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ETH Zürich,

IBM Research–Zürich
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Abstract—We address the acceleration of the PageRank al-
gorithm for web information retrieval on graphics processing
units (GPUs) via a modular precision framework that adapts the
data format in memory to the numerical requirements as the
iteration converges. In detail, we abandon the IEEE 754 single-
and double-precision number representation formats, employed
in the standard implementation of PageRank, to instead store
the data in memory in some specialized formats. Furthermore,
we avoid the data duplication by leveraging a data layout based
on mantissa segmentation. Our evaluation on a V100 graphics
card from NVIDIA shows acceleration factors of up to 30% with
respect to the standard algorithm operating in double-precision.

Index Terms—PageRank, web information retrieval, large-
scale irregular graphs, adaptive-precision, high performance

I. INTRODUCTION

PageRank is a popular algorithm for web information re-
trieval used by search engines, i.e., virtual machines created
by software that inspect virtual file folders to identify relevant
documents [7], [17]. The source of these documents is the
World Wide Web (or simply the Web), which consists of an
irregular, dynamic, hyperlinked, and dauntingly large1 collec-
tion of web pages. The World’s pastime of surfing requires fast
response time (speed) and results matching the users’ query.
Thus, as the amount of information accessible in the Web
continues to grow, the requirements imposed on PageRank
become more challenging.

PageRank builds upon the principle that “a page is relevant
if it is linked by other relevant pages” and the mathematics
behind this search algorithm build upon Markov chain theory.
From a practical point of view, PageRank boils down to the
classical iterative power method [11], applied to a large and
sparse matrix which reflects the adjacency graph of the search
space [17]. Therefore, even when operating with a subset of the
Web, PageRank is a memory-bound algorithm, which means
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1In 2018, the dimension of the Web is estimated to be in the order of a
few dozens of billions of webpages; see http://www.worldwidewebsize.com/.

that its performance and parallel scalability on (most) current
architectures is constrained by the memory bandwidth.

The main computational kernel behind PageRank is the
sparse matrix-vector product (SPMV), a micro-benchmark
that has received considerable attention over the past decades
because of its myriad applications (see the related work
section next). Optimization strategies for SPMV typically
aim to reduce the volume of data retrieved from memory
by re-organizing the matrix layout in order to diminish the
amount of indexing information, like in case of the well-known
compressed sparse row (CSR) format [20] or the compressed
sparse blocks (CSB) [8].

In this paper we pursue the same general goal —i.e.
reducing the amount of data retrieved from memory— but
target the data values themselves (instead of the indexing infor-
mation) for the particular SPMV application in the PageRank
algorithm. In more detail, our paper makes the following
contributions:
• We formulate a flexible-precision version of PageRank

that adaptively increases the precision employed by the
algorithm as the iterative process approaches conver-
gence.

• To allow for more flexibility in the precision format,
we abandon the conventional IEEE number representation
formats to store the data in memory in more efficient
formats. In contrast, all arithmetic is performed using the
standard IEEE arithmetic supported by current hardware.

• To accommodate the irregular data structures generally
appearing in graph algorithms, and in particular in www
applications, we rely on the CSR sparse matrix for-
mat [20].

• For reference, we also consider the ELL matrix for-
mat [16], which is efficient for balanced matrices as it
considerably reduces the row indexing information at the
cost of padding.

• To obtain a high-performance implementation of SPMV,
while avoiding the duplication of the data representing
the adjacency matrix (i.e., the problem graph) in different
precisions, we store the structure using the customized



precision format based on mantissa segmentation (CPMS)
introduced in [13].

• We evaluate the performance and execution flow of the
customized precision PageRank algorithm on an NVIDIA
V100 GPU board as well as compare the total execution
time with the reference PageRank algorithm.

The rest of the paper is structured as follows. In Section II
we review recent efforts on optimizing the SPMV kernel for
reduced memory access volume and we motivate the study
of the CSR and ELL formats in the customized precision
PageRank implementation. In Section III we give an overview
about the PageRank algorithm before we provide details about
our customized precision PageRank realization in Section IV.
In Section V we evaluate the customized precision PageRank
performance for benchmark problems on a high-end NVIDIA
GPU. We conclude in Section VI with an outlook on future
work.

II. RELATED WORK

The performance of the power method underlying PageR-
ank is strongly determined by that of SPMV. Optimizing
this particular computational kernel is challenging, especially
for irregular large-scale problems such as those representing
hyperlinked graphs for the Web [9].

Several aspects determine the performance of a particular
SPMV implementation. At an abstract level, these aspects can
be grouped into four categories: matrix properties, storage for-
mat, software techniques, and target architecture [12]. Adding
to the complexity of SPMV’s ecosystem, the elements in these
four categories are often interconnected. Thus, for example,
the efficiency of a storage format is highly dependent on the
sparsity pattern of the matrix; there exist data layouts that
are specifically designed for data-parallel architectures such
as GPUs; and some software optimization techniques may not
have a positive effect on certain architectures while being key
to others.

CSR and COO (coordinate) are likely the two most general
sparse matrix formats (i.e., not biased towards any particular
sparsity pattern). Intel’s MKL provides an efficient implemen-
tation of CSR-SPMV for multicore processors that operates
with single and double precision operands. Intel’s library also
contains a blocked variant of CSR (named BSCR) that views
the matrix as a sparse collection of tiny dense blocks (e.g., 2×2
or 4× 4). This solution aims to improve locality of reference
when accessing the data (and, therefore, reduce cache misses),
trading off generality and efficiency for certain applications.
CSB2 takes an opposite direction to BCSR, considering the
matrix as a dense collection of sparse blocks (with each block
stored in CSR format). A potential advantage of CSB is the
reduction of indexing information (and, therefore, communi-
cation) when accessing the matrix data. In addition, CSB also
aims to improve data locality, via a Morton-ordering storage
of the block entries.

2https://people.eecs.berkeley.edu/∼aydin/csb/html/index.html.

The development of high performance implementations of
SPMV on graphics processors is an active area of research,
to a large extent due to the more complex implementation but
appealing superior memory bandwidth available in these type
of architectures compared with that of conventional multicore
processors. In general, the ELLPACK format and its family
of variants (e.g., ELLR-T and SELL-P; see, [5] and the
references therein) are especially alluring when the target
system is a GPU. However, for irregular applications resulting
in unbalanced sparse matrices, a CSR layout complemented
with certain highly CUDA-specific techniques can outper-
form these [10]. GPU implementations of SPMV based on
some of these formats are available in NVIDIA’s cuSPARSE,
MAGMA-sparse [4] and Ginkgo3. In this work, we focus on
two sparse matrix formats that are at the extreme ends of
sparse matrix properties. On the one end, the ELL format
is suitable for balanced matrices as it pads all rows to
have the same number of nonzero elements. The associated
padding overhead yields the the benefit of avoiding storage
of row-index information. As community graphs, such as the
adjacency graph representing the links connecting web pages
are typically irregular, in addition we consider the CSR format.
This format exclusively stores the matrix nonzero values;
however it needs to accompany the values with a column index
and a pointer pointing to the first element in each row. In Fig. 1
we visualize the storage strategies for the CSR and the ELL
format.

Adapting the precision of a computation to the “sought-
after” final accuracy is a natural technique to accelerate
a computational process. The appropriate precision may be
dictated by the final requirements from the user, but can
also be determined by the level of accuracy necessary at
each intermediate step. A clear example is mixed precision
with iterative refinement (MPIR), a well-known technique
that produces a solution with a high level of accuracy while
doing most of the computations in a reduced precision [14].
To some extent, transprecision pursues the generalization of
this idea, utilizing at each intermediate step the minimum
precision necessary to produce a satisfactory final solution.
In linear algebra, some examples illustrating the benefits of
flexible precision in the solution of sparse linear systems have
been presented for the preconditioning of Krylov subspace
methods [2] and a Jacobi-based solver [3], [13]. Our GPU
implementation of PageRank with adaptive-precision can be
regarded as a transprecision solution, as it employs a variable
precision level during the process to still produce a solution
with basically the same accuracy as an algorithm that operates
in the standard double precision arithmetic during all steps.

III. OVERVIEW OF PAGERANK AND IEEE FLOATING-POINT
REPRESENTATION

PageRank is defined on a directed graph and computes the
relevance of each node in this irregular structure. In the setting
of web search, each web page is modeled as a node and the

3https://github.com/ginkgo-project/ginkgo
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Fig. 1. The CSR and ELL sparse matrix storage format.

hyperlinks in that web page define directed edges in the model.
The relevance is defined recursively across the relevance of
neighboring nodes as well as the number of links that point
toward a node. The computed ranking captures two important
aspects that match well the users’ intuition: 1) nodes that are
cited often gain relevance; and 2) even though a node might
be cited only once, if that citation originates from a node with
high relevance, the cited node benefits from the relevance of
the origin. PageRank is an iterative method that computes
the ranking score of each node up to a certain precision.
In a realistic application setting, the users are mainly not
interested in the score value itself but rather in the sorted list
after the score is computed and mainly in top ranking values.
Furthermore, the users rarely look beyond the first dozen of
documents retrieved by search engines.

The power method (or power iteration) underlying PageR-
ank is an iterative procedure for the computation of the largest
eigenvalue of a matrix [11]. When applied to an adjacency
matrix/graph with edges representing hyperlinks and nodes
web pages, under mild conditions, this method converges to
a score vector representing the probability that a “random”
surfer visits each particular page [7].

Let us consider a directed graph G = (V,E) consisting of
n = |V | nodes that correspond to web pages, and connected
via the nz = |E| hyperlinks contained in the edge set E.
Let A ∈ Rn×n be the weighted adjacency matrix with entries
defined as follows:

Aij =

{
1/Oi if (i, j) ∈ E,
0 otherwise,

where Oi denotes the total number of hyperlinks leaving from
node i. Algorithm 1 offers a mathematical formulation of
the PageRank algorithm [?]. The iterative scheme produces
a sequence of vectors p{k} ∈ Rn, k = 0, 1, 2, . . ., until
convergence. Vector e ∈ Rn consists of ones only and hence
initializes p{0} to a uniform distribution across all nodes. The
real number δ is the damping factor (usually set to 0.85 [7])
and, together with the stopping threshold ε, directly influence
the number of iterations and hence the performance of the
algorithm and the precision of the final result.
s corresponds to the probability of the random surfer

visiting a site which has no outgoing links, in which case
he starts again at a random site. This ensures that the 1-norm
of the PageRank vector p equals 1 at every iteration.

Algorithm 1 PageRank(A, ε, δ)

1: p{0} := e/n

2: S :=
{
i |
∑n

j=1 |aij | = 0
}

. S contains all indices of
empty rows of A

3: k := 1
4: repeat
5: s :=

∑
i∈S p

{k−1}
i

6: p{k} := δAT p{k−1} + (1− δ)e/n+ (s/n) · e
7: γ := ‖p{k} − p{k−1}‖1
8: k := k + 1
9: until (γ < ε)

The main computational kernel appearing in the PageRank
algorithm is the SPMV involving the transpose of the sparse
adjacency matrix A. For a matrix with nz nonzero entries,
this kernel requires 2nz floating-point operations for at least
O(n+ nz) memory accesses. (The actual number of memory
accesses depends on the sparse data layout chosen for the
matrix and the sparsity pattern). This linear relation between
flops and memory accesses identifies SPMV as a memory-
bound operation, which will proceed at the speed of the
memory bandwidth.

High performance implementations of PageRank on current
processors operate using the IEEE single precision or double
precision floating-point data types supported by the hardware.
A key observation though, is that the native arithmetic realized
in floating-point units (FPUs) can be decoupled from the
storage format of floating-point numbers, with the latter being
a flexible factor under the direct control of the program-
mer [13]. In particular, for a memory-bound algorithm such as
PageRank, storing the data in memory using a smaller number
of bits reduces the pressure on the memory when retrieving
the problem data. Prior to the computation, the information
can be transformed into one of the natively-supported extended
datatypes. The overhead of this transformation can be expected
to be amortized by the benefits obtained from the use of high
performance, customized realizations of FPUs and also from
reduced rounding errors. In any case, compared with the access
time, the cost of this transformation is close to negligible, and
with some care it can be overlapped with the data transfers
from memory.



IV. DESIGN OF THE CPMS-BASED PAGERANK

A. Storage concept in CPMS

In this work, a high precision number is split into equally-
sized segments [13]. When calculating in lower than full
precision, all segments which are not read (from memory) are
set to zero (in the processor registers).

Separating the segments is important to enable efficient
memory access and avoid data duplication. However, instead
of storing each segment in its own dedicated memory space
consecutively (as was done in [13]), in our case this is stored
in alternating blocks. Each block thus contains values of the
same segment and is followed by the block containing values
of the next segment. To make memory access cache effective,
the size of one bank should have the size of one or multiple
cache lines in order to ensure that only the same segment is
cached. We choose 128 Byte as the block size to ensure it
works for older GPUs like the Kepler K80, which use 128
Byte for L1 cache lines, as well as for new GPUs like the
V100 and P100, which have 32 and 64 cache line sizes [15].

128 Bytes

IEEE double precision value

Conversion

32 bit 32 bit

Fig. 2. Conversion example: from an array of IEEE double precision values
to an array in CPMS format with 2 segments (and vice versa). The arrow on
the side shows the origin of the segments, and where they are located in the
different format.

In Fig. 2, we show this conversion for a 2-segment CPMS-
based layout. This storage format enables in-place conversion
between an array of high precision values and the CPMS
format (and vice versa) because it is just a local re-ordering of
the data in memory (see the arrow on the side in Fig. 2). For an
X-segment CPMS in block format, re-ordering takes place in
X · 128 Byte blocks, which can be performed in parallel with
other re-orderings. This data-parallelism allows the conversion
to be performed by the GPU itself.

B. Precision change

Instead of incurring the overhead of using an additional ker-
nel to test if the current precision of the PageRank algorithm

needs to be increased, the result of the norm difference in
Algorithm 1 line 7 γ = ‖p{k} − p{k−1}‖1 can be leveraged
for both the convergence check (γ < ε) and the test for
a precision change. Concretely, if γ is close to the current
working precision, the following steps are executed:

1) run the PageRank iteration while reading in current
precision, and writing in the new, extended precision;

2) normalize the vector in the new precision, so we can
ensure that the norm of the PageRank-vector p{k} stays
at 1; and

3) set the new precision as current working precision;
The normalization is necessary because, while writing back,
the floating point representation is “cut”, which leads to a
rounding towards zero. This, in turn, leads to ‖p{k}‖ < 1.

As soon as full precision is reached, the steps above are
performed one last time before converting CPMS to an array of
IEEE floating-point values with an in-place conversion kernel.
This conversion ensures that (1) at the end of the algorithm, all
data can be used with any other solver/algorithm that expects
an array of IEEE floating point values; (2) penalties that might
be caused by the block storage format (e.g., more memory
accesses/more cache misses because of scattered sparse values)
no longer apply; and (3) the runtime per iteration is the same
as the default implementation that uses full precision for the
whole solver.

C. Implementation

In our code, all computational intensive tasks are off-loaded
to the GPU via kernel calls. These tasks include: (1) All norm
functions, in particular, the selective norm calculating s in
Algorithm 1 (line 5), the norm of vector differences calcu-
lating γ (line 7), and a vector norm used for normalization
in precision changes; (2) a vector scaling kernel, used in
combination with the vector norm for normalization; (3) two
conversion kernels which perform the transformations between
IEEE format and CPMS; and (4) one SPMV kernel for each
sparse format (line 6). The norm functions are composed of
two kernels, which perform a two-step reduction. In the first
step, all computational resources of the GPU are used to create
an intermediate result vector, which is reduced in the second
step to a single value.

The ELL-SPMV kernel uses one thread per row to calculate
the result, to ensure consecutive data access for matrix values
and column indices. It is similar to the ELL-SPMV kernel
proposed in [6], with the additional calculations necessary to
compute the new PageRank vector (see Algorithm 1, line 6).

The CSR-SPMV kernel also uses one thread per row to
calculate the result. We also explored the possibility of using
multiple threads per row, followed by a reduction, to increase
performance, as mentioned in [6]. However, augmenting the
number of threads processing one matrix row decreases the
performance slightly, which might be caused by the fact that
the matrices targeted in our experimental evaluation have a low
average number of non-zero elements per row (see Table I).

The CPU is commissioned with the build-up (reading ma-
trices, converting to CSR or ELL sparse format), resource



management and calling GPU kernels. Because the working
precision is decided on the CPU side (dependent on γ), and
does not change during a kernel call, we do not need to have
conditional branches that decide which segment to load on the
GPU side. Instead, we can provide a kernel for each working
precision. Rather than writing each kernel by hand, we take
advantage of C++ template parameters. As a result, a new
kernel is generated by the compiler for each precision, without
the need of branching inside the kernel for each load/store
operation.

V. PERFORMANCE ASSESSMENT

The experimental analysis was conducted on an NVIDIA
V100 “Volta” GPU, with support for CUDA compute capa-
bility 7.0 [18]. All GPU kernels were encoded and compiled
in the CUDA framework, using CUDA version 9.2. The ref-
erence implementation of SPMV and PageRank both employ
IEEE double precision (hereafter, flp64). The same type of
arithmetic is also used for the floating-point operations of the
CPMS-based PageRank, but the memory operations (accesses)
and storage use customized precision formats. We consider
two CPMS realizations, composed of four 16-bit segments and
two 32-bit segments, respectively.

TABLE I
DETAILS OF MATRICES FROM THE SUITESPARSE MATRIX COLLECTION

USED IN THE EXPERIMENTAL EVALUATION.

Name
(Abbreviation)

n nz Empty rows

adaptive
(Ada)

6,815,744 13,624,320 425,984

delaunay n22
(Del)

4,194,304 12,582,869 555,807

europe osm
(Eur)

50,912,018 54,054,660 1,616,942

hugebubbles-
00020 (Bub)

21,198,119 31,790,179 3,530,509

rgg n 2 24 s0
(Rgg)

16,777,216 132,557,200 7,121

road usa
(USA)

23,947,347 28,854,312 6,392,288

Stanford
(Std)

281,903 2,312,497 20,315

wb-edu
(edu)

9,845,725 57,156,537 2,925,419

web-BerkStan
(Brk)

685,230 7,600,595 4,744

web-Google
(Ggl)

916,428 5,105,039 176,974

For the experimental evaluation we select a set of test
matrices, taken from the Suite Sparse matrix collection [1],
representing networks. The matrices identifiers along with
some key characteristics are listed in Table I. We note that
we treat the symmetric test problems as non-symmetric by
considering only the lower triangular part. In Fig. 3 we provide
details about how the nonzeros are distributed among the rows
of the test problems. Even though the test problems have a
very unbalanced nonzero distribution, we consider both matrix
storage formats, the “irregular-friendly” CSR format and the
“GPU-friendly” ELL format. As elaborated in Section II, the
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Fig. 3. Nonzero distribution in the test problems.

ELL format pads the rows with explicit zeros to have all rows
containing the same number of nonzero elements. For some
matrices (concretely, edu, Brk and Ggl), this increases the
memory footprint beyond the 16 GBbytes which are available
on our V100 GPU. In consequence, these particular problems
are not considered in the experiments using the ELL matrix
format.

A major goal of the customized precision implementation
is to preserve the PageRank convergence of the reference
implementation based on IEEE flp64. A few additional itera-
tions may be acceptable, but a significant convergence delay
may turn the customized-precision realization unattractive. In
Table II we report the convergence details of the PageRank
algorithm realized in different environments: the default imple-
mentation using IEEE double precision, a customized precision
implementation using a 2-segment splitting, and a customized
implementation using a 4-segment splitting. For all cases we
list the number of iterations completed in the distinct accuracy



TABLE II
ITERATION COUNT OF PAGERANK IN THE DIFFERENT PRECISION FORMATS: FOR THE CPMS, THE TOTAL NUMBER OF ITERATIONS ACCUMULATES FROM

THOSE EXECUTED WITH DIFFERENT SEGMENT COUNTS AND STAYS ON PAR WITH THE REFERENCE IMPLEMENTATION.

fpl64 2-segment CPMS 4-segment CPMS
64bit 32bit 64bit total 16bit 32bit 48bit 64bit total

Ada 52 18 34 52 1 16 34 1 52
Del 26 12 14 26 1 11 13 1 26
Eur 112 48 64 113 1 47 62 3 113
Bub 61 19 42 61 1 18 41 1 61
Rgg 106 41 65 106 1 40 63 2 106
USA 31 14 17 32 1 13 16 2 32
Std 118 51 67 118 1 50 64 3 118
edu 114 47 67 115 1 46 65 3 115
Brk 119 50 69 119 1 49 1 68 119
Ggl 116 47 69 116 1 46 67 2 116

settings. For the CPMS implementations, we additionally list
the total iteration count that accumulates from the iterations
in the distinct segment configurations. All implementations
generate results of the same quality reducing the residual by
at least ten orders of magnitude.

A first observation for the 4-segment splitting is that the first
16-bit segment alone never provides the accuracy necessary to
make any progress towards the solution: for all test problems,
the algorithm switches to reading 2 segments after the very
first iteration. A second observation is that, except for the Brk
case, all problems require only a few iterations with 64-bit
accuracy, while most iterations in the 4-segment CPMS use
32-bit accuracy (2 segments) or 48-bit accuracy (3 segments).

For the 2-segment CPMS, the number of iterations using
full accuracy is slightly higher than the number of iterations
using 32-bit accuracy.

The total number of iterations accumulates from the it-
erations in the distinct segment configurations. For most
problems, the CPMS implementations succeed in preserving
the convergence of the reference implementations. For some
problems, only one additional iterations is required.

The iterations using reduced accuracy may potentially be
faster. Generally, the SPMV embedded in the power iteration
is the central and most expensive building block of the
PageRank iteration. In Fig. 4 we report the speed-up of
the SPMV using different segment configurations over the
reference implementation using IEEE double precision. We
consider both the CSR format (left) and the ELL format
(right). The analysis reveals that using 32-bit accuracy in the 2-
segment CPMS provides a speed-up of about 1.5× on average
(the high speed-up for Rgg comes from cache effects). The
4-segment CPMS is about twice faster for 16-bit accuracy.
Using 32-bit accuracy, the 4-segment CPMS are about 30%
smaller than the 32-bit accuracy in the 2-segment splitting.
Using more than 32-bit accuracy, the CPMS SPMV suffers
from the overhead of format conversion and the additional
bit used for storing the format information, and is slower than
the reference SPMV. Hence, using 64-bit accuracy, the CPMS
SPMV is slower than the IEEE756 double precision SPMV.

After analyzing the benefits that CPMS renders to the
SPMV, which is the most runtime-intensive part of the PageR-

ank algorithm, we next analyze the execution flow of the com-
plete PageRank algorithm. We choose the algorithm-specific
parameters as δ = 0.85, which is a popular choice [19], and a
relative accuracy stopping criterion ε = 10−10. In Fig. 5, we
show the runtime of the distinct building blocks in the different
format configurations for all target problems. For each case, we
normalize the times to the total execution time of the reference
PageRank (top bar). For the 2-segment CPMS (middle bar)
and 4-segment CPMS (bottom bar) we visualize the time
spent in the segment configurations. While the iterations in
the distinct precision environments correspond to the iteration
count analysis in Table II, the CPMS-based realizations of
PageRank also include the configuration switching in-between
the iteration phases. For some problems (e.g., Std), we no-
tice that the different format and efficiency characteristics
of the CSR and the ELL matrix formats result in different
performance characteristics of the CPMS PageRank (compare
top/bottom plot in Fig. 5). The ratio between the execution
times spent in different configurations however remains the
same.

Finally, to visualize the benefit of the CPMS PageRank, we
show in Fig. 6 the speed-up of the 2-segment realization and
the 4-segment realization over the reference implementation.
Again, we consider PageRank implementations using the CSR
format (left) and the ELL format (right). The speed-up factors
for the 2-segment CPMS are generally larger than for the 4-
segment CPMS. Interestingly, the 2-segment CPMS realization
of PageRank is never slower than the reference PageRank. For
Brk, the execution time of the 2-segment CPMS is comparable
to that of the reference implementation; for Rgg, it is almost
30% faster. For the remaining test cases, the 2-segment CPMS
renders speed-up factors between 1.1× and 1.2×. The speed-
up factors for CSR and ELL are similar.

The 4-segment CPMS generally achieves less performance,
and in some cases, it is even slower than the reference
implementation. One obvious reason is the higher number
of precision changes, and the larger overhead in the memory
access routines reassembling IEEE double precision numbers
from the 16-bit CPMS segments. Also, the memory access
routines do not achieve the peak bandwidth when all threads of
a warp read 16-bit segments, only. In contrast, the 4-segment
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CPMS performs better when using the ELL matrix format.

VI. SUMMARY AND OUTLOOK

We have demonstrated that the application of the CPMS-
based solution unleashes relevant performance speed-ups for
the memory-bound PageRank algorithm, implemented on a
GPU, when applied to a set of test problems from the
SuiteSparse Matrix Collection. The keys to the acceleration of
this algorithm for web information retrieval are 1) an adaptive-
precision technique that tunes the precision of the computation
as the iteration converges; 2) the selection of a few customized
formats different from the IEEE 754 standard; and 3) the
elimination of data duplication. Our experimental evaluation
on an NVIDIA V100 GPU revealed up to 1.3× speedup with
respect to a standard realization that operates in IEEE double-
precision.

As part of future work, we plan to explore other sparse
matrix layouts for the realization of SPMV on GPUs that can
increase performance even further for irregular data structures.
In addition, we will pursue the application of CPMS-based
solutions to other memory-bound algorithms.
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Wellein, and Martin Köhler. Preconditioned Krylov solvers on GPUs.
Parallel Computing, 68:32–44, oct 2017.

[5] Hartwig Anzt, Stanimire Tomov, and Jack Dongarra. Implementing
a Sparse Matrix Vector Product for the SELL-C/SELL-C-σ formats
on NVIDIA GPUs. Technical Report ut-eecs-14-727, University of
Tennessee, March 2014.

[6] Nathan Bell and Michael Garland. Efficient sparse matrix-vector
multiplication on CUDA, December 2008.

[7] Sergey Brin and Lawrence Page. The anatomy of a large-scale hyper-
textual web search engine. In Seventh International World-Wide Web
Conference (WWW 1998), 1998.
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