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Abstract

The �nite di�erence method is a widely used technique for the computation of elastic

wave propagation in heterogeneous media in presence of a free surface. However, �nite-

di�erence simulations require a high spatial resolution of the computational grid to avoid

the introduction of numerical errors. The necessary resolution to achieve accurate results

highly depends on the distribution of elastic parameters in the medium. The widely used

rectangular grid with uniform spacing results in disproportional high spatial sampling

in regions of high velocity, as the grid spacing has to be chosen with respect to the

minimal wavelength occurring, which is linearly linked with the velocity of the propagating

wave. This becomes especially important when considering the e�ect of a free surface

due to the occurance of Rayleigh waves, that require a even higher spatial resolution.

Surface topography even accentuates this problem, since it further tightens the resolution

requirements.

In this thesis a �nite di�erence method based on the application of a rectangular grid

with nonuniform grid spacing is implemented. It introduces the possibility to adjust

the resolution of the �nite-di�erence computation to the requirements of the di�erent

areas of the model. Especially the high spatial resolution required for accurate simulation

of Rayleigh waves suggests the use of a �ne grid at the free surface and a coarser grid

at the deeper part of the model. The e�ect of the application of a nonuniform grid

with exponentially increasing grid spacing in the vertical direction on the accuracy and

the computational cost of the method is investigated. Therefore, homogeneous and

heterogeneous models of the subsurface are taken into consideration and the performance

of both uniform and nonuniform grids is evaluated and compared. The results of this work

reveal, that the approach of nonuniform grid spacing provides a signi�cant increase of

e�ciency by simultaneously reducing the computational cost and increasing the accuracy.

For heterogeneous models, the problem of alignment of model discontinuities and grid

spacing arises and requires the adoption of the grid to the structure of the model.
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Zusammenfassung

Um die Ausbreitung seismischer Wellen entlang einer freien Ober�äche mit heterogenem

Untergrund zu simulieren, ist Nutzung der Finite-Di�erenzen-Methode weit verbreitet.

Um große numerische Fehler des Verfahrens zu vermeiden, muss eine hohe Au�ösung

des Berechnungsgitters gewährleistet werden. Diese hängt stark von der Verteilung der

elastischen Materialparameter des betrachteten Untergrundmodels ab. Die Verwendung

einer versetzten Gitteranordnung mit gleichbleibenden Gitterabständen führt zu einem

unnötig engmaschigen Gitter in Bereichen hoher Geschwindigkeit, da die Gitterweite

abhängig von der minimalen auftretenden Wellenlänge gewählt werden muss, die propor-

tional zu der Ausbreitungsgeschwindigkeit der seismischen Wellen ist. Dies wird im Falle

der Modellierung einer freien Ober�äche weiter verschärft, da diese zum Auftreten von

Ober�ächenwellen führt, die eine sehr hohe räumliche Au�ösung notwendig machen.

Im Rahmen dieser Arbeit wird eine Finite-Di�erenzen-Methode mit variablen Gitterab-

ständen implementiert. Dies ermöglicht, die räumliche Au�ösung des Verfahrens an die

Anforderungen unterschiedlicher Regionen des Untergrundmodells anzupassen. Beson-

ders durch die hohe Au�ösungsanforderung der Simulation von Rayleigh Wellen liegt die

Nutzung eines feinen Gitters nahe an der Ober�äche und eines gröberen Gitters in tieferen

Regionen des Modells nahe. Der E�ekt der Anwendung exponentiell ansteigender Gitter-

abstände in vertikaler Richtung auf die Genauigkeit und den Berechnungsaufwand des

Verfahrens wird untersucht. Dazu werden homogene und heterogene Untergrundmodelle

betrachtet und kostante und variable Gitter im Hinblick auf ihr Leistungsvermögen vergli-

chen. Dadurch kann gezeigt werden, dass durch den Ansatz variabler Gitterabstände ein

signi�kanter Anstieg der E�zienz des Finite-Di�erenzen Verfahrens erreicht werden kann.

Sowohl eine Senkung des Berechnungsaufwands als auch eine Erhöhung der Genauigkeit

können gleichzeitig verwirklicht werden. Bei der Simulation heterogener Modelle tritt

das Problem der korrekten Positionierung von Diskontinuitäten der Materialparameter

auf, falls diese durch den erhöhten Gitterabstand nicht ausreichend präzise representiert

werden können. Dadurch wird die Anpassung des Gitters an die Modelstruktur notwendig.

iii





Contents

Abstract i

Zusammenfassung iii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Relevance of Computation of Wave Propagation . . . . . . . . . 1

1.1.2 Comparison of Numerical Methods . . . . . . . . . . . . . . . . . 1

1.2 Approach to a Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Seismic Wave Propagation 5
2.1 The Elastic Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Initial and Boundary Conditions . . . . . . . . . . . . . . . . . . 6

2.2 Types of Seismic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Body Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 The Rayleigh Wave . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 The Finite Di�erence Method 11
3.1 Example: Derivation of a Fourth Order Central Finite Di�erence Operator 11

3.2 Matrix Formulation of the Finite Di�erence Method . . . . . . . . . . . . 12

3.3 Discretization of the Elastic Wave Equation . . . . . . . . . . . . . . . . . 15

3.3.1 The Standard Staggered Grid . . . . . . . . . . . . . . . . . . . . 15

3.3.2 Parameter Averaging . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Nonuniform Finite Di�erence Operator . . . . . . . . . . . . . . . . . . . 17

3.4.1 Nonuniform Discretization Models . . . . . . . . . . . . . . . . . 19

3.4.2 Example: Exponentially Increasing Grid Spacing with Depth . . . 20

3.5 Matrix Formulation of Di�erential Operators on Nonuniform Standard

Staggered Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Implementation of the Free Surface Condition . . . . . . . . . . . . . . . 24

3.6.1 The Homogeneous Approach . . . . . . . . . . . . . . . . . . . . 25

3.6.2 The Heterogeneous Approach . . . . . . . . . . . . . . . . . . . . 25

3.7 Implementation of Absorbing Boundary Conditions . . . . . . . . . . . . 26

3.8 Stability and Dispersion Criteria . . . . . . . . . . . . . . . . . . . . . . . 27

3.8.1 Stability Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8.2 Dispersion Criterion . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



Contents

4 Analysis of Numerical Results 29
4.1 Characteristics of the Implemented Algorithm . . . . . . . . . . . . . . . 29

4.2 Benchmark of the NFD Implementation . . . . . . . . . . . . . . . . . . . 29

4.2.1 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.2 Error vs. Spatial Resolution . . . . . . . . . . . . . . . . . . . . . 30

4.2.3 Error vs. O�set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.4 Comparison of Waveforms . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Comparison of Nonuniform and Uniform Grids . . . . . . . . . . . . . . 34

4.3.1 Measurement of the Computational Cost . . . . . . . . . . . . . . 34

4.3.2 Model 1: The Homogeneous Halfspace . . . . . . . . . . . . . . . 34

4.3.3 Heterogeneous Models . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.4 Resampling of Material Parameter . . . . . . . . . . . . . . . . . 36

4.3.5 Model 2: One Layer Overlaying Halfspace . . . . . . . . . . . . . 37

4.3.6 Model 3: Gradient Increase Overlaying Homogeneous Halfspace 40

4.3.7 Model 4: Low Velocity Layer . . . . . . . . . . . . . . . . . . . . . 43

4.3.8 Model 5: Topography Overlaying Homogeneous Halfspace . . . 45

4.3.9 Model 6: Vertical Fault with Low- and High-Velocity Bodies . . . 48

5 Conclusion 51
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Bibliography 53

vi



List of Figures

2.1 Illustration of the Absorbing Boundary region Placement . . . . . . . . . 7

3.1 Staggered Grid Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Distances for Di�erential Operator . . . . . . . . . . . . . . . . . . . . . 17

3.3 Nonuniform Standard Staggered Grid . . . . . . . . . . . . . . . . . . . . 18

3.4 Illustration of exponential increase of grid spacing . . . . . . . . . . . . . 21

3.5 E�ect of Exponential Increase of Grid Spacing on the Finite Di�erence

Coe�cients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Illustration of the Vacuum Formalism . . . . . . . . . . . . . . . . . . . . 26

4.1 Convergence of the Finite Di�erence Solution . . . . . . . . . . . . . . . 32

4.2 Seismogram of the Benchmark Case . . . . . . . . . . . . . . . . . . . . . 33

4.3 Benchmark of the homogeneous halfspace . . . . . . . . . . . . . . . . . 35

4.4 Relative error in dependency of receiver o�set of Model 2: One Layer

Overlaying Homogeneous Halfspace . . . . . . . . . . . . . . . . . . . . 38

4.5 The vertical and horizontal velocity component of the receiver with maxi-

mum o�set of Model 2: One Layer Overlaying Homogeneous Halfspace . 39

4.6 Relative error in dependency of the interface depth . . . . . . . . . . . . 40

4.7 Relative error in dependency of receiver o�set of Model 3: Gradient In-

crease Overlaying Homogeneous Halfspace . . . . . . . . . . . . . . . . . 41

4.8 The vertical and horizontal velocity component of the receiver with max-

imum o�set of Model 3: Gradient Increase Overlaying Homogeneous

Halfspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.9 Relative error in dependency of receiver o�set of Model 4: Low Velocity

Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.10 The vertical and horizontal velocity component of the receiver with maxi-

mum o�set of Model 4: Low Velocity Layer . . . . . . . . . . . . . . . . . 44

4.11 Relative error in dependency of receiver o�set of Model 5: Topography

Overlaying Homogeneous Halfspace . . . . . . . . . . . . . . . . . . . . 46

4.12 Snapshot of the wave�eld (vz-component) of the nonuniform grid of Model

5: Topography Overlaying Homogeneous Halfspace . . . . . . . . . . . 46

4.13 The vertical and horizontal velocity component of the receiver with maxi-

mumo�set of Model 5: Topography Overlaying Homogeneous Halfspace 47

4.14 Heterogeneous benchmark model with a vertical fault, a low and fast

velocity anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.15 Comparison between the synthetic waveforms of the vertical fault model 49

vii





1 Introduction

1.1 Background

1.1.1 Relevance of Computation of Wave Propagation

The capability to compute the propagation of elastic waves in heterogeneous media in

the presence of a free surface is required by a variety of geophysical and geotechnical

applications, such as earthquake studies, reservoir monitoring and geophysical near-

surface exploration. Especially in the context of full waveform inversion (FWI), a technique

that iteratively improves the model of the subsurface by comparison of computed and

observed data, the e�cient calculation of the propagating waves is crucial. This is due to

the fact, that for each iteration of the FWI algorithm several completions of the forward

computation are required. Apart from geophysical applications the simulation of elastic

waves plays an important role in such diverse �elds as ultrasonic imaging and non-

destructive testing.

1.1.2 Comparison of Numerical Methods

The propagation of seismic waves can be modelled by a set of partial di�erential equations,

that describe the relation of external forces, the displacement �elds and the distribution of

density and elastic parameters in the subsurface. Since analytical solutions to this problem

do not exist for general heterogeneous media, various numerical approaches to solve

the seismic wave equations were developed in the past decades. Each of these methods

show speci�c advantages and disadvantages, that make careful weighting in respect of the

intended �eld of application necessary (Fichtner 2010).

The Finite Di�erence Method The �nite di�erence method can be considered as the �rst

numerical method to be applied in the �eld of numerical computation of seismic wave

propagation (Fichtner 2010) . First of all, space and time are discretized on a �nite number

of grid points, that are usually de�ned on an evenly spaced rectangular grid. Based on that,

the fundamental idea of the �nite di�erence method is the replacement of the derivatives

by �nite quotient equations, which involve the evaluation of the neighboring grid points.

Great progress in the simulation of seismic waves with the �nite di�erence technique was

achieved by the introduction of the Standard Staggered Grid by Madariaga (1976) and

Virieux (1986). Following this approach, di�erent components of one physical parameter

are de�ned at di�erent staggered locations. This yields the main bene�t of reducing the

necessary spatial resolution of the computation grid to avoid the introduction of numerical

errors such as numerical dispersion. The main advantages of the �nite di�erence method

1



1 Introduction

are its relatively low computational cost and its high accuracy in the modelling of body

wave propagation (Fichtner 2010).

The Finite Element Method The Finite Element method is based on the decomposition

of the computational domain into disjoint subdomains. The �eld variables in each of

those subdomains (called elements) are then approximated by polynomials of low order.

The problem is thereby reduced to a linear system of the polynomial coe�cients. Note

that the continuity condition between the elements is explicitly ful�lled. On the one

hand, this approach yields the main advantage of being easily applicable to irregular

shaped geometries, that exemplarily occur at the free surface or internal discontinuities.

On the other hand, the numerical dispersion resulting from the low order polynomial

approximation is comparatively large (Fichtner 2010).

The Pseudospectral Method The fundamental idea of pseudospectral methods is the cal-

culation of spatial derivatives in the Fourier Domain. At �rst, the seismic wave equation

is sampled at a �nite number of grid points. At the next stage, a Fourier Transforma-

tion is performed and the spatial derivatives are calculated by multiplication with ik in

the Fourier Domain.Here, i denotes the imaginary unit and k is the wavenumber. The

inverse Fast Fourier Transformation �nally yields the desired derivatives in the space

domain. Since only two grid points per wavelength are theoretically necessary for the

spatial sampling according to the Nyquist theorem, pseudospectral methods are superior

to �nite di�erence methods regarding numerical dispersion. Unfortunately, the global

nature of the approximation of derivative prohibits the usage of this method in case of

highly heterogeneous media (Fichtner 2010).

The Spectral Element Method The spectral elements method aims at combining the main

advantages of the �nite element method and the pseudospectral method. This is achieved

by dividing the computational domain into disjoint subdomains. Like in �nite element

methods, this preserves the adaptability to irregular geometries. Within each element

higher order spectral approximation are used, such as Chebyshev polynomials or Lagrange

polynomials (Fichtner 2010).

After considering the presented methods for the simulation of seismic wave propaga-

tion, the �nite di�erence method is chosen due to its comparatively low computational

cost. It allows the computation of accurate synthetic values of velocity and displacement

of particles, even for heterogeneous models with high contrast of the elastic material

parameters. The grid size, which directly in�uences the computational e�ciency of the

numerical simulation, is chosen with respect to the minimum wavelength of seismic waves

propagating through the medium. In FD modelling of shallow seismic wave�elds, which is

dominated by surface waves, at least 15 grid points per minimum wavelength are needed

to achieve good accuracy (Bohlen and Saenger 2006). Since Rayleigh-wave wavelengths

usually increase with depth (Socco, Comina, and Khosro Anjom 2017), it implies that the

grid size chosen might be disproportional for the deep part of the model.

2



1.2 Approach to a Solution

1.2 Approach to a Solution

One approach to solve this problem and signi�cantly reduce the computational e�ort is the

application of a rectangular grid with nonuniform spacing (Pitarka 1999). It introduces the

possibility to adjust the resolution of the �nite di�erence computation to the requirements

of the di�erent areas of the model. Especially the high spatial resolution required for

accurate simulation of Rayleigh waves suggests the use of a �ne grid at the free surface

and a coarser grid at the interior of the model.

1.3 Research Questions

The suggested improvement of the �nte di�erence method on uniform grids gives rise to

the following questions, that will serve as guidelines for this Bachelor Thesis:

1. Do �nite di�erence simulations on nonuniform grids deliver reasonable results?

2. Can using nonuniform grids save computation time (and memory) while preserving

a high level of accuracy?

3. Which (model dependent) discretization provides a good tradeo� between computa-

tion time and numerical error in context of Rayleigh wave modelling?

In Chapter 2 the basic concepts and the underlying equations of of seismic wave propa-

gation and di�erent types of elastic waves are introduced.

Chapter 3 provides a detailed explanation of the �nite di�erence method. The concept

of discrete di�erential operators is introduced and the coe�cients for operators of di�er-

ent orders are derived. Additionally, the Standard Staggered Grid (SSG) discretization of

the seismic wave equations is discussed and �nally the method is generalized to rectan-

gular grids with nonuniform grid spacing. Furthermore special attention is paid to the

implementation of the free boundary condition at the interface of air and the subsurface.

Chapter 4 deals with the analysis of the numerical results of various test cases. First,

the convergence of the implemented algorithm is veri�ed by comparison of the simulated

seismograms and analytical solutions for the case of a homogeneous halfspace. Addition-

ally, the relationship between the error introduced by a nonuniform grid with increasing

grid spacing with depth and computational saving is investigated. Subsequently, the

propagation of waves is calculated for various subsurface models on nonuniform grids

and compared to the result of simulation with a uniform grid. This analysis is performed

to verify if the results achieved for the case of a homogeneous halfspace still hold for more

complex subsurface models.

3





2 Seismic Wave Propagation

2.1 The Elastic Wave Equation

In this section the equations that govern the propagation of elastic waves in a general

medium are brie�y discussed following the explanations in Shearer (2009) and Bohlen, De

Nil, et al. (2016). From a mathematical point of view, the propagation of seismic waves can

be described by a set of coupled partial di�erential equations. First of all, the momentum

equation as generalization of Newton’s Law to continuous media shall be considered.

With the density ρ, the components of the stress tensor τij , the particle velocity vi and an

external force fi the equation

ρ
∂vi
∂t
=
∂τij

∂xj
(2.1)

describes the change of momentum caused by a stress �eld and an external force. Note

that the Einstein summation convention is used. In case of an isotropic elastic medium

the reaction to the stress and displacement is governed by the linear relationship of stress

and strain:

τij = λδijϵkk + 2µϵij (2.2)

Here δij is the Kronecker symbol, ϵij are the components of the strain tensor and λ and

µ are the Lamé coe�cients. Furthermore, displacement u and strain ϵ are directly related:

ϵij =
1

2

(
∂uj

∂xi
+
∂ui
∂xj

)
(2.3)

The combination of both equations leads to the stress-displacement formulation of the

elastic wave equation:

ρ
∂2ui
∂t2
=
∂τij

∂xj
+ fi

τij = λϵkkδij + 2µϵij

ϵij =
1

2

(
∂uj

∂xi
+
∂ui
∂xj

) (2.4)

This system of second order partial di�erential equations can be transformed into a �rst

order hyperbolic system called stress velocity formulation by taking the time derivative of

the stress and strain relations of the stress-displacement formulation above.

5



2 Seismic Wave Propagation

For the two-dimensional case this �nally leads to the following set of �ve partial

di�erential equations (Virieux 1986):

∂vx
∂t
= b

(
∂τxx
∂x
+
∂τxz
∂z

)
∂vz
∂t
= b

(
∂τxz
∂x
+
∂τzz
∂z

)
∂τxx
∂t
= (λ + 2µ)

∂vx
∂x
+ λ
∂vz
∂z

∂τzz
∂t
= (λ + 2µ)

∂vz
∂z
+ λ
∂vx
∂x

∂τxz
∂t
= µ

(
∂vx
∂z
+
∂vz
∂x

)
(2.5)

2.1.1 Initial and Boundary Conditions

To compute the solution of the seismic wave equation, the initial and boundary conditions

of the problem need to be de�ned.

Initial Conditions Prior to the start of the external force, the particle velocity v as well as

the stress τ need to satisfy the initial condition of being equal to zero.

Dirichlet and Neumann Boundary Conditions The most common boundary conditions

for di�erential equations are Dirichlet and Neumann Boundary conditions. While the

former states, that the value of the considered function has to equal a de�ned value at

the boundary of the computational domain, Neumann boundary conditions require the

derivatives to attain a prede�ned value. Since both conditions cause arti�cial re�ections

at the boundaries, they do not play an important role in seismic modelling.

The Traction Free Boundary Condition Seismic modelling is often performed in the pres-

ence of an interface of air and the subsurface. Since the normal components of the stress

tensor vanish at the interface, this is usually referred to as the free surface condition:

τ · n̂ = 0 (2.6)

where n̂ is the unit vector normal to the interface. It follows

τzz = 0 τxz = 0 (2.7)

at the free surface.

Absorbing Boundary Conditions The size of the computational grid is one of the main

factors determining the computational cost of the simulation. Therefore, the domain

should be chosen as small as possible. This makes the absorption of the seismic energy at

6



2.1 The Elastic Wave Equation

Figure 2.1: At the left, right and bottom boundaries of the computational domain absorbing

boundary regions are placed. Within this the elastic wave equation is modi�ed

such that incident plane waves rapidly decay (Fichtner 2010)

the model boundaries necessary, as it would otherwise be re�ected and cause spurious

artifacts in the recorded data. This can be achieved by the application of so-called Perfectly-

Matched-Layers (PML) at the boundary regions of the model, as illustrated in Figure 2.1.

The following explanation is mainly based on the work of Komatitsch and Martin (2007),

who modi�ed the concept of the PML regions to so called Convolutional Perfectly Matched

Layers. These have the bene�t of higher e�ectiveness for waves with grazing incidence

and do not require the splitting of the wave�eld in parallel and perpendicular parts (in

contrast to the classical PML formulation).

The main idea of the PML concept is the introduction of a new complex coordinate x̃

x̃(x) = x −
i

ω

∫ x

0

dx (s)ds (2.8)

that leads to exponentially decaying wave solutions in the PML region. The damping

behavior is determined by the damping pro�le dx , that is zero outside and some positive

value inside the PML. The variable ω represents the angular frequency. This leads to a

change of the spatial derivatives:

∂x̃ =
iω

iω + dx
∂x =

1

sx
∂x (2.9)

with sx being de�ned by

sx =
iω + dx
iω

. (2.10)

The C-PML concept generalizes this equation by introducing two real valued parameter

αx ≥ 0 and κx ≥ 1. With these new variables sx is rede�ned as

sx (ω) = κx
dx

αx + iω
. (2.11)

7



2 Seismic Wave Propagation

After going back to time domain and some calculus the spatial derivative ∂x̃ is �nally

transformed in:

∂x̃ =
1

κx
∂x + ζ (t) ∗ ∂x (2.12)

with

ζ (t) = −
dx

κ2

x

Θ(t)e−(dx /κx+αx )t (2.13)

where Θ(t) is the Heavyside-Distribution. Thus, replacing the derivatives in the PML

region by expression de�ned in Equation 2.12 yields the desired decay of wave amplitudes

at the boundaries of the model.

2.2 Types of Seismic Waves

The �rst distinction for category formation of seismic waves is between surface and body

waves. While body waves travel in the interior of the body, surface waves only occur at

interfaces of the elastic medium.

2.2.1 Body Waves

Two di�erent types of body waves exist, which are named after their arrival times: the

primary P-wave and the secondary S-wave. While the P-waves are compressional waves

where the particle displacement is in the same direction as the propagation of the wave,

the S-waves are shear waves with particle motion perpendicular to the direction of energy

transport.

The speed of both wave types depends on the elastic parameter of the medium:

vp =

√
λ + 2µ

ρ
and vs =

√
µ

ρ
(2.14)

The relation of the velocity of both wave types can be expressed by the so-called

Poisson’s Ratio, which is de�ned as:

ν =
v2

p − 2v2

s

2(v2

p −v
2

s )
(2.15)

It describes the ratio of transverse strain and longitudinal strain of the material and

ranges from 0 to 0.5 (Berckhemer 1990).

2.2.2 The Rayleigh Wave

In presence of a free surface there also exits a Rayleigh wave solution of the seismic wave

equation. It is guided along the free surface and the amplitude of the Rayleigh wave

exponentially decays with depth. For this reason the energy spreads into a cylindrical

8



2.2 Types of Seismic Waves

region from the source and the geometrical damping declines with 1/r with the distance r
from the source. Since body waves propagate radially, their damping is governed by 1/r 2

and their amplitudes are signi�cantly smaller, especially for greater distances. This makes

the accurate modelling of Rayleigh waves a fundamental capability for applications such

as earthquake studies and near-surface exploration.

The velocity of the Rayleigh wave is slightly less than the S-wave velocity depending

on the Poisson’s Ratio of the material. Exemplary the Rayleigh wave velocity vR for a

medium with a Poisson’s Ratio of ν = 0.25 is vR ≈ 0.92vs .
Another important feature for near-surface geophysical applications is the dispersion

characteristic of Rayleigh waves. In case of a heterogeneous medium each frequency

component of the wave travels at its characteristic velocity. This behavior allows the

estimation of shear wave depth pro�les by calculation and inversion of dispersion curves

(Lorenzo 2014).
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3 The Finite Di�erence Method

The �nite di�erence method is a widely used technique for solving partial di�erential

equations and plays an important role in modeling of seismic wave propagation. It is based

on the idea of discretizing space and time on a computational grid. The partial derivatives

of a function u(x , t) at the position x∗ on a grid with grid spacing h can then be calculated

by evaluating u(x , t) at the adjacent grid points and applying di�erence quotient equations.

This approach leads to the de�nition of three di�erential operators:

D+u(x∗) = lim

h→0

u(x∗ + h) − u(x∗)

h
(Forward Operator) (3.1)

D−u(x∗) = lim

h→0

u(x∗ − h) − u(x∗)

h
(Backward Operator) (3.2)

Dcu(x∗) = lim

h→0

u(x∗ + h) − u(x∗ − h)

2h
(Central Operator) (3.3)

The accuracy of the �nite di�erence method can be obtained by expanding a Taylor-

Series expansion

u(x∗ + h) = u(x∗) + hu′(x∗) +
h2

2

u′′(x∗) +
h3

6

u′′′(x∗) + ... + R(x∗) (3.4)

with the remainder R(x∗) and inserting the di�erential operator of interest for the ap-

proximated derivative. The lowest order of the step size h in the remainder term then

de�nes the order of the �nite di�erence operator.

Operators of higher order may be gained by considering more than only one neighboring

grid point and determining coe�cients, that make terms of lower order disappear. The

central �nite di�erence operator may then be denoted in the following form:

Du(x) =
k∑

m=−k

cm · u(x +m · h) = [c−k c−k+1 . . . ck−1 ck]u(x) (3.5)

The term in square brackets is usually referred to as stencil.

3.1 Example: Derivation of a Fourth Order Central Finite
Di�erence Operator

In the following the coe�cients of a fourth order central �nite di�erence operator will be

derived exemplary (Leveugle n.d.).
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3 The Finite Di�erence Method

Starting from the Taylor-Series expansion of a function u(x):

u(x + kh) = u(x) + u′(x)kh +
u′′(x)

2

(kh)2 +
u′′′(x)

6

(kh)3 +
u(4)(x)

24

(kh)4 +O(h5) (3.6)

�ve equations for the grid point at position x and the two closest in both directions can

be derived:

u(x − 2h) = u(x) − 2hu′(x) + 2h2u′′(x) −
4

3

h3u′′′(x) +
2

3

h4u(4)(x) +O(h5)

u(x − h) = u(x) − hu′(x) +
1

2

h2u′′(x) −
1

6

h3u′′′(x) +
1

24

h4u(4)(x) +O(h5)

u(x) = u(x)

u(x + h) = u(x) + hu′(x) +
1

2

h2u′′(x) +
1

6

h3u′′′(x) +
1

24

h4u(4)(x) +O(h5)

u(x + 2h) = u(x) + 2hu′(x) + 2h2u′′(x) +
4

3

h3u′′′(x) +
2

3

h4u(4)(x) +O(h5)

(3.7)

This system of equations can be transformed in matrix formulation:
u(x − 2h)
u(x − h)
u(x)

u(x + h)
u(x + 2h)


≈


1 −2h 2h2 −4

3
h3 2

3
h4

1 −h 1

2
h2 −1

6
h3 1

24
h4

1 0 0 0 0

1 h 1

2
h2 1

6
h3 1

24
h4

1 2h 2h2 −4

3
h3 2

3
h4



u(x)
u′(x)
u′′(x)
u′′′(x)
u(4)(x)


(3.8)

Inverting the system directly yields the coe�cients of the �nite di�erence operators of

up to the fourth order derivative:
0 0 1 0 0

1

12
−2

3
0

2

3
− 1

12

− 1

12
−4

3
0

4

3
− 1

12

−1

2
1 −5

2
−1

1

2

1 −4 6 −4 1



u(x − 2h)
u(x − h)
u(x)

u(x + h)
u(x + 2h)


≈


u(x)
hu′(x)
h2u′′(x)
h3u′′′(x)
h4u(4)(x)


(3.9)

The �rst derivative can consequently be calculated with fourth order accuracy with the

following approximation:

u′(x) ≈
u(x − 2h) − 8u(x − h) + 8u(x + h) − u(x + 2h)

12h
(3.10)

Higher derivatives and higher orders of accuracy may be obtained analogously.

3.2 Matrix Formulation of the Finite Di�erence Method

The �nite di�erence method can be formulated as a matrix operation. For this purpose the

discrete values of the function u(x , z) on a grid sized Nz × Nx are de�ned as elements of

the Matrix U ∈ RNz×Nx
in their natural order. To apply the discrete di�erential operator,
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3.2 Matrix Formulation of the Finite Di�erence Method

an order has to be selected and the Matrix U has to be rearranged as a vector of the shape

®u ∈ RNz ·Nx
. With lexicographical ordering this leads to:

U =


u11 u12 . . . u1Nx

u21 u22 . . . u2Nx
...

...
. . .

...
uNz1 uNz2 . . . uNzNx


⇒



u11

u12

...
u1Nx

u21

u22

...
u2Nx
...

uNz1

uNz2

...
uNzNx



= ®u (3.11)

Assuming that the selected �nite di�erence operator is of the form

Du(x) = [c−2 c−1 c0 c1 c2] u(x) (3.12)

the operator can be written in matrix notation as a square block triagonal matrix

A ∈ R(Nz ·Nx )×(Nz ·Nx )
:

A =


T 0 . . . 0

0 T
. . .

...
...
. . .

. . . 0

0 . . . 0 T


(3.13)

with the matrixT ∈ RNx×Nx
representing the di�erential operator applied to one row of

grid points:

T =



c0 c1 c2 0 0 0 . . . 0

c−1 c0 c1 c2 0 0 . . . 0

c−2 c−1 c0 c1 c2 0 . . . 0

0 c−2 c−1 c0 c1 c2 . . . 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 c−2 c−1 c0 c1 c2

0 . . . 0 0 c−2 c−1 c0 c1

0 . . . 0 0 0 c−2 c−1 c0


(3.14)

Exemplary with the fourth order �nite di�erence operator derived in chapter 3.1 the

Matrix T becomes:
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3 The Finite Di�erence Method

T =
1

12h



0 8 −1 0 0 0 . . . 0

−8 0 8 −1 0 0 . . . 0

1 −8 0 8 −1 0 . . . 0

0 1 −8 0 8 −1 . . . 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 1 −8 0 8 −1

0 . . . 0 0 1 −8 0 8

0 . . . 0 0 0 1 −8 0


(3.15)

Now multiplying the discrete operator with the vector ®u leads to the approximation:

Du(x) = A · ®u (3.16)

Note that the derivative in another spatial direction can be calculated in at least two

di�erent ways. In the �rst place the di�erential operator can be discretized with respect

the rearranged vector as described in Equation 3.2. This yields the disadvantage of making

di�erent matrices for the spatial directions necessary. Additionally, it implicates that the

discrete operator in z-direction di�ers from the block diagonal form since the neighboring

matrix elements are not adjacent in vector form. Alternatively, it is possible to leave the

discrete operator unchanged and manipulate the matrix to vector mapping instead: if the

transpose of the matrix U is ordered lexicographically, the derivative can be calculated in

the same way for both spatial directions. For convenience, in the following this method is

implicitly assumed.

This matrix formulation implicitly implements Dirichlet boundary conditions. This

means that the values of all variables are zero outside the computational domain. Di�erent

boundary conditions can also be implemented in the matrix formulation, but do not play

an important role in the considered case, since the model boundary is treated with special

damping boundary regions (cf. Section 2.1.1).

The matrix formulation of the �nite di�erence method yields signi�cant bene�ts. First

of all it is easy to implement, as no looping routine on all grid points is necessary. It also

improves the readability of the code, as the equations can be written down in textbook like

style. It also facilitates e�cient and fast computation, since is introduces the possibility

to exploit advantages of modern linear algebra packages (parallelization, e�ciency, GPU

computation).

At �rst glance the computational e�ort seems to be higher compared to an implementa-

tion based on looping routines, since it involves the storage and multiplication of large

matrices. But this argument can be invalidated by considering the special structure of

the discrete �nite di�erence operator. The high memory consumption can be reduced

to an negligible level by taking advantage of the repetitive structure of the matrix. The

computational complexity of the matrix multiplication is cut to a level equivalent to the

looping routine, if the sparsity of the matrix is exploited.
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3.3 Discretization of the Elastic Wave Equation

Figure 3.1: The standard staggered-grid scheme. The blank circles are the grid nodes, where

the indices i and k describe the position in the grid. The stress components τxx
and τzz as well as the Lamé coe�cients λ and µ and the density ρ de�ned at

the grid nodes, while the the velocity components vx and vz are represented

by the black squares and the black circles respectively. The triangle placed at

the midpoint of the cell is the stress component τxz . (Zeng et al. 2012)

3.3 Discretization of the Elastic Wave Equation

3.3.1 The Standard Staggered Grid

To model the propagation of seismic waves Madariaga (1976) and Virieux (1986) suggested

the application of a standard staggered grid (SSG) as shown in Figure 3.1. Following this

numerical scheme, di�erent components of one physical parameter are de�ned at di�erent

staggered locations.

The usage of the SSG scheme yields the following bene�ts (Levander 1988):

• Stability for all values of Poisson’s Ratio, any variation in material properties can be

modeled correctly.

• Grid dispersion is small and relatively insensitive to Poisson’s Ratio.

• Free surface boundary conditions are easily satis�ed.

The proposed scheme is not only staggered in space, but also in time. The velocity

components are computed at the time (n + 0.5) ·∆t from the stress components at the time

n · ∆t and the stress components at n · ∆t from the velocity components at (n − 0.5) · ∆t .
This scheme is equivalent to the leapfrog time integration technique and yields second

order accuracy in time (Bohlen, De Nil, et al. 2016).

Finally, the Standard Staggered Grid leads to the following discrete formulation of the

seismic wave equation with the spatial indices i and k as de�ned in Figure 3.1 and the

superscript n denoting the time step:
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3 The Finite Di�erence Method

vn+1/2

z,[i,k+1/2]
= vn−1/2

z,[i,k+1/2]
+ ∆t · b[i,k+1/2]

(
(Dzτ

n
zz)[i,k+1/2] + (Dxτ

n
xz)[i,k+1/2]

)
vn+1/2

x ,[i+1/2,k]
= vn−1/2

x ,[i+1/2,k]
+ ∆t · b[i+1/2,k]

(
(Dzτ

n
xz)[i+1/2,k] + (Dxτ

n
xx )[i+1/2,k]

)
τnxx ,[i,k] = τ

n−1

xx ,[i,k] + ∆t
[
(λ[i,k] + 2µ[i,k])(Dxv

n−1/2
x )[i,k] + λ[i,k](Dzv

n−1/2
z )[i,k]

]
τnzz,[i,k] = τ

n−1

zz,[i,k] + ∆t
[
(λ[i,k] + 2µ[i,k])(Dzv

n−1/2
z )[i,k] + λ[i,k](Dxv

n−1/2
x )[i,k]

]
τnxz,[i+1/2,k+1/2]

= τn−1

xz,[i+1/2,k+1/2]
+ ∆t · µ[i+1/2,k+1/2]

[
(Dzv

n−1/2
x )[i+1/2,k+1/2] + (Dxv

n−1/2
z )[i+1/2,k+1/2]

]
(3.17)

with the fourth order di�erential operators:

(Dzτ
n
zz)[i,k+1/2] = c1τ

n
zz,[i,k−1]

+ c2τ
n
zz,[i,k] + c3τ

n
zz,[i,k+1]

+ c4τ
n
zz,[i,k+2]

(Dxτ
n
xx )[i+1/2,k] = c1τ

n
xx ,[i−1,k] + c2τ

n
xx ,[i,k] + c3τ

n
xx ,[i+1,k] + c4τ

n
xx ,[i+2,kk]

(Dxτ
n
xz)[i,k+1/2] = c1τ

n
xz,[i−3/2,k+1/2]

+ c2τ
n
xz,[i−1/2,k+1/2]

+ c3τ
n
xz,[i+1/2,k+1/2]

+ c4τ
n
xz,[i+3/2,k+1/2]

(Dzτ
n
xz)[i+1/2,k] = c1τ

n
xz,[i+1/2,k−3/2]

+ c2τ
n
xz,[i+1/2,k−1/2]

+ c3τ
n
xz,[i+1/2,k+1/2]

+ c4τ
n
xz,[i+1/2,k+3/2]

(Dxv
n−1/2
x )[i,k] = c1v

n−1/2

x ,[i−3/2,k]
+ c2v

n−1/2

x ,[i−1/2,k]
+ c3v

n−1/2

x ,[i+1/2,k]
+ c4v

n−1/2

x ,[i+3/2,k]

(Dzv
n−1/2
z )[i,k] = c1v

n−1/2

z,[i,k−3/2]
+ c2v

n−1/2

z,[i,k−1/2]
+ c3v

n−1/2

z,[i,k+1/2]
+ c4v

n−1/2

z,[i,k+3/2]

(Dzv
n−1/2
x )[i+1/2,k+1/2] = c1v

n−1/2

x ,[i+1/2,k−1]
+ c2v

n−1/2

x ,[i+1/2,k]
+ c3v

n−1/2

x ,[i+1/2,k+1]
+ c4v

n−1/2

x ,[i+1/2,k+2]

(Dxv
n−1/2
z )[i+1/2,k+1/2] = c1v

n−1/2

z,[i−1,k+1/2]
+ c2v

n−1/2

z,[i,k+1/2]
+ c3v

n−1/2

z,[i+1,k+1/2]
+ c4v

n−1/2

z,[i+2,k+1/2]

(3.18)

Here, the variables ci denote the �nite di�erence coe�cients and b is the buoyancy

(inverse of density).
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Figure 3.2: The distances ∆i for derivatives calculated between grid points (a) and at grid

point (b) (Pitarka 1999)

3.3.2 Parameter Averaging

As the physical parameters are de�ned at di�erent staggered locations, the material

parameters are required at the corresponding grid points. This can be achieved by local

averaging, which is critical for the accuracy at strong discontinuities. Therefore, the

density ρ and the shear modulus µ have to be arithmetically and harmonically averaged,

respectively (Bohlen, De Nil, et al. 2016). As this averaging scheme is equivalent to the

one used for the free surface condition, the equations can be found in Section 3.6.2.

3.4 Nonuniform Finite Di�erence Operator

In Pitarka (1999) a �nite di�erence operator for rectangular Standard Staggered Grids with

nonuniform grid spacing is presented. An example for such a nonuniform spacing can be

found in Figure 3.3. In the following the derivation of this operator is brie�y summarized.

The �nite di�erence operator Dx can be expressed as

Dxu(x , z) = c1u(x + ∆1, z) + c2u(x − ∆2, z) (3.19)

+c3u(x + ∆3, z) + c4u(x − ∆4, z)

with the distances ∆i for derivatives calculated between grid points (a) and at grid point

(b) as shown in Figure 3.2 (Pitarka 1999).

With the plane wave assumption

u(x , z) = uzexp(ikx) (3.20)

di�erentiation leads to:

ik = c1exp(ik∆1) + c2exp(−ik∆2) + c3exp(ik∆1) + c4exp(−ik∆4) (3.21)

Taylor Expansion up to order O(∆4

i ) yields:

exp(ik∆i) ≈ 1 + ik∆i −
1

2

k2∆2

i −
1

6

k3∆3

i (3.22)
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0 1 2 3 4 5
x in m
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n 
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(i,k) (i+1,k)

(i,k+1) (i+1,k+1)

xx, zz

vx

vz

xz

Figure 3.3: Example for a rectangular staggered �nite di�erence grid with uniform grid

spacing in x-direction and nonuniform grid spacing in z-direction
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Then, equation 3.21 can be rearranged to:

ik = c1 + c2 + c3 + c4

+ ik(c1∆1 − c2∆2 + c3∆3 − c4∆4)

+
ik2

2

(−c1∆
2

1
− c2∆

2

2
− c3∆

2

3
− c4∆

2

4
)

+
ik3

6

(−c1∆
3

1
+ c2∆

3

2
− c3∆

3

3
+ c4∆

3

4
)

(3.23)

Solving the resulting linear system �nally yields the �nite di�erence coe�cients ci :
1 1 1 1

∆1 −∆2 ∆3 −∆4

−∆2

1
−∆2

2
−∆2

3
−∆2

4

−∆3

1
∆3

2
−∆3

3
∆3

4



c1

c2

c3

c4

 =

0

1

0

0

 (3.24)

Considering the consumption of computational memory and time, note that two sets

of coe�cients (one set for derivatives calculated at the grid points and one between

grid points) per dimension have to be calculated prior to the main simulation. Each set

consists of 4 coe�cients per grid point in the corresponding direction (Nx/Nz). This

requires the solution of a 4 × 4 linear system for each grid point. Finally a total number

of 8(Nx + Nz) coe�cients have to be calculated and stored. This operation is is roughly

linear to

√
N and

3

√
N for the number of grid points N in the two dimensional and three

dimensional cases respectively (assuming that Nx ≈ Nz(≈ Ny)). Hence, the e�ort for the

use of nonuniform �nite di�erence operators can be considered relatively small compared

to the the simulation itself and is therefore negligible. However, it is possible to further

reduce the the computational cost by choosing a discretization model, that facilitates the

computation of the �nite di�erence coe�cients (cf. Section 3.4.1).

3.4.1 Nonuniform Discretization Models

To take advantage of the possibility to de�ne a nonuniform grid, it is necessary to identify

reasonable discretization models. First of all, the requirements of an e�cient discretization

are:

• high resolution at the free surface to meet the requirements for accurate modelling

of Rayleigh waves

• lower resolution in the deeper part of the model, that avoids spatial oversampling,

but still ensures su�cient accuracy for the simulation of body waves

• reasonable increase of grid spacing with depth from the upper to the lower part of

the model, that corresponds to the speci�c characteristics of Rayleigh waves

Since the amplitudes of Rayleigh waves exponentially decay with depth, an exponential

increase of grid spacing is suggested. This leads to the following de�nition of the distance

to the neighboring grid point in the vertical direction as function of the grid point index:
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dz(k) =


dx · β , if k ≤ Nabove

dx · β · (1 + α)k−Nabove
, if k > Nabove and dz(k) ≤ dzmax

dzmax , otherwise

(3.25)

In the proposed nonuniform grid system, the grid size has a constant value of dx · β
for the grids above the free surface, and then gradually increase with a constant factor of

(1+α) until a maximum spacing of dzmax is reached. dzmax is chosen based on the required

resolution for accurate modelling of body waves (at least 5 grid points per wavelength,

Levander 1988). The parameter α aims at reducing the computational cost by decreasing

the number of grid points, while β is supposed to improve the accuracy by increasing

the resolution at the free surface. One advantage of using exponentially increasing grid

system is that it leads to a constant change of the FD coe�cients in the non-uniform grids.

This feature greatly reduces the work in the calculation of FD coe�cients from solving

2 · Nz to only 2 · n linear equations, where n is the order of the �nite di�erence operator.

3.4.2 Example: Exponentially Increasing Grid Spacing with Depth

To illustrate the proposed discretization scheme, a one dimensional example is presented

in this section. In Figure 3.4 the depth of each grid point is shown for a discretization with

a minimal grid spacing dx · β = 0.1 m at the free surface, a factor α = 0.2 , a maximal

grid spacing dzmax = 2 and depth of 20 m. The resulting �nite di�erence coe�cients for

the derivatives evaluated at the grid points are presented in Figure 3.5a. To clarify the

reduced computational e�ort of the calculation of the coe�cients, the quantity ci · (1+α)
k

is plotted in Figure 3.5b. Since the values of the coe�cients only change with the factor

1/(1 + α) from one grid point k to another, ci · (1 + α)
k

is constant in the part of the grid

with exponentially increasing spacing. Therefore, the computational e�ort to calculate the

derivative coe�cients is limited to solving a constant number of linear systems.
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Figure 3.4: Illustration of exponential increase of grid spacing with depth for a discretiza-

tion with a minimal grid spacing dx · β = 0.1 m at the free surface, a factor

α = 0.2 and a maximal grid spacing dzmax = 2.
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Figure 3.5: The values of the �nite di�erence coe�cients ci for a nonuniform grid with

exponentially increasing grid spacing with depth (a) and the quantity ci · (1+α)
k

for a nonuniform grid with exponentially increasing grid spacing with depth

(b)
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3.5 Matrix Formulation of Di�erential Operators on Nonuniform Standard Staggered Grids

3.5 Matrix Formulation of Di�erential Operators on
Nonuniform Standard Staggered Grids

The implementation of the nonuniform �nite di�erence operators on a Standard Staggered

Grid requires special attention to the positioning of the coe�cients in the matrix repre-

senting the discrete �nite di�erence operator because the derivatives are calculated at

di�erent locations than the variable itself. Following the notation of Section 3.4 the stencil

formulation is:

Du(x) = [ck
1

ck
2

ck
3

ck
4
] u(x) (3.26)

Here the superscript k ∈ {0, . . . ,Nx − 1} indicates the index of the calculated derivative.

Assuming that the number of variables located on the grid points is the same as the number

of variables between the grid points in each dimension and the �rst variable between grid

points is located between the �rst and second grid point, the following matrices Tbetween

and Tat Grid arise:

Tat Grid =



c0

3
c0

4
0 0 0 0 . . . 0

c1

2
c1

3
c1

4
0 0 0 . . . 0

c2

1
c2

2
c2

3
c2

4
0 0 . . . 0

0 c3

1
c3

2
c3

3
c3

4
0 . . . 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 cNx−3

1
cNx−3

2
cNx−3

3
cNx−3

4
0

0 0 . . . 0 cNx−2

1
cNx−2

2
cNx−2

3
cNx−2

4

0 0 0 . . . 0 cNx−1

1
cNx−1

2
cNx−1

3


(3.27)

Tbetween =



ĉ0

2
ĉ0
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2
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2
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1
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1
ĉNx−2

2
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(3.28)

The �nite di�erence coe�cients calculated as described in Section 3.4 are denoted by ĉ
for the variables between grid points and c for the variables at grid points. Finally, the

discrete di�erential operator A can be formed by applying the appropriate matrix T as

diagonal elements (cf. Section 3.2).

Exemplary, the discrete di�erential operator in matrix formulation of the grid presented

in Section 3.4.1 can be found in Equation 3.29.
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3 The Finite Di�erence Method

TatGrid =



−11.25 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11.25 −11.25 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00

−0.42 11.25 −11.14 0.41 0.00 0.00 0.00 0.00 0.00 0.00

0.00 −0.42 11.19 −10.13 0.35 0.00 0.00 0.00 0.00 0.00

0.00 0.00 −0.40 9.87 −8.46 0.29 0.00 0.00 0.00 0.00

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0.00 0.00 0.00 −0.01 0.65 −0.59 0.02 0.00 0.00 0.00

0.00 0.00 0.00 0.00 −0.01 0.58 −0.56 0.02 0.00 0.00

0.00 0.00 0.00 0.00 0.00 −0.02 0.56 −0.56 0.02 0.00

0.00 0.00 0.00 0.00 0.00 0.00 −0.02 0.56 −0.56 0.02

0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.02 0.56 −0.56


(3.29)

Finally, the discrete seismic wave equation on a nonuniform Standard Staggered Grid

can be formulated in the following way:

vn+1/2
z = vn−1/2

z + ∆t · bz
(
(Âzτ

n
zz) + (Axτ

n
xz)

)
vn+1/2
x = vn−1/2

x + ∆t · bx
(
(Azτ

n
xz) + (Âxτ

n
xx

)
τnxx = τ

n−1

xx + ∆t
[
(λ + 2µ)(Axv

n−1/2
x ) + λ(Azv

n−1/2
z )

]
τnzz = τ

n−1

zz + ∆t
[
(λ+2µ)((Azv

n−1/2
z ) + λ((Axv

n−1/2
x )

]
τnxz = τ

n−1

xz + ∆t · µxz
[
(Âzv

n−1/2
x ) + (Âxv

n−1/2
z )

]

(3.30)

Here, the matrices Âi and Ai denote the discrete di�erential operator formed by the

corresponding T matrices between and at the grid node, respectively.

3.6 Implementation of the Free Surface Condition

One key element for the accurate simulation of Rayleigh waves is the implementation of

the interface between the elastic medium and air in the �nite di�erence scheme. Because

of the vanishing stress components in directions normal to the interface, this boundary

is referred to as stress free surface condition (Bohlen, De Nil, et al. 2016). The existing

approaches to this problem can be roughly divided into two aproaches: The Heterogeneous

and the Homogeneous Approach.
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3.6 Implementation of the Free Surface Condition

3.6.1 The Homogeneous Approach

In the Homogeneous Approach the free surface condition is explicitly ful�lled by applying

a special calculation scheme for the grid points directly at the interface. One widely used

method for this is the image method. Following this method, the stress component τzz is

explicitly set to zero at the free surface and τxz is imaged as odd function across the free

surface (Bohlen and Saenger 2006). The main advantage of this method is that it delivers

accurate results even for relatively coarse grids (Bohlen and Saenger 2006). The main

drawbacks of the Homogeneous Approach are that it requires the application of di�erent

calculation schemes for di�erent regions of the model and can only be easily applied to

planar free surfaces.

3.6.2 The Heterogeneous Approach

The Heterogeneous Approach aims at overcoming the limitations of the Homogeneous

approach by assuming that the boundary conditions are implicitly satis�ed by the dis-

tribution of the elastic parameters in the model (Bohlen and Saenger 2006). This yields

the advantages, that no explicit boundary condition needs to be implemented and surface

topography can easily included in the model by setting the corresponding elastic parameter

to zero. For this reason this method is also called Vacuum-Formalism. The use of the SSG

makes local averaging of the material parameter necessary. Special attention should be

paid to the averaging scheme, as it plays a critical role for the stability and accuracy of the

simulation (Mittet 2002). Zeng et al. (2012) proposed an Improved Vacuum Formulation

for the modeling of Rayleigh waves and internal discontinuities. They suggest volume

harmonic averaging for the shear modulus µ and arithmetic averaging for the density, as

performed by the following expressions:

¯bx =

{
0 if ρi,k = 0 and ρi+1,k = 0

2

ρi,k+ρi+1,k
otherwise

(3.31)

¯bz =

{
0 if ρi,k = 0 and ρi,k+1 = 0

2

ρi,k+ρi,k+1

otherwise

(3.32)

µ̄xz =


[

1

4

(
1

µi,k
+ 1

µi+1,k
+ 1

µi,k+1

+ 1

µi+1,k+1

)]−1

if µi,kµi+1,kµi,k+1µi+1,k+1 , 0

0 otherwise

(3.33)

This method is as well applicable to planar free surface cases as topography cases, as

shown in �gure Figure 3.6.
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3 The Finite Di�erence Method

Figure 3.6: Grid distribution of the improved vacuum formulation in presence of surface

topography. The shadowed area is a �ctitious layer whose thickness is only

half a cell size. The free surface in actual computation is represented by the

bold solid line. All parameters above the free surface are set to zero during

modelling. The oblique surface segment can be approximated by the staircase

shape (Zeng et al. 2012)

3.7 Implementation of Absorbing Boundary Conditions

Following the presentation of the convolutional PML technique in Section 2.1.1 based on

Komatitsch and Martin (2007) the implementation within the �nite di�erence method is

discussed in this section. Recall the fundamental idea of replacing the spatial derivatives:

∂x̃ =
1

κx
∂x + ζ (t) ∗ ∂x (3.34)

with

ζ (t) = −
dx

κ2

x

Θ(t)e−(dx /κx+αx )t (3.35)

This implies, that in the PML - regions the spatial derivatives have to be replaced by

the sum of two terms: The original derivative (divided by a constant factor) and the

convolution of the derivative with a given function ζ (t). This convolutional term ca

be e�ciently computed in context of the discrete staggered time scheme by a recursive

convolution technique. For that reason a new memory variable Ψn
x is introduced and

updated at each time step n by:

Ψn
x = bxΨ

n−1

x + ax (∂x )
n+1/2

(3.36)

with

bx = e−(dx /κx+αx )∆t and ax =
dx

κx (dx + κxαx )
(bx − 1). (3.37)

26



3.8 Stability and Dispersion Criteria

Finally the spatial derivative ∂x is replaced by:

∂x̃ =
1

κx
∂x + Ψx (3.38)

From the numerical point of view it is interesting to note that the additional memory

usage of this method is limited to eight additional arrays (one for each derivative) in the

PML-region.

Ultimately the free parameters of the method have to be chosen. Collino and Tsogka

(2001) suggested a damping pro�le dx of the form:

dx (x) = d0

(x
L

)N
(3.39)

with the thickness of the damping region L and a factor d0:

d0 = −(N + 1)vp
loд(R)

2L
(3.40)

Furthermore, the following parameter have to be chosen with respect to the required

damping behavior and structure of the model:

• the mean p-wave velocity vp in the PML- region

• the exponent N of the damping pro�le

• the variable κx

• the variable αx

• the re�ection coe�cient R. It is usually assumed to be R ≈ 10
−4

(Bohlen, De Nil,

et al. 2016).

• the number of grid points in the PML-region,

3.8 Stability and Dispersion Criteria

To achieve stable and accurate simulation results, certain dispersion and stability criteria

have to be met.

3.8.1 Stability Criterion

As the applied time integration scheme is explicit, the maximal time step is limited and

depends on the spatial grid spacing. According to Virieux (1986) the time step ∆t , the grid

spacing in vertical direction ∆z and in horizontal direction ∆x with the P-wave velocity

vp have to satisfy the following inequality:

vp∆t ·

√
1

∆x2
+

1

∆z2
< 1 (3.41)
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3 The Finite Di�erence Method

Greater time steps lead to unstable simulation results. This stability criterion is usually

referred to as Courant-Friedrichs-Lewy stability condition. According to Pitarka (1999), an

analytical derivation of the stability condition of the nonuniform grid is di�cult to obtain,

but is expected to be locally similiar to the stability condition of the uniform grid.

3.8.2 Dispersion Criterion

Besides the temporal resolution, the spatial resolution has to be chosen carefully. If the

grid spacing ∆x/∆z is too coarse, numerical artifacts arise in the calculated solutions. As

the resulting wave�elds seem to show a behavior resembling the dispersion of the waves,

this phenomenon is called grid dispersion or numerical dispersion (Bohlen, De Nil, et al.

2016). The criterion to predict the occurrence of numerical dispersion is the number of

grid points per minimal wavelength λmin(short: ppw). This can be calculated by:

ppw =
λmin

∆x
=

vmin

fmax∆x
(3.42)

Evidently, this quantity is dependent of the source characteristics, especially the maximal

excited frequency fmax , and the minimal velocity vmin of the medium. Furthermore, the

required ppw number depends on the order of the �nite di�erence operator used and the

expected accuracy of the simulation. According to Virieux (1986), Levander (1988) and

Bohlen, De Nil, et al. (2016) it roughly varies from 5 to 10 for the simulation of body waves

with an fourth order operator. The simulation of Rayleigh waves requires higher spatial

resolution. Fichtner (2010) suggests a minimal ppw-number of 20 and Bohlen and Saenger

(2006) reports that 15 to 30 grid points per wavelength are su�cient for accurate results.
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4 Analysis of Numerical Results

In this chapter numerical results obtained by a newly implemented nonuniform �nite

di�erence software (short: NFD) will be discussed. At �rst, the main characteristics of the

NFD are presented. Then its correctness is validated by examination of the convergence

of the algorithm to an analytically obtained solution. At the next stage, the e�ect of the

nonuniform grid spacing on the accuracy of the simulation result is examined and related

with the computational saving provided by this method. Therefore, various subsurface

models are simulated with di�erent discretization and the results are compared with

simulations with uniform grid spacing. This approach is expected to give answer to the

research questions formulated in Section 1.3.

4.1 Characteristics of the Implemented Algorithm

Based on the theoretical considerations presented in the previous chapter, a �nite di�erence

algorithm with nonuniform grid spacing was implemented in the programming language

Python 3. It features the following characteristics:

• object oriented implementation in Python 3

• matrix formulation of the �nite di�erence method

• automatically generated nonuniform �nite di�erence operator of fourth order

• second order time integration

• Standard Staggered Grid discretization of the two dimensional stress-velocity for-

mulation of seismic wave propagation (Virieux 1986)

• Convolutional-PML boundary regions (Komatitsch and Martin 2007)

• implicit free surface condition implemented by the Improved Vacuum Formulation

(Zeng et al. 2012)

4.2 Benchmark of the NFD Implementation

Initially the correctness of the implementation will be examined by comparison of the re-

sults of the NFD using a uniform grid with analytically computed seismograms. To achieve

this goal the analytical solutions in case of an homogeneous halfspace are calculated by

the Cagniard-De Hoop Technique (Berg et al. 1994). Since the numerical solution naturally

shows small variations, the seismograms are also computed with the �nite di�erence
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4 Analysis of Numerical Results

software SOFI2D to align the scale of errors. SOFI2D is a well established �nite di�erence

software developed at the chair of Applied Geophysics at the Geophysical Institute at KIT

(Bohlen, De Nil, et al. 2016).

To quantify the di�erences between the analytical and �nite di�erence seismograms

the L2-Norm is used (Bohlen and Saenger 2006):

L2 =

∑N
l=0
(f (l∆t) − q(l∆t))2∑N

l=0
q(l∆t))2

(4.1)

Here q(t) and f (t) are the analytical and numerical solutions respectively and N is

the number of time steps. Since this measure is rather sensitive to time shifts than the

correctness of the wave form (Bohlen and Saenger 2006), plots of the seismograms are also

shown for visual comparison.

4.2.1 Model Setup

For this numerical analysis a near-surface homogeneous halfspace model with the follow-

ing speci�cations is used:

• model size: 60 m x 20 m

• time step: ∆t = 100 µs

• total simulation time T = 0.4 s

The Material parameters are speci�ed in Table 4.2 and the source is modeled by a vertical

point source excited by a Ricker wavelet :

s(t) = (1 − 2τ 2)e−τ
2

with τ = π

(
t −

1.5

f
− t0

)
· f (4.2)

Here t is the time since start of the simulation, f is the peak frequency and t0 is the

source delay. The maximum frequency is assumed to be about twice as high as the peak

frequency. The chosen parameterization can be found in Table 4.1. The receivers are

equidistantly placed as detailed in Table 4.3.

4.2.2 Error vs. Spatial Resolution

To investigate the convergence of the �nite di�erence method towards the analytical

solution with increasing resolution, the presented model is calculated with various grid

Table 4.1: Source Parameterization for the Ricker Wavelet of the Convergence Test

source frequency source depth source x-position source delay

30 Hz 1 m 5 m 0 s
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4.2 Benchmark of the NFD Implementation

Table 4.2: Material Parameter for the Convergence Test

depth S wave velocity vs P wave velocity vp density ρ

1. layer 0 m 220 m/s 500 m/s 2100 kg/m
3

Table 4.3: Receiver Placing for the Convergence Test

number of receivers �rst receiver position receiver distance receiver depth

24 6 m 2 m 0 m

spacings. In Figure 4.1a the resulting L2 Error (Equation 4.1) is shown for the NFD and

SOFI2D solutions. It reveals, that both the SOFI2D and the NFD solution show very small

deviations for high resolution simulations, which suggests that they converge towards

the analytical solution in the considered test case. Still the SOFI2D code performs slightly

better for all ppw-numbers, which is due to a di�erent a implementation of the free surface

condition. SOFI2D features an explicit boundary condition (image method) (Bohlen, De

Nil, et al. 2016), that is reported to deliver more accurate results than Heterogeneous

Approaches (Bohlen and Saenger 2006).

4.2.3 Error vs. O�set

The error of the �nite di�erence simulation is usually dependent on the o�set of the

receiver, since it accumulates with greater distance from the source. Therefore, the mis�t

is calculated for di�erent o�sets for all spatial resolutions. The results are shown in

Figure 4.1b. First of all, the SOFI2D results exhibit comparatively high error in the �rst

traces. Apparently, the Vacuum Formulation is better suited for the modelling of near

�elds e�ects. Apart from that, the relative error rises with o�set for the simulations with

rather coarse grids, which may be explained by the accumulation of error with o�set.

4.2.4 Comparison of Waveforms

To illustrate the accuracy achieved by the simulations with di�erent grid spacings the

horizontal and vertical velocity components of the receiver with greatest o�set are shown

in Figure 4.2. It reveals, that even for the lowest ppw-number of 14 an acceptable accuracy

is achieved.
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Figure 4.1: The L2 Error in dependency of the grid spacing dx = dz (b) and the L2 Error in

dependency of the o�set (b)
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4.3 Comparison of Nonuniform and Uniform Grids

In this Section the results of uniform and nonuniform grids are compared regarding

accuracy and computational cost. Therefore, �rst a method for measuring the computa-

tional e�ort related to the chosen grid is presented. Based on that, the results for various

subsurface models are discussed.

4.3.1 Measurement of the Computational Cost

For the evaluation of di�erent discretization of the subsurface, it is essential to measure the

computational cost of the simulation. Since it is desirable to �nd a measure independent

of the used hardware and the implementation details of the algorithm, the run time and

memory consumption can not serve as basis for the evaluation. Instead, the number

of grid points and the number of time steps are taken into consideration, because the

computational cost is expected to be roughly linear in both quantities. Note that the time

step length is not independent of the grid spacing. The Courant-Friedrichs-Lewy stability

condition (cf. Section 3.8.1) constrains the maximum time step, which is crucial for the

computational cost of the simulation. According to Fichtner (2010), the numerical error

is dominated by the inaccuracies of the spatial discretization, as empirical studies have

shown. Therefore, the time step is adopted to the spatial grid by setting it to 80% of the

maximum value according to that criterion. Finally, the computational cost is measured

by the product of number of grid points and necessary time steps.

4.3.2 Model 1: The Homogeneous Halfspace

Again, the simple case of a homogeneous halfspace with a model size of 60 m x 20 m and

a total simulation time of T = 0.3 s is considered. The left, right and bottom boundary

regions are implemented with a C-PML layer of 10 grid points. Further details can be

found in Tables 4.4, 4.5 and 4.6 on the source parameterization, material parameter and

the receiver placement, respectively.

The horizontal resolution is kept constant with a grid spacing of 0.2 m. The maximum

vertical resolution is set to dzmax = 0.8 m. Wave�elds are simulated with di�erent α and β
values, respectively. The simulation is also performed by using a uniform reference grid

with a grid spacing of dx = dz = 0.2 m (corresponding to 18 grid points per minimum

wavelength).

The synthetic result (Figure 4.3) shows that higher accuracy and lower computational

e�ort can be achieved simultaneously when utilizing a nonuniform grid compared to the

uniform grid. For the case in which β = 1, the saving of computational resources reaches

60 %, but the accuracy decreases rapidly with increasing grid size factor α . Considering

Table 4.4: Source Parameterization for the First Model: Homogeneous Halfspace

source frequency source depth source x-position

30 Hz 0 m 6 m
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4.3 Comparison of Nonuniform and Uniform Grids

Table 4.5: Material Parameter for the First Model: Homogeneous Halfspace

depth S wave velocity vs P wave velocity vp density ρ

1. layer 0 m 220 m/s 500 m/s 2100 kg/m
3

Table 4.6: Receiver Placing for the First Model: Homogeneous Halfspace

number of receivers �rst receiver position receiver distance receiver depth

24 10 m 2 m 0 m

the case where β = 0.5, we gain a relatively high accuracy in the simulated waveforms,

at the expense of relatively low computational saving compared to the reference grid.

Compared to a uniform grid with comparable accuracy, the gain of e�ciency is particularly

high. For example, with α = 0.1 the relative error is on the same level as the error of a

uniform grid with more than 3 times the cost of the reference grid, while the nonuniform

grid simulation consumes less than 75 % of computational cost compared to the reference

grid. Since both low computational cost and high accuracy in the simulated waveforms

are desired simultaneously, β = 2/3 and α = 0.1 are identi�ed as a reasonable choice

of parameterization. It provides the best trade-o� between accuracy and computational

e�ciency among the choices in the nonuniform grid system.
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Figure 4.3: The computational e�ort as product of the number of time steps and grid

points in percentage of a uniform reference grid (dx=0.2 m, ppw = 18) and the

accuracy for various discretization. The dotted red lines denote the level of

accuracy accomplished by uniform grids with di�erent grid spacings.
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Table 4.7: Source Parameterization for the Heterogeneous Models

source frequency source depth source x-position

30 Hz 0 m 5 m

Table 4.8: Receiver Placing for the Heterogeneous Models

number of receivers �rst receiver position reveiver distance receiver depth

24 8 m 2 m 0 m

4.3.3 Heterogeneous Models

As a next step, di�erent heterogeneous models with increasing complexity are considered.

Since an analytical solution for this case is not available, the results of the NFD software

with uniform and nonuniform grids are compared to pseudoanalytical solutions, which are

calculated by using a high resolution uniform grid. Thereby, the e�ect of the di�erently

spaced grids can be quanti�ed.

The general setup except for the material parameter of all models is kept constant. The

computational domain has a total size of 60 m x 2 m and a total simulation time ofT = 0.5 s.

C-PML boundary layers are applied at all sides except for the free surface. The source is

excited by a vertical point source modelled with a Ricker Wavelet. The parameterization

can be found in Table 4.7. The receiver are equidistantly placed at the free surface with a

spacing described in Table 4.8.

Regarding the spatial discretization, a uniform grid with a spacing of dx = dz = 0.1 m is

used for the computation of the pseudoanalytical solution. For comparison of the uniform

and nonuniform grids, the horizontal resolution is dx = 0.2 m, while the vertical resolution

exponential increases in case of the nonuniform grid. Since the grid parameterization of

β = 2/3, α = 0.1 and dzmax = 0.8 was identi�ed as reasonable choice in Section 4.3.2 for

the homogeneous halfspace model, it is applied for the heterogeneous models as well.

4.3.4 Resampling of Material Parameter

In case of an heterogeneous model the question of resampling of material parameter arises,

because the material parameters are no longer de�ned at the same locations. Therefore,

the following approach is chosen: The true model parameter are assumed to be de�ned

on the uniform grid. Then for each of the grid points of the regular grid, the closest grid

point on the nonuniform grid is detected and all points, that share this closest neighbor

are pooled in sets. Now, the value of each parameter on the nonuniform grid is calculated

by the arithmetic average all points of the corresponding set. If the set is empty, meaning

that non of the uniformly spaced grid points has that point as the nearest neighbor, linear

interpolation is used.

This procedure can be formulated as matrix vector operation by introducing a sampling

matrix S ∈ RN̂z×Nz
, the original modelm ∈ RNz×Nx

and the averaged model m̂ ∈ RN̂z×N̂x
:
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Table 4.9: Material Parameter for the Model 2: One Layer Overlaying Homogeneous Halfs-

pace

depth S wave velocity vs P wave velocity vp density ρ

1. layer 0 m 300 m/s 500 m/s 1800 kg/m
3

2. layer 5 m 700 m/s 1200 m/s 2000 kg/m
3

Smj = m̂j (4.3)

where m̂j andmj denote the j-th column of the model matrix. Since the discretization is

uniform in the horizontal direction, an averaging scheme is only necessary in the vertical

direction.

4.3.5 Model 2: One Layer Overlaying Halfspace

As the �rst step, a simple heterogeneous model is examined. For this purpose, one layer

with lower velocity is added above the homogeneous halfspace. The material parameter of

both layers can be found in Table 4.9. In Figure 4.4 the relative error is plotted as a function

of o�set. The uniform grid performs well and exhibits an error below 0.5%, wheras the

solution of the nonuniform grid has an error of approximately 3 % for all o�sets. A possible

explanation for this relatively high derivation is the positioning of the interface between

the �rst and second layer. In contrast to the uniform grid, the nonuniform is not aligned

with the material discontinuities and therefore can not describe the model precisely at

that crucial location. To illustrate the e�ect on the waveform, the computed seismogram

of the receiver with greatest o�set is presented in Figure 4.5.

4.3.5.1 Variation of Interface Depth

To investigate the e�ect of the deviation of the grid points and the model discontinuities,

Model 2 is slightly perturbed by variation of interface depth between 2.2 m and 4.0 m in

steps of 0.1 m. Due to limited computational resources the model space is chosen smaller

(length 40 m, depth 20 m, simulation time 0.35 s) and only the �rst 14 receivers are used.

Solutions are computed by using a uniform grid (dx = 0.2 m), the proposed nonuniform

grid with and without resampling of material parameter and the proposed uniform grid

with additional structural grid points. This local re�nement of the grid aims at showing,

that the problem of alignment of the grid and the model discontinuities can be solved by

adopting the grid, such that high contrast regions can be accurately modelled. This is done

by arranging the grid in a way, such that the interface is positioned centrally between two

grid points while preserving the distance of grid points in that part of the model. Thereby,

the discontinuity is represented by a strong gradient centered at the interface location.

In Figure 4.6 the mean relative error depending on the interface depth is shown. In

case of the uniform grid, an alternating behaviour of curve can be observed. This is due

to the fact, that the grid spacing is twice as big as the step size of variation of depth,
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Figure 4.4: Relative error in dependency of receiver o�set of Model 2: One Layer Overlaying

Homogeneous Halfspace
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Figure 4.6: Relative error in dependency of the interface depth

resulting in a better representation of the interface every second interface depth tested.

Regarding the nonuniform grid without resampling of parameter, the e�ect of di�erent

depths of the interface is large and also shows oscillating behavior. This supports the

thesis, that the major part of the error is caused by the location of the interface due to the

positioning of grid points, which variantly represents the true location or deviates from it.

The resampling and averaging of material parameters leads to a decrease of maximum

error, but still does not reach a good level of accuracy. The idea of rearranging the grid

at the critical location provides good accuracy (below 5 % of error) independent of the

interface depth. The mean relative error over all interface depths is even lower than the

error of the uniform grid solution. Apart from that, the error decreases with greater depth

of the interface for all grid types. This is caused by the lower sensitivity of the Rayleigh

wave to the deeper part of the model.

4.3.6 Model 3: Gradient Increase Overlaying Homogeneous Halfspace

As a second heterogeneous model, a linear gradient increase of all material parameters

above a homogeneous halfspace is chosen. The material parameter are de�ned in Table 4.10.

Again, the relative error at di�erent receiver locations is considered (Figure 4.7). Both the

uniform and the nonuniform grid perform roughly equally well in this case. The error

rises slightly with o�set, but only reaches a level of approximately 0.5 %, which can be

considered very small. This good result of both methods is likely to be caused by the

absence of challenging strong contrast in this model.
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Table 4.10: Material Parameter for the Model 3: Gradient Increase Overlaying Homoge-

neous Halfspace

depth S wave velocity vs P wave velocity vp density ρ

1. layer 0 m 300 m/s 500 m/s 1800 kg/m
3

gradient increase 0 m to 5 m linear linear linear

2. layer 5 m 700 m/s 1200 m/s 2000 kg/m
3
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Figure 4.7: Relative error in dependency of receiver o�set of Model 3: Gradient Increase

Overlaying Homogeneous Halfspace
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4.3.7 Model 4: Low Velocity Layer

Next, a more challenging and complex model is considered. It consist of two layers above

a homogeneous halfspace, with the second layer featuring lower velocities than the layer

above. This again rises the problem of correct locations of the internal discontinuities.

Additionally, the loss of resolution with depth might become relevant because of the

low velocity zone in the deeper part. The relative error shown in Figure 4.9 reveals, that

the error of the nonuniform grid almost reaches 5 % at the greatest o�set. The uniform

grid also faces a loss of accuracy, which is not as severe, but still attains a value of 3 %

at the maximum. Again, the computed seismogram of the last receiver can be found in

Figure 4.10. Taking the complex waveform recorded at this receiver into consideration,

both the uniform and nonuniform solutions can be considered relatively accurate.
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Figure 4.9: Relative error in dependency of receiver o�set of Model 4: Low Velocity Layer

Table 4.11: Material Parameter of Model 4: Low Velocity Layer

depth S wave velocity vs P wave velocity vp density ρ

1. layer 0 m 300 m/s 700 m/s 1800 kg/m
3

2. layer 5 m 200 m/s 500 m/s 1700 kg/m
3

3. layer 8 m 700 m/s 1200 m/s 2000 kg/m
3
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o�set of Model 4: Low Velocity Layer
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4.3.8 Model 5: Topography Overlaying Homogeneous Halfspace

In this section a model with surface topography is investigated. This is case of special

interest, since it currently can only be modelled accurately at high computational expense.

This is due to the high spatial resolution, that is necessary to avoid numerical artifacts of

the staircases of the discrete surface modelling. Bohlen and Saenger (2006) report, that

even up to 60 grid points are not su�cient to achieve accurate solutions, which prohibits

the application in case of large 3D models. Therefore, the nonuniform grid approach

is of particular interest in this case, as it provides a possibility to achieve the necessary

resolution in the upper part of the model, while keeping the resolution in the deeper part

and thereby the computational e�ort low.

The model is constructed as a rising plane free surface with a slope of 20 % above

a homogeneous halfspace. Receiver placement is adopted to this con�guration and all

receivers are located at the surface. The grid spacing is kept constant above depth 0 m,

which corresponds to the deepest point of the free surface. The material parameter can be

found in Table 4.12. To further illustrate this, a snapshot of the wave�eld can be found in

Figure 4.12.

In Figure 4.11 the relative error in dependency of the o�set from the source is shown.

This reveals, that the nonuniform grids delivers a more accurate solution, especially for far

o�set traces. This is likely to be caused by the �ner grid spacing in the vertical direction of

the nonuniform grid compared to the uniform grid. As a conclusion, the expected bene�t

of the nonuniform grid spacing actually eventuates in the considered case.

Table 4.12: Material Parameter of Model 5: Topography Overlaying Homogeneous Halfs-

pace

depth S wave velocity vs P wave velocity vp density ρ

1. layer 0 m 200 m/s 450 m/s 1800 kg/m
3
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Figure 4.11: Relative error in dependency of receiver o�set of Model 5: Topography Over-

laying Homogeneous Halfspace

Figure 4.12: Snapshot of the wave�eld (vz-component) of the nonuniform grid of Model 5:

Topography Overlaying Homogeneous Halfspace
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4 Analysis of Numerical Results

4.3.9 Model 6: Vertical Fault with Low- and High-Velocity Bodies

To further test the proposed nonuniform discretization (β = 2/3, α = 0.1), a laterally

heterogeneous vertical fault model with a low- and high-velocity body is examined (Figure

4.14). The model size and the placement of receivers are the same as for the homogeneous

model. The source is modelled using a Ricker wavelet with a main frequency of 50 Hz.

The comparison of the calculated seismograms presented in Figure 4.15a reveals that the

proposed nonuniform grid approach provides a high accuracy, even for the complex model

considered. The mean relative error of the horizontal and vertical component is ≈ 0.9 %.

The accuracy in the waveforms simulated by using the non-uniform grid is equivalent

to the result of a uniform grid with dx = dz = 0.2 m, leading to a saving of 45 % of

computational resources while preserving the same level of accuracy.
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5 Conclusion

In this chapter a summary of the results obtained in the thesis regarding the research

questions formulated in Section 1.3 is given. Additionally, an outlook on further research

topics and questions arising from the achieved results is presented.

5.1 Summary

In this work an approach to �nite di�erence modelling of seismic waves in the presence of

a free surface on a nonuniform grid has been discussed. It aims at improving the trade-o�

between accuracy of the simulated solutions and the computational cost by providing the

possibility to adopt the grid resolution to the requirements of the model of the subsurface.

The �rst research question asked for the general ability of the �nite di�erence on grids

with nonuniform spacing to deliver reasonable and accurate results. In Section 4.2 and

Section 4.3.2 this questions has been answered by �rst showing the convergence of the im-

plemented algorithm towards the analytical solution for the homogeneous halfspace with

decreasing but uniform grid spacing. To classify the accuracy achieved in this numerical

test, it has been compared with the results of SOFI2D, a well established �nite di�erence

software developed at the Chair of Applied Geophysics at KIT. As a next step, the results

of various nonuniform discretizations of the model have been compared to the analytical

solution, revealing that the nonuniform �nite di�erence method actually delivers high

accuracy solutions of the seismic wave problem in presence of a free surface.

Section 4.3.2 also gives answer to the second research question, that aims at the rela-

tion of computational cost and accuracy of the modelling with nonuniform grid spacing.

Therefore, an exponential increase of grid spacing with depth has been proposed, taking

the spacial characteristics of the Rayleigh wave into account. This discretization model

has been parameterized and evaluated by examination of the resulting computational cost,

measured by the product of the number of grid points and necessary time steps, and the

accuracy obtained. As a result, it can be reported that the saving of computational time

and memory and improvement of the level of accuracy can be achieved simultaneously in

case a homogeneous halfspace. The e�ect of nonuniform grid spacing when modelling

heterogeneous models of the subsurface has been investigated in Section 4.3.3. It has been

shown that the accuracy of the nonuniform grid highly depends on the structure of the

model. This is suspected to be caused by the need to average material parameter and

the problem of locating material discontinuities at the correct position, if the position is

not aligned with the grid. Subsequently, the error of the simulation can be traced back

to two di�erent causes: the error of the �nite di�erence method due to the truncation
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of the Taylor series expansion of the di�erential operators and the error resulting from

the unprecise representation of the original model. To avoid the latter, simple re�nement

strategies of the computational grid have proven to be an e�ective measure. Finally, the

question of the bene�t of nonuniform grids in case of heterogeneous media is highly

dependent of the model and the chosen grid spacing.

The third research questions asks for a rule of thumb for the nonuniform discretization.

Based on the results of Section 4.3.2, an exponential increase of grid spacing with depth,

where each grid distance is enlarged by 10 % in relation to the previous, and a ratio of

minimal vertical grid spacing and horizontal grid spacing of 2/3 is proposed in case of the

homogeneous halfspace. It provides a saving of 45 % of computational e�ort compared

to a uniform reference grid , while signi�cantly increasing the accuracy. Generally, the

realized computational saving rises with the accuracy demanded. Again, the case of hetero-

geneous models is substantially more di�cult. An optimal nonuniform discretezation can

hardly be speci�ed, since this is highly model dependant. It is required to represent the ve-

locity structure of the model and has to be aligned with the internal interfaces of the model.

5.2 Outlook

Although the e�ect of the nonuniform grid spacing has been soundly investigated in this

thesis, still a couple a open questions remain and promising aspects deserve consideration,

especially regarding the simulation of heterogeneous models.

First of all, the nonuniform discretization of the subsurface has been limited to an expo-

nential increase with depth in this work. Even if this seems to be a reasonable choice with

respect to the characteristics of the simulated waves, other curves of grid spacing with

depth might be worth a closer look. Beyond that, more sophisticated approaches to the

adoption of the grid to the structure of the model might be necessary to fully exploit the

potential of the nonuniform grid spacing. A method to automatically construct a grid, that

�ts the speci�c needs of the model taking into account the velocity structure and location

of interfaces, is highly desirable. Additionally, the question of an appropriate averaging

scheme is crucial to the accuracy of the solutions. A comparison of di�erent approaches

to that problem might lead to the identi�cation of an averaging scheme, that increases the

bene�t of the nonuniform grid.

Moreover, the idea of adopting the grid to the models requirements could be extended

to the time discretization, leading to di�erent time stepping in the di�erent parts of the

model. This is expected to add additional saving of computational resources, at the price

of increasing complexity of the method and its implementation.

Finally, the proposed nonuniform grid spacing is also promising in other �elds of applica-

tion than near surface geophysics. Basically, it can be be highly bene�cially in any area,

where heterogeneous models cause di�erent resolution requirements in di�erent parts of

the computational domain. This might be the case in a wide range of not only geophysical,

but also engineering applications.
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