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Abstract We used a spectral clustering algorithm to find clusters among
medical patients with lower back pain symptoms, and then we assessed the
health outcomes within each cluster. First, we mapped all of the variables
onto [0,1] intervals. This allowed us to compute a similarity score between
every pair of patients, using an adaptation of Pearson correlation. We then
calculated the spectral (eigen) decomposition of this similarity matrix, and we
used the first few eigenvectors to create a low-dimensional subspace. Finally,
we performed k–means clustering in this new subspace to find four clusters. We
compared the cluster means and variances for each recovery assessment variable
to differentiate the health outcomes for each cluster. Lastly, we highlighted
the identifying symptoms of each patient cluster by inspecting any variable
whose within–cluster average is extraordinarily low or high, relative to the other
clusters.
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1 Introduction

Outside of some well-ordered data sets that are popular for basic clustering
demonstrations, many situations do not provide a clear clustering structure.
The back pain data set (see van Mechelen and Vach for details) is no different;
there is a diversity of data formats and scales which inhibit any straightforward
clustering procedures. In contrast, the literature shows that spectral clustering
methods are particularly effective in this context (von Luxburg, 2007; Kannan
et al, 2004). Specifically, similarity measures and eigen-decompositions are
used to extract the underlying structure from high-dimensional data (Belkin
and Niyogi, 2003; Arias-Castro et al, 2011) and to identify abstract clustering
patterns (Ng et al, 2001). We rely on this flexible nature in order to handle the
rougher obstacles of this data challenge.

2 Data Processing

With mixed-type data, it is challenging to incorporate both numerical and
categorical data equally. The following procedures were designed to evenly
consider both types of variables, without letting one type of data suppress the
information of the other. In the rest of the paper, we use "validation variables"
when referring to the 9 variables used only for validation purposes. All other
uses of the term "variable" will refer to the variables used for cluster analysis.
The validation variables are only used for cluster interpretation, so we will treat
them separately in section 2.3.

2.1 Variable Transformations

For any categorical variable (including binary variables, excluding ordinal
variables), we used disjunctive coding to codify a single variable with c
categories into c distinct columns. An observation then receives a value of 1 in
the column which corresponds to its appropriate category, as shown in Table 1.
Mathematically, this will inflate the similarity score between rows of data with
the same category value, as they will now appear similar across three disjunctive
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columns instead of the original single column. To prevent this artificial inflation
of covariance, we will assign weights of 1/

√
c to these columns, where c is

the respective number of distinct categories for that variable. When we later
calculate similarity scores between rows in section 3.1, this will ensure that the
total weight of each categorical variable remains equal to 1, avoiding the issue
of similarity inflation.

Table 1: A variable with 3 categorical values is transformed into 3 binary columns. .

Category

Person A 1
Person B 2
Person C 3

=⇒

Category = 1 Category = 2 Category = 3

Person A 1 0 0
Person B 0 1 0
Person C 0 0 1

To preserve magnitudes between numeric and categorical variables, we linearly
scaled every continuous and ordinal column to the interval [0,1]. We mapped
each variable’s minimum value to 0, while mapping the maximum value for
each variable to 1. Each value of column ®y is thereby scaled proportionally to
the distance from the minimum and maximum value:

Mapping(®y) =
®y −min(®y)

max(®y) −min(®y)
∈ [0,1] (1)

This ensured even consideration of all variables during the clustering process;
uneven magnitudes between variables would otherwise allow large variables to
dominate small variables during the clustering process. Admittedly, this method
is very sensitive to outliers. Within a numeric variable, if there exists a value or
set of values which are much larger than the rest, then the other values will all
be pushed together into a small margin as the outliers disproportionately stretch
the maximum/minimum values. This may artificially reduce the variance within
that specific variable, relative to other variables. Despite these concerns, this
technique allowed for other useful interpretations which will be discussed in
section 3.1.
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2.2 Missing Value (NA) Treatment

There were two variables in the data set with an exceedingly large amount of
missing values. The "musclegroup_palp" variable had 52% missing data, and
the "triggerpoint" variable had 37.4% missing data.

The "Musclegroup_palp" variable mentions that roughly half of the missing
values are actually not unknown quantities, but rather represent individuals
who simply reported no painful muscle groups (these are not "real" missings).
However, this is characteristically different from individuals who may truly
experience muscle pain but simply didn’t respond to this question (the "real"
missings). Grouping these two responses together seems unreasonable, and we
have no reliable way of distinguishing between them, so we chose to exclude
this variable.

The "Triggerpoint" variable offers far less confusion. The variable summary
mentions that many of the NA values here were simply recorded under the
Musclepalp variable instead (not to be confused with the Musclegroup_palp
variable we discussed earlier). We therefore choose to keep the Triggerpoint
variable, in the expectation that many missing values here will be reconciled by
the Musclepalp variable and vice-versa.

After removing the Musclegroup_palp variable, we replaced all missing
values with mean imputation by column. We chose mean imputation because
our algorithm relies on centering the data for correlation calculations, and mean
imputation will preserve the squared error of each row (having zero effect on
the correlation similarity between rows). Effectively, if either row is missing
the data for that column, then that column will provide "zero information" of
the similarity between those two rows, neither adding nor subtracting from the
similarity measure. This is discussed in depth in section 3.1.

2.3 Validation Data

The first issue with the validation data was the different scales for each measure-
ment. The "Gen" score is measured on a discrete scale from 1–7; the "Vasl"
score is measured on a discrete scale from 0–10; and the "RMProp" score is
a continuous variable ranging from 0–100. To normalize the scale between
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variables, we employed the standard scaling procedure of centering each column
and dividing by its standard deviation.

After scaling, the main issue with the validation variables is the huge
proportion of missing data. In order to ensure reliability of validation testing, our
testing data only includes observations which have at least one value recorded for
each outcome time period (2 weeks, 3 months, and 12 months). We partitioned
the 9 validation variables into those three distinct time periods, and then – for
each observation – we imputed any missing values with the 3-nearest-neighbour
average, under Euclidean distance. The variables within each time partition
are significantly correlated (see Figure 1), so the missing variables should be
well-predicted by the other variables within the same time period. This justifies
the usage of the k-nearest neighbour (kNN) algorithm as a strong choice for
imputation. Also note that the variables were standardized to obtain equivalent
scales, further assisting the reliability of kNN. For implementation of kNN, we
used the R package VIM (Kowarik and Templ, 2016).

Figure 1: Correlations appear strong
within a distinct time period and rel-
atively weaker between different time
periods. We use observations within a
single time period to predict any other
missing valueswithin that time period.
GeneratedwithRpackage "corrgram"
(Wright, 2017).

3 Spectral Clustering Algorithm

With a mixed-type data set and many different scales of measurement, it does not
seem appropriate to run a standard clustering procedure directly within that data
space. Instead, we aimed for a more well-ordered data space through construction
of a similarity matrix. Groups of mutually similar observations should clump
together, avoiding some common pitfalls of working with non-spherical or
abstract clustering structure (von Luxburg, 2007).
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3.1 Similarity Matrix

We transformed the original n × p data matrix into an n × n similarity matrix S.
We utilized centered cosine similarity, an adaptation of Pearson correlation, to
calculate pairwise similarity between rows of the data:

Corr(®x, ®y) =

∑
k

wk (xk − µk )(yk − µk )√∑
k

wk (xk − µk )2
∑
k

wk (yk − µk )
2
=

(
®x − ®µ

)TW
(
®y − ®µ

)����®x − ®µ���� · ����®y − ®µ���� (2)

where k iterates over the data columns, wk indicates the weight for that column,
W is a diagonal matrix of column weights, and T signifies the transpose for
the matrix multiplication. This calculation essentially compares rows ®x and ®y
according to their deviation from the mean in each column. If these rows deviate
from the mean in opposite directions, that variable will contribute negatively to
their similarity score. If these rows deviate from the mean in the same direction,
then that variable will contribute positively to their similarity score. If one row
or both rows hover around the mean value, that variable will contribute zero
similarity between the rows. The stronger the mean deviations, the stronger the
similarity contribution.

By analysing each variable in context of its mean, correlation similarity
provides a highly adaptive similarity measure for mixed type data. For binary
and disjunctive categorical data, the mean reflects the proportion of 1’s for each
category. If we see an even split between 0’s and 1’s – signifying a mean value
around 0.5 for that variable – then that variable will strongly distinguish those
two groups (positive similarity within a group, and negative similarity between
the groups). On the other hand, if a variable has a majority of observations
equal to zero, then the sample mean will have a value close to zero. This will
provide weak positive similarity to the observations in the large group, but
strong positive similarity to the observations in the minority group (see Figure2).
Intuitively, that variable acts as a unique identifier of that minority group: If
most of the data acts one way, then there is likely some unifying factor within
the minority group that causes it to act differently. It is harder to claim any
strong identifiability within the majority group, as most of the data acts that
way – it’s not a good indicator of some identifying property, only a lack thereof.
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Even Split between values of 0, 1.

Correlation similarity of (.5)(.5) =
(–.5)(–.5) = .25 is given to each pair
of observations with the same value.
Correlation similarity of (–.5)(.5) =
-.25 is given to each pair with differing
values.

Uneven Split between values of 0, 1.

Correlation similarity of (–.3)(–.3) =
.09 is given to observation pairs within
the majority group, while (.7)(.7) = .49
similarity is assigned to members of
the minority group. (.7)(–.3) = –.21
similarity is given to observations with
differing values.

Figure 2: Demonstration of how the distribution of variables – specifically, the location of the mean –
influences the pairwise correlation similarity. Generated with R (R Core Team, 2016).

Recall that, to prevent inflation of similarity within categorical variables, the
weights wk have been set to 1/c for all dummy columns k (where c indicates
the number of categories) and equal to 1 everywhere else.

A similar interpretation can be made with numeric data with regard to the
mean, albeit perhaps less clear-cut than with binary variables. Also, as mentioned
in section 2.1, outliers may skew the [0,1] interval to force a large clump of
values near 0 or 1. Correlation similarity will assign strong similarity within
the outlier group (if there is more than one outlier) while attributing negligible
similarity within the clump of "regular" values.

This similarity measure is computed similarly to the Pearson correlation
matrix. The Pearson correlation centers the data, scales each column to length
one, and applies column weights before calculating XT X . The correlation
similarity, centers the data, scales each row to length one, and applies column
weights before calculating X XT . Bothmeasures are reflexive (self-similarity = 1),



8 Joseph Fitch, Nazia Khan and Cristina Tortora

symmetric (Corr(®x, ®y) = Corr(®y, ®x)), and invariant to linear transformations of
the variables (assuming that the correlation similarity first maps to each variable
to [0,1] as discussed in section 2.1).

Figure 3: A heatmap of the correlation similarity matrix, with the values rescaled to [0,1] and the
index reordered according to the final 4-cluster solution for visual clarity. White areas represent low
similarity and dark regions represent high similarity. A strong clustering structure should have strong
similarity tomembers within a cluster and low similarity betweenmembers of separate clusters. Notice
that there is a strong case for two, three, or four clusters, based on this heatmap. Generated with R
package "heatmap3" (Zhao et al, 2015).

One drawback of correlation similarity, with regard to numeric data, is that it
relies on extreme values to identify similarity. This process can identify only 2
clusters within a single variable (assigning positive similarity to observations
near the extrema), even though it is reasonable to believe that there could exist
a third group of observations which contains neutral values clustered around
the mean. This method assumes that each cluster will display extreme values
(very large or very small) in at least one variable. If there are any observations
that naturally cluster together with extreme values across multiple data values,
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correlation similarity should identify that trend and assign those observations a
large overall similarity score (close to 1).

3.2 Diffusion Map Spectral Clustering

After constructing the similarity matrix, we needed to extract a clustering
structure. We adapted the popular Diffusion Map algorithm, which treats the
similarity values as a probability distribution in a Markov process.

First, we mapped the entire similarity matrix (excluding diagonal elements)
to a value between [0,1], using the same method described in Figure 4 (except
now using the entire matrix to determine the minimum and maximum values).
We then set the diagonal elements all equal to zero (detailed below). From there,
we divided each row by its respective row sum, converting each row into a
probability distribution with non-negative entries that sum to 1.

Given that each column of the similarity matrix represents a corresponding
row, this matrix can be interpreted as a probability transition matrix between
observations in the data. Given a matrix of probability distributions between
data points, a Markov process lets you take any number of "steps" forward
and calculate the probability of travelling from observation A to observation
B. For our purposes, we postulate that this probability is large if A and B
are similar to the same set of observations, while this Markov probability is
conversely low if A and B do not share mutual similarities. We previously set the
diagonal elements equal to zero because the diagonal probabilities correspond
to self-loops, which are not interesting or useful for this algorithm.

A large number of transition steps (e.g. t ≥ 3) tends to erase the finer details
and focus on large-scale structure. A smaller number of steps (e.g. 0 ≤ t ≤ 2)
will often let the smaller clusters show themselves, allowing for more clusters.
Given that t can also be fractional, t is best thought of as a "noise control"
parameter. Because there is no clear resolution in the similarity structure, we are
very cautious toward erasing any finer detail. We prudently chose t = 0.5, which
should ideally eliminate some noise between weakly-connected observations
without overriding the finer connections within smaller cluster structures.

We used the eigen-decomposition of the previous transition probability matrix
to reduce the dimensions while retaining the overall similarity structure (see
Nadler et al, 2006). The number of dimensions is chosen to equal the desired
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number of clusters, allowing enough space to separate the clusters but keeping
the dimensionality low for strong clustering. For k clusters and t steps, we
constructed the Diffusion Map space Ψ according to:

Ψt (x) =
[
λ t

2 ψ2(x), λ t
3 ψ3(x), . . . . , λ t

k+1 ψk+1(x)
]

(3)

where λp is the p-largest eigenvalue, ψp is the corresponding eigenvector, and
x represents rows of the Diffusion Map space. Notice that we specifically
chose to exclude the first eigenpair. Due to the strictly positive nature of our
transition probability matrix, the first eigenvector yielded a simple weighted
sum of the similarity values. This effectively clumped together all points with
strong connectivity, instead of looking at which points were interconnected.
This dimension did not prove useful for identifying separation between clusters.
Moreover, the first eigenvalue was substantially larger than the following
eigenvalues, and hence the first dimension would dominate the clustering
structure. On the other hand, eigenpairs 2 through k should theoretically
correspond to the dimensions separating clusters, which is where we wanted to
focus.

Lastly, we normalized each row within this Diffusion Map Space to a unit
vector, such that each vector is mapped to the unit sphere. This guarantees
that we are only considering the "direction" of a vector and ignoring the
magnitudes (equalizing strongly connected and weakly connected rows). For
efficient eigen-decomposition, we use the R package "RSpectra" (Qiu et al,
2016).

4 Results & Insights

We varied the number of clusters between 2 to 10, comparing the results using
similarity heat maps, subspace plots, and the validation variables. We chose
k = 4 clusters, particularly because it led to the clearest interpretation within
the validation variables. In the following section, we first interpret the clusters
according to the validation variables, and then dissect each cluster in terms of
its most important clustering variables.

For a baseline interpretation of the clusters, we constructed a parallel coor-
dinates plot for each set of validation variables (see Figure 4). Recall that we
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centered each variable and scaled by the standard deviations; hence, in Figure 4,
the vertical axis represents a cluster’s standardized performance relative to each
column’s mean and standard deviation.

Figure 4:Each plot reads temporally from left to right. A low y-value indicates good health (according
to the respective test measure) while a high y-value indicates poor health. Generated with R (R Core
Team, 2016).

Figure 4 suggests certain insights to the behaviour of the clustering structure. The
red cluster appears to score consistently healthily, while the green cluster scores
consistently poorly over time. According to the Vasl and RMprop variables, the
purple cluster starts in bad shape but heals over time, while the blue cluster
conversely starts out relatively well but gets worse over time.

Interestingly, the Gen variable agrees that the red and purple clusters do better
compared to the green and blue clusters, yet it seems to switch the behaviours
of red/purple and green/blue. We hypothesize that the Gen variable gives less
reliable interpretations because of the narrow scoring scale: Values placed in
one of 7 categories, while Vasl allows for 11 categories and RMprop is measured
on a continuous scale from 0–100. Further investigation is certainly warranted.

For completeness’ sake, we also inspected each cluster on the original un-
normalized validation variables. We still imputed the missing values using kNN
on the scaled data, to equalize the distance magnitudes (otherwise the kNN
algorithm would be dominated by the variable which operates on the largest
scale, i.e. RMprop). We subsequently un-scaled the data by multiplying by the
original standard deviations and adding the original column means, producing
the exact same data space that we had initially. The results are presented in
Figure 5.
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Figure 5:Each plot reads temporally from left to right. A low y-value indicates good health (according
to the respective test measure) while a high y-value indicates poor health. A solid line represents the
cluster mean, and the dotted lines represent ± 1 standard error of the mean. Notice that Vasl and
RMprop show a general recovery from the 2 week measurement to the 12 month measurement, while
the Gen variable is hard to interpret in terms of recovery. Generated with R (R Core Team, 2016).

To determine the effectiveness of the clustering, we must also consider the
within-cluster variance of each validation variable, instead of only measuring
the cluster means. In an ideal case, we would hope to see the mean values
separated by a significant magnitude of standard deviations. The within–cluster
standard deviations are shown in Figure 6.

Figure 6:Each plot reads temporally from left to right. A low y-value indicates good health (according
to the respective test measure) while a high y-value indicates poor health. The solid lines represent
the cluster means, and the dotted lines represent ± 1 standard deviation (measured separately within
each cluster). Generated with R (R Core Team, 2016).
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Unfortunately, this condition is poorly reflected in all measurements except
the RMprop score, which shows good separation between the green and red
clusters (the "consistently healthy" and the "consistently unhealthy" clusters)
but still shows strong overlap between the two middling clusters. Overall,
Figure 5 suggests that we did find some real information, as the means show
a significant and interpretable pattern. Unfortunately, Figure 6 shows that the
clusters’ separation in the validation data may not be distinct enough to classify
the patients in a reliable way.

To highlight the identifying factors of each cluster, we analyse the mean of
each cluster within those centered columns. We searched for any component of
a cluster centroid which is near the extremes, given that all variables have been
mapped to the [0,1] interval. This standardization also validates the comparison
of means across different variables. Extreme averages will point to any value in
which the cluster scores consistently high or consistently low. As with correlation
similarity, we note that this method cannot identify variables in which a cluster
scores consistently in the middle; an analysis of column variances would be
required for such identification. See Tables 2 to 5 for the results of the cluster
analysis.

Table 2: Cluster 1 demonstrates the best recovery outcomes, according to the validation variables. In
the clustering data, Cluster 1 is characterized by low scores in the "physical pain & trouble" variables,
indicating good overall health (a high score would indicate high physical pain/trouble).

Score Variable Description

Low Rm180 "Because of my back problem, I go upstairs more slowly than
usual."

Low Rm140 "I only walk short distances because of my back problem or leg
pain (sciatica)."

Low Rm50 "Because of my back problem, I use a handrail to get upstairs."

High Bsex0 Sex = male.

Low Rm220 "Because of my back problem, I am doing less of the daily work
around the house than I would usually do."
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Table 3: Cluster 2 demonstrates the worst recovery outcomes, according to the validation variables. In
the clustering data, Cluster 2 is characterized by high scores in the "psychological distress" variables.
This agrees with known literature that commonly shows how psychological health is highly correlated
with physical well-being.

Score Variable Description

High Start80 "In general I have not enjoyed all the things I used to enjoy."

High Start60 "Worrying thoughts have been going through my mind a lot of
the time."

High Rm170 "Because of my back problem, I am more irritable and bad
tempered with people than usual."

High Start10 "My back pain has spread down my leg(s) at some time in the
last 2 weeks."

High Rm220 "Because of my back problem, I am doing less of the daily work
around the house than I would usually do."

Table 4: Cluster 3 starts out with mediocre recovery symptoms but converges toward Cluster 2 over
time. Interestingly, we found that Cluster 3 assigns importance to many of the same variables as
cluster 1, but in the opposite extremity. Cluster 1 demonstrated very healthy scores in the "physical
trouble" categories, while Cluster 3 clearly captures all the individuals who have poor initial physical
symptoms.

Score Variable Description

High Rm140 "I only walk short distances because of my back problem or leg
pain (sciatica)."

High Rm60 "Because of my back problem, I have to hold on to something to
get out of an easy chair."

High Rm100 "I find it difficult to get out of a chair because of my back
problem or leg pain (sciatica)."

High Rm180 "Because of my back problem, I go upstairs more slowly than
usual."

High Rm50 "Because of my back problem, I use a handrail to get upstairs."
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Table 5: Cluster 4 is characterized by healthy physical symptoms, as with Cluster 1. In the validation
variables, Cluster 4 converges toward Cluster 1, and the difference between them mostly disappears
by the 12-month follow-up. It seems that one of the major distinctions (most notably, male vs. female)
may catalyse different recovery patterns in the short term, but converge to similar prospects for long
term health and recovery.

Score Variable Description

Low Rm130 "I have trouble putting on my socks (or stockings) because of the
pain in my back or leg."

Low Rm70 "I get dressed more slowly than usual because of my back
problem or leg pain (sciatica)."

High Bsex1 Sex = female.

Low Rm100 "I find it difficult to get out of a chair because of my back
problem or leg pain (sciatica)."

Low Rm60 "Because of my back problem, I have to hold on to something to
get out of an easy chair."

5 Conclusions

We used a Spectral Clustering algorithm to find clusters among lower back
pain symptoms in medical patients. We processed the different types of data
separately such that all types of data are mapped to comparable dimensions. We
computed a similarity score between every pair of patients using an adaptation
of Pearson correlation and then we calculated the spectral (eigen) decomposition
of this similarity matrix, reducing the dimensionality; we finally performed
k-means clustering in this new subspace.

We believe that there is truly a 4-cluster structure within this data, but the
partition is hard to produce reliably. At the very least, we can yield a significant
2-cluster structure (combining Cluster 1 with Cluster 4, and Cluster 2 with
Cluster 3) that produces meaningful separation between positive vs. negative
long-term outcomes. In the absence of finer resolution, this 2-cluster structure
would be useful for identifying patients in danger of long term health risks.
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