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Abstract We discuss standard classification methods for high-dimensional
data and a small number of observations. By means of designed simulations
illustrating the practical relevance of theoretical results we show that in the
2-class case the following rules of thumb should be followed in such a situation
to avoid the worst error rate, namely the probability π1 of the smaller class:

Avoid “complicated” classifiers: The independence rule (ir)might be adequate,
the support vector machine (svm) should only be considered as an expensive
alternative, which is additionally sensitive to noise factors. From the outset, look
for stochastically independent dimensions and balanced classes. Only take into
account features which influence class separation sufficiently. Variable selection
might help, though filters might be too rough. Compare your result with the
result of the data independent rule “Always predict the larger class”.
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1 Introduction

In this paper we discuss typical classification methods in the context of the
analysis of high-dimensional data. This means that we assume many more
features p than observations n, i.e. p � n (cp., e.g., Weihs (2016)). Examples
for this situation can be found in high throughput biotechnology like in data
acquisition platforms as micro arrays, SNP chips, and mass spectrometers
(cp., e.g., Kiiveri (2008)). As possible consequences, specialized classification
methods are proposed (cp., e.g., Mai (2013), Tan et al (2014)) or theoretical
results concerning the performance of well-known classifiers are derived (Bickel
and Levina (2004), Fan et al (2010)). In this paper, we discuss implications of
this theory for “classical methods”, originally developed for low dimensional
situations, in high-dimensional data.

In Section 2 we will consider theoretical results for standard classification
methods if p � n. In Section 3 we define our research questions. In Section 4
we construct an experimental design for simulations to investigate the effects
of different factors on the error rate. We vary the classifiers, the prior class
probabilities, the true error rates, the correlations of features, as well as the
asymptotic behavior of the Bayes error (constant vs. decreasing for p→ ∞). In
Section 5 the corresponding simulation results are discussed, in particular the
convergence of error rates for p→ ∞. Noise features are ignored until Section 6
where we briefly discuss the influence of noise on classifier performance. In
Section 7 we conclude.

2 Theory

2.1 Linear Discriminant Analysis

We start with a strong warning concerning the application of linear discriminant
analysis (lda) in high dimensions derived by Bickel and Levina (2004). For
the data structure, Gaussians N (µ1,Σ), N (µ2,Σ) are assumed in two classes,
equal prior probabilities π1 = π2 = 0.5, and n1 = n2 observations. Linear
discriminant analysis (lda) optimally fits this structure. The performance of lda
in the case of p � n is discussed by Bickel and Levina (2004), stating:
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Let positive constants k1, k2, c be given. Consider feature distributions with

– true covariance matrix Σ not ill-conditioned, i.e. 0 < k1 ≤ λmin(Σ) ≤ λmax(Σ)
≤ k2 < ∞ for λmax and λmin the maximal and minimal eigenvalues,

– Mahalanobis class distance ∆ =
√

(µ2 − µ1)TΣ−1(µ2 − µ1) > c > 0, and

– µ1, µ2 in a compact set.

Then, if p/n → ∞, the worst case error rate of lda converges to π1 = 0.5,
i.e. asymptotical class assignment might be no better than random guessing.

Note that since p > n, the inverse of the estimated pooled covariance matrix does
not exist, therefore the Moore-Penrose generalized inverse is used instead in lda.
Also note that this statement is about the worst case error rate over all µ1, µ2,Σ

with the mentioned properties. For applications, though, this asymptotical
behavior should be assumed if there is no indication for a special case with
better asymptotical error rates (for an example cp. Section 2.3).

2.2 Independence Rule

Noise accumulation is suspected to be one reason for the above adverse property
of lda. Therefore, a diagonal covariance matrix is often tried. An asymptotic
result for the corresponding so-called independence rule (ir, linear discriminant
analysis with diagonal covariance matrix) is again given in Bickel and Levina
(2004), under the same distributional assumptions as for the asymptotic property
of lda:

If p/en → 0, i.e. p grows slower than en, then the error rate of ir is bounded
by Φ

(
−
√
K0

1+K0
∆
)
≤ 0.5 for Φ the cumulative standard normal distribution

function, K0 = max
Σ0

λmax (Σ0)
λmin (Σ0) , Σ0 := correlation matrix.

Note that this statement, again, refers to worst-case behavior since K0 is a
maximum over all possible correlation structures Σ0. What matters, though, is
that this statement leads to a possible superiority of ir over full lda for p � n.
For a graphic on the behavior of the error rate bound for different K0 see Bickel
and Levina (2004).
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If Σ0 = I , then K0 = 1 and ir is Bayes optimal (as expected) since the Bayes
error is Φ(−∆/2). If Σ0 has eigenvalues → 0 or → ∞, then K0 → ∞ and
the above bound is Φ(0) = 0.5, as for full lda. For normal distributions, ir
is equivalent to Naive Bayes. Since we also assume normal distributions for
Naive Bayes (NB), results different from ir may only originate from the different
realization procedures.

2.3 Distance-Based Classifiers

Naturally, classification quality depends on class distance. Fortunately, perfect
class prediction is possible for so-called distance-based classifiers (Fan et al
(2010)). A distance-based classifier g is defined by two properties:

(a) g assigns an observation x to class 1 if it is closer to each observation in
class 1 than to any observation in class 2.

(b) If g assigns x to class 1, then x is closer to at least one observation in
class 1 than to the most distant observation in class 2.

For such classifiers, the following property is shown:

Let the data structure be X i = µi + ε , i = 1, 2 the class index, ε := (ε j ),
j = feature index, ε j i.i.d. with expectation 0. (Note that this way the
correlation matrix is assumed to be Σ0 = I .) Then, g achieves the error
rate 0 asymptotically for p→ ∞ iff D := | |µ2 − µ1 | | grows faster than p1/4.
(Note that D = ∆ for Σ = I .)

This result is independent of sample size n.

Note that the property “D := | |µ2−µ1 | | grows faster than p1/4” can be interpreted
as “all involved dimensions contribute sufficiently to class separation”.
Examples for distance-based classifiers are the k-Nearest-Neighbor classifiers
(kNN), the linear support vector machine (svm), as well as lda and ir for
π1 = π2 = 0.5 (cp. Hall et al (2008)). Therefore, the error rates not only of
ir, but also of lda may converge to 0 if Σ0 = I and π1 = π2 = 0.5 (cp. with
Section 2.1).



Classification Method Performance in High Dimensions 5

3 Research Questions

The main idea of this paper is to study the behavior of many relevant classifiers
in situations where theoretical results were developed for only some of these
classifiers. Besides the above mentioned classifiers lda, ir, NB, 1NN (as a special
case of kNN), and svm, we additionally included the decision tree (tree) into the
study as a representative of classification rules explicitly using only series of
univariate rules, i.e. no linear combinations of features.

From the theoretical results in Section 2we derived the following four research
questions for the practical application of classification methods: Parameter
Dependence, Convergence, Classifier Ranking, and Noisy Performance.

Parameter Dependence: How will the performance of the classifiers de-
pend on the parameters p, π1, and others?

Convergence: How do the classifiers behave for p→ ∞, e.g.:

1. Will error rates of the classifiers converge to π1 < 0.5 for p→ ∞
if the Bayes error is the same for each number of dimensions p?

2. Will error rates of the classifiers converge to 0 for p → ∞ for
distance-based classifiers if D := | |µ2 − µ1 | | grows faster than
p1/4, but the involved features are dependent?

Classifier Ranking: How do the classifiers compare concerning Bayes
error approximation?

All the above three research questions will be mainly discussed for the situation
where all observed features influence classes. Finally, we will discuss the
behavior of the classifiers in the case of noise features:

Noisy Performance: How will the performance of the classifiers react to
noise factors, i.e. to factors not contributing to class separation?
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4 Simulation Design

In this section we will develop the experimental design for our simulation.

4.1 General Design and two Cases

For the data structure, we choose the ideal situation for lda, i.e. 2 classes with
influential features i.i.N (µi,Σ) distributed, i = 1, 2, µ1 , µ2, class 1 with
probability π1 ≤ 0.5. We distinguish two very different cases of Bayes error
development (see Section 4.5 for details):

A. The Bayes error, i.e. the classification difficulty, decreases for p→ ∞, i.e.
classification gets simpler for p→ ∞. This is realized by including more
and more independent blocks of features with the same contribution to
class separation.

B. The Bayes error is constant ∀p. Note that in this case the contribution of
individual features to class separation is decreasing for p→ ∞.

4.2 Correlation Setting

For the p× p covariance matrix we assume a special structure, namely (see, e.g.,
Bickel and Levina (2004)):

Σ := Rκ;p :=

*........
,

1 κ κ · · · κ

κ 1 κ · · · κ

κ κ 1 κ
...
...
...
. . .

...

κ κ · · · 1

+////////
-

= (1 − κ) I p + κv1v
T
1 , 0 < κ < 1,

vT1 := (1 . . . 1). (1)
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This leads to Σ−1 = R−1
κ;p =

1
1−κ I p −

κ
1−κ

1
1+κ (p−1) v1v

T
1 (using the Sherman-

Morrison formula). The eigenvalues of Σ−1 are 1
1−κ ((p − 1)-times) and

1
1+κ (p−1) −−−−→p→∞

0 (once). The eigenvalues of Σ are λi = (1 − κ), i , 1,
and λ1 = 1 + (p − 1)κ −−−−→

p→∞
∞. Therefore, K0 → ∞ in the error bound of ir

and ir is not theoretically superior to lda (see Section 2.2).
The structure of the covariance matrix can be generalized by blocking. For

that, we introduce a block-diagonal covariance matrix Σ with p/b diagonal
blocks Rκ;b of block size b.

Example: p = 6, κ = 0.5, b = 3: Σ =

*.........
,

1 0.5 0.5 0 0 0
0.5 1 0.5 0 0 0
0.5 0.5 1 0 0 0
0 0 0 1 0.5 0.5
0 0 0 0.5 1 0.5
0 0 0 0.5 0.5 1

+/////////
-

.

For eigenvalue 2, there are eigenvectors (1 1 1 0 0 0)T , (0 0 0 1 1 1)T , and
for eigenvalue 0.5, there are eigenvectors (1 0 −1 0 0 0)T , (0 1 −1 0 0 0)T ,
(0 0 0 1 0 −1)T , (0 0 0 0 1 −1)T .

In the general eigenstructure we have p/b eigenvalues 1+ (b− 1) κ and p− p/b
eigenvalues 1 − κ (cp. Case B1 below). Eigenvectors can be constructed to lie
in subspaces of dimension b. In the case of no blocking, we have b = p.

Note that the sign of κ may be changed in one dimension q ∈ {1, . . . , p}
leaving eigenvalues λi unchanged (see Section 4.4). However, this will not
change the Bayes rule for our choice of mean vectors µ1, µ2 as we will prove in
Section 4.4. Therefore, we will ignore this generalization.

4.3 Class Means

In our design, we would like to pre-specify the Bayes error rate f and the
probability π1 of class 1 at the same time. To achieve this, we fix w.l.o.g. the
mean of class 1 as µ1 := 0, and the mean of class 2 µ2i so that the Bayes error
rate is f ∈ (0, 0.5), where i in the index of the mean corresponds to the chosen
discriminant direction, i.e. of the ith normalized eigenvector ei.
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Let the projections on ei be m1 := eTi µ1 = 0≤ eTi µ2i =: m2i (w.l.o.g.). The
class variance in direction i is σ2

i = eTi Σei = λi = ith eigenvalue of Σ, i.e.,
σ2
i = 1 − κ for i > p/b and σ2

i = 1 + (p − 1) κ −−−−→
p→∞

∞ for i ≤ p/b. For our
study, we only use i > p/b. Then, for the Bayes error the following equation
holds:

f = π1
(
1 − Φ

( τi − m1
σi

))
+ (1 − π1)Φ

( τi − m2i
σi

)
for

τi :=
m1 + m2i

2
+
σ2
i log

(
π1

1−π1

)
m2i − m1

=
m2i
2
+

(1 − κ) log
(
π1

1−π1

)
m2i

, (2)

since m1 = 0, σ2
i = 1 − κ and with τ representing the location where the

densities of the two distributions intersect (cp. Figueiredo (2004)). From this
formula, we derived numerical solutions for all relevant combinations of factors
f , κ, π1 with 0 < f < π1 ≤ 0.5 (see Case A below). Estimation of the linear
model for m2i on the features u1− f := (1 − f )−quantile of the standard normal,
σ =
√

1 − κ, and π̃1 := 1 −
(
1/2 log

(
π1

1−π1

))2
, all their 2-factor interactions, and

the one 3-factor interaction 1 in R (cp. R Core Team (2017)) leads to

m2i ≈ − 2.13952 · σ + 2.91430 · u1− f · σ

+ 2.12119 · σ · π̃1 − 0.89714 · u1− f · σ · π̃1 (3)

after elimination of non-significant features and interactions, leading to (using
coefficients rounded to integers except the optimized 2.2722):

0 < m2i (κ, f , π1) ≈ 2
√

1 − κ u1− f −
√

1 − κ (2.2722 − u1− f )
(
1/2 log

( π1
1 − π1

))2

= m2i (κ, f , π1 = 0.5) −
√

1 − κ (2.2722 − u1− f )
(
1/2 log

( π1
1 − π1

))2

≤ m2i (κ, f , π1 = 0.5) if f ≥ 0.012. (4)

Note that the estimated model is nearly exact (R2 > 0.999), so that the above
argument not only leads to a nearly exact general formula for m2i (κ, f , π1), but

1 m2i ∼ u1− f ∗ σ ∗ π̃1 in R-notation
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also to a proof that m2i (κ, f , π1) ≤ m2i (κ, f , π1 = 0.5) for relevant error rates
f .
For blocking, µ2 is set constant for all p/b blocks of size b. Let b = 2 · pη, 0 ≤
η < 1. Then, D := | |µ2 − µ1 | | = | |m2ibeib | |

√
p/b = Θ(

√
p/b) = Θ(p0.5 (1−η)).

We choose b so that 0.5(1−η) ≥ 1/4 (because of Section 2.3) using η = 0, 1/3, 1/2,
i.e., 0.5 (1 − η) = 1/2, 1/3, 1/4.

4.4 Theoretical consequences

We now derive theoretical consequences of our settings in Sections 4.2 and 4.3.

Generalization of Bickel and Levina (2004)
For the Bayes error f , we have seen relation (2). With π1 = 0.5 this leads to

f = 0.5 (1 − Φ
( m2i
2σi

)
+ Φ

(
−

m2i
2σi

))
= 1 − Φ

( m2i
2σi

)
. (5)

For lda, Bickel and Levina (2004, p. 995) show that the argument of Φ, i.e.
m2i
2σ̂i

P
−→ 0 for p/n → ∞, leading to f

P
−→ 0.5 = π1. Since this result does not

depend on π1, we can show that τ̂iσ̂i
=

m2i
2σ̂i
+
σ̂i log

( π1
1−π1

)
m2i

=
m2i
2 σ̂i
+

log
( π1

1−π1

)
m2i/σ̂i

P
−→

0 − ∞ = −∞, i.e. Φ
( τ̂i
σ̂i

) P
−→ 0 for 0 < π1 < 1/2. Therefore, with formula (2)

the asymptotic behavior of the estimated error rate f̂ can be characterized as
f̂

P
−→ π1 (1 − 0) + (1 − π1) 0 = π1. This generalizes the result of Bickel and

Levina (2004) for lda in that we have shown that the “worst-case error rate
→ π1 for 0 < π1 ≤ 0.5, p/n → ∞”. Thus for lda the asymptotic result might
not be better than the data independent rule: Always predict the larger class.
This partly answers the research question Convergence in Section 3.

Sign of κ
One can show that the sign of κ may be changed in one dimension q ∈ {1, . . . , p}
leaving eigenvalues λi unchanged. Changing the sign of κ in dimension q of
Rκ;p means changing the sign of all entries κ in line and column q.
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Example:Let p = 6, κ = 0.5, q = 2 : Σ =

*.........
,

1 −0.5 0.5 0.5 0.5 0.5
−0.5 1 −0.5 −0.5 −0.5 −0.5
0.5 −0.5 1 0.5 0.5 0.5
0.5 −0.5 0.5 1 0.5 0.5
0.5 −0.5 0.5 0.5 1 0.5
0.5 −0.5 0.5 0.5 0.5 1

+/////////
-

.

Then the 1st eigenvector= (1 −1 1 1 1 1)T has eigenvalue 1+ (p−1)κ = 3.5
and the eigenvectors (1 0 0 0 0 −1)T , (0 1 0 0 0 1)T , (0 0 1 0 0 −1)T ,
(0 0 0 1 0 −1)T , and (0 0 0 0 1 −1)T have eigenvalue 1 − κ = 0.5. Thus,
only the 1st eigenvector with eigenvalue 1+ (p−1) κ = 3.5 is not the same as
in the case with all signs equal (cp. one block of the example in Section 4.2).

At the same time, a sign change in the correlation will not change the Bayes
rule either, as we will prove now. In Section 4.3 we have shown that m2i ≈

2
√

1 − κ u1− f −
√

1 − κ
(
2.2722−u1− f

) (
1/2 log

( π1
1−π1

))2 which is independent of
ei and, thus, independent of q. The decision hyperplane of the Bayes rule is given
by h1(x) = h2(x), where hk (x) := (Σ−1µk )T x − 0.5µT

k
Σ−1µk + log(πk ), k =

1, 2, i.e.

log(π1) = h1(x) = h2(x)

= m2ix
TΣ−1ei − 0.5m2

2ie
T
i Σ
−1ei + log(1 − π1)

= m2i · (
∑
j

α j e j )TΣ−1ei − 0.5m2
2i/λi + log(1 − π1) for adequate α j ∈ R,

= m2i · αi/λi − 0.5m2
2i/λi + log(1 − π1), i.e.

αi = 0.5m2i + λi · log(π1/(1 − π1))/m2i (6)

is independent of q, the α j can be arbitrary, j , i, and the decision hyperplanes
of the Bayes rule are independent of q. Therefore, the parameter q is ignored,
i.e. we choose the same correlation sign for all dimensions.

Choice of ei
As discrimination directions we only choose eigenvectors ei with the same
variance σ2

i = (1 − κ). Therefore, with the same argument as in the previous
paragraph on the sign of κ we can show that the Bayes rule is independent of the
choice of ei so that ei can be fixed deliberately guaranteeing that σ2

i = (1 − κ).
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Therefore, the parameter i is ignored also in the simulation design, i.e. we fix
this parameter according to the rules in Section 4.5.

4.5 Implemented Design

In order to study the dependence on the number of dimensions, we choose
p = 12, 120, 480, 1020, 1980 features. We use training samples with n = 12
observations and test samples with 2000 observations. For each covariance
matrix Σ we use 200 repetitions, i.e. different random samples, to minimize
variation in results. Notice that the training samples are very small in absolute
numbers as well as related to the highest numbers of features. The maximum
ratio of the number of features to the number of observations is 165. The
parameter design for all parameters is fixed as follows:

Vary p, κ, b, π1, fb on a grid so that

– p = 12, 120, 480, 1020, 1980,

– κ = 0.1, 0.3, 0.5, 0.7, 0.9,

– b = 1, 2, 2p1/3, 2p1/2 (exact numbers for b = 2p1/3, 2p1/2 see below),

– π1 = 0.1, 0.2, 0.3, 0.4, 0.5,

– fb = 0.05, 0.15, 0.25, 0.35, 0.45 if fb < π1.

Note that for training we approximate π1 = 0.1, 0.2, 0.3, 0.4, 0.5 by using
1, 2, 4, 5, 6 observations in class 1. In the test sample, the theoretical π1 is
realized. The block size is generally set to b = 2pη so that D = | |µ2 − µ1 | | =

Θ
(
p0.5 (1−η)), 0.5

(
1 − η

)
≥ 1/4. Because of the restrictions b = 2pη ∈ N,

p/b = p/(2pη ) ∈ N, and b/2 ∈ N (see Section 4.3), for η =
{
1/3, 1/2

}
we use

b = {4, 6}, {10, 20}, {16, 40}, {20, 60}, {22, 90} for p = 12, 120, 480, 1020, 1980,
correspondingly. Additionally, we study b = 1 (diagonal covariance matrix)
fixing κ = 0 (complete independence). The class means are chosen µ1 = 0 and
µ2 individually for each case below. The following simulation cases mainly
differ in the generation of eigenvectors and corresponding samples.
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Case A: Decreasing Bayes error for increasing dimension p

Here, eigenvectors ei are constructed in b dimensions. Globally, we fix i = b.
The class mean µ2 is chosen identical in the p/b blocks as derived in Section 4.3
(with prefixed fb, π1, κ). The samples are independently drawn for each block.
Then, the Bayes error is f p/b

b
= f 0.5p1−η

b
→ 0 for p → ∞ since (1 − η) ≥ 1/2.

Note that even in the worst case fb = 0.45, p = 1980, b = 90 the expression f p/b
b

is as small as 2.3e-08. Overall, we have 5 · (1+ 5 · 3) · (5+ 4+ 3+ 2+ 1) · 200 =
1200 · 200 = 240, 000 simulation runs per classification method.

Case B1: Constant Bayes error for all p (version 1)
Here, the eigenvectors ei are determined according to the full block-diagonal
covariance matrix, but in subspaces of dimension b (setting all other entries
to 0). These eigenvectors are used for the construction of µ2 in Section 4.3.
Thus, the Bayes error is the prefixed fb for all block sizes b and all numbers
of dimensions p. We additionally allow for b = p and globally fix i = p. Note
that for the full covariance matrix only the first p/b eigenvalues are , (1 − κ).
Overall, we have 5 · (1+ 5 · 4) · (5+ 4+ 3+ 2+ 1) · 200 = 1575 · 200 = 315, 000
simulation runs per classification method.

Case B2: Constant Bayes error for all p (version 2)
Here, b is chosen as in the general parameter design and i = b. The
eigenvectors ei are built blockwise, but identical for all blocks. After-
wards, normalization is realized over the combined eigenvectors by means
of ei := (eib . . . eib)T/| |(eib . . . eib)T | | so that | |ei | | = 1. Eigenvectors are not
restricted to subspaces of dimension b, leading to the most general eigenvector
structure. As in Case B1, the Bayes error is fb for all block sizes b and all
numbers of dimensions p. The number of runs is the same as in Case A.

All simulations were carried out by means of the software R (R Core Team
(2017)) on the Linux-HPC-Cluster at TU Dortmund (LiDOng).2

2 For the classifiers, standard implementations in the package mlr (Bischl et al (2016)) are used except
in the specified cases: “classif.lda” for lda, “classif.sda” with options diagonal = TRUE, lambda = 0,
lambda.var = 0, lambda.freqs = 0 for ir, “classif.naiveBayes” for NB, “classif.knn” with k=1 for 1NN,
“classif.svm” with kernel = linear and the cost parameter tuned on the grid

{
2−4, 2−3, . . . , 23, 24} for

svm, and “classif.rpart” with minsplit=4, minbucket=2 for tree.
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5 Results

5.1 Parameter Dependence

Let us first discuss the research question Parameter Dependence of Section 3, i.e.
the effects of the parameters p, κ, b, π1, fb and their 2-parameter interactions on
the mean error rates over the 200 replications. Also, the contrasts of the classifier
effects with the ’basic classifier’ lda and the corresponding interactions with the
parameters are reported. Please note that the high number of replications leads
to very small variation in the mean error rates so that we expect the parameter
effects not to be blurred by noise, i.e. we expect relevant effects to be very highly
significant.

With this reservation, in Case A from the regression analysis we see that (cp.
Table 1) the main effects on mean error rates are positive for p (dimension), b
(block size), as well as fb, π1 (Bayes error, class 1 probability). The correlation
coefficient κ is only indirectly significant (on the 5%-level) via interactions with
the other parameters. The probability π1 of class 1 is not very highly significant
(p-value = 0.2%) since for every π1 there is also convergence to a = 0 (cp.
Table 4). All classifiers except NB are significantly different from lda (basic
classifier) and all corresponding 2-parameter interactions are significant except
of κ, b with tree. Also, the significance of the interactions of κ with p, b is only
around 5%.

Defining the contribution of a parameter to the variation in mean error
rate as the difference between the product of its estimated coefficient with the
maximum and minimum parameter value, the contribution 0.36 of the Bayes
error fb appears to be most relevant, followed by the contribution 0.13 of the
dimension p. Note that only the coefficients of these two parameters are very
highly significant. The fit of the regression model is not optimal (R2 = 0.79),
i.e. there should be influences of even higher-order terms.

In Case B1, main effects on mean error rates are negative for p (dimension)
and positive for κ, b (correlation, block size) and fb, π1 (Bayes error rate, class
1 prob.) (see Table 2). Many interactions are not highly significant and classifier
ir differs the least significant from the basic classifier lda. The contributions
0.41 of the Bayes error fb and 0.30 of the probability π1 of class 1 appear to be
most relevant. Note that here all main effects except of the constant are very
highly significant. The model fit is distinctly better than in Case A (R2 = 0.85).
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Table 1: Case A: Parameter Estimates (p-value) from Linear Regression (R2 = 0.79).

param main (1) :κ (2) :b :π1 : fb :ir :NB :1NN :svm :tree

const. 3.5e-2
(0.001)

p 6.6e-5 -8.7e-6 -1.2e-6 -5.7e-5 -1.0e-4 -7.5e-5 -4.7e-5 -8.1e-5 -6.4e-5 -1.4e-5
*** (3) (0.070) *** (3e-5) (6e-15) *** *** *** *** (0.006)

κ -3.9e-3 -2.9e-4 5.5e-1 -3.7e-1 1.2e-1 4.9e-2 1.1e-1 6.9e-2 9.7e-3
(0.755) (0.046) *** *** *** (6e-6) *** (3e-10) (0.370)

b 8.6e-4 8.3e-3 -4.2e-3 2.5e-3 1.3e-3 2.8e-3 2.7e-3 -8.8e-5
(2e-5) *** *** *** *** *** *** (0.556)

π1 8.9e-2 -2.8e-1 -4.2e-1 -3.9e-1 -3.3e-1 -4.4e-1 -1.3e-1
(0.002) (0.001) *** *** *** *** (1e-5)

fb 0.905 3.6e-1 2.8e-1 3.8e-1 3.8e-1 1.7e-1
*** *** *** *** *** (1e-8)

classifier ir NB 1NN svm tree

contrast to lda -7.7e-2 1.6e-2 -9.6e-2 -7.0e-2 3.7e-2
(4e-11) (0.176) *** (6e-8) (0.002)

Table 2: Case B1: Parameter Estimates (p-value) from Linear Regression (R2 = 0.85).

param main (1) :κ (2) :b :π1 : f :ir :NB :1NN :svm :tree

const. -3.6e-3
(0.498)

p -2.9e-5 -2.3e-5 -2.7e-8 2.1e-4 -2.0e-4 9.8e-6 5.6e-6 3.1e-5 2.2e-5 2.1e-5
*** (3) *** *** *** *** (4e-5) (0.019) *** *** ***

κ 4.9e-2 6.8e-6 1.3e-1 -3.0e-1 7.2e-2 2.6e-2 1.7e-2 1.6e-2 5.6e-2
(3e-15) (0.070) *** *** *** (1e-6) (0.001) (0.004) ***

b 7.1e-5 -5.2e-5 -9.2e-7 2.9e-5 9.4e-6 -7.9e-6 -7.0e-6 -3.1e-6
*** (3e-7) (0.926) (7e-15) (0.012) (0.035) (0.065) (0.407)

π1 0.739 -1.37 -1.3e-1 5.8e-2 -2.1e-1 -7.3e-2 -2.7e-1
*** *** *** (8e-5) *** (6e-6) ***

fb 1.02 9.7e-2 5.8e-3 8.4e-2 1.0e-1 2.3e-1
*** (6e-11) (0.692) (1e-8) (1e-11) ***

classifier ir NB 1NN svm tree

contrast to lda -1.0e-2 -4.7e-2 6.1e-2 -2.0e-2 3.3e-2
(0.085) (1e-15) *** (0.002) (1e-8)

(1) main stands for the direct effect of par,
(2) :κ stands for the interaction of par with κ, e.g. p : κ for the interaction between p and κ

(other interactions analogously),
(3) *** stands for (< 2e-16), i.e. p-value numerically 0.
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In Case B2, main parameter effects on the mean error rates are similar to
Case B1 (see Table 3), except that now the effect of classifier ir is also highly
significantly different from the basic classifier lda. Again, most interactions
do not appear to be highly significant, and only the contributions of the Bayes
error fb and the probability π1 of class 1 appear to be relevant. Moreover,
note that entries in Table 3 marked in bold face have signs different than the
corresponding entries in Table 2, but at most one of the corresponding entries
in Tables 2 and 3 is significant. The model fit is best among the regressions
(R2 = 0.87).

Table 3: Case B2: Parameter Estimates (p-value) from Linear Regression (R2 = 0.87).

par main (1) :κ (2) :b :π1 : f :ir :NB :1NN :svm :tree

const. -1.9e-3
(0.732)

p -2.0e-5 -3.3e-5 -5.1e-7 1.9e-4 -1.9e-4 1.1e-5 1.0e-5 3.1e-5 1.8e-5 2.1e-5
(3e-10) *** (3) *** *** *** (3e-5) (1e-4) *** (9e-12) (1e-15)

κ 4.0e-2 4.5e-4 1.3e-1 -2.4e-1 5.9e-2 1.2e-2 1.9e-2 3.7e-2 -8.7e-3
(1e-9) (4e-9) (2e-16) *** *** (0.029) (0.001) (1e-10) (0.125)

b 7.6e-4 4.6e-4 -1.0e-3 2.9e-4 -7.5e-5 -4.0e-5 3.4e-4 -1.2e-4
(7e-13) (0.030) (2e-6) (3e-4) (0.335) (0.607) (3e-5) (0.118)

π1 0.729 -1.29 -8.3e-2 5.8e-2 -2.1e-1 -1.1e-1 -1.1e-1
*** *** (1e-7) (2e-4) *** (6e-11) (5e-13)

fb 0.966 1.1e-1 1.5e-2 8.1e-2 1.4e-1 -2.3e-2
*** (1e-12) (0.327) (2e-7) *** (0.145)

classifier ir NB 1NN svm tree

contrast to lda -3.3e-2 -4.6e-2 6.3e-2 -3.0e-2 8.3e-2
(9e-8) (8e-14) *** (1e-5) ***

(1) main stands for the direct effect of par,
(2) :κ stands for the interaction of par with κ, e.g. p : κ for the interaction between p and κ

(other interactions analogously),
(3) *** stands for (< 2e-16), i.e. p-value numerically 0.
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5.2 Convergence

Let us now discuss the research questions Convergence. We assume convergence
to a if |e1980 − a | < 0.025, where 0 ≤ e1980 := mean estimated error rate for
p = 1980.

In Case A, convergence of error rates to a = 0 is observed in the case of
complete independence (b = 1, κ = 0) (cp. Figure 1) for ir, 1NN, and svm in
100% of the cases except for π1 = 0.5, fb = 0.45, for NB except for fb near π1,
and for lda only if fb small and π1 = 0.5.

For dependent features (κ > 0), convergence to a = 0 again appears most
often for ir, 1NN, svm and somewhat less often for NB (cp. Figure 2 for an
example). Note that convergence to a = 0 appears in 14 - 23% of the cases with
higher percentages for higher π1 (cp. Table 4). Also note that svm does not work
for π1 = 0.1 because there is only one observation in class 1 for training.

π1 = 0.1 π1 = 0.2 π1 = 0.3 π1 = 0.4 π1 = 0.5

fb  = 0.05
fb  = 0.15

fb  = 0.25
fb  = 0.35

fb  = 0.45

lda ir NB 1NNsvm tree lda ir NB 1NNsvm tree lda ir NB 1NNsvm tree lda ir NB 1NNsvm tree lda ir NB 1NNsvm tree
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Case A: Share of error rates smaller than 0.025 for p = 1980 and b = 1

Figure 1: Case A: Individual error rates: Convergence to 0 for b = 1 (κ = 0), on the y-axis “count”
gives the percentage of error rates converged to 0.
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Convergence is also observed to limits a , 0. However, the share of the
asymptotic Bayes error rate 0 is with 21% (= (11 + 32 + 60 + 86 + 110) / 1424, cp.
Table 4) of all cases bigger than the share of convergence to any probability π1
of class 1 which is maximum in π1 = 0.5 with 12% (= 167 / 1424). Nevertheless,
in 40% of the cases convergence to π1 is realized so that error rate convergence
to the worst rate π1 is not unusual. Moreover, note that there is even convergence
to unacceptable rates distinctly > π1, especially for classifier tree.
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Case A: b = 2, fb = 0.25

Figure 2: Case A: Dependence on κ for b = 2.
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Table 4: Case A: Number of Cases: Convergence to lim = 0, 0.1, 0.2, 0.3, 0.4, 0.5 for different
π1. In the first block of rows, the column max denotes the maximum number of replicates for
the corresponding row. Since f < π1 by construction, there are more replicates for higher π1.
Green numbers relate to convergence to 0. For individual classifiers, diagonal red numbers equal the
maximum number possible. Violet numbers indicate convergence to a value > π1. Note that only the
right block in the first row represents percentages.

All classifiers:       % row-wise 
π1\lim 0 0.1 0.2 0.3 0.4 0.5 max   0 0.1 0.2 0.3 0.4 0.5 
0.1  11  62   0   0   0   0  80  14  78   0   0   0   0 
0.2  32   3 108  20   0   0 192  17   2  56  10   0   0 
0.3  60   3  12 112  29   0 288  21   1   4  39  10   0 
0.4  86   8  11  11 122  20 384  22   2   3   3  32   5 
0.5 110  10  15  14  35 167 480  23   2   3   3   7  35 

LDA:        Independence Rule:    Naïve Bayes: 
     0 0.1 0.2 0.3 0.4 0.5   0 0.1 0.2 0.3 0.4 0.5   0 0.1 0.2 0.3 0.4 0.5 
0.1  0  16   0   0   0   0   4  11   0   0   0   0   0  16   0   0   0   0 
0.2  0   0  32   0   0   0   9   0  18   0   0   0   0   0  32   0   0   0 
0.3  0   0   0  45   1   0  17   1   4  10   4   0   5   0   1  37   0   0 
0.4  0   0   1   0  55   0  25   2   1   3   7   2  12   1   0   1  37   0 
0.5  3   2   2   1   3  51  30   2   1   3   4  18  23   1   4   1   7  24 

1 Nearest Neighbour:      SVM:         Decision Tree: 
     0 0.1 0.2 0.3 0.4 0.5   0 0.1 0.2 0.3 0.4 0.5   0 0.1 0.2 0.3 0.4 0.5 
0.1  7   3   0   0   0   0   -   - (does not run)  -   0  16   0   0   0   0 
0.2 13   1   2   6   0   0  10   0  19   0   0   0   0   1   5  14   0   0 
0.3 20   1   2   1   8   0  18   1   2  12   4   0   0   0   3   7  13   0 
0.4 25   3   1   0   5   6  24   2   3   3   7   2   0   0   5   4  11  10 
0.5 25   3   1   1   5  24  29   2   3   2   4  18   0   0   4   6  12  32 

In order to characterize situations leading to convergence to a = 0, we defined
two new classes, class 0 with all examples with e1980 < 0.025 and class 1 with all
other examples. This defines a 2nd-stage classification problem with influential
features b, κ, π1, f , and classifier. Applying the above tree classifier with priors
0.20 for class 0 and 0.80 for class 1 to this problem, leads to the decision tree in
Figure 3 with acceptable 4.1% training error rate, 7.0% balanced training error
rate (taking the mean of the error rates for class 0 and class 1), as well as 5.8%
cross-validated error rate. Note that the priors are motivated by the fact that class
0 appears in 299 examples and class 1 in 1225 of our examples. The decision
tree clearly indicates that higher block sizes b > 2 are more likely not leading
to convergence to 0 though the theoretical convergence condition is valid for
b = 22 and p = 1980 (cp. Sections 2.3, 4.5). Moreover, convergence to 0 is not
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restricted to the distance-based classifiers 1NN, svm, as well as {lda, ir} for
π1 = 0.5 (cp. Section 2.3). Indeed, convergence of ir depends on the influential
features in the same way as 1NN, svm, and convergence to 0 is also appearing
for NB. Obviously, convergence to asymptotic Bayes error 0 can be expected
for ir, 1NN, svm if b ≤ 2 and κ ≤ 0.7, fb ≤ 0.35 or κ > 0.7, fb ≤ 0.15 and if
b = 22 (i.e. b > 2 ∧ b ≤ 22) and κ ≤ 0.3, fb ≤ 0.05, π1 ≥ 0.2, as well as for
NB if b ≤ 2 and π1 > 0.3, fb ≤ 0.25. Such dependence on π1 might be related
to the fact that lda, ir are only distance-based for π1 = 0.5. The dependence on
fb shows that the dimension-wise or block-wise Bayes error should not be too
high to allow for convergence to 0, and the dependence on κ might reflect that
the theoretical result in Section 2.3 is only valid for κ = 0. Note that not too
unbalanced classes should be preferred for the standard implementations of the
classifiers. In summary, for ir, 1NN, and svm convergence to 0 can be expected
if block size b and fb, κ are reasonably small, but for lda, tree and for NB with
π1 ≤ 0.3 or fb > 0.25 convergence to 0 should not to be expected (cp. also
Table 4).
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Figure 3: Case A: Characterization of convergence to a = 0 (class 0, green) vs. a , 0 (class 1, red)
by a classification tree. In the non-terminal nodes the split is characterized. Note that in the tree the
implicit “no”-alternatives to the classifiers ir, 1NN, svm are NB, lda, tree, and to NB these alternatives
are lda, tree. In the terminal nodes the predicted class is denoted, and the number of cases in the two
classes.
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Figure 4 shows an example for general convergence behavior with the small
fixed Bayes error fb = 0.05. Note that for lda convergence to π1 is obvious,
except for π1 = 0.5. For ir, 1NN, and svm convergence to 0 is always realized,
and for NB for π1 > 0.2.

1NN svm tree

lda ir NB
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Case A: b = 2, ρ = 0.5, fb = 0.05

Figure 4: Case A: Example: Convergence to 0 or π1?

In Case B1 (considering Table 5), we observe convergence to π1 = 0.5 in
92% of the cases, but less often for π1 = 0.1, 0.2, 0.3, 0.4 (cp. the main
diagonal of Table 5). For lda and NB convergence to π1 is observed in around
88% (= (21 + 40 + 51 + 63 + 103) / (21 + 42 + 63 + 84 + 105)) of the cases, for
1NN only for π1 = 0.5. Overall, convergence to π1 appeared in 63% (=
(80 + 153 + 168 + 201 + 581) / 1869) of the cases.



Classification Method Performance in High Dimensions 21

Table 5: Case B1: Number of Cases: “Convergence” to lim = 0.1, 0.2, 0.3, 0.4, 0.5 for different
π1. For individual classifiers, diagonal bold red numbers equal the maximum number possible and
diagonal numbers in brackets indicate the corresponding unmatched maximum. Violet numbers
indicate convergence to a value > π1.

All classifiers:       % row-wise 
π1\lim  0.1 0.2 0.3 0.4 0.5  max  0.1 0.2 0.3 0.4 0.5 
0.1     80   1   0   0   0  105   76   1   0   0   0 
0.2      1 153  72   2   0  252    0  61  29   1   0 
0.3      0   0 168  49   2  378    0   0  46  13   1 
0.4      0   0   2 201 148  504    0   0   0  40  29 
0.5      0   0   4   3 581  630    0   0   1   0  92 
 

LDA:        Independence Rule:   Naïve Bayes: 
     0.1 0.2 0.3 0.4 0.5    0.1 0.2 0.3 0.4 0.5    0.1 0.2 0.3 0.4 0.5 
0.1   21   0   0   0   0     17   1   0   0   0     21   0   0   0   0 
0.2    0  41(42) 0   0   0      0  30   1   2   0      0  40   0   0   0 

0.3    0   0 49(63)    3    0      0   0  31   7   2      0   0  51   3   0 

0.4    0   0   0  60(84)  0      0   0   0  36  19      0   0   0  63   5 

0.5    0   0   0   0 105      0   0   0   0  95      0   0   0   0 103 

1 Nearest Neighbour:      SVM:        Decision Tree: 
     0.1 0.2 0.3 0.4 0.5    0.1 0.2 0.3 0.4 0.5    0.1 0.2 0.3 0.4 0.5 
0.1    0   0   0   0   0      - (does not run)  -     21   0   0   0   0 
0.2    0   0  42   0   0      0  38   0   0   0      1   4  29   0   0 
0.3    0   0   0  22   0      0   0  36   9   0      0   0   1  12   0 
0.4    0   0   0   0  63      0   0   0  37   5      0   0   2   5  56 
0.5    0   0   0   0  99      0   0   0   0  97      0   0   4   3  82 

Note, however, that the asymptotic error is very seldom better than π1, only for
tree some asymptotic error rates are < π1. Moreover, many asymptotic error
rates are > π1, especially for classifier 1NN. Also note that all estimated error
rates are bigger than the pre-fixed Bayes error fb.

In Case B2, convergence to π1 = 0.5 is observed in 95% of the cases,
for π1 = 0.1, 0.2, 0.3, 0.4 such convergence is less systematically realized (cp.
Table 6). For lda and NB convergence to π1 is observed in 95 - 97% of the cases,
for 1NN convergence to π1 is only realized for π1 = 0.5. Overall, convergence
to π1 is realized in 69% of the cases. Note that the asymptotic error rate is never
better than π1 and that, again, especially classifier 1NN converges to a rate > π1
very often.
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5.3 Classifier Ranking

For the research question Classifier Ranking, in Case A we look at ranking via
mean absolute distance of estimated error rates to Bayes error f p/b

b
, getting

0.20 for {svm, ir}, 0.21 for 1NN, 0.25 for NB, 0.32 for lda, and 0.33 for tree.
Thus, svm, ir, and 1NN appear to be most adequate in Case A. Note that the
mean distance would be 0.36 if all error rates would be π1 for each classifier
except 0.38 for svm.

In Case B1, classifier ranking is realized via mean absolute distance of
estimated error rates to Bayes error fb, getting 0.185 for NB, 0.19 for lda, svm,
0.20 for ir, 0.21 for tree, and 0.22 for 1NN. The mean absolute distance would
be 0.183 if all error rates would be π1 for each classifier except 0.193 for svm.
Therefore, all classifiers sometimes produce error rates > π1 (see Table 5).

Table 6: Case B2: Number of Cases: “Convergence” to lim = 0.1, 0.2, 0.3, 0.4, 0.5 for different
π1. For individual classifiers, diagonal bold red numbers equal the maximum number possible and
diagonal numbers in brackets indicate the corresponding unmatched maximum. Violet numbers
indicate convergence to a value > π1.

All classifiers:      % row-wise 
π1\lim  0.1 0.2 0.3 0.4 0.5 max  0.1 0.2 0.3 0.4 0.5 
0.1     64   2   0   0   0  80   80   3   0   0   0 
0.2      0 120  60   0   0 192    0  63  31   0   0 
0.3      0   0 155  19   0 288    0   0  54   7   0 
0.4      0   0   0 186 126 384    0   0   0  48  33 
0.5      0   0   0   0 456 480    0   0   0   0  95 
 
LDA:        Independence Rule:   Naïve Bayes: 
     0.1 0.2 0.3 0.4 0.5    0.1 0.2 0.3 0.4 0.5    0.1 0.2 0.3 0.4 0.5 
0.1   16   0   0   0   0     16   0   0   0   0     16   0   0   0   0 
0.2    0  32   0   0   0      0  28   0   0   0      0  32   0   0   0 
0.3    0   0 45(48)  1   0      0   0  30   7   0      0   0  47   0   0 

0.4    0   0   0 56(64)    0      0   0   0  36  11      0   0   0  58   0 

0.5    0   0   0   0  80      0   0   0   0  71      0   0   0   0  79 

1 Nearest Neighbour:      SVM:        Decision Tree: 
     0.1 0.2 0.3 0.4 0.5    0.1 0.2 0.3 0.4 0.5    0.1 0.2 0.3 0.4 0.5 
0.1    0   2   0   0   0      - (does not run)  -     16   0   0   0   0 
0.2    0   0  31   0   0      0  28   0   0   0      0   0  29   0   0 
0.3    0   0   0  12   0      0   0  33   7   0      0   0   0   0   0 
0.4    0   0   0   0  49      0   0   0  36   6      0   0   0   0  64 
0.5    0   0   0   0  75      0   0   0   0  71      0   0   0   0  80 
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In Case B2, classifier ranking is again realized via mean absolute distance of
estimated error rates to Bayes error fb, getting 0.180 for NB, 0.19 for ir, svm,
lda, 0.22 for 1NN, and 0.24 for tree with, again, a mean distance of 0.183 if
all error rates would be π1 for each classifier except 0.193 for svm. Note that
this time classifiers NB and svm produce mean distances smaller than the mean
distance corresponding to π1 errors (cp. Table 6 for cases converged to some π1).

6 Noisy Performance

For the research question Noisy performance we study the influence of noise on
the error rate.

6.1 Noisy Performance: Simulation design

We compare the above situations with p = 12 and p = 120 influential features
with a situation with 120 features where only 12 features influence class
separation and 108 features are just independent noise. This is called the
(12 + 108)-situation in the following. For this, we first generate mean vectors
µ1, µ2 as well as the covariance matrix Σ for p = 12 as described in Section 4.5.
Then, we elongate µ1 and µ2 by 108 zeros. As the new covariance matrix we
take the 120× 120 identity matrix where the left upper 12× 12 block is replaced
by the 12 × 12 covariance matrix generated before. All parameters except p are
varied as indicated in Section 4.5.

In order to identify the relevant features, we apply feature selection in the
(12 + 108)-situation. For selection, we used the RELIEF criterion in the package
mlr (Bischl et al (2016)) of the software R. RELIEF estimates the quality of
attributes according to how well their values distinguish between instances of
different classes that are near to each other (Kira and Rendell (1992)). Then,
we compare the behavior of the classifiers for p = 12 and p = 120 influential
features without feature selection with the (12 + 108)-situation with selection
of the most important 12 or 18 features and we test the null-hypothesis:

H0: By the inclusion of noisy features the mean error rates of the different
classifiers are smaller than or equal to the mean error rates in situations
without noise and feature selection, i.e. p = 12 or p = 120 in Section 4.5.



24 Claus Weihs and Tobias Kassner

The idea behind this hypothesis is that not all relevant features are identified
and that, therefore, the relevant dimension is lower than in the non-noisy case
(see results).

6.2 Noisy Performance: Results

First, we report the number of correct identifications of influential features
in the (12 + 108)-situation (cp. Table 7). Obviously, the mean number of
identified influential features over the 200 replications is small in all cases. To
characterize the range of realized correct identifications we used the statistic
“mean + 3·std.dev.”. In the best case (18 features selected in Case A), mean +
3·std.dev. = 11.4 is still relatively close to the pursued number 12. In the worst
case (12 features selected in Case B1), however, the value of this statistic is
only 5.53, i.e. much smaller than 12. Obviously, Case A is easier for correct
feature selection and the Cases B1 and B2 behave similar. Let us see how this
poor feature selection affects the error rates.

Table 7: Mean (Std.dev.) of the Number of Identified Influential Features when 12 or 18 features are
selected out of 12 influential and 108 noise factors.

Case 12 features selected 18 features selected

A 2.82 (2.32) 3.65 (2.58)
B1 1.57 (1.32) 2.21 (1.59)
B2 1.68 (1.36) 2.36 (1.59)

Corresponding to hypothesis H0, the number of significant results of the Welch-
test at the 1 %-level is given in Table 8 for the different classifiers. We distinguish
Case A and Case B, summarizing the Cases B1 and B2, and we test the mean
error rates in the (12 + 108)-situations with 12, 18, and all 120 selected features
against the corresponding mean error rates for p = 12 and p = 120 influential
features. Note that the classifiers are sometimes producing error rates exactly
= π1 in all repetitions, e.g. classifiers NB and tree for π1 = 0.1 and all different
b and classifier NB sometimes also for π1 = 0.2 (cp. Figure 5). In these cases,
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the test could not be carried out. Therefore, in Table 8 the reported number of
tests differ in the different situations.
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CASE A: Distribution of error rates for NB in different situations

Figure 5: Case A: Behavior of NB in noisy and non-noisy situations.

Table 8 shows, e.g., that on the one hand in Case A and svm, hypothesis H0 is
always rejected for p = 12. On the other hand, in Case B, hypothesis H0 nearly
always cannot be rejected for classifier 1NN when p = 120 (cp. bold numbers
in Table 8). Note that svm appears to react the most negative to noise among the
classifiers.

Overall, classification with additional noise ((12 + 108)-situations) is seldom
better than without noise (p = 12), but frequently better than with more
influential features (p = 120), in particular in Case B. Moreover, in Case B the
classifiers appear to react more positive to noise than in Case A. This might
reflect the fact that in Case B more influential factors increase the error rate
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up to π1 and that in (12 + 108)-situations the number of influential factors is
smaller than for p = 12 and particularly p = 120.

Table 8: Number of Significant and Non-Significant Results of the Welch-Test at 1 %-Level.

Case A Case B
p = 12 p = 120 p = 12 p = 120

Classifier signif. non-sig. signif. non-sig. signif. non-sig. signif. non-sig.

lda 199 41 156 83 315 240 256 276
ir 207 32 173 37 371 184 141 414
NB 194 30 175 29 312 206 162 304
1NN 219 18 169 39 370 185 14 541
svm 222 0 171 18 474 44 197 321
tree 179 45 145 79 426 92 35 483

7 Discussion

We studied standard classification methods for dimensions p � n. We developed
an experimental design to discuss the effects of certain factors on the error rate
in Case A with decreasing Bayes error for increasing p and in Case B with
constant Bayes error. The design factors are:

• p = number of features;

• κ = covariance between features in special covariance structure;

• b = block size in covariance matrix;

• π1 = probability of class 1;

• fb = true error rate (in blocks).

We saw significance of (nearly) all varied factors and corresponding interactions
(research question Parameter Dependence). Moreover, convergence of error
rates for increasing dimension p (research question Convergence) is observed

• to asymptotic Bayes error 0 (Case A) most often for independent di-
mensions (b = 1, κ = 0), but also for dependent dimensions, especially
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for the classifiers ir, 1NN, svm. For lda and tree, convergence to π1
is often observed, for classifier NB if π1 is small or fb large. Overall,
stochastically independent dimensions should be preferred.

• In the case of constant pre-fixed Bayes error fb for all numbers of
dimensions p (Case B), convergence to π1 is systematically observed for
π1 = 0.5 as well as for lda and NB in general. Also, asymptotical rules
are often worse than the data independent rule “Always predict the larger
class”, especially for classifiers 1NN, tree.

Concerning the research question Classifier Ranking, the classifiers ir and svm
show the smallest mean absolute distance to the Bayes error in Case A. In Case
B, however, no classifier is really recommendable.

Concerning the research question Noisy Performance, classification with
additional noise factors (p = 12 + 108 situation) is seldom better than without
noise (p = 12), but frequently better than with more relevant influential features
(p = 120), in particular in Case B. In Case B the classifiers appear to react
more positive to noise than in Case A. This might reflect the fact that in Case
B more influential factors increase the error rate up to π1 and that noise factors
reduce the number of influential factors. Classifier svm appears to react the most
negative to noise among the classifiers. As a consequence, adequate Rules of
Thumb to avoid the worst error rate π1 for high dimensions and small numbers
of training observations may be:

• Avoid “complicated” classifiers: ir might be adequate, svm should only
be considered as an expensive alternative which is additionally sensitive
to noise factors.

• From the outset, look for stochastically independent dimensions and not
too unbalanced classes.

• Only take into account features which influence class separation suffi-
ciently. Variable selection might help, though filters might be too rough.

• Compare your result with the result of the data independent rule “Always
predict the larger class”.

Let us compare the results in this paper with our former results in Weihs (2016).
In that paper, simulations were performed only for π1 = 0.5 and a covariance
matrix which was on the one hand somewhat more general in that different
correlations between features were used, but on the other hand more restrictive
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in that the matrices were nearly diagonal, i.e. had much higher values at the
diagonal than in the other entries. The individual error rate f was not controlled,
but implicitly pre-fixed once by the class distance in each dimension. Case A is
represented by the class distance md = 2.5 and Case B by md = 20/√p. Then,
the results showed convergence to 0 in Case A except for tree, and to π1 = 0.5
in Case B for all methods. Moreover, if class distance sufficiently increases in
Case A in a specific way for higher dimensions, then error rates were decreasing,
even though the theoretical condition that the covariance matrix is diagonal (cp.
Section 2.3) is only approximately fulfilled. Finally, if not all features influence
class separation, convergence to 0 was slower in Case A. In such cases, feature
selection choosing the number of selected features somewhat too high appeared
to be better than choosing it too low.

Obviously, results in Weihs (2016), are generalized in this paper allowing
for pre-specification of a general π1 and the error rate fb (corresponding to a
certain class distance). Moreover, we study distinctly non-diagonal covariance
matrices, albeit of a special structure. We show that our former results for lda
and π1 = 0.5 are somewhat special in Case A. Overall, the problems of lda
with approximating the Bayes error in high dimensions are much clearer now.
Finally, in the case of noise, we have seen that feature selection is identifying
more relevant features if the number of selected features is higher than the
number of relevant features. This, in a way, explains our results in Weihs (2016),
concerning feature selection.

However, also in this paper settings are special, particularly the covariance
structure.We use normal distributionswith special invertible covariancematrices
and identical contributions to class choice by all feature blocks. As possible
extensions you may want to use other data distributions than normals, vary
contributions of feature blocks to class separation, or use other covariance
structures. Most easily, you may want to choose different error rates fb and
different correlations in the different blocks. Also, you may want to include
other classification methods in the comparison such as methods with nonlinear
decision borders like radial basis svm and ensemble methods like bagged trees
(as in Weihs (2016)). Another extension would be to study evaluation by leave-
one-out, possibly with more observations per class in order to make the results
more reliable.
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