
water

Article

Impact of Climate Change on Water Resources in the
Kilombero Catchment in Tanzania

Kristian Näschen 1,* , Bernd Diekkrüger 1 , Constanze Leemhuis 2, Larisa S. Seregina 3 and
Roderick van der Linden 3

1 Department of Geography, University of Bonn, Meckenheimer Allee 166, 53115 Bonn, Germany;
b.diekkrueger@uni-bonn.de

2 Department of Environment and Sustainability, DLR Project Management Agency, Heinrich-Konen-Straße 1,
53227 Bonn, Germany; Constanze.Leemhuis@dlr.de

3 Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76128 Karlsruhe,
Germany; larisa.seregina@kit.edu (L.S.S.); roderick.linden@kit.edu (R.v.d.L.)

* Correspondence: knaesche@uni-bonn.de; Tel.: +49-228-73-1601

Received: 26 March 2019; Accepted: 18 April 2019; Published: 24 April 2019
����������
�������

Abstract: This article illustrates the impact of potential future climate scenarios on water quantity
in time and space for an East African floodplain catchment surrounded by mountainous areas.
In East Africa, agricultural intensification is shifting from upland cultivation into the wetlands due to
year-round water availability and fertile soils. These advantageous agricultural conditions might
be hampered through climate change impacts. Additionally, water-related risks, like droughts and
flooding events, are likely to increase. Hence, this study investigates future climate patterns and
their impact on water resources in one production cluster in Tanzania. To account for these changes,
a regional climate model ensemble of the Coordinated Regional Downscaling Experiment (CORDEX)
Africa project was analyzed to investigate changes in climatic patterns until 2060, according to
the RCP4.5 (representative concentration pathways) and RCP8.5 scenarios. The semi-distributed
Soil and Water Assessment Tool (SWAT) was utilized to analyze the impacts on water resources
according to all scenarios. Modeling results indicate increasing temperatures, especially in the hot
dry season, intensifying the distinctive features of the dry and rainy season. This consequently
aggravates hydrological extremes, such as more-pronounced flooding and decreasing low flows.
Overall, annual averages of water yield and surface runoff increase up to 61.6% and 67.8%, respectively,
within the bias-corrected scenario simulations, compared to the historical simulations. However,
changes in precipitation among the analyzed scenarios vary between −8.3% and +22.5% of the
annual averages. Hydrological modeling results also show heterogeneous spatial patterns inside
the catchment. These spatio-temporal patterns indicate the possibility of an aggravation for severe
floods in wet seasons, as well as an increasing drought risk in dry seasons across the scenario
simulations. Apart from that, the discharge peak, which is crucial for the flood recession agriculture
in the floodplain, is likely to shift from April to May from the 2020s onwards.

Keywords: SWAT model; climate change; scenario analysis; hydrology; return probabilities;
hydrological extremes

1. Introduction

Wetlands in East Africa cover an area of approximately 180,000 km2 [1,2] and a share of about 10%
of the land surface in Tanzania, although numbers vary regarding this [3]. Nevertheless, the importance
of wetlands in East Africa for the provision of numerous ecosystem services, ranging from the
improvement of mental well-being [4] to water and climate regulation [5], is well proven. Yet,
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East African wetlands are endangered due to anthropogenic activities [6]. This pressure is driven by
several push factors, such as population growth, degradation of upland soils, and increasing rainfall
variability due to climate change. In contrast, wetlands have relatively fertile soils in combination
with year-round water availability as pull factors for the conversion of wetlands into cropland [7–11].
This conversion in favor of food production consequently has negative trade-off effects on other
ecosystem services.

Policies attempting to protect wetlands have often been weakly enforced [12]. Furthermore,
the government of Tanzania introduced the “Kilimo Kwanza” (agriculture first), prioritizing agricultural
development [13], especially in designated growth corridors. In Tanzania, the SAGCOT (Southern
Agricultural Growth Corridor of Tanzania) growth corridor plays a key role. It is composed of
several clusters, including the Kilombero cluster, which contains an endangered Ramsar site with
considerable biodiversity resources under a condition of high stress [14]. The most important cash crop
is, and will be, according to the plans of SAGCOT, rice [15]. Apart from potential ecological trade-offs
due to large-scale rice production and outgrower schemes in the Kilombero area [14], analysis of the
availability of water resources is inevitable to sustainably manage the highly water-dependent rice
schemes. Although some research was done on water resources [16–23], the plans of SAGCOT outline
future scenarios and demand wise planning, especially with regard to a changing and highly variable
climate [24,25].

This work tries to bridge this research gap by simulating possible future climate scenarios with
regard to water availability according to the current knowledge (regional) of climate change and
hydrological modeling. Hydrological modeling in combination with climate change scenarios allows
assessment of potential impacts of climate change on water resources to enable wise planning in
agricultural development, as in the SAGCOT corridor, as well as for long term infrastructure projects,
such as the planned dam at Stiegler’s Gorge [26], which relies to 62% on water from the Kilombero
Catchment [14].

There are numerous studies worldwide on the effects of climate change on hydrology. For example,
Schneider et al. [27] analyzed large scale impacts of climate change on flow regimes in Europe and
found considerable changes in specific regions. The Mediterranean region will become drier due to less
precipitation, while the boreal zone of northern Europe will become drier due to rising temperatures
and reduced snowmelt. Nevertheless, flood peaks might be aggravated in some northern European
regions due to seasonal precipitation and temperature changes. An aggravation of seasonality in
streamflow was also observed for two (out of eleven) large river basins in Europe and Australia
by Eisner et al. [28]. Changes in hydrology are also reported for the western United States due to
changing precipitation patterns and anthropogenically-induced impacts, leading to water shortages
and aggravated seasonality [29,30]. Yira et al. [31] showed that opposing discharge trends might result
from the impact analysis from six climate models in a catchment in West Africa. The findings of these
exemplary studies demonstrate the potential impact of climate change on hydrology through the
alteration of streamflow amount and seasonality in a global context and emphasizes the nonlinear
rainfall-runoff behavior, although the example’s concrete results are site specific [32]. Moreover,
uncertainty and variability in climate projections, and therefore the impacts on hydrology, rise with the
time horizon [33].

Several studies have also analyzed climate change in East Africa and specifically in
Tanzania [24,34,35], but the implications for water resources due to climate change on a quantitative level
are less well explored, particularly for the Kilombero Catchment and its surroundings. We hypothesize
that the outcome of the study is helpful for water and agricultural management in the Kilombero
Valley and the projections of the inflow to the planned Stiegler’s Gorge hydropower dam project.

The main objectives arising from this contextual background are the following:

i. Assess the possible climatic future of the Kilombero Catchment with an emphasis on
precipitation patterns and temperature variations;
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ii. Estimate the impact of these climatic changes on hydrology by analyzing temporal and spatial
changes in the water balance;

iii. Analyze the impact of climate change on hydrological risks, such as floods and droughts,
through analyzing extreme flow situations.

These objectives are achieved by applying the well-proven hydrological model SWAT (Soil and
Water Assessment Tool) in combination with an ensemble of six regional climate model simulations
from the Coordinated Regional Downscaling Experiment (CORDEX) Africa project [36]. These model
simulations, and furthermore different representative concentration pathways (RCPs), were utilized
in the hydrological SWAT model to account for uncertainty with regard to future developments [37].
The six regional climate models were bias-corrected using local measurements to adequately represent
the conditions within the catchment. The results from the SWAT model runs were analyzed with regard
to general hydroclimatic patterns and extreme values, concerning peak discharge as well as low flows.

2. Materials and Methods

2.1. Study Site

The Kilombero Catchment is part of the Rufiji basin, which forms the largest river basin in
Tanzania (Figure 1). The catchment is situated in the Morogoro region in southern Tanzania and
comprises 40,240 km2 until its confluence with the Rufiji River. The Udzungwa Mountains in the north,
with elevation ranging up to 2500 m, as well as the Mbarika Mountains and the Mahenge Highlands in
the south, demarcate the border of the catchment. The Kilombero River itself receives perennial inflow
mainly from the Udzungwa Mountains forming a seasonal floodplain at around 200 m above sea level
(Figure 1). The floodplain itself covers an area of 7967 km2 [12], representing the biggest freshwater
wetland in East Africa below 300 m above sea level [12], and is listed as an endangered Ramsar
site [14]. Intensive mountainous rainfall in combination with year-round groundwater supply [23]
ensure a contribution of 62% of the annual runoff volume of the Rufiji River, although the Kilombero
Catchment covers only 23% of the drainage area [14].

The climate is sub-humid tropical [14] with annual mean temperatures between 24 ◦C in the
valley and about 17 ◦C in the higher altitudes [14]. The areal annual precipitation amounts are
between 1200 and 1400 mm [17], with a high spatio-temporal variability. The mountainous area
receives up to 2100 mm precipitation, and therefore up to 1000 mm more precipitation compared to the
valley [14,23]. The temporal distribution of the annual precipitation is divided into a dry season from
June to November and a rainy season from November to May. Additionally, the rainy season can be
split into Short Rains from November to January and Long Rains from March to May [14]. However,
the interannual variability is high [38] and the reliability of the Short Rains is not as pronounced as for
the Long Rains [23]. Given that some parts of the catchment lack the Short Rains, the whole catchment
can be characterized by a unimodal to bimodal rainfall distribution, depending on the year and the
specific area [17,39]. The main drivers of these rainfall patterns are the Intertropical Convergence Zone
(ITCZ) [40] and remote forcings, such as the Walker circulation and the Indian Ocean zonal mode [41].
However, local and regional factors, such as topography and lakes, additionally influence the seasonal
rainfall cycle [24]. When assessing the possible climatic future of the Kilombero Catchment, it should
be noted that rainfall patterns all over East Africa are already changing at present. The long rains,
which are influenced by multiple factors, such as local geographic factors, remote forcings, and regional
circulations, have been declining in recent decades in eastern Africa, whereas droughts are becoming
longer and increasingly stretch into the rainy seasons. Nevertheless, interannual climate variability
overall for East Africa has increased in the last decades, resulting in drought periods but also unusual
heavy flood events [41].

The Harmonized World Soil Database (HWSD) [42] describes the dominating soils in the valley as
Fluvisols and the uplands are predominantly covered by Acrisols and Nitisols (Figure 2). In the high
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altitudes of the western parts of the catchment Lixisols dominate, whereas in the lower altitudes of the
eastern catchment mainly Cambisols are found, according to the HWSD.

The upper catchment is dominated mainly by natural vegetation, such as tropical rainforests,
bushlands, and wooded grasslands, with some patches of agricultural fields [43]. The valley contains
the seasonal floodplain (Figure 1), which is characterized by rainfed lowland rice cultivation during
the rainy season, whereas agriculturally undisturbed areas are dominated by grassland, such as
Hyparrhenia spp., Panicum fluviicola Steud., and Phragmites mauritianus Kunth [8]. The fringes of the
floodplain successively change from grassland to Miombo woodland towards the upper catchment.

Recent developments demonstrate a strong increase in population, and therefore agricultural
land in the area, whereas grassland, savanna, and forested land use are declining, especially at the
fringe of the wetland [14,22,23]. These anthropogenically triggered land use changes in combination
with ongoing climate change might alter the hydrological system of the catchment and also affect
downstream riparians. Accordingly, small-scale farmers’ food production envisioned in the planned
large-scale and outgrower rice schemes of the SAGCOT growth corridor [15], as well as the planned
dam at Stiegler’s Gorge [26], might presumably be influenced by changing water quantity and quality.

Water 2019, 11, x FOR PEER REVIEW  4 of 30 

 

Hyparrhenia spp., Panicum fluviicola Steud., and Phragmites mauritianus Kunth [8]. The fringes of the 
floodplain successively change from grassland to Miombo woodland towards the upper catchment. 

Recent developments demonstrate a strong increase in population, and therefore agricultural 
land in the area, whereas grassland, savanna, and forested land use are declining, especially at the 
fringe of the wetland [14,22,23]. These anthropogenically triggered land use changes in combination 
with ongoing climate change might alter the hydrological system of the catchment and also affect 
downstream riparians. Accordingly, small-scale farmers’ food production envisioned in the planned 
large-scale and outgrower rice schemes of the SAGCOT growth corridor [15], as well as the planned 
dam at Stiegler’s Gorge [26], might presumably be influenced by changing water quantity and 
quality. 

 

 
Figure 1. Overview map of the study area, including locations of available precipitation and discharge 
stations (Swero), as well as the 0.44° Coordinated Regional Downscaling Experiment (CORDEX) 
Africa grid. The estimated floodplain area is based on visual interpretation of Landsat images 
(modified after Näschen et al. [23]). 

Figure 1. Overview map of the study area, including locations of available precipitation and discharge
stations (Swero), as well as the 0.44◦ Coordinated Regional Downscaling Experiment (CORDEX) Africa
grid. The estimated floodplain area is based on visual interpretation of Landsat images (modified after
Näschen et al. [23]).
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Figure 2. Soil map (a) and land use and land cover (LULC) map (b) of the study area. The distribution
of soils is derived from the Harmonized World Soil Database (HWSD) [42] and the LULC map shows
the LULC distribution derived from Landsat Level 1 images from 1970 (modified after Näschen et
al. [23] and Leemhuis et al. [22]).

2.2. Input Data

This study is based on the study by Näschen et al. [23] and follows the same approach as Leemhuis
et al. [22] to overcome data scarcity in the region through the application of freely available geo
datasets in combination with data from local partners in Tanzania to run the hydrological model.
The bottleneck to calibrate and validate the hydrological model is the discharge data for the Kilombero
Catchment. Adequate discharge time series at the Swero station close to the main outlet of the
catchment (Figure 1) are only available for the period of 1958–1970 (Table 1), due to the logistic
challenges of the local authority Rufiji Basin Water Board (RBWB) to maintain the hydrometeorological
monitoring network [13].

To gather a realistic representation of the LULC for this period, a mosaic of Landsat Level 1 images
from the 1970s was classified with a supervised Random Forest classification [23,44]. Images from the
whole decade were utilized due to a lack of suitable images within one single year.

Satellite rainfall estimates could not be applied in this study, due to the temporal mismatch of
available discharge data (up to 1970) and satellite estimates. However, a combination of precipitation
stations (Figure 1, Table 1) and modelled climate parameters from the CORDEX Africa project (Figure 1,
Table 1) with a spatial resolution of 0.44◦ were utilized for calibration and validation of the model.

For the future climate scenarios, Regional Climate Models (RCMs) that were forced with different
Global Climate Models (GCMs; Table 2) were additionally bias-corrected for precipitation and
temperature to adequately represent potential changes in future climate patterns based on available
data (further information in chapter 2.5). To complete the dataset for running the hydrological model,
freely available datasets for the Digital Elevation Model (DEM) and the soil map (Table 1) were applied.
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Table 1. Overview of the applied datasets, their resolution, sources, and the required parameters in
this study.

Data Set Resolution/Scale Source Required Parameters

Digital Elevation
Model (DEM) 90 m Shuttle Radar Topography Mission (SRTM) [45] Topographical data

Soil map 1 km Food and Agriculture Organization of the
United Nations (FAO) [42] Soil classes and physical properties

Land use map 60 m (1970s) Landsat pre-Collection Level-1 [46] Land cover and use classes

Precipitation Daily (1958–1970)
Personal communication:

RBWB, University of Dar es Salaam (UDSM),
Tanzania Meteorological Agency (TMA)

Measured precipitation

Climate Daily/0.44◦ (1951–2060) Coordinated Regional Downscaling
Experiment (CORDEX) Africa [36]

Temperature, humidity, solar
radiation, wind speed, precipitation

Discharge Daily (1958–1970) RBWB [47] Discharge

Table 2. Overview of the Regional Climate Models (RCMs), their driving Global Climate Models
(GCMs), and the assigned naming for the model combination within this study.

GCM RCM Institution URL In This Study
Referred to as

CanESM2 CanRCM4_r2 Canadian Centre for Climate Modelling and
Analysis (CCCma)

http://climate-modelling.
canada.ca/

Model 1

CanESM2 RCA4_v1 Rossby Centre, Swedish Meteorological and
Hydrological Institute (SMHI) https://esg-dn1.nsc.liu.se/ Model 2

CNRM-CM5 CCLM4-8-17_v1 Climate Limited-area Modelling Community
(CLMcom) https://esg-dn1.nsc.liu.se/ Model 3

EC-EARTH CCLM4-8-17_v1 Climate Limited-area Modelling Community
(CLMcom) https://esg-dn1.nsc.liu.se/ Model 4

EC-EARTH RCA4_v1 Rossby Centre, Swedish Meteorological and
Hydrological Institute (SMHI) https://esg-dn1.nsc.liu.se/ Model 5

MIROC5 RCA4_v1 Rossby Centre, Swedish Meteorological and
Hydrological Institute (SMHI) https://esg-dn1.nsc.liu.se/ Model 6

2.3. Model Description (SWAT Model)

The SWAT model [48] was selected in this study due to the fact that it is able to simulate
hydrological processes continuously- and physically-based. These features are necessary to simulate
impacts of climate change on water resources. Additionally, SWAT was already successfully calibrated
and validated for the study area [23]. The model follows a semi-distributed approach by dividing the
catchment into subcatchments (Figure 3) based on a threshold defined by the modeler. This threshold
defines the minimum drainage area needed to generate a stream. In combination with the drainage
patterns calculated from the DEM, the stream network is calculated and a subcatchment is assigned to
each stream, or whenever two streams merge. In the next step, Hydrologic Response Units (HRU)
divide the subcatchments into unique combinations of soil types, slope, and land use. Again the
modeler has to set a minimum threshold on the absolute or relative area covered by the HRU to be
included. In this study each soil type, slope class, or land use unit covering less than 10% of the
area within the single subcatchments was neglected, while discretizing the subcatchments into HRUs.
The model is divided into two parts. Firstly, a land phase considering all the processes from the
arrival of a raindrop on the land surface until it enters the reach. From here the second phase starts,
considering the routing and in-stream processes of water, sediments, nutrients, and organic chemicals.
Hence, most of the hydrological processes in SWAT are calculated at the HRU level and the spatial
locations of the HRUs within the subcatchments are not considered any more, but are calculated as
a lumped sum of all single HRU calculations to efficiently account computationally the processes
within a subcatchment.

In general, the SWAT model solves the water balance equation for each HRU and sums up the
HRU calculations for each subcatchment, while integrating climate station data at the subcatchment

http://climate-modelling.canada.ca/
http://climate-modelling.canada.ca/
https://esg-dn1.nsc.liu.se/
https://esg-dn1.nsc.liu.se/
https://esg-dn1.nsc.liu.se/
https://esg-dn1.nsc.liu.se/
https://esg-dn1.nsc.liu.se/
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level. The single subcatchments are linked through channel processes, which calculate the movement
of water from the spatial units. Figure 3 illustrates the most important processes calculated by SWAT.
For some processes, such as evapotranspiration or surface runoff, SWAT has several calculation options,
but here only the applied methods to calculate the water balance are described. Precipitation is taken
from single precipitation stations and is either intercepted by plants or hits the ground where it is
divided into surface runoff or infiltration water by utilizing the SCS (Soil Conservation Service) curve
number [49]. As long as water is near or on the surface it might evaporate according to the atmospheric
conditions [50]. Once water enters the soil it might move vertically following a storage routing
technique based on physical soil parameters, or laterally by using a kinematic storage model [51].
If water percolates, it passes by the unsaturated zone and enters an unconfined aquifer, from where
it either leaves as capillary rise due to water demand of the surface plants, or it moves laterally as
return flow into the reach. A third option is to percolate further into the confined aquifer from where
the water is treated as a discharge contributor to other catchments. A more detailed description on
the theoretical background is given by Neitsch et al. [52] and all the relevant model parameters are
described in detail by Arnold et al. [53].Water 2019, 11, x FOR PEER REVIEW  8 of 30 
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Figure 3. Catchment discretization and schematic overview of processes and storages simulated by
the SWAT model. Applied methods to simulate evapotranspiration and water fluxes are shown in
parentheses (modified after Neitsch et al. [52]).

2.4. Model Setup and Evaluation (SWAT Model)

The model was setup with ArcSWAT 2012 (revision 664). Basically, the catchment was divided
into 95 subcatchments consisting of 1086 HRUs. Five elevation bands [23,52] were integrated into the
model due to the complex topography in combination with the sparse distribution of precipitation
stations (Figure 1).

The model was calibrated and validated using SWAT-CUP (version 5.1.6.2) and the SUFI-2
algorithm [54]. Evaluation criteria were the coefficient of determination (R2; Equation (1)),
the Nash-Sutcliffe efficiency (NSE; Equation (2)) and the Kling-Gupta efficiency (KGE; Equation
(3)). R2 ranged between 0 and 1 (perfect fit) and both NSE and KGE ranged from −∞ to 1 (perfect fit).
In this study we focus on these three criteria, as they are well-known and provide a good assessment
of the model. A full description of the model setup and evaluation procedure is given by Näschen et
al., 2018 [23].
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(
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KGE = 1−
√
(r− 1)2 + (α− 1)2 + (β− 1)2 (3)

Here n is the number of observations, Oi and Si are the observed and simulated discharge values,
respectively, and O and S are the mean of observed and simulated discharge values; r is the linear
regression coefficient between observed and simulated data; α is the ratio of the standard deviation of
simulated and observed data; β is the ratio of the means of simulated and observed data.

2.5. Climate Change Scenarios and Bias-Correction

The simulations from six CORDEX Africa RCMs were used to quantify the influence of future
changes in the regional climate on the hydrology in the Kilombero Catchment. The RCMs were selected
to represent the range of possible changes in seasonal rainfall amounts. Additionally, for all models
two different scenarios of the Representative Concentration Pathways (RCPs) were considered. RCP4.5
and RCP8.5 assume a radiative forcing of 4.5 and 8.5 W m−2 at the end of the twenty-first century in
comparison to the preindustrial level in the middle of the 19th century, respectively. The radiative
forcings result from different assumptions of changes in greenhouse gas concentrations.

Systematic errors in RCM output require a comprehensive bias correction, which is based on
an adjustment with respect to long-term observations. Constrained by the availability of adequate
observation-based data, the bias correction could only be applied to minimum and maximum
temperatures and rainfall. Due to different statistical properties and data availability, two different
approaches were used for the bias correction of temperatures and rainfall.

a. For the bias correction of minimum and maximum temperatures, the simple approach that was
already used in a previous study [23] was adopted. In this approach, temperatures from the
ERA-Interim reanalysis [55] were used as reference. Using the differences in the mean annual
cycles, which were calculated from the 11-day running means of individual years between
observations and model data in the period 1979–2005, model data was corrected towards
observations. Due to the different representation of orography that results from the different
horizontal resolutions of both datasets, i.e., 0.75◦ for ERA-Interim and 0.44◦ for CORDEX Africa
RCMs, the correction was carried out for 700-hPa potential temperatures. After the correction,
the RCM temperatures were transformed back to the initial level.

b. Due to the non-linear statistical behavior of precipitation, a more comprehensive approach was
needed for the bias correction of daily rainfall sums. All available data from seven stations in
the Kilombero catchment (Figure 1) in the historical period 1951–2005 were used as reference
for an empirical quantile mapping approach. In this approach the cumulative distribution
function (CDF) based on simulated precipitation is adjusted towards the observation-based
CDF [56]. The nearest CORDEX datagrid to the respective station was thereby utilized for the
bias-correction. The usefulness of the distribution-independent quantile mapping method was
demonstrated by various previous studies [31,57,58].

Assuming that the detected bias between the times series of models and observations stays
spatio-temporally constant, the transfer functions found in a and b for the historical periods were
applied to historical model data (1951–2005) and RCM projections (2006–2100).
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2.6. Flood Frequency and Low Flow Analysis

A hydrological extreme value analysis was conducted for discharge simulated using bias-corrected
RCM input to determine shifts in flood frequency and in low flows due to climatic changes. Therefore,
the hydrological model was run with the historical bias-corrected RCM data for all six CORDEX Africa
models (Table 2) from 1951 to 2005, as well as for the climatic projections based on the RCP 4.5 and
RCP8.5 scenarios from 2010 to 2060.

Subsequently, after the model simulations, the annual maximum discharge values of the simulation
periods for the six historical simulations and the RCP scenarios were extracted for further statistical
analysis with regard to flood frequencies, using the extRemes 2.0 package [59] in the statistical
software R. The generalized extreme value (GEV, Equations (4) and (5)) model covering Weibull,
Fréchet, and Gumbel distributions was used in combination with the generalized maximum likelihood
estimation (GMLE) method to estimate the return levels of flood events from 2-year return levels up
to 100-year return levels. The return levels are utilized as a proxy for deviations in discharge due to
climatic changes among the historical and the RCP scenarios later on.

F(x) = exp
[
−

{
1 + γ

(x− µ
α

)}−1/γ
]

(4)

where γ is the shape parameter, µ the location parameter, and α the scale parameter of the probability
distribution function with α > 0 and (1+ γ(x− µ)/α) > 0. If γ→ 0 , the function belongs to the Gumbel
family and is as follows:

F(x) = exp
[
− exp

{
−

(x− µ
α

)}]
(5)

For the low flow analysis, the Q90, being a widely-used index [60,61], was used to estimate
changes among the six models and the different RCP scenarios. The Q90 index is defined here as
a daily discharge value, which is exceeded in 90% of the daily simulations. These simulations were
performed on decadal timescales to account for the inherent uncertainties of the scenario simulations
and to identify possible decadal trends.

Additionally, the Q10 index was also calculated, which is defined here as a daily discharge value
that is exceeded in 10% of the daily simulations to investigate the general flooding trend, additional to
the annual maximum flooding approach based on the GEV model estimates described above. Q10 and
Q90 were calculated using the hydrostats package in R [62]. The Q10 value was added to the flood
frequency analysis because it is less sensitive to outliers, in contrast to the annual maximum value
utilized in the GEV analysis [61].

3. Results

3.1. Model Performance

A detailed overview on the model performance is given by Näschen et al. (2018) [23]. Nevertheless,
the hydrograph for the calibration and validation period is shown in Figure 4 as an important indicator
for the model performance. Furthermore, common hydrological statistical measures, such as R2,
NSE and KGE, are provided for both periods (Equations (1)–(3), Figure 4).
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The bias-correction for all seven precipitation stations and the historic model runs for the six 
utilized regional climate models (Table 2) show very good results. Figure 5 shows the mean monthly 

Figure 4. Hydrograph showing the observed and the simulated discharge for the calibration (1958–1965)
and the validation period (1966–1970), separated by the dashed vertical line. Statistical measures are
shown within the graph and refer to the coefficient of determination (R2, Equation (1)), the Nash-Sutcliffe
efficiency (NSE, Equation (2)) and the Kling-Gupta efficiency (KGE, Equation (3)). The values in the
parentheses refer to the validation period (modified Figure after Näschen et al. [23]).

3.2. Bias-Correction

The bias-correction for all seven precipitation stations and the historic model runs for the six
utilized regional climate models (Table 2) show very good results. Figure 5 shows the mean monthly
precipitation for all stations and models within the period 1951–2005, with and without bias-correction.
The deviation among non-bias-corrected data and the observed monthly precipitation is obvious,
especially in the peak of the rainy season (March and April). Some stations indicate a shifting peak
of the rainy season from April to March for all six RCMs (Figure 5c,d), in addition to these absolute
deviations. Days with missing data were neglected in this analysis. In contrast to these strong
deviations, Figure 5h–n shows virtually no deviations at all for the mean monthly precipitation
after bias-correction.

Furthermore, the exceedance probabilities for all stations and models were analyzed (Figure 6),
demonstrating a good performance of the bias-correction with regard to the cumulative distribution of
rainfall events. The ensemble mean of the six models is also shown here with a completely different
distribution of the ranked rainfall events, revealing a high amount of rainfall events below 10 mm,
but much less events with 10 mm or more rainfall, compared to all the single model results. However,
the temporal distribution of the daily rainfall patterns still varies among the observed precipitation
and each single CORDEX model, apart from this ranked illustration.
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Figure 5. Average monthly precipitation from 1951–2005 for the seven datagrids of CORDEX
Africa before bias-correction in (a–g) and for the same stations after bias correction in (h–n).
The lines representing the precipitation for the observed precipitation, as well as for models 1
to 5, are superimposed by the lines for model 6 due to their similar precipitation after bias correction
(h–n). Each graph shows the average monthly precipitation for all six models introduced in Table 2.

A similar picture can be observed for the temperature before and after (Figure 7) bias-correction.
The figure shows the mean monthly temperature for two of the 21 CORDEX datagrids (also see
CORDEX datagrids in Figure 1, Figures A1 and A2) and each graph illustrates the minimum (Tmin)
and maximum (Tmax) temperature of the six regional climate models. Discrepancies among all models
and stations for Tmin and Tmax are obvious in Figure 7a,b, while Figure 7c,d clearly show the strong
impact of the bias-correction on the mean monthly Tmin and Tmax. Only minor deviations occur in
the months of April to June, which are negligible for the purpose of this study. The bias-corrected
temperature data shows in general a drop in Tmin, starting with the Long Rains in March and April
until the end of the rainy season in June and July. The average decrease during that time frame is about
5 ◦C (Table 3). From July onwards, Tmin constantly rises from about 14 ◦C up to 19 ◦C in November,
and is stable henceforward until March and April again. In the dry season, Tmax increases by about
5 ◦C from July (23.8 ◦C) until November (29.3 ◦C) and the beginning of the Short Rains (Table 3).
By then, Tmax drops again to about 25 ◦C on average until January and stays relatively constant
between 24 and 25 ◦C until July (Table 3).
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Figure 6. Exceedance probabilities for the seven utilized CORDEX Africa datagrids after bias-correction.
Each graph shows the ranked precipitation for all six RCMs, their ensemble mean, and the observed
precipitation at the corresponding datagrid (1951–2005). Missing values were neglected in this
visualization. The lines representing the exceedance probabilities for the observed precipitation, as well
as for models 1 to 5, are superimposed by the distribution of model 6 due to their similar exceedance
probabilities after bias correction.

Table 3. Historical monthly average minimum (Tmin) and maximum temperature (Tmax) according
to the bias-corrected RCM simulations (1979–2005). The given values represent the average of the
monthly average Tmin and Tmax of all 21 utilized CORDEX Africa grids, respectively.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Tmin 19.2 19.1 19.2 18.5 16.4 14.3 14.0 14.6 15.9 17.7 19.0 19.5
Tmax 25.4 25.4 24.8 24.3 24.5 23.9 23.8 25.2 27.6 29.0 29.3 27.2
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3.3. Climate Change Signal 

Two of the most important and commonly utilized climate parameters with regard to 
hydrological modeling of climate change impacts are precipitation and temperature. Figure 8 
displays the climate change signal of both parameters for all six RCMs by comparing the bias-
corrected historical model runs with the bias-corrected projections based on the RCP scenarios in a 
monthly time resolution. The temperature signal (Figure 8a) generally shows a clear trend of rising 
temperatures between 0.5 and 2.5 °C, with the highest increase in August and September. 
Furthermore, the chart indicates a higher increase in the results based on the RCP8.5 projections, 
although model 1 and model 2, based on RCP4.5, simulate higher temperatures compared to several 
RCP8.5 based modeling results. Nevertheless, all model projections, except for model 6 in RCP8.5, 

Figure 7. Mean monthly minimum and maximum temperatures from 1979 to 2005 for two
exemplary stations out of the 21 utilized CORDEX Africa datagrids before and after bias-correction.
(a,b) Temperatures before bias correction. (c,d) The same stations after bias-correction. Each graph
shows the average Tmin and Tmax monthly temperature for all six models introduced in Table 2.
(c,d) The last plotted lines from model 6 superimposed over the other models’ lines due to their
similarity after bias correction. All 21 stations can be found in the appendix before (Figure A1) and
after bias-correction (Figure A2).

3.3. Climate Change Signal

Two of the most important and commonly utilized climate parameters with regard to hydrological
modeling of climate change impacts are precipitation and temperature. Figure 8 displays the climate
change signal of both parameters for all six RCMs by comparing the bias-corrected historical model
runs with the bias-corrected projections based on the RCP scenarios in a monthly time resolution.
The temperature signal (Figure 8a) generally shows a clear trend of rising temperatures between 0.5 and
2.5 ◦C, with the highest increase in August and September. Furthermore, the chart indicates a higher
increase in the results based on the RCP8.5 projections, although model 1 and model 2, based on RCP4.5,
simulate higher temperatures compared to several RCP8.5 based modeling results. Nevertheless,
all model projections, except for model 6 in RCP8.5, show a constant increase of temperature throughout
the year, whereas model 6 in RCP8.5 reveals an increase of less than 1 ◦C in January and the highest
increase of about 2.5 ◦C in August and September, indicating the strong impact of the RCP scenarios
on temperature in the dry season.

Precipitation (Figure 8b) is projected to increase according to the mean change of precipitation of
all models in the two RCP scenarios. The intra-annual precipitation pattern is unaffected in the dry
season. The highest increase occurs in February with 157 mm (model 6, RCP8.5), whereas the highest
decrease is −47 mm in April (model 2, RCP8.5). Although the precipitation changes within the rainy
season appear more complex compared to the temperature signal, some patterns are clearly visible.
The months of February and March receive additional rainfall in virtually all simulations except for
model 2 and 5 in RCP4.5, while the signal is much more diverse in January and April, where several
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models simulate decreasing rainfall. The months of May, November, and December can be seen as
transition months with fewer changes in precipitation compared to the months of January to April.
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68 mm (RCP4.5) or 88 mm additional rainfall in both RCP scenarios. The actual evapotranspiration 

Figure 8. Climate change signal among the bias-corrected historical model runs for (a) mean temperature
(1979–2005) and the bias-corrected scenarios RCP4.5 and RCP8.5 (2010–2060), and (b) precipitation
changes among the bias-corrected historical model runs (1951–2005) and the bias-corrected scenarios
RCP4.5 and RCP8.5 (2010–2060). All values represent the monthly spatial averaged temperature and
precipitation for the given periods, respectively.

3.4. Impacts of Climate Change on Water Resources

3.4.1. General Trend Analysis

The impact of the RCMs and the applied RCP scenarios on selected water balance components
is shown in Table 4. The changes in precipitation indicate a dryer future according to models 2, 3,
and 4, although there is a high variation with regard to these three RCMs and the two RCP scenarios,
with deviations in precipitation from +22 to −109 mm per year. The projected wetter future is more
consistent and pronounced with regard to models 1, 5, and 6, especially in the RCP8.5 scenario,
with an annual average increase of up to 302 mm in model 6. Also, the ensemble mean scenario projects
68 mm (RCP4.5) or 88 mm additional rainfall in both RCP scenarios. The actual evapotranspiration
ET0 and the water yield are also closely linked to the precipitation trends, including the surface runoff

(Table 4). Hence, the trends are similar; nevertheless, the magnitude differs and is in generally more
pronounced for changes in water yield in contrast to changes in ET0. The potential evapotranspiration
ETp is increasing in all RCMs by 43 mm up to 136 mm.
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Table 4. Historical annual average precipitation according to the bias-corrected RCM simulations
(1951–2005) and the absolute and relative changes of precipitation, and related impacts on selected
water balance components in SWAT simulations (2010–2060) according to the projections based on
RCP4.5 and RCP8.5 scenarios. Numbers in parentheses represent the changes in percentage. For each
parameter (except for the historical precipitation) and RCP scenario, the lowest and highest values
according to the absolute changes are highlighted in red and blue, respectively. EM represents the
ensemble mean, ET0 the actual evapotranspiration, ETp the potential evapotranspiration, SQ the
surface runoff, and WYLD the overall water yield.

Climate
Model

Historical
Precipitation

(After
bias-correction)

RCP
Precipitation
Changes in

mm (%)

RCP ET0
Changes in

mm (%)

RCP ETp
Changes in

mm (%)

RCP SQ
Changes in

mm (%)

RCP WYLD
changes in

mm (%)

Model 1
(RCP4.5) 1338

195 39 73 23 124
(14.5) (4.4) (4.7) (40.2) (28.7)

Model 2
(RCP4.5) 1334

3 −4 94 7 −20
(0.2) (−0.4) (5.3) (12.0) (−4.9)

Model 3
(RCP4.5) 1311

−109 −10 66 −12 −103
(−8.3) (−1.4) (5.1) (−18.3) (−19.8)

Model 4
(RCP4.5) 1334

22 −9 43 7 23
(1.7) (−1.3) (3.8) (10.8) (3.6)

Model 5
(RCP4.5) 1355

75 11 54 11 52
(5.5) (1.2) (3.3) (19.7) (12.4)

Model 6
(RCP4.5) 1345

218 14 81 25 163
(16.2) (1.5) (4.5) (42.1) (42.1)

EM (RCP4.5) 1335
68 0 70 2 46

(5.1) (0.0) (5.0) (25.4) (8.5)

Model 1
(RCP8.5) 1338

288 39 96 39 216
(21.5) (4.4) (6.2) (67.8) (50.1)

Model 2
(RCP8.5) 1334

−83 −16 136 −5 −91
(−6.2) (−1.8) (7.8) (−9.7) (−22.5)

Model 3
(RCP8.5) 1311

−76 11 76 −6 −85
(−5.8) (1.5) (5.9) (−8.9) (−16.3)

Model 4
(RCP8.5) 1334

−33 −28 91 12 −28
(−2.4) (−4.2) (8.1) (18.6) (−4.4)

Model 5
(RCP8.5) 1355

130 1 75 18 102
(9.6) (0.1) (4.6) (31.6) (24.2)

Model 6
(RCP8.5) 1345

302 25 81 38 239
(22.5) (2.7) (4.5) (63.4) (61.6)

EM (RCP8.5) 1335
88 −2 101 3 60

(6.6) (−0.2) (7.2) (34.6) (10.9)

A more detailed overview of discharge behavior in the single models and RCP scenarios is given
in Figure 9 by displaying the average intra-annual discharge for the single decades from 2010 to 2060.
A comparison of the single decades across the six models and two RCP scenarios displays various
decades as either dry or wet. Hence, a clear signal for the discharge pattern over time is not obtained.
Nevertheless, Figure 9 shows a shift of the discharge peak from April to May for all the models, except
for model 3, with a shift of the peak to June, from 2020 onwards.
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(historical model run, RCP4.5, and RCP8.5), according to the bias-corrected CORDEX Africa data. 
The high variance across the six models is obvious, especially for the RCP8.5 scenarios, where the 100 
year return level varies between 7782 m3 s−1 (model 5) and 20,707 m3 s−1 (model 1). Nevertheless, an 
increasing trend of return level values in the RCP8.5 scenario is apparent, particularly for the rare 
events (25 years up to 100 years), according to the simulation results. Model 5 is an exception for this 
finding, with rather constant return levels for a 100 year event among the scenarios. 

Figure 9. Changes in mean monthly discharge for the RCP4.5 and RCP8.5 scenarios for all utilized
regional climate models introduced in Table 2. For each model and RCP scenario the average monthly
discharge is visualized on a decadal resolution ranging from 2010 to 2059. Additionally, the mean
monthly discharge of the observed discharge from 1958 to 1970 is shown. The dashed lines highlight
the minimum and maximum values of the observed discharge for the period 1958–1970.

3.4.2. Flood Frequency and Low Flow Analysis

Figure 10 shows the return levels of flood events for all six models (Table 2) across all simulations
(historical model run, RCP4.5, and RCP8.5), according to the bias-corrected CORDEX Africa data.
The high variance across the six models is obvious, especially for the RCP8.5 scenarios, where the 100
year return level varies between 7782 m3 s−1 (model 5) and 20,707 m3 s−1 (model 1). Nevertheless,
an increasing trend of return level values in the RCP8.5 scenario is apparent, particularly for the rare
events (25 years up to 100 years), according to the simulation results. Model 5 is an exception for this
finding, with rather constant return levels for a 100 year event among the scenarios.

The aforementioned results are supported by Figure 11, which displays the arithmetic mean of all
scenarios for each model (Figure 11a) and the arithmetic mean of all models for the specific scenarios
(Figure 11b). According to these results, model 4 and model 5 incorporate the highest and lowest
return levels, respectively, with regard to 25-year return levels or higher. Figure 11b indicates a rising
intensity of flooding events for the RCP4.5 and RCP8.5 scenarios.
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Figure 10. Return levels of flood events for all six models (Table 2) and all three scenarios. For each
model there are three columns representing the historical (left), the RCP4.5 (middle), and the RCP8.5
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event are indicated according to the generalized extreme value (GEV) model and the generalized
maximum likelihood estimation (GMLE) method.
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Table 5 confirms the finding that the impact of RCP scenarios regarding a rise of flood magnitudes
increases with increasing return periods. The relative change of all models and RCP scenario
runs in comparison to their respective historical simulations is shown for the single return periods.
The arithmetic mean of the percentage increase of the return levels rises constantly, while the standard
deviation rises from the 5 year return level upwards, even though relative changes with increasing
discharge values are considered as a baseline in these calculations.

Table 5. Arithmetic mean and standard deviation for the relative changes of the return levels across all
six models and for the two RCP scenarios in comparison with the respective historical model runs.
All values represent changes in %.

Statistic Measure 2-Year 5-Year 10-Year 25-Year 50-Year 100-Year

Arithmetic mean 8.60 9.58 13.19 20.47 27.89 37.19
Standard deviation 21.79 16.31 18.64 28.72 39.75 53.21

Figure 12 shows Q10 and Q90, representing the high flow and low flow conditions for the historic
model runs and the future scenarios for each model. The historic model runs are only represented by
one value (dashed lines) for the entire simulation period of each model, whereas the RCP scenario
simulations contribute decadal values from 2010 to 2060 for both RCP scenarios, to concentrate on
future climate developments. The difference among the six models for Q10 and Q90 is obvious.
Models 2 and 3 have comparably low Q10 and Q90 values, while models 1, 4, and 6 have comparably
high Q10 values. Q90 values for models 1, 4, 5 and 6 are similar, and all simulated Q90 values are
below the measured historical Q90. A more detailed analysis is given in Figure 13, which accounts for
the decadal shifts of Q10 and Q90 in a Cartesian coordinate system. The changes in m3 s−1 for both
RCP scenario simulations of the RCMs on a decadal basis are given in comparison to the historic Q10
and Q90 values of the respective model. For example, a red “2” in the bottom left quadrant refers to
a RCP8.5 (red color) scenario simulation from 2020 to 2029 and represents decreasing Q90 (below zero
line) and decreasing Q10 amounts (left to the zero line). A blue “5” in the top right quadrant refers to
a RCP4.5 (blue color) scenario simulation from 2050 to 2059 and represents increasing Q90 (above zero
line) and increasing Q10 amounts (right to the zero line).

After integrating all results a linear trend is obvious, with coinciding trends of decreasing Q10
and Q90 or increasing Q10 and Q90. Nevertheless, a few examples are located in the top left quadrant
of the coordinate system, representing slightly increasing Q90, whereas Q10 is decreasing. Both RCP
scenarios and simulations from the 2020s, 2030s, and 2050s show this pattern (Figure 13; blue and red
“2”, “3”, and “5” in top left quadrant). The most extreme simulations with the highest changes for Q10
and for Q90 are within the RCP8.5 scenario, with one exception. In the 2050s there is a huge reduction
(−706 m3 s−1) in Q10 for one of the RCP4.5 scenarios (model 3) simulated. In general, most of the
scenarios show a wetter future, represented by the accumulation of changes in Q10 and Q90 in the top
right quadrant (Figure 13).

This general trend towards a wetter future is also represented in the results of smaller spatial scale
(Figure 14). Figure 14 displays the comparison of the wettest and driest decade with their respective
historical model run (1951–2005) for the overall water yield and evapotranspiration. Model 2 under
the RCP8.5 scenario for the period 2020–2029 and model 6 under the RCP8.5 scenario for the period
2040–2049 were identified as the driest and wettest decades with regard to changes in discharge.
This finding is based on the general hydrograph analysis (Figure 9) and the behavior of extreme
discharge represented by Q10 and Q90 (Figure 13). The very pronounced increase of the overall
water yield in the “wet scenario” (Figure 14a) is obvious, whereas the decrease in the “dry scenario”
(Figure 14b) is less pronounced. The difference between the wet and dry scenarios with regard to
evapotranspiration (Figure 14c,d) is more balanced and has a smaller magnitude. The changes in
water balance components are less distinctive in the western part of the catchment for both scenarios
compared to the eastern part of the catchment.
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Figure 12. Boxplots showing the distribution of Q10 (a,b) and Q90 (c,d), representing the flow exceeded
in 10% or 90% of the time for Q10 and Q90, respectively. The data in the left columns (a,c) is based on
the model runs within the RCP4.5 scenario from 2010 to 2060, whereas the right columns display the
modeling results within the RCP8.5 scenario. The dashed blue lines represent the measured historical
Q10 and Q90 from 1958 to 1970 and the dashed red line represent the modeled historical Q10 and Q90
according to CORDEX Africa from 1951 to 2005, respectively.
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Figure 13. Scatterplot to visualize changes in Q10 and Q90 for each model and both RCP scenarios.
Numbers represent the specific decades, whereas a “2” represents model simulations for the 2020s,
continuing in this fashion up until the 2050s, represented with a “5”. Blue numbers represent RCP4.5
simulations and red numbers RCP8.5 scenario simulations.
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Figure 14. Average shifts in total water yield (a,b) and evapotranspiration (c,d) for the wettest and
driest decade in comparison to their historical average (1951–2005). (a,c) Changes between the historical
annual average of model 6 and the RCP8.5 scenario from 2040 to 2049 of model 6; (b,d) Changes
between the annual historical average of model 2 and the RCP8.5 scenario from 2020 to 2029 of model 2.

4. Discussion

4.1. Model Performance and Bias-Correction

The performance of the model and the arising uncertainties due to the data scarcity in the region
are discussed in detail by Näschen et al. [23]. Hence, only a brief discussion on model performance
is given here, whereas the main interest is drawn to the bias correction of the climate data, namely
precipitation and temperature data.

The discharge pattern for the calibration and validation period (Figure 4) is captured well,
with a good to very good statistical performance, according to Moriasi et al. [63]. Deductions in
statistical performance can be attributed to overestimations of discharge in some years (1959, 1961)
and inaccuracies in simulating the discharge peaks [23]. During calibration, five out of the seven most
sensitive parameters were related to groundwater [23], indicating the importance of groundwater
contribution for the catchment, which was also highlighted by other researchers [21,64].

Bias-corrections with quantile mapping worked very well, as already proven by Teng et al. [65]
in a comparison of several bias−correction methods. The seasonal variability for rainfall on monthly
scale (Figure 5), as well as the exceedance probabilities of the bias-corrections, perform very well
(Figure 6). The ensemble mean simulations of rainfall were neglected in this study due to their huge
deviations compared to the single model outputs, with regard to the ranked rainfall distribution
(Figure 6). Bias correction for temperature was also successful for all 21 CORDEX Africa datagrids,
which is obvious by comparing Figure 7a–d, as well as Figures A1 and A2. The average annual
temperature cycle (Table 3) displays a typical tropical daytime climate, indicated by more pronounced
daily temperature amplitudes of up to 11.7 ◦C in September as an average of the whole period and
all stations. However, the seasonal cycle is evident with Tmax and Tmin differences of up to 5.5 ◦C
among the lowest and highest areal mean values within the considered period. Hence, it has to be
considered that the bias correction was done from the period 2006 to 2100, but the analyses were only
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done until 2060 to find a compromise between the statistical variability of climate change projections
and planning time-frames, such as the Tanzania Vision 2025.

The behavior of the areal mean monthly temperature of the catchment (Figure 7, Table 3)
fits very well to the temporal precipitation patterns and the onset and ending of dry and rainy
seasons [17,23]. Minimum temperatures decrease from March until July, which can be attributed to
cooling by evapotranspiration and shifts in the share of sensible and latent heat transport [66]. In July,
minimum temperature starts to rise again from about 14 ◦C to 19 ◦C, while maximum temperatures
simultaneously increase from July until November, which is the onset of the short rains, where again
cooling is achieved via evapotranspiration as well as more pronounced cloud coverage, and therefore
less solar radiation [67]. The increase of minimum and maximum temperatures starting in July also
fits well with the declining impact of cooling by evapotranspiration within the catchment. It was
shown [23] that actual evapotranspiration and potential evapotranspiration diverge from July onwards
due to a water deficit. This is exactly the month where minimum and maximum temperatures begin
to rise, due to an increasing share of sensible heat in combination with decreasing cloud coverage.
The reduced cloud coverage also implies a higher radiation and a positive feedback with regard to
temperature in a drying system [68]. The bias-corrected climate data, therefore, represent a sound
behavior of a seasonal sub-humid tropical system. Moreover, water availability in the system is
indirectly well-reflected by the shift in actual and potential evapotranspiration.

4.2. Impact of Climate Change on Water Resources

Overall, the modeled scenarios project a broad range of dry and wet conditions, whereas the
distinction towards a wetter future for the catchment is more pronounced (Table 4, Figure 13).
The annual average change in precipitation ranges between a reduction by 109 mm and an increase
by 302 mm with respect to historical model runs, with an annual mean of 1336 mm. The rising
temperature in all models, due to the adopted RCP scenarios, leads to consistently increasing potential
evapotranspiration, while water availability is a temporally limiting factor due to the distinct seasonality
in the catchment [17,38].

This limitation of water is visible by looking at the changes in actual and potential
evapotranspiration in the RCM projections. Potential evapotranspiration is increasing in all projections
(Table 4), whereas the development of the actual evapotranspiration is more variable, indicating
a spatio-temporal water deficit. On the one hand, dry scenario simulations (e.g., model 3 in RCP8.5;
see Table 4) show increasing actual evapotranspiration, although precipitation is decreasing. This can
be attributed to both increasing potential evapotranspiration and decreasing water yields. On the other
hand, the increase of actual evapotranspiration is less distinctive in the wet scenarios (models 1, 5,
6) in comparison to the increase of precipitation (e.g., models 1 and 6 in both scenarios; see Table 4).
In these scenarios, surface runoff increases by up to 67.8% and the overall water yield by up to 61.6%,
indicating a shift in water balance, favoring water yield instead of evapotranspiration. This shift
might be attributed to the temporal distribution of the precipitation. Figure 8 shows the increase of
rainfall within the rainy season, while the temperature, and therefore the potential evapotranspiration,
rises, especially in the dry season. Additionally, the aforementioned models 1, 5, and 6 show
comparably high values of Q10 (Figure 12a,b), implying higher discharge peaks and heavy rainfall
events. Furthermore, it was already shown that the system is energy limited throughout the rainy
season, with actual evapotranspiration equal to potential evapotranspiration [23]. Otherwise, there is
distinct water limitation throughout the dry season, with Q90 values below the historical measured
value (Figure 12c,d).

An overall aggravation of seasonality is particularly challenging in (East) African countries
because of the already existing high spatial and temporal variability of available water resources [69].
Considering the climatic feedback described in chapters 3.4 and 4.1, including the rising temperatures
in combination with decreasing low flow and water availability in the dry season, drought-related risks
might be aggravated in the region due to climate change. However, flooding intensity is more likely to
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increase (Figure 11b, Figure 13). This indicates an aggravation of severe floods in the rainy season in
combination with the chance of an increasing drought risk in the dry season. Additionally, the discharge
peak and the following inundation, which are important factors for the recession agriculture in the
valley [17,70], are likely to shift from April to May from the 2020s onwards (Figure 9). This shift might
be attributed to the changing precipitation patterns (Figure 8b) in combination with the comparably
slow drainage for the overall catchment [16]. Therefore, wise catchment management is needed to
adequately use and retain the potentially occurring water benefit in the rainy season and make it
available during the more pronounced drought periods in the dry season. In contrast, poorly adapted
catchment management will increase the risk of severe floods. Additionally, a shift in inundation
dynamics needs to be communicated to ensure efficient agricultural production.

Although results show no clear signal towards an extension or shortening of the dry or wet
seasons across all models, precipitation amounts primarily increase within the rainy season. In contrast,
the dry season from June to October is consistent with regard to very low precipitation amounts
(<20 mm per month on average) and increasing potential evapotranspiration due to increasing
temperatures, even though some regional climate models predict increasing rainfall in September
(Figure 8). However, a general consistency within the single scenarios regarding extreme events is
observed, with an antagonistic trend of either a decrease of both Q10 and Q90 or the opposite trend,
with only a few less-pronounced exceptions (Figure 13).

Nevertheless, the wide distribution of the decadal simulation results and also the RCM simulation
results in Figure 13 show that the occurrence of a trend towards a wetter future with regard to Q10
and Q90 is more likely. However, the spread of the different models and the decadal distribution
indicate a high uncertainty and no clear temporal trend. Especially, the span for extreme events, e.g.,
the 100-year return level, between the six models is extremely high (Figure 10, Table 5) and results have
to be considered carefully. This span can be taken as a range of uncertainty, with a set of possible futures
scenarios for the Kilombero Catchment. The knowledge of the performance of these climate scenarios
and models can be very useful for management purposes of the catchment, e.g., the estimation of
future inundation dynamics. Therefore, a hydraulic model for the agriculturally utilized parts of the
catchment needs to be established to estimate the impacts of potential scenarios. The analyses in
Figures 11a and 12a,b suggest utilizing either model 1, 3, 4, or 6 in hydraulic flood models to prepare
for possible future flooding events under wetter conditions and changing inundation dynamics, due to
the high return levels and Q10 values. In contrast to that, model 2 and model 3 are suitable to prepare
for dry conditions, for example in environmental flow assessments.

A more detailed analysis has already been undertaken by investigating the impact of particular wet
and dry decades and their impact on water balance components (Figure 14). There exists a distinctive
increase of the overall water yield in the wet scenario, resulting in an increase of about 50% within
nearly all subcatchments compared to the status quo [23]. This change will have a huge impact on the
overall hydrology of the catchment and its management. On the one hand, this is only the annual
average of a whole decade, and therefore conceals intra- and interannual dynamics, which are even
more pronounced. On the other hand, one has to keep in mind that this is the most extreme scenario out
of many possible future scenarios. Nevertheless, the comparison of these extreme scenarios provides
a sense of the uncertainty that water management has to deal with. The distinct influence of both the
driest and wettest simulated decades on the eastern part of the catchment (Figure 14) can be attributed
to the fact that the eastern part is, in general, more important for the water yield of the catchment due
to the precipitation patterns and also the direction of flow of the Kilombero River towards the east [23].
Nathkin et al. [35] give an overview of studies investigating the impact of climate on discharge regimes.
They also show diverging effects of climate change on discharge regimes, but most of the studies imply
a decrease of discharge in the dry season in contrast to an increasing total runoff, which is in line with
the insights in this study. Reasons for changes in the discharge regimes are changes in precipitations
patterns [71,72], increasing evapotranspiration due to higher temperature [72], LULC changes [71],
water abstractions [72,73], and dam constructions [74].
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These study results show that in addition to climate change analyses, manifold factors are
influencing the hydrology within the catchment [75]. The method of land use and management,
for example, exerts strong influence over soil hydraulic properties, and thus influences the amount
of water retention, surface runoff, and flood generation [76,77]. Particularly, agricultural land is
characterized by high degrees of soil cultivation and low soil coverage by vegetation during parts
of the year, which in general leads to an increase of surface runoff generation. Thus, a growth of
the share of agricultural land, which is promoted through the SAGCOT initiative [15], might lead to
an aggravation of flood events, and hence intensify the negative effects climate change might exert
on the regional water balance. Apart from the presumable effects on water balance, an increment in
agricultural area might also lead to biodiversity losses within the Ramsar site [8,78].

Still, the extent to which increasing agricultural production influences soil hydraulic properties
depends on different regionally varying factors, such as soil type, cultivation, and irrigation schemes,
and location within the catchment. The aforementioned factors need to be determined within proper
field studies to assist in planning for the future water resource management of the Kilombero Catchment.

In general, LULC change [79] and management change scenarios should be developed and
included in future analyses to investigate their combined impact in combination with climate change
on water resources. Moreover, this study concentrates only on water quantity, due to the lack of
data on water quality, but it was already demonstrated that the impact of climate change could be
amplified by LULC change with regard to soil erosion and the accompanied nutrient input into surface
waters [80,81].

5. Conclusions

The study clearly showed the broad range of possible future climate scenarios for the Kilombero
Catchment according to the bias-corrected CORDEX Africa projections. The climate impact analysis
on hydrology recommends adapting to more distinct seasonality due to shifting rainfall patterns.
These shifting patterns will probably result in changing inundation dynamics and more severe flooding,
while the likelihood of decreasing low flows is less pronounced. The designation of suitable arable land
for the recession agriculture has to be adjusted in accordance with the respective hydrological patterns.
Future agricultural management strategies should also take into account a delay of approximately
one month in the inundation of the floodplain within the next decades, because of the common delay
signal across all simulations (Figure 9). The presented modeling results should be taken as a range of
possible futures, which could be applied following the precautionary principle to assess and prepare
for possible future conditions. However, it is strongly recommended to use these climate change
scenarios in combination with LULC change scenarios and management scenarios to have a more
realistic representation of the hydrological conditions. These hydrological model results should be
implemented into a well-established hydraulic model to get a better understanding of their possible
impact on inundation extent, depth, and timing. This will facilitate and enhance the management of
the floodplain and might assist in the designation of suitable areas for either conservation measures
or agricultural production zones, also with regard to downstream water users and water-related
infrastructure, such as the planned hydropower dam at Stiegler’s Gorge.
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