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Abstract
Motivated by recent proposals ofMajorana qubits and the read-out of their quantum state we
investigate a qubit setup formed by two parallel topological wires shunted by a superconducting
bridge. Thewires are further coupled to two quantumdots, which are also linked directly, thus
creating an interference loop. The transport current through this system shows an interference pattern
which distinguishes two basis states of the qubit in aQNDmeasurement.We analyze various
properties of the interference current and the read-out process, including the resulting dephasing and
relaxation.We also analyze the effects of varying control parameters such as gate voltages on the
current. The characteristic dependenciesmay serve as a signature ofMajorana bound states.

1. Introduction

Majorana bound states (MBSs) in topological superconductors (TSs) have been proposed as candidates for
topologically-protected carriers of quantum information [1–7].Much attention has been paid to the properties
of single wires, including the proposal how to perform the topolocically-protected adiabatic braiding operation
[8, 9]. However, in order to overcome limitations fromparity conservation and to allowperforming a universal
set of quantum gates it is necessary to consider generalizations, such as compositemulti-wire systems [10–12].
Such a system, namely aMajorana box qubit (MBQ)was recently described by Plugge et al [13]. The basic qubit
consists of twoTSwires shunted via a conventional superconductor. The two qubit states, bothwith—say—
even parity, differ in the number of occupiedMBSs. The states can be read out by a conductancemeasurement,
when theMajorana qubit is coupled suitably to electron reservoirs.

Here we revisit the systemproposed in [13]. On one hand, we propose a specific setup, where theMajorana
qubit is coupled via quantumdots to reservoirs. On the other hand, we study its transport properties and
dynamics in the frame of a quantummaster equation.We do not discuss protocols how tomanipulate the qubit,
nor dowe consider further TSwires needed for this purpose. However, we study in detail the read-out process
made possible by the interference effects in the transport current.Wefind that the setup allows performing the
measurement in a quantumnon-demolishing fashion. In additionwe obtain information about the time scales
of the read-out process such as the relaxation and dephasing induced by the process.

For a current toflow states differing in particle number and hence Fermion parity need to be accessed [14].
Although, due toCoulomb-blockade effects, theses states are only weakly populated (and atT=0 only virtually
as known from cotunneling), they still influence the dynamics of the system in characteristic ways.Mixing states
with different parity leads to decoherence of theMajorana qubit, similar as the so-called quasiparticle poisoning,
although at the low temperatures (considered here)no quasiparticles with energies above the superconducting
gap are excited. Since the current should be sufficiently strong for themeasurement process, it is reasonable to
assume that tunneling is the leading source of decoherence. In comparison, we ignore othermechanisms, such
as, e.g. quasiparticle poisoning involving excitations above the superconducting gap [15], or thosewhich arise
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when theMBSs have a non-zero overlap [16].When switched on for the read-out the tunneling leads to a rapid
initial decay on the scale of the inverse tunneling rate. In additionwe find features of telegraph noise, which
manifest themselves in a slowfinal decay.

We also consider several extensions of themeasurement protocol and the transport properties of the
composite systemwhen varying parameters and gate voltages.Wefind signatures of coherent oscillations, either
arising fromdifferent states of the dots or involving higher-energy states. As has been argued before for a similar
butmore basic setup [17], the sensitive dependence of the results can serve as signatures of the presence ofMBSs.

In the following sectionwewill present themodel of the system and the relation to the qubit.We then
formulate the quantummaster equation, whichwe use to analyze the transport properties and dynamics, andwe
study the use of the setup for a quantummeasurement.We determine the time scales of the various stages of this
process, incl.the dephasing induced by the transport current.We finally consider several extensions and
generalizations. This includes the dependence on the voltage bias, the correlations in themeasurement current,
and the influence of gate voltages driving the system away fromoptimum symmetry points (‘sweet spot’).

2. Setup andmodel

2.1.Hamiltonian and qubit
Weconsider theMBQdisplayed infigure 1. It is formed by two sufficiently long TS nanowires which are shunted
by a conventional superconductor S. This creates an electrostatically floating islandwith charging energy
controlled by a gate voltage, but there are noT-junctions of topological superconducting wire segments. The
setup hosts fourMajorana fermions, j=1,K, 4, with j jg g= † and anticommutation relations {γi, γj}=2δi, j.
We study longwires, such that theMBSs have negligible overlap and (approximately) zero energy, which is the
origin of their topological protection. Fermion parity is conserved, γ1γ2γ3γ4=±1.We concentrate first on the
case with even parity (an extensionwill be discussed later). This leaves still 2 states, which formbasis states of the
qubit. Anticipatingwhatwill turn out ot be the basis of themeasurement process described below,we choose the
Pauli operators of the qubit as x y zi ; i ; i4 1 2 4 1 2g g g g g g= = =ˆ ˆ ˆ .

For the currentmeasurement we assume in the following that the system is coupled to two quantumdots,
with energy levels which can be tuned by further gate voltages. They are also coupled directly, thus creating an
interference loopwith enclosedmagnetic fluxf. The dots should be further coupled to electron reservoirs.
When turned on, this coupling introduces dissipative processes whichwill destroy the coherent time evolution.
But, as will be shown below, the interference current between the two reservoirs also serves as ameasure of the
state of the qubit. For a current toflow through theMajorana systemweneed excited states differing in particle
number and hence fermionic parity. But because of Coulomb-blockade effects at low temperature theses states
are only vitually/weakly excited.

Wemodel the setup by theHamiltonian

H H H H H . 1CS M D I= + + + ( )

Here, HM
i

2 t 4 1 b 2 3 g g g g= +( ) is theHamiltonian of theMajoranas in the top and bottomwire. Ideally the
overlap of theMBSs vanishes and òt/b=0.Hence, this part of theHamiltonian vanishes. The next term accounts
for theCoulomb charging energy

H E N n . 2C C g
2= -( ) ( )

It depends on the total charge on thefloating island,N, which is conserved on theHamiltonian level but in
general varies when a current isflowing. The gate charge ng depends on the gate voltageVg and gate capacitance.
Also the energy scaleECdepends on the capacitance of the floating island. There is no need to go into details, but
we note that the optimal point for the qubit is a symmetry point with an integer value of ng. In the followingwe
assume thatEC is a large energy scale, and all other coupling energies as well as the temparature aremuch lower.

The quantumdots are assumed to have an even higher on-site interaction energy suppressing double
occupancies. In the subspace of empty or singly-occupied dot states theHamiltonian is given by
H d dj j j jD 1,2= å =

† , with energies òjwich can be tuned by gate voltages. For definiteness we assume inmost of
the following that during the read-out process via a currentmeasurement we have ò1/2=0.

The tunneling between the two dots and between each of the dots and the adjacentMBSs are described by
[18]

H d d d d d d d de e i . 3I 0
i

2 1 0
i

1 2 1 1 1 1 1 2 2 2 2 2* * *l l l l g l l g= - - + - + +f f- ( ) ( ) ( )† † † †

Theflux enclosed in the interence loop of the sutup is accounted for by the phase factor eifmultiplying the
amplitudeλ0. The asymmetric formof phases of the coupling amplitudes between dots 1 and 2 and the
respectiveMajoranas is chosen for convenience to produce simple results in the following for real values of
λ0/1/2.
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Toproceed it is useful to switch to a representationwhere twoMajorana fermions are combined to form a
regular fermion. In anticipation of whatwill turn out to be relevant in the followingwe introduce
f i 2

R 1 2g g= -( )† . Note that the fermion created by f
R
† does not correspond to a pair ofMajoranas in the top or

bottomTSbut rather to a pair on the right side of the setup. Similarly we can define a fermi operator f
L
† by

combining the twoMajoranas on the left side, butwith the assumptionsmade it does not enter theHamiltonian.
Thuswefind the followingHamiltonian for the coupling between the dots and theMajorana qubit

H d d d d d f d f d f d f

f d f d f d f d

e e e e

e e . 4

I 0
i

2 1 0
i

1 2 1 1 R 1
i

1 R 1
i

1 R 1 1 R

2 R 2 2
i

R 2 2
i

R 2 2 R 2

* * *

* *

l l l l l l

l l l l

=- - + + - -

+ - + -

f f q q

q q

- -

- ( )

† † † † † †

† † † †

Here, eiθ is the operator, in the gauge proposed in [19], that adds oneCooper pair to the condensate.
The dots are coupled to electronic reservoirs j=1, 2. They are assumed to be formed by free electronswith

densities of states νj and states occupied according to a Fermi function depending on the respective voltages. The
tunneling processes between the dots and the reservoirs (with creation operators cj k,

† ), following from

H t d c t d c h.c.k k kT 1 1 1, 2 2 2,= å + +( )† † , lead to incoherent transitionswith rates t2j j j
2pnG = ∣ ∣ and consequences

to be discussed further below. Throughout this paperwewill assume that both rates are equal,Γ1=Γ2=Γ.

2.2. Basis and eigenstates
Weproceed assuming that the ground states of theMajorana qubit have even total parity, and that the total
number of charges,N, is even. In this case the two degenerate ground states are

N n N n‘0 ’ 0 , 0 , , and ‘1 ’ 1 , 1 , , 1 . 5L L R 0 L L R 0= = -∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ( )

They are also the eigenstates of ẑ as defined above and basis states of the logicalMajorana qubit.Here, the labels
0/1L/R denote the parity of the left/right pair ofMajoranas in thewires, andN counts the total charge on the
floating island. The numbers of Cooper pairs, n0 and n0−1, are adjusted to yield the same total number of
chargesN in the two states in spite of the difference by 4Majoranas [19, 20]. Due to the coupling to the dots the
number ofMajoranas on the right-hand side of thewires and hence the total charge can change.We thus have to
consider an extended set of states, which includes odd total parity states

N n N n

N n N n

N n N n

0 , 0 , , 1 , 1 , , 1

0 , 1 , 1, 1 , 0 , 1,

0 , 1 , 1, 1 1 , 0 , 1, 1 .

6
L R 0 L R 0

L R 0 L R 0

L R 0 L R 0

ñ - ñ
+ ñ + ñ
- - ñ - - ñ

∣ ∣
∣ ∣
∣ ∣

( )

Sincewe assume that the charging energy scale EC is largewe can ignore states with still larger or smaller numbers
of the total charge. Tunneling between the dots and thewires induces transitions between the left 3 states
belonging to the ‘0L’ block, and similarly between the right 3 states of the ‘1L’ block, but it does not—nor does
any other part of theHamiltonian—mix states belonging to different blocks. Note that the parity of the left pair
ofMajoranas isfixedwithin either block. This can be seen as the origin of the quantumnon-demolition
character of themeasurement process whichwewill encounter below.

The abovementioned strong on-site repulsion restricts each one of the two quantumdots to be empty or
singly occupied.We thus have 4 dot basis states 0, 0 , 0, 1 , 1, 0 , 1, 1ñ ñ ñ ñ∣ ∣ ∣ ∣ . Hence, the total set of basis states to
be considered are 12 product states formed by the 4 dot states and the 3 states of theMajorana system from the
block ‘0L’with even parity on the left side of the system, and similar 12 states involving the block ‘1L’with odd
parity on the left side of the system.

Figure 1.Majorana qubit and setup used for current interferometry. Two long TSwires (green) are shunted by a superconducting
bridge (orange) to form a floating island hosting fourMajoranas γj (crosses). For the currentmeasurement we assume that the system
is coupled to two quantumdots (gray), which are connected to two independent electron reservoirs (blue). The dots are also coupled
directly, thus creating an interference loopwith enclosedmagnetic fluxf. The gate voltageVg is used to tune the gate charge ng.
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The eigenenergies and eigenstates are easily found. They depend on the enclosed flux as illustrated for the
four lowest-energy states infigure 2 (withflux normalized to 2π). The results for the two different parity blocks
areπ-shifted relative to each other. The energies can be found analytically. For realλ0>0 (i.e. forf=0 in the
figure) and realλ1=λ2 the expressions are simple enough to be presented here.Wefind that one of the
eigenenergies is exactly E1=−λ0 and the corresponding eigenstate is a product state of theMajorana qubit
ground state and the dot state 1, 0 0, 1ñ + ñ∣ ∣ , as if the two subsystemswould not be coupled. The next two

low-energy states are degenerate with E E E 8C C2,3
1

2 0 0
2

1
2l l l= - - - +( ( ) ) and the 4th state has E4 =

E E 16C C
1

2 0 0
2

1
2l l l+ - - +( ( ) ). Similarly forf=π one of the eigenvalues is exactly E4=+λ0.

In the limit where the tunneling amplitudes are small compared to the energies of the higher charged states,
ECla ∣ ∣ , the low-energy eigenvalues can also be obtained—except for an overall shift by E2 C1 2l l- ∣ ∣ — from

the approximate low-energyHamiltonian

H z
E

d de 2 h.c. 7
C

eff 0
i 1 2

2 1
*

l
l l

= - - +f
⎛
⎝⎜

⎞
⎠⎟ˆ ( )†

i.e. the considered system approximately reduces to a double-dot system (with qubit-state-dependent coupling).
A similar-looking low-energyHamiltonianwas suggested in [13]with operators d1,2 referring to two reservoirs,
whereas here the dots are part of the coherent quantum system. The factor 2 arises due to two channels for
transitions via the two appropriate high-energy states in the blocks (6).

Infigure 2we compare the eigenenergies of the effectivemodel and the exact ones. Also in the discussions
belowwewill frequently compare the fullmodel to the low-energyHamiltonian. The latter reproducesmost
results with sufficient accuracy, but some details depend on properties of the higher-energy states.

2.3.Quantummaster equation
Wenext study the properties of theMajorana qubit-quantumdot system, when it is coupled to two fermionic
reservoirs, labeled by j= 1, 2, with chemical potentialsμj, which can be adjusted to drive a current through the
composite system. The reservoirs are assumed to be in thermal equilibrium and their electronic degrees of
freedomare traced out. Forweak enough coupling the resulting quantummaster equation for the systemof
interest then takes the form [21–26]

d D D
1

2
, h.c. . 8

j
j j jS

1,2

  år r r r r= = - - +
=

- + {[ ] } ( )† ( ) ( )

Here,  is the (total) Liouvillean superoperator which accounts for both the coherent evolution due to the
systemHamiltonian, Hi ,S S r rº - [ ], but also for the dissipation due to the tunneling between the two
reservoirs and the adjacent dots.

Figure 2.The four lowest eigenenergiesE1,K4 of the coupledMajorana qubit-quantumdot system versus the enclosed flux
(normalized to 2π). Only the results for the ‘0L’ block are shown. For the plot we assumed that all coupling amplitudesλ0/1/2 are real.
Forf=0 the lowest/highest (shown) eigenenergies (with labels 1 and 4) correspond to dot states 0, 1 1, 0 2ñ  ñ(∣ ∣ ) , whereas the
degeneratemiddle levels (with labels 2 and 3) are formed by the states 0, 0ñ∣ and 1, 1ñ∣ . The energies corresponding to the ‘1L’ block
have the samef-dependence but are shifted byπ. The parameters areλ0=0.01EC andλ1=λ2=0.1EC. Open symbols show results
obtained from the effective low-energyHamiltonian (7).
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The dissipative term is assumed to be of the Lindblad form, involving the superoperators

D t C t dd e e . 9j j
H t

j
H ti iS Sò=

-¥

¥
  ( ) ( )( ) ( )

They depend on the spectral functions of the reservoirs, i.e. the thermal averages C t t c t c 0j k j j k j k
2

, ,= å á ñ+ ( ) ∣ ∣ ( ) ( )( ) †

and C t t c t c 0j k j j k j k
2

, ,= å á ñ- ( ) ∣ ∣ ( ) ( )( ) † .With the usual approximations for the electrodes the correlation functions

become C t t fej j k
t

j k
2 i k = å  ( ) ∣ ∣ ( )( ) , where fj

+(òk)=fj(òk) is the Fermi distribution of reservoir j, and

fj
−(òk)=1−fj(òk). The distribution functions depend on the respective electro-chemical potentialsμj. Then in
the eigenbasis ofHS the superoperator becomes D f dj nm j j mn j nmw= G ( ) ( ˆ )( )( ) , where E Emn m nw = -ˆ is the

energy difference between the eigenstates ofHS.
The transport current between dot 2 and the reservoir attached to it follows from

I t I t I tTr2 2 2r= á ñ =( ) ˆ ( ) { ˆ ( )}with current operator

I d D D d
1

2
h.c ., 102 2 2 2 2= - +- +ˆ ( ) ( )† ( ) ( ) †

and similar for dot 1.Of course, in the steady state both currents are equal, I=I2=−I1, andwe can drop the
index.However, for transient behavior or for the current correlation functionswe have to specify the index.

The formal solution of the quantummaster equation

t e 0 11tr r=( ) ( ) ( )

is conveniently recast inmatrix form. For this purpose theN×N densitymatrix is written as an
N2-dimensional vector r , and the superoperator  as a N N2 2´ matrix whichwe denote be Ĝ. The resulting
equation

t e 0 12Gtr r= ( ) ( ) ( )ˆ

can be easily solved numerically for the 12 states considered (or 24whenwe consider both qubit states together).
Thematrix Ĝ is interesting in its own right. It has an eigenvalue zero, and the corresponding eigenvector is

the stationary-state densitymatrix ρstat.Whenwe consider both qubit states together, e.g. if we examine qubit
decoherence processes, wefind two zero-eigenvalues and corresponding stationary densitymatrices. One or the
other is reached depending onwhether the initial state is chosen fromone or the other block of states. Ofmuch
interest are also further small eigenvalues of Ĝ which govern slow relaxation processes. Belowwewill encounter
examples where physical quantities display such a slow decay. In addition, as expected, Ĝ hasmany eigenvalues
of orderΓ1/2 accounting for the relaxation processes induced by the tunneling between the reservoirs and
the dots.

3. Currentmeasurement and read-out of the qubit state

3.1. Steady-state current
Weare now ready to investigate the transport properties of theMajorana qubit-quantumdot system.We control
the voltages, i.e. electro-chemical potentials of the two reservoirs, concentrating on two scenarios:

(i) We can choose a narrow window μ1−μ2 (for definiteness we assume μ1>μ2). In this case, at low
temperatures the current is highly sensitive to the values ofμj, with a currentflowing onlywhenμ1>Δ
E>μ2, whereΔ E denotes one of the differences in the 4 eigenenergies depicted infigure 2. These energies
depend on theMajorana qubit state and on the flux. Infigure 3we show a typical result.

(ii) Alternatively we can choose a wide window for the difference of the electro-chemical potentials. Specifically
we chooseμ1 andμ2 such that all transitions between the 4 low-energy states depicted infigure 2 are allowed
even aT=0. Thismeansμ1>Δ E>μ2 for all (positive or negative) energy differences. By this choice we
avoid switching effects as shown infigure 3whichwould arise when, upon varying the flux, the energy
differencesmove in or out of thewindow. Remarkably, even in this wide-band driving case wefind
significant interference effects and a dependence of the current on the enclosed flux.

Infigure 4we show the steady-state current through the system as obtained for the full 12-statemodel (see
equation (6)) as a function of the enclosedflux for different values ofλ0. The results for the two (dot-dressed)
Majorana qubit states differ by a shift byπ.We also show the current as obtained from the effective low-energy
Hamiltonian (7). In the case whereλ0 is relatively large, we find the sinusoidalf-dependence predicted for a
similar setup in [13]. However in this case the amplitude of the current oscillation is small. The amplitude of the
currentmodulation gets larger with decreasingλ0, even ranging between a totally constructive or destructive
interference for the 2 qubit states, whenλ0=2λ1λ2/EC andf is an integermultiple ofπ.

5
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Wealso note that the difference between the results for the full 12-statemodel and the 4-state low-energy
Hamiltonian. They aremost pronouncedwhenλ0 is large, although they are approximately of the same
magnitude for all the displayed curves. The reason is a non-vanishing occupation of the 8 higher energy states of
the fullmodel. Although the temperature of the reservoirs is chosen to be low,T=0, the fact that the system is
drivenwith awide voltage window,makes the effective temperature of the low-energyHamiltonian 4-state
system infinite. Similarly, for the fullmodel the four low energy states are roughly equally populated.However,
there are also the 8 high-energy states. The eigenstates are superpositions of the low-energy and the high-energy
basis states, and even the low-energy eigenstates have a small, but not exponentially suppressed contribution
from the high-energy states and vice versa. As a result, also the high energy states acquire a small but not

Figure 3. Steady-state current through the system atT=0 as a function of the voltage applied to the electrode 2with a narrow voltage
window, E0.01 C1 2m m- = . The enclosedflux isf=0. Results for the twoMajorana qubit states are shown by black and red lines.
The other parameters are E E E0.01 , 0.1 , 0.01C C C0 1 2 1 2l l l= = = G = G = G = .

Figure 4. Steady-state current through the system versus enclosed flux for different values of the dot–dot couplingλ0. The interference
effects lead to differences between the results for the twoMajorana qubit states (black and red lines). For the plotswe assumed that the
voltage windowof the reservoirs is wide (see the text). Solid lines are the results obtained for the full 12-state system, dashed lines were
obtained from the low-energyHamiltonianwith 4 states only. The parameters areλ1=λ2=0.1EC,Γ=0.01EC, whileλ0 varries in
the range 0.01EC�λ0�0.1EC.

6
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exponentially suppressed occupation probability. This occupation ismissing in the probability that the dot 2
states are occupied, accordingly reducing the current out to the reservoir.

Infigure 5we show the interference current for different temperatures, concentrating on parameters where
at low temperatures the fullmodel and the low-energy effectiveHamiltonian produce quantitatively rather
different results. At higher temperatures the differences get diminished. Furthermore, we observe a switching of
the positions ofminima andmaxima of the interference current.We found no intuitively simple explanation of
this behavior, other than that the interference effects arise due to a subtle balance of transitions.

Belowwewill study the dependence of interference current on further parameters. But before doing so, we
will investigate the use of the currentmeasurement for a read-out process of the qubit state and investigate the
time scales involved.

3.2.Dynamics of the read-out process
When the currentmeasurement is performedwith the aim to read out the state of theMajorana qubit we should
turn on themeasurement at somemoment, say t=0. This can be done, e.g. by tuning gates attached to the
quantumdots. Let us assume that the dot energies ò1/2 before themeasurement are large, then both dots are
empty. Themeasurement starts whenwe tune them to a lower value, e.g. to ò1=ò2=0. An interesting question
then is, howdoes the current evolve in time towards the steady-state value presented above. Figure 6 shows such
a time evolution of the current I2(t) fromdot 2 to reservoir 2.We show the results for both the fullmodel in

Figure 5. Steady-state current through the system versus enclosed flux for different temperatures. Here E0.1 C0l = . All other
parameters and the choice of lines are the same as infigure 4.

Figure 6. (a)Current I2(t) out of dot 2 as a function of the time after themeasurement was started.We assume that the initial state is
N n0 , 0 , , 0, 0L R 0ñ ñ∣ ∣ with both dot states initially empty. The black line is the result obtained for the full 12-state system, the red line

arise from the low-energyHamiltonian (7). (b)The deviation of the current I2(t) from the steady state value I2=I on a logarithmic
scale, displaying for th fullmodel a slow relaxation process. The parameters areλ0=0.01EC, the other ones are the same as infigure 4.
Here and in the followingwe restrict ourselves tof=0, exceptwhen explicitlymentioned.
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black, and those of the effective low-enegryHamiltonian in red.Obviously the system shows a fast transient
behavior on a time scale given byΓ−1. The following slow time evolution shows some remarkable properties. For
some timewe observe alsoweak oscillations. On one hand, there are high frequency oscillations (displayed only
by the fullmodel)with frequency of order EC. They arise since in the transient period states get excitedwhich are
superposition of the low and the high-energy states. In additionwe observe lower-frequency oscillations, also
displayed by the effective low-energymodel, with frequencywhich coincides with the energy difference between
high- and low-energy states of thismodel E4−E1.

We further observe that thefinal relaxation of the current takes place on a slow time scale, slower than 1/Γ,
which depends on the values ofλ1 andλ2. This slow decay process is not observed for the low-energy effective

model. The rate for the slow relaxation can also be read off fromone of the eigenvalues of thematrix Ĝ. The
corresponding eigenstate reveals that in this slow relaxation process the higher charge high-energy states are
involved, which are also responsible for the previouslymentioned difference in the current obtained for the full
and the reducedmodels.

An important property of the read-out protocol as discussed here is, that it is a quantumnon-demolition
measurement. The reason, as expected, is that the parity of the left twoMajoranas (related to the left Fermion

Figure 7.Decay of an element of the reduced densitymatrix trj j j0L,1L 0 , ;1 ,L L
r r= { }which is off-diagonal in the qubit basis but traced

over the 4 low-energy dot states. Apart from a rapid initial decay on the time scaleΓ−1 we observe for smallλ0 a slowdephasing
process. Results are shown forλ0=0.001EC in red andλ0=0.1EC in black. The remaining parameters are the same as infigure 4.

Figure 8.Decay of the element 0 1,0 4L L
r of the densitymatrix which is diagonal in theMajorana qubit states but off-diagonal in the dot

eigenstates (with levels labeled as infigure 2).We note that it does not decay to zero, since the stationary state is dominated by the
environment. Results are shown forλ0=0.01EC. The remaining parameters are the same as infigure 4.
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with operators fL
(†)) is not affected by the tunneling.We reach a stationary current depending on the initial state

of the qubit, and this information is not destroyed eventually by themeasurement process.Whenwe start from a
state fromone of the two blocks (6) the system relaxes to a steady statewith the corresponding value of the
current. The Liouvillean does notmix the two blocks.Whenwe start with a superposition of states from the two
blocks, the relaxation takes placewithin the blocks, and the current—as obtained from themaster equation,
which yields the averages—is the appropriately weighted average of the results.

3.3.Majorana qubit dephasing
Thequantummaster equation also allowsus to investigate the qubit dephasingwhich is induced by the tunneling
of electrons between the reservoirs and theMajoranaqubit-quantumdot system. Infigure 7weplot an element of
thedensitymatrix, which is off-diagonal in the twoMajoranaqubit states.We see a rapid initial decaywith rate
given byΓ−1, followed by a slowdecaywith rateλ0

2/Γ, which is visible only in the casewhenλ0=Γ. This rate is
well known fromsituationswhere a qubit is subject to telegraphnoise [27–31] in the considered limit, where the
amplitude of thenoise (i.e. the energy shift of the qubit due to thenoise) is low compared to rate of switching. In the
present situation there are four low-energy states involved,which changes thedetails as compared to a single qubit,
but one can understand that effectively the twomodels coincide: (i) the tunneling of electrons between the
reservoirs and the dotswith rateΓ changes the energy of the systemdiffering for the two states of theMajorana
qubit by an amount of 2λ0, (ii) in thepresentmodel only during half of the time the energies of the twoqubit states
differ, which introduces an extra factor 1/2 in the rate6. The result also implies that forλ0=0 the coherenceof the
considered superpositionwouldbepreserved, i.e. wewouldhave somedecoherence-free subspace.However, in
this case the interference effect distinguishing the twoqubit states vanishes,whichmakes theprocess useless for a
measurement.

Next we turn to the issue of dephasingwithin the states belonging to one qubit state, say the ‘0L’ block.
Figure 8 shows the decay of the element t0 1,0 4L L

r ( ), where the second index in 0L1 and 0L4 labels one of the four
low-energy states offigure 2. In spite of being off-diagonal in the basis of theHamiltonian, the element does not
decay to zero. This differs fromwhat onewould expect in a perturbative regime.However, the example simply
illustrates the difference betweenHamiltonian-dominated and environment-dominated situations [32]. Under
the influence of the environment the eigenbasis of the stationary densitymatrix differs from that of the
Hamiltonian.

3.4. Current correlation function andpower spectrum
Nextwe study the statistical properties of the current, specifically the symmetrized correlation function of the
current I2(t) out of dot 2 and the power spectrum

S t I t Id e , 0 , 13I
ti

2 2òw d d= á ñw

-¥

¥
( ) { ˆ ( ) ˆ ( )} ( )

where I t I t I2 2 2d = - á ñˆ ( ) ˆ ( ) ˆ . In the steady state we can rewrite it as

S C C2 Re , 14I I Iw w w= + -( ) [ ( ) ( )] ( )

where C t C td eI
t

I0
iòw = w¥

( ) ( )with C t I t I 0I 2 2d d= á ñ( ) ˆ ( ) ˆ ( ) . The latter quantity is conveniently evaluated by
using the quantum regression theorem [25, 33]

C t I I ITr e , 15I
t

2 2 stat 2
2 r= - á ñ( ) [ ˆ ˆ ] ˆ ( )

where ρstat denotes the steady state densitymatrix.
Infigure 9we show the resulting current correlation function C t I t IRe 1 2 , 0I 2 2d d= á ñ( ) { ˆ ( ) ˆ ( )} .We

compare the results for the full 12-statemodel and the effective low-energyHamiltonian. The correlation
function displays several of the characteristic features whichwe have discussed already above. These are: (i) a
decay on the time scale 1/Γ; (ii) a slow coherent oscillationwith frequencywhich is given by the energy
differenceΔ E=E4−E1 between the highest and lowest of the four low-energy states. They are strongly
pronounced in the lower panel, where this energy difference is larger thanΓ. For the parameters of the upper
panel the period of the oscillation exceeds 1/Γ, and the oscillation is hardly visible; (iii) a high-frequency
oscillation, with frequency of order EC due to the higher energy states. These fast oscillations are best visible
when the low-frequency oscillations are overdamped.Of course they can only be seen for the fullmodel.

Infigure 10we show the resulting power spectrum SI(ω) for different values of the tunneling rateΓ. The
Fano factor F S I0 2I wº =( ) is smaller than 1, as expected for the tunneling of Fermions [34].

6
When comparingwith the results conveniently listed in [31] one should beware of amissing factor 1/2 in the table given there.
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4. Extensions

4.1. Varying the gate charge ng
Extending the analysis presented so farwe study the interference current whenwe vary the gate charge ng. For
definiteness we start from the ‘0L’-block of states with even parity on the left side of the two-TS-wire setup. In the
situation considered so far the gate voltages attached to theMajorana systemwhere tuned tomake ng an even
integer; the state withminimumcharging energy had an equally large total chargeN, and all this was carried by
Cooper pairs in the superconductingwire,N=ng=2n0. The twomost important excited states—necessary
for transport—as presented in equation (6)had total chargeN+1 andN−1with charging energy equal toEC for
both.Wenowallowng=2n0+δng to deviate froman evennumber.Accordingly,within the range δngä[0, 1],
wehave to extend the set of states fromwhat iswritten in equation (6) to

Figure 9.Current correlation function I t I1 2 , 02 2d dá ñ{ ˆ ( ) ˆ ( )} as a function of time. For the upper panel we chose E0.01 C0l = , for the
lower panelλ0=0.1EC. The remaining parameters are the same as infigure 4. Black lines represent the results of the fullMajorana
qubit-double dot system, red lines are those obtaindwith the effective low-energyHamiltonian.

Figure 10.Power spectrum SI(ω) (a) forΓ=0.01EC and different values ofλ0, (b) forλ0=0.1EC and different values ofΓ. The
remainig parameters are the same as infigure 4.
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Herewe also indicated the corresponding values of the charging energy. Results for larger values of ng follow
from symmetry considerations and the periodicity with period 2.

With this extended set of states the simulation can be performed as before. The resulting current for a driven
system is displayed infigure 11. For the plot we assumed that the voltage windowof the reservoirs is large enough
to allow transitions between all lowest energy eigenstates of theMajorana qubit-quantumdots system. These are
4 states when ng is close to an integer, but 8when ng is close to a half-integer value. Apart from the obvious
periodicity when increasing ng by 2, we observe the following properties: (i)The current and the interference
pattern depends only veryweakly on ng as long as it is close to an integer. (ii)There is a crossover from the
behavior corresponding to the ‘0L’-block to that of the ‘1L’-blockwhen ng is increased by 1. (iii)When ng is near a
half-integer the current takes themaximumvalue, independent of the flux. Considering figure 11we also note
that for the currentmeasurement and read-out process of theMajorana qubit it is not crucial to tune ng to an
even integer with high accuracy. Integer values of ng correspond to so-called sweet spots, where for symmetry
reasons deviations from this spot influence the qubit properties only in quadratic order.

4.2. Varying the dot energies ò1/2
A similar question is, whether the dot energies, chosen so far as ò1=ò2=0, have to be tuned exactly to this
resonance situation.We therefore allow these energies to deviate from0. Figure 12 shows that the current

Figure 11.Current through the system versus the enclosed flux and the gate charge ng. The remaining parameters are the same as in
figure 4.

Figure 12.Current through the systemwhen the dots are tuned from the symmetry point òj=0. The remaining parameters are the
same as in figure 3.
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decreases, as expected for a out-of resonance situation. For small deviations of òj from0 the effect is quadratic in
this deviation, but overall, this dependence appears rather strong.

5. Conclusion

When analyzing theMajorana qubit-quantumdot systemwe found rich physics and a strong dependence of the
transport current on the parameters. As predicted in [13] the current between the two reservoirs through the
systemdisplays interference effects, which distinguish between the twoMajorana qubit states. Remarkably the
measurement has a quantumnon-demolishing character. This allows reading-out the state of the qubit in a
steady statemeasurement.We studied the time scales characteristic for this process.We also analyzed the
decoherence induced by themeasurement when the qubit is prepared in a superposition of states.

The electron tunneling into theMajorana qubit-quantumdot systemmixes states with different Fermion
parity and leads to decoherence. As expected, the dominant initial relaxation takes placewith the rateΓ of the
tunneling. However, we alsofind further, previously not discussed decay time scales depending on the coupling
energiesλ0/1/2. Specifically, the coherence of the qubit decays with rateλ0

2/Γ typical for telegraph noise, which is
observable when this rate is smaller thanΓ.

The coherence ofMajoranaqubits is known to get destroyedby ‘quasiparticle poisoning’.Usually this termrefers
to situations involving excitations above the superconducting gap. In thepresentworkwe assumed that they are
frozenout, but at higher temperatures they can lead to characteristic ‘shadow’ traces in the I–V-characteristicswhen
transport and gate voltages are varied [15]. Itwouldbe interesting to extend the presentwork to theparameter regime
where these properties canbe studied, but at this stagewehave concentratedon thequbit quantummeasurement
process. Somewhat similar toquasiparticle poisoning the electron tunneling consideredhere leads todecoherence,
butwewant to recall the specific properties. The tunnelingdoesnotmix the twoqubit states,moreprecisely it does
not lead to transitions between the ‘0L’ and the ‘1L’blocks. This is thebasis for thenon-demolishing character of the
read-out process by ameasurementof the interference current.However the tunneling affects the energies of the two
blocks indifferentways and thus leads todecoherence, as describedwithproperties similar to the effect of
telegraphnoise.Quasiparticle poisoning,which could arise for instancebecause of somenormal conductingparts in
the system, could lead to transitions between the twoblocks and further destroy the coherence.

The analysis presented in the section ‘Extensions’ shows that by choosing gate voltages such that ng is integer
and ò1=ò2=0we have biased the system at a symmetry point, i.e. a sweet spotwhere the effects of the
fluctuations in these parameters and control voltages enter only quadratically. Hence the decoherence induced
by these fluctuations isminimized. This fact also supports our strategy to concentrate on the decoherence effects
due to tunnelingwhen the transport voltages are turned on and to ignore other sources offluctuations. On the
other hand, the considered systemwould also be a good test case to study the effect of further noise sources on
the dynamics of amulti-level (4 or 12-levels) system. It differs in detail from a situationwith two coupled qubits
studied previously [35].

If some of the features described in this workwere detected in an experiment, one could try tofit them
quantitatively and thus demonstrate that themodel was chosen correctly. The results are very sensitive to the
Majorana physics properties. Accordingly the comparisonwould be a sensitive test of themodel and the
presence ofMBSs.
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