KIT | KIT-Bibliothek | Impressum | Datenschutz

A de novo strategy for predictive crystal engineering to tune excitonic coupling

Haldar, Ritesh 1; Mazel, Antoine; Krstić, Marjan 2; Zhang, Qiang 1; Jakoby, Marius 3; Howard, Ian A. 3,4; Richards, Bryce S. ORCID iD icon 3,4; Jung, Nicole 5; Jacquemin, Denis; Diring, Stéphane; Wenzel, Wolfgang 2; Odobel, Fabrice; Wöll, Christof 1
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
3 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)
4 Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)
5 Institut für Organische Chemie (IOC), Karlsruher Institut für Technologie (KIT)

Abstract:

In molecular solids, the intense photoluminescence (PL) observed for solvated dye molecules is often suppressed by nonradiative decay processes introduced by excitonic coupling to adjacent chromophores. We have developed a strategy to avoid this undesirable PL quenching by optimizing the chromophore packing. We integrated the photoactive compounds into metal-organic frameworks (MOFs) and tuned the molecular alignment by introducing adjustable “steric control units” (SCUs). We determined the optimal alignment of core-substituted naphthalenediimides (cNDIs) to yield highly emissive J-aggregates by a computational analysis. Then, we created a large library of handle-equipped MOF chromophoric linkers and computationally screened for the best SCUs. A thorough photophysical characterization confirmed the formation of J-aggregates with bright green emission, with unprecedented photoluminescent quantum yields for crystalline NDI-based materials. This data demonstrates the viability of MOF-based crystal engineering approaches that can be universally applied to tailor the photophysical properties of organic semiconductor materials.


Verlagsausgabe §
DOI: 10.5445/IR/1000094561
Veröffentlicht am 14.05.2019
Originalveröffentlichung
DOI: 10.1038/s41467-019-10011-8
Scopus
Zitationen: 36
Web of Science
Zitationen: 40
Dimensions
Zitationen: 48
Cover der Publikation
Zugehörige Institution(en) am KIT 3D Matter Made to Order (3DMM2O)
Institut für Funktionelle Grenzflächen (IFG)
Institut für Mikrostrukturtechnik (IMT)
Institut für Nanotechnologie (INT)
Institut für Organische Chemie (IOC)
Universität Karlsruhe (TH) – Interfakultative Einrichtungen (Interfakultative Einrichtungen)
Karlsruhe School of Optics & Photonics (KSOP)
Lichttechnisches Institut (LTI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2019
Sprache Englisch
Identifikator ISSN: 2041-1723
KITopen-ID: 1000094561
HGF-Programm 47.02.06 (POF III, LK 01) Zellpopul.auf Biofunk.Oberflächen IFG
Erschienen in Nature Communications
Verlag Nature Research
Band 10
Heft 1
Seiten Art.Nr. 2048
Projektinformation EXC 2082; 3DMM2O (DFG, DFG EXSTRAT, EXC 2082/1, zu FOR_APH_20_03_25+08-58-20)
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 03.05.2019
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page