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Abstract

Motivated by recent proposals of Majorana qubits and the read-out of their quantum state we
investigate a qubit setup formed by two parallel topological wires shunted by a superconducting
bridge. The wires are further coupled to two quantum dots, which are also linked directly, thus
creating an interference loop. The transport current through this system shows an interference pattern
which distinguishes two basis states of the qubit in a QND measurement. We analyze various
properties of the interference current and the read-out process, including the resulting dephasing and
relaxation. We also analyze the effects of varying control parameters such as gate voltages on the
current. The characteristic dependencies may serve as a signature of Majorana bound states.

1. Introduction

Majorana bound states (MBSs) in topological superconductors (TSs) have been proposed as candidates for
topologically-protected carriers of quantum information [1-7]. Much attention has been paid to the properties
of single wires, including the proposal how to perform the topolocically-protected adiabatic braiding operation
[8,9]. However, in order to overcome limitations from parity conservation and to allow performing a universal
set of quantum gates it is necessary to consider generalizations, such as composite multi-wire systems [10-12].
Such a system, namely a Majorana box qubit (MBQ) was recently described by Plugge et al [13]. The basic qubit
consists of two TS wires shunted via a conventional superconductor. The two qubit states, both with—say—
even parity, differ in the number of occupied MBSs. The states can be read out by a conductance measurement,
when the Majorana qubit is coupled suitably to electron reservoirs.

Here we revisit the system proposed in [13]. On one hand, we propose a specific setup, where the Majorana
qubitis coupled via quantum dots to reservoirs. On the other hand, we study its transport properties and
dynamics in the frame of a quantum master equation. We do not discuss protocols how to manipulate the qubit,
nor do we consider further TS wires needed for this purpose. However, we study in detail the read-out process
made possible by the interference effects in the transport current. We find that the setup allows performing the
measurement in a quantum non-demolishing fashion. In addition we obtain information about the time scales
of the read-out process such as the relaxation and dephasing induced by the process.

For a current to flow states differing in particle number and hence Fermion parity need to be accessed [ 14].
Although, due to Coulomb-blockade effects, theses states are only weakly populated (and at T = 0 only virtually
as known from cotunneling), they still influence the dynamics of the system in characteristic ways. Mixing states
with different parity leads to decoherence of the Majorana qubit, similar as the so-called quasiparticle poisoning,
although at the low temperatures (considered here) no quasiparticles with energies above the superconducting
gap are excited. Since the current should be sufficiently strong for the measurement process, it is reasonable to
assume that tunneling is the leading source of decoherence. In comparison, we ignore other mechanisms, such
as, e.g. quasiparticle poisoning involving excitations above the superconducting gap [15], or those which arise
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when the MBSs have a non-zero overlap [16]. When switched on for the read-out the tunneling leads to a rapid
initial decay on the scale of the inverse tunneling rate. In addition we find features of telegraph noise, which
manifest themselves in a slow final decay.

We also consider several extensions of the measurement protocol and the transport properties of the
composite system when varying parameters and gate voltages. We find signatures of coherent oscillations, either
arising from different states of the dots or involving higher-energy states. As has been argued before for a similar
but more basic setup [17], the sensitive dependence of the results can serve as signatures of the presence of MBSs.

In the following section we will present the model of the system and the relation to the qubit. We then
formulate the quantum master equation, which we use to analyze the transport properties and dynamics, and we
study the use of the setup for a quantum measurement. We determine the time scales of the various stages of this
process, incl. the dephasing induced by the transport current. We finally consider several extensions and
generalizations. This includes the dependence on the voltage bias, the correlations in the measurement current,
and the influence of gate voltages driving the system away from optimum symmetry points (‘sweet spot’).

2. Setup and model

2.1. Hamiltonian and qubit

We consider the MBQ displayed in figure 1. It is formed by two sufficiently long TS nanowires which are shunted
by a conventional superconductor S. This creates an electrostatically floating island with charging energy
controlled by a gate voltage, but there are no T-junctions of topological superconducting wire segments. The
setup hosts four Majorana fermions, j = 1, ..., 4, with ;= ’y; and anticommutation relations {~; 7;} = 26; ;.
We study long wires, such that the MBSs have negligible overlap and (approximately) zero energy, which is the
origin of their topological protection. Fermion parity is conserved, ;7,754 = £1. We concentrate first on the
case with even parity (an extension will be discussed later). This leaves still 2 states, which form basis states of the
qubit. Anticipating what will turn out ot be the basis of the measurement process described below, we choose the
Pauli operators of the qubitas X = iy,y; ¥ = i1, 2 = iM%,

For the current measurement we assume in the following that the system is coupled to two quantum dots,
with energy levels which can be tuned by further gate voltages. They are also coupled directly, thus creating an
interference loop with enclosed magnetic flux ¢. The dots should be further coupled to electron reservoirs.
When turned on, this coupling introduces dissipative processes which will destroy the coherent time evolution.
But, as will be shown below, the interference current between the two reservoirs also serves as a measure of the
state of the qubit. For a current to flow through the Majorana system we need excited states differing in particle
number and hence fermionic parity. But because of Coulomb-blockade effects at low temperature theses states
are only vitually/weakly excited.

We model the setup by the Hamiltonian

Hs = Hy + He + Hp + Hi. (1)

Here, Hy = %(c} %Y T €b7Y,7) is the Hamiltonian of the Majoranas in the top and bottom wire. Ideally the
overlap of the MBSs vanishes and €, , = 0. Hence, this part of the Hamiltonian vanishes. The next term accounts
for the Coulomb charging energy

He = Ec(N — ng)?. ()

It depends on the total charge on the floating island, N, which is conserved on the Hamiltonian level but in
general varies when a current is flowing. The gate charge 1, depends on the gate voltage V, and gate capacitance.
Also the energy scale Ec depends on the capacitance of the floating island. There is no need to go into details, but
we note that the optimal point for the qubit is a symmetry point with an integer value of n,. In the following we
assume that Ecis alarge energy scale, and all other coupling energies as well as the temparature are much lower.
The quantum dots are assumed to have an even higher on-site interaction energy suppressing double
occupancies. In the subspace of empty or singly-occupied dot states the Hamiltonian is given by
Hp =351 5€ df d;, with energies ¢; wich can be tuned by gate voltages. For definiteness we assume in most of
the following that during the read-out process via a current measurement we have €, ,, = 0.
The tunneling between the two dots and between each of the dots and the adjacent MBSs are described by
(18]

Hy = —Xoe'%didy — Nse 9d dy + (Ndy — Nd)D)y + i(ady + Nid))v,. (3)

The flux enclosed in the interence loop of the sutup is accounted for by the phase factor e'” multiplying the
amplitude \y. The asymmetric form of phases of the coupling amplitudes between dots 1 and 2 and the
respective Majoranas is chosen for convenience to produce simple results in the following for real values of

Xo/1/2-
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Figure 1. Majorana qubit and setup used for current interferometry. Two long TS wires (green) are shunted by a superconducting
bridge (orange) to form a floating island hosting four Majoranas ; (crosses). For the current measurement we assume that the system
is coupled to two quantum dots (gray), which are connected to two independent electron reservoirs (blue). The dots are also coupled
directly, thus creating an interference loop with enclosed magnetic flux ¢. The gate voltage Vs used to tune the gate charge n,.

To proceed it is useful to switch to a representation where two Majorana fermions are combined to form a
regular fermion. In anticipation of what will turn out to be relevant in the following we introduce
f};f = (y, — iy,) / 2. Note that the fermion created by f}; does not correspond to a pair of Majoranas in the top or
bottom TS but rather to a pair on the right side of the setup. Similarly we can define a fermi operator fLT by
combining the two Majoranas on the left side, but with the assumptions made it does not enter the Hamiltonian.
Thus we find the following Hamiltonian for the coupling between the dots and the Majorana qubit

Hy=—X\edjdy — XNged[ dy + Ndi f + Nedi f — Ned] £ — Xfd fy
+ )\zflidz — )\zeiefRdz + )\;ke_iafl;rd; - )\;k Rd; (4)

Here, ¢ is the operator, in the gauge proposed in [19], that adds one Cooper pair to the condensate.

The dots are coupled to electronic reservoirs j = 1, 2. They are assumed to be formed by free electrons with
densities of states v; and states occupied according to a Fermi function depending on the respective voltages. The
tunneling processes between the dots and the reservoirs (with creation operators c;f )» following from
Hr =3 ,(1 df ax+ b dy ok + h.c.),lead to incoherent transitions with rates I; = 271j|#1* and consequences
to be discussed further below. Throughout this paper we will assume that both rates areequal, I'y = I', = T".

2.2.Basis and eigenstates
We proceed assuming that the ground states of the Majorana qubit have even total parity, and that the total
number of charges, N, is even. In this case the two degenerate ground states are

[‘0.”) =] O, Or, N, ng) and [1.”) = |1, Ir, N, 1o — 1). (5

They are also the eigenstates of Z as defined above and basis states of the logical Majorana qubit. Here, the labels
0/1;/r denote the parity of the left/right pair of Majoranas in the wires, and N counts the total charge on the
floating island. The numbers of Cooper pairs, 1o and 1y — 1, are adjusted to yield the same total number of
charges Nin the two states in spite of the difference by 4 Majoranas [19, 20]. Due to the coupling to the dots the
number of Majoranas on the right-hand side of the wires and hence the total charge can change. We thus have to
consider an extended set of states, which includes odd total parity states

|01, Or, N, ng) 1L, Ir, N, ng — 1)
[0p, Ir, N + 1, ng) 1L, Or, N + 1, ng) (6)
|OL) 1R1 N — 1a no — 1> |1L) OR) N — 1) no — 1>

Since we assume that the charging energy scale Eis large we can ignore states with still larger or smaller numbers
of the total charge. Tunneling between the dots and the wires induces transitions between the left 3 states
belonging to the ‘0;” block, and similarly between the right 3 states of the ‘11 block, but it does not—nor does
any other part of the Hamiltonian—mix states belonging to different blocks. Note that the parity of the left pair
of Majoranas is fixed within either block. This can be seen as the origin of the quantum non-demolition
character of the measurement process which we will encounter below.

The above mentioned strong on-site repulsion restricts each one of the two quantum dots to be empty or
singly occupied. We thus have 4 dot basis states |0, 0), |0, 1), |1, 0), |1, 1). Hence, the total set of basis states to
be considered are 12 product states formed by the 4 dot states and the 3 states of the Majorana system from the
block ‘0;” with even parity on the left side of the system, and similar 12 states involving the block ‘1;” with odd
parity on the left side of the system.
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Figure 2. The four lowest eigenenergies E; 4 of the coupled Majorana qubit-quantum dot system versus the enclosed flux
(normalized to 27). Only the results for the ‘0;” block are shown. For the plot we assumed that all coupling amplitudes Ao, /> are real.
For ¢ = 0thelowest/highest (shown) eigenenergies (with labels 1 and 4) correspond to dot states (|0, 1) £ |1, 0))/ /2, whereas the
degenerate middle levels (with labels 2 and 3) are formed by the states |0, 0) and |1, 1). The energies corresponding to the ‘1;’ block
have the same ¢-dependence but are shifted by 7. The parameters are A\ = 0.01Ecand \; = X, = 0.1Ec. Open symbols show results
obtained from the effective low-energy Hamiltonian (7).

The eigenenergies and eigenstates are easily found. They depend on the enclosed flux as illustrated for the
four lowest-energy states in figure 2 (with flux normalized to 27). The results for the two different parity blocks
are m-shifted relative to each other. The energies can be found analytically. For real \qg > 0 (i.e. for ¢ = Ointhe
figure) and real A\; = A, the expressions are simple enough to be presented here. We find that one of the
eigenenergies is exactly E; = — )\ and the corresponding eigenstate is a product state of the Majorana qubit
ground state and the dot state |1, 0) + |0, 1), as if the two subsystems would not be coupled. The next two

low-energy states are degenerate with E, 3 = %(EC — X — \/ (Ec — X\o)* + 8)\})andthe4thstatehas E, =

%(EC + Ao — \/ (Ec — X\o)* + 16)\}).Similarly for ¢ = 7 one of the eigenvalues is exactly E, = 4 \o.

In the limit where the tunneling amplitudes are small compared to the energies of the higher charged states,
[A\al < Ec, thelow-energy eigenvalues can also be obtained—except for an overall shift by —2| N )| /Ec— from
the approximate low-energy Hamiltonian

M\ AE
52072

Het = —(Aoeid’ -
c

)dgdl + h.c. 7

i.e. the considered system approximately reduces to a double-dot system (with qubit-state-dependent coupling).
A similar-looking low-energy Hamiltonian was suggested in [ 13] with operators d , referring to two reservoirs,
whereas here the dots are part of the coherent quantum system. The factor 2 arises due to two channels for
transitions via the two appropriate high-energy states in the blocks (6).

In figure 2 we compare the eigenenergies of the effective model and the exact ones. Also in the discussions
below we will frequently compare the full model to the low-energy Hamiltonian. The latter reproduces most
results with sufficient accuracy, but some details depend on properties of the higher-energy states.

2.3. Quantum master equation

We next study the properties of the Majorana qubit-quantum dot system, when it is coupled to two fermionic
reservoirs, labeled by j = 1, 2, with chemical potentials 1, which can be adjusted to drive a current through the
composite system. The reservoirs are assumed to be in thermal equilibrium and their electronic degrees of
freedom are traced out. For weak enough coupling the resulting quantum master equation for the system of
interest then takes the form [21-26]

1 B
p=Lo=Lsp == lez{[di D{7p — pD{P] + h.c.}. ®)
=1

Here, L is the (total) Liouvillean superoperator which accounts for both the coherent evolution due to the
system Hamiltonian, Lsp = —i[Hs, p], butalso for the dissipation due to the tunneling between the two
reservoirs and the adjacent dots.
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The dissipative term is assumed to be of the Lindblad form, involving the superoperators
o0
(*) — (+) +iHgt . o FiHst
D _Immcjmew@ﬁw. )

They depend on the spectral functions of the reservoirs, i.e. the thermal averages C}J’) ) =>4l tjl2 (c; ()i (0))
and C]H @) =>4l tj|2 (cjk(t) c]T’ +(0)). With the usual approximations for the electrodes the correlation functions
become C}i) (t) = [P et fji(ek), where fi"(ex) = f{(€) is the Fermi distribution of reservoir j, and
fi (&) = 1 — fi(ex). The distribution functions depend on the respective electro-chemical potentials ;4. Then in
the eigenbasis of Hs the superoperator becomes (D;i) Yam = T f].i (Omn) (dj)ym> where &,y = E,y — E,isthe
energy difference between the eigenstates of Hs.

The transport current between dot 2 and the reservoir attached to it follows from
L(t) = (L(t)) = Tr{Lp(t)} with current operator

E:%ﬂwﬂ—wﬂw+h% (10)

and similar for dot 1. Of course, in the steady state both currents are equal, I = I, = —I;, and we can drop the
index. However, for transient behavior or for the current correlation functions we have to specify the index.
The formal solution of the quantum master equation

p(t) = e£p(0) (11)

is conveniently recast in matrix form. For this purpose the N x N density matrix is written as an
N?-dimensional vector 3, and the superoperator £ asa N2 x N2 matrix which we denote be G. The resulting
equation

p(t) = e“'p(0) (12)

can be easily solved numerically for the 12 states considered (or 24 when we consider both qubit states together).

The matrix G is interesting in its own right. It has an eigenvalue zero, and the corresponding eigenvector is
the stationary-state density matrix pg.,,. When we consider both qubit states together, e.g. if we examine qubit
decoherence processes, we find two zero-eigenvalues and corresponding stationary density matrices. One or the
other is reached depending on whether the initial state is chosen from one or the other block of states. Of much
interest are also further small eigenvalues of G which govern slow relaxation processes. Below we will encounter
examples where physical quantities display such a slow decay. In addition, as expected, G has many eigenvalues
of order I'; /, accounting for the relaxation processes induced by the tunneling between the reservoirs and
the dots.

3. Current measurement and read-out of the qubit state

3.1. Steady-state current
We are now ready to investigate the transport properties of the Majorana qubit-quantum dot system. We control
the voltages, i.e. electro-chemical potentials of the two reservoirs, concentrating on two scenarios:

(i) We can choose a narrow window p; — p, (for definiteness we assume p; > ). In this case, at low
temperatures the current is highly sensitive to the values of 11, with a current flowing only when p1; > A
E > p,, where A E denotes one of the differences in the 4 eigenenergies depicted in figure 2. These energies
depend on the Majorana qubit state and on the flux. In figure 3 we show a typical result.

(i) Alternatively we can choose a wide window for the difference of the electro-chemical potentials. Specifically
we choose pt; and pi, such that all transitions between the 4 low-energy states depicted in figure 2 are allowed
evena T = 0. Thismeans y; > AE > p, for all (positive or negative) energy differences. By this choice we
avoid switching effects as shown in figure 3 which would arise when, upon varying the flux, the energy
differences move in or out of the window. Remarkably, even in this wide-band driving case we find
significant interference effects and a dependence of the current on the enclosed flux.

In figure 4 we show the steady-state current through the system as obtained for the full 12-state model (see
equation (6)) as a function of the enclosed flux for different values of Ay. The results for the two (dot-dressed)
Majorana qubit states differ by a shift by 7. We also show the current as obtained from the effective low-energy
Hamiltonian (7). In the case where )\ is relatively large, we find the sinusoidal ¢-dependence predicted for a
similar setup in [13]. However in this case the amplitude of the current oscillation is small. The amplitude of the
current modulation gets larger with decreasing \o, even ranging between a totally constructive or destructive
interference for the 2 qubit states, when Ay = 2A;\,/Ecand ¢ is an integer multiple of 7.
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Figure 3. Steady-state current through the system at T = 0 as a function of the voltage applied to the electrode 2 with a narrow voltage
window, jt; — 1, = 0.01E¢. The enclosed fluxis ¢» = 0. Results for the two Majorana qubit states are shown by black and red lines.
The other parametersare A\g = 0.01Ec, Ay = A, = 0.1E¢, I} = I, = T" = 0.01Ec.

ol 1

Figure 4. Steady-state current through the system versus enclosed flux for different values of the dot—dot coupling A. The interference
effects lead to differences between the results for the two Majorana qubit states (black and red lines). For the plots we assumed that the
voltage window of the reservoirs is wide (see the text). Solid lines are the results obtained for the full 12-state system, dashed lines were
obtained from the low-energy Hamiltonian with 4 states only. The parametersare \; = A\, = 0.1E,I" = 0.01E, while A\, varries in
therange 0.01Ec < A < 0.1Ec.

We also note that the difference between the results for the full 12-state model and the 4-state low-energy
Hamiltonian. They are most pronounced when )\, is large, although they are approximately of the same
magnitude for all the displayed curves. The reason is a non-vanishing occupation of the 8 higher energy states of
the full model. Although the temperature of the reservoirs is chosen to be low, T' = 0, the fact that the system is
driven with a wide voltage window, makes the effective temperature of the low-energy Hamiltonian 4-state
system infinite. Similarly, for the full model the four low energy states are roughly equally populated. However,
there are also the 8 high-energy states. The eigenstates are superpositions of the low-energy and the high-energy
basis states, and even the low-energy eigenstates have a small, but not exponentially suppressed contribution
from the high-energy states and vice versa. As a result, also the high energy states acquire a small but not
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Figure 5. Steady-state current through the system versus enclosed flux for different temperatures. Here Ao = 0.1E¢. All other
parameters and the choice of lines are the same as in figure 4.
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Figure 6. (a) Current I,(f) out of dot 2 as a function of the time after the measurement was started. We assume that the initial state is
|01, O, N, 19)0, 0) with both dot states initially empty. The black line is the result obtained for the full 12-state system, the red line
arise from the low-energy Hamiltonian (7). (b) The deviation of the current I,(f) from the steady state value I, = I onalogarithmic
scale, displaying for th full model a slow relaxation process. The parameters are \y = 0.01E, the other ones are the same as in figure 4.
Here and in the following we restrict ourselves to ¢ = 0, except when explicitly mentioned.

exponentially suppressed occupation probability. This occupation is missing in the probability that the dot 2
states are occupied, accordingly reducing the current out to the reservoir.

In figure 5 we show the interference current for different temperatures, concentrating on parameters where
atlow temperatures the full model and the low-energy effective Hamiltonian produce quantitatively rather
different results. At higher temperatures the differences get diminished. Furthermore, we observe a switching of
the positions of minima and maxima of the interference current. We found no intuitively simple explanation of
this behavior, other than that the interference effects arise due to a subtle balance of transitions.

Below we will study the dependence of interference current on further parameters. But before doing so, we
will investigate the use of the current measurement for a read-out process of the qubit state and investigate the
time scales involved.

3.2. Dynamics of the read-out process

When the current measurement is performed with the aim to read out the state of the Majorana qubit we should
turn on the measurement at some moment, say t = 0. This can be done, e.g. by tuning gates attached to the
quantum dots. Let us assume that the dot energies €, /, before the measurement are large, then both dots are
empty. The measurement starts when we tune them to alower value, e.g. to ¢, = ¢, = 0. An interesting question
then is, how does the current evolve in time towards the steady-state value presented above. Figure 6 shows such
a time evolution of the current I,(¢) from dot 2 to reservoir 2. We show the results for both the full model in

7
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Figure 7. Decay of an element of the reduced density matrix py; 1, = tr{pq, ; ;} whichis off-diagonal in the qubit basis but traced
over the 4 low-energy dot states. Apart from a rapid initial decay on the time scale T'~' we observe for small Ay a slow dephasing
process. Results are shown for Ay = 0.001Ecinredand Ay = 0.1Ecin black. The remaining parameters are the same as in figure 4.
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Figure 8. Decay of the element py, , , , of the density matrix which is diagonal in the Majorana qubit states but off-diagonal in the dot
eigenstates (with levels labeled as in figure 2). We note that it does not decay to zero, since the stationary state is dominated by the
environment. Results are shown for Ay = 0.01E¢. The remaining parameters are the same as in figure 4.

black, and those of the effective low-enegry Hamiltonian in red. Obviously the system shows a fast transient
behavior on a time scale given by I' ', The following slow time evolution shows some remarkable properties. For
some time we observe also weak oscillations. On one hand, there are high frequency oscillations (displayed only
by the full model) with frequency of order E. They arise since in the transient period states get excited which are
superposition of the low and the high-energy states. In addition we observe lower-frequency oscillations, also
displayed by the effective low-energy model, with frequency which coincides with the energy difference between
high- and low-energy states of this model E, — Ej.

We further observe that the final relaxation of the current takes place on a slow time scale, slower than 1/T,
which depends on the values of \; and A,. This slow decay process is not observed for the low-energy effective
model. The rate for the slow relaxation can also be read off from one of the eigenvalues of the matrix G. The
corresponding eigenstate reveals that in this slow relaxation process the higher charge high-energy states are
involved, which are also responsible for the previously mentioned difference in the current obtained for the full
and the reduced models.

An important property of the read-out protocol as discussed here is, that it is a quantum non-demolition
measurement. The reason, as expected, is that the parity of the left two Majoranas (related to the left Fermion
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with operators f; ) is not affected by the tunneling. We reach a stationary current depending on the initial state
of the qubit, and this information is not destroyed eventually by the measurement process. When we start from a
state from one of the two blocks (6) the system relaxes to a steady state with the corresponding value of the
current. The Liouvillean does not mix the two blocks. When we start with a superposition of states from the two
blocks, the relaxation takes place within the blocks, and the current—as obtained from the master equation,
which yields the averages—is the appropriately weighted average of the results.

3.3.Majorana qubit dephasing

The quantum master equation also allows us to investigate the qubit dephasing which is induced by the tunneling
of electrons between the reservoirs and the Majorana qubit-quantum dot system. In figure 7 we plot an element of
the density matrix, which is off-diagonal in the two Majorana qubit states. We see a rapid initial decay with rate
given by ', followed by a slow decay with rate \j/T', which is visible only in the case when )\, < I'. This rate is
well known from situations where a qubit is subject to telegraph noise [27-31] in the considered limit, where the
amplitude of the noise (i.e. the energy shift of the qubit due to the noise) is low compared to rate of switching. In the
presentsituation there are four low-energy states involved, which changes the details as compared to a single qubit,
but one can understand that effectively the two models coincide: (i) the tunneling of electrons between the
reservoirs and the dots with rate I' changes the energy of the system differing for the two states of the Majorana
qubit by an amount of 2\, (ii) in the present model only during half of the time the energies of the two qubit states
differ, which introduces an extra factor 1/2 in the rate®. The result also implies that for Ay = 0 the coherence of the
considered superposition would be preserved, i.e. we would have some decoherence-free subspace. However, in
this case the interference effect distinguishing the two qubit states vanishes, which makes the process useless for a
measurement.

Next we turn to the issue of dephasing within the states belonging to one qubit state, say the ‘0’ block.
Figure 8 shows the decay of the element p;, | , ,(#), where the second index in 0; 1 and 0; 4 labels one of the four
low-energy states of figure 2. In spite of being off-diagonal in the basis of the Hamiltonian, the element does not
decay to zero. This differs from what one would expect in a perturbative regime. However, the example simply
illustrates the difference between Hamiltonian-dominated and environment-dominated situations [32]. Under
the influence of the environment the eigenbasis of the stationary density matrix differs from that of the
Hamiltonian.

3.4. Current correlation function and power spectrum
Next we study the statistical properties of the current, specifically the symmetrized correlation function of the
current L,(#) out of dot 2 and the power spectrum

S = [ dr e (geho, sho))), (13)

where 6L, (t) = L(r) — <f2> In the steady state we can rewrite it as

S1(w) = 2Re[CG(w) + G(—w)], (14)

where G (w) = fo > dtel“ G (t) with C(t) = (6L (t)6h, (0)). The latter quantity is conveniently evaluated by
using the quantum regression theorem [25, 33]

Ci(t) = Trlhe byl — (B)?, (15)

where pg.r denotes the steady state density matrix.

In figure 9 we show the resulting current correlation function Re Gy (¢) = 1/2( (6L,(t), 8L,(0)} ). We
compare the results for the full 12-state model and the effective low-energy Hamiltonian. The correlation
function displays several of the characteristic features which we have discussed already above. These are: (i) a
decay on the time scale 1/T'; (ii) a slow coherent oscillation with frequency which is given by the energy
difference A E = E; — E; between the highest and lowest of the four low-energy states. They are strongly
pronounced in the lower panel, where this energy difference is larger than I'. For the parameters of the upper
panel the period of the oscillation exceeds 1/T, and the oscillation is hardly visible; (iii) a high-frequency
oscillation, with frequency of order E due to the higher energy states. These fast oscillations are best visible
when the low-frequency oscillations are overdamped. Of course they can only be seen for the full model.

In figure 10 we show the resulting power spectrum Sy(w) for different values of the tunneling rate I". The
Fano factor F = S;(w = 0) /21 is smaller than 1, as expected for the tunneling of Fermions [34].

® When comparing with the results conveniently listed in [31] one should beware of a missing factor 1/2 in the table given there.
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Figure 9. Current correlation function 1,/2({ 8L(t), 65,(0) }) asafunction of time. For the upper panel we chose Ay = 0.01E, for the

lower panel A\g = 0.1Ec. The remaining parameters are the same as in figure 4. Black lines represent the results of the full Majorana
qubit-double dot system, red lines are those obtaind with the effective low-energy Hamiltonian.

—TI'=0.01 EC
—TI'=0.05 EC
—TI=0.1E,

-0.3 -0.2 -0.1 0 01 0.2 0.3
an'EC

Figure 10. Power spectrum Syw) (a) for I' = 0.01Ecand different values of Ay, (b) for Ay = 0.1Ecand different values of I'. The
remainig parameters are the same as in figure 4.

4, Extensions

4.1. Varying the gate charge n,

Extending the analysis presented so far we study the interference current when we vary the gate charge n,. For
definiteness we start from the ‘0 ’-block of states with even parity on the left side of the two-TS-wire setup. In the
situation considered so far the gate voltages attached to the Majorana system where tuned to make 1, an even
integer; the state with minimum charging energy had an equally large total charge N, and all this was carried by
Cooper pairs in the superconducting wire, N = n, = 2n,. The two most important excited states—necessary
for transport—as presented in equation (6) had total charge N + 1and N — 1 with charging energy equal to E for
both. We now allow ne = 2ng + 1) ngto deviate from an even number. Accordingly, within the range ¢ 1n,€[0, 1],
we have to extend the set of states from what is written in equation (6) to
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Figure 11. Current through the system versus the enclosed flux and the gate charge 11,. The remaining parameters are the same as in
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Figure 12. Current through the system when the dots are tuned from the symmetry point ¢; = 0. The remaining parameters are the
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00, O, N + 2, 119 + 1), E(N +2) = E.(2 — 6n,)?.

(16)

Here we also indicated the corresponding values of the charging energy. Results for larger values of n, follow
from symmetry considerations and the periodicity with period 2.

With this extended set of states the simulation can be performed as before. The resulting current for a driven
system is displayed in figure 11. For the plot we assumed that the voltage window of the reservoirs is large enough
to allow transitions between all lowest energy eigenstates of the Majorana qubit-quantum dots system. These are
4 states when n,is close to an integer, but 8 when n, is close to a half-integer value. Apart from the obvious
periodicity when increasing n, by 2, we observe the following properties: (i) The current and the interference
pattern depends only very weakly on n,aslong as it is close to an integer. (ii) There is a crossover from the
behavior corresponding to the ‘0;’-block to that of the ‘1, -block when n, is increased by 1. (iii) When . is near a
half-integer the current takes the maximum value, independent of the flux. Considering figure 11 we also note
that for the current measurement and read-out process of the Majorana qubit it is not crucial to tune 7, to an
even integer with high accuracy. Integer values of n, correspond to so-called sweet spots, where for symmetry
reasons deviations from this spot influence the qubit properties only in quadratic order.

4.2. Varying the dot energies ¢/,

A similar question is, whether the dot energies, chosen so faras ¢, = ¢, = 0, have to be tuned exactly to this
resonance situation. We therefore allow these energies to deviate from 0. Figure 12 shows that the current
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decreases, as expected for a out-of resonance situation. For small deviations of ¢; from 0 the effect is quadratic in
this deviation, but overall, this dependence appears rather strong.

5. Conclusion

When analyzing the Majorana qubit-quantum dot system we found rich physics and a strong dependence of the
transport current on the parameters. As predicted in [13] the current between the two reservoirs through the
system displays interference effects, which distinguish between the two Majorana qubit states. Remarkably the
measurement has a quantum non-demolishing character. This allows reading-out the state of the qubitin a
steady state measurement. We studied the time scales characteristic for this process. We also analyzed the
decoherence induced by the measurement when the qubit is prepared in a superposition of states.

The electron tunneling into the Majorana qubit-quantum dot system mixes states with different Fermion
parity and leads to decoherence. As expected, the dominant initial relaxation takes place with the rate I" of the
tunneling. However, we also find further, previously not discussed decay time scales depending on the coupling
energies )/ /. Specifically, the coherence of the qubit decays with rate Aj/T typical for telegraph noise, which is
observable when this rate is smaller thanT".

The coherence of Majorana qubits is known to get destroyed by ‘quasiparticle poisoning’. Usually this term refers
to situations involving excitations above the superconducting gap. In the present work we assumed that they are
frozen out, but at higher temperatures they can lead to characteristic ‘shadow’ traces in the I-V-characteristics when
transport and gate voltages are varied [ 15]. It would be interesting to extend the present work to the parameter regime
where these properties can be studied, but at this stage we have concentrated on the qubit quantum measurement
process. Somewhat similar to quasiparticle poisoning the electron tunneling considered here leads to decoherence,
but we want to recall the specific properties. The tunneling does not mix the two qubit states, more precisely it does
not lead to transitions between the ‘0;” and the ‘11’ blocks. This is the basis for the non-demolishing character of the
read-out process by a measurement of the interference current. However the tunneling affects the energies of the two
blocks in different ways and thus leads to decoherence, as described with properties similar to the effect of
telegraph noise. Quasiparticle poisoning, which could arise for instance because of some normal conducting parts in
the system, could lead to transitions between the two blocks and further destroy the coherence.

The analysis presented in the section ‘Extensions’ shows that by choosing gate voltages such that n,is integer
and ¢; = ¢, = 0 we have biased the system at a symmetry point, i.e. a sweet spot where the effects of the
fluctuations in these parameters and control voltages enter only quadratically. Hence the decoherence induced
by these fluctuations is minimized. This fact also supports our strategy to concentrate on the decoherence effects
due to tunneling when the transport voltages are turned on and to ignore other sources of fluctuations. On the
other hand, the considered system would also be a good test case to study the effect of further noise sources on
the dynamics of a multi-level (4 or 12-levels) system. It differs in detail from a situation with two coupled qubits
studied previously [35].

If some of the features described in this work were detected in an experiment, one could try to fit them
quantitatively and thus demonstrate that the model was chosen correctly. The results are very sensitive to the
Majorana physics properties. Accordingly the comparison would be a sensitive test of the model and the
presence of MBSs.
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