KIT | KIT-Bibliothek | Impressum | Datenschutz

Use of Correspondence Analysis in Clustering a Mixed-Scale Data Set with Missing Data

Greenacre, Michael

Abstract:
Correspondence analysis is a method of dimension reduction for categorical data, providing many tools that can handle complex data sets. Observations on different measurement scales can be coded to be analysed together and missing data can also be handled in the categorical framework. In this study, the method’s ability to cope with these problematic issues is illustrated, showing how a valid continuous sample space for a cluster analysis can be constructed from the complex data set from the IFCS 2017 Cluster Challenge.

Open Access Logo


Verlagsausgabe §
DOI: 10.5445/KSP/1000085952/04
Veröffentlicht am 15.05.2019
Coverbild
Zugehörige Institution(en) am KIT Institut für Informationswirtschaft und Marketing (IISM)
Publikationstyp Zeitschriftenaufsatz
Jahr 2019
Sprache Englisch
Identifikator ISSN: 2510-0564
KITopen-ID: 1000094584
Erschienen in Archives of Data Science, Series B (Online First)
Band 1
Heft 1
Seiten B04, 12 S. online
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page