(D) : α > 0,

1

α
∈ L∞(D)

}
(5.45)

as defined in (5.13), and let

X = L2(D,R3)× L2(D,R3×3
sym)× L2(D,R3×3

sym)L (5.46)

be the Hilbert space from (5.4). Let

D(B) =
{

(v,σH ,σM)> ∈ V × L2(D,R3×3
sym)× L2(D,R3×3

sym)L :

σH +
L∑
l=1

σM,l ∈ S
}

as in (5.28), with

V =
{
ϕ ∈ C∞(D,R3) ∩H(ε,D,R3) : ∂DD ⊆ R3 \ supp(ϕ)

}‖.‖V
(5.47)

as in (5.9), where the closure is taken in H(ε,D,R3), and

S =
{
σ ∈ H( div , D,R3×3

sym) : ∀ϕ ∈ V :

∫
D

ε(ϕ) : σ +ϕ· divσ dx = 0
}

(5.48)

as in (5.10), and let D(B) be equipped with the graph norm ‖·‖B = ‖B ·‖X +‖·‖X .

Furthermore, let (v(0),σ
(0)
H ,σ

(0)
M )> ∈ D(B), t1 > 0, f ∈ W 1,1

(
(0, t1), L2(D,R3)

)
,

f̃ = ϑf , and g ∈ W 1,1
(
(0, t1), L2(D,R3×3

sym)
)
. Then the initial-boundary value prob-

lem

v′(t) = ϑ div
(
σH +

L∑
l=1

σM,l

)
(t) + f̃(t) ,

σ′H(t) = C(µH , κH) ε
(
v(t)

)
+ g(t) ,

σ′M,l(t) = C(µM,l , κM,l) ε
(
v(t)

)
− ωσ,lσM,l(t) , l = 1, . . . , L , (5.49)

v(0) = v(0) , σH(0) = σ
(0)
H , σM(0) = σ

(0)
M ,

v(t)
∣∣
∂DD

= 0 , n>
(
σH +

L∑
l=1

σM,l

)
(t)
∣∣∣
∂DN

= 0 ,

t ∈ [0, t1], has a unique solution (v,σH ,σM)> ∈ C1
(
[0, t1], X

)
∩C

(
[0, t1],D(B)

)
.
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Proof. This theorem is a direct application of Corollary 18 in section 3.2 together
with Corollary 71.

Theorem 73. The energy of the solution w = (v,σH ,σM)> of the homogeneous
version of (5.49) with f̃ = 0 and g = 0 has the time derivative

d

dt

1

2
‖w(t)‖2

E

= −
∫
D

L∑
l=1

ωσ,l(x)C
( 1

µM,l(x)
,

1

κM,l(x)

)
σM,l(x, t) : σM,l(x, t) dx

≤ 0 ,

(5.50)

t ∈ [0, t1]. In particular it holds

‖w(t)‖E ≤ ‖w0‖E , t ∈ [0, t1] ,

where w0 :=
(
v(0),σ

(0)
H ,σ

(0)
M

)>
.

Proof. This is an application of Theorem 4 in section 3.1, since according to the
calculation in the proof of Proposition 69, the right-hand side of (5.50) is equal to
−(Bw(t), w(t))E.

Remark 74. With a look at (5.50), for a solution w = (v,σH ,σM)> of the
homogeneous version of (5.49) with f̃ = 0 and g = 0, the expression

L∑
l=1

ωσ,lC
( 1

µM,l

,
1

κM,l

)
σM,l : σM,l

can be interpreted as the spatial density of the energy dissipation rate. �

Next, we turn to the original initial-boundary value problem (5.23).

Proposition 75. The operator A : X ⊇ D(A) → X from (5.3) with D(A) from
(5.11) is maximal monotone in the sense of Definition 1 in section 3.1 with respect
to the scalar product (. , .)T from (5.33).

Proof. This is a consequence of Corollary 71 and Theorem 28 in section 4.1.

Lemma 76. The subspace D(A) defined in (5.11) is dense in X. In particular, S
from (5.10) is dense in L2(D,R3×3

sym) in analogy to the denseness of V from (5.9)
in L2(D,R3), which has already been proven in Lemma 46.

Proof. This follows from Proposition 75 and Lemma 2(a) in section 3.1.
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Theorem 77. Let ϑ, µH , κH , µM,l, κM,l, ωσ,l ∈ L∞+ (D), l = 1, . . . , L, as in (5.45),
and let X be the Hilbert space (5.46). Let

D(A) = V × S × L2(D,R3×3
sym)L

from (5.11) with V and S as in (5.47) and (5.48) be endowed with the graph norm

‖ · ‖A = ‖A · ‖X + ‖ · ‖X , and let
(
v(0),σ(0),η(0)

)> ∈ D(A). Finally, let t1 > 0,

f ∈ W 1,1
(
(0, t1), L2(D,R3)

)
, f̃ = ϑf , and g ∈ W 1,1

(
(0, t1), L2(D,R3×3

sym)
)
. Then the

initial-boundary value problem

v′(t) = ϑ divσ(t) + f̃(t) ,

σ′(t) = C

(
µH +

L∑
l=1

µM,l , κH +
L∑
l=1

κM,l

)
ε
(
v(t)

)
+

L∑
l=1

ηl(t) + g(t) ,

η′l(t) = −ωσ,lC
(
µM,l , κM,l

)
ε
(
v(t)

)
− ωσ,lηl(t) , l = 1, . . . , L , (5.51)

v(0) = v(0) , σ(0) = σ(0) , η(0) = η(0) ,

v(t)
∣∣
∂DD

= 0 , n>σ(t)
∣∣
∂DN

= 0 ,

t ∈ [0, t1], from (5.23), has a unique solution

(v,σ,η)> ∈ C1
(
[0, t1], X

)
∩ C

(
[0, t1],D(A)

)
. (5.52)

Proof. According to Theorem 72, the initial-boundary value problem (5.34) has a
unique solution (v,σH ,σM)> ∈ C1

(
[0, t1], X

)
∩C

(
[0, t1],D(B)

)
. By Theorem 65,

this is equivalent to

(v,σ,η)> := T̃−1(v,σH ,σM)>

=
(
v , σH +

L∑
l=1

σM,l , −ωσ,1σM,1 , . . . , −ωσ,LσM,L

)>
being the unique solution of (5.51) with the property (5.52).

Alternatively, we could also prove this result directly, using Corollary 18 in
section 3.2 together with Proposition 75.

Theorem 78. The energy of the solution u := (v,σ,η)> of the homogeneous
version of (5.51) with f̃ = 0 and g = 0 has the time derivative

d

dt

1

2
‖u(t)‖2

T

= −
∫
D

L∑
l=1

1

ωσ,l(x)
C
( 1

µM,l(x)
,

1

κM,l(x)

)
ηl(x, t) : ηl(x, t) dx

≤ 0 ,

(5.53)



5.4. EXISTENCE, UNIQUENESS, ENERGY BALANCE 71

t ∈ [0, t1]. In particular it holds

‖u(t)‖T ≤ ‖u0‖T , t ∈ [0, t1] ,

where u0 :=
(
v(0),σ(0),η(0)

)>
.

Proof. For w := (v,σH ,σM)> := T̃ u, from Lemma 25 in section 4.1 it follows
d
dt

1
2
‖u(t)‖2

T = d
dt

1
2
‖w(t)‖2

E, t ∈ [0, t1], and the right-hand side of this equation has
the explicit form (5.50). So we can simply use the definition (5.24) of T and plug
the explicit form of w = T̃ u into that term.

Remark 79. Again, equation (5.53) allows the interpretation of the term

L∑
l=1

1

ωσ,l
C
( 1

µM,l

,
1

κM,l

)
ηl : ηl

to be the spatial density of the energy dissipation rate of a solution u = (v,σ,η)>

of the homogeneous version of (5.51) with f̃ = 0 and g = 0. �

Corollary 80. Let u0 =
(
v(0),σ(0),η(0)

)> ∈ D(A), and let u = (v,σ,η)> ∈
C1
(
[0, t1], X

)
∩C

(
[0, t1],D(A)

)
be the unique solution of the homogeneous version

of our original initial-boundary value problem (5.51) with f̃ = 0 and g = 0. Then
there is M ≥ 1, such that

‖u(t)‖X ≤ M ‖u0‖X , t ∈ [0, t1] . (5.54)

Proof. This directly follows from Theorem 78 and Lemma 63, since

‖u(t)‖X . ‖u(t)‖T ≤ ‖u0‖T . ‖u0‖X ,

t ∈ [0, t1].

Theorem 81. The constant M in (5.54) cannot be chosen equal to 1.

Proof. Let u be the unique solution of the homogeneous version of (5.51) with
f̃ = 0 and

u(0) = u0 =


v(0)

σ(0)

η
(0)
1
...

η
(0)
L

 :=


0

2
(∑L

l=1 ‖ωσ,l‖L∞(D)

)
Φ

Φ
...
Φ

 ,
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where 0 6= Φ ∈ S ⊆ L2(D,R3×3
sym). Then u0 ∈ D(A), and

Au0 =
(
− 2

( L∑
l=1

‖ωσ,l‖L∞(D)

)
ϑ div Φ , −LΦ , ωσ,1Φ , . . . , ωσ,LΦ

)>
and

d

dt
‖u(t)‖2

X

∣∣∣∣
t=0

=
d

dt

(
u(t), u(t)

)
X

∣∣∣∣
t=0

= 2
(
u′(0), u(0)

)
X

= −2
(
Au(0), u(0)

)
X

= −2 (Au0, u0)X

= 2

∫
D

2L
( L∑
l=1

‖ωσ,l‖L∞(D)

)
Φ : Φ−

L∑
l=1

ωσ,lΦ : Φ dx

≥ 2

∫
D

2L
( L∑
l=1

‖ωσ,l‖L∞(D)

)
Φ : Φ−

L∑
l=1

‖ωσ,l‖L∞(D)Φ : Φ dx

= 2

∫
D

(2L− 1)
( L∑
l=1

‖ωσ,l‖L∞(D)

)
Φ : Φ dx

> 0 ,

as L ≥ 1. Hence there is t ∈ (0, t1] with ‖u(t)‖X > ‖u(0)‖X = ‖u0‖X .



Chapter 6

The Parameter-to-Solution-Map

6.1 The Abstract Case

Throughout this section let
(
X, (. , .)X

)
be a real Hilbert space, ‖.‖X the norm

induced by (. , .)X and t1 > 0.
The following assumption is motivated by the properties of the operator B

from (5.29). Of particular interest is its decomposition B = −P1Q+P2 derived in
Lemma 59.

Assumption 82. In the sequel let ∅ 6= U ⊆ L
(
X, ‖.‖X

)2
denote a set of pairs P =

(P1, P2) of bounded linear operators P1, P2 ∈ L
(
X, ‖.‖X

)
and Q : X ⊇ D(Q)→ X

a not necessarily bounded linear operator with domain of definition D(Q), such
that the following holds true:

• For P = (P1, P2) ∈ U , the operator P1 is self-adjoint, monotone and bound-
edly invertible with respect to the scalar product (. , .)X .

• With ‖.‖L(X,‖.‖X) denoting the operator norm on L
(
X, ‖.‖X

)
, there exists a

normed subspace
(
T U, ‖.‖T U,X

)
of L

(
X, ‖.‖X

)2
equipped with the norm

‖P‖T U,X := max
{
‖P1‖L(X,‖.‖X) , ‖P2‖L(X,‖.‖X)

}
, (6.1)

P = (P1, P2) ∈ T U , such that U ⊆ T U and U is open in
(
T U, ‖.‖T U,X

)
.

• For P = (P1, P2) ∈ U , the operator

β(P ) := −P1Q+ P2 : X ⊇ D(Q) → X

with domain of definition D
(
β(P )

)
:= D(Q) is maximal monotone in the

sense of Definition 1 with respect to the scalar product

(w1 , w2)E,P := (P−1
1 w1, w2)X , w1, w2 ∈ X ,

73
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which by Lemma 36 is well-defined.

The additional index E in the notation (. , .)E,P is added, to indicate that the
scalar product (. , .)E,P plays the role of the scalar product (. , .)E in section 4.1.
By ‖.‖E,P we denote the norm induced by (. , .)E,P . The graph norm of Q with
respect to ‖.‖X is denoted by

‖w‖Q,X := ‖Qw ‖X + ‖w‖X , w ∈ D(Q) .

The graph norm of an operator β(P ) corresponding to parameters P ∈ U with
respect to the norm ‖.‖E,P̃ corresponding to parameters P̃ ∈ U is denoted by

‖w‖β(P ),E,P̃ := ‖β(P )w ‖E,P̃ + ‖w‖E,P̃ , w ∈ D(Q) .

The space T U can also be equipped with the norm

‖P‖T U,E,P̃ := max
{
‖P1‖L(X,‖.‖E,P̃ ) , ‖P2‖L(X,‖.‖E,P̃ )

}
, P ∈ T U ,

for any fixed P̃ ∈ U .
Although U is no vector space, we still use the notation

(
U, ‖.‖T U,X

)
, etc. to

indicate that we consider the restriction of the metric of
(
T U, ‖.‖T U,X

)
onto U . �

The next lemma is an adaptation of Lemma 36.

Lemma 83. For any P ∈ U , we have

1√
‖P1‖L(X,‖.‖X)

‖w‖X ≤ ‖w‖E,P ≤
√
‖P−1

1 ‖L(X,‖.‖X) ‖w‖X ,

w ∈ X. It also holds

kP‖w‖Q,X ≤ ‖w‖β(P ),E,P ≤ KP‖w‖Q,X , (6.2)

w ∈ D(Q), with

kP :=

(√
‖P1‖L(X,‖.‖X)

max
{
‖P−1

1 ‖L(X,‖.‖X) , ‖P−1
1 ‖L(X,‖.‖X)‖P2‖L(X,‖.‖X) + 1

})−1

,

KP :=
√
‖P−1

1 ‖L(X,‖.‖X) max
{
‖P1‖L(X,‖.‖X) , ‖P2‖L(X,‖.‖X) + 1

}
.

Furthermore, for fixed P̂ ∈ U there is a neighborhood Ω ⊆ U of P̂ and a
constant c > 0, such that

1

c
‖w‖Q,X ≤ ‖w‖β(P ),E,P ≤ c ‖w‖Q,X , P ∈ Ω , w ∈ D(Q) . (6.3)
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Proof. The first two estimates are applications of Lemma 36 with P̃ = P . We
prove (6.3).

Let P̂ ∈ U . Since U is open in
(
T U, ‖.‖T U

)
, there is an open ball B(P̂ , δ1) ⊆

L
(
X, ‖.‖X

)2
round P̂ with radus δ1 > 0, such that B(P̂ , δ1) ∩ T U ⊆ U . Since the

map B(P̂ , δ1) ∩ T U → L(X, ‖.‖X), (P1, P2) 7→ P−1
1 is continuous, there is δ > 0

with δ1 ≥ δ, such that P−1
1 ∈ B(P̂−1

1 , δ1) for every (P1, P2) ∈ B(P̂ , δ) ∩ T U . So if
we define Ω := B(P̂ , δ) ∩ T U and

d := max
{
‖P̂1‖L(X,‖.‖X), ‖P̂−1

1 ‖L(X,‖.‖X), ‖P̂2‖L(X,‖.‖X)

}
+ δ1 ,

we get
‖P1‖L(X,‖.‖X) , ‖P−1

1 ‖L(X,‖.‖X) , ‖P2‖L(X,‖.‖X) ≤ d

for (P1, P2) ∈ Ω. Now, from the last part of Lemma 36, estimate (6.3) follows.

Throughout this section we make use of the equivalence of these norms and
switch between them whenever one norm seems more useful or more natural than
the other.

Lemma 84. For P ∈ U it is

C1
(

[0, t1],
(
X, ‖.‖E,P

))
∩ C

(
[0, t1],

(
D
(
β(P )

)
, ‖.‖β(P ),E,P

))
= C1

(
[0, t1], (X, ‖.‖X)

)
∩ C

(
[0, t1],

(
D(Q), ‖.‖Q,X

))
and

W k,1
(
(0, t1), (X, ‖.‖X)

)
= W k,1

(
(0, t1), (X, ‖.‖E,P )

)
,

k ∈ N0. Therefore we can drop the norm symbols in the notation of these spaces.

Proof. By definition, it is D
(
β(P )

)
= D(Q). So this statement is a consequence

of the norm equivalences proven in Lemma 83.

Definition 85. The abstract parameter-to-solution-map is defined as

G :
(
U, ‖.‖TU,X

)
×
(
D(Q), ‖.‖Q,X

)
× W 1,1

(
(0, t1), (X, ‖.‖X)

)
→ C1

(
[0, t1], (X, ‖.‖X)

)
∩ C

(
[0, t1],

(
D(Q), ‖.‖Q,X

))
,

(P,w0, f) 7→ w ,

(6.4)

where w is the classical solution of the inhomogeneous evolution equation

w′(t) + β(P )w(t) = f(t) , t ∈ [0, t1] ,

w(0) = w0 .
(6.5)

�
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Notation 86. In a canonical way, we regard the vector space
(
T U, ‖.‖T U,X

)
×(

D(Q), ‖.‖Q,X
)
× W 1,1

(
(0, t1), (X, ‖.‖X)

)
, which contains the domain of G as a

subset, to be endowed with the norm∥∥(P,w0, f)
∥∥

1
= ‖P‖T U,X + ‖w0‖Q,X + ‖f‖W 1,1((0,t1),(X,‖.‖X)) (6.6)

for every (P,w0, f). �

6.1.1 Fréchet-Differentiability

In this section we will prove the Fréchet-differentiability of G considered as a map-
ping into the bigger space C

(
[0, t1], (X, ‖.‖X)

)
. The methods we use to accomplish

this are slight adaptations of the ideas developed in [14].

Lemma 87. In this lemma we consider the map G defined in (6.4) with the bigger
codomain C

(
[0, t1], (D(Q), ‖.‖Q,X)

)
.

For every P ∈ U , the map

G(P, •, •) :
(
D(Q), ‖.‖Q,X

)
×W 1,1

(
(0, t1), (X, ‖.‖X)

)
→ C

(
[0, t1],

(
D(Q), ‖.‖Q,X

))
,

(w0, f) 7→ G(P,w0, f)

is linear.
As usual, the space

(
D(Q), ‖.‖Q,X

)
×W 1,1

(
(0, t1), (X, ‖.‖X)

)
is assumed to be

equipped with any norm which is equivalent to

‖(w0, f)‖1 = ‖w0‖Q,X + ‖f‖W 1,1((0,t1),(X,‖.‖X))

for each (w0, f). For any c > 0 there is γc > 0, such that for every element P of
the set {

P ∈ U : ‖P‖T U,X , ‖P−1
1 ‖L(X,‖.‖X) ≤ c

}
, (6.7)

G(P, •, •) is bounded by γc.

Proof. Let P = (P1, P2) ∈ U , w0, w1 ∈ D(Q), f, g ∈ W 1,1
(
(0, t1), X

)
, and α ∈ R.

By definition of G, it is

G(P,w0, f)′(t) + β(P )G(P,w0, f)(t) = f(t) , t ∈ [0, t1] ,

G(P,w0, f)(0) = w0 ,

and

G(P,w1, g)′(t) + β(P )G(P,w1, g)(t) = g(t) , t ∈ [0, t1] ,

G(P,w1, g)(0) = w1 .
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So by multiplication of the second evolution equation by α and subsequent addition
of both equations, we find that w := G(P,w0, f) + αG(P,w1, g) classically solves

w′(t) + β(P )w(t) = (f + αg)(t) , t ∈ [0, t1] ,

w(0) = w0 + αw1 .

Since this solution is unique, it follows again from the definition of G, that w =
G(P,w0 + αw1, f + αg). Hence, G(P, •, •) is linear.

To prove the second statement, let c > 0, P be an element of the set (6.7),
and (w0, f) ∈ D(Q)×W 1,1

(
(0, t1), X

)
. Since by Lemma 15, the classical solution

of (6.5) coincides with the mild solution, it is

G(P,w0, f)(t) = Sβ(P )(t)w0 +

∫ t

0

Sβ(P )(t− s)f(s) ds ,

t ∈ [0, t1]. And according to Lemma 83 and estimate (3.19),∥∥G(P,w0, f)
∥∥
C([0,t1],(D(Q),‖.‖Q,X))

≤ 1

kP

∥∥G(P,w0, f)
∥∥
C([0,t1],(D(Q),‖.‖β(P ),E,P ))

≤ 1

kP

(
‖w0‖β(P ),E,P + (2cCW + 1) ‖f‖W 1,1((0,t1),(X,‖.‖E,P ))

)
≤ 1

kP

(
KP‖w0‖Q,X + (2cCW + 1)

√
‖P−1

1 ‖L(X,‖.‖X) ‖f‖W 1,1((0,t1),(X,‖.‖X))

)
≤ 1

kP
max

{
KP , (2cCW + 1)

√
‖P−1

1 ‖L(X,‖.‖X)

}
‖(w0, f)‖1

≤
√
c max{c, c2 + 1}max

{√
cmax{c, c+ 1} , (2cCW + 1)

√
c
}
‖(w0, f)‖1 .

Lemma 88. For any fixed P̂ ∈ U , the space{
(w0, f) ∈ D(Q)×W 2,1

(
(0, t1), X

)
: β(P̂ )w0 − f(0) ∈ D(Q)

}
(6.8)

is dense in (
D(Q), ‖.‖Q,X

)
×W 1,1

(
(0, t1), (X, ‖.‖X)

)
.

Proof. We adapt the proof given in [14].
For P̂ ∈ U , the space D

(
β(P̂ )2

)
:=
{
w0 ∈ D(Q) : β(P̂ )w0 ∈ D(Q)

}
is dense

in
(
D(Q), ‖.‖β(P̂ ),E,P̂

)
. This is the statement of Lemma 7.2 in [5]. Because of

(6.2), it is also dense in
(
D(Q), ‖.‖Q,X

)
. Furthermore, by Lemma 2(a) in section
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3.1, D(Q) is dense in
(
X, ‖.‖X

)
. And as a consequence of Lemma A.4, the space

W 2,1
(
(0, t1), X

)
is dense in W 1,1

(
(0, t1), (X, ‖.‖X)

)
. In the sequel we also make use

of Lemma A.2.
Now let (w0, f) ∈ D(Q)×W 1,1

(
(0, t1), X

)
be arbitrary. Then there are w0,n ∈

D
(
β(P̂ )2

)
, zn ∈ D(Q) and gn ∈ W 2,1

(
(0, t1), X

)
, n ∈ N, with ‖w0,n−w0‖Q,X → 0,

‖zn − f(0)‖X → 0 and ‖gn − f‖W 1,1((0,t1),(X,‖.‖X)) → 0 for n→∞. Define fn(t) :=
gn(t) +

(
zn − gn(0)

)
, t ∈ (0, t1), n ∈ N. Then fn ∈ W 2,1

(
(0, t1), X

)
, n ∈ N, and

‖fn − f‖W 1,1((0,t1),(X,‖.‖X)) → 0, n → ∞. Furthermore, fn(0) = zn ∈ D(Q) and

β(P̂ )w0,n ∈ D(Q). So also β(P̂ )w0,n − fn(0) ∈ D(Q). This means, (w0,n, fn) is an
element of the space (6.8), n ∈ N, and (w0,n, fn) → (w0, f) in

(
D(Q), ‖.‖Q,X

)
×

W 1,1
(
(0, t1), (X, ‖.‖X)

)
for n→∞.

Proposition 89. The map G from (6.4) considered with the bigger codomain,

G :
(
U, ‖.‖TU,X

)
×
(
D(Q), ‖.‖Q,X

)
×W 1,1

(
(0, t1), (X, ‖.‖X)

)
→ C

(
[0, t1] , (D(Q), ‖.‖Q,X)

)
,

is continuous.

Proof. In a first step, let Π̂ = (P̂ , ŵ0, f̂) ∈ U × D(Q) × W 1,1
(
(0, t1), X

)
, such

that (ŵ0, f̂) is an element of the space defined in (6.8). For Π = (P,w0, f) ∈
T U ×D(Q)×W 1,1

(
(0, t1), X

)
with P̂ + P ∈ U , we have

d

dt
G(Π̂ + Π)(t) + β(P̂ + P )G(Π̂ + Π)(t) = f̂(t) + f(t) ,

G(Π̂ + Π)(0) = ŵ0 + w0

(6.9)

and

d

dt
G(Π̂)(t) + β(P̂ )G(Π̂)(t) = f̂(t) ,

G(Π̂)(0) = ŵ0 ,
(6.10)

t ∈ [0, t1]. Thus for all t ∈ [0, t1]:

d

dt

[
G(Π̂ + Π)−G(Π̂)

]
(t) + β(P̂ + P )

[
G(Π̂ + Π)−G(Π̂)

]
(t)

= f(t) − β(P )G(Π̂)(t) ,[
G(Π̂ + Π)−G(Π̂)

]
(0) = w0 .

(6.11)

Along with G(Π̂ + Π) and G(Π̂) being the classical solutions of (6.9) and (6.10),
respectively, also G(Π̂+Π)−G(Π̂) is the classical solution of (6.11). So according
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to Lemma 15, this function is also a mild solution and has the form[
G(Π̂ + Π)−G(Π̂)

]
(t)

= Sβ(P̂+P )(t)w0 +

∫ t

0

Sβ(P̂+P )(t− s)
[
f(s)− β(P )G(Π̂)(s)

]
ds ,

t ∈ [0, t1]. As (ŵ0, f̂) is an element of the space (6.8), Lemma 20 states that

G(Π̂) ∈ C1
(

[0, t1],
(
D(Q), ‖.‖β(P̂ ),E,P̂

))
= C1

(
[0, t1],

(
D(Q), ‖.‖Q,X

))
.

So

β(P )G(Π̂) = −P1QG(Π̂) + P2G(Π̂) ∈ C1
(
[0, t1], (X, ‖.‖X)

)
and

f − β(P )G(Π̂) ∈ W 1,1
(
(0, t1), (X, ‖.‖X)

)
.

Now Lemma 83 and Lemma 17 allow us to make the following estimate:∥∥∥[G(Π̂ + Π)−G(Π̂)
]
(t)
∥∥∥
Q,X

≤ c1(P )
∥∥∥[G(Π̂ + Π)−G(Π̂)

]
(t)
∥∥∥
β(P̂+P ),E,P̂+P

≤ c2(P )

(
‖w0‖β(P̂+P ),E,P̂+P +

∥∥f − β(P )G(Π̂)
∥∥
W 1,1((0,t1),(X,‖.‖E,P̂+P ))

)
≤ c3(P )

(
‖w0‖Q,X +

∥∥f − β(P )G(Π̂)
∥∥
W 1,1((0,t1),(X,‖.‖X))

)
= c3(P )

(
‖w0‖Q,X +

∥∥f − (−P1Q+ P2)G(Π̂)
∥∥
W 1,1((0,t1),(X,‖.‖X))

)
≤ c3(P )

(
‖w0‖Q,X + ‖f‖W 1,1((0,t1),(X,‖.‖X))

+ ‖P‖T U,X
∥∥G(Π̂)

∥∥
W 1,1((0,t1),(D(Q),‖.‖Q,X))

)
for each t ∈ [0, t1], with

c1(P ) :=
1

kP̂+P

,

c2(P ) := c1(P ) (2cCW + 1) ,

c3(P ) := c2(P ) max
{
KP̂+P ,

√
‖(P̂1 + P1)−1‖L(X,‖.‖X)

}
= c2(P )KP̂+P .
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So∥∥G(Π̂ + Π)−G(Π̂)
∥∥
C([0,t1],(D(Q),‖.‖Q,X))

≤ c3(P )

(
‖w0‖Q,X + ‖f‖W 1,1((0,t1),(D(Q),‖.‖Q,X))

+ ‖P‖T U,X
∥∥G(Π̂)

∥∥
W 1,1((0,t1),(D(Q),‖.‖Q,X))

)
−→ 0 , Π = (P,w0, f) → 0 .

In a second step, let (P̂ , ŵ0, f̂) be arbitrary in U ×D(Q)×W 1,1
(
(0, t1), X

)
and

ε > 0. For P having the properties

P ∈ T U , P̂ + P ∈ U , ‖P‖T U,X <
1

2 ‖P̂−1
1 ‖L(X,‖.‖X)

=: δ1 , (6.12)

it is

‖P̂ + P‖T U,X , ‖(P̂1 + P1)−1‖L(X,‖.‖X) < max
{
‖P̂‖T U,X + δ1 ,

1

δ 1

}
=: c .

Indeed, the term ‖P̂ +P‖T U,X is simply estimated by using the triangle inequality,

whereas for the term ‖(P̂1 + P1)−1‖L(X,‖.‖X), this estimate can be achieved by
applying the Neumann series in the following way.

‖(P̂1 + P1)−1‖L(X,‖.‖X) ≤ ‖P̂−1
1 ‖L(X,‖.‖X)‖(Id + P1P̂

−1
1 )−1‖L(X,‖.‖X)

= ‖P̂−1
1 ‖L(X,‖.‖X)

∥∥∥ ∞∑
n=0

(−P1P̂
−1
1 )n

∥∥∥
L(X,‖.‖X)

≤ ‖P̂−1
1 ‖L(X,‖.‖X)

∞∑
n=0

(
‖P1‖L(X,‖.‖X)‖P̂−1

1 ‖L(X,‖.‖X)

)n
=

‖P̂−1
1 ‖L(X,‖.‖X)

1− ‖P1‖L(X,‖.‖X)‖P̂−1
1 ‖L(X,‖.‖X)

< 2 ‖P̂−1
1 ‖L(X,‖.‖X)

=
1

δ 1
,

since ‖P1‖ < δ1 by (6.12) and therefore also ‖P1‖L(X,‖.‖X)‖P̂−1
1 ‖L(X,‖.‖X) < 1/2 < 1.

Due to Lemma 87, for all P satisfying (6.12) and all (w0, f), (w1, g) ∈ D(Q)×
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W 1,1
(
(0, t1), X

)
with ‖(w0, f)‖1, ‖(w1, g)‖1 < δ2 := ε/(6γc), it is∥∥G(P̂ + P, ŵ0 + w0, f̂ + f)−G(P̂ + P, ŵ0 + w1, f̂ + g)

∥∥
C([0,t1],(D(Q),‖.‖Q,X))

=
∥∥G(P̂ + P,w0 − w1, f − g)

∥∥
C([0,t1],(D(Q),‖.‖Q,X))

≤ γc ‖(w0 − w1, f − g)‖1

≤ γc
(
‖(w0, f)‖1 + ‖(w1, g)‖1

)
< 2γcδ2

=
ε

3
.

Because of Lemma 88, there exists (ŵ1, ĝ) ∈ D(Q) × W 1,1
(
(0, t1), X

)
with

‖(ŵ1, ĝ)‖1 < δ2 such that (ŵ0 + ŵ1, f̂ + ĝ) is an element of the space (6.8). And as
we showed in the first step of this proof, there is δ3 > 0 such that ‖P‖T U,X < δ3

implies∥∥G(P̂ + P, ŵ0 + ŵ1, f̂ + ĝ)−G(P̂ , ŵ0 + ŵ1, f̂ + ĝ)
∥∥
C([0,t1],(D(Q),‖.‖Q,X))

<
ε

3
.

So for (P,w0, f) ∈ T U ×D(Q)×W 1,1
(
(0, t1), X

)
fulfilling P̂ +P ∈ U , ‖P‖T U,X <

min{δ1, δ3} and ‖(w0, f)‖1 < δ2, it is∥∥G(P̂ + P, ŵ0 + w0, f̂ + f)−G(P̂ , ŵ0, f̂)
∥∥
C([0,t1],(D(Q),‖.‖Q,X))

≤
∥∥G(P̂ + P, ŵ0 + w0, f̂ + f)−G(P̂ + P, ŵ0 + ŵ1, f̂ + ĝ)

∥∥
C([0,t1],(D(Q),‖.‖Q,X))

+
∥∥G(P̂ + P, ŵ0 + ŵ1, f̂ + ĝ)−G(P̂ , ŵ0 + ŵ1, f̂ + ĝ)

∥∥
C([0,t1],(D(Q),‖.‖Q,X))

+
∥∥G(P̂ , ŵ0 + ŵ1, f̂ + ĝ)−G(P̂ , ŵ0, f̂)

∥∥
C([0,t1],(D(Q),‖.‖Q,X))

< ε ,

which concludes the proof.

Theorem 90. The interpretation of G defined in (6.4) with the bigger codomain,

G :
(
U, ‖.‖T U,X

)
×
(
D(Q), ‖.‖Q,X

)
×W 1,1

(
(0, t1), (X, ‖.‖X)

)
→ C

(
[0, t1], (X, ‖.‖X)

)
,

(6.13)

is Fréchet-differentiable, and the Fréchet-derivative

DG :
(
U, ‖.‖T U,X

)
×
(
D(Q), ‖.‖Q,X

)
× W 1,1

(
(0, t1), (X, ‖.‖X)

)
→ L

((
T U, ‖.‖T U,X

)
×
(
D(Q), ‖.‖Q,X

)
×W 1,1

(
(0, t1), (X, ‖.‖X)

)
,

C
(
[0, t1], (X, ‖.‖X)

))
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is given by[
DG(Π̂)Π

]
(t) = Sβ(P̂ )(t)w0 +

∫ t

0

Sβ(P̂ )(t− s)
[
f(s)− β(P )G(Π̂)(s)

]
ds , (6.14)

t ∈ [0, t1], with the notation Π̂ = (P̂ , ŵ0, f̂) and Π = (P,w0, f). This is the mild
solution of

w′(t) + β(P̂ )w(t) = f(t) − β(P )G(Π̂)(t) , t ∈ [0, t1] ,

w(0) = w0 .

Proof. Let Π̂ = (P̂ , ŵ0, f̂) ∈ U ×D(Q)×W 1,1
(
(0, t1), X

)
and let Π = (P,w0, f) ∈

T U × D(Q) ×W 1,1
(
(0, t1), X

)
such that P̂ + P ∈ U . Our aim is to estimate the

norm of the function G(Π̂ + Π)−G(Π̂)−DG(Π̂)Π .
As G(Π̂ + Π) and G(Π̂) classically solve (6.9) and (6.10), respectively, G(Π̂ +

Π)−G(Π̂) is the classical solution of

d

dt

[
G(Π̂ + Π)−G(Π̂)

]
(t) + β(P̂ )

[
G(Π̂ + Π)−G(Π̂)

]
(t)

= f(t) − β(P )G(Π̂ + Π)(t) ,[
G(Π̂ + Π)−G(Π̂)

]
(0) = w0 ,

t ∈ [0, t1]. By Lemma 15 it is also the mild solution of this equation. So we can
write[

G(Π̂ + Π)−G(Π̂)
]
(t)

= Sβ(P̂ )(t)w0 +

∫ t

0

Sβ(P̂ )(t− s)
[
f(s)− β(P )G(Π̂ + Π)(s)

]
ds ,

(6.15)

t ∈ [0, t1]. Then, subtracting (6.14) from (6.15), we get[
G(Π̂ + Π)−G(Π̂)−DG(Π̂)Π

]
(t)

= −
∫ t

0

Sβ(P̂ )(t− s) β(P )
[
G(Π̂ + Π)−G(Π̂)

]
(s) ds ,

t ∈ [0, t1]. It follows∥∥∥[G(Π̂ + Π)−G(Π̂)−DG(Π̂)Π
]
(t)
∥∥∥
X

≤ c1

∥∥∥[G(Π̂ + Π)−G(Π̂)−DG(Π̂)Π
]
(t)
∥∥∥
E,P̂

≤ c1

∫ t

0

∥∥∥Sβ(P̂ )(t− s) β(P )
[
G(Π̂ + Π)−G(Π̂)

]
(s)
∥∥∥
E,P̂

ds
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≤ c1

∫ t

0

∥∥∥β(P )
[
G(Π̂ + Π)−G(Π̂)

]
(s)
∥∥∥
E,P̂

ds

≤ c2

∫ t

0

∥∥∥β(P )
[
G(Π̂ + Π)−G(Π̂)

]
(s)
∥∥∥
X
ds

= c2

∫ t

0

∥∥∥(−P1Q+ P2)
[
G(Π̂ + Π)−G(Π̂)

]
(s)
∥∥∥
X
ds

≤ c2 ‖P‖T U,X
∫ t

0

∥∥∥[G(Π̂ + Π)−G(Π̂)
]
(s)
∥∥∥
Q,X

ds

≤ c2 ‖Π‖1

∫ t

0

∥∥∥[G(Π̂ + Π)−G(Π̂)
]
(s)
∥∥∥
Q,X

ds

≤ t c2 ‖Π‖1

∥∥G(Π̂ + Π)−G(Π̂)
∥∥
C([0,t], (D(Q),‖.‖Q,X))

for all t ∈ [0, t1], with

c1 :=

√
‖P̂1‖L(X,‖.‖X) , (6.16)

c2 := c1

√
‖P̂−1

1 ‖L(X,‖.‖X) (6.17)

and ‖.‖1 as in (6.6). So∥∥G(Π̂ + Π)−G(Π̂)−DG(Π̂)Π
∥∥
C([0,t1],(X,‖.‖X))

≤ t1 c2 ‖Π‖1

∥∥G(Π̂ + Π)−G(Π̂)
∥∥
C([0,t1],(D(Q),‖.‖Q,X))

.

Now we divide by ‖Π‖1 and take the limit Π→ 0 which by Proposition 89 exists
and is equal to 0.

It remains to prove that DG(Π̂) is bounded. Therefore we estimate∥∥∥[DG(Π̂)Π
]
(t)
∥∥∥
X

=
∥∥∥ Sβ(P̂ )(t)w0 +

∫ t

0

Sβ(P̂ )(t− s)
[
f(s)− β(P )G(Π̂)(s)

]
ds
∥∥∥
X

≤ c1

∥∥∥ Sβ(P̂ )(t)w0 +

∫ t

0

Sβ(P̂ )(t− s)
[
f(s)− β(P )G(Π̂)(s)

]
ds
∥∥∥
E,P̂

≤ c1

(
‖w0‖E,P̂ +

∫ t

0

∥∥f(s)
∥∥
E,P̂

ds +

∫ t

0

∥∥β(P )G(Π̂)(s)
∥∥
E,P̂

ds
)

≤ c2

(
‖w0‖X +

∫ t

0

∥∥f(s)
∥∥
X
ds +

∫ t

0

∥∥β(P )G(Π̂)(s)
∥∥
X
ds
)

≤ c2

(
‖w0‖X + ‖f‖W 1,1((0,t1),(X,‖.‖X)) +

∫ t1

0

∥∥G(Π̂)(s)
∥∥
Q,X

ds ‖P‖T U,X
)
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for every t ∈ [0, t1] and every element Π = (P,w0, f) of the domain of DG(Π̂), and
where c1 and c2 have been defined in (6.16) and (6.17). So∥∥DG(Π̂)Π

∥∥
C([0,t1],(X,‖.‖X))

≤ c2 max
{

1 ,

∫ t1

0

∥∥G(Π̂)(s)
∥∥
Q,X

ds
} ∥∥(P,w0, f)

∥∥
1

for every element Π = (P,w0, f) of the domain of DG(Π̂).
Thus DG(Π̂) actually is the Fréchet-derivative of G at point Π̂.

Although for any Π̂ = (P̂ , ŵ0, f̂) ∈ U × D(Q) ×W 1,1
(
(0, t1), X

)
, the classical

solution G(Π̂) of

w′(t) + β(P̂ )w(t) = f̂(t) , t ∈ [0, t1] ,

w(0) = ŵ0

is an element of the space C1
(
[0, t1], X

)
∩ C

(
[0, t1],D(Q)

)
, we cannot expect the

function DG(Π̂)Π with Π ∈ T U × D(Q) × W 1,1
(
(0, t1), X

)
to lie in this space,

too, as Example 92 will show. That is why the map G has to be interpreted with
codomain C

(
[0, t1], X

)
in (6.13).

To formulate this example, we need the following lemma.

Lemma 91. Let P ∈ U and w0 ∈ D(Q). Then there is δ ∈ (0, 1), such that
αP ∈ U for every α ∈ (1− δ, 1 + δ), and

G(αP,w0, 0)(t) = G(P,w0, 0)(αt) , t ∈
[
0 , min

{
t1,

t1
α

}]
. (6.18)

Proof. For P ∈ U and every α ∈ R, it is αP ∈ T U , since U ⊆ T U and T U
is a vector space. Furthermore, U is open in

(
T U, ‖.‖T U,X

)
, and the mapping

(0,∞) → T U , α 7→ αP is continuous. So {α ∈ (0,∞) : αP ∈ U} is open and
contains 1, which proves the existence of a δ with the properties mentioned above.

To prove the second statement, we fix w0 ∈ D(Q) and α ∈ (1 − δ, 1 + δ) and
define w(t) := G(P,w0, 0)(αt), t ∈ [0, t1/α]. Since G(P,w0, 0) satisfies

G(P,w0, 0)′(t) = −β(P )G(P,w0, 0)(t) , t ∈ [0, t1] , G(P,w0, 0)(0) = w0 ,

it is

w′(t) = αG(P,w0, 0)′(αt) = −αβ(P )G(P,w0, 0)(αt)

= −αβ(P )w(t) = −β(αP )w(t) ,
(6.19)

t ∈ [0, t1/α], and
w(0) = G(P,w0, 0)(0) = w0 . (6.20)

According to Lemma 5 with t1 substituted by min{t1, t1/α}, the classical solution
of (6.19), (6.20) is unique on

[
0 , min{t1, t1/α}

]
. Thus (6.18) holds true.
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Example 92. Let P ∈ U and w0 ∈ D(Q). Then for λ > −1, it holds∥∥∥∥1

λ

[
G
(
(1 + λ)P,w0, 0

)
−G(P,w0, 0)

]
−DG(P,w0, 0)(P, 0, 0)

∥∥∥∥
C([0,t1],(X,‖.‖X))

=
∥∥(P, 0, 0)

∥∥
1

1∥∥(λP, 0, 0)
∥∥

1

∥∥∥∥G(P + λP,w0, 0)−G(P,w0, 0)

−DG(P,w0, 0)(λP, 0, 0)

∥∥∥∥
C([0,t1],(X,‖.‖X))

−→ 0 , λ→ 0 .

So in particular for any fixed t ∈ [0, t1] it is

lim
λ→0

∥∥∥∥1

λ

[
G
(
(1 + λ)P,w0, 0

)
(t)−G(P,w0, 0)(t)

]
−
[
DG(P,w0, 0)(P, 0, 0)

]
(t)

∥∥∥∥
X

= 0 .

Hence gt(α) := G(αP,w0, 0)(t), α ∈ (1− δ, 1 + δ), where δ is like in Lemma 91, is
differentiable in α = 1 with the derivative g′t(1) =

[
DG(P,w0, 0)(P, 0, 0)

]
(t). By

(6.18) we have gt(α) = G(P,w0, 0)(αt), α ∈ (1− δ, 1 + δ)∩ (0, t1/t]. Therefore we
can conclude[

DG(P,w0, 0)(P, 0, 0)
]
(t) = g′t(1) = tG(P,w0, 0)′(αt)

∣∣∣
α=1

= tG(P,w0, 0)′(t) ,

t ∈ [0, t1]. Thus if the initial value w0 ∈ D(Q) \ D
(
β(P )2

)
, where D

(
β(P )2

)
=

{w̃0 ∈ D(Q) : β(P )w̃0 ∈ D(Q)}, it isG(P,w0, 0) ∈ C1
(
[0, t1], X

)
∩C
(
[0, t1],D(Q)

)
.

But if we consider the case where β(P ) even generates a group (instead of merely
a semi-group) for example, the function G(P,w0, 0)′ = −β(P )G(P,w0, 0) is not
differentiable in any t0 ∈ [0, t1]. Otherwise it would also be differentiable in t = 0,
which in the case t0 > 0 can be seen by time reversal since

(
Sβ(P )(t)

)
t∈R is assumed

to be a group. And this contradicts β(P )w0 /∈ D(Q). It follows that the function
DG(P,w0, 0)(P, 0, 0) is continuous on [0, t1] but not differentiable in any t0 ∈ (0, t1]
either. �

6.1.2 Back Transformation

In section 6.1.1 we proved, that the solution w of the evolution equation (6.5),
which we write as

w′(t) = −β(P )w(t) + g(t) , t ∈ [0, t1] ,

w(0) = w0 ,
(6.21)
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where we denote the inhomogeneity by g now, can be differentiated for the mate-
rial parameters P , the initial value w0 and the right-hand side g. Motivated by
our application we assume now, that (6.21) is the result of an abstract variable
transformation T ∈ L(X) as studied in section 4.1. More precisely, there is a
second evolution equation

u′(t) = −Au(t) + f(t) , t ∈ [0, t1] ,

u(0) = u0 ,
(6.22)

such that β(P ) = TAT−1, D(Q) = TD(A), g(t) = Tf(t), t ∈ [0, t1], and w0 =
Tu0. By Theorem 27, a function u ∈ C1

(
[0, t1], X

)
∩C
(
[0, t1],D(A)

)
solves (6.22),

if and only if Tu solves (6.21).
In our application, the variable transformation T depends on the material

parameters P ∈ U . So we are going to denote it by T (P ). Furthermore, in our
application, the map P 7→ T (P ) is differentiable. Now the question arises, how
the solution u of (6.22) can be differentiated for the triple (P, u0, f). The answer
to this question is given in this section.

Assumption 93. In addition to Assumption 82 we assume the following in this
section.

Let T :
(
U, ‖.‖T U

)
→ L

(
X, ‖.‖X

)
be Fréchet-differentiable and such that

for every P ∈ U the bounded linear operator T (P ) is invertible with inverse
T (P )−1 ∈ L

(
X, ‖.‖X

)
. Then the map U → L

(
X, ‖.‖X

)
, P 7→ T (P )−1 is Fréchet-

differentiable, too.
Moreover, we assume that the set-valued map U → 2X , P 7→ T (P )−1D(Q) is

constant, and that there exists a linear operator Q̃ : X ⊇ D(Q̃)→ X with domain
of definition D(Q̃), such that D(Q̃) = T (P )−1D(Q) for all P ∈ U , furthermore[
DT (P̂ )−1P

]
D(Q) ⊆ D(Q̃), P̂ ∈ U , P ∈ T U , and that for every P̂ ∈ U there

is a neighborhood W ⊆ U and constants c, C > 0 such that for the graph norms
‖.‖Q̃,X := ‖Q̃ . ‖X +‖.‖X and ‖.‖T (P )−1β(P )T (P ), X := ‖T (P )−1β(P )T (P ) . ‖X +‖.‖X
on D(Q̃) it holds

c ‖u‖Q̃,X ≤ ‖u‖T (P )−1β(P )T (P ), X ≤ C ‖u‖Q̃,X , u ∈ D(Q̃) , P ∈ W .

We assume D(Q̃) to be endowed with the graph norm ‖.‖Q̃,X , analogously to D(Q)
being equipped with ‖.‖Q,X = ‖Q . ‖X + ‖.‖X . �

Notation 94. To simplify our notation, we do not distinguish between the two
maps T (P ) ∈ L(X) and T̃ (P ) ∈ L

(
C([0, t1], X)

)
with

(
T̃ (P )u

)
(t) := T (P )

(
u(t)

)
,

where P ∈ U , any more, in contrast to section 4.1. In this section, both shall be
denoted by T (P ). �
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From Lemma 26 together with Lemma 24, Lemma 83, and the statement on
norm equivalences in Assumption 93, it follows that

T (P )−1w ∈ C1
(
[0, t1], X

)
∩ C

(
[0, t1],D(Q̃)

)
for every w ∈ C1

(
[0, t1], X

)
∩ C

(
[0, t1],D(Q)

)
.

Definition 95. As the back-transformed abstract parameter-to-solution-
map (with respect to T ), we denote the map

H : U ×D(Q̃)×W 1,1
(
(0, t1), X

)
→ C1

(
[0, t1], X

)
∩ C

(
[0, t1],D(Q̃)

)
,

H(P, u0, f)(t) = T (P )−1G
(
P, T (P )u0, T (P )f

)
(t) ,

where G is the abstract parameter-to-solution-map defined in (6.4). �

We recall that for any Π̂ := (P̂ , ŵ0, ĝ) ∈ U ×D(Q)×W 1,1
(
(0, t1), X

)
, it holds

G(Π̂) ∈ C1
(
[0, t1], X

)
∩ C

(
[0, t1],D(Q)

)
and

G(Π̂)′(t) = −β(P̂ )G(Π̂)(t) + ĝ(t) , t ∈ [0, t1] ,

G(Π̂)(0) = ŵ0 .

So according to Theorem 27, for any Π̂ := (P̂ , û0, f̂) ∈ U×D(Q̃)×W 1,1
(
(0, t1), X

)
,

the function H(Π̂) satisfies

H(Π̂)′(t) = −T (P̂ )−1β(P̂ )T (P̂ )H(Π̂)(t) + f̂(t) , t ∈ [0, t1] ,

H(Π̂)(0) = û0

in the classical sense.
Furthermore, G :

(
U, ‖.‖T U

)
×
(
D(Q), ‖.‖Q,X

)
×W 1,1

(
(0, t1), X

)
→ C

(
[0, t1], X

)
is Fréchet-differentiable, and for Π̂ := (P̂ , ŵ0, ĝ) ∈ U × D(Q) × W 1,1

(
(0, t1), X

)
and Π := (P,w0, g) ∈ T U ×D(Q)×W 1,1

(
(0, t1), X

)
, it is

[
DG(Π̂)Π

]
(t) = Sβ(P̂ )(t)w0 +

∫ t

0

Sβ(P̂ )(t− s)
[
g(s)− β(P )G(Π̂)(s)

]
ds ,

t ∈ [0, t1], which is the mild solution of

w′(t) + β(P̂ )w(t) = g(t) − β(P )G(Π̂)(t) , t ∈ [0, t1] ,

w(0) = w0 .

The following two lemmas are useful auxiliaries for differentiating functions,
which are compositions of several other functions.
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Lemma 96. (Product Rule) Let
(
Y, ‖.‖Y

)
,
(
Z, ‖.‖Z

)
be normed spaces, V ⊆ Y

open and τ : V → L(Z), ν : V → Z Fréchet-differentiable. Then also the map
V → Z, y 7→ τ(y)ν(y) is Fréchet-differentiable, and its derivative at a point ŷ ∈ V
evaluated in a direction y ∈ Y is of the form

[
Dτ(ŷ)y

]
ν(ŷ) + τ(ŷ)

[
Dν(ŷ)y

]
.

Proof. For fixed ŷ ∈ V and every y ∈ Y with ŷ + y ∈ V , it is∥∥∥τ(ŷ + y)ν(ŷ + y)− τ(ŷ)ν(ŷ)−
[
Dτ(ŷ)y

]
ν(ŷ)− τ(ŷ)

[
Dν(ŷ)y

]∥∥∥
Z

‖y‖Y

≤

∥∥τ(ŷ + y)− τ(ŷ)−Dτ(ŷ)y
∥∥
L(Z)

‖y‖Y
∥∥ν(ŷ + y)

∥∥
Z

+
∥∥τ(ŷ)

∥∥
L(Z)

∥∥ν(ŷ + y)− ν(ŷ)−Dν(ŷ)y
∥∥
Z

‖y‖Y

+

∥∥Dτ(ŷ)
∥∥
L(Y,Z)

‖y‖Y
∥∥ν(ŷ + y)− ν(ŷ)

∥∥
Z

‖y‖Y
,

which tends to 0 for y → 0, since τ and ν are differentiable and therefore also
continuous.

Lemma 97. Let J , K be finite sets,
(
Yj, ‖.‖Yj

)
,
(
Zk, ‖.‖Zk

)
denote normed spaces

and Vj ⊆ Yj open sets for j ∈ J and k ∈ K, and let ι : K → 2J be a (set valued)
map. Let γk :×j∈ι(k)

Vj → Zk for k ∈ K be Fréchet-differentiable maps. Then

also the map

γ :×
j∈J

(
Vj, ‖.‖Yj

)
→ ×

k∈K

(
Zk, ‖.‖Zk

)
, (yj)j∈J 7→

(
γk
(
(yj)j∈ι(k)

))
k∈K

is Fréchet-differentiable, and its derivative at a point (ŷj)j∈J ∈×j∈J Vj in a direc-

tion (ŷj)j∈J ∈×j∈J Yj is given by
(
Dγk

(
(ŷj)j∈ι(k)

)
(yj)j∈ι(k)

)
k∈K

.

Proof. Let (ŷj)j∈J ∈×j∈J Vj and (yj)j∈J ∈×j∈J Yj, such that (ŷj)j∈J + (yj)j∈J ∈
×j∈J Vj. Then

1∥∥(yj)j∈J
∥∥

1

∥∥∥∥(γk((ŷj)j∈ι(k) + (yj)j∈ι(k)

))
k∈K
−
(
γk
(
(ŷj)j∈ι(k)

))
k∈K

−
(
Dγk

(
(ŷj)j∈ι(k)

)
(yj)j∈ι(k)

)
k∈K

∥∥∥∥
1

=
1∑

j∈J ‖yj‖Yj

∑
k∈K

∥∥∥γk((ŷj)j∈ι(k) + (yj)j∈ι(k)

)
− γk

(
(ŷj)j∈ι(k)

)
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−Dγk
(
(ŷj)j∈ι(k)

)
(yj)j∈ι(k)

∥∥∥
Zk

≤
∑
k∈K

1∑
j∈ι(k) ‖yj‖Yj

∥∥∥γk((ŷj)j∈ι(k) + (yj)j∈ι(k)

)
− γk

(
(ŷj)j∈ι(k)

)
−Dγk

(
(ŷj)j∈ι(k)

)
(yj)j∈ι(k)

∥∥∥
Zk

=
∑
k∈K

1∥∥(yj)j∈ι(k)

∥∥
1

∥∥∥γk((ŷj)j∈ι(k) + (yj)j∈ι(k)

)
− γk

(
(ŷj)j∈ι(k)

)
−Dγk

(
(ŷj)j∈ι(k)

)
(yj)j∈ι(k)

∥∥∥
Zk

→ 0 , (yj)j∈J → 0 ,

since γk is differentiable, k ∈ K.

Lemma 98. The map

G̃ :
(
U, ‖.‖T U,X

)
×
(
D(Q̃), ‖.‖Q̃,X

)
×W 1,1

(
(0, t1), X

)
→ C

(
[0, t1], X

)
(P, u0, f) 7→ G

(
P, T (P )u0, T (P )f

)
is Fréchet-differentiable with derivative[

DG̃(P̂ , û0, f̂)(P, u0, f)
]
(t)

= Sβ(P̂ )(t)
([
DT (P̂ )P

]
û0 + T (P̂ )u0

)
+

∫ t

0

Sβ(P̂ )(t− s)
([
DT (P̂ )P

]
f̂(s) + T (P̂ )f(s)

− β(P )G̃(P̂ , û0, f̂)(s)
)
ds ,

t ∈ [0, t1], which is the mild solution of

w′(t) = −β(P̂ )w(t)− β(P )ŵ(t) +
[
DT (P̂ )P

]
f̂(t) + T (P̂ )f(t) , t ∈ [0, t1] ,

w(0) =
[
DT (P̂ )P

]
û0 + T (P̂ )u0 ,

where ŵ satisfies

ŵ′(t) = −β(P̂ ) ŵ(t) + T (P̂ )f̂(t) , t ∈ [0, t1] ,

ŵ(0) = T (P̂ )û0

in the classical sense.

Proof. This is proven by applying Lemma 96 to the arguments of G and using
Lemma 97, the differentiability of G and the chain rule.
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Theorem 99. Interpreted with the bigger codomain C
(
[0, t1]), X

)
, the map H is

Fréchet-differentiable. For fixed Π̂ := (P̂ , û0, f̂) ∈ U × D(Q̃) × W 1,1
(
(0, t1), X

)
and Π := (P, u0, f) ∈ T U × D(Q̃) ×W 1,1

(
(0, t1), X

)
, we abbreviate T := T (P̂ ),

T−1 := T (P̂ )−1, T1 := DT (P̂ )−1P ,

Â := T−1β(P̂ )T

and
A := T1β(P̂ )T − ÂT1T + T−1β(P )T .

Then [
DH(Π̂)Π

]
(t) = SÂ(t)u0 +

∫ t

0

SÂ(t− s)
(
− Aû(s) + f(s)

)
ds ,

t ∈ [0, t1], where û is the classical solution of

û′(t) = −Âû(t) + f̂(t) , t ∈ [0, t1] ,

û(0) = û0 .

In other words, DH(Π̂)Π is the mild solution of

u′(t) = −Âu(t) − Aû(t) + f(t) , t ∈ [0, t1] ,

u(0) = u0 .

Proof. That H is differentiable, can be shown by applying Lemma 96 together
with Lemma 97 and Lemma 98. Let Π̂ := (P̂ , û0, f̂) ∈ U×D(Q̃)×W 1,1

(
(0, t1), X

)
and Π := (P, u0, f) ∈ T U × D(Q̃) ×W 1,1

(
(0, t1), X

)
. According to Lemma 96, it

is [
DH(Π̂)Π

]
(t) =

[
DT (P̂ )−1P

]
G̃(Π̂)(t) + T (P̂ )−1

[
DG̃(Π̂)Π

]
(t) , (6.23)

t ∈ [0, t1], with G̃ from Lemma 98.
For better readability we use the abbreviations

T = T (P̂ ) , T−1 = T (P̂ )−1 , T1 = DT (P̂ )−1P ,

Â = T−1β(P̂ )T ,

ŵ := G̃(Π̂) , w := DG̃(Π̂)Π ,

û := H(Π̂) = T−1ŵ , u := DH(Π̂)Π = T1ŵ + T−1w ,

û0 := H(Π̂)(0) , u0 := u(0) = T1ŵ(0) + T−1w(0) ,

g :=
[
DT (P̂ )P

]
f̂ + Tf .
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In the sequel, we use (6.23), Lemma 98 and Corollary 30, which verifies the
formula T−1Sβ(P̂ )(·)T = SÂ(·), to find[

DH(Π̂)Π
]
(t) = T1ŵ(t) + T−1w(t)

= T1ŵ(t) + T−1
(
Sβ(P̂ )(t)w(0)

+

∫ t

0

Sβ(P̂ )(t− s)
[
g(s)− β(P )ŵ(s)

]
ds
)

= T1ŵ(t) + T−1Sβ(P̂ )(t)T T
−1w(0)

+

∫ t

0

T−1Sβ(P̂ )(t− s)T T
−1
[
g(s)− β(P )ŵ(s)

]
ds

= T1ŵ(t) + SÂ(t)T−1w(0)

+

∫ t

0

SÂ(t− s)T−1
[
g(s)− β(P )ŵ(s)

]
ds

= T1ŵ(t) − SÂ(t)T1ŵ(0) + SÂ(t)u0

+

∫ t

0

SÂ(t− s)
[
T−1g(s)− T−1β(P )ŵ(s)

]
ds ,

t ∈ [0, t1]. In the following, we focus on the first two summands of this result. With
SÂ(0) = Id, d

dt
SÂ(t)v = −SÂ(t)Âv for t ∈ [0,∞) and v ∈ D(Q̃), T1D(Q) ⊆ D(Q̃),

and the fundamental theorem of calculus, it is

T1ŵ(t) − SÂ(t)T1ŵ(0)

= SÂ(t− t)T1ŵ(t) − SÂ(t− 0)T1ŵ(0)

=

∫ t

0

d

ds
SÂ(t− s)T1ŵ(s) ds

=

∫ t

0

SÂ(t− s)ÂT1ŵ(s) + SÂ(t− s)T1ŵ
′(s) ds

=

∫ t

0

SÂ(t− s)
(
ÂT1ŵ(s)− T1β(P̂ )ŵ(s) + T1T f̂(s)

)
ds ,

t ∈ [0, t1]. Altogether, we get[
DH(Π̂)Π

]
(t)

= SÂ(t)u0

+

∫ t

0

SÂ(t− s)
(
− T1β(P̂ )ŵ(s) + ÂT1ŵ(s)− T−1β(P )ŵ(s)

+ T1T f̂(s) + T−1g(s)
)
ds
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= SÂ(t)u0

+

∫ t

0

SÂ(t− s)
(
− T1β(P̂ )T û(s) + ÂT1T û(s)− T−1β(P )T û(s)

+ f(s)
)
ds ,

t ∈ [0, t1]. In the last step, we applied Lemma 96 again by calculating

T1T f̂ + T−1g =
[
DT (P̂ )−1P

]
T (P̂ )f̂ + T (P̂ )−1

([
DT (P̂ )P

]
f̂ + T (P̂ )f

)
=

([
DT (P̂ )−1P

]
T (P̂ ) + T (P̂ )−1

[
DT (P̂ )P

])
f̂ + f

=
[
D
(
T (P̂ )−1T (P̂ )

)
P
]
f̂ + f

=
[
DIdL(X)P

]
f̂ + f

= 0 + f

= f .

6.2 Viscoelasticity

In this section we prove the differentiability of the solution of (5.23), that is

v′(t) = ϑ divσ(t) + ϑ f(t) ,

σ′(t) = C

(
µH +

L∑
l=1

µM,l , κH +
L∑
l=1

κM,l

)
ε
(
v(t)

)
+

L∑
l=1

ηl(t) + g(t) ,

η′l(t) = −ωσ,lC
(
µM,l , κM,l

)
ε
(
v(t)

)
− ωσ,lηl(t) , l = 1, . . . , L ,

(6.24)

v(0) = v(0) , σ(0) = σ(0) , η(0) = η(0) ,

v(t)
∣∣
∂DD

= 0 , n>σ(t)
∣∣
∂DN

= 0 ,

t ∈ [0, t1], with respect to the material parameters ϑ, . . . , ωσ,L as well as the
inhomogeneity f , g and the initial values v(0),σ(0),η(0). As we have seen before,
we can write this initial-boundary value problem as the evolution equation

u′(t) = −Au(t) + f(t) , t ∈ [0, t1] ,

u(0) = u0
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with right-hand side f = (ϑf ,g,0)>, initial value u0 = (v(0),σ(0),η(0))> and gen-
erator

A

v
σ
η

 = −


ϑ divσ

C
(
µH +

∑L
l=1 µM,l , κH +

∑L
l=1 κM,l

)
ε(v) +

∑L
l=1 ηl

−ωσ,1C
(
µM,1 , κM,1

)
ε(v) − ωσ,1η1

...
−ωσ,LC

(
µM,L , κM,L

)
ε(v) − ωσ,LηL

 , (6.25)

(v,σ,η)> ∈ D(A), on the domain of definition

D(A) = V × S × L2(D,R3×3
sym)L (6.26)

from (5.11) with

V =
{
ϕ ∈ C∞(D,R3) ∩H(ε,D,R3) : ∂DD ⊆ R3 \ supp(ϕ)

}‖.‖V
and

S =
{
σ ∈ H( div , D,R3×3

sym) : ∀ϕ ∈ V :

∫
D

ε(ϕ) : σ + ϕ · divσ dx = 0
}
.

We are going to derive the differentiability of the solution of (6.24) indirectly
by transforming (6.24) to

v′(t) = ϑ div
(
σH +

L∑
l=1

σM,l

)
(t) + ϑ f(t) ,

σ′H(t) = C(µH , κH) ε
(
v(t)

)
+ g(t) ,

σ′M,l(t) = C(µM,l , κM,l) ε
(
v(t)

)
− ωσ,lσM,l(t) , l = 1, . . . , L , (6.27)

v(0) = v(0) , σH(0) = σ(0) +
L∑
l=1

1

ωσ,l
η

(0)
l ,

σM,l(0) = − 1

ωσ,l
η

(0)
l , l = 1, . . . , L ,

v(t)
∣∣
∂DD

= 0 , n>
(
σH +

L∑
l=1

σM,l

)
(t)
∣∣∣
∂DN

= 0 ,
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t ∈ [0, t1] via Theorem 65 and studying the latter initial-boundary value problem.
As in the proof of Theorem 65, problem (6.27) can be written as the evolution
equation

w′(t) = −B w(t) + f(t) , t ∈ [0, t1] , w(0) = w0 ,

where

B


v
σH
σM,1

...
σM,L

 = −


ϑ div

(
σH +

∑L
l=1 σM,l

)
C
(
µH , κH

)
ε
(
v
)

C
(
µM,1, κM,1

)
ε(v)− ωσ,1σM,1
...

C
(
µM,L, κM,L

)
ε(v)− ωσ,LσM,L

 ,

(v,σH ,σM)> ∈ D(B), as in (5.29),

D(B) =
{

(v,σH ,σM)> ∈ V × L2(D,R3×3
sym)× L2(D,R3×3

sym)L :

σH +
L∑
l=1

σM,l ∈ S
}

as in (5.28), f = (ϑf ,g,0)> and w0 = Tu0 with u0 = (v(0),σ(0),η(0))> and T
defined as in (5.24). That is,

T


v
σ
η1
...
ηL

 =


v

σ +
∑L

l=1
1

ωσ,l
ηl

− 1
ωσ,1
η1

...
− 1
ωσ,L

ηL

 ,

(v,σ,η)> ∈ X, and

T−1


v
σH
σM,1

...
σM,L

 =


v

σH +
∑L

l=1 σM,l

−ωσ,1σM,1
...

−ωσ,LσM,L

 , (6.28)

(v,σH ,σM)> ∈ X, as stated in (5.25).
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We further recall that by Lemma 59, the operator B can be decomposed as
B = −P1Q+ P2 with P1, P2 : X → X,

P1

 v
σH
σM

 =


ϑv

C(µH , κH)σH
C(µM,1, κM,1)σM,1

...
C(µM,L, κM,L)σM,L

 , P2

 v
σH
σM

 =


0
0

ωσ,1σM,1
...

ωσ,LσM,L

 (6.29)

and Q : X ⊇ D(B)→ X,

Q

 v
σH
σM

 =


div
(
σH +

∑L
l=1 σM,l

)
ε(v)
ε(v)

...
ε(v)

 .

To apply Theorem 90, which guarantees the differentiability of the abstract
parameter-to-solution-map from Definition 85, we need to assure the preliminaries
listed in Assumption 82. This is done in the next paragraph on notation and the
following lemmas up to Corollary 103.

Notation 100. The operator B will take the role from β(P ) in Assumption 82,
and we will also denote it this way. Its domain of definition is independent of P1

and P2, so we can define D(Q) := D
(
β(P )

)
.

Next we need concrete instances of U and T U from Assumption 82. To this
end, we introduce the material parameter set

P := L∞+ (D)3+3L ⊆ L∞(D,R3+3L) ,

where

L∞+ (D) =

{
α ∈ L∞(D) : α > 0,

1

α
∈ L∞(D)

}
has been defined in (5.13). The space L∞(D,R3+3L) is assumed to have the norm∥∥(ϑ, . . . , ωσ,L)

∥∥
L∞(D,R3+3L)

= max
{
‖ϑ‖L∞(D), . . . , ‖ωσ,L‖L∞(D)

}
, (6.30)

(ϑ, . . . , ωσ,L)> ∈ L∞(D,R3+3L).
Since by Lemma 60 it holds P1, P2 ∈ L(X) for (ϑ, . . . , ωσ,L) ∈ L∞(D,R3+3L),

we can define the map

Γ : P → L(X)2 ,(
ϑ, . . . , ωσ,L

)
7→ (P1, P2) ,

(6.31)
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and extend it to a linear map DΓ : L∞(D,R3+3L) → L(X)2 by using the same
formal definition.

The set Γ(P) will take the role from U in Assumption 82, and the set T Γ(P) :=
DΓL∞(D,R3+3L) will take the role from T U .

For (P1, P2) ∈ Γ(P), Lemma 61 states that P1 is self-adjoint, monotone and
boundedly invertible with respect to (. , .)X . So we again have the scalar product

(w1, w2)E,P := (P−1
1 w1, w2)X , w1, w2 ∈ X ,

which we simply denoted by (. , .)E in (5.32).
As in Assumption 82, we endow D(Q) with the graph norms

‖w‖Q,X = ‖Qw‖X + ‖w‖X ,

and
‖w‖β(P ),E,P̃ = ‖β(P )w‖E,P̃ + ‖w‖E,P̃ ,

w ∈ D(Q), where P, P̃ ∈ Γ(P) are arbitrary. In further analogy to Assumption 82
the space T Γ(P) is normed by

‖(P1, P2)‖T Γ(P),X := max
{
‖P1‖L(X,‖.‖X) , ‖P2‖L(X,‖.‖X)

}
, (6.32)

and

‖(P1, P2)‖T Γ(P),E,P̃ := max
{
‖P1‖L(X,‖.‖E,P̃ ) , ‖P2‖L(X,‖.‖E,P̃ )

}
,

(P1, P2) ∈ T Γ(P), where P̃ ∈ Γ(P) is arbitrary.
Due to Corollary 71, β(P ) is maximal monotone with respect to (. , .)E,P for

every P ∈ Γ(P). �

It remains to assure that Γ(P) is open in
(
T Γ(P), ‖.‖T Γ(P),X

)
. This will be

the statement of Corollary 103. To prove it, we need the subsequent two lemmas.

Lemma 101. The material parameter set P is an open subset of the normed space(
L∞(D,R3+3L), ‖.‖L∞(D,R3+3L)

)
.

Proof. Let p̂ = (p̂1, . . . , p̂3+3L) ∈ P . Then there are ci > 0 with p̂i(x) ≥ ci for
almost all x ∈ D and all i = 1, . . . , 3 + 3L. Let δ := min{c1, . . . , c3+3L}/2 > 0.
Then for every p := (p1, . . . , p3+3L) ∈ L∞(D,R3+3L) with ‖p̂− p‖L∞(D,R3+3L) < δ,
it holds

pi(x) = p̂i(x) −
(
p̂i(x)− pi(x)

)
> 2δ − δ = δ , f.a.a. x ∈ D ,

i = 1, . . . , 3 + 3L. So p ∈ P .
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Lemma 102. The map DΓ is an isometry onto its image with respect to the norms
‖.‖L∞(D,R3+3L) like in (6.30) and ‖.‖T Γ(P),X like in (6.32).

Proof. Let (ϑ, . . . , ωσ,L) ∈ L∞(D,R3+3L) and (P1, P2) := DΓ(ϑ, . . . , ωσ,L) . Then
for every l = 1, . . . , L, the bounded linear operator L2(D,R3×3

sym) → L2(D,R3×3
sym),

σM,l 7→ ωσ,lσM,l has norm ‖ωσ,l‖L∞(D). After applying Lemma 50 (d) and (e)

and rewriting ωσ,lσM,l in the form C̃(ωσ,l, ωσ,l)σM,l, this is stated in (5.16). With
the same methods used in the proof of Lemma 51, we also prove that the linear
operator L2(D,R3) → L2(D,R3), v 7→ ϑv has norm ‖ϑ‖L∞(D). Furthermore,
with Lemma 51, it follows

‖P1‖L(X,‖.‖X)

= max
{
‖ϑ‖L∞(D),

∥∥C(µH , κH)
∥∥
L(L2(D,R3×3

sym))
,∥∥C(µM,1 , κM,1)

∥∥
L(L2(D,R3×3

sym))
, . . . ,

∥∥C(µM,L , κM,L)
∥∥
L(L2(D,R3×3

sym))

}
= max

{
‖ϑ‖L∞(D), ‖µH‖L∞(D), ‖κH‖L∞(D), ‖µM,1‖L∞(D), . . . , ‖κM,L‖L∞(D)

}
.

In the same way we find

‖P2‖L(X,‖.‖X) = max
{

0, 0, ‖ωσ,1‖L∞(D), . . . , ‖ωσ,L‖L∞(D)

}
.

So from the form of ‖.‖L∞(D,R3+3L) and ‖.‖T Γ(P),X given in (6.30) and (6.32), the
statement follows.

Corollary 103. The set Γ(P) is a (relatively) open subset of
(
T Γ(P), ‖.‖T Γ(P),X

)
.

Proof. This is a consequence of Lemma 101 and Lemma 102.

Remark 104. Lemma 102 allows us to identify the material parameters in P
with the corresponding pairs of bounded linear operators in Γ(P), which in turn
corresponds to U in Assumption 82. In the same way, the tangential vectors in
L∞(D,R3+3L) can be identified with the corresponding pairs of bounded linear op-
erators in T Γ(P), which corresponds to TU in Assumption 82. �

As an additional result, the following lemma derives the connection between
the inverse P−1

1 of any P1 and the corresponding parameters p ∈ P .

Lemma 105. For P = (P1, P2) = Γ(p) with p = (ϑ, . . . , ωσ,L) ∈ P it holds

(P−1
1 , P2)

= Γ
(1

ϑ
,

1

µH
,

1

κH
,

1

µM,1

, . . . ,
1

µM,L

,
1

κM,1

, . . . ,
1

κM,L

, ωσ,1, . . . , ωσ,L

)
.



98 CHAPTER 6. THE PARAMETER-TO-SOLUTION-MAP

Proof. This is proven by using Lemma 50(g).

Now that Assumption 82 is completely assured, we prepare the formulation of
the central Definition 108 of this section.

We begin by recalling the abstract parameter-to-solution-map

G :
(
Γ(P), ‖.‖T Γ(P),X

)
×
(
D(Q), ‖.‖Q,X

)
× W 1,1

(
(0, t1), (X, ‖.‖X)

)
→ C1

(
[0, t1], (X, ‖.‖X)

)
∩ C

(
[0, t1],

(
D(Q), ‖.‖Q,X

))
,

(P,w0, f) 7→ w ,

defined in (6.4), where (P,w0, f) =
(
(P1, P2), (v(0),σ

(0)
H ,σ

(0)
M )>, (ϑf ,g,0)>

)
with

P1, P2 as in (6.29), and w = (v,σH ,σM)> is the solution of (6.27) in this appli-
cation.

After having assured the conditions in Assumption 82, Theorem 90 states that
G is differentiable when interpreted with the bigger codomain C

(
[0, t1], (X, ‖.‖X)

)
.

Along with the material parameters encoded in the pair of operators (P1, P2) and
the scaled external force density ϑf and external stress rate g, it relates the ini-
tial values v(0), σ

(0)
H , σ

(0)
M of the transformed variables to the resulting wave field

(v,σH ,σM)>, which is also expressed in the new variables. To get this relation
in terms of the original variables v, σ and η, we concatenate G with the variable
transformation T .

Here, a technical difficulty arises, since the variable transformation T itself
depends on the material parameters ϑ, . . . , ωσ,L, which we differentiate for in par-
ticular. On an abstract level, this problem was studied in section 6.1.2. In the
sequel we therefore show, that the preliminaries listed in Assumption 93 are satis-
fied for the viscoelastic wave equation.

Lemma 106. For the variable transformation T−1 in (6.28) it holds

T−1 = Φ − P2

with P2 as in (6.29) and

Φ : X → X ,


v
σH
σM,1

...
σM,L

 7→


v

σH +
∑L

l=1 σM,l

0
...
0

 .

Therefore we consider T−1, T ∈ L(X, ‖.‖X) as functions of (P1, P2) ∈ Γ(P) and
from now on write T (P )−1 and T (P ), respectively, in accordance with the notation
in Assumption 93.
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P 7→ T (P ) and P 7→ T (P )−1 are Fréchet-differentiable, and their derivatives at
a point P̂ := Γ(p̂) with p̂ = (ϑ̂, . . . , ω̂σ,L) ∈ P in a direction P = (P1, P2) := DΓp
with p = (ϑ, . . . , ωσ,L) ∈ L∞(D,R3+3L) are given by

[
DT (P̂ )P

]v
σ
η

 =



0

−
∑L

l=1
ωσ,l

ω̂2
σ,l
ηl

ωσ,1

ω̂2
σ,1
η1

...
ωσ,L

ω̂2
σ,L
ηL

 , DT (P̂ )−1P = −P2 .

Proof. This can be verified via straight forward calculations.

Furthermore,

T (P )−1D(Q) = T (P )−1D
(
β(P )

)
= T (P )−1T (P )D(A) = D(A)

due to the definition D(B) = TD(A) of D(B) in (5.27) with D(A) as in (6.26),
which is independent of P ∈ Γ(P). Also[

DT (P̂ )−1P
]
D(Q) = −P2D(Q) ⊆ {0} × {0} × L2(D,R3×3

sym)L ⊆ D(A) ,

P̂ ∈ Γ(P), P ∈ T Γ(P).
Finally, Assumption 93 requires an operator norm ‖.‖Q̃,X on D(A) correspond-

ing to an operator Q̃ with D(Q̃) = D(A), which is independent of the material
parameters and locally equivalent to the material parameter dependent operator
norm ‖.‖A,X = ‖A . ‖X + ‖.‖X . This last premise is provided by the following
lemma.

Lemma 107. To indicate the dependence of the operator A in (6.25) on the param-
eters p = (ϑ, . . . , ωσ,L) ∈ P, we denote A by α(p) in this lemma. We furthermore
introduce the operator Q̃ : D(A)→ X with

Q̃

v
σ
η

 :=


divσ
ε(v)
−ε(v)

...
−ε(v)

 .

Since the domain of definition D(A) = D
(
α(p)

)
does not depend on p ∈ P, we use

the definition
D(Q̃) := D(A)
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throughout this section. For the graph norms ‖.‖α(p),X := ‖α(p) . ‖X + ‖.‖X with

p ∈ P and ‖.‖Q̃,X := ‖Q̃ . ‖X + ‖.‖X , the following statement holds true.

For every fixed p̂ ∈ P, there is a neighborhood Ω ⊆ P of p̂ and a constant
c > 0, such that

1

c
‖u‖Q̃,X ≤ ‖u‖α(p),X ≤ c ‖u‖Q̃,X , u ∈ D(Q̃) , p ∈ Ω .

Proof. It is A = −P̃1Q̃+ P̃2, where P̃1, P̃2 : X → X with

P̃1

v
σ
η

 :=


ϑv

C
(
µH +

∑L
l=1 µM,l , κH +

∑L
l=1 κM,l

)
σ

ωσ,1C(µM,1, κM,1)η1
...

ωσ,LC(µM,L, κM,L)ηL

 ,

P̃2

v
σ
η

 :=


0

−
∑L

l=1 ηl
ωσ,1η1

...
ωσ,Lηl

 .

Now let p̂ = (p̂1, . . . , p̂3+3L) ∈ P . There are c1, . . . , c3+3L > 0 with p̂i ≥ ci,
i = 1, . . . , 3 + 3L. We define δ := min{c1, . . . , c3+3L}/2, d1 := ‖p̂‖L∞(D,R3+3L) − δ
and d2 := ‖p̂‖L∞(D,R3+3L) + δ.

For (ϑ, . . . , ωσ,L) ∈ B(p̂, δ) =: Ω, which is the open ball round p̂ with ra-

dius δ, it is ‖ϑ‖L∞(D) ≤ d2, ‖1/ϑ‖L∞(D) ≤ 1/d1, ‖µH +
∑L

l=1 µM,l‖L∞(D) ≤
(1 + L)d2, ‖1/(µH +

∑L
l=1 µM,l)‖L∞(D) ≤ 1/((1 + L)d1), ‖κH +

∑L
l=1 κM,l‖L∞(D) ≤

(1 + L)d2, ‖1/(κH +
∑L

l=1 κM,l)‖L∞(D) ≤ 1/((1 + L)d1), ‖ωσ,lµM,l‖L∞(D) ≤ d2
2,

‖1/(ωσ,lµM,l)‖L∞(D) ≤ 1/d2
1, ‖ωσ,lκM,l‖L∞(D) ≤ d2

2, ‖1/(ωσ,lκM,l)‖L∞(D) ≤ 1/d2
1,

‖ωσ,l‖L∞(D) ≤ d2, l = 1, . . . , L.

With d := max
{

(1 + L)d2, d
2
2, 1/d1, 1/d

2
1,
√
L+ d2

2

}
we find that

‖P̃1‖L(X,‖.‖X) , ‖P̃2‖L(X,‖.‖X) , ‖P̃−1
1 ‖L(X,‖.‖X) , ‖Id‖L(X,‖.‖X) ≤ d .

So we can apply estimate (4.16), where we plug in P̃1, P̃2 and Q̃ from this lemma
for P1, P2 and Q in Lemma 36, respectively, and the identity operator Id ∈ L(X)
for P̃1 in Lemma 36.

Now we turn to the central definition of this section.
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Definition 108. As the parameter-to-solution-map

F :
(
P , ‖.‖L∞(D,R3+3L)

)
×
(
D(Q̃), ‖.‖Q̃,X

)
×W 1,1

(
(0, t1), L2(D,R3 × R3×3

sym)
)

→ C
(
[0, t1] , L2(D,R3 × R3×3

sym)
)

we denote the map, which maps every tuple of parameters(
(ϑ, . . . , ωσ,L),

(
v(0),σ(0),η(0)

)>
, (f ,g)>

)
to the pair (v,σ)>, where (v,σ,η)> is the unique solution of the initial-boundary
value problem

v′(t) = ϑ divσ(t) + ϑ f(t) ,

σ′(t) = C

(
µH +

L∑
l=1

µM,l , κH +
L∑
l=1

κM,l

)
ε
(
v(t)

)
+

L∑
l=1

ηl(t) + g(t) ,

η′l(t) = −ωσ,lC
(
µM,l , κM,l

)
ε
(
v(t)

)
− ωσ,lηl(t) , l = 1, . . . , L ,

v(0) = v(0) , σ(0) = σ(0) , η(0) = η(0) ,

v(t)
∣∣
∂DD

= 0 , n>σ(t)
∣∣
∂DN

= 0 ,

t ∈ [0, t1], in the function space C1
(
[0, t1], X

)
∩ C

(
[0, t1],D(Q̃)

)
. �

To express F in terms of the back-transformed abstract parameter-to-solution-
map H introduced in Definition 95, we define two additional functions.

Notation 109. By

π2 : C
(
[0, t1], (X, ‖.‖X)

)
→ C

(
[0, t1] , L2(D,R3 × R3×3

sym)
)
,

(v,σ,η)> 7→ (v,σ)>

we denote the canonical projection onto the first two components. Furthermore,
we introduce the map

γ :
(
P , ‖.‖L∞(D,R3+3L)

)
×
(
D(Q̃), ‖.‖Q̃,X

)
×W 1,1

(
(0, t1) , L2(D,R3 × R3×3

sym)
)

→
(
Γ(P), ‖.‖T Γ(P),X

)
×
(
D(Q̃), ‖.‖Q̃,X

)
×W 1,1

(
(0, t1) , (X, ‖.‖X)

)
,(

(ϑ, . . . , ωσ,L),
(
v(0),σ(0),η(0)

)>
, (f ,g)>

)
7→

(
Γ(ϑ, . . . , ωσ,L),

(
v(0),σ(0),η(0)

)>
, (ϑf ,g,0)>

)
. (6.33)

�
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Lemma 110. It is
F = π2 ◦H ◦ γ ,

where H denotes the map formally defined in Definition 95 as the back-transformed
abstract parameter-to-solution-map.

Proof. This follows directly from the definition of the four functions involved,
together with Theorem 65 about the variable transformation.

In the remainder of this section we will prove the Fréchet-differentiability of F
and derive explicit forms of its derivative in terms of the original variables v, σ,
η as well as the transformed ones v, σH , σM . These results are mainly based on
Lemma 98 and Theorem 99, which in turn can be seen as corollaries of Theorem
90 on the differentiability of the abstract parameter-to-solution-map G.

Lemma 111. The map γ from (6.33) is Fréchet-differentiable and the Fréchet-
derivative at any point p̂ =

(
(ϑ̂, . . . , ω̂σ,L), (v̂(0), σ̂(0), η̂(0))>, (f̂ , ĝ)>

)
of its domain

is given by the bounded linear map

Dγ(p̂) : L∞(D,R3+3L)×
(
D(Q̃), ‖.‖Q̃,X

)
×W 1,1

(
(0, t1) , L2(D,R3 × R3×3

sym)
)

→
(
T Γ(P), ‖.‖T Γ(P),X

)
×
(
D(Q̃), ‖.‖Q̃,X

)
×W 1,1

(
(0, t1) , (X, ‖.‖X)

)
,(

(ϑ, . . . , ωσ,L),
(
v(0),σ(0),η(0)

)>
, (f ,g)>

)
7→
(
DΓ(ϑ, . . . , ωσ,L),

(
v(0),σ(0),η(0)

)>
, (ϑf̂ + ϑ̂f ,g,0)>

)
.

Furthermore, it is

π2 T
(
Γ(p)

)−1

 v
σH
σM

 =

(
v

σH +
∑L

l=1 σM,l

)
,

(v,σH ,σM)> ∈ C
(
[0, t1], X

)
, p ∈ P.

Proof. Since the map DΓ is linear and is the extension of Γ onto the whole of
L∞(D,R3+3L), it is DΓp the Fréchet-derivative of Γ at any point p̂ ∈ P in direction
p ∈ L∞(D,R3+3L).

That the map

L∞+ (D)×W 1,1
(
(0, t1) , L2(D,R3)

)
→ W 1,1

(
(0, t1) , L2(D,R3)

)
(ϑ, f) 7→ ϑf

has derivative ϑf̂ + ϑ̂f at any point (ϑ̂, f̂) in any direction (ϑ, f), follows from
Lemma 96. Now Lemma 97 yields the first statement of this lemma.

The second one is verified by a direct calculation.
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Theorem 112. The parameter-to-solution-map F is Fréchet-differentiable, and
the Fréchet-derivative

DF :
(
P , ‖.‖L∞(D,R3+3L)

)
×
(
D(Q̃), ‖.‖Q̃,X

)
×W 1,1

(
(0, t1), L2(D,R3 × R3×3

sym)
)

→ L
(
L∞(D,R3+3L)×

(
D(Q̃), ‖.‖Q̃,X

)
×W 1,1

(
(0, t1), L2(D,R3 × R3×3

sym)
)
,

C
(
[0, t1] , L2(D,R3 × R3×3

sym)
))

at a point
(
(ϑ̂, . . . , ω̂σ,L), (v̂(0), σ̂(0), η̂(0))>, (f̂ , ĝ)>

)
∈ P × D(Q̃) ×W 1,1

(
(0, t1),

L2(D,R3 × R3×3
sym)

)
in a direction

(
(ϑ, . . . , ωσ,L), (v(0), σ(0), η(0))>, (f , g)>

)
∈

L∞(D,R3+3L)×D(Q̃)×W 1,1
(
(0, t1), L2(D,R3×R3×3

sym)
)

is given by the pair (v,σ)>,

where (v,σ,η)> ∈ C
(
[0, t1], X

)
is the mild solution of

v′(t) = ϑ̂ divσ(t) + ϑ div σ̂(t) + ϑ̂ f(t) + ϑ f̂(t) ,

σ′(t) = C

(
µ̂H +

L∑
l=1

µ̂M,l , κ̂H +
L∑
l=1

κ̂M,l

)
ε
(
v(t)

)
+ C

(
µH +

L∑
l=1

µM,l , κH +
L∑
l=1

κM,l

)
ε
(
v̂(t)

)
+

L∑
l=1

ηl(t) + g(t) ,

η′l(t) = − ω̂σ,lC
(
µ̂M,l , κ̂M,l

)
ε
(
v(t)

)
− ω̂σ,lC

(
µM,l , κM,l

)
ε
(
v̂(t)

)
− ωσ,lC

(
µ̂M,l , κ̂M,l

)
ε
(
v̂(t)

)
− ω̂σ,lηl(t) − ωσ,lη̂l(t) , l = 1, . . . , L ,

v(0) = v(0) , σ(0) = σ(0) , η(0) = η(0) ,

v(t)
∣∣
∂DD

= 0 , n>σ(t)
∣∣
∂DN

= 0 ,

t ∈ [0, t1], and (v̂, σ̂, η̂)> is the classical solution of

v̂′(t) = ϑ̂ div σ̂(t) + ϑ̂ f̂(t) ,

σ̂′(t) = C

(
µ̂H +

L∑
l=1

µ̂M,l , κ̂H +
L∑
l=1

κ̂M,l

)
ε
(
v̂(t)

)
+

L∑
l=1

η̂l(t) + ĝ(t) ,

η̂′l(t) = −ω̂σ,lC
(
µ̂M,l , κ̂M,l

)
ε
(
v̂(t)

)
− ω̂σ,lη̂l(t) , l = 1, . . . , L ,

v̂(0) = v̂(0) , σ̂(0) = σ̂(0) , η̂(0) = η̂(0) ,

v̂(t)
∣∣
∂DD

= 0 , n>σ̂(t)
∣∣
∂DN

= 0 ,

t ∈ [0, t1].
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Proof. This follows from Theorem 99, Lemma 111, the linearity of π2, and the
chain rule.

We only have to calculate the form of the operator called A in Theorem 99.
With the notation P̂ = Γ(ϑ̂, . . . , ω̂σ,L), P = (P1, P2) = DΓ(ϑ, . . . , ωσ,L), Â =

T (P̂ )−1β(P̂ )T (P̂ ), and the formula DT (P̂ )−1P = −P2, we evaluate

A = −P2β(P̂ )T (P̂ ) + ÂP2T (P̂ ) + T (P̂ )−1β(P )T (P̂ ) .

For û = (v̂, σ̂, η̂)> ∈ D(Q̃), a direct calculation shows

−P2β(P̂ )T (P̂ ) û = −P2


− ϑ̂ div σ̂

−C
(
µ̂H , κ̂H

)
ε(v̂)

−C
(
µ̂M,1, κ̂M,1

)
ε(v̂)− η̂l

...
−C

(
µ̂M,L, κ̂M,L

)
ε(v̂)− η̂L



=


0
0

ωσ,1C
(
µ̂M,1, κ̂M,1

)
ε(v̂) + ωσ,1η̂l

...
ωσ,LC

(
µ̂M,L, κ̂M,L

)
ε(v̂) + ωσ,Lη̂L

 ,

ÂP2T (P̂ ) û = Â


0
0

−ωσ,1

ω̂σ,1
η̂1

...
−ωσ,L

ω̂σ,L
η̂L

 =


0∑L

l=1
ωσ,l

ω̂σ,l
η̂l

−ωσ,1η̂1
...

−ωσ,Lη̂L

 ,

T (P̂ )−1β(P )T (P̂ ) û = T (P̂ )−1


−ϑ div σ̂

−C
(
µH , κH

)
ε(v̂)

−C
(
µM,1, κM,1

)
ε(v̂)− ωσ,1

ω̂σ,1
η̂1

...
−C

(
µM,L, κM,L

)
ε(v̂)− ωσ,L

ω̂σ,L
η̂L



=


−ϑ div σ̂

−C
(
µH +

∑L
l=1 µM,l , κH +

∑L
l=1 κM,l

)
ε(v̂)−

∑L
l=1

ωσ,l

ω̂σ,l
η̂l

ω̂σ,1C
(
µM,1, κM,1

)
ε(v̂) + ωσ,1η̂1

...
ω̂σ,LC

(
µM,L, κM,L

)
ε(v̂) + ωσ,Lη̂L

 .
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So

A û =


−ϑ div σ̂

−C
(
µH +

∑L
l=1 µM,l , κH +

∑L
l=1 κM,l

)
ε(v̂)

ω̂σ,1C
(
µM,1, κM,1

)
ε(v̂) + ωσ,1C

(
µ̂M,1, κ̂M,1

)
ε(v̂) + ωσ,1η̂1

...
ω̂σ,LC

(
µM,L, κM,L

)
ε(v̂) + ωσ,LC

(
µ̂M,L, κ̂M,L

)
ε(v̂) + ωσ,Lη̂L

 .

How the derivative of the parameter-to-solution-map can be computed using
the transformed system of equations (6.27) is shown in the next theorem.

Theorem 113. The Fréchet-derivative of the parameter-to-solution-map F at
some point

(
(ϑ̂, . . . , ω̂σ,L), (v̂(0), σ̂(0), η̂(0))>, (f̂ , ĝ)>

)
∈ P ×D(Q̃)×W 1,1

(
(0, t1),

L2(D,R3×R3×3
sym)

)
in some direction

(
(ϑ, . . . , ωσ,L), (v(0), σ(0), η(0))>, (f , g)>

)
∈

L∞(D,R3+3L) × D(Q̃) × W 1,1
(
(0, t1), L2(D,R3 × R3×3

sym)
)

is given by the pair of

functions
(
v, σH +

∑L
l=1 σM,l

)>
, where (v,σH ,σM)> ∈ C

(
[0, t1], X

)
is the mild

solution of

v′(t) = ϑ̂ div
(
σH +

L∑
l=1

σM,l

)
(t) + ϑ div

(
σ̂H +

L∑
l=1

σ̂M,l

)
(t)

+ ϑ f̂(t) + ϑ̂ f(t) ,

σ′H(t) = C(µ̂H , κ̂H) ε
(
v(t)

)
+ C(µH , κH) ε

(
v̂(t)

)
+ g(t) ,

σ′M,l(t) = C(µ̂M,l, κ̂M,l) ε
(
v(t)

)
+ C(µM,l, κM,l) ε

(
v̂(t)

)
− ω̂σ,l σM,l(t) − ωσ,l σ̂M,l(t) , l = 1, . . . , L ,

v(0) = v(0) , σH(0) = σ(0) +
L∑
l=1

( 1

ω̂σ,l
η

(0)
l −

ωσ,l
ω̂2
σ,l

η̂
(0)
l

)
,

σM,l(0) = − 1

ω̂σ,l
η

(0)
l +

ωσ,l
ω̂2
σ,l

η̂
(0)
l , l = 1, . . . , L ,

v(t)
∣∣
∂DD

= 0 , n>
(
σH +

L∑
l=1

σM,l

)
(t)
∣∣∣
∂DN

= 0 ,



106 CHAPTER 6. THE PARAMETER-TO-SOLUTION-MAP

t ∈ [0, t1], and (v̂, σ̂H , σ̂M)> is the classical solution of

v̂′(t) = ϑ̂ div
(
σ̂H +

L∑
l=1

σ̂M,l

)
(t) + ϑ̂ f̂(t) ,

σ̂′H(t) = C(µ̂H , κ̂H) ε
(
v̂(t)

)
+ ĝ(t) ,

σ̂′M,l(t) = C(µ̂M,l, κ̂M,l) ε
(
v̂(t)

)
− ω̂σ,l σ̂M,l(t) , l = 1, . . . , L ,

v̂(0) = v̂(0) , σ̂H(0) = σ̂(0) +
L∑
l=1

1

ω̂σ,l
η̂

(0)
l ,

σ̂M,l(0) = − 1

ω̂σ,l
η̂

(0)
l , l = 1, . . . , L ,

v̂(t)
∣∣
∂DD

= 0 , n>
(
σ̂H +

L∑
l=1

σ̂M,l

)
(t)
∣∣∣
∂DN

= 0 ,

t ∈ [0, t1].

Proof. Since by Definition 95, which introduces the function H, it is

F
(
p, u0, (f ,g)>

)
= π2T

(
Γ(p)

)−1
G̃
(
γ
(
p, u0, (f ,g)>

))
for all

(
p, u0, (f ,g)>

)
in the domain of F , with G̃ from Lemma 98, this statement

follows from Lemma 98, Lemma 111, and the chain rule. We note that

T (P̂ )(f ,g,0)> = (f ,g,0)> and
[
DT (P̂ )P

]
(f ,g,0)> = 0 ,

(f ,g)> ∈ W 1,1
(
(0, t1), L2(D,R3 × R3×3

sym)
)
, P̂ ∈ Γ(P), P ∈ T Γ(P).



Chapter 7

Adjoint Operators

The goal of this chapter is the derivation of the adjoint operator of the bounded lin-
ear operator, which is given by the Fréchet-derivative of the parameter-to-solution-
map F from the previous chapter at a fixed point of its domain.

7.1 The Abstract Case

7.1.1 Auxiliaries

Throughout this section, let
(
X, (. , .)

)
denote a real Hilbert space, ‖.‖ the norm

induced by (. , .), and let t1 > 0.

Lemma 114. Let R : X ⊇ D(R) → X be a maximal monotone operator. Then
the adjoint operator R∗ : X ⊇ D(R∗)→ X is maximal monotone, too.

Proof. We adopt the argumentation in the proof of Lemma 3.1 in [14].
By Lemma 2(c) in section 3.1, the operator Id+αR :

(
D(R), ‖.‖

)
→
(
X, ‖.‖

)
is

boundedly invertible for every α > 0. Consequently, also αId+R = α
(
Id+(1/α)R

)
is boundedly invertible between these spaces for α > 0. So the adjoint operator(
(αId +R)−1

)∗ ∈ L(X) exists. In the sequel we fix one arbitrary α > 0.
It is

D(R∗) =
{
v ∈ X : u 7→ (Ru, v) is continuous on D(R)

}
=

{
v ∈ X : u 7→ (Ru, v) + (αu, v) is continuous on D(R)

}
= D

(
(αId +R)∗

)
,

and

D(R) → R

u →
(

(αId +R)u ,
(
(αId +R)−1

)∗
v
)

= (u, v)

107
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is continuous for every v ∈ X. So
(
(αId + R)−1

)∗
v ∈ D(R∗) for every v ∈ X and

furthermore (
u , (αId +R∗)

(
(αId +R)−1

)∗
v
)

= (u, v) ,

v ∈ X, u ∈ D(R). Since D(R) is dense in X by Lemma 2(a), it follows

(αId +R∗)
(
(αId +R)−1

)∗
= Id on X . (7.1)

Next we prove that αId + R∗ : D(R∗) → X is injective. Therefore we assume
that (αId +R∗)v = 0 for some v ∈ D(R∗). Then

0 =
(
(αId +R∗)v , u

)
=

(
v , (αId +R)u

)
for every u ∈ D(R). As αId +R is onto, it follows v = 0. So αId +R∗ is injective.

From (7.1) it follows

(αId +R∗)
((

(αId +R)−1
)∗

(αId +R∗)v − v
)

= (αId +R∗)v − (αId +R∗)v

= 0

for all v ∈ D(R∗). So the injectivity of αId +R∗ implies(
(αId +R)−1

)∗
(αId +R∗) = Id on D(R∗) .

Together with (7.1), we have that αId +R∗ : D(R∗)→ X is bijective with

(αId +R∗)−1 =
(
(αId +R)−1

)∗
.

In particular this holds for α = 1.
So it remains to prove the monotonicity of R∗. For every v ∈ D(R∗) it is(
(αId +R∗)v , v

)
=

(
(αId +R∗)v , (αId +R∗)−1(αId +R∗)v

)
=

(
(αId +R∗)v ,

(
(αId +R)−1

)∗
(αId +R∗)v

)
=

(
(αId +R)−1(αId +R∗)v , (αId +R∗)v

)
=

((
(αId +R)−1(αId +R∗)v

)
, (αId +R)

(
(αId +R)−1(αId +R∗)v

))
≥ 0 .

Since α > 0 was arbitrary, we conclude (R∗v, v) ≥ 0, v ∈ D(R∗).
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The following lemma constitutes the core part of the proofs of Theorem 117
and Theorem 119 on adjoint operators to the derivatives of G̃ and H from section
6.1.2. The idea of its proof is taken from [14] again.

Lemma 115. Let R : X ⊇ D(R)→ X be a maximal monotone operator, v0 ∈ X,
g ∈ L1

(
(0, t1), X

)
, and

v(t) := SR(t)v0 +

∫ t

0

SR(t− s)g(s) ds , t ∈ [0, t1] , (7.2)

which is the mild solution of

v′(t) = −Rv(t) + g(t) , t ∈ [0, t1] ,

v(0) = v0 .

Then for any ϕ ∈ L1
(
(0, t1), X

)
, it holds∫ t1

0

(
v(t), ϕ(t)

)
dt =

∫ t1

0

(
g(t), v̄(t)

)
dt +

(
v0 , v̄(0)

)
,

where

v̄(t) :=

∫ t1−t

0

SR∗(t1 − t− s)ϕ(t1 − s) ds , t ∈ [0, t1] . (7.3)

So

v̄(t1 − t) =

∫ t

0

SR∗(t− s)ϕ(t1 − s) ds , t ∈ [0, t1] ,

which means, that v̄(t1 − ·) satisfies

d

dt
v̄(t1 − t) = −R∗v̄(t1 − t) + ϕ(t1 − t) , t ∈ [0, t1] ,

v̄(t1) = 0

in the mild sense.

Proof. First, we note that (7.3) is well-defined, since by Lemma 114, the operator
R∗ is maximal monotone.

Let ϕ ∈ L1
(
(0, t1), X

)
be arbitrary. To be able to interpret both occurring

evolution equations in the classical sense, we approximate g by a sequence (gn)n∈N
and ϕ by a sequence (ϕn)n∈N, such that gn, ϕn ∈ C∞c

(
(0, t1), X

)
, n ∈ N, and

‖gn − g‖L1((0,t1),X), ‖ϕn − ϕ‖L1((0,t1),X) → 0, n → ∞, which is possible according
to Lemma A.3. Furthermore, due to Lemma 2(a), there is (v0,n)n∈N in D(R) with
‖v0,n − v0‖ → 0, n→∞.
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Then for the functions vn satisfying

v′n(t) = −Rvn(t) + gn(t) , t ∈ [0, t1] ,

vn(0) = v0,n

(7.4)

in the classical sense, it is

∥∥vn(t)− v(t)
∥∥ ≤ ‖v0,n − v0‖ +

∫ t

0

∥∥gn(s)− g(s)
∥∥ ds ,

t ∈ [0, t1], n ∈ N. So ‖vn − v‖C([0,t1],X) → 0, n→∞.

And analogously, for v̄n satisfying

d

dt
v̄n(t1 − t) = −R∗v̄n(t1 − t) + ϕn(t1 − t) , t ∈ [0, t1] ,

v̄n(t1) = 0
(7.5)

classically, it holds

∥∥v̄n(t1 − t)− v(t1 − t)
∥∥ ≤

∫ t

0

∥∥ϕn(t1 − s)− ϕ(t1 − s)
∥∥ ds ,

t ∈ [0, t1], n ∈ N. So ‖v̄n − v̄‖C([0,t1],X) → 0, n→∞.

We now use ϕn = −v̄′n + R∗v̄n and v̄n(t1) = 0, which are equivalent to (7.5),
and also (7.4) to calculate∫ t1

0

(
vn(t), ϕn(t)

)
dt

=

∫ t1

0

(
vn(t), −v̄′n(t) +R∗v̄n(t)

)
dt

=

∫ t1

0

(
v′n(t) +Rvn(t), v̄n(t)

)
dt +

(
v0,n, v̄n(0)

)
=

∫ t1

0

(
gn(t), v̄n(t)

)
dt +

(
v0,n, v̄n(0)

)
,

n ∈ N. With n→∞, it follows∫ t1

0

(
v(t), ϕ(t)

)
dt =

∫ t1

0

(
g(t), v̄(t)

)
dt +

(
v0, v̄(0)

)
.
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7.1.2 Adjoints of the Derivatives

This section is to be understood in the context of section 6.1.2. In particular we
suppose that Assumption 93 holds.

First we recall the map G̃ introduced in Lemma 98:

G̃ :
(
U, ‖.‖T U,X

)
×
(
D(Q̃), ‖.‖Q̃,X

)
×W 1,1

(
(0, t1), X

)
→ C

(
[0, t1], X

)
(P, u0, f) 7→ G

(
P, T (P )u0, T (P )f

)
with

G :
(
U, ‖.‖T U,X

)
×
(
D(Q), ‖.‖Q,X

)
× W 1,1

(
(0, t1), (X, ‖.‖X)

)
→ C1

(
[0, t1], (X, ‖.‖X)

)
∩ C

(
[0, t1],

(
D(Q), ‖.‖Q,X

))
,

(P,w0, f) 7→ w ,

defined in (6.4), where w classically solves

w′(t) + β(P )w(t) = f(t) , t ∈ [0, t1] , w(0) = w0 .

According to Lemma 98, G̃ is Fréchet-differentiable, and its derivative is of the
form[

DG̃(P̂ , û0, f̂)(P, u0, f)
]
(t)

= Sβ(P̂ )(t)
([
DT (P̂ )P

]
û0 + T (P̂ )u0

)
+

∫ t

0

Sβ(P̂ )(t− s)
([
DT (P̂ )P

]
f̂(s) + T (P̂ )f(s)

− β(P )G̃(P̂ , û0, f̂)(s)
)
ds .

(7.6)

Assumption 116. In the following, we interpret G̃ with the bigger codomain
L2
(
(0, t1), X

)
. Since C

(
[0, t1], X

)
continuously embeds into L2

(
(0, t1), X

)
, the

differentiability of G̃ is preserved under this modification.
Moreover, for fixed Π̂ = (P̂ , û0, f̂) ∈ U × D(Q̃) ×W 1,1

(
(0, t1), X

)
, we endow

L2
(
(0, t1), X

)
with the scalar product

∫ t1
0

(
v(t) , w(t)

)
E,P̂

dt, v, w ∈ L2
(
(0, t1), X

)
,

which is equivalent to the canonical scalar product
∫ t1

0

(
v(t) , w(t)

)
E,P̂

dt, v, w ∈
L2
(
(0, t1), X

)
. Here, (. , .)E,P̂ = (P̂−1

1 . , .)X is the scalar product on X, with respect

to which β(P̂ ) is maximal monotone (see Assumption 82).
The Fréchet-derivative of G̃ at point Π̂ is a bounded linear operator

DG̃(Π̂) :
(
T U, ‖.‖T U,X

)
×
(
D(Q̃), ‖.‖Q̃,X

)
×W 1,1

(
(0, t1),

(
X, (. , .)X

))
→ L2

(
(0, t1),

(
X, (. , .)E,P̂

))
.

(7.7)
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Yet, we make use of formula (7.6) to extend it to a bounded linear operator

DG̃(Π̂) :
(
T U, ‖.‖T U,X

)
×
(
X, (. , .)X

)
× L1

(
(0, t1),

(
X, (. , .)X

))
→ L2

(
(0, t1),

(
X, (. , .)E,P̂

)) (7.8)

with respect to a weaker norm in the domain.
Its adjoint then is an operator

DG̃(Π̂)∗ : L2
(

(0, t1),
(
X, (. , .)E,P̂

))
→

(
T U, ‖.‖T U,X

)′ × (X, (. , .)X)× L∞((0, t1),
(
X, (. , .)X

))
,

where we used the notation
(
T U, ‖.‖T U,X

)′
for the dual space of the normed space(

T U, ‖.‖T U,X
)
. �

To clarify the connection between the adjoint of the extended operator (7.8)
and the adjoint of the original one (7.7), we argue as follows.

If we denote the operator (7.7) by R1 and the operator (7.8) by R2, then
for any fixed w ∈ L2((0, t1), X), the value R∗2w is a triple (P ′, u′0, f

′) ∈ T U ′ ×
X × L∞

(
(0, t1), X

)
with the property that for every Π = (P, u0, f) ∈ T U ×X ×

L1
(
(0, t1), X

)
, it is∫ t1

0

(w ,R2Π)E,P̂ dt = P ′(P ) + (u′0 , u0)X +

∫ t1

0

(
f ′(t) , f(t)

)
X
dt .

On the other hand, the value R∗1w is a triple (P ′′, u′′0, f
′′) in the dual space of

T U ×D(Q̃)×W 1,1
(
(0, t1), X

)
, such that for every Π = (P, u0, f) ∈ T U ×D(Q̃)×

W 1,1
(
(0, t1), X

)
it is∫ t1

0

(w ,R1Π)E,P̂ dt = P ′′(P ) + u′′0(u0) + f ′′(f) .

Since R2Π = R1Π for all Π ∈ T U × D(Q̃) ×W 1,1
(
(0, t1), X

)
, it follows P ′′ = P ′,

u′′0 = (u′0 , ·)X
∣∣
D(Q̃)

and f ′′ =
∫ t1

0

(
f ′(t) , · (t)

)
X
dt
∣∣
W 1,1((0,t1),X)

.

We turn to our first main result of this subsection.

Theorem 117. The adjoint operator

DG̃(P̂ , û0, f̂)∗ : L2
(

(0, t1),
(
X, (. , .)E,P̂

))
→
(
T U, ‖.‖T U,X

)′ × (X, (. , .)X)× L∞((0, t1),
(
X, (. , .)X

))
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of the Fréchet-derivative

DG̃(P̂ , û0, f̂) :
(
T U, ‖.‖T U,X

)
×
(
X, (. , .)X

)
× L1

(
(0, t1),

(
X, (. , .)X

))
→ L2

(
(0, t1),

(
X, (. , .)E,P̂

))
of G̃ at some point (P̂ , û0, f̂) ∈ U × D(Q̃) ×W 1,1

(
(0, t1), X

)
with respect to the

scalar product
∫ t1

0

(
v(t), w(t)

)
E,P̂

dt, v, w ∈ L2
(
(0, t1), X

)
, has the representation[

DG̃(P̂ , û0, f̂)∗ϕ
]
(P, u0, f)

=

∫ t1

0

(
− β(P )ŵ(t) +

[
DT (P̂ )P

]
f̂(t) + T (P̂ )f(t) , w̄(t)

)
E,P̂

dt

+
([
DT (P̂ )P

]
û0 + T (P̂ )u0 , w̄(0)

)
E,P̂

(7.9)

for every ϕ ∈ L2
(
(0, t1), X

)
and every (P, u0, f) ∈ T U ×X×L1

(
(0, t1), X

)
, where

w̄ satisfies

d

dt
w̄(t1 − t) = −β(P̂ )∗w̄(t1 − t) + ϕ(t1 − t) , t ∈ [0, t1] ,

w̄(t1) = 0

in the mild sense with the adjoint β(P̂ )∗ of β(P̂ ) with respect to (. , .)E,P̂ , and ŵ
satisfies

ŵ′(t) = −β(P̂ )ŵ(t) + T (P̂ )f̂(t) , t ∈ [0, t1] ,

ŵ(0) = T (P̂ )û0

in the classical sense.

Proof. According to Lemma 115, with the role of v in (7.2) taken by the function
DG̃(P̂ , û0, f̂)(P, u0, f) in the form (7.6), the right-hand side of (7.9) is equal to∫ t1

0

([
DG̃(P̂ , û0, f̂)(P, u0, f)

]
(t) , ϕ(t)

)
E,P̂

dt .

Next, we turn to the map

H : U ×D(Q̃)×W 1,1
(
(0, t1), X

)
→ C

(
[0, t1], X

)
,

H(P, u0, f)(t) = T (P )−1G
(
P, T (P )u0, T (P )f

)
(t)
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from Definition 95 with the codomain C
(
[0, t1], X

)
as considered in Theorem 99.

According to this theorem, it is differentiable, and its derivative is given by

DH(Π̂) :
(
T U, ‖.‖T U,X

)
×
(
D(Q̃), ‖.‖Q̃,X

)
×W 1,1

(
(0, t1),

(
X, (. , .)X

))
→ L2

(
(0, t1),

(
X, (. , .)T (P̂ )

))
,[

DH(P̂ , û0, f̂)(P, u0, f)
]
(t)

= SÂ(t)u0 +

∫ t

0

SÂ(t− s)
(
− Aû(s) + f(s)

)
ds ,

(7.10)

t ∈ [0, t1], where
Â = T−1β(P̂ )T (7.11)

with T := T (P̂ ), T−1 := T (P̂ )−1, T1 := DT (P̂ )−1P ,

A = T1β(P̂ )T − ÂT1T + T−1β(P )T , (7.12)

and û is the classical solution of

û′(t) = −Âû(t) + f̂(t) , t ∈ [0, t1] ,

û(0) = û0 .

Assumption 118. Let Π̂ = (P̂ , û0, f̂) ∈ U × D(Q̃) × W 1,1
(
(0, t1), X

)
be arbi-

trary and fixed. As done in the case of G̃, we interpret H and DH(Π̂) as maps
with codomain L2

(
(0, t1), X

)
. This time, however, we endow L2

(
(0, t1), X

)
with

the scalar product
∫ t1

0

(
u(t) , v(t)

)
T (P̂ )

dt, u, v ∈ L2
(
(0, t1), X

)
, where (. , .)T (P̂ ) =(

T (P̂ ) . , T (P̂ ) .
)
E,P̂

is the energy scalar product on X, with respect to which the

operator Â in (7.11) is maximal monotone (see Theorem 28).
In further analogy to the case of G̃, we use formula (7.10) to extend DH(Π̂)

to the bounded linear operator

DH(Π̂) :
(
T U, ‖.‖T U,X

)
×
(
X, (. , .)X

)
× L1

(
(0, t1),

(
X, (. , .)X

))
→ L2

(
(0, t1),

(
X, (. , .)T (P̂ )

))
with respect to a weaker norm in the domain. �

Theorem 119. The adjoint operator

DH(P̂ , û0, f̂)∗ : L2
(

(0, t1),
(
X, (. , .)T (P̂ )

))
→
(
T U, ‖.‖T U,X

)′ × (X, (. , .)X)× L∞((0, t1),
(
X, (. , .)X

))
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of the Fréchet-derivative

DH(P̂ , û0, f̂) :
(
T U, ‖.‖T U,X

)
×
(
X, (. , .)X

)
× L1

(
(0, t1),

(
X, (. , .)X

))
→ L2

(
(0, t1),

(
X, (. , .)T (P̂ )

))
of H at some point (P̂ , û0, f̂) ∈ U × D(Q̃) ×W 1,1

(
(0, t1), X

)
with respect to the

scalar product
∫ t1

0

(
u(t), v(t)

)
T (P̂ )

dt, u, v ∈ L2
(
(0, t1), X

)
, has the representation[

DH(P̂ , û0, f̂)∗ϕ
]
(P, u0, f)

=

∫ t1

0

(
− Aû(t) + f(t) , ū(t)

)
T (P̂ )

dt +
(
u0, ū(0)

)
T (P̂ )

(7.13)

for every ϕ ∈ L2
(
(0, t1), X

)
and every (P, u0, f) ∈ T U ×X × L1

(
(0, t1), X

)
, with

A from (7.12) and where ū satisfies

d

dt
ū(t1 − t) = −Â∗ū(t1 − t) + ϕ(t1 − t) , t ∈ [0, t1] ,

ū(t1) = 0

in the mild sense, where Â∗ is the adjoint of Â from (7.11) with respect to (. , .)T (P̂ ),
and û satisfies

û′(t) = −Âû(t) + f̂(t) , t ∈ [0, t1] ,

û(0) = û0

in the classical sense.

Proof. Analogously to the proof of the previous theorem, it follows from Lemma
115, where the role of v in (7.2) is taken by DH(P̂ , û0, f̂)(P, u0, f) in the form
(7.10) this time, that the expression on the right-hand side of (7.13) is equal to∫ t1

0

([
DH(P̂ , û0, f̂)(P, u0, f)

]
(t) , ϕ(t)

)
T (P̂ )

dt .

7.2 Viscoelasticity

7.2.1 Adjoint Generators

In this section we derive the adjoint operators to B as in (5.29) and A introduced
in (2.14) with respect to their corresponding energy scalar products. By X we still
denote the function space defined in (5.4),

X = L2(D,R3)× L2(D,R3×3
sym)× L2(D,R3×3

sym)L .
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First, we recall B : X ⊇ D(B)→ X with

Bw =


−ϑ div

(
σH +

∑L
l=1 σM,l

)
−C

(
µH , κH

)
ε(v)

−C
(
µM,1, κM,1

)
ε(v) + ωσ,1σM,1
...

−C
(
µM,L, κM,L

)
ε(v) + ωσ,LσM,L

 , (7.14)

w = (v,σH ,σM)> ∈ D(B), and

D(B) =
{

(v,σH ,σM)> ∈ V × L2(D,R3×3
sym)× L2(D,R3×3

sym)L :

σH +
L∑
l=1

σM,l ∈ S
} (7.15)

as stated in (5.28), where V was defined in (5.9) as

V =
{
ϕ ∈ C∞(D,R3) ∩H(ε,D,R3) : ∂DD ⊆ R3 \ supp(ϕ)

}‖.‖V
(7.16)

with ‖.‖V denoting the canonical norm in H(ε,D,R3), and S was defined in (5.10)
as

S =
{
σ ∈ H( div , D,R3×3

sym) : ∀ϕ ∈ V :

∫
D

ε(ϕ) : σ + ϕ · divσ dx = 0
}
.

(7.17)
The corresponding energy scalar product was defined in (5.32) and is of the form

(w1, w2)E =
(1

ϑ
v(1) , v(2)

)
L2(D,R3)

+

(
C
( 1

µH
,

1

κH

)
σ

(1)
H , σ

(2)
H

)
L2(D,R3×3

sym)

+
L∑
l=1

(
C
( 1

µM,l

,
1

κM,l

)
σ

(1)
M,l , σ

(2)
M,l

)
L2(D,R3×3

sym)

,

(7.18)

wi =
(
v(i),σ

(i)
H ,σ

(i)
M

)> ∈ X, i = 1, 2.

Theorem 120. The adjoint of the operator B : X ⊇ D(B) → X in (7.14) with
D(B) as in (7.15), with respect to the scalar product (. , .)E in (7.18) is given by
B∗ : X ⊇ D(B∗)→ X, where

D(B∗) =
{

(v,σH ,σM)> ∈ Ṽ × L2(D,R3×3
sym)× L2(D,R3×3

sym)L :

σH +
L∑
l=1

σM,l ∈ S
}
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with

Ṽ :=
{

v ∈ H(ε,D,R3×3
sym) : ∀ψ ∈ S :

∫
D

ε(v) : ψ + v · divψ dx = 0
}

(7.19)

and

B∗w =


ϑ div

(
σH +

∑L
l=1 σM,l

)
C(µH , κH) ε(v)

C(µM,1 , κM,1) ε(v) + ωσ,1 σM,1
...

C(µM,L , κM,L) ε(v) + ωσ,L σM,L

 (7.20)

for w = (v,σH ,σM)> ∈ D(B∗).

Proof. By the definition of the domain of an adjoint operator, the following state-
ment holds true. For any w2 = (v(2),σ

(2)
H ,σ

(2)
M )> ∈ X it is w2 ∈ D(B∗), iff there

is z = (f ,g,h)>(= B∗w2) ∈ X, such that for all w1 = (v(1),σ
(1)
H ,σ

(1)
M )> ∈ D(B) it

holds ∫
D

−ε(v(1)) :
(
σ

(2)
H +

L∑
l=1

σ
(2)
M,l

)
− div

(
σ

(1)
H +

L∑
l=1

σ
(1)
M,l

)
· v(2)

+
L∑
l=1

ωσ,lC
( 1

µM,l

,
1

κM,l

)
σ

(1)
M,l : σ

(2)
M,l dx

= (Bw1, w2)E

= (w1, z)E

=

∫
D

v(1) ·
(1

ϑ
f
)

+ σ
(1)
H : C

( 1

µH
,

1

κH

)
g

+
L∑
l=1

σ
(1)
M,l : C

( 1

µM,l

,
1

κM,l

)
hl dx .

(7.21)

So in particular, w2 ∈ D(B∗) implies, that this statement holds for σ
(1)
H = 0,

σ
(1)
M,l = 0, l = 1, . . . , L, and v(1) ∈ C∞c (D,R3). According to the definition of div

in weak form in Notation 41, this means that σ
(2)
H +

∑L
l=1 σ

(2)
M,l ∈ H( div , D,R3×3

sym),

and (1/ϑ)f = div
(
σ

(2)
H +

∑L
l=1 σ

(2)
M,l

)
. Hence,∫

D

ε(v(1)) :
(
σ

(2)
H +

L∑
l=1

σ
(2)
M,l

)
+ v(1) · div

(
σ

(2)
H +

L∑
l=1

σ
(2)
M,l

)
dx = 0

for all v(1) ∈ V , which by (7.17) is equivalent to σ
(2)
H +

∑L
l=1 σ

(2)
M,l ∈ S.
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Analogously, w2 ∈ D(B∗) implies, that this statement holds true for the special

case v(1) = 0, σ
(1)
M,l = 0, l = 1, . . . , L, and σ

(1)
H ∈ C∞c (D,R3×3

sym). From the defini-

tion of ε in weak form in Notation 41 it therefore follows, that v(2) ∈ H(ε,D,R3),
and C(1/µH , 1/κH)g = ε(v(2)). Hence,∫

D

ε(v(2)) : σ
(1)
H + v(2) · divσ

(1)
H dx = 0

for all σ
(1)
H ∈ S, which is equivalent to v(2) ∈ Ṽ .

Finally, w2 ∈ D(B∗) implies, that this statement holds true for the special

case v(1) = 0, σ
(1)
H = 0, σ

(1)
M,l = 0, l ∈ {1, . . . , L} \ {k} for one k ∈ {1, . . . , L},

and σ
(1)
M,k ∈ C∞c (D,R3×3

sym). Again, the definition of ε in weak form implies, that

C(1/µM,k, 1/κM,k)(hk − ωσ,kσ(2)
M,k) = ε(v(2)).

So

B∗w2 =

f
g
h

 =


ϑ div

(
σ

(2)
H +

∑L
l=1 σ

(2)
M,l

)
C(µH , κH)ε(v(2))

C(µM,1, κM,1)ε(v(2)) + ωσ,1σ
(2)
M,1

...

C(µM,L, κM,L)ε(v(2)) + ωσ,Lσ
(2)
M,L

 .

Next we turn to A : X ⊇ D(A)→ X with

Au =


−ϑ divσ

−C
(
µH +

∑L
l=1 µM,l , κH +

∑L
l=1 κM,l

)
ε(v) −

∑L
l=1 ηl

ωσ,1C
(
µM,1 , κM,1

)
ε(v) + ωσ,1η1

...
ωσ,LC

(
µM,L , κM,L

)
ε(v) + ωσ,LηL

 , (7.22)

u = (v,σ,η)> ∈ D(A), and

D(A) = V × S × L2(D,R3×3
sym)L (7.23)

as defined in (5.11) where V is defined in (5.9) and S is defined in (5.10). The
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corresponding energy scalar product has been defined in (5.33) and is of the form

(u1, u2)T

=
(1

ϑ
v(1),v(2)

)
L2(D,R3)

+

(
C
( 1

µH
,

1

κH

)(
σ(1) +

L∑
l=1

1

ωσ,l
η

(1)
l

)
, σ(2) +

L∑
l=1

1

ωσ,l
η

(2)
l

)
L2(D,R3×3

sym)

+
L∑
l=1

(
1

ω2
σ,l

C
( 1

µM,l

,
1

κM,l

)
η

(1)
l , η

(2)
l

)
L2(D,R3×3

sym)

,

(7.24)

ui =
(
v(i),σ(i),η(i)

)> ∈ X, i = 1, 2.

Theorem 121. The adjoint of the operator A : X ⊇ D(A) → X in (7.22) with
D(A) as in (7.23), with respect to the scalar product (. , .)T in (7.24) is given by
A∗ : X ⊇ D(A∗)→ X, where

D(A∗) = Ṽ × S × L2(D,R3×3
sym)L

with Ṽ from (7.19) and S as in (7.17), and

A∗u =


ϑ divσ

C
(
µH +

∑L
l=1 µM,l , κH +

∑L
l=1 κM,l

)
ε(v) −

∑L
l=1 ηl

−ωσ,1C
(
µM,1 , κM,1

)
ε(v) + ωσ,1η1

...
−ωσ,LC

(
µM,L , κM,L

)
ε(v) + ωσ,LηL

 , (7.25)

u = (v,σ,η)> ∈ D(A∗).

Proof. Due to Lemma 32, it is D(A∗) = T−1D(B∗) and A∗ = T−1B∗T , where in
this case

T


v
σ
η1
...
ηL

 =


v

σ +
∑L

l=1
1

ωσ,l
ηl

− 1
ωσ,1
η1

...
− 1
ωσ,L

ηL

 , T−1


v
σH
σM,1

...
σM,L

 =


v

σH +
∑L

l=1 σM,l

−ωσ,1σM,1
...

−ωσ,LσM,L

 ,

as introduced and calculated in (5.24) and (5.25), respectively.
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Remark 122. It follows from the definition of S in (7.17), that for V in (7.16)
and Ṽ in (7.19), it is V ⊆ Ṽ . We leave the question open at this point, under
which regularity assumptions on the boundary of D, it even holds V = Ṽ . Either
way, with a look at (5.6) and Remark 47, we see that for v ∈ H(ε,D,R3), the
condition v ∈ Ṽ can be interpreted as v

∣∣
∂DD

= 0 in a variational sense.

If we compare the form of B in (7.14) and B∗ in (7.20), we see that these
operators only differ by some minus signs. Also A in (7.22) and A∗ in (7.25) only
differ by some minus signs. For numerical calculations this can be of advantage,
since any numerical algorithm implemented to evaluate one of these operators can
after only small adjustments be reused to evaluate the respective adjoint operator,
too. It turns out that the key idea to accomplish this, consists in the choice of the
natural energy scalar products (. , .)E and (. , .)T . �

7.2.2 Adjoint of the Derivative

In this section we derive representations of the adjoint operator of the deriva-
tive DF

(
p̂, û0, (f̂ , ĝ)>

)
of the parameter-to-solution-map F at any fixed point(

p̂, û0, (f̂ , ĝ)>
)

of its domain. We express it in terms of the original variables
v, σ, η as well as the transformed ones v, σH , σM . Concerning the notation and
any preliminary assumptions, this section is to be understood in the context of
section 6.2.

First we recall the structure of the parameter-to-solution-map. It is

F :
(
P , ‖.‖L∞(D,R3+3L)

)
×
(
D(Q̃), ‖.‖Q̃,X

)
×W 1,1

(
(0, t1), L2(D,R3 × R3×3

sym)
)

→ C
(
[0, t1] , L2(D,R3 × R3×3

sym)
)
,

F
(
p, u0, (f ,g)>

)
= π2

(
H
(
γ
(
p, u0, (f ,g)>

)))
,

where here and in the following, we abbreviate p = (ϑ, . . . , ωσ,L). Furthermore,

we are going to use the notation p̂ = (ϑ̂, . . . , ω̂σ,L), P̂ = Γ(p̂) and P = DΓp.

For any
(
p̂, û0, (f̂ , ĝ)>

)
∈ P × D(Q̃) × W 1,1

(
(0, t1), L2(D,R3 × R3×3

sym)
)
, the

derivative of the parameter-to-solution-map has the form

DF
(
p̂, û0, (f̂ , ĝ)>

)
= π2DH

(
γ
(
p̂, û0, (f̂ , ĝ)>

))
Dγ
(
p̂, û0, (f̂ , ĝ)>

)
.

Equivalently, we also wrote F as

F
(
p, u0, (f ,g)>

)
= π2T

(
Γ(p)

)−1
G̃
(
γ
(
p, u0, (f ,g)>

))
for all

(
p, u0, (f ,g)>

)
∈ P × D(Q̃) ×W 1,1

(
(0, t1), L2(D,R3 × R3×3

sym)
)
, where p 7→

π2T
(
Γ(p)

)−1
is constant. So its derivative has the alternative form

DF
(
p̂, û0, (f̂ , ĝ)>

)
= π2T

(
Γ(p̂)

)−1
DG̃

(
γ
(
p̂, û0, (f̂ , ĝ)>

))
Dγ
(
p̂, û0, (f̂ , ĝ)>

)
.
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Using these two representations of the derivative, we get the two different rep-
resentations of the adjoint derivative. The crucial parts of them are given by
Theorem 117 on the adjoint of DG̃(P̂ ) with respect to the energy scalar product
(. , .)E,P̂ on X and Theorem 119 on the adjoint of DH(P̂ ) with respect to the

energy scalar product (. , .)T (P̂ ) on X, where P̂ = Γ(p̂) is the pair of parameter
operators at the material parameter coordinate p̂ ∈ P , where we take the deriva-
tive of F . The remaining parts, that is the adjoints of π2, Dγ

(
p̂, û0, (f̂ , ĝ)>

)
and

π2T
(
Γ(p̂)

)−1
, are provided by the following lemma. Before we formulate it, we

make several adjustments to the domains and codomains of these maps in the
subsequent assumption.

Assumption 123. In this section, we consider F to be a map with the bigger
codomain L2

(
D × (0, t1), R3 × R3×3

sym

)
.

Furthermore, we extend

π2 : L2
(

(0, t1),
(
X, (. , .)T (P̂ )

))
→ L2

(
D × (0, t1), R3 × R3×3

sym

)
,

(v,σ,η)> 7→ (v,σ)> ,
(7.26)

π2T
(
Γ(p̂)

)−1
: L2

(
(0, t1),

(
X, (. , .)E,P̂

))
→ L2

(
D × (0, t1), R3 × R3×3

sym

)
,

(v,σH ,σM)> 7→
(
v, σH +

L∑
l=1

σM,l

)> (7.27)

and

Dγ
(
p̂, û0, (f̂ , ĝ)>

)
: L∞(D,R3+3L)×X × L1

(
(0, t1), L2(D,R3 × R3×3

sym)
)

→ T Γ(P)×X × L1
(
(0, t1), X

)
,(

p, u0, (f ,g)>
)
7→

(
DΓp, u0, (ϑf̂ + ϑ̂f ,g,0)>

)
,

(7.28)

and note that all three operators are bounded with respect to the new norms again.

Using these operators together with the extensions of DG̃
(
γ
(
p̂, û0, (f̂ , ĝ)>

))
and DH

(
γ
(
p̂, û0, (f̂ , ĝ)>

))
introduced in Assumption 116 and Assumption 118,

respectively, we can consider the operator DF
(
p̂, û0, (f̂ , ĝ)>

)
to be extended to

the bounded linear operator

DF
(
p̂, û0, (f̂ , ĝ)>

)
: L∞(D,R3+3L)×X × L1

(
(0, t1), L2(D,R3 × R3×3

sym)
)

→ L2
(
D × (0, t1),R3 × R3×3

sym

)
.

�
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Lemma 124. The adjoint of (7.26) is given by

π∗2 : L2
(
D × (0, t1), R3 × R3×3

sym

)
→ L2

(
(0, t1),

(
X, (. , .)T (P̂ )

))
,

(
v
σ

)
7→


ϑ̂v

C
(
µ̂H +

∑L
l=1 µ̂M,l , κ̂H +

∑L
l=1 κ̂M,l

)
σ

−ω̂σ,1C(µ̂M,1, κ̂M,1)σ
...

−ω̂σ,LC(µ̂M,L, κ̂M,L)σ

 . (7.29)

The adjoint of (7.27) is of the form[
π2T

(
Γ(p̂)

)−1
]∗

: L2
(
D × (0, t1), R3 × R3×3

sym

)
→ L2

(
(0, t1),

(
X, (. , .)E,P̂

))
,

(
v
σ

)
7→


ϑ̂v

C(µ̂H , κ̂H)σ
C(µ̂M,1, κ̂M,1)σ

...
C(µ̂M,L, κ̂M,L)σ

 . (7.30)

And for the adjoint of (7.28), we have

Dγ
(
p̂, û0, (f̂ , ĝ)>

)∗
: T Γ(P)′ ×X × L∞

(
(0, t1), X

)
→ L∞(D,R3+3L)′ ×X × L∞

(
(0, t1), L2(D,R3 × R3×3

sym)
)
,(

P ′, u0, (f ,g,h)>
)
7→
((
ϑ′ +

∫ t1

0

f̂(t) · f(t) dt , µ′H , . . . , ω
′
σ,L

)
, u0, (ϑ̂f ,g)>

)
,

(7.31)

where (ϑ′, µ′H , . . . , ω
′
σ,L) := DΓ∗P ′ with the adjoint DΓ∗ of DΓ, which is an isom-

etry, since DΓ is an isometry by Lemma 102.

Proof. These claims can be verified via direct calculations. To compute the first
two of these three adjoints, we need the explicit form of the scalar products (. , .)E,P̂
from (5.32) and (. , .)T (P̂ ) from (5.33), which are repeated here for the convenience
of the reader. It is

(w1, w2)E,P̂ =
(1

ϑ
v(1) , v(2)

)
L2(D,R3)

+

(
C
( 1

µH
,

1

κH

)
σ

(1)
H , σ

(2)
H

)
L2(D,R3×3

sym)

+
L∑
l=1

(
C
( 1

µM,l

,
1

κM,l

)
σ

(1)
M,l , σ

(2)
M,l

)
L2(D,R3×3

sym)

,
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wi =
(
v(i),σ

(i)
H ,σ

(i)
M

)> ∈ X, i = 1, 2, and

(u1, u2)T (P̂ )

=
(1

ϑ
v(1),v(2)

)
L2(D,R3)

+

(
C
( 1

µH
,

1

κH

)(
σ(1) +

L∑
l=1

1

ωσ,l
η

(1)
l

)
, σ(2) +

L∑
l=1

1

ωσ,l
η

(2)
l

)
L2(D,R3×3

sym)

+
L∑
l=1

(
1

ω2
σ,l

C
( 1

µM,l

,
1

κM,l

)
η

(1)
l , η

(2)
l

)
L2(D,R3×3

sym)

,

ui =
(
v(i),σ(i),η(i)

)> ∈ X, i = 1, 2.

The following two theorems constitute the main result of this section. The first
one shows how the adjoint of DF

(
p̂, û0, (f̂ , ĝ)>

)
for some point

(
p̂, û0, (f̂ , ĝ)>

)
of

the domain of F can be computed using the transformed variables v, σH , σM .
The second one derives an analogous result in terms of the original variables v, σ
and η.

Theorem 125. The adjoint

DF
(
p̂, û0, (f̂ , ĝ)>

)∗
: L2

(
D × (0, t1),R3 × R3×3

sym

)
→ L∞(D,R3+3L)′ ×X × L∞

(
(0, t1), L2(D,R3 × R3×3

sym)
)

of the derivative of the parameter-to-solution-map F at a point
(
p̂, û0, (f̂ , ĝ)>

)
∈

L∞(D,R3+3L) × D(Q̃) ×W 1,1
(
(0, t1), L2(D,R × R3×3

sym)
)
, where p̂ = (ϑ̂, . . . , ω̂σ,L)

and û0 = (v̂(0), σ̂(0), η̂(0))>, is of the form

DF
(
p̂, û0, (f̂ , ĝ)>

)∗(v
σ

)
=

(
(ϑ′, . . . , ω′σ,L), (v(0),σ(0),η(0))>, (f ,g)>

)
with

ϑ′ =
1

ϑ̂

∫ t1

0

(
div
(
σ̂H +

L∑
l=1

σ̂M,l

)
+ f̂

)
· v̄ dt ,

µ′H =

∫ t1

0

C
( 1

µ̂H
, 0
)
ε(v̂) : σ̄H dt ,

κ′H =

∫ t1

0

C
(

0,
1

κ̂H

)
ε(v̂) : σ̄H dt ,

µ′M,l =

∫ t1

0

C
( 1

µ̂M,l

, 0
)
ε(v̂) : σ̄M,l dt , l = 1, . . . , L ,
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κ′M,l =

∫ t1

0

C
(

0,
1

κ̂M,l

)
ε(v̂) : σ̄M,l dt , l = 1, . . . , L ,

ω′σ,l =
1

ω̂2
σ,l

η̂
(0)
l :

(
C
( 1

µ̂M,l

,
1

κ̂M,l

)
σ̄M,l(0)− C

( 1

µ̂H
,

1

κ̂H

)
σ̄H(0)

)
−
∫ t1

0

C
( 1

µ̂M,l

,
1

κ̂M,l

)
σ̂M,l : σ̄M,l dt , l = 1, . . . , L ,

v(0) =
1

ϑ̂
v̄(0) ,

σ(0) = C
( 1

µ̂H
,

1

κ̂H

)
σ̄H(0) ,

η
(0)
l =

1

ω̂σ,l

(
C
( 1

µ̂H
,

1

κ̂H

)
σ̄H(0)− C

( 1

µ̂M,l

,
1

κ̂M,l

)
σ̄M,l(0)

)
, l = 1, . . . , L ,

f = v̄ ,

g = C
( 1

µ̂H
,

1

κ̂H

)
σ̄H ,

where (v̄, σ̄H , σ̄M) satisfies

d

dt
v̄(t1 − t) = − ϑ̂ div

(
σ̄H +

L∑
l=1

σ̄M,l

)
(t1 − t) + ϑ̂v(t1 − t) ,

d

dt
σ̄H(t1 − t) = − C(µ̂H , κ̂H) ε

(
v̄(t1 − t)

)
+ C(µ̂H , κ̂H)σ(t1 − t) ,

d

dt
σ̄M,l(t1 − t) = − C(µ̂M,l, κ̂M,l) ε

(
v̄(t1 − t)

)
− ω̂σ,l σ̄M,l(t1 − t)

+ C(µ̂M,l, κ̂M,l)σ(t1 − t) , l = 1, . . . , L ,

(7.32)

v̄(t1) = 0 , σ̄H(t1) = 0 , σ̄M(t1) = 0 ,

v̄(t1 − t)
∣∣
∂DD

= 0 , n>
(
σ̄H +

L∑
l=1

σ̄M,l

)
(t1 − t)

∣∣∣
∂DN

= 0 ,

t ∈ [0, t1], in the mild sense and (v̂, σ̂H , σ̂M)> satisfies

v̂′(t) = ϑ̂ div
(
σ̂H +

L∑
l=1

σ̂M,l

)
(t) + ϑ̂ f̂(t) ,

σ̂′H(t) = C(µ̂H , κ̂H) ε
(
v̂(t)

)
+ ĝ(t) ,

σ̂′M,l(t) = C(µ̂M,l, κ̂M,l) ε
(
v̂(t)

)
− ω̂σ,l σ̂M,l(t) , l = 1, . . . , L ,
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v̂(0) = v̂(0) , σ̂H(0) = σ̂(0) +
L∑
l=1

1

ω̂σ,l
η̂

(0)
l ,

σ̂M,l(0) = − 1

ω̂σ,l
η̂

(0)
l , l = 1, . . . , L ,

v̂(t)
∣∣
∂DD

= 0 , n>
(
σ̂H +

L∑
l=1

σ̂M,l

)
(t)
∣∣∣
∂DN

= 0 ,

t ∈ [0, t1], in the classical sense.

Proof. It is

DF
(
p̂, û0, (f̂ , ĝ)>

)∗
= Dγ

(
p̂, û0, (f̂ , ĝ)>

)∗
DG̃

(
γ
(
p̂, û0, (f̂ , ĝ)>

))∗[
π2T

(
Γ(p̂)

)−1
]∗
.

To find DG̃
(
γ(p̂, û0, (f̂ , ĝ)>

)∗[
π2T (Γ(p̂))−1

]∗
, we use Theorem 117 and evaluate

the expression[
DG̃(P̂ , û0, f̂)∗ϕ

]
(P, u0, f)

=

∫ t1

0

(
− β(P )ŵ(t) +

[
DT (P̂ )P

]
f̂(t) + T (P̂ )f(t) , w̄(t)

)
E,P̂

dt

+
([
DT (P̂ )P

]
û0 + T (P̂ )u0 , w̄(0)

)
E,P̂

for arbitrary P = DΓ(ϑ, . . . , ωσ,L) ∈ T Γ(P), u0 = (v(0),σ(0),η(0))> ∈ X and

f = (f ,g,h)> ∈ L1
(
(0, t1), X

)
, and with P̂ = Γ(ϑ̂, . . . , ω̂σ,L), f̂ = (ϑ̂f̂ , ĝ,0)>,

û0 = (v̂(0), σ̂(0), η̂(0))>, ϕ =
[
π2T

(
Γ(ϑ̂, . . . , ω̂σ,L)

)−1
]∗

(v,σ)> from (7.30), w̄ =

(v̄, σ̄H , σ̄M)> satisfying

d

dt
w̄(t1 − t) = −β(P̂ )∗w̄(t1 − t) + ϕ(t1 − t) , t ∈ [0, t1] ,

w̄(t1) = 0

in the mild sense, and ŵ = (v̂, σ̂H , σ̂M)> satisfying

ŵ′(t) = −β(P̂ )ŵ(t) + T (P̂ )f̂(t) , t ∈ [0, t1] ,

ŵ(0) = T (P̂ )û0

in the classical sense. Afterwards we concatenate (7.31) with the derived repre-
sentation of DG̃

(
γ(p̂, û0, (f̂ , ĝ)>

)∗[
π2T (Γ(p̂))−1

]∗
.
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It should be mentioned, that in the statement of the theorem, the symbols v(0),
σ(0), η(0), f and g have a different meaning than here in the proof.

In the sequel, we display the intermediate results of the first step.∫ t1

0

(
− β(P )ŵ(t), w̄(t)

)
E,P̂

dt

=

∫ t1

0

(


ϑ div
(
σ̂H +

∑L
l=1 σ̂M,l

)
C
(
µH , κH

)
ε(v̂)

C
(
µM,1, κM,1

)
ε(v̂)− ωσ,1σ̂M,1
...

C
(
µM,L, κM,L

)
ε(v̂)− ωσ,Lσ̂M,L

 ,


v̄
σ̄H
σ̄M,1

...
σ̄M,L


)
E,P̂

dt

=

∫ t1

0

(


ϑ

ϑ̂
div
(
σ̂H +

∑L
l=1 σ̂M,l

)
C
(
µH
µ̂H
, κH
κ̂H

)
ε(v̂)

C
(
µM,1
µ̂M,1

,
κM,1
κ̂M,1

)
ε(v̂)− ωσ,1C

(
1

µ̂M,1
, 1
κ̂M,1

)
σ̂M,1

...

C
(
µM,L
µ̂M,L

,
κM,L
κ̂M,L

)
ε(v̂)− ωσ,LC

(
1

µ̂M,L
, 1
κ̂M,L

)
σ̂M,L


,


v̄
σ̄H
σ̄M,1

...
σ̄M,L


)
X

dt

=

∫ t1

0

∫
D

ϑ

ϑ̂
div
(
σ̂H +

L∑
l=1

σ̂M,l

)
· v̄ dx dt

+

∫ t1

0

∫
D

C
(µH
µ̂H

,
κH
κ̂H

)
ε(v̂) : σ̄H dx dt

+
L∑
l=1

∫ t1

0

∫
D

C
(µM,l

µ̂M,l

,
κM,l

κ̂M,l

)
ε(v̂) : σ̄M,l dx dt

−
L∑
l=1

∫ t1

0

∫
D

ωσ,lC
( 1

µ̂M,l

,
1

κ̂M,l

)
σ̂M,l : σ̄M,l dx dt

=

∫
D

∫ t1

0

ϑ

ϑ̂
div
(
σ̂H +

L∑
l=1

σ̂M,l

)
· v̄ dt dx

+

∫
D

∫ t1

0

(
µHC

( 1

µ̂H
, 0
)

+ κHC
(

0,
1

κ̂H

))
ε(v̂) : σ̄H dt dx

+
L∑
l=1

∫
D

∫ t1

0

(
µM,lC

( 1

µ̂M,l

, 0
)

+ κM,lC
(

0,
1

κ̂M,l

))
ε(v̂) : σ̄M,l dt dx

−
L∑
l=1

∫
D

∫ t1

0

ωσ,lC
( 1

µ̂M,l

,
1

κ̂M,l

)
σ̂M,l : σ̄M,l dt dx
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=

∫
D

ϑ

ϑ̂

∫ t1

0

div
(
σ̂H +

L∑
l=1

σ̂M,l

)
· v̄ dt dx

+

∫
D

µH

∫ t1

0

C
( 1

µ̂H
, 0
)
ε(v̂) : σ̄H dt dx

+

∫
D

κH

∫ t1

0

C
(

0,
1

κ̂H

)
ε(v̂) : σ̄H dt dx

+
L∑
l=1

∫
D

µM,l

∫ t1

0

C
( 1

µ̂M,l

, 0
)
ε(v̂) : σ̄M,l dt dx

+
L∑
l=1

∫
D

κM,l

∫ t1

0

C
(

0,
1

κ̂M,l

)
ε(v̂) : σ̄M,l dt dx

+
L∑
l=1

∫
D

ωσ,l

(
−
∫ t1

0

C
( 1

µ̂M,l

,
1

κ̂M,l

)
σ̂M,l : σ̄M,l dt

)
dx .

Furthermore, we recall that with T (P̂ ) from (5.24), that is

T (P̂ )


v
σ
η1
...
ηL

 =


v

σ +
∑L

l=1
1

ω̂σ,l
ηl

− 1
ω̂σ,1
η1

...
− 1
ω̂σ,L

ηL

 ,

and

[
DT (P̂ )P

]v
σ
η

 =



0

−
∑L

l=1
ωσ,l

ω̂2
σ,l
ηl

ωσ,1

ω̂2
σ,1
η1

...
ωσ,L

ω̂2
σ,L
ηL

 ,

from Lemma 106, it is

[
DT (P̂ )P

]ϑ̂f̂
ĝ
0

 = 0 , T (P̂ )

f
g
h

 =


f

g +
∑L

l=1
1

ω̂σ,l
hl

− 1
ω̂σ,1

h1

...
− 1
ω̂σ,L

hL
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and ∫ t1

0

(
T (P̂ )

f
g
h

 ,

 v̄
σ̄H
σ̄M

)
E,P̂

dt

=

∫ t1

0

∫
D

1

ϑ̂
v̄ · f dx dt +

∫ t1

0

∫
D

C
( 1

µ̂H
,

1

κ̂H

)
σ̄H : g dx dt

+
L∑
l=1

∫ t1

0

∫
D

(. . . ) : hl dx dt .

Finally,([
DT (P̂ )P

]
û0 , w̄(0)

)
E,P̂

=

∫
D

L∑
l=1

ωσ,l
ω̂2
σ,l

η̂
(0)
l :

(
C
( 1

µ̂M,l

,
1

κ̂M,l

)
σ̄M,l(0)− C

( 1

µ̂H
,

1

κ̂H

)
σ̄H(0)

)
dx

and(
T (P̂ )u0 , w̄(0)

)
E,P̂

=

∫
D

1

ϑ̂
v̄(0) · v(0) + C

( 1

µ̂H
,

1

κ̂H

)
σ̄H(0) : σ(0)

+
L∑
l=1

1

ω̂σ,l

(
C
( 1

µ̂H
,

1

κ̂H

)
σ̄H(0)− C

( 1

µ̂M,l

,
1

κ̂M,l

)
σ̄M,l(0)

)
: η

(0)
l dx .

How the adjoint of DF
(
p̂, û0, (f̂ , ĝ)>

)
for some point

(
p̂, û0, (f̂ , ĝ)>

)
of the do-

main of F can be computed using the original equation in the variables v, σ, η,
is shown in the following theorem.

Theorem 126. The adjoint

DF
(
p̂, û0, (f̂ , ĝ)>

)∗
: L2

(
D × (0, t1),R3 × R3×3

sym

)
→ L∞(D,R3+3L)′ ×X × L∞

(
(0, t1), L2(D,R3 × R3×3

sym)
)

of the derivative of the parameter-to-solution-map F at a point
(
p̂, û0, (f̂ , ĝ)>

)
∈

L∞(D,R3+3L) × D(Q̃) ×W 1,1
(
(0, t1), L2(D,R × R3×3

sym)
)
, where p̂ = (ϑ̂, . . . , ω̂σ,L)

and û0 = (v̂(0), σ̂(0), η̂(0))>, is of the form

DF
(
p̂, û0, (f̂ , ĝ)>

)∗(v
σ

)
=

(
(ϑ′, . . . , ω′σ,L), (v(0),σ(0),η(0))>, (f ,g)>

)
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with

ϑ′ =
1

ϑ̂

∫ t1

0

(
div σ̂ + f̂

)
· v̄ dt ,

µ′H =

∫ t1

0

C
( 1

µ̂H
, 0
)
ε(v̂) :

(
σ̄ +

L∑
l=1

1

ω̂σ,l
η̄l

)
dt ,

κ′H =

∫ t1

0

C
(

0,
1

κ̂H

)
ε(v̂) :

(
σ̄ +

L∑
l=1

1

ω̂σ,l
η̄l

)
dt ,

µ′M,l = − 1

ω̂σ,l

∫ t1

0

C
( 1

µ̂M,l

, 0
)
ε(v̂) : η̄l dt , l = 1, . . . , L ,

κ′M,l = − 1

ω̂σ,l

∫ t1

0

C
(

0,
1

κ̂M,l

)
ε(v̂) : η̄l dt , l = 1, . . . , L ,

ω′σ,l = − 1

ω̂σ,l

∫ t1

0

(
C(µ̂M,l, κ̂M,l)ε(v̂) + η̂l

)
:

(
1

ω̂σ,l
C
( 1

µ̂M,l

,
1

κ̂M,l

)
η̄l

+ C
( 1

µ̂H
,

1

κ̂H

)(
σ̄ +

L∑
k=1

1

ω̂σ,k
η̄k

))
dt ,

l = 1, . . . , L ,

v(0) =
1

ϑ̂
v̄(0) ,

σ(0) = C
( 1

µ̂H
,

1

κ̂H

)(
σ̄(0) +

L∑
l=1

1

ω̂σ,l
η̄l(0)

)
,

η
(0)
l =

1

ω̂σ,l

(
C
( 1

µ̂H
,

1

κ̂H

)(
σ̄(0) +

L∑
k=1

1

ω̂σ,k
η̄k(0)

)
+

1

ω̂σ,l
C
( 1

µ̂M,l

,
1

κ̂M,l

)
η̄l(0)

)
,

l = 1, . . . , L ,

f = v̄ ,

g = C
( 1

µ̂H
,

1

κ̂H

)(
σ̄ +

L∑
l=1

1

ω̂σ,l
η̄l

)
,

where (v̄, σ̄, η̄)> satisfies

d

dt
v̄(t1 − t) = −ϑ̂ div σ̄(t1 − t) + ϑ̂v(t1 − t) ,
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d

dt
σ̄(t1 − t) = −C

(
µ̂H +

L∑
l=1

µ̂M,l , κ̂H +
L∑
l=1

κ̂M,l

)
ε
(
v̄(t1 − t)

)
+

L∑
l=1

η̄l(t1 − t)

+ C
(
µ̂H +

L∑
l=1

µ̂M,l , κ̂H +
L∑
l=1

κ̂M,l

)
σ(t1 − t) , (7.33)

d

dt
η̄l(t1 − t) = ω̂σ,lC(µ̂M,l , κ̂M,l) ε

(
v̄(t1 − t)

)
− ω̂σ,lη̄l(t1 − t)

− ω̂σ,lC(µ̂M,l, κ̂M,l)σ(t1 − t) , l = 1, . . . , L ,

v̄(t1) = 0 , σ̄(t1) = 0 , η̄(t1) = 0 ,

v̄(t1 − t)
∣∣
∂DD

= 0 , n>σ̄(t1 − t)
∣∣
∂DN

= 0 ,

t ∈ [0, t1], in the mild sense and (v̂, σ̂, η̂)> satisfies

v̂′(t) = ϑ̂ div σ̂(t) + ϑ̂f̂(t) ,

σ̂′(t) = C

(
µ̂H +

L∑
l=1

µ̂M,l , κ̂H +
L∑
l=1

κ̂M,l

)
ε
(
v̂(t)

)
+

L∑
l=1

η̂l(t) + ĝ(t) ,

η̂′l(t) = −ω̂σ,lC(µ̂M,l , κ̂M,l) ε
(
v̂(t)

)
− ω̂σ,lη̂l(t) , l = 1, . . . , L ,

v̂(0) = v̂(0) , σ̂(0) = σ̂(0) , η̂(0) = η̂(0) ,

v̂(t)
∣∣
∂DD

= 0 , n>σ̂(t)
∣∣
∂DN

= 0 ,

t ∈ [0, t1], in the classical sense.

Proof. It is

DF
(
p̂, û0, (f̂ , ĝ)>

)∗
= Dγ

(
p̂, û0, (f̂ , ĝ)>

)∗
DH

(
γ
(
p̂, û0, (f̂ , ĝ)>

))∗
π∗2 .

In a first step we derive a representation of DH
(
γ(p̂, û0, (f̂ , ĝ)>)

)∗
π∗2 by using

Theorem 119 and evaluating the expression[
DH(P̂ , û0, f̂)∗ϕ

]
(P, u0, f)

=

∫ t1

0

(
− Aû(t) + f(t) , ū(t)

)
T (P̂ )

dt +
(
u0, ū(0)

)
T (P̂ )

(7.34)

for arbitrary P = DΓ(ϑ, . . . , ωσ,L) ∈ T Γ(P), u0 = (v(0),σ(0),η(0))> ∈ X and

f = (f ,g,h)> ∈ L1
(
(0, t1), X

)
, and with P̂ = Γ(ϑ̂, . . . , ω̂σ,L), f̂ = (ϑ̂f̂ , ĝ,0)>,

û0 = (v̂(0), σ̂(0), η̂(0))>, and ϕ = π∗2(v,σ)> from (7.29). The operator A has



7.2. VISCOELASTICITY 131

already been computed in the proof of proposition 112 on the derivative of F
expressed in the original variables. It is

A

v̂
σ̂
η̂

 =


−ϑ div σ̂

−C
(
µH +

∑L
l=1 µM,l , κH +

∑L
l=1 κM,l

)
ε(v̂)

ω̂σ,1C
(
µM,1, κM,1

)
ε(v̂) + ωσ,1C

(
µ̂M,1, κ̂M,1

)
ε(v̂) + ωσ,1η̂1

...
ω̂σ,LC

(
µM,L, κM,L

)
ε(v̂) + ωσ,LC

(
µ̂M,L, κ̂M,L

)
ε(v̂) + ωσ,Lη̂L

 .

Furthermore, û = (v̂, σ̂, η̂)> satisfies

û′(t) = −Âû(t) + f̂(t) , t ∈ [0, t1] ,

û(0) = û0

in the classical sense with the original differential operator

Âû = −


ϑ̂ div σ̂

C
(
µ̂H +

∑L
l=1 µ̂M,l , κ̂H +

∑L
l=1 κ̂M,l

)
ε(v̂) +

∑L
l=1 η̂l

−ω̂σ,1C
(
µ̂M,1 , κ̂M,1

)
ε(v̂) − ω̂σ,1η̂1

...
−ω̂σ,LC

(
µ̂M,L , κ̂M,L

)
ε(v̂) − ω̂σ,Lη̂L


containing the parameters ϑ̂, . . . , ω̂σ,L, and ū = (v̄, σ̄, η̄)> satisfies

d

dt
ū(t1 − t) = −Â∗ū(t1 − t) + ϕ(t1 − t) , t ∈ [0, t1] ,

ū(t1) = 0

in the mild sense, where

Â∗ū = −


−ϑ̂ div σ̄

−C
(
µ̂H +

∑L
l=1 µ̂M,l , κ̂H +

∑L
l=1 κ̂M,l

)
ε(v̄) +

∑L
l=1 η̄l

ω̂σ,1C
(
µ̂M,1 , κ̂M,1

)
ε(v̄) − ω̂σ,1η̄1

...
ω̂σ,LC

(
µ̂M,L , κ̂M,L

)
ε(v̄) − ω̂σ,Lη̄L


has been computed in (7.25).

In a second step we concatenate (7.31) with the derived representation of
DH

(
γ(p̂, û0, (f̂ , ĝ)>)

)∗
π∗2.

Again we note that in the statement of the theorem, the symbols v(0), σ(0),
η(0), f and g have a different meaning than here in the proof.
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In the sequel we display the intermediate results of the first step. We begin
with∫ t1

0

(
− Aû(t) , ū(t)

)
T (P̂ )

dt =

∫ t1

0

(
− T (P̂ )Aû(t) , T (P̂ )ū(t)

)
E,P̂

dt . (7.35)

It is

−T (P̂ )Aû =


ϑ div σ̂

C(µH , κH)ε(v̂)−
∑L

l=1
ωσ,l

ω̂σ,l

(
C(µ̂M,l, κ̂M,l)ε(v̂) + η̂l

)
C(µM,1, κM,1)ε(v̂) + ωσ,1

ω̂σ,1

(
C(µ̂M,1, κ̂M,1)ε(v̂) + η̂1

)
...

C(µM,L, κM,L)ε(v̂) +
ωσ,L

ω̂σ,L

(
C(µ̂M,L, κ̂M,L)ε(v̂) + η̂L

)

 .

So if we abbreviate w̃ := (ṽ, σ̃H , σ̃M)> := P̂−1
1 T (P̂ )ū, the integrand of the iterated

integral in (7.35) has the form

ϑ div σ̂ : ṽ + C(µH , κH)ε(v̂) : σ̃H +
L∑
l=1

C(µM,l, κM,l)ε(v̂) : σ̃M,l

+
L∑
l=1

ωσ,l
ω̂σ,l

(
C(µ̂M,l, κ̂M,l)ε(v̂) + η̂l

)
: (σ̃M,l − σ̃H) .

For the second term in (7.34) it holds∫ t1

0

(
f(t), ū(t)

)
T (P̂ )

dt =

∫ t1

0

(
T (P̂ )

f(t)
g(t)
0

 , P̂−1
1 T (P̂ )ū(t)

)
X

dt

=

∫ t1

0

(


f

g +
∑L

l=1
1

ω̂σ,l
hl

− 1
ω̂σ,1

h1

...
− 1
ω̂σ,L

hL

 ,

 ṽ(t)
σ̃H(t)
σ̃M(t)

)
X

dt

with ṽ, σ̃H , σ̃M as above.
Finally, the last term of (7.34) has the form(

u0 , ū(0)
)
T (P̂ )

=
(
T (P̂ )u0 , P

−1
1 T (P̂ )ū(0)

)
X

=

(


v(0)

σ(0) +
∑L

l=1
1

ω̂σ,l
η

(0)
l

− 1
ω̂σ,1
η

(0)
1

...

− 1
ω̂σ,L

η
(0)
L

 ,

 ṽ(0)
σ̃H(0)
σ̃M(0)

)
X

.
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Remark 127. We remark again at this point, that up to the inhomogeneities,
the adjoint backwards in time equations (7.32) and (7.33) only differ by some
minus signs from the related wave equations, which describe the forward problem.
Therefore for each pair of equations, only one numerical solver is needed.

We achieved this by using the natural weighted energy scalar products (. .)E,P̂
and (. .)T (P̂ ) at the parameter point, where we take the derivative. Yet we would like
to point out explicitly here, that in both cases the adjoint of the derivative of the
parameter-to-solution-map is still taken with respect to the canonical unweighted
scalar product

∫ t1
0

(. , .)L2(D,R3×R3×3
sym) dt in the codomain L2(D × (0, t1), R3 × R3×3

sym)
of F . �





Appendix

Bochner Integrable Functions on
the Line

This section is included to clarify the notion of integrability of Hilbert space valued
functions which we base our argumentations on. Since the main focus of this thesis
does not lie in this field, we only briefly sketch some definitions and further omit
some basic facts which are needed in our calculations. More details can be found
in [10], [9] and [8] for example.

Throughout this section let
(
X, ‖.‖

)
denote a Banch space.

Among the numerous notions of measurability around [3], we pick the following.

Definition A.1. Let
(
I,B ∩ I, λ1|B∩I

)
be the measure space consisting in an in-

terval I ⊆ R, the trace σ-algebra B ∩ I of the Borel σ-algebra B on R and the
one-dimensional Lebesgue-measure λ1 on I. A function I → X of the form∑n

k=1 αk1Ωk , with n ∈ N, αk ∈ X, Ωk ⊆ I Borel measurable and pairwise dis-
joint with λ1(Ωk) < ∞ for k = 1, . . . , n and 1... denoting the respective char-
acteristic function, is called a simple function. A function f : I → X is
called (strongly) measurable, iff there is a sequence (fn)n∈N of simple func-
tions such that ‖f(t) − fn(t)‖ → 0, n → ∞ for almost every t ∈ I. A mea-
surable function f : I → X is called Bochner integrable, iff there is a se-
quence of simple functions (fn)n∈N such that

∫
I

∥∥fn(t) − f(t)
∥∥ dt → 0, n → ∞.

In this case its Bochner integral over any measurable set Ω ⊆ I is defined as∫
Ω
f(t) dt := limn→∞

∫
Ω
fn(t) dt and

∫
Ω
fn(t) dt :=

∑Kn
k=1 α

(n)
k λ1(Ω∩Ω

(n)
k ), where we

assume fn to be of the form fn =
∑Kn

k=1 α
(n)
k 1

Ω
(n)
k

, n ∈ N.

The space of equivalence classes of Bochner integrable functions which are equal
almost everywhere on I is denoted by L1(I,X). It is equipped with the norm
‖f‖L1(I,X) :=

∫
I
‖f(t)‖ dt for every f .

Inductively we define the spaces of weakly differentiable functions by setting

135
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W 0,1(I,X) := L1(I,X) and

W k+1,1(I,X) :=
{
f ∈ L1(I,X) :

∃t0 ∈ I, u ∈ X, g ∈ W k,1(I,X) : f(t) = u+

∫ t

t0

g(s) ds f.a.a. t ∈ I
}

for k ∈ N0. In this notation g is called the derivative of f and denoted by f ′.
Furthermore for k ∈ N0 and f ∈ W k,1(I,X) we denote f (0) := f and f (j+1) :=
(f (j))′ for j = 0, . . . , k − 1. On W k,1(I,X) we consider the norm ‖f‖Wk,1(I,X) :=∑k

j=0 ‖f (j)‖L1(I,X), f ∈ W k,1(I,X), k ∈ N0. �

In the context of Definition A.1 the theorem of Pettis states that a function
f : I → X is strongly measurable, if and only if it is weakly measurable and there
is a separable subspace Y ⊆ X such that f(t) ∈ Y for almost all t ∈ I (see [8] for
example). In our application X is a separable Hilbert space either way.

Furthermore, with the help of the Lebesgue differentiation theorem for vec-
tor valued functions one can verify that the weak derivatives of an element of
W k,1(I,X) are unique in L1(I,X).

Lemma A.2. (Sobolev Embedding Theorem) Every f ∈ W 1,1
(
(0, t1), X

)
contains

a continuous representative f̃ , and the embedding

ι : W 1,1
(
(0, t1), X

)
↪→ C

(
[0, t1], X

)
f 7→ f̃

is bounded with

‖ι‖ ≤ cCW := max
{ 1

t1
, 1
}
. (A.1)

Proof. Let f ∈ W 1,1
(
(0, t1), X

)
. By definition there is t0 ∈ (0, t1), u ∈ X and

g(= f ′) ∈ L1
(
(0, t1), X

)
such that f can be represented by the function f̃(t) :=

u +
∫ t
t0
f ′(s) ds, t ∈ (0, t1). We extend f̃ to [0, t1] by arbitrarily extending f ′ to

[0, t1]. For s, t ∈ (0, t1) with s ≤ t it holds

‖f̃(t)− f̃(s)‖ =
∥∥∥∫ t

s

f ′(r) dr
∥∥∥ ≤

∫ t

s

‖f ′(r)‖ dr

which by the theorem of dominated convergence and the integrability of f ′ on
[0, t1] tends to zero for s→ t and t→ s. So f̃ is continuous.

Furthermore,

f̃(t) = u +

∫ s

t0

f ′(r) dr +

∫ t

s

f ′(r) dr = f̃(s) +

∫ t

s

f ′(r) dr
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for every s ∈ [0, t1]. So

t1‖f̃(t)‖ =

∫ t1

0

‖f̃(t)‖ ds ≤
∫ t1

0

‖f̃(s)‖+

∫ max{s,t}

min{s,t}
‖f ′(r)‖ dr ds

≤ ‖f‖L1((0,t1),X) + t1‖f ′‖L1((0,t1),X) ,

t ∈ [0, t1]. It follows

‖f̃‖C([0,t1],X) ≤ max
{ 1

t1
, 1
}
‖f‖W 1,1((0,t1),X) .

Lemma A.3. The space C∞c
(
(0, t1), X

)
is dense in Lp

(
(0, t1), X

)
for 1 ≤ p <∞.

Proof. Let f ∈ Lp
(
(0, t1), X

)
. In a first step we prove, that f can be approximated

by simple functions with respect to the norm ‖.‖Lp((0,t1),X). Since f is measurable,
there is a sequence (fn)n∈N of simple functions converging to f pointwise almost
everywhere. Also the sequence of simple functions

gn(t) :=

{
fn(t) , ‖fn(t)‖ ≤ 2‖f(t)‖ ,
0 , otherwise ,

t ∈ (0, t1) ,

converges to f pointwise almost everywhere and has the property, that ‖gn(t)‖ ≤
2‖f(t)‖ for almost all t ∈ (0, t1) and all n ∈ N. So ‖gn(t) − f(t)‖p → 0, n → ∞
for almost all t ∈ (0, t1), and ‖gn(t) − f(t)‖p ≤

(
‖gn(t)‖ + ‖f(t)‖

)p ≤ 3p‖f(t)‖p

almost everywhere, and
∫ t1

0
‖f(t)‖p dt <∞. Hence, by the theorem of dominated

convergence,
∫ t1

0
‖gn(t)− f(t)‖p dt→ 0, n→∞.

In a second step we prove that any simple function can be approximated by
smooth functions with respect to the norm ‖.‖Lp((0,t1),X). Therefore let Ω ⊆ (0, t1)
be some measurable set and let α ∈ X. Due to [15], Corollary 3.5 there is a
sequence (ϕn)n∈N in C∞c

(
(0, t1),R

)
with limn→∞ ‖ϕn − 1Ω‖Lp((0,t1),R) = 0. Then

ϕnα ∈ C∞c
(
(0, t1), X

)
, n ∈ N, and

lim
n→∞

‖ϕnα− 1Ωα‖Lp((0,t1),X) = lim
n→∞

∫ t1

0

∥∥ϕn(t)α− 1Ω(t)α
∥∥p dt

= lim
n→∞

‖α‖p
∫ t1

0

∣∣ϕn(t)− 1Ω(t)
∣∣p dt

= 0 .

By taking the sum over functions ϕnα with this property we can approximate any
simple function

∑K
k=1 αk1Ωk in Lp

(
(0, t1), X

)
.

Finally, we complete the proof by combining step one and step two.
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Lemma A.4. The space C∞
(
[0, t1], X

)
is dense in W k,1

(
(0, t1), X

)
, k ∈ N0.

Proof. Let k ∈ N0, f ∈ W k,1
(
(0, t1), X

)
and t0 ∈ (0, t1). Then it is f (k) ∈

L1
(
(0, t1), X

)
. Hence by Lemma A.3 there exists a sequence (ϕk,n)n∈N in the

space C∞c
(
(0, t1), X

)
with limn→∞ ‖ϕk,n − f (k)‖L1((0,t1),X) = 0. For k = 0 there is

nothing more to show. For k > 0 we define ϕk−1,n(t) := f (k−1)(t0) +
∫ t
t0
ϕk,n(s) ds.

Then ϕk,n = ϕ′k−1,n, ϕk−1,n ∈ C∞
(
[0, t1], X

)
, n ∈ N, and∫ t1

t0

‖ϕk−1,n(t)− f (k−1)(t)‖ dt =

∫ t1

t0

∥∥∫ t

t0

ϕk,n(s)− f (k)(s) ds
∥∥ dt

≤ t1

∫ t1

t0

∥∥ϕk,n(s)− f (k)(s)
∥∥ ds

→ 0 , n→∞ .

In this way we proceed inductively and eventually define ϕn := ϕ0,n, n ∈ N. Thus
ϕn ∈ C∞

(
[0, t1], X

)
, n ∈ N, and

‖ϕn − f‖Wk,1((0,t1),X) =
k∑
j=0

‖ϕj,n − f (j)‖L1((0,t1),X) → 0 , n→∞ .
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