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Abstract We investigate the prospects to achieve unifica-
tion of the gauge couplings in models without supersym-
metry. We restrict our discussion to SU (5), SO(10) and E6

models that mimic the structure of the Standard Model as
much as possible (“conservative models”). One possible rea-
son for the non-unification of the standard model gauge cou-
plings are threshold corrections which are necessary when
the masses of the superheavy fields are not exactly degen-
erate. We calculate the threshold corrections in conservative
models with a Grand Desert between the electroweak and
the unification scale. We argue that only in conservative E6

models the corrections can be sufficiently large to explain
the mismatch and, at the same time, yield a long-enough
proton lifetime. A second possible reason for the mismatch
are particles at an intermediate scale. We therefore also study
systematically the impact of additional light scalars, gauge
bosons and fermions on the running of the gauge coupling.
We argue that for each of these possibilities there is a viable
scenario with just one intermediate scale.

1 Introduction

Although no experimental hints for a Grand Unified Theory
(GUT) were observed so far, the general idea remains as
an attractive and popular guideline for models beyond the
Standard Model (SM). Among the reasons for the popularity
of GUTs are that they allow us to understand the quantization
of electric charge, the strengths of the SM coupling constants,
why neutrinos are so light and quite generically contain all
the ingredients needed to explain the baryon asymmetry [1].
Over the last decades the main focus of most researchers
where supersymmetric GUTs, especially after the famous
observation that the gauge couplings meet approximately at
a common point if supersymmetric particles are present at
a low scale, while they do not in the SM [2–6]. Since so
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far no hints of supersymmetric particles were experimentally
observed, there was recently a revival of non-supersymmetric
GUTs [7–13]. In such models gauge unification is possible,
for example, if an intermediate symmetry between the GUT
and the SM symmetry exists [14–20]. However, this is only
one possibility out of many and our goal here is to discuss
systematically the various possibilities to achieve unification
of the gauge couplings in scenarios without supersymmetry.

After a short discussion of gauge unification in a more
general context, we focus on the three most popular GUT
groups: SU (5), SO(10) and E6. This restriction is neces-
sary since there are, in principle, infinitely many groups that
can be used in GUTs. The group SU (5) is the minimal sim-
ple group that contains the SM and was the group used in the
original proposal by Georgi and Glashow [21]. An attrac-
tive feature of SO(10) models [22] is that the fundamental
spinor representation not only contains the SM particles but
also a right-handed neutrino. This additional neutrino in each
generation is, for example, a crucial ingredient to realize the
type-I seesaw [23–26]. Lastly, E6 [27] is popular since it is
the only exceptional group that can be used without major
problems in a conventional GUT. The exceptional status is
interesting because, in contrast, SU (5) is part of the infinite
SU (N ) family, SO(10) of the infinite SO(N ) family and
“describing nature by a group taken from an infinite fam-
ily does raise an obvious question – why this group and not
another?” [28]. Moreover, the fundamental representation of
E6 contains additional exotic fermions which makes it pos-
sible to construct E6 models which solve the dark matter or
strong CP puzzle [29,30].

Unfortunately it is not sufficient to specify the GUT
group, since with any given group infinitely many differ-
ent models can be constructed. One reason for this ambi-
guity is that there is no fundamental principle that fixes
the scalar and fermion representations in GUTs. Moreover,
for larger groups like SO(10) or E6 there are dozens of
different breaking chains from the GUT group down to
GSM ≡ SU (3)C × SU (2)L ×U (1)Y . Therefore it is neces-
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sary that we restrict ourselves to a finite subset of possible
scenarios. For this reason, we define a subcategory consisting
of all models that mimic the structure of the SM as much as
possible. In the following, we call this subcategory ”conser-
vative models”. Mimicking the structure of the SM exactly
would mean for the particle content:

– Only scalars that couple to the fermions.
– Only fermions that live in the fundamental or trivial rep-

resentation of the gauge group.
– And, of course, gauge bosons in the adjoint representa-

tion.

However, SU (5) and SO(10) scenarios that fulfill these
criteria are phenomenologically nonviable and we are there-
fore forced to add additional representations. Still, we want to
stay as closely as possible to the structure of the SM and there-
fore only add the minimal representations necessary. The
fundamental representation of SU (5) is only 5-dimensional
and therefore cannot contain all SM fermions of one gener-
ation. Therefore, we have to add an additional fermionic 10.
Moreover, in SU (5) and SO(10) models the scalar repre-
sentations that couple to the fermions cannot accomplish the
breaking down toGSM . For this reason we add in both cases a
scalar adjoint. These choices can also be understood through
the embedding SU (5) ⊂ SO(10) ⊂ E6, since E6 models
always contain exotic fermions and no additional represen-
tations are necessary.

We start in Sect. 2 with a general discussion of the renor-
malization group equations (RGEs) and the hypercharge nor-
malization. In Sect. 3 we then discuss unification in conser-
vative SU (5), SO(10) and E6 models with a “Grand Desert”
between the electroweak and the GUT scale. Afterwards, we
discuss the impact of additional light scalars, fermions and
gauge bosons on the running of the gauge couplings. Here
and in the following “light” always means light when com-
pared to the GUT scale.

2 The RGEs and hypercharge normalization

The RGEs for the gauge couplings up to two-loop order are1

dωi (μ)

d ln μ
= − ai

2π
−

∑

j

bi j
8π2ω j

, (1)

where the indices i, j denote the various subgroups at the
energy scale μ and

1 The RGEs at two-loop order are sufficient since the three-loop cor-
rections are smaller than the current experimental uncertainty [31].

ωi = α−1
i = 4π

g2
i

. (2)

The coefficients ai and bi j depend on the particle content and
can be calculated manually using the formulas in Ref. [32]
or, for example, with the Python tool PyR@TE 2 [33]. While
these equations together with the boundary conditions [34]:

ω1Y (MZ ) = 98.3686

ω2L(MZ ) = 29.5752

ω3C (MZ ) = 8.54482

f MZ = 91.1876GeV. (3)

are sufficient to calculate the running of the gauge SU (2)L
and SU (3)C couplings, there is an ambiguity in the run-
ning of the hypercharge coupling. This comes about since
the SM Lagrangian only depends on the product of the
gauge coupling constant g′ times the hypercharge operator
Y . Therefore, we can perform the transformation

(
g′, Y

) →(
n−1g′, nY

)
for any n without changing the Lagrangian. The

couplings run non-parallel and it is therefore possible to pick
a specific n such that ω3C , ω2L and ω1Y meet at a com-
mon point. Here we define n as the normalization constant
relative to the ”Standard Model normalization” where the
left-handed lepton doublets have hypercharge −1 and the
left-handed quark doublets hypercharge 1/3. The boundary
value for ω1Y (MZ ) in Eq. 3 is given in this particular ”Stan-
dard Model normalization”. The RGE coefficients in the SM
with this normalization of the hypercharge are

aSM = ( 41
6 ,− 19

6 ,−7
)
, bSM =

⎛

⎜⎜⎝

199
18

9
2

44
3

9
10

35
6 12

11
10

9
2 −26

⎞

⎟⎟⎠ . (4)

The coefficients and boundary conditions for different
choices of n can be calculated by rescaling the values in
Eqs. 3 and 4 appropriately. With this information at hand, we
can solve the RGEs for different normalizations of the hyper-
charge. The results for various normalizations are shown in
Fig. 1.

The choice n = √
3/5 is known as canonical nor-

malization since it follows automatically when we embed
GSM in a simple group GGUT like, for example, SU (5),
SO(10) or E6. In such models, Y corresponds to one of
the generators of the enlarged gauge group and this fixes
the normalization Tr

(
T 2
a

) = const. since it must be the
same as for all other generators of GGUT . For example, in
SU (5) models we usually embed the GSM representations
dc = (

3, 1, 1
3n

)
and L = (

1, 2,− 1
2n

)
in the fundamental

5. We therefore know that the hypercharge generator reads
Y = n×diag

( 1
3 , 1

3 , 1
3 ,− 1

2 ,− 1
2

)
. We can then fix n by using
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Fig. 1 Solutions of the 2-loop RGEs for the Standard Model gauge
couplings with different normalizations of the hypercharge, as indi-
cated by the superscripts. The solid line corresponds to the canonical
normalization that we get, for example, in SU (5), SO(10) and E6 GUT
models. We can see here that with a non-canonical normalization of the
hypercharge nY ≈ √

3/4 the SM gauge couplings do meet at a point

that equivalently the SU (2)L generators must correspond to
SU (5) generators. Therefore, the third generator of SU (2)L
is given by T3L = diag

(
0, 0, 0, 1

2 ,− 1
2

)
. Using

Tr
(
T 2

3L

)
= 1

2
!= 5

6
n2 = Tr

(
Y 2

)
, (5)

we can conclude |n| = √
3/5. It is clear that for a dif-

ferent choice of GGUT or a different embedding of GSM

other values for n are possible [35]. However, the value
nY = √

3/5 is quite generic since it follows for all realis-
tic models where the SM is embedded in such a way that we
can view it as going through an intermediate SU (5) sym-
metry: GGUT → SU (5) → GSM [36]. While the canonical
normalization therefore seems almost inevitable, it is impor-
tant to keep in mind that a different normalization of the
hypercharge could, in principle, lead to successful unifica-
tion of the gauge couplings, especially when we try to go
beyond the standard GUT paradigm [37].2

In the following sections, we consider unification in
explicit SU (5), SO(10) and E6 scenarios and therefore
always use nY = √

3/5. Before we can move on we have
to define a criterion that tells us when the unification of the
gauge couplings is successful in a given model. Through the
vacuum expectation value that breaks GGUT the additional
GUT gauge bosons get a superheavy mass mX . Therefore
“the gauge couplings at scales much larger than mX will
be approximately equal, because the breaking of the [GUT]
gauge symmetry has a negligible effect when all the energies
in the process are very large compared to mX . But at energy
scales much smaller than mX , the gauge couplings of the
SU (3), SU (2), and U (1) subgroups are very different, each

2 For an interesting alternative proposal which, however, unfortunately
does not fix the normalization of the hypercharge see Ref. [38].

running with aβ-function determined by low energy physics”
[39]. Therefore, naively the unification condition reads
ω1Y (MGUT ) = ω2L(MGUT ) = ω3C (MGUT ). However, it is
well known that if we use two-loop RGEs this condition must
be refined and threshold corrections can alter it significantly
[40]. These arise when the masses of the various superheavy
particles are not exactly degenerate. The thresholds correc-
tions are small for each individual field, but since there are
generically a large number of superheavy particles in GUTs,
the individual contributions can add up to non-negligible cor-
rections. In principle it is even possible that threshold correc-
tions are the reason that the SM gauge couplings fail to unify
in models with canonical hypercharge normalization. In the
following section, we discuss the impact of threshold correc-
tions in various GUT scenarios explicitly. Some GUT gauge
bosons mediate proton decay and realistic scenarios are there-
fore only those where the gauge couplings successfully unify
at a scale that is high enough to yield a proton lifetime in
agreement with the present experimental bound τP (p →
e+π0) > 1.6 × 1034 [41]. If proton decay is mediated dom-
inantly by the superheavy gauge bosons that are integrated
out at the GUT scale this experimental bound implies

(ωG

45

)
102(nU−15) > 16.6, (6)

where ωG denotes the unified gauge coupling. For example,
for the typical value ωG = 45, Eq. 6 yields nU > 15.6.

3 Threshold corrections

In this section we assume that there is a ”Grand Desert”
between the electroweak and the GUT scale, i.e. no parti-
cles at an intermediate mass scale. The threshold corrections,
already mentioned above, can be expressed in terms of mod-
ified matching conditions [42]

ωi (μ) = ωG(μ) − λi (μ)

12π
, (7)

where

λi (μ) =
λGi︷ ︸︸ ︷

(CG − Ci ) −21

λVi︷ ︸︸ ︷
Tr

(
t2
iV ln

MV

μ

)

+ Tr

(
t2
i S PGB ln

MS

μ

)

︸ ︷︷ ︸
λS
i

+8 Tr

(
t2
i F ln

MF

μ

)

︸ ︷︷ ︸
λF
i

. (8)

Here, S, F , and V denote the scalars, fermions and vector
bosons which are integrated out at the matching scale μ,
ti S ,ti F , tiV are the generators of Gi for the various represen-
tations, and CG and Ci are the quadratic Casimir operators

123



  351 Page 4 of 19 Eur. Phys. J. C           (2019) 79:351 

Fig. 2 The quantity �λ23(μ) as a function of �λ12(μ) as calculated
from the IR input in Eq. (3) for GUT models with a Grand Desert
between the electroweak and the GUT scale. The quantities �λi j (μ)

are defined in Eq. (9) and indicate how much the gauge couplings fail to
unify at a specific scale μ. The numbers above the line denote specific
values for μ in GeV. The red part of the line indicates scales which
imply a potentially dangerously short proton lifetime. The orange part
implies a proton lifetime close to the present bounds, while the green
part indicates a safe proton lifetime

for the groups G and Gi . PGB is an operator that projects
out the Goldstone bosons. The traces of the quadratic gen-
erators are known as Dynkin indices and can be found, for
example, in Ref. [43]. To simplify the notation, we define
ηaj = ln(

Mj
μ

), where j labels a given multiplet. Moreover,
we define the GUT scale as the mass scale of the proton decay
mediating gauge bosons. We can then define the following
quantities that are independent of the unified gauge coupling
ωG(μ) [44]

�λi j (μ) ≡ ωi (μ) − ω j (μ) = λ j (μ) − λi (μ), (9)

for i, j = 1, 2, 3, i �= j . These quantities can be evaluated
in two ways. Firstly, from the IR perspective by evolving the
measured low-energy couplings up to some scale μ. Nonzero
�λi j (μ) indicate how much the gauge couplings fail to unify.
Secondly, we can calculate the �λi j (μ) from an UV perspec-
tive for any given GUT model. Here, the input needed is the
mass spectrum of the superheavy particles. If for a specific
GUT model the UV structure yields the values required from
the IR input, the gauge couplings successfully unify. In the
following, we work with�λ12 and�λ23, but any other choice
of two �λi j would be equally sufficient.

Figure 2 shows �λ23(μ) over �λ12(μ) for a Grand Desert
scenario between the electroweak and the GUT scale, as
calculated from the IR input in Eq. (3). In the following
sections we investigate if the needed values for �λ12 and
�λ23 can be realized in specific GUT models. To approx-
imate the threshold corrections in a given GUT model, we
choose the masses of the superheavy particles randomly in a
given range R around the GUT scale: Mi = RMGUT . Previ-
ous studies used, for example, R ∈ [ 1

10 , 10] in Refs. [45,46]

or R ∈ [ 1
10 , 2] in Ref. [13]. For each randomized spectrum,

we can calculate the corresponding �λ23(μ) and �λ12(μ)

using Eqs. (8) and (9).

3.1 SU (5)

In SU (5) models the SM fermions of one generation live in
the 5 ⊕ 10 representation. It follows from [43]

5 × 5 = 10 ⊕ 15

5 × 10 = 5 ⊕ 45

10 × 10 = 5 ⊕ 45 ⊕ 50 (10)

that scalars which yield renormalizable Yukawa terms for the
SM fermions live in the 5 ⊕ 5 ⊕ 10 ⊕ 15 ⊕ 45 ⊕ 45 ⊕ 50
representation. In addition, the minimal representation to
achieve the breaking of SU (5) to the SM gauge group is
the adjoint 24 representation. For completeness, we inves-
tigate the threshold correction if all these representations
are present. The decomposition of these representations with
respect to the SM gauge group is given in Appendix A.1.

Using Eq. (8), we find for this choice of scalar represen-
tations

λ3C = 2 + ηϕ2 + ηϕ3 + ηϕ5 + 2ηϕ6 + 2ηϕ8 + 5ηϕ9

+3ηϕ11 + ηϕ13 + 3ηϕ14 + ηϕ15 + 2ηϕ16

+5ηϕ17 + 12ηϕ18 + ηϕ20 + 3ηϕ21 + ηϕ22 + 2ηϕ23

+5ηϕ24 + 12ηϕ25 + ηϕ27 + 2ηϕ28 + 15ηϕ29 + 5ηϕ30

+12ηϕ31 ,

λ2L = 3 + ηϕ1 + 3ηϕ6 + 4ηϕ7 + 3ηϕ8

+2ηϕ10 + ηϕ12 + 12ηϕ14 + 3ηϕ16 + 8ηϕ18 + ηϕ19

+12ηϕ21 + 3ηϕ23 + 8ηϕ25 + 3ηϕ28 + 24ηϕ29 + 8ηϕ31 ,

λ1Y = 5 + 3

5
ηϕ1 + 2

5
ηϕ2 + 2

5
ηϕ3

+6

5
ηϕ4 + 8

5
ηϕ5 + 1

5
ηϕ6 + 18

5
ηϕ7

+1

5
ηϕ8 + 16

5
ηϕ9 + 3

5
ηϕ12 + 2

5
ηϕ13

+6

5
ηϕ14 + 32

5
ηϕ15 + 49

5
ηϕ16 + 4

5
ηϕ17

+24

5
ηϕ18 + 3

5
ηϕ19 + 2

5
ηϕ20 + 6

5
ηϕ21

+32

5
ηϕ22 + 49

5
ηϕ23 + 4

5
ηϕ24 + 24

5
ηϕ25

+24

5
ηϕ26 + 2

5
ηϕ27 + 49

5
ηϕ28 + 12

5
ηϕ29

+64

5
ηϕ30 + 24

5
ηϕ31 .

The result of a scan with randomized values of the various
masses Mi = RMGUT with R ∈ [ 1

10 , 2] or R ∈ [ 1
20 , 2] is

shown in Fig. 3.
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Fig. 3 Possible threshold corrections in an SU (5) GUT with scalars
in the 5 ⊕ 10 ⊕ 15 ⊕ 23 ⊕ 45 ⊕ 50 representation. The gray points
indicate the values for �λ23(μ) over �λ12(μ) for randomized mass
spectra of the superheavy particles with R ∈ [ 1

10 , 2]. The light gray
points correspond to R ∈ [ 1

20 , 2]. Neither with R ∈ [ 1
10 , 2] nor with

R ∈ [ 1
20 , 2] configurations exist that could explain the non-unification

of the gauge coupling

We can see that in SU (5) models with a Grand Desert
gauge unification cannot be achieved if the masses of the
superheavy particles are at most a factor 10 or 20 below the
GUT scale.

3.2 SO(10)

In SO(10) models the SM fermions of one generation live
in the 16-dimensional representation. The scalar represen-
tations with renormalizable Yukawa couplings to the SM
fermions are contained in

16 × 16 = 10 ⊕ 120 ⊕ 126. (11)

In addition, a 45 is necessary to break SO(10) down to
the SM. Again, for completeness, we consider the threshold
effects when all these representations are present. The main
difference regarding the threshold corrections, compared to
SU (5) models, is that in SO(10) models there are additional
gauge bosons which do not mediate proton decay. These do
not necessarily have same mass as the proton decay mediat-
ing gauge bosons which define the GUT scale. By looking at
Eq. (8) we can see immediately that such additional gauge
bosons potentially have a large impact. This is confirmed
by a scan with randomized mass of the superheavy fermions
Mi = RMGUT with R ∈ [ 1

10 , 2] and R ∈ [ 1
20 , 2] as shown in

Fig. 4. The decomposition of the scalar representations and
the resulting threshold formulas are given in Appendix A.2.
While the threshold corrections can be sufficiently large to
explain the mismatch of the gauge couplings, the unification

Fig. 4 Possible threshold corrections in an SO(10) GUT with scalars
in the 10 ⊕ 120 ⊕ 126 ⊕ 45 representation. The gray points indicate the
values for �λ23(μ) over �λ12(μ) for randomized mass spectra of the
superheavy particles with R ∈ [ 1

10 , 2]. The light gray points correspond
to R ∈ [ 1

20 , 2]. While unification is not possible with R ∈ [ 1
10 , 2],

there are some viable configurations with R ∈ [ 1
20 , 2]. However, the

corresponding maximal SO(10) scale Mmax
SO(10) � 1015.3 GeV, implies

a proton lifetime significantly below the present bound (Eq. (6))

scale is too low to be in agreement with bounds from proton
decay experiments (Eq. (6)).3

3.3 E6

In E6 models, the SM fermions live in the fundamental 27-
dimensional representation, which decomposes with respect
to the maximal subgroup SO(10) ×U (1) as

27 → 14 ⊕ 10−2 ⊕ 161. (12)

The 161 contains, like in SO(10) models, all SM fermions
of one generation plus a right-handed neutrino. In addition,
we can see that the 27 contains a sterile neutrino 14 and addi-
tionally a vector-like down quark and a vector-like doublet,
which are contained in the 10−2. Since these exotic fermions
live in the same representation as the SM fermions, we auto-
matically get 3 generations of them, too. These additional
fermions yield potentially additional significant threshold
corrections. The scalars are contained in

27 × 27 = 27 ⊕ 351′ ⊕ 351. (13)

The decomposition of these scalar representations and the
resulting threshold formulas are given in Appendix A.3. In
E6, we not only have additional contributions from the three
generations of exotic fermions, but also from a larger number
of additional gauge bosons and scalars, compared to SO(10)

3 It is, of course, possible to construct models with larger threshold cor-
rections by including additional scalar representations. See, for exam-
ple, the model in Ref. [47].
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Fig. 5 Possible threshold corrections in an E6 GUT with scalars in
the 27 ⊕ 351′ ⊕ 351 representation. The E6 scale can be as high as
Mmax

E6
� 1015.8 GeV for R ∈ [ 1

10 , 2] (gray points) and Mmax
E6

� 1016.3

GeV for R ∈ [ 1
20 , 2] (light gray points)

models. Again, we estimate the possible threshold correc-
tions by generating randomized spectra for the superheavy
particles. The result is shown in Fig. 5. We can see that suit-
able mass spectra of the large number of superheavy fields
in E6 GUTs can indeed explain the mismatch of the gauge
couplings.

Next, we investigate whether the non-unification of the
gauge couplings could be a hint for particles at intermedi-
ate scales. In principle, there can be additional light scalars,
fermions and gauge bosons. However, in conservative SU (5)

models the only possibility are additional light scalars, while
in conservative SO(10) models there can be additional light
scalars and gauge bosons, and only in conservative E6 models
we can have all three. For this reason, we discuss additional
light scalars in the context of SU (5) models, additional light
gauge bosons in the context of SO(10) models and additional
light fermions in the context of E6 models.

The idea to achieve gauge unification through additional
light particles is, of course, not new. For example, to quote
E. Ma [48]: “If split supersymmetry can be advocated as a
means to have gauge-coupling unification as well as dark
matter, another plausible scenario is to enlarge judiciously
the particle content of the Standard Model to achieve the
same goals without supersymmetry”. Scenarios that realize
this idea are discussed extensively in Refs. [49,50]. Our goal
here is somewhat different since we are not adding particles
solely to achieve gauge unification. Instead, we discuss if it
is possible that the gauge couplings meet at a common point
with the given particle content in conservative GUTs.

4 Additional light scalars

Each additional light (non-singlet) particle modifies the
RGEs above the scale where it gets integrated out. However,

not every modification of the RGEs necessarily brings the
gauge couplings closer to unification. A convenient method
to check if a given particles improves the running of the gauge
couplings was put forward in Ref. [51]. In the following, we
use this method and recite here the main points. Firstly, we
define the quantities

Ai j = Ai − A j , (14)

where

Ai = ai +
∑

I

ai I rI , rI = ln MGUT /MI

ln MGUT /MZ
. (15)

Here ai are the one-loop coefficients as defined in Eq. 1. Nec-
essary (one-loop) conditions for successful gauge unification
are then [51]

A23

A12
= 5

8

sin2 θw − αem/αs

3/8 − sin2 θw

,

ln
MGUT

MZ
= 16π

5αEM

3/8 − sin2 θw

A12
. (16)

The left-hand side depends on the particle content, while the
experimental input on the right-hand side here is evaluated
at MZ . Putting in the experimental values [34]

α−1
EM (MZ ) = 127.950 ± 0.017

αs(MZ ) = 0.1182 ± 0.0012

sin2 θw(MZ ) = 0.23129 ± 0.00050 (17)

yields

A23

A12
� 0.719, ln

MGUT

MZ
� 184.9

A12
. (18)

For Grand Desert scenarios, we find A23
A12

� 0.51. Therefore,
a particle brings the gauge couplings closer to gauge unifi-
cation if it lowers A12 and increases A23 or if it increases
A23 more than it increases A12. Moreover, from the second
relation it follows that particles which lower A12 increase
the GUT scale. We therefore calculate the contributions
to A12 and A23 for all representations contained in the
5 ⊕ 10 ⊕ 15 ⊕ 23 ⊕ 45 ⊕ 50 representation of SU (5). The
result is shown in Table 1. We can see that additional light
SU (2)L doublets with the same quantum numbers as the
SM Higgs improve the running. However, the contribution
is quite small and at least eight of them are needed to bring
A23
A12

close to the experimental value. Similarly, while helpful,
contributions from additional light scalars in the (1, 3, 6) and
(3, 2, 1) are too small to have a significant impact. The only
SU (3)C×SU (2)L×U (1)Y representations here with signifi-
cant impact on the ratio A23/A12 are (1, 3, 0), (3, 3,−2) and
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Fig. 6 Prospects for gauge unification in scenarios with light (1, 3, 0)

scalars. No sufficiently high unification scale can be realized, even if
we take threshold corrections with R ∈ [ 1

20 , 2] (light gray points) into
account,

(6, 3,−2). The RGE coefficients for the SM supplemented
with these scalar representations are

a(1,3,0) = (
41
10 ,− 5

2 ,−7
)
,

b(1,3,0) =

⎛

⎜⎜⎜⎝

199
50

27
10

44
5

9
10

49
2 12

11
10

9
2 −26

⎞

⎟⎟⎟⎠ ,

a(3,3,−2) = ( 43
10 ,− 7

6 ,− 13
2

)
,

b(3,3,−2) =

⎛

⎜⎜⎜⎝

207
50

15
2 12

5
2

371
6 44

3
2

33
2 −15

⎞

⎟⎟⎟⎠ ,

a(6,3,−2) = ( 9
2 , 5

6 ,− 9
2

)
,

b(6,3,−2) =

⎛

⎜⎜⎜⎝

43
10

123
10

124
5

369
10

707
6 172

131
10

129
2 89

⎞

⎟⎟⎟⎠ . (19)

The impact of these representation on the running of
the gauge couplings for various intermediate mass values is
shown in Figs. 6, 7 and 8. We can see that no unification at a
sufficiently high scale is possible with light (1, 3, 0) scalars,
even if we take threshold corrections into account. The sit-
uation is better if there are light (3, 3,−2) scalars and the
maximum proton lifetime is close to the present bound. For
light (6, 3,−2) scalars, the SO(10) scale can be as high as
Mmax

SO(10) � 1015.9 GeV if M(6,3,−2) � 1012 GeV. Therefore,
this scenario will be probed by the next generation of proton
decay experiments [53].

Fig. 7 Prospects for gauge unification in scenarios with light
(3, 3,−2) scalars. Scalars in the (3, 3,−2) mediate proton decay and
therefore have to be heavier than 1010 GeV [52]. By taking threshold
corrections with R ∈ [ 1

20 , 2] (light gray points) into account we find
that the SO(10) scale at most Mmax

SO(10) � 1015.7 GeV. This scenario is
therefore on the verge of being excluded by proton decay experiments

Fig. 8 Prospects for gauge unification in scenarios with light
(6, 3,−2) scalars. The maximum value for the SO(10) scale Mmax

SO(10) �
1015.9 GeV is possible for M(6,3,−2) � 1012 GeV. This scenario will
therefore be probed by the next generation of proton decay experiments
[53]

Of course, it is also possible to consider scenarios in which
more than one scalar representation is light. However, it is
well known that each additional light scalar representation
requires additional fine-tuning [54] and since scenarios with
just one light representation are still viable, we do not discuss
such scenarios any further here.

5 Additional light gauge bosons

While in conservative SU (5) models the only possibility to
achieve gauge unification is through additional light scalars,
in SO(10) and E6 models there can be additionally light
gauge bosons, too. This is the case when there is at least
one intermediate symmetry between GSM and GGUT . Since,
the E6 scalar representations that couple to fermions contain
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no singlet under any viable maximal subgroup other than
SO(10), we discuss in the following only breaking chains
that start with GGUT = SO(10). Moreover, we restrict our-
selves to scenarios with exactly one intermediate symmetry.
A thorough discussion of breaking chains with two interme-
diate symmetries can be found in Ref. [20].4

The breaking of SO(10) down to the SM gauge group is
achieved by SM singlets in the 10 ⊕ 120 ⊕ 126 ⊕ 45 scalar
representation. There are no SM singlets in the 10 and 120
and therefore all superheavy VEVs must come from the 126
or 45 representation.

The singlet in the 126 breaks SO(10) down to SU (5).
Since in such a scenario the gauge couplings already have to
unify at the intermediate SU (5) scale there is no improve-
ment compared to the scenarios discussed in the previous
section.

There are two SM singlets in the adjoint 45 and they can
break

SO(10) → SU (4)C × SU (2)L ×U (1)R

SO(10) → SU (3)C × SU (2)L × SU (2)R ×U (1)X

SO(10) → SU (3)C × SU (2)L ×U (1)R ×U (1)X

SO(10) → SU (5)′ ×U (1)Z

SO(10) → SU (5) ×U (1)Z , (20)

Here SU (5)′ denotes the flipped SU (5) embedding [56,
57]. The breaking of the intermediate symmetry down to
SU (3)C × SU (2)L × U (1)Y is achieved for all chains but
the last one by the singlet in the 126. For the last chain, the
singlet in the 126 only breaks SU (5)×U (1)Z down to SU (5).
Moreover, the intermediate symmetries SU (5)′ × U (1)Z
and SU (3)C × SU (2)L ×U (1)R ×U (1)Y do not yield any
improvement in terms of unification of the gauge cou-
plings [18,49]. There are additional possibilities if we embed
SO(10) in E6 since there are additional SM singlets in the
54 ⊂ 351′ and 144 ⊂ 351. With a VEV in the 144 it’s pos-
sible to break SO(10) directly to GSM [58] and therefore
there is no improvement regarding the running of the gauge
couplings.

With a VEV in the 54 we can break SO(10) to the Pati–
Salam group SU (4)C × SU (2)L × SU (2)R × D, where D
denotes D-parity which exchanges SU (2)L ↔ SU (2)R
[59,60]. This breaking chain was analyzed extensively in
Refs. [13,61]. Hence, in the following we put our focus on
the first and second breaking chain in Eq. (20).

4 A particularly interesting specific possibility is that ω1Y and ω2L unify
at around MI � 1013 GeV (≈type-1 seesaw scale) which is where
they meet in the SM (c.f. Fig. 1). A complete unification of the gauge
couplings can then be achieved, for example, through additional light
scalars [55].

Before we can evaluate the RGE running in a scenario with
intermediate symmetry, we need to specify the scalar spec-
trum. For this purpose we use the extended survival hypoth-
esis, which states that “Higgses acquire the maximum mass
compatible with the pattern of symmetry breaking.” [62].
This a hypothesis of minimal fine tuning since only those
scalar fields are light that need to be for the symmetry break-
ing [54]. In addition, we need to make sure that the Yukawa
sector is rich enough to be able to reproduce the SM fermion
observables. For this reason, at least one additional SU (2)L
scalar doublet must be kept at the intermediate scale [63].5

5.1 SO(10) → SU (4)C × SU (2)L ×U (1)R

The VEV that breaks SU (4)C × SU (2)L × U (1)R down to
the SM gauge group lives in the (10, 1,−1) ⊂ 126 repre-
sentation of the intermediate group and therefore has a mass
of the order M421. The SM Higgs lives in the (1, 2, 1

2 ) ⊂ 10
representation. Since at least one additional doublet is needed
to generate the flavour structure of the SM, we assume that
the (15, 2, 1

2 ) ⊂ 126 has a mass of the order M421, too.
With this particle spectrum, the RGE coefficients above

the intermediate scale read

a124 = (
10,− 2

3 ,−7
)
, b124 =

⎛

⎜⎜⎝

51 24 645
2

8 115
3

285
2

43
2

57
2

265
2

⎞

⎟⎟⎠ . (21)

Below M421 the RGEs are the Standard Model ones. The
matching condition for the hypercharge U (1)Y without
threshold corrections reads[18]

ω1Y = 3

5
ω1R + 2

5

(
ω4C − C4

12π

)
. (22)

With this information at hand, we can solve the RGEs and
find

M421 � 1011.4 GeV, MSO(10) � 1014.5 GeV. (23)

From similar results previous studies concluded that this
breaking chain “is definitely ruled out” [18] since such a
low value for MSO(10) implies a proton lifetime in conflict
with experimental bounds. However, as already discussed in
Sect. 3, results such as the one in Eq. (26) can be modified
significantly by threshold corrections.

These depend on the detailed mass spectrum of the super-
heavy particles and can be estimated by generating the
masses of the various multiples randomly Mi = RMj ,

5 In addition to such a minimal choice there is, in general, an extremely
large number of alternative possibilities [64].
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Fig. 9 Impact of possible threshold corrections on the proton lifetime
τ in SO(10) models with intermediate SU (4)C × SU (2)L × U (1)R
symmetry. The gray dots denote randomized mass spectra with R ∈
[ 1

10 , 2] while the light gray dots denote spectra with R ∈ [ 1
20 , 2]. The

dashed line denotes the present bound from Super-Kamiokande [41]

where j ∈ {421, SO(10)}, within a given range, for exam-
ple, R ∈ [ 1

10 , 2] or R ∈ [ 1
20 , 2]. The decomposition of the

relevant scalar representations and the resulting threshold
formulas are given in Appendix A.4. The result of such a
scan with randomized mass spectra is shown in Fig. 9. We
find that within these ranges the proton lifetime can be at
most

τmax = 6.15 × 1032 years; R ∈ [1/10, 2]
τmax = 7.33 × 1033 years; R ∈ [1/20, 2]. (24)

We therefore conclude that this breaking chain is ruled out
even if we take threshold corrections into account.

5.2 SO(10) → SU (3)C × SU (2)L × SU (2)R ×U (1)X

Here, the VEV that breaks the intermediate

SU (3)C × SU (2)L × SU (2)R ×U (1)X

symmetry lives in the (1, 1, 3,−2) ⊂ 126 representation
of the intermediate group and the SM Higgs lives in the
(1, 2, 1, 0) ⊂ 10 representation. The additional doublet that
is needed for the flavour structure of the SM lives in the
(1, 2, 1, 0) ⊂ 126 representation.

Therefore, the (1, 2, 1, 0) ⊂ 10 lives at the electroweak
scale, the (1, 1, 3, 1) and (1, 2, 1, 0) ⊂ 126 at the M3221

scale, while all other scalars are assumed to be superheavy.
The RGE coefficients above the intermediate scale read

Fig. 10 Impact of possible threshold corrections on the proton lifetime
τ in SO(10) models with intermediate SU (3)C × SU (2)L × SU (2)R ×
U (1)X symmetry. The gray dots denote randomized mass spectra with
R ∈ [ 1

10 , 2] while the light gray dots denote spectra with R ∈ [ 1
20 , 2].

The dashed line denotes the present bound from Super-Kamiokande
[41]

a1223 = ( 11
2 ,− 8

3 ,−2,−7
)
,

b1223 =

⎛

⎜⎜⎜⎜⎜⎜⎝

61
2

9
2

81
2 4

3
2

37
3 6 12

27
2 6 31 12

1
2

9
2

9
2 −26

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Again, below the intermediate scale the RGEs are the Stan-
dard Model RGEs. The matching condition for the hyper-
chargeU (1)Y without threshold corrections for this breaking
chain reads [18]

ω1Y = 3

5

(
ω2R − C2

12π

)
+ 2

5
ω1X . (25)

Solving the RGEs yields

M3221 � 1010.2 GeV, MSO(10) � 1015.9 GeV. (26)

Therefore, in the absence of threshold corrections this break-
ing chain is not yet challenged by the experimental bounds on
proton decay. Nevertheless, for completeness we investigate
the possible impact of threshold corrections. The decompo-
sition of the relevant scalar representations and the resulting
threshold formulas are given in Appendix A.5. The result of
a scan with randomized mass of the superheavy particles is
shown in Fig. 10. The proton lifetime can be at most

τmax = 7.16 × 1041 years; R ∈ [1/10, 2]
τmax = 5.24 × 1044 years; R ∈ [1/20, 2]. (27)
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6 Additional light fermions

E6 models always contain additional fermions, since the
fundamental representation contains in addition to the SM
fermions of one generation also exotic fermions. From
the decomposition in Eq. (12) it follows that these exotic
fermions live in the

(1, 2, 3) ⊕ (1, 2,−3) ⊕ (3, 1,−2) ⊕ (3, 1, 2) (28)

representation of SU (3)C×SU (2)L×U (1)Y . The additional
SM singlets have, of course, no influence on the RGE run-
ning. To check which fermions help with gauge unification,
we can again use the method discussed in Sect. 4. The contri-
butions of the representations in Eq. 28 to A23/A12 are shown
in Table 7. We can see here that vector-like lepton doublets
(1, 2, 3) improve the running of the gauge couplings, while
vector-like quarks (3, 1,−2) make the situation worse. In
addition, we can see that at the one-loop level the impact of
the vector-like E6 quarks and leptons on the RGE running
cancel exactly.

While the contributions of the individual fermions on the
running is quite small, it can be significant since there are
three generations of them.6 To achieve gauge unification
using the exotic E6 fermions, we therefore need a scenario
with a large mass splitting between the vector-like leptons
and quarks. This is indeed possible since the 45 ⊂ 351 con-
tains two SM singlets and one of them gives a mass solely
to the vector-like quarks, while the other one yields a mass
term for the vector-like leptons. Hence, it is possible that the
exotic quarks are much heavier than the exotic leptons. This
is known as the Dimopoulos–Wilzeck structure [65,66]. In
the following, we assume that all vector-like quarks are suffi-
ciently heavy to only have a negligible influence on the RGEs
and focus solely on the exotic lepton doublet.

Another crucial observation is that the Yukawa couplings
of the exotic fermions and those of the SM fermions have a
common origin since the Yukawa sector above the E6 scale
reads

LY = �T iσ2�(Y27ϕ + Y351′φ + Y351ξ) + h.c., (29)

It is therefore reasonable to assume that there is a split-
ting among the three exotic fermion generations which is
of comparable size as the splitting among the SM genera-
tions, i.e. m2L/m3L � 10−2, m1L/m3L � 10−4. The RGE
coefficients for the SM supplemented with one, two and three
vector-like lepton doublets are

aSM+1L = (
9
2 ,− 5

2 ,−7
)
,

6 As already mentioned above, this follows automatically, since they
live in the same representation as the SM fermions.

Fig. 11 Influence of the 3 generations of exotic E6 lepton doublets
(1, 2, 3) with a mass splitting m2L/m3L � 10−2, m1L/m3L � 10−4

on the unification of the gauge couplings. The numbers in the lower-left
corner indicate the mass scale of the heaviest vector-like lepton doublet
in each scenario. Scenarios with a vector-like lepton doublet lighter than
450 GeV are already ruled out by collider searches [67]. The dashed line
represents the Grand Desert scenario with no particles at intermediate
scales. The light gray points indicate possible threshold corrections
with R ∈ [1/20, 2]. With the heaviest lepton generation around m3L �
1014 GeV, the E6 scale can be as high as Mmax

E6
� 1016 GeV

bSM+1L =

⎛

⎜⎜⎜⎝

104
25

18
5

44
5

6
5 14 12

11
10

9
2 −26

⎞

⎟⎟⎟⎠ ,

aSM+2L = ( 49
10 ,− 11

6 ,−7
)
,

bSM+2L =

⎛

⎜⎜⎜⎝

217
50

9
2

44
5

3
2

133
6 12

11
10

9
2 −26

⎞

⎟⎟⎟⎠ ,

aSM+3L = ( 53
10 ,− 7

6 ,−7
)
,

bSM+3L =

⎛

⎜⎜⎜⎝

113
25

27
5

44
5

9
5

91
3 12

11
10

9
2 −26

⎞

⎟⎟⎟⎠ . (30)

The influence of the vector-like E6 leptons on the running
of the gauge couplings is shown in Fig. 11. We can see that
unification is indeed possible if the mass spectrum of the
vector-like leptons ism3L � 1010 GeV, m2L � 108 GeV and
m1L � 106 GeV. However, the GUT scale in this scenario is
dangerously low.

7 Summary and conclusions

In summary, we have demonstrated that unification of the
gauge couplings is possible in conservative GUT scenarios
without supersymmetry.
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We have shown that one possible explanation for the obser-
vation that the SM gauge couplings do not meet at a common
point are large threshold corrections. These are necessary
when the superheavy fields do not have exactly degenerate
masses. We calculated the magnitude of these corrections in
conservative SU (5), SO(10) and E6 models with a Grand
Desert between the electroweak and the GUT scale. We found
that they can be large enough only in E6 models. The E6 scale
can be as high as Mmax

E6
� 1016.3 GeV.

Afterwards, we investigated scenarios with particles at
intermediate mass scales between the electroweak and the
GUT scale.

In Sect. 4, we calculated the impact of additional light
scalar fields on the running of the gauge couplings. We argued
that in conservative SU (5) scenarios the only representations
that can significantly help to achieve gauge unification are
(1, 3, 0), (3, 3,−2) and (6, 3,−2). While it is possible to
achieve unification through suitable mass values for each of
these representations (at least if we take threshold corrections
into account), only for the (6, 3,−2) this happens at a scale
high-enough to be in agreement with bounds from proton
decay experiments. In Sect. 5, we investigated scenarios with
additional light gauge bosons. In conservative SO(10) GUTs
the only scenarios with just one intermediate symmetry and
improved running of the gauge couplings go through an

SU (3)C × SU (2)L × SU (2)R ×U (1)X

or

SU (4) × SU (2)L ×U (1)R

stage.7 We calculated that the second possibility is already
ruled out through proton decay experiments, even if we take
threshold corrections into account. For the scenario with
SU (3)C × SU (2)L × SU (2)R ×U (1)X intermediate sym-
metry, we found that the proton lifetime can be as long as
τmax � 5.24 × 1044 years.

Finally in Sect, 6, we discussed the impact of additional
light fermions in the context of conservative E6 models. We
argued that light vector-like E6 leptons improve the run-
ning, while the vector-like E6 quarks make the situation
worse. Including threshold corrections plus the heaviest lep-
ton generation around m3L � 1014 GeV (and mass splittings
m2L/m3L � 10−2,m1L/m3L � 10−4), we found that the E6

scale can be as high as Mmax
E6

� 1016 GeV.
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8 Appendix A: Decomposition of the scalar
representations and threshold formulas in Grand
Desert scenarios

8.1 SU (5)

See Table 1.

Table 1 Decomposition with respect to SU (3)C × SU (2)L × U (1)Y
of the scalar representations in conservative SU (5) GUTs. Goldstone
bosons are labelled by ξi , SM singlets by si and all other fields by
ϕi . The hypercharges are given in the normalization of Ref. [43]. The
numbers in the A23 and A12 columns indicate whether the fields can
help to achieve gauge unification or not. For further explanations, see
Sect. 4

SU (5) 3C2L1Y A23/rI A12/rI Label

5 (1, 2, 3) 1
6 − 1

15 ϕ1

(3, 1,−2) − 1
6

1
15 ϕ2

5 (1, 2,−3) 1
6 − 1

15 H

(3, 1, 2) − 1
6

1
15 ϕ3

10 (1, 1, 6) 0 1
5 ϕ4

(3, 1,−4) − 1
6

4
15 ϕ5

(3, 2, 1) 1
6 − 7

15 ϕ6

15 (1, 3, 6) 2
3 − 1

15 ϕ7

(3, 2, 1) 1
6 − 7

15 ϕ8

(6, 1,−4) − 5
6

8
15 ϕ9

24 (1, 1, 0) 0 0 s1

(1, 3, 0) 1
3 - 1

3 ϕ10

(3, 2,−5) 1
12

1
6 ξ1

(3, 2, 5) 1
12

1
6 ξ2

(8, 1, 0) − 1
2 0 ϕ11

45 (1, 2, 3) 1
6 − 1

15 ϕ12

(3, 1,−2) − 1
6

1
15 ϕ13

(3, 3,−2) 3
2 − 9

5 ϕ14

(3, 1, 8) − 1
6

16
15 ϕ15

(3, 2,−7) 1
6

17
15 ϕ16

(6, 1,−2) − 5
6

2
15 ϕ17

(8, 2, 3) − 2
3 − 8

15 ϕ18
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Table 1 continued

SU (5) 3C2L1Y A23/rI A12/rI Label

45 (1, 2,−3) 1
6 − 1

15 ϕ19

(3, 1, 2) − 1
6

1
15 ϕ20

(3, 3, 2) 3
2 − 9

5 ϕ21

(3, 1,−8) − 1
6

16
15 ϕ22

(3, 2, 7) 1
6

17
15 ϕ23

(6, 1, 2) 5
6

2
15 ϕ24

(8, 2,−3) − 2
3 − 8

15 ϕ25

50 (1, 1,−12) 0 4
5 ϕ26

(3, 1,−2) − 1
6

1
15 ϕ27

(3, 2,−7) 1
6

17
15 ϕ28

(6, 3,−2) 3
2 − 18

5 ϕ29

(6, 1, 8) − 5
6

32
15 ϕ30

(8, 2, 3) − 2
3 − 8

15 ϕ31

8.2 SO(10)

Using Eq. (8), we find for the threshold corrections in con-
servative SO(10) GUTs

λ3C = 5 − 21ηPSV + 1

2
η�2 + 1

2
η�3

+1

2
η�5 + 1

2
η�7 + 1

2
η�9 + η�10

+1

2
η�12 + η�13 + 1

2
η�15 + 3

2
η�16

+1

2
η�17 + η�18 + 5

2
η�19 + 6η�20 + 1

2
η�22

+3

2
η�23 + 1

2
η�24 + η�25 + 5

2
η�26

+6η�27 + η�29 + 2η�31 + 5η�32 + η�34

+3η�35 + η�36 + 2η�37 + 5η�38 + 12η�39 + η�41

+2η�42 + 15η�43 + 5η�44 + 12η�45

+1

2
η�47 + η�48 + 1

2
η�50 + η�51

+3η�53 ,

λ2L = 6 + 1

2
η�1 + 1

2
η�4 + 1

2
η�6

+3

2
η�10 + 3

2
η�13 + 1

2
η�14 + 6η�16 + 3

2
η�18

+4η�20 + 1

2
η�21 + 6η�23 + 3

2
η�25

+4η�27 + η�28 + 4η�30 + 3η�31 + η�33 + 12η�35

+3η�37 + 8η�39 + 3η�42 + 24η�43 + 8η�45

+3

2
η�48 + 3

2
η�51 + 2η�52 ,

λ1Y = 8 − 21

(
8

5
ηPSV + 6

5
ηWR

)
+ 3

10
η�1

+1

5
η�2 + 1

5
η�3 + 3

10
η�4 + 1

5
η�5

+ 3

10
η�6 + 1

5
η�7 + 3

5
η�8 + 4

5
η�9

+ 1

10
η�10 + 3

5
η�11 + 4

5
η�12 + 1

10
η�13

+ 3

10
η�14 + 1

5
η�15 + 3

5
η�16 + 16

5
η�17

+49

10
η�18 + 2

5
η�19 + 12

5
η�20 + 3

10
η�21

+1

5
η�22 + 3

5
η�23 + 16

5
η�24 + 49

10
η�25

+2

5
η�26 + 12

5
η�27 + 3

5
η�28 + 2

5
η�29

+18

5
η�30 + 1

5
η�31 + 16

5
η�32 + 3

5
η�33

+2

5
η�34 + 6

5
η�35 + 32

5
η�36 + 49

5
η�37

+4

5
η�38 + 24

5
η�39 + 24

5
η�40 + 2

5
η�41

+49

5
η�42 + 12

5
η�43 + 64

5
η�44 + 24

5
η�45

+3

5
η�46 + 4

5
η�47 + 1

10
η�48 + 3

5
η�49

+4

5
η�50 + 1

10
η�51 .

Here, PSV denotes the Pati–Salam gauge bosons in the
(3, 1,−4) and WR the right-handed W±

R in the (1, 1,−6)

(Tables 2, 3, 4, 5).

Table 2 Decomposition of the scalar 10 representation of SO(10) with
respect to the subgroups SU (5) and SU (3)C × SU (2)L × U (1)Y . For
further details, see Table 1

SO(10) SU (5) 3C2L1Y Label

10 5 (1, 2, 3) �1

(3, 1,−2) �2

5 (1, 2,−3) H

(3, 1, 2) �3
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Table 3 Decomposition of the scalar 45 representation of SO(10) with
respect to the subgroups SU (5) and SU (3)C × SU (2)L × U (1)Y . For
further details, see Table 1

SO(10) SU (5) 3C2L1Y Label

45 1 (1, 1, 0) s1

10 (1, 1, 6) �4

(3, 1,−4) �5

(3, 2, 1) �6

10 (1, 1,−6) �7

(3, 1, 4) �8

(3, 2,−1) �9

24 (1, 1, 0) s2

(1, 3, 0) �10

(3, 2,−5) ξ1

(3, 2, 5) ξ2

(8, 1, 0) �11

Table 4 Decomposition of the scalar 120 representation of SO(10)

with respect to the subgroups SU (5) and SU (3)C × SU (2)L ×U (1)Y .
For further details, see Table 1

SO(10) SU (5) 3C2L1Y Label

120 5 (1, 2, 3) �12

(3, 1,−2) �13

5 (1, 2,−3) �14

(3, 1, 2) �15

10 (1, 1, 6) �16

(3, 1,−4) �17

(3, 2, 1) �18

10 (1, 1,−6) �19

(3, 1, 4) �20

(3, 2,−1) �21

45 (1, 2, 3) �22

(3, 1,−2) �23

(3, 3,−2) �24

(3, 1, 8) �25

(3, 2,−7) �26

(6, 1,−2) �27

(8, 2, 3) �28

45 (1, 2,−3) �29

(3, 1, 2) �30

(3, 3, 2) �31

(3, 1,−8) �32

(3, 2, 7) �33

(6, 1, 2) �34

(8, 2,−3) �35

Table 5 Decomposition of the scalar 126 representation of SO(10)

with respect to the subgroups SU (5) and SU (3)C × SU (2)L ×U (1)Y .
For further details, see Table 1

SO(10) SU (5) 3C2L1Y Label

126 1 (1, 1, 0) s3

5 (1, 2, 3) �36

(3, 1,−2) �37

10 (1, 1,−6) ξ3

(3, 1, 4) ξ4

(3, 2,−1) ξ5

15 (1, 3, 6) �38

(3, 2, 1) �39

(6, 1,−4) �40

45 (1, 2,−3) �41

(3, 1, 2) �42

(3, 3, 2) �43

(3, 1,−8) �44

(3, 2, 7) �45

(6, 1, 2) �46

(8, 2,−3) �47

50 (1, 1,−12) �48

(3, 1,−2) �49

(3, 2,−7) �50

(6, 3,−2) �51

(6, 1, 8) �52

(8, 2, 3) �53

8.3 E6

Using Eq. (8), we find for the threshold corrections in con-
servative E6 GUTs

λ3C = 9 − 21
(
ηPSV + ηE2 + ηE4

) + η�2 + η�3

+η�5 + η�7 + 2η�8 + η�10 + η�12

+η�14 + η�16 + 2η�17 + η�19 + η�21

+2η�22 + η�24 + 2η�25 + η�27 + 2η�28

+6η�30 + η�32 + η�34 + η�36 + 2η�37 + η�39

+2η�40 + η�42 + 3η�43 + η�44 + 2η�45

+5η�46 + 12η�47 + η�49 + 3η�50 + η�51 + 2η�52

+5η�53 + 12η�54 + η�56 + η�58 + η�60

+2η�61 + 2η�63 + 5η�64 + 2η�66 + 2η�67 + 6η�68

+2η�70 + η�71 + 3η�72 + 6η�73 + 10η�74 + η�76

+3η�77 + η�78 + 2η�79 + 5η�80

+12η�81 + η�83 + η�85

+2η�87 + 5η�88 + 2η�90 + 5η�91 + 2η�93 + 2η�94

+6η�95 + η�97 + 2η�99 + 5η�100

+η�102 + 3η�103 + η�104 + 2η�105

123
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+5η�106 + 12η�107 + η�109 + 2η�110

+15η�111 + 5η�112

+12η�113 + η�115 + η�117 + η�119

+2η�120 + 2η�122 + 5η�123

+2η�125 + 2η�126 + 6η�127

+2η�129 + η�130 + 3η�131

+6η�132 + 10η�133 + η�135

+3η�136 + η�137 + 2η�138

+5η�139 + 12η�140

+8
(
ηD1 + ηD2 + ηD3

)
,

λ2L = 10 − 21ηE1 + η�1 + η�4 + 3η�8 + η�9 + η�11 + η�13

+3η�17 + η�18 + 3η�22 + 3η�25 + 3η�28

+4η�29 + η�31 + η�33

+3η�37 + 3η�40 + η�41 + 12η�43 + 3η�45

+8η�47 + η�48 + 12η�50

+3η�52 + 8η�54 + η�55

+η�57 + 3η�61 + 4η�62 + 3η�63

+4η�65 + 3η�66 + 3η�67 + η�69 + 3η�70

+12η�72 + 6η�74 + η�75

+12η�77 + 3η�79 + 8η�81 + η�82 + η�84

+4η�86 + 3η�87 + 4η�89

+3η�90 + 4η�92 + 3η�93

+3η�94 + η�96 + 4η�98

+3η�99 + η�101 + 12η�103

+3η�105 + 8η�107 + 3η�110

+24η�111 + 8η�113 + η�114 + η�116

+3η�120 + 4η�121 + 3η�122

+4η�124 + 3η�125 + 3η�126

+η�128 + 3η�129

+12η�131 + 6η�133 + η�134

+12η�136 + 3η�138 + 8η�140

+8
(
ηL1 + ηL2 + ηL3

)
,

λ1Y = 12 − 21(
6

5
ηWR + 8

5
ηPSV + 3

5
ηE1

+2

5
ηE2 + 6

5
ηE3

+8

5
ηE4) + 3

5
η�1

+2

5
η�2 + 2

5
η�3 + 3

5
η�4 + 2

5
η�5

+6

5
η�6 + 8

5
η�7 + 1

5
η�8 + 3

5
η�9

+2

5
η�10 + 3

5
η�11 + 2

5
η�12 + 3

5
η�13

+2

5
η�14 + 6

5
η�15 + 8

5
η�16 + 1

5
η�17

+3

5
η�18 + 2

5
η�19 + 6

5
η�20 + 8

5
η�21

+1

5
η�22 + 6

5
η�23 + 8

5
η�24 + 1

5
η�25

+6

5
η�26 + 8

5
η�27 + 1

5
η�28 + 3

5
η�31

+2

5
η�32 + 3

5
η�33 + 2

5
η�34 + 6

5
η�35

+8

5
η�36 + 1

5
η�37 + 6

5
η�38 + 8

5
η�39

+1

5
η�40 + 3

5
η�41 + 2

5
η�42 + 6

5
η�43

+32

5
η�44 + 49

5
η�45 + 4

5
η�46 + 24

5
η�47

+3

5
η�48 + 2

5
η�49 + 6

5
η�50 + 32

5
η�51

+49

5
η�52 + 4

5
η�53 + 24

5
η�54 + 3

5
η�55

+2

5
η�56 + 3

5
η�57 + 2

5
η�58 + 6

5
η�59

+8

5
η�60 + 1

5
η�61 + 18

5
η�62 + 1

5
η�63

+16

5
η�64 + 5η�66 + 5η�67 + 27

5
η�69

+1

5
η�70 + 8

5
η�71 + 24

5
η�72 + 48

5
η�73

+2

5
η�74 + 3

5
η�75 + 2

5
η�76 + 6

5
η�77

+32

5
η�78 + 49

5
η�79 + 4

5
η�80 + 24

5
η�81

+3

5
η�82 + 2

5
η�83 + 3

5
η�84 + 2

5
η�85

+18

5
η�86 + 1

5
η�87 + 16

5
η�88 + 18

5
η�89

+1

5
η�90 + 16

5
η�91 + 5η�93 + 5η�94

+3

5
η�96 + 2

5
η�97 + 18

5
η�98 + 1

5
η�99

+16

5
η�100 + 3

5
η�101 + 2

5
η�102 + 6

5
η�103

+32

5
η�104 + 49

5
η�105 + 4

5
η�106 + 24

5
η�107

+24

5
η�108 + 2

5
η�109 + 49

5
η�110 + 12

5
η�111

+64

5
η�112 + 24

5
η�113 + 3

5
η�114 + 2

5
η�115

+3

5
η�116 + 2

5
η�117 + 6

5
η�118 + 8

5
η�119

+1

5
η�120 + 18

5
η�121 + 1

5
η�122 + 16

5
η�123

+5η�125 + 5η�126 + 27

5
η�128 + 1

5
η�129

123
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Table 6 Decomposition of the scalar 27-dimensional representation
of E6 with respect to the subgroups SO(10), SU (5) and SU (3)C ×
SU (2)L ×U (1)Y . For further details, see Table 1

E6 SO(10) SU (5) 3C2L1Y Label

27 1 1 (1, 1, 0) s1

10 5 (1, 2, 3) �1

(3, 1,−2) �2

5 (1, 2,−3) H

(3, 1, 2) �3

16 1 (1, 1, 0) s2

5 (1, 2,−3) �4

(3, 1, 2) �5

10 (1, 1, 6) �6

(3, 1,−4) �7

(3, 2, 1) �8

Table 7 Contributions of the exotic fermions in the fundamental 27-
dimensional representation of E6 to the ratio A23/A12

E6 SO(10) SU (5) 3C2L1Y A23/rI A12/rI

27 1 1 (1, 1, 0) 0 0

10 5 (1, 2, 3) 1/3 −2/15

(3, 1,−2) −1/3 2/15

5 (1, 2,−3) 1/3 −2/15

(3, 1, 2) −1/3 2/15

+8

5
η�130 + 24

5
η�131 + 48

5
η�132 + 2

5
η�133

+3

5
η�134 + 2

5
η�135 + 6

5
η�136 + 32

5
η�137

+49

5
η�138 + 4

5
η�139 + 24

5
η�140 + 8

(
2

5
ηD1

+3

5
ηL1 + 2

5
ηD2 + 3

5
ηL2 + 2

5
ηD3

+ 3

5
ηL3

)
.

Here, PSV denotes the Pati–Salam gauge bosons in the
(3, 1,−4), WR the right-handed W±

R in the (1, 1,−6). In
addition, Ei are the additional E6 gauge bosons in the
(1, 2,−3), (3, 1, 2), (1, 1, 6), (3, 1,−4) respectively. Di and
Li denote the three generations of vector-like quarks and lep-
tons (Tables 6, 7, 8, 9).

Table 8 Decomposition of the 351 representation of E6 with respect
to the subgroups SO(10), SU (5) and SU (3)C × SU (2)L ×U (1)Y . For
further details, see Table 1

E6 SO(10) SU (5) 3C2L1Y Label

351 10 5 (1, 2, 3) �9

(3, 1,−2) �10

5 (1, 2,−3) �11

(3, 1, 2) �12

16 1 (1, 1, 0) s3

5 (1, 2,−3) �13

(3, 1, 2) �14

10 (1, 1, 6) �15

(3, 1,−4) �16

(3, 2, 1) �17

16 1 (1, 1, 0) s4

5 (1, 2, 3) �18

(3, 1,−2) �19

10 (1, 1,−6) �20

(3, 1, 4) �21

(3, 2,−1) �22

45 1 (1, 1, 0) s5

10 (1, 1, 6) �23

(3, 1,−4) �24

(3, 2, 1) �25

10 (1, 1,−6) �26

(3, 1, 4) �27

(3, 2,−1) �28

24 (1, 1, 0) s6

(1, 3, 0) �29

(3, 2,−5) ξ1

(3, 2, 5) ξ2

(8, 1, 0) �30

120 5 (1, 2, 3) �31

(3, 1,−2) �32

5 (1, 2,−3) �33

(3, 1, 2) �34

10 (1, 1, 6) �35

(3, 1,−4) �36

(3, 2, 1) �37

10 (1, 1,−6) �38

(3, 1, 4) �39

(3, 2,−1) �40

45 (1, 2, 3) �41

(3, 1,−2) �42

123



  351 Page 16 of 19 Eur. Phys. J. C           (2019) 79:351 

Table 8 continued

E6 SO(10) SU (5) 3C2L1Y Label

(3, 3,−2) �43

(3, 1, 8) �44

(3, 2,−7) �45

(6, 1,−2) �46

(8, 2, 3) �47

45 (1, 2,−3) �48

(3, 1, 2) �49

(3, 3, 2) �50

(3, 1,−8) �51

(3, 2, 7) �52

(6, 1, 2) �53

(8, 2,−3) �54

144 5 (1, 2, 3) �55

(3, 1,−2) �56

5 (1, 2,−3) �57

(3, 1, 2) �58

10 (1, 1, 6) �59

(3, 1,−4) �60

(3, 2, 1) �61

15 (1, 3, 6) �62

(3, 2, 1) �63

(6, 1,−4) �64

24 (1, 1, 0) s7

(1, 3, 0) �65

(3, 2,−5) �66

(3, 2, 5) �67

(8, 1, 0) �68

40 (1, 2,−9) �69

(3, 2, 1) �70

(3, 1,−4) �71

(3, 3,−4) �72

(8, 1, 6) �73

(6, 2, 1) �74

45 (1, 2,−3) �75

(3, 1, 2) �76

(3, 3, 2) �77

(3, 1,−8) �78

(3, 2, 7) �79

(6, 1, 2) �80

(8, 2,−3) �81

Table 9 Decomposition of the 351′ representation of E6 with respect
to the subgroups SO(10), SU (5) and SU (3)C × SU (2)L ×U (1)Y . For
further details, see Table 1

E6 SO(10) SU (5) 3C2L1Y Label

351′ 1 1 (1, 1, 0) s8

10 5 (1, 2, 3) �82

(3, 1,−2) �83

5 (1, 2,−3) �84

(3, 1, 2) �85

16 1 (1, 1, 0) s9

5 (1, 2, 3) ξ3

(3, 1,−2) ξ4

10 (1, 1,−6) ξ5

(3, 1, 4) ξ6

(3, 2,−1) ξ7

54 15 (1, 3, 6) �86

(3, 2, 1) �87

(6, 1,−4) �88

15 (1, 3,−6) �89

(3, 2,−1) �90

(6, 1, 4) �91

24 (1, 1, 0) s10

(1, 3, 0) �92

(3, 2,−5) �93

(3, 2, 5) �94

(8, 1, 0) �95

126 1 (1, 1, 0) s11

5 (1, 2, 3) �96

(3, 1,−2) �97

10 (1, 1,−6) ξ8

(3, 1, 4) ξ9

(3, 2,−1) ξ10

15 (1, 3, 6) �98

(3, 2, 1) �99

(6, 1,−4) �100

45 (1, 2,−3) �101

(3, 1, 2) �102

(3, 3, 2) �103

(3, 1,−8) �104

(3, 2, 7) �105

(6, 1, 2) �106

(8, 2,−3) �107

50 (1, 1,−12) �108

(3, 1,−2) �109

(3, 2,−7) �110

(6, 3,−2) �111

(6, 1, 8) �112

123
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Table 9 continued

E6 SO(10) SU (5) 3C2L1Y Label

(8, 2, 3) �113

144 5 (1, 2, 3) �114

(3, 1,−2) �115

5 (1, 2,−3) �116

(3, 1, 2) �117

10 (1, 1, 6) �118

(3, 1,−4) �119

(3, 2, 1) �120

15 (1, 3, 6) �121

(3, 2, 1) �122

(6, 1,−4) �123

24 (1, 1, 0) s12

(1, 3, 0) �124

(3, 2,−5) �125

(3, 2, 5) �126

(8, 1, 0) �127

40 (1, 2,−9) �128

(3, 2, 1) �129

(3, 1,−4) �130

(3, 3,−4) �131

(8, 1, 6) �132

(6, 2, 1) �133

45 (1, 2,−3) �134

(3, 1, 2) �135

(3, 3, 2) �136

(3, 1,−8) �137

(3, 2, 7) �138

(6, 1, 2) �139

(8, 2,−3) �140

8.4 SO(10) → SU (4)C × SU (2)L ×U (1)R

Using Eq. (8), we find for the threshold corrections at the
SO(10) scale

λ4C = 4 + 2ηζ1 + 8ηζ4 + 6ηζ7 + 6ηζ8 + 2ηζ9

+2ηζ10 + 2ηζ11 + 6ηζ12 + 16ηζ13 + 16ηζ14 + 2ηζ15

+18ηζ16 + 6ηζ17 + 6ηζ18 + 16ηζ19 ,

λ2L = 6 + ηζ2 + 4ηζ3 + ηζ5 + ηζ6

+24ηζ12 + 15ηζ13 + 15ηζ14 + 40ηζ16 + 15ηζ19 ,

λ1R = 8 + ηζ2 + ηζ5 + ηζ6

+12ηζ9 + 12ηζ11 + 36ηζ12 + 15ηζ13 + 15ηζ14

+20ηζ17 + 15ηζ19

and for the corrections at the SU (4)C × SU (2)L × U (1)R
scale

λ3C = 1 − 21 (ηPSV ) + 2ηζ1 + 2ηζ2 + 12ηζ3 + 5ηζ5,

λ2L = 3ηζ1 + 3ηζ2 + 8ηζ3 + ηζ4 ,

λ1Y = 8

5
+ 49

5
ηζ1 + 49

5
ηζ2

+24

5
ηζ3 + 3

5
ηζ4 + 64

5
ηζ5 − 21

(
8

5
ηPSV

+6

5
ηWR

)
.

Here again, PSV denotes the Pati–Salam gauge bosons
in the (3, 1,−4), WR the right-handed W±

R in the (1, 1,−6)

(Table 10).

Table 10 Decomposition of the scalar representations in an SO(10)

model with SU (4)C × SU (2)L ×U (1)R intermediate symmetry. Only
relevant decompositions are shown. For further details, see Table 1

SO(10) 4C2L1R 3C2L1Y Label Scale

10 (6, 1, 0) ζ1 MGUT

(1, 2, 1/2) ζ2 MGUT

(1, 2,−1/2) (1, 2,−3) H MZ

45 (1, 1, 1) ξ1 MGUT

(1, 1, 0) s1 MGUT

(1, 1,−1) ξ2 MGUT

(1, 3, 0) ζ3 MGUT

(6, 2, 1/2) ξ3 MGUT

(6, 2,−1/2) ξ4 MGUT

(15, 1, 0) ζ4 MGUT

120 (1, 2, 1/2) ζ5 MGUT

(1, 2,−1/2) ζ6 MGUT

(10, 1, 0) ζ7 MGUT

(10, 1, 0) ζ8 MGUT

(6, 3, 1) ζ9 MGUT

(6, 1, 1) ζ10 MGUT

(6, 1, 0) ζ11 MGUT

(6, 1,−1) ζ12 MGUT

(15, 2, 1/2) ζ13 MGUT

(15, 2,−1/2) ζ14 MGUT

126 (6, 1, 0) ζ15 MGUT

(10, 3, 0) ζ16 MGUT

(10, 1, 1) (1, 1, 0) s2 MI

(3, 1, 4) ζ17 MI

123
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Table 10 continued

SO(10) 4C2L1R 3C2L1Y Label Scale

(6, 1, 8) ξ5 MI

(10, 1, 0) ζ18 MGUT

(10, 1,−1) ζ19 MGUT

(15, 2, 1/2) ζ20 MGUT

(15, 2,−1/2) (1, 2,−3) ζ21 MI

(3, 2,−7) ζ22 MI

(3, 2, 7) ζ23 MI

(8, 2,−3) ζ24 MI

8.5 SO(10) → SU (3)C × SU (2)L × SU (2)R ×U (1)X

Using Eq. (8), we find for the threshold corrections at the
SO(10) scale

λ3C = 5 − 21 (4ηLR + ηPSV ) + 1

2
ηζ1 + 1

2
ηζ2

+3ηζ5 + 1

2
ηζ8 + 5

2
ηζ9 + 1

2
ηζ11

+5

2
ηζ12 + 3

2
ηζ13 + 3

2
ηζ14 + 3

2
ηζ15

+3

2
ηζ16 + 2ηζ18 + 2ηζ19 + 12ηζ20 + 1

2
ηζ21

+1

2
ηζ22 + 3

2
ηζ24 + 15

2
ηζ25 + 3

2
ηζ26

+15

2
ηζ27 + 2ηζ28 + 2ηζ29 + 12ηζ30 ,

λ2L = 6 − 21(3ηV1 + 3ηV2) + 2ηζ4 + ηζ6 + 6ηζ13

+6ηζ14 + ηζ17 + 3ηζ18 + 3ηζ19 + 8ηζ20 + 2ηζ23

+6ηζ24 + 12ηζ25 + 3ηζ28 + 3ηζ29 + 8ηζ30 ,

λ2R = 6 − 21(3ηV1 + 3ηV2) + 2ηζ3 + ηζ6 + 6ηζ15

+6ηζ16 + ηζ17 + 3ηζ18 + 3ηζ19 + 8ηζ20 + 6ηζ26

+12ηζ27 + 3ηζ28 + 3ηζ29 + 8ηζ30 ,

λ1X = 8 − 21(4ηLR + 4ηPSV ) + 1

2
ηζ1 + 1

2
ηζ2

+3

2
ηζ7 + 1

2
ηζ8 + ηζ9

+3

2
ηζ10 + 1

2
ηζ11 + ηζ12

+3

2
ηζ13 + 3

2
ηζ14 + 3

2
ηζ15 + 3

2
ηζ16

+8ηζ18 + 8ηζ19 + 1

2
ηζ21 + 1

2
ηζ22

+9

2
ηζ23 + 3

2
ηζ24 + 3ηζ25 + 3

2
ηζ26

+3ηζ27 + 8ηζ28 + 8ηζ29

and for the corrections at the SU (3)C ×SU (2)L ×SU (2)R×
U (1)X scale

Table 11 Decomposition of the scalar representations in an SO(10)

model with SU (3)C × SU (2)L × SU (2)R ×U (1)X intermediate sym-
metry. Only relevant decompositions are shown. For further details, see
Table 1

SO(10) 3C2L2R1X 3C2L1Y Label Scale

10 (3, 1, 1,−2/3) �1 MU

(3, 1, 1, 2/3) �2 MU

(1, 2, 2, 0) (1, 2, 3) �3 MI

(1, 2,−3) H MZ

45 (1, 1, 3, 0) �4 MU

(1, 3, 1, 0) �5 MU

(3, 2, 2,−2/3) ξ1 MU

(3, 2, 2, 2/3) ξ2 MU

(1, 1, 1, 0) s1 MU

(3, 1, 1, 4/3) ξ3 MU

(3, 1, 1,−4/3) ξ4 MU

(8, 1, 1, 0) �6 MU

120 (1, 2, 2, 0) �7 MU

(1, 1, 1, 2) �8 MU

(3, 1, 1, 2/3) �9 MU

(6, 1, 1,−2/3) �10 MU

(1, 1, 1,−2) �11 MU

(3, 1, 1,−2/3) �12 MU

(6, 1, 1, 2/3) �13 MU

(3, 3, 1, 2/3) �14 MU

(3, 3, 1,−2/3) �15 MU

(3, 1, 3, 2/3) �16 MU

(3, 1, 3,−2/3) �17 MU

(1, 2, 2, 0) �18 MU

(2, 2, 2,−4/3) �19 MU

(3, 2, 2, 4/3) �20 MU

(8, 2, 2, 0) �21 MU

126 (3, 1, 1,−2/3) �22 MU

(3, 1, 1, 2/3) �23 MU

(1, 3, 1, 2) �24 MU

(3, 3, 1, 2/3) �25 MU

(6, 3, 1,−2/3) �26 MU

(1, 1, 3,−2) s2 MI

(3, 1, 3,−2/3) �27 MU

(6, 1, 3, 2/3) �28 MU

(1, 2, 2, 0) (1, 2, 3) �29 MI

(1, 2,−3) �30 MI

(3, 2, 2, 4/3) �31 MU

(3, 2, 2,−4/3) �32 MU

(8, 2, 2, 0) �33 MU

λ3C = 5,

λ2L = 6 + ηζ1 + ηζ2 + ηζ3,

λ1Y = 8 + 3

5
ηζ1 + 3

5
ηζ2 + 3

5
ηζ3 .

123
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Here, PSV denotes the Pati–Salam gauge bosons in the
(3, 1, 1,−4/3) representation and LR the additional bosons
in the (3, 2, 2,−2/3) (Table 11).
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