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Abstract

In most shallow-seismic FWI studies, an isotropic approximation of the subsurface is used, even
if most Earth materials are at least weakly anisotropic. We assume that for shallow sediments, a
vertically transversely isotropic (VTI) approximation is more suitable due to the �ne horizontal
layering of the sediments. We investigate in this work the e�ects of this kind of anisotropy on
surface waves and shallow-seismic FWI. The comparison of seismograms calculated in isotropic
and VTI models shows that the sensitivity towards anisotropy is signi�cantly higher for Love
waves compared to Rayleigh waves. Therefore, we implemented the 2D anisotropic FWI only
for SH waves. In synthetic examples, we investigate the capabilities of the VTI FWI. An almost
perfect reconstruction of both horizontal and vertical velocities is possible, even if structures
in the parameter models are spatially uncorrelated. To analyze the performance of VTI FWI
also for a realistic case, we acquired �eld data at a site where the subsurface contains a highly
anisotropic shale layer and applied the FWI to this data. In this case, it was not possible to
reconstruct the anisotropy of the subsurface properly with the VTI FWI, mainly because of
the strong velocity contrast between the shale and the overlying sediments. Further studies are
necessary to develop methods that can handle such high velocity contrasts. Additionally, to
prove the applicability and the use of the VTI FWI in shallow seismics, the method needs to be
tested on further data sets.





Zusammenfassung

Obwohl die meisten Gesteine und Sedimentschichten anisotrope Eigenschaften aufweisen, wird
bei Wellenforminversionen von Ober�ächenwellen der Untergrund meist als isotrop angenommen.
Aufgrund der horizontalen Schichtung von Sedimenten sollte die Annahme einer vertikal transver-
sal isotropen (VTI) Struktur allerdings eine bessere Näherung darstellen. Wir untersuchen daher
in dieser Arbeit die Auswirkungen dieser Art von Anisotropie auf Ober�ächenwellen und auf
deren Wellenforminversion. Der Vergleich von Seismogrammen, welche in isotropen und VTI
Modellen berechnet wurden, zeigt, dass Love Wellen im Vergleich zu Rayleigh Wellen eine deut-
lich stärkere Sensitivität bezüglich Anisotropie aufweisen. Daher haben wir die 2D anisotrope
Wellenforminversion vorerst nur für SH Wellen implementiert. In synthetischen Tests zeigen
wir die Fähigkeiten der VTI Wellenforminversion. Es können sowohl die horizontalen als auch
die vertikalen Geschwindigkeiten nahezu perfekt rekonstruiert werden, selbst wenn diese unter-
schiedliche räumliche Strukturen aufweisen. Um die Inversion auch an echten Daten zu testen,
wurde eine Messung oberhalb einer stark anisotropen Schieferschicht durchgeführt. Es war nicht
möglich, die Anisotropie dieses Schiefers mit der Wellenforminversion zu rekonstruieren, haupt-
sächlich aufgrund des hohen Geschwindigkeitskontrastes zwischen dem Schiefer und den darüber
liegenden Sedimenten. Weitere Untersuchungen sind notwendig, um Methoden zu entwickeln, die
eine erfolgreiche Inversion in einer solchen Umgebung ermöglichen. Um eine generelle Aussage
über die Anwendbarkeit und den Nutzen der anisotropen Wellenforminversion von Ober�ächen-
wellen machen zu können, müsste die Methode auÿerdem noch an weiteren Datensätzen getestet
werden.
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1. Introduction

With shallow-seismic methods, it is possible to obtain from surface waves information about the
seismic velocities in the �rst few meters of the subsurface. Since surface waves are most sensitive
to the shear-wave velocity, the focus of shallow-seismic methods lies on the reconstruction of this
parameter. It has a great importance for geotechnical site characterization, since the shear-wave
velocity of the �rst 30 m, v30

s , is often used as parameter for soil classi�cation and for seismic
microzonation (Dobry et al., 2000).

Conventional methods for the analysis of surface waves are mainly based on the dispersive be-
havior of those waves (Socco et al., 2010). Since the depth of penetration of surface waves is
dependent of the wavelength, it is possible to get from the frequency-dependent phase velocities,
the dispersion curves, information about the velocity structure of the subsurface. The analysis
and inversion of dispersion curves is a widely used shallow-seismic method to retrieve vs mod-
els (Park et al., 1999; Xia et al., 1999; Xia, 2014). Unfortunately, this method only allows the
generation of one-dimensional velocity models. Information about lateral variations of the sub-
surface can not be retrieved directly from the dispersion curves. A 2D or 3D model can only be
created by a combination of the results from di�erent pro�les or from di�erent source-receiver
combinations together to one model, which will only have a limited lateral resolution (Bohlen
et al., 2004).
With full-waveform inversion (FWI), it is possible to retrieve from seismic data 2D or even 3D
models with a resolution of less than one wavelength and thus with a much higher resolution
than with the classical methods. FWI, which was �rst proposed by Tarantola (1984), uses the
whole information content of the data. The resulting model should thus be able to explain the
complete waveform including phases and amplitudes of the recorded seismograms and not only
onset times as it is the case e.g. for traveltime tomography. Obviously, this necessitates large
computational resources, which is the main limitation factor for the application of FWI. However,
with the growing capabilities of high-performance computing, FWI can today already be applied
to large data sets in exploration seismics (Brossier et al., 2009; Sears et al., 2010; Prieux et al.,
2013). The advantages of FWI also lead to an increasing use of this method for near-surface
investigations. Despite the improvements made in the past years, the application of FWI to �eld
data is still very challenging. Examples for �eld data applications in shallow seismics are given
e.g. by Tran et al. (2013) and Groos et al. (2017). Most of shallow-seismic studies make only use
of the Rayleigh waves, applications of FWI to Love waves as done by Dokter et al. (2017) or Pan
et al. (2016) are in comparison quite rare. However, the use of SH data also has its advantages.
Since the P-wave velocity has no e�ect on this component, there is one less parameter we have to
invert for. This reduces the ambiguity of the inverse problem and also the computational time.
We therefore focus in this work on the inversion of SH data.
Since the computational costs of FWI are extremely high even for acoustic or elastic simulations,
the subsurface is in most studies assumed to be isotropic to avoid additional parameters needed
to describe anisotropy. While in exploration seismics, the consideration of anisotropy in FWI
gains more and more in importance (Prieux et al., 2011; Warner et al., 2013), it is still mostly
ignored in shallow-seismic FWI, even if it is known that most earth materials are at least weakly
anisotropic. The e�ects of anisotropy on surface waves and on shallow-seismic FWI are thus not
known in detail yet.
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Therefore, we investigate in this work the e�ects of the most common sort of anisotropy occuring
in shallow sediments, the vertical transverse isotropy (VTI). We �rst implement a �nite-di�erence
simulation to calculate the wave propagation in VTI media. With this forward solver, we in-
vestigate the e�ects of anisotropy on surface waves by comparing the waveforms generated in
VTI and isotropic models (chapter 3). This analysis gives us information about the sensitivity of
Rayleigh and Love waves towards the di�erent parameters that de�ne anisotropy. Based on the
results of this sensitivity tests, we implement and apply the anisotropic FWI only for Love waves.
In the fourth chapter, we test the anisotropic FWI on synthetic data to explore the capabilities
and limitations of the inversion. Finally, in the �fth chapter, we show a �rst application of the
VTI inversion to �eld data that we acquired for this purpose.



2. Theoretical background

2.1. Seismic anisotropy

Anisotropy in general signi�es that the properties of a material change with the direction in
which they are measured. In the �eld of seismics, the relevant properties are the velocities of
wave propagation, so that seismic anisotropy refers to the angle-dependency of wave velocities.
In isotropic materials, the velocities of P- and S-waves are independent of the direction of wave
propagation. On the contrary, in the case of seismic anisotropy, the velocity of wave propagation
depends on the angle of propagation, so that waves are for example traveling faster in horizontal
than in vertical direction. Anisotropy may be caused by many e�ects on di�erent scales, so
that most Earth materials show some sort of anisotropy. We distinguish between intrinsic and
extrinsic or apparent anisotropy (Schön, 2015). Intrinsic anisotropy is caused by the preferred
orientation of crystals or grains. This alignment can be created by �ows of material, as it is the
case in the upper mantle: Here, the olivine crystals are aligned in direction of the mantle �ow,
which creates a large-scale anisotropic structure. On larger scales than the crystalline scale, other
mechanisms can lead to non-intrinsic anisotropy. An example therefor is the parallel alignment
of cracks or pores in solid rocks due to the orientation of the stress �eld (Babuska and Cara, 1991).

In shallow depths, seismic anisotropy is mostly caused by sedimentation, which creates a horizon-
tal layered structure. If the thickness of the layers is signi�cantly smaller than the wavelength of
propagated waves, this material will be seen as a homogeneous, but anisotropic medium (Backus,
1962). Even if the material of the layers itself is isotropic, the thin layering creates an appar-
ently anisotropic structure. Because of the lateral homogeneity of the layers, the velocity of
wave propagation depends only on the angle in the vertical plane and not on the horizontal
angle. This symmetric form of anisotropy with a vertical axis of symmetry is called vertical
transverse isotropy (VTI, see �gure 2.1). If the axis of symmetry is not vertical but rotated in
a certain angle, the material is no longer called vertical transversely isotropic, but tilted trans-
versely isotropic (TTI) or horizontal transversely isotropic (HTI) for a horizontal orientation of
the axis of symmetry. However, because of its simplicity and since this sort of structure is the
most common in shallow depths, we consider in this work only VTI media.

axis of symmetry

x

y

z

Figure 2.1.: Schematic illustration of a medium with ver-
tical transverse isotropy (VTI) caused by
layering

Figure 2.2.: De�nition of the phase angle θ used in
equations (2.1) - (2.3) and of the group
angle φ (Thomsen, 1986)
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For VTI media, the seismic anisotropy is usually de�ned by the Thomsen parameters ε, δ and γ,
which de�ne the angle-dependency of phase velocities for weak anisotropy as follows (Thomsen,
1986):

vP (θ) = vp,ver
(
1 + δ sin2 θ cos2 θ + ε sin4 θ

)
(2.1)

vSV (θ) = vs,ver

(
1 +

v2
P,ver

v2
S,ver

(ε− δ) sin2 θ cos2 θ

)
(2.2)

vSH(θ) = vs,ver
(
1 + γ sin2 θ

)
(2.3)

In these equations, the so-called phase angle θ corresponds to the angle between the vertical
axis and the normal of the wavefront, which is in the anisotropic case not equal to the group
angle, the angle between vertical axis and ray direction (see �gure 2.2). As we can see from
the equations, the velocities of P- and SV-waves depend on a combination of ε and δ, while the
velocity of SH-waves vSH is only a�ected by γ. The values of the three Thomsen parameters are
normally in the same order of magnitude, typical values for sedimentary rocks are in the range
between 0.01 and 0.3. The parameters can also be negative, for example a negative value of γ
would mean that the velocity of SH-waves is higher in vertical than in horizontal direction.

To visualize the e�ects of anisotropy on the velocities, we show in �gure 2.3 the angle-dependency
of the velocities after equations (2.1) - (2.3) for angles from 0◦ (vertical propagation) up to
90◦ (horizontal propagation). We chose the Thomsen parameters ε = 0.110, δ = −0.035 and
γ = 0.255, and as vertical velocities we use vp = 3300 m

s and vs = 1800 m
s . The chosen values are

based on values for sandstone given by Thomsen (1986). As we can see in �gure 2.3, the general
shape of angle-dependency is di�erent for SV- and SH-waves. For SV-waves, horizontal and
vertical velocities are equal to each other regardless of the values of the Thomsen parameters,
while for SH waves their di�erence is proportional to γ. This has the e�ect that for positive
Thomsen parameters, the SV-wave reaches its maximal velocity at an angle of 45◦ and not like
the SH wave at 90◦. The shape of the P-wave curve is similar to the SH curve, the maximal
P-wave velocity is also reached for a horizontal direction of propagation. For small angles, vp is
even smaller than for vertical direction, this e�ect is caused by the negative δ-value. As we will
show later, the di�erent angle-dependencies of P-, SV- and SH-waves have an in�uence on the
sensitivity of Rayleigh and Love waves towards anisotropy.
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Figure 2.3.: Dependency from the phase angle θ of velocities of P- and SV-waves with ε = 0.110 and δ = −0.035
(left) and of SH waves with γ = 0.255 (right)
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2.2. Forward modeling

A main part of each FWI software is the forward solver that calculates the propagation of
a wave�eld in a given model. In this section, we introduce the equations that are necessary to
calculate the wave propagation in VTI media for the elastic case as well as for the viscoelastic case.
Additionally, we explain some details about the numerical implementation of those equations,
which is done with the �nite-di�erence method.

2.2.1. Elastic equations

In elastic media, the relation between the components of the stress tensor σ and the strain tensor
ε is given by Hooke's law, that is

σij = cijklεkl, (2.4)

where cijkl are the components of the sti�ness tensor c. The components of the strain tensor are
given by

εkl =
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
(2.5)

with the displacement vector ~u.

In the general case of anisotropy, the sti�ness tensor consists of 21 independent components
due to the symmetry of stress and strain tensors and the invariants of a tensor. Therefore, the
tensor can be written as a 6 x 6 matrix by reducing the four indices to only two. This is done
by transforming the indices i, j to m and k, l to n in the following way:
11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5, 12 → 6
The Hooke's law can now be written as

σm = cmnεn (2.6)

In transversely isotropic materials, c consists only of 12 components (Thomsen, 1986):

c =



c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

 (2.7)

From those twelve components, only �ve are independent. For a vertical axis of symmetry (VTI),
we have the following relations between the elastic constants:

c22 = c11

c44 = c55

c23 = c13

c12 = c11 − 2c66 (2.8)

In this work, the axis x, y and z of the coordinate system are de�ned in a way that x is the
1-axis, y the 2-axis and z the 3-axis (vertical).

To get a relation between stress and velocity, we use the derivative of equation (2.4), that is

σ̇ij = cijklε̇kl, (2.9)
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where ε̇kl is given by

ε̇kl =
1

2

(
∂vk
∂xl

+
∂vl
∂xk

)
. (2.10)

Additionally, we use Newton's law

ρv̇i =
∂σij
∂xj

. (2.11)

Equations (2.9) and (2.11) are �nally leading to a system of �rst-order di�erential equations with
velocity and stress components as variables. In two dimensions, where all partial derivatives with
respect to y are zero, the system consists of the following equations:

P/SV waves

ρv̇x =
∂σxx
∂x

+
∂σxz
∂z

(2.12)

ρv̇z =
∂σxz
∂x

+
∂σzz
∂z

(2.13)

σ̇xx = c11
∂vx
∂x

+ c13
∂vz
∂z

(2.14)

σ̇zz = c13
∂vx
∂x

+ c33
∂vz
∂z

(2.15)

σ̇xz = c55

(
∂vx
∂z

+
∂vz
∂x

)
(2.16)

SH waves

ρv̇y =
∂σxy
∂x

+
∂σyz
∂z

(2.17)

σ̇xy = c66
∂vy
∂x

(2.18)

σ̇yz = c55
∂vy
∂z

(2.19)

With those equations, it is possible to calculate the velocity and stress values of the wave�eld
numerically if the elastic constants c11, c13, c33, c55, c66 and the density ρ are known for the whole
model. The equation for σ̇yy is not needed for the 2D case. As we can see in equations (2.12) -
(2.19), the equations for P/SV-waves and for SH-waves are for a 2D VTI medium completely
decoupled. The stress equations can be written in matrix notation, which will be helpful for the
derivation of the gradients for FWI. In the following, we will use for the spatial derivatives of
the velocities the notation ∂vx

∂y = vx,y. The two resulting matrix equations for P-/SV-waves and
SH-waves, respectively, are thenσ̇xxσ̇zz

σ̇xz

 =

c11 c13 0
c13 c33 0
0 0 c55

 vx,x
vz,z

vx,z + vz,x

 (2.20)

and (
σ̇xy
σ̇yz

)
=

(
c66 0
0 c55

)(
vy,x
vy,z

)
. (2.21)

2.2.2. Viscoelastic equations

When working with �eld data, it is necessary to consider the attenuation of seismic waves at least
in the forward modeling part of FWI. Seismic attenuation is usually de�ned by the quality factor
Q = 2π E

∆E with ∆E being the energy loss per cycle. In viscoelastic media, the stress components
are not related to the strain by multiplication with the sti�ness tensor c as in equation (2.4),
but by convolution, so that

σij = cijkl ∗ εkl (2.22)

(Christensen, 1982). The attenuation of real media can be approximated by a rheological model
called the generalized standard linear solid (GSLS, Liu et al. (1976)), which consists of a cer-
tain number of Maxwell bodies connected parallel to a spring. Each Maxwell body represents a
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relaxation mechanism and has a given relaxation frequency fl, from which the relaxation time
τσ,l = 1

2πfl
can be calculated. By adjusting the number and the properties of relaxation mech-

anisms, the frequency dependency of Q can be de�ned in a way that the real attenuation is
simulated as good as possible.

Following the derivations of Bohlen (2002) and Carcione et al. (1988), we obtain for one sin-
gle relaxation mechanism the following viscoelastic equations of motion for SH waves:

ρv̇y =
∂σxy
∂x

+
∂σyz
∂z

(2.23)

σ̇xy = c66(1 + τ)
∂vy
∂x

+ rxy (2.24)

σ̇yz = c55(1 + τ)
∂vy
∂z

+ ryz (2.25)

ṙxy = − 1

τσ

(
c66τ

∂vy
∂x

+ rxy

)
(2.26)

ṙyz = − 1

τσ

(
c55τ

∂vy
∂z

+ ryz

)
(2.27)

Here, rxy and ryz are memory variables used to avoid the calculation of the convolution in (2.22)
as proposed by Robertsson et al. (1994) and Carcione et al. (1988). The parameter τ de�nes the
strength of attenuation and can be estimated with τ = 2/Q from a given Q-model. As relaxation
frequency of a single Maxwell body, the main frequency of the source signal can be used, from
which the relaxation time τσ can be calculated.

2.2.3. Numerical implementation

For simple models as for example a homogeneous velocity model, it is possible to solve the wave
equations (2.12) - (2.19) analytically. However, the subsurface normally has a more complex
structure, so that it is necessary to solve those equations numerically to calculate the wave
propagation. In the software IFOS2D that is used for this work, the calculation of wave prop-
agation is done with the �nite-di�erence (FD) method. For this method, space and time have
to be discretized, so that the partial derivatives in the wave equations can be approximated by
�nite-di�erence operators.

Discretization

The space domain is discretized by equidistant grid points with a grid spacing of ∆h both in x-
and z-direction. The coordinates of the grid points are given by x = i∆h and z = j∆h, where i
and j denote the number of a speci�c grid point.
The time domain is discretized similarly with a constant time spacing ∆t, so that the time at
the n-th timestep is given by t = n∆t.

In this work, a discretization on a staggered grid is used (Virieux, 1986; Levander, 1988). This
means that di�erent parameters are de�ned on di�erent grids which are shifted against each
other by 1

2∆h. Figure 2.4 shows which parameters are de�ned on which grid points. The model
parameters, i.e. the density and the elastic constants, are always de�ned on full grid points,
while the stress and velocity components and the memory variables are distributed on the four
di�erent grids.
To calculate stresses and velocities, the spatial and temporal derivatives in the wave equations
are replaced by �nite-di�erence operators. As example, the derivatives of a function f(x, t) at
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■

▲ ◆

[j, i] [j, i+1]

[j+1, i]

[j+1/2, i+1/2]

x

z

σxx , σzz , rxx , rzz

ρ, c11 , c13 , c33 , c55

σxz , rxz

vx

vz

P / SV

■

▲ ◆

[j, i] [j, i+1]

[j+1, i]

[j+1/2, i+1/2]

x

z

σyz , ryz

ρ, c55 , c66

σxy , rxy
vy

SH

Figure 2.4.: Distribution of parameters on a standard staggered grid for P-/SV-waves (left) and SH-waves (right),
after Virieux (1984, 1986).

the i-th grid point and at the n-th time step are approximated in a second-order approximation
by

∂f

∂x
[n, i] =

f [n, i+ 1/2]− f [n, i− 1/2]

∆h
(2.28)

∂f

∂t
[n, i] =

f [n+ 1/2, i]− f [n− 1/2, i]

∆t
(2.29)

Operators of a higher order include more than only the neighbouring grid points and assure thus
a higher accuracy. In this work, we use second-order approximations in time and sixth-order
approximations in space. The choice of the higher-order operator in space allows us to use a
wider grid spacing and reduces thus the total number of grid points.

Since for the calculation of stress and velocity components, the model parameters ρ and cij
have to be de�ned at the correspondent grid points, it is necessary to average them from the
given values at the full grid points. The density is needed for all velocity components and is
averaged arithmetically, so that the values at the gridpoints of the velocities are calculated as

ρ[j, i+
1

2
] =

1

2
(ρ[j, i] + ρ[j, i+ 1]) , (2.30)

ρ[j +
1

2
, i] =

1

2
(ρ[j, i] + ρ[j + 1, i]) . (2.31)

From the elastic constants, only c55 for the P/SV case and c66 for the SH case have to be
averaged to calculate the stress components σxz and σxy. In contrast to the density, those have
to be averaged harmonically (Moczo et al., 2004), and the four values surrounding the grid point
[j + 1

2 , i+ 1
2 ] are used, so that the averaged parameters are calculated as

cii[j +
1

2
, i+

1

2
] =

[
1

4
(

1

cii
[j, i] +

1

cii
[j, i+ 1] +

1

cii
[j + 1, i] +

1

cii
[j + 1, i+ 1])

]−1

. (2.32)

The approximation of the wave equations by the FD operators is shown here in an exemplary
way for only one of the equations, namely equation (2.12). Replacing the partial derivatives by
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the FD operators yields

ρ[j, i+
1

2
]
v
n+ 1

2
x [j, i+ 1

2 ]− vn−
1
2

x [j, i+ 1
2 ]

∆t
=
σn
xx[j, i+ 1]− σn

xx[j, i]

∆h
+
σn
xz[j + 1

2 , i+ 1
2 ]− σn

xz[j − 1
2 , i+ 1

2 ]

∆h
(2.33)

In this equation, there is only one parameter at the future time step n + 1
2 . By rearranging

equation (2.33), we can calculate it from the parameters at the actual and the last time step:

v
n+ 1

2
x [j, i+

1

2
] = v

n− 1
2

x [j, i+
1

2
] +

1

ρ[j, i+ 1
2 ]

∆t

∆h
( σnxx[j, i+ 1]− σnxx[j, i]+

σnxz[j +
1

2
, i+

1

2
]− σnxz[j −

1

2
, i+

1

2
] )

(2.34)

For the other wave equations, the FD approximation works in a similar way, from each equation
results one future parameter that is calculated from the values at the actual and the previous
time step.

Boundary conditions

For a realistic forward modeling, we have to implement a stress-free surface and absorbing bound-
aries on the other three edges of the model. The absorbing boundaries are implemented with
the method of Perfectly Matched Layers (PML) after Komatitsch and Martin (2007).
The free surface is realized by the mirroring technique proposed by Levander (1988). All vertical
stresses at the grid points where the free surface is located are set to σxz = σzz = σyz = 0. The
stresses above the free surface are calculated by mirroring the values below the surface with an
inverse sign. When calculating the remaining stress components, it should be avoided for reasons
of stability to use vertical derivatives of the velocities, which matters only for σxx. Therefore,
we replace vz,z in the calculation of σxx by using equation (2.15):

σzz = ∆t (c13vx,x + c33vz,z) = 0 (2.35)

⇒ vz,z = −c13

c33
vx,x (2.36)

In each iteration step, it is thus necessary to undo the last update of σxx (which is calculated
before with equation (2.14)), and to add the correct update for the free surface. The �nal
equation for σxx at the n-th timestep thus is

σnxx = σn−1
xx + ∆t (c11 −

c2
13

c33
)vx,x. (2.37)

Numerical stability

To guarantee the numerical stability of the FD-calculation, the time spacing ∆t has to be smaller
than a certain value de�ned by the Courant-Friedrichs-Lewy criterion (Courant et al., 1967). This
condition assures that the wave is not propagating further than to the adjacent grid points in
one time step. The maximal value for ∆t is given for the 2D case by

∆t ≤ ∆h

h
√

2vmax
(2.38)

where h is the sum of the weighting coe�cients of the FD operator and thus depends on the FD
order.
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Additionally, to avoid numerical grid dispersion, which depends on the number of grid points per
wavelength, the grid spacing ∆h should ful�ll the condition

∆h ≤ λmin
n

=
vmin
nfmax

(2.39)

Here, n denotes the necessary number of grid points per wavelength and depends on the FD-order,
e.g. n = 12 for a FD-order of 2.

2.3. Full-waveform inversion

2.3.1. Inversion method

Observed data

Initial model

Simulated data

Misfit

Calculation of gradients

Step length estimation

Model update

Final model

Preconditioning

no

yes

Abort criterion
reached?

Figure 2.5.: Schematic visualization of the iterative FWI process.

The aim of all inverse methods in seismics is to retrieve from the observed data information
about the subsurface in which the seismic waves are propagating. In classical methods as for
example traveltime tomography, only the information about the onset times of di�erent phases is
used and the result of the inversion will be a subsurface model that can explain the travel times
of those phases. All other information available in the data as amplitudes and the waveform
is not used. With full-waveform inversion, all information content of the data is used for the
inversion, so that the resulting inverted model should be able to explain the complete recorded
seismograms. Obviously, this method is correlated with much higher computational costs than
traveltime based methods, which is one of the greatest challenges of FWI.

Full-waveform inversion was �rst developed by Tarantola (1984), and most of the further de-
velopments and applications are based on this work. A good overview of the current state of the
art of FWI is given e.g. in Virieux and Operto (2009), a more detailed description can be found
in Fichtner (2011). In this section, only the basic principle of FWI and details concerning the
implementation of a VTI FWI are explained.

The basic principle of FWI is shown in �gure 2.5. At the beginning, the observed data is
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compared with numerically calculated data from a synthetic initial model, which should be in
the ideal case not too far away from the true model. Therefore, all available a-priori information
about the site should be used to create an appropriate initial model. The mis�t between observed
and synthetic data is de�ned by a certain objective function J(m) which can be for example the
L2 norm. This mis�t is then minimized within an iterative process. In each iteration, variations
δm of the model parameters are calculated so that the data resulting from the new model �ts
better the observed data. The calculation of model updates is based on the steepest descent
method, the new model parameters are de�ned through the parameters of the previous iteration
as

mn+1 = mn − αnPn
(
∂J

∂m

)
n

. (2.40)

Here, P denotes a preconditioning matrix and α the step length. The gradient of the mis�t
function de�nes the direction of the change of the model parameters, and the step length de�nes
how much the model parameters are allowed to change in one iteration and thus has a high
in�uence on the number of iterations. If α is chosen too small, only small changes of model
parameters are applied in each step, so that many iterations are necessary to reduce the mis�t.
On the other hand, if the step length is chosen too big, it can happen that the minimum of the
objective function is missed so that the best model can not be found. To �nd an appropriate step
length, in each iteration a parabolic step length search is used. Therefore, for a few shots the
mis�t is calculated for three di�erent step length and the mis�t values are �tted with a parabolic
curve. The step length at which this curve has its minimum is then used as step length for the
actual iteration.

To increase the speed of convergence, in our inversion software IFOS2D the preconditioned
conjugate gradient method (PCG) is used (Nocedal and Wright, 2006). In this method, not only
the actual gradient ∇Jn is used to calculate the model updates, but also the gradient from the
previous iteration, so that the updates are calculated via

δmn = −Pn∇Jn + βnδmn−1 . (2.41)

There are di�erent possibilities how the factor βn is de�ned, e.g. as proposed by Hestenes and
Stiefel (1952) or Fletcher and Reeves (1964). We use the de�nition after Polak and Ribière
(1969), that is

βn =
∇JTn (∇Jn −∇Jn−1)

||∇Jn||2
. (2.42)

As preconditioning matrix P , we use an energy preconditioning as proposed by Plessix and
Mulder (2004). The calculation of the gradients will be explained in the following section.

2.3.2. Calculation of gradients

To calculate the gradients of the objective function J that are needed for the model updates, we
use the method of Lagrange multipliers, which is a mathematical method for solving constrained
optimization problems. The following derivation is based on the descriptions in Plessix (2006)
and Liu and Tromp (2006). We derive here only the gradients for the SH component, since we
will invert in this work only this component.

In FWI, we want to minimize the objective function that could be for example the L2 norm
of observed and synthetic velocities:

J(m) =
1

2

∑
r

∑
i

∫ T

0
(vi − vobs,i)2 dt (2.43)
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Here, vi are the components of particle velocity calculated numerically in the actual model, and
vobs,i are the velocities from the observed seismograms. The summation over r indicates the
summation over all receivers. The constraints that have to be ful�lled are the two equations of
the velocity-stress formulation of the wave equation

ρv̇i =
∂σij
∂xj

+ fi (2.44)

σ̇ij = cijkl
∂vk
∂xl

(2.45)

with the initial conditions vi(t = 0) = 0 and σij(t = 0) = 0.

We now want to minimize the objective function (2.43) under the constraints (2.44) and (2.45).
Therefore, we construct the augmented Langrangian L by multiplying the constraints with the
Lagrange multipliers ψ1

i and ψ2
ij and subtract them from the function we want to minimize,

yielding

L =
1

2

∑
r

∑
i

∫ T

0
(vi − vobs,i)2 dt−

∫∫
dΩdt ψ1

i (ρv̇i −
∂σij
∂xj

− fi)

−
∫∫

dΩdt ψ2
ij(σ̇ij − cijkl

∂vk
∂xl

) (2.46)

where
∫
dΩ denotes the integration over the complete volume.

Following the theory of the method of Lagrange multipliers, all derivatives of L with respect to
the parameters vi, σij and to the Lagrange multipliers ψ1

i , ψ
2
ij have to be zero. To calculate the

derivatives with respect to vi and σij , we have to partially integrate equation (2.46) in space and
time, resulting in

L =
1

2

∑
r

∑
i

∫ T

0
(vi − vobs,i)2 dt+

∫∫
dΩdt (ρψ̇1

i vi −
∂ψ1

i

∂xj
σij + ψ1

i fi)

+

∫∫
dΩdt (ψ̇2

ijσij −
∂ψ2

ijcijkl

∂xl
vk) . (2.47)

The terms evaluated at the bounds that result from the integration by parts are zero and there-
fore do not appear in this equation. However, from those terms do the boundary conditions
ψ1
i (T ) = 0 and ψ2

ij(T ) = 0 result. Additionally, we use the boundary conditions that all wave-
�elds are zero at the space boundary δΩ.

The derivation of equation (2.47) yields

∂L
∂vi

= 0 ⇔ ρψ̇1
i =

∂ψ2
klcklij
∂xj

− (vi − vobs,i) (2.48)

∂L
∂σij

= 0 ⇔ ψ̇2
ij =

∂ψ1
i

∂xj
. (2.49)

Those equations look similar to the wave equations (2.44) and (2.45), but the initial conditions
of ψ1

i and ψ
2
ij are given at time t = T but not at t = 0. To change this, we write the equations
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reversed in time, i.e. we replace t with T − t yielding

ρψ̇1
i (T − t) =

∂ψ2
kl(T − t)cklij

∂xj
− (vi − vobs,i)(T − t) (2.50)

ψ̇2
ij(T − t) =

∂ψ1
i (T − t)
∂xj

. (2.51)

We now substitute T − t by τ , which yields because of ψ̇1
i (T − t) = −ψ̇1

i (τ)

ρψ̇1
i (τ) = −

∂ψ2
kl(τ)cklij
∂xj

+ (vi − vobs,i)(τ) (2.52)

ψ̇2
ij(τ) = −∂ψ

1
i (τ)

∂xj
(2.53)

with ψ1
i (τ = 0) = 0 and ψ2

ij(τ = 0) = 0. To bring those equations to the same form as the wave

equations, we now only have to replace the term −cklijψ2
kl with a new variable that we call ψ̃2

ij .
With this, the �nal equations are

ρψ̇1
i (τ) =

∂ψ̃2
ij(τ)

∂xj
+ (vobs,i − vi)(τ) (2.54)

˙̃
ψ2
ij(τ) = cijkl

∂ψ1
k(τ)

∂xl
. (2.55)

Those equations are called the adjoint equations. Since τ corresponds to the reversed time
t, the adjoint wave�elds ψ1

i and ψ̃2
ij can be calculated by backpropagation of the adjoint

source, which is de�ned for the L2 norm as residual between observed and synthetically calcu-
lated seismograms reversed in time. ψ1

i then corresponds to the backpropagated velocity �eld
and will therefore be called from now on v∗i , and ψ̃

2
ij corresponds to the backpropagated stress

�eld, called σ∗ij .

The gradients of the objective function J(m) with respect to the model parametersm are derived
by equation (2.46), since ∂J

∂m = ∂L
∂m . The resulting gradients are

∂J

∂ρ
= −

∫
dt v∗i v̇i (2.56)

∂J

∂cijkl
=

∫
dt ψ2

ij

vk
xl

. (2.57)

To calculate the second gradient, we have to replace ψ2
ij and

vk
xl

by σ∗ij and σij , which can be
done by calculating the inverse of the sti�ness matrix c. For SH-waves, rearranging of equation
(2.21) yields (

vy,x
vy,z

)
=

(
1/c66 0

0 1/c55

)(
σ̇xy
σ̇yz

)
. (2.58)
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Doing the same calculation for σ∗ij , we get the �nal gradients

∂J

∂c55
= −

∫
dt

1

c2
55

σ̇yzσ
∗
yz (2.59)

∂J

∂c66
= −

∫
dt

1

c2
66

σ̇xyσ
∗
xy (2.60)

∂J

∂ρ
= −

∫
dt v∗y v̇y . (2.61)

With those equations, it is possible to calculate the gradients by crosscorrelating the forward
and adjoint wave�elds. To get the adjoint wave�elds, it is only necessary to backpropagate the
residuals of velocity seismograms from the receiver positions.

2.3.3. Parameterization

Knowing the gradients with respect to the elements of the sti�ness matrix cijkl, it is possible
to calculate directly the gradients for di�erent parameterizations, e.g. for vertical velocity and
Thomsen parameter (ρ, vs,ver, γ) or for horizontal and vertical velocities (ρ, vs,ver, vs,hor). Other
studies showed that the choice of parameters has a high in�uence on the convergence of FWI. For
isotropic FWI, it was for example shown by Köhn et al. (2012) that the parameterization with ρ,
vp and vs is the most suitable. For FWI in VTI media, studies concerning the parameterization
were carried out e.g. by Plessix and Cao (2011) for acoustic FWI and by Kamath et al. (2017)
and Guitton and Alkhalifah (2017) for elastic FWI. In all those studies, only P/SV waves were
considered, so that their results can not be applied to our case. In this work, we do not investigate
the di�erences of the parameterizations further. We chose to invert for horizontal and vertical
velocities, since their similar order of magnitude guarantees a higher stability of the inversion.
Additionally, those parameters have the most intuitive physical meaning. The corresponding
gradients are calculated by applying the chain rule on equations (2.59) - (2.61) and using the
following relations (Thomsen, 1986):

c55 = ρv2
s,ver (2.62)

c66 = ρv2
s,hor (2.63)

Note that due to the di�erent parameterization also the gradient with respect to ρ changes.
Thus, the gradients used for the model updates are

∂J

∂vs,ver
=

∂J

∂c55
2ρvs,ver , (2.64)

∂J

∂vs,hor
=

∂J

∂c66
2ρvs,hor , (2.65)

∂J

∂ρ′
=

∂J

∂c55
v2
s,ver +

∂J

∂c66
v2
s,hor +

∂J

∂ρ
. (2.66)



3. Anisotropic forward modeling

3.1. Benchmark

We implemented the 2D anisotropic forward modeling for P/SV-waves and for SH-waves in the
inversion software IFOS2D. To benchmark the forward solver, we compare the results with an
analytical solution provided by Payton (1983). This analytical solution is only available for a
homogeneous model and only for the P/SV components. Since the implementation of the SH
component is similar, we assume that a correct implementation of the P/SV forward modeling
also ensures a correct SH modeling. Additionally, we compare the results of the VTI forward
solver with isotropic parameters (ε = δ = γ = 0) to the results of the already existing isotropic
forward solver for all components.

3.1.1. Comparison of VTI and isotropic forward solver

An isotropic medium can be seen as a special case of a VTI medium for which all Thomsen
parameters are equal to zero. Therefore, in this case, the VTI forward simulation has to be
consistent with the isotropic simulation. To verify this consistency, we compare for the same
model the wave�elds calculated with the already existing isotropic forward solver in IFOS2D
with those calculated with the new VTI forward solver. The used model consists of a 5 m
thick layer with vp = 300 m

s , vs = 150 m
s and ρ = 1800 kg

m3 over a halfspace with vp = 500 m
s ,

vs = 300 m
s and ρ = 2000 kg

m3 . The source and receivers are located at the surface of the model, as
source signal a Ricker wavelet with a center frequency of 50 Hz is used. The wave propagation is
calculated for P/SV-waves and for SH-waves, so that all three components of the particle velocity
can be compared. The vertical component vz and the horizontal inline component vx contain the
P- and SV-waves and thus the Rayleigh waves, on the horizontal crossline component vy only
SH-waves and the Love wave appear. For all three components, we show the seismograms at
di�erent o�sets for both simulations in �gure 3.1. The waveforms of VTI and isotropic modeling
are identical at every receiver and on each component, which proves the consistency of both
forward solvers.

3.1.2. Comparison of numerical and analytical solution

The comparison of VTI and isotropic forward solver only assures that for the special case of
a VTI medium with ε = δ = γ = 0, which corresponds to an isotropic medium, the forward
calculation is implemented correctly. To check whether it is also working properly for anisotropic
media, we have to use a di�erent reference than the isotropic solver. Payton (1983) provides an
analytical solution for the location of the wavefronts in VTI media as well as for the waveform
at receivers located along the axis of symmetry. We use those analytical solutions to validate
our VTI forward solver. The equations for both cases are shown in the appendix A.

To compare the numerical wave propagation calculated with IFOS2D with the analytical one, we
use a homogeneous model with the vertical P-wave velocity vp,ver = 500 m

s , the vertical S-wave

velocity vs,ver = 300 m
s , the density ρ = 1900 kg

m3 and the Thomsen parameters ε = 0.3 and
δ = 0.1. The source is located at the center of the model to avoid numerical e�ects from the
borders of the model. As source signal, a Ricker wavelet with a center frequency of 50 Hz is
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Figure 3.1.: Vertical (top left), horizontal inline (top right) and horizontal crossline component (bottom) of particle
velocity calculated with the isotropic and the VTI forward solver.

used. Figure 3.2 shows snapshots of the numerical calculation at di�erent timesteps overlayed by
the analytically calculated position of the wavefronts. Since the Ricker wavelet is no zero phase
wavelet and has instead its maximum at the time t = 0, the analytically calculated wavefronts
do not correspond to the �rst onset of the wave but to its maximum. This corresponds exactly to
what we see in �gure 3.2: In all four snapshots, the analytically calculated wavefronts follow the
second extremum of the numerical signal, which is the maximum of the Ricker wavelet. In the
numerical solution at the �rst shown time step t = 0.03 s, the wavefronts of P and SV wave are
near to each other and even overlapping at some points due to the short propagation time. For
later times, they are clearly distinguishable and propagate according to the analytical solution.
The comparison thus shows that the numerical solution reproduces the correct travel times in
VTI media for both P- and SV-waves.

In a homogeneous isotropic medium, the waves would propagate with the same velocity in all
directions creating circular wavefronts. In VTI media, the shape of the wavefronts changes due to
the di�erent velocities depending on the direction of propagation. As we can see in �gure 2.3, the
angle-dependency of P- and SV-wave velocities is di�erent, which explains the di�erent shapes
of the wavefronts shown in the snapshots. For the P-wave, the horizontal velocity is about 30 %
higher than the vertical velocity, which leads to an elliptical shape of the �rst wavefront. For the
SV-wave, the horizontal and vertical velocities are the same, the fastest direction of propagation
is in an angle of 45◦. Therefore, the second wavefront is not elliptic but has an almost quadratic
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Figure 3.2.: Snapshots of wave propagation in VTI media calculated with IFOS2D compared to the analytically
calculated wavefront (black line) after Payton (1983). The shown amplitudes represent the vertical
particle velocities.

shape. The wavefront of the SH-wave (not shown here) would be similar to the P wavefront,
with the shape of the ellipse de�ned by the third Thomsen parameter γ. The di�erent behavior
of SV- and SH-waves has an in�uence on the sensitivity of surface waves towards anisotropy, as
we will show in detail in section 3.2.

The consistency of analytical and numerical wavefronts proves the correctness of the kinematic
part of the numerical wave propagation, it ensures correct onsets and phase information. Since
for FWI, not only the �rst onsets but the complete waveforms are used, we also have to ensure
that the amplitudes are modeled correctly. To verify this, we compare the numerical solution at
some single receivers to an analytical solution also provided by Payton (1983). This solution is
only valid for sources and receivers located along the axis of symmetry, which is in our case the
z-axis. Additionally, it is only possible to calculate the vertical displacement uz for a vertically
directed source and the horizontal displacement ux for a horizontally directed source, since the
other components are zero due to the radiation pattern of the sources. Figures 3.3 and 3.4 show
the analytically and numerically calculated waveforms of horizontal and vertical displacement,
respectively, with the source direction being vertical in the �rst �gure and horizontal in the
second one. We used the same model as for the calculation of the wavefronts with receivers lo-
cated vertically below the source in o�sets of 20 m and 40 m. The �gures show an almost perfect
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match of analytical and numerical solution. The accuracy of the �t depends on the discretiza-
tion, so that the numerical solution becomes more and more accurate if time sampling ∆t and
grid spacing ∆h are reduced. The shown seismograms were calculated with ∆h = 0.1 m and
∆t = 0.04 ms.
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Figure 3.3.: Analytical and numerical solutions of the vertical displacement uz evoked by a vertically orientated
source at receivers located in o�sets of 20m and 40m along the axis of symmetry (z-axis).
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Figure 3.4.: Analytical and numerical solutions of the horizontal displacement ux evoked by a horizontally orien-
tated source at receivers located in o�sets of 20m and 40m along the axis of symmetry (z-axis).

A correct forward calculation is essential for all following steps, e.g. for the sensitivity analysis
and for FWI. The comparison of the VTI forward solver with the isotropic forward solver and
the analytical solutions shows that the numerical calculation of wave propagation in VTI media
gives the correct results, assuming that the discretization of the numerical grid is �ne enough.
Those observations guarantee that when working with �eld data, we will not introduce errors in
FWI due to an incorrect forward modeling.

3.2. Sensitivity tests

If we inverted directly the data of all three velocity components, we would have to include three
additional parameters to invert for. In addition to vp, vs and ρ, we would have to invert for
the three Thomsen parameters, which gives us twice as much parameters than for the isotropic
case. This does not only augment the computational costs signi�cantly, but the increase of free



3.2. Sensitivity tests 19

parameters also increases the number of possible models that can explain the observed data,
which means that the inverse problem shows a higher ambiguity. To avoid or at least reduce
those problems, we investigate �rst the e�ects of the Thomsen parameters on surface waves to
see which parameter a�ects the most the waveforms and whether Love and Rayleigh waves show
di�erent sensitivities towards anisotropy. This sensitivity analysis can give us a clue about which
parameters are the most important for the inversion and which ones could be neglected because
of their lower in�uence on the waveforms.

3.2.1. Model setup

For the sensitivity test, we start with an isotropic, laterally homogeneous model and calculate the
forward wave propagation in it. The model is derived from �eld data acquired at Bietigheim near
Karlsruhe (Forbriger, 2003) and thus represents a realistic shallow subsurface model. It consists
of a layered structure with velocities varying piecewise linearly with depth over a homogeneous
halfspace starting at a depth of 16.4 m with vp = 1230 m

s and vs = 715 m
s . The density model

consists of only two layers with a value of 2300 kg
m3 in the halfspace and 1600 kg

m3 above. The
vertical pro�les of velocities and density are shown in �gure 3.5. For the numerical calculation,
the model consists of 800 x 300 grid points with a spacing of 0.1 m, which corresponds to a model
size of 80 m in x- and 30 m in z-direction. The total recording time is 0.6 s with a time sampling
of 0.04 ms. A source is located at x = 5 m which emits a Ricker wavelet with a center frequency
of 50 Hz and the receivers are located at the surface every 3 m. The source is directed vertically
for the emission of P- and SV-waves and horizontally for SH-waves.
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Figure 3.5.: Vertical pro�les of P-wave velocity vp, S-wave velocity vs and density ρ in the laterally homogeneous
model used for the sensitivity analysis.

In a next step, we introduce anisotropy into our model. We therefore use the velocities from the
isotropic model shown in �gure 3.5 as vertical velocities in a VTI model and de�ne the horizontal
velocities through the Thomsen parameters. By variation of the parameters ε, δ and γ from 0
to 0.1, we get various VTI models with di�erent grades of anisotropy. The maximal values of
0.1 correspond approximately to a di�erence of horizontal and vertical velocity of 10 %, which
is a common value for sedimentary rocks. For each model, only one of the Thomsen parameters
is varied while the other two are kept to zero. This method allows us to investigate the direct
e�ect of all three parameters separately without considering the interference of ε and δ in the
velocities of P- and SV-waves (see equations (2.1) - (2.3)). For each VTI model, we calculate
the wave propagation so that we can compare the waveforms recorded at the receivers to the
isotropic case.
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3.2.2. Sensitivity of Rayleigh waves

Figure 3.6 shows the seismograms of particle velocities at an o�set of 30 m for the x- and z-
component, where the main part of the signal is formed by the Rayleigh wave. On those two
components, the parameter γ has no e�ect, since no SH-waves are recorded. We therefore
compare the seismograms calculated in the VTI models with the values ε = 0.1 and δ = 0.1
to those calculated in the isotropic model. The seismograms show that both parameters induce
a change of the waveforms concerning both travel times and amplitudes. The e�ects on both
components are similar since both contain parts of P-, SV- and Rayleigh waves. In the model
with ε = 0.1, the complete duration of the recorded signal becomes shorter than in an isotropic
model, and the �rst onset of the P-wave appears earlier. Those di�erences are explained by the
higher horizontal velocity of P-waves which leads to a faster propagation of the direct P-wave
and the Rayleigh wave in the VTI medium.

Figure 3.6.: Particle velocity seismograms at the same receiver in an o�set of 30m for the z-component (top row)
and the x-component (bottom row). Each subplot shows the result in an isotropic model (blue)
compared with the result of a VTI model (red). For the left-hand side, a model with ε = 0.1 and
δ = 0 was used, for the right-hand side a model with ε = 0 and δ = 0.1.

For the model with ε = 0 and δ = 0.1, the observable e�ects are di�erent. The �rst onset of
the direct P-wave is equal to the isotropic waveform, but later arrivals are later in time in the
VTI model. The VTI and isotropic waveforms are again almost equal at the beginning of the
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Rayleigh wave, but for later times the VTI waveform gets retarded so that the total duration
of the signal is longer than in the isotropic case. If we take a look at the angle-dependency of
the wave velocities, we see that for the chosen Thomsen parameters, the horizontal P- and SV-
wave velocities are equal to the vertical velocities and thus to the isotropic ones. This explains
the similarity of the direct waves and of parts of the Rayleigh wave, since purely horizontally
propagating waves are not a�ected by the parameter δ. However, the Rayleigh wave seems also
to be a�ected by the non-horizontal velocities, which in�uence the ellipticity of Rayleigh waves.
Di�ering from the model with ε = 0, the waves are propagating slower in a VTI medium because
of the negative sign before δ in equation (2.2), which reduces the velocities for propagation in
directions di�erent from the horizontal or vertical one.

An interesting conclusion of those observations is that even if the wave�eld consists mainly
of horizontally propagating waves as direct and surface waves and the horizontal velocities are
equal to the isotropic ones, the wave�eld is still a�ected signi�cantly by anisotropy. The sensi-
tivity towards ε and δ is in a similar range of magnitude, but has di�erent, partially opposite
e�ects on the waveforms. If we have more complex models where none of both parameters are
zero, it will become di�cult to separate the in�uences of both parameters since it could happen
that the e�ects of one parameter are compensated by those of the other one.

3.2.3. Sensitivity of Love waves

A similar study is now done for the SH-component of the wave�eld. For this component, only
the parameter γ is relevant, so we use the S-wave velocities shown in �gure 3.5 as vertical
velocities vs,ver and create models with di�erent horizontal velocities vs,hor by varying γ up to
0.1. Additionally, we create a second set of VTI models where we use the isotropic velocity
as horizontal velocity and vary the vertical velocity via the parameter γ. This allows us to
investigate di�erences in the sensitivities towards horizontal and vertical velocity, since we keep
in the two cases one of both velocities constant.
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Figure 3.7.: Particle velocity seismograms at the same receiver in an o�set of 30m for the y-component. Each
subplot shows the result in an isotropic model (blue) compared with the result of a VTI model with
γ = 0.1 (red). On the left-hand side, the vertical velocity vs,ver and on the right-hand side the
horizontal velocity vs,hor is equal to the isotropic vs.

Figure 3.7 shows the results for the two models with γ = 0.1. In both models, the horizontal
velocity is higher than the vertical one, their di�erence is that the isotropic velocity corresponds
to the vertical or the horizontal velocity, respectively. The use of those two models allows us to
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study the sensitivity towards horizontal and vertical velocity separately, since in the two models
only one of both velocities is varied. In the model where the vertical velocity is kept constant
(equal to isotropic velocity), the waves are propagating signi�cantly faster than in the isotropic
model. From the �rst onset on, the phases are shifted to earlier times, for the Love wave, the
time di�erence between corresponding phases amounts up to three times the period, which means
that multiple cycle-skipping occurs. This e�ect is not surprising, since the direct SH-wave and
Love wave are propagating horizontally with a velocity that is about 10 % higher than in the
isotropic model. Apart from the phase shifts, the di�erences between the seismograms are rather
small, only slight changes in amplitudes and waveforms can be observed.

A completely di�erent result is obtained for the model with constant horizontal velocity. Here,
the total duration of the signal does not change at all, the isotropic and VTI signals are starting
and ending at the same time. However, in between, there are high di�erences between the seis-
mograms concerning the waveform and also the amplitudes. Those changes of the waveform also
induce a time di�erence between corresponding phases of up to one period, which is less than for
the �rst model, but high enough that cycle skipping occurs so that in FWI wrong phases would
eventually be �tted.

All in all, the tests showed that the Love wave is sensitive towards both horizontal and ver-
tical velocities. A di�ering horizontal velocity leads mainly to kinematic changes, while the
vertical velocity has stronger dynamic e�ects and induces changes of waveform and amplitudes.
Equivalent to the Rayleigh wave, the Love wave is also a�ected by the vertical velocity, even if it
is propagating horizontally. This sensitivity towards both parameters is a basic requirement for
successful FWI, beacause if one parameter would have only very small e�ects on the waveforms,
it would be impossible to reconstruct it with FWI.

3.2.4. Comparison and conclusions

On a �rst look at �gures 3.6 and 3.7, we can already see that the SH-component is stronger
a�ected by anisotropy than the two other components. To be able to compare the e�ects quanti-
tatively, we calculate for di�erent VTI models the L2 norm by summing up the squared di�erences
of isotropic and VTI particle velocities from 24 receivers placed in 3 m-intervals. For the models,
we vary the parameters ε, δ and γ respectively from 0.01 to 0.1 in steps of 0.01, so that we get
10 models for each Thomsen parameter. For the SH-component, we again di�er between models
with vs,ver = vs,iso and vs,hor = vs,iso.

Figure 3.8 shows the resulting L2 values for all components and models. For the Rayleigh wave,
the plot matches our observations in the seismograms: The L2-curves of x- and z-component
show only very small di�erences, and also the e�ects of ε and δ are in a similar range of magni-
tude, the models with non-zero ε values generate only slightly higher L2 values. However, the L2
norm of the SH-component is signi�cantly higher (up to four times) for all grades of anisotropy,
and this regardless whether the horizontal or the vertical velocity is changed. An interesting fact
is that the curves for the two SH cases are intersecting at γ = 0.04. This means that if we use the
L2 norm as a measure for the sensitivity, then at least for this model, the Love waves are for weak
anisotropy more sensitive to the horizontal velocity, and for higher values of γ more sensitive to
the vertical velocity. This does not seem to be very intuitive, as Love waves propagate horizon-
tally, we would expect a higher sensitivity towards the horizontal velocity over the whole range
of γ. On the other hand, the seismograms in �gure 3.7 already showed that the vertical velocity
also in�uences the waveforms, but in a di�erent way than the horizontal velocity. The similarity
of the L2 norm in both models might be caused by cycle-skipping. A signal that is shifted by one
complete period relative to the isotropic signal may have a smaller mis�t than a less shifted signal,
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Figure 3.8.: L2 norm of particle velocities for all three components. The values for the x- and z-components were
calculated for models with varying ε and δ, the y-component for models with varying γ. For all
curves, 24 receivers with spacings of 3m were used.

because with a phase shift of 2π, the phases are overlaying again, although di�erent phases are
then compared. Due to the cycle-skipping, it is possible that the sensitivity towards the vertical
velocity is higher when measured by the L2 norm. Cycle-skipping explains also why the mis�t
is not increasing continuously with γ. The maximal mis�t is reached for a value of γ where the
signal is shifted by about half a period. For higher γ, the mis�t does not increase further or even
gets smaller, since the phase information becomes then again more similar to the isotropic signal.

If we used a di�erent norm, as for example an envelope-based norm, this would be completely
di�erent. As we can see in �gure 3.7, the envelope of the signal is almost not a�ected by a
change of the vertical velocity, so that the mis�t would be very small in this case. On the
other hand, for the model with di�ering horizontal velocity, the envelope of the signal is clearly
changed, so that we would have a stronger sensitivity towards the horizontal velocity when using
such a norm. In this case, the mis�t would also increase continuously with γ, since the e�ects
on the envelope are mainly based on the time shifts of the signal, which increase gradually with γ.

In summary, the sensitivity tests showed that both Love and Rayleigh waves are a�ected by
anisotropy, but with Love waves showing a much higher sensitivity. It is valid for all components
that not only the horizontal velocity a�ects the waveforms of the surface waves, but also the
vertical one, even if the direction of propagation is mainly horizontal. The horizontal velocity
has mostly kinematic e�ects leading to time shifts of the signal, while the vertical velocity has
a higher in�uence on the waveform and on amplitudes. Because of the signi�cantly higher sen-
sitivity of Love waves, we will focus in this work on the inversion of SH data. The SH case has
the additional advantage that only one additional parameter compared to the isotropic case, the
Thomsen parameter γ, is needed, which reduces the complexity of the problem and the com-
putational costs. We showed in this section that when using the L2 norm as mis�t function, a
sensitivity of Love waves towards horizontal and vertical velocities is given, while a di�erent norm
would probably enhance the sensitivity towards the horizontal velocity but reduce it towards the
vertical velocity. We will therefore use for FWI the L2 norm as objective function, since it allows
us at least theoretically to reconstruct both parameters. The results of the sensitivity analysis
give us good preconditions for a successful FWI of SH data. A sensitivity towards all parameters
is given, and due to the di�erent e�ects of the parameters, the ambiguity of the inverse problem
will be kept limited even with an additional parameter. The possibilities and limitations of the
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anisotropic FWI will be shown in the following sections by its application on synthetic and real
data.



4. Inversion of synthetic data

In this chapter, we show a few tests of the anisotropic FWI calculated with synthetic data. The
data is created by calculating the anisotropic wave propagation numerically in a given model. We
use for the tests di�erent models, starting with a laterally homogeneous model and augmenting
the complexity by introducing lateral variations. An additional test is carried out to investigate
the e�ects of crosstalk between di�erent model parameters.

4.1. Layered model

4.1.1. Models and inversion settings

As a �rst synthetic model for testing the inversion, we use a model consisting of two layers over
a halfspace with all layers having a VTI structure. Both layers have a thickness of 3 m and the
velocities and densities are shown in table 4.1. The relative velocity di�erence between fast and
low direction is in all layers about 10 %, but only in the second layer the vertical velocity is
higher than the horizontal one, which corresponds to a negative value of γ. The whole model
has a length of 51 m and a depth of 15 m and is discretized with a numerical grid with equal
spacings of ∆h = 0.1 m, which creates a grid of 510 x 150 = 76500 grid points.

Table 4.1.: Velocities and densities of the layered model used
for a synthetic FWI test. The parameter z indicates
the depth of the top edge of the layers.

Layer z in m vs,ver in m/s vs,hor in m/s ρ in kg

m3

1 0 180 200 1900
2 3 250 230 2000

Halfspace 6 330 300 2100 150 200 250 300 350
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Figure 4.1.: Vertical pro�le of true and
initial models of horizontal
and vertical velocities.

As initial velocity model for the inversion, we use an isotropic model based on the vertical veloc-
ity. For the �rst 2 m and from depths of 7 m on, the true vertical velocities are used, in between
they are connected by a linear gradient. For the density, we also use a linear gradient from
1900 kg

m3 to 2100 kg
m3 between 2 m and 7 m depth. In �gure 4.1, a vertical pro�le of true and initial

models is shown. We avoid to include hard interfaces in the initial models, since they will hardly
be changed during the inversion.

The acquisition geometry in this synthetic test consists of 48 receivers located at the surface
every 1 m from x = 3 m on, and of 10 sources every 5 m with the �rst source being located at
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x = 2 m. The sources are horizontally directed and emit a Ricker wavelet with a center frequency
of 50 Hz. During the inversion, we will not invert for the source time function but use the same
source wavelet as for the forward calculation. For the model described in table 4.1, we perform
an elastic VTI forward calculation to produce the pseudo-observed data that will be used for
the inversion. The total recording time is set to 0.4 s and a time sampling of 0.04 ms is used to
guarantee numerical stability. In this test, no noise is added to the data.

As objective function J(m) of FWI, we use the L2 norm

J(m) =
1

2

∫ ∑
r,s

||vsyn − vobs||2 dt (4.1)

because of its sensitivity towards horizontal and vertical velocities (see section 3.2). Here, vobs
are the pseudo-observed particle velocities, vsyn the particle velocities calculated in the actual
model during the inversion and the sum over r and s denotes the summation over all sources and
receivers. For the synthetic case, no normalization of the traces in the seismograms is necessary.
The pseudo-observed data and the forward modeling during the inversion are calculated with the
same forward solver, so that all amplitude information of the data can be explained when the
true model is reached by the inversion. In each iteration, the model updates for vs,ver, vs,hor and
ρ are calculated simultaneously as described in section 2.3 by using the PCG method (Polak and
Ribière, 1969). To reduce cycle skipping and thus avoid local minima of the objective function,
we apply the FWI in di�erent stages with increasing frequency content (Bunks et al., 1995). In
the �rst inversion stage, we apply a low-pass �lter with a corner frequency of 5 Hz on the data,
and in each stage this corner frequency is increased by 10 Hz until all frequencies up to 95 Hz
are used. Each stage has the same abort criterion, the next stage starts either if no step length
is found that reduces the mis�t or if the relative reduction of mis�t compared to the second last
iteration is less than 1 %. To avoid strong small-scale �uctuations of the model parameters, the
gradients are smoothed in each iteration with a 2D median �lter with a �lter length of 5 grid
points. Additionally, we apply circular tapers around the sources with a radius of 0.5 m to avoid
strong model updates at the source locations.

4.1.2. Results

The inversion �nished after 394 iterations and managed to reduce the mis�t from 1 · 10−1 m2/s2

in the �rst iteration to only 3.6 · 10−5 m2/s2 as �nal value. The mis�t curve is shown in �gure
4.3. The mis�t is not decreasing continuously, but is jumping to higher values each time the
inversion changes to the next stage with a higher frequency content. Due to the di�erent data
used in each stage, the mis�t values of di�erent stages are not directly comparable. However,
we can see that in each stage the mis�t is decreasing continuously, so that for each frequency
interval the inversion managed to improve the data �t. We also see that the main part of mis�t
reduction happens in the �rst stage, i.e. for the data �ltered with 5 Hz. In this stage, we have
with 86 iterations the highest number of iterations of all stages and the strongest changes of
mis�t. This means that the model is mainly de�ned in this stage, and for higher frequencies,
where smaller wavelengths are included, only small-scale details of the model are changed. In
the simple model used for this test, we have no small-scale features that could only be resolved
with higher frequencies.

The �nal models are shown in �gure 4.2 together with the true models. The inverted vs,ver model
shows an almost perfect result, the three layers are sharply separated from each other and the
absolute velocities of all layers have the correct values. Especially in the deeper part, we see
the e�ects of the acquisition geometry that allows a good reconstruction of the subsurface in the
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Figure 4.2.: True models and results of the VTI inversion after 394 iterations for vertical velocity vs,ver, horizontal
velocity vs,hor and density ρ.
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Figure 4.4.: Pseudo-observed data (blue) and veloc-
ity seismograms calulated in the �nal in-
verted models shown in �gure 4.2 (red)
for the �rst shot located at x = 2m.

central part of the model and gives worse results at the sides that can only be seen, if any, by
a few rays. The inversion gives also a very good result for vs,hor, here, the interfaces are not
resolved as sharp as for the vertical velocity, but still the three layers are distinguishable. Unlike
the vertical velocity, the horizontal velocities at shallow depths and for depths greater than 7 m
had not already the true values in the initial model. However, the velocities of all layers were
reconstructed correctly. Even for great depths up to the lower boundary of the model, where only
a small part of the wave�eld is traveling, the values of vs,hor correspond to the true values. Worse
results are obtained for the inverted density model. Here, the �rst two layers are resolved with
approximately the correct values, but at the interfaces strong oscillations appear that could be
wrongly interpreted as thin density anomalies. The di�erences in quality between the vs-models
and the density are not surprising, since it is well-known that surface waves are mainly a�ected
by the S-wave velocities in the subsurface and show only a weak sensitivity towards ρ. Therefore,
the data �t is mainly optimized by changes of the vs-models, while changes in the density model
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have only small e�ects on the mis�t. Thus, the resulting density models are not really reliable,
but on the other hand errors of this parameter have no signi�cant e�ects on the results of the
two velocity parameters.

Because of the convergence of the mis�t and the good reconstruction of the velocity models,
it is obvious that also the seismograms obtained from the �nal model should be similar to the
pseudo-observed seismograms calculated in the true model. This can be seen in �gure 4.4, where
the seismograms of a few receivers are compared for the �rst shot (located at x = 2 m). The
seismograms are not distinguishable, so that the models resulting from the inversion give an
accurate explanation of the observed data.

We showed with this example that the anisotropic FWI is working almost perfectly on a simple
synthetic, noise-free model. In the following sections, we will increase the complexity of the model
by adding lateral variations and anomalies to investigate further capabilities of the inversion.

4.2. 2D model

4.2.1. Models and inversion settings

For our next synthetic test, we use a more complex model with lateral variations of the velocities
and with di�erent structures of horizontal and vertical velocity. For vs,hor, we use as before a
model consisting of two layers of 3 m thickness over a halfspace. In the vertical velocity model,
we add a vertical interface in the middle of the model, so that the model is split into six di�erent
blocks with di�erent velocities. For the density, we keep the layered model from the previous
test. All velocities and densities of the models can be found in table 4.2 and the models are also
shown in �gure 4.5 a). Model size, acquisition geometry and numerical discretization are the
same than in the previous example.

Table 4.2.: Velocities and densities of the model with lateral variations of vs,ver
used for a synthetic test of FWI.

Layer z in m vs,ver in m/s vs,ver in m/s vs,hor in m/s ρ in kg

m3

(left side) (right side)

1 0 180 190 200 1900
2 3 250 220 230 2000

Halfspace 6 330 280 300 2100

As initial models, we use for both velocities the same linear gradient model which is based on
the true vs,hor model. For ρ, a linear gradient model is also used. The initial models can be
seen in �gure 4.5 b). All inversion parameters are identical to the previous synthetic example of
the layered model. In addition to the VTI inversion of the pseudo-observed data, we also apply
an isotropic FWI to the same data. In this case, the inversion tries to explain the e�ects of
anisotropy in the data by an isotropic model, and by comparing the results of the two inversions
it can be seen which e�ects it has on FWI to ignore anisotropy.
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4.2.2. Results
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Figure 4.5.: a) True models used to produce the pseudo-observed data. b) Initial models for the inversion. c)
Results of the anisotropic FWI. d) Results of isotropic FWI applied on the VTI data.
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In �gures 4.5 c) and d), the results of anisotropic and isotropic FWI are shown, respectively.
With the anisotropic inversion, good results for horizontal and vertical velocities are obtained.
For vs,ver, all interfaces are clearly visible in the inversion result, so even the lateral velocity
structure could be reconstructed although the initial model was laterally homogeneous. In the
�rst two layers, the inverted velocities match almost perfectly the true velocities, but in the
halfspace, the model updates were not strong enough relatively to the initial model, so that the
�nal model shows too low velocities in the left part and too high velocities in the right part with
di�erences to the true velocities of about 10 m

s . The inversion result for the horizontal velocity is
very similar to the result of the inversion for the purely layered model without lateral variations
(see �gure 4.2). This shows us that the lateral variations in vs,ver seem to have no e�ect at all
on the inversion of horizontal velocity, which is a good sign since it shows that the e�ects of
both parameters on the waveforms can be separated by the inversion. As in the results of the
layered model, the interfaces in vs,hor are not reconstructed as sharply as for vs,ver, but are still
clearly visible. The inverted density shows a rather poor result, here the true structure of three
laterally homogeneous layers is not resolved properly, instead the density model shows the same
structure as vs,ver with di�erent values in the left and the right part of the model. We thus see
here a strong crosstalk between ρ and vs,ver, which we will investigate further in section 4.3.

When using an isotropic inversion, we get as a result in addition to the density model only
one velocity model, which should explain the data created in a model with di�erent horizontal
and vertical velocities as good as possible. The inversion result of vs for this example (�gure 4.5
d) is somewhere inbetween the true horizontal and vertical velocities. Especially in the shallow
part of the model, the structure of vs,ver is clearly visible, the halfspace however looks almost
laterally homogeneous and has a similar value as the true horizontal velocity of this part. The
density model looks similar to the result of the anisotropic inversion, but the crosstalk with the
vertical velocity is even stronger and there are more artifacts in the shallow part of the model.
Since we have only one velocity model to explain both di�erent true models, all other e�ects
of anisotropy on the waveforms that can not be explained by vs are projected into the density
model, so that the retrieved density itself becomes useless, but helps to improve the result of
inverted velocity. This e�ect can easily be shown by inverting only for the velocities while the
density is not inverted but the true density model used during the whole inversion. That case
is shown in �gure 4.8 for VTI and isotropic FWI. For the anisotropic FWI, the ambiguity of
the inverse problem is reduced if the true density model is given and kept constant. Therefore,
the results for both velocity models are improved and show an almost perfect reconstruction
of the true models. The improvements can especially be seen in the vertical velocity, where
now even for the deeper parts of the models the true velocities are resolved. When we included
the density into the inversion process, some features of the velocity models were thus projected
into the density model which leads to slightly worse results for the velocities. In the case of
the isotropic FWI, the e�ects are opposite to this. Here, the inversion of only vs has the e�ect
that all anisotropic e�ects have to be explained by one single model. The resulting model is
more similar to the true horizontal velocity, but shows also lateral di�erences caused by the true
vertical velocity model. Compared to the isotropic inversion with non-constant density model,
the velocity model now contains strong artifacts, especially in the left part of the model. When
inverting also for density, those artifacts can be avoided by changes in the density model which
yields a falsi�ed density model but gives a realistic velocity model.

When working with �eld data, normally the density is also inverted in addition to the veloc-
ities, since the true density model is not known. As we showed in this example, the isotropic
result for vs looks in this case quite realistic and contains no artifacts that could be an indication
for anisotropy. The comparison of mis�t values and the data �t (�gures 4.6 and 4.7) shows also
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no signi�cant di�erences between isotropic and VTI inversion. This makes it problematic to
recognize an anisotropic subsurface directly from the inversion result. It is possible to get an
isotropic inversion result that explains the anisotropic data almost as good as a VTI model. It
is not evident from the resulting model, the data �t or the mis�t curve that the observed data
corresponds to an anisotropic model. Because of the higher computational time of VTI FWI, it
does not make sense to use directly an anisotropic inversion on every data set. Therefore, it is
essential to know before inverting the data if the subsurface could possibly have a VTI structure.
In this case, it would be useful to use the VTI FWI to obtain a more correct and more detailed
model of the subsurface.
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Figure 4.8.: Resulting velocity models of VTI and isotropic FWI when the density is kept constant to the true
density.

For the sake of completeness, we perform the same synthetic test with switched true models of
horizontal and vertical velocity, so that we now have lateral velocity variations in vs,hor. All
other inversion parameters are kept the same than for the previous test. This additional test
should show if for example lateral variations can be better resolved for one of the velocity pa-
rameters or if the di�erences between VTI and isotropic inversion are stronger for one of both
cases. The true and initial models as well as the results of isotropic and VTI inversion are shown
in �gure B.1 in the appendix. The quality of the results of the anisotropic inversion is similar
to the example with swapped velocity models (see �gure 4.5), the di�erent spatial structures of
both velocity models are reconstructed correctly, and also the velocity values correspond well
to those of the true models. The vs,ver model seems to be a bit more in�uenced by vs,hor than
the other way round, here very weak lateral variations are visible in the model that have their
origin in the true vs,hor model. The vs model resulting from the isotropic inversion is in this
case an almost perfect reconstruction of the true horizontal velocity model, with some artifacts
in the shallow part. The density models are for both inversions similar, far from the true density
model and highly in�uenced by the structures of vs,hor. A look at the mis�t development of both
inversion shows that the mis�t converges in this example much better for the VTI inversion than
for the isotropic one (see �gure B.2). It can be reduced more in the anisotropic case in each
frequency stage, so that the �nal mis�t is more than one order of magnitude smaller than for the
isotropic inversion. This better reduction of the mis�t is also correlated to a higher number of
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iteration steps, compared to the isotropic inversion more than 100 additional iterations are calcu-
lated. Despite this di�erence of �nal mis�t, the data �t of both inversions is quite similar, both
retrieved subsurface models can almost perfectly explain the observed waveforms (see �gure B.3).

The results of this synthetic test combined with those of the previous test show that struc-
tures of the subsurface can be reconstructed properly as well for the horizontal as for the vertical
velocity component. An isotropic inversion of VTI data will mainly yield the horizontal velocity
as vs model, while the inverted densities are in both cases not reliable. Depending on the true
subsurface models, it is possible that data�t and �nal mis�t of isotropic FWI are as good as
for the results of VTI FWI, even if the obtained vs model does not contain any information
about anisotropy. However, for other models, it can also happen that a signi�cant improvement
is attained by using a VTI inversion. It is therefore recommendable to use an anisotropic FWI
when expecting a VTI subsurface, otherwise the obtained models will probably explain the data
very well, but all information about anisotropy will be missing so that the vs model gives no
correct image of the subsurface.

4.3. Crosstalk test

Our previous tests already showed that the inversion for density and velocities is biased, so that
the inverted density model contains structures that exist only in the true velocity models. In
this section, we investigate this crosstalk between di�erent parameters further to estimate the
reliability of the inversion results.

For this synthetic test, we use spatial uncorrelated models for the three parameters vs,ver, vs,hor
and ρ. The models consist of a layer with gradually increasing velocities and densities over a
halfspace with vs = 400 m

s and ρ = 2050 kg
m3 starting at a depth of 10 m. Additionally, in each

model a rectangular shaped anomaly is added with a value of of vs = 300 m
s for the velocity

anomalies and ρ = 1950 kg
m3 for the density anomaly. The squares have a width of 7 m and a

height of 2 m and are all located in a depth of 3 m, but their horizontal position is di�erent for
each parameter (see �gure 4.9). By choosing di�erent locations of the anomalies for each model
parameter, we will be able to see in the inversion results which parameters are biased the most
and how strong the e�ects of crosstalk are. As initial models, for each model the background
model without the anomaly is used. The acquisition geometry is the same as for the previous
synthetic tests with 48 receivers and 10 sources equally distributed at the surface. All parameters
are updated simultaneously and as before, we start the inversion for low frequencies (up to 5 Hz)
and increase the frequency content step by step during the inversion.

The inversion results are shown together with the true models in �gure 4.9. In both veloc-
ity models, the anomaly is clearly reconstructed at the correct location. However, the absolute
values of the anomalies in the inverted models do not correspond to the true values, but are for
the vertical as well as for the horizontal velocity about 50 m

s to slow. The shape of the anomaly is
better resolved for the vertical velocity, in the horizontal velocity model the borders of the square
are more blurred but the shape is still recognizable. Regarding the crosstalk, only weak e�ects
are visible in the velocity models. In the result for vs,ver, weak perturbations of the background
model can be seen at the right side where the vs,hor anomaly is located. The density anomaly
shows no e�ects on vs,ver. In the vs,hor model, the e�ects of the other velocity component are
even smaller. The anomalies of vs,ver and ρ seem to have no e�ects on the reconstruction of
the horizontal velocity. Again, supporting the results of the previous tests, the �nal density
model shows a much worse reconstruction of the true model than the velocity models. The den-
sity anomaly in the center of the model is almost not visible, instead anomalies appear in the
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inverted density model at the places where the velocity anomalies are located. Especially the
vs,ver anomaly is clearly visible as a positive density anomaly, even its shape is reconstructed.
At the location of the vs,hor anomaly, the background density model is strongly perturbed. It is
obvious that the structures in the true velocity models have a stronger in�uence on the density
inversion than the structures in the real density model. The strong updates in the density model
at the locations of the velocity anomalies can also be a reason why the absolute values in the
density models are underestimated. A higher density at those places can compensate the velocity
di�erences between true and inverted models.

All in all, the crosstalk test showed that both velocity components are only weakly biased and
almost not at all in�uenced by density structures. On the other hand, the density inversion is
highly in�uenced by structures of the velocity models, so that the density model itself can not
be reconstructed properly. Those di�erent e�ects of crosstalk might be explained by equations
(2.64) - (2.66). The density gradient depends directly from the squared horizontal and vertical
velocities, while the velocity gradients are proportional to the density and to the respective veloc-
ity component, but not from the other velocity component. Therefore, the e�ects of density on
the velocities are weaker than the other way round, and the crosstalk between the two velocities
is only minimal. For the application of FWI to real data, the di�erent biasing of the parameters
has the meaning that the results for horizontal and vertical velocities can be considered to be re-
liable, while the density model will probably not contain any information about the true density
of the subsurface, but is mainly coupled to the velocity models.
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Figure 4.9.: Synthetic test for the investigation of crosstalk between vertical velocity vs,ver, horizontal velocity
vs,hor and density ρ: True models (top) and results of the VTI inversion (bottom).

4.4. Summary

In summary, the inversion tests presented in this chapter show that the VTI inversion of data
generated in anisotropic models gives good results for synthetic data. It is possible to retrieve
from VTI data the correct subsurface structures for horizontal and vertical velocities, even if the
structures are spatially uncorrelated. For the deeper parts of the models, it can be problematic
to resolve the correct absolute values because of the weak illumination and because of updates
in the density model that compensate the errors in the velocity models. The inverted density
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models showed in all tests no adequate results. It was not possible to reconstruct the true den-
sity models, instead the inversion results are strongly in�uenced by the two velocity models.
Therefore, the results for density will in the following not be considered to be reliable. On the
other hand, the inversion of both velocities is only weakly in�uenced by the second velocity or
the density, so that even spatially uncorrelated subsurface models of those two parameters can
be reconstructed properly.

One problem for the application of VTI FWI is that when applying an isotropic FWI to VTI
data, it is not always possible to see directly from the results that the subsurface might have
an anisotropic structure. It is possible to get a good data �t with an isotropic model, mainly
because anisotropic e�ects are projected into the density model, and also the inverted models
show no artifacts that could indicate anisotropy. Therefore, it is of advantage to know before
the inversion if the subsurface at the survey site might have a VTI structure, otherwise it is not
necessary to use the VTI inversion which is more expensive concerning computational resources
than the isotropic inversion.



5. Inversion of �eld data

5.1. Setting

For a �rst application of the VTI FWI on real data, a test site is required where we can be
sure that the subsurface has a VTI structure. Additionally, it would be ideal if the subsurface is
known, so that the inversion results can be veri�ed. Otherwise, it would not be possible to judge
if the reconstructed models correspond to the true subsurface or if the data is �tted but with
wrong models. Therefore, a site with a nearby geological outcrop or with a known subsurface
given by other measurements or drillings would be ideal. An adequate site was found at the
village Ohmden near Stuttgart.

5.1.1. Regional geology

Geographically, the region where the measurement took place belongs to the foothills of the
Swabian Alb. During the Jurassic period, southern Germany and thus also the Swabian Alb was
�ooded by a large ocean, the Jurassic sea. The marine deposits from this time period, divided
into Lower, Middle and Upper Jurassic, were consolidated with the time under the pressure
of overlying materials and form today the base of the Swabian Alb. In the Alb foreland, the
limestones of the Upper Jurassic and also the layers of Middle Jurassic have been removed by
erosion, so that there the sediments of Lower Jurassic can be found near to the surface (see
�gure 5.1). The main sediment of Black Jurassic that appears in the region of Ohmden is
the Posidonia shale. Although if it is from the geological de�nition not really a shale, but a
bituminous clay marl, this sediment has a �ne layered structure as a shale and is therefore
assumed to be strongly anisotropic. Johnston and Christensen (1995) showed that the di�erence
of horizontal and vertical velocities in shales can take values up to 35 %. Therefore, we expect
also for the Posidonia shale a signi�cantly higher horizontal velocity than vertical velocity.
The thickness of this shale layer lies normally between 4 m and 16 m. Because of a lack of oxygen
at the bottom of the Jurassic Sea in the Black Jurassic period, the Posidonia shale contains a
high number of marine fossils like ammonites, �sh and marine reptiles which can be found today
at a few spots in the Alb foreland where the shale lies at the surface (Geyer and Gwinner, 1968).
Next to such a spot, called the Schieferbruch Kromer, our survey site is located. It is a slate
quarry which can be accessed by visitors to search for fossils. The advantage of this quarry is
that at its border, an outcrop of approximately 5 m height lays open, so that the structure of the
subsurface can be derived from there. A photo of this outcrop is shown in �gure 5.2. The upper
edge of the Posidonia shale is clearly visible in a depth of about 2 m. The shale is covered by loose
sandy sediments. This sediment layer can be divided from the photo into two sublayers. The �rst
50 cm consist of very sandy soil with a totally homogeneous structure. Below, the sediments are
more consolidated and show weakly a layered structure, so that this part could also be slightly
anisotropic. As we can see on the photo, the shale layers are aligned almost perfectly in the
horizontal plane, which is optimal for the inversion since this horizontal layering creates an ideal
VTI structure. It was possible to put a seismic pro�le just on top of this outcrop parallel to the
border, so that the layered structure visible in the outcrop is expected as inversion result.
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Figure 5.1.: Geological map of the region of the Swabian Alb (Landesamt für Geologie, Rohsto�e und Bergbau,
2017), with coordinates of the corners given in UTM. In the legend, only the relevant Jurassic layers
are mentioned. The red circle indicates the location where the seismic measurement took place (next
to the village Holzmaden).

Figure 5.2.: Photos of the outcrop on top of which the seismic data was acquired. The total height of the outcrop
is approximately 5m. Clearly visible is the upper edge of the Posidonia shale in about 2m depth.
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5.1.2. Acquisition

As mentioned before, the measurement was carried out on top of the outcrop shown in �gure
5.2. We measured along one single pro�le parallel to the break-o� edge with a total length of
52 m. To avoid 3D e�ects from this edge in the data, the pro�le was set up with a distance of
5 m to the edge. We used 48 3-component geophones with an eigenfrequency of 4.5 Hz spaced
with intervals of 1 m. 27 shots were executed every 2 m with the �rst shot located 2.5 m behind
the last geophone, so that the shot positions were always inbetween two geophones. In �gure
5.3, the acquisition geometry with source and receiver positions is represented schematically. We
acquired SH data as well as P/SV data, even if in this work only the SH data will be analyzed.
The P and SV waves were excited by vertical hammer blows on a steel plate and were recorded on
the vertical component of the geophones (z). The SH waves were excited by horizontal crossline
hammer blows on a steel rack and recorded on the horizontal crossline component (y). The
SH shots were executed from both sides of the rack, so that the shots from the two sides can
be subtracted afterwards to remove signal components with P/SV polarization. For each shot
position, three single shots were stacked to enhance the signal-to-noise ratio.

Since the site was part of a golf course, the measuring conditions were optimal. The �at surface
with very short cut grass and the homogeneous soil allowed an exact positioning of the geophones
along a straight line with an accuracy of a few centimeters. The soil also ensures an excellent
ground coupling of the geophones.

6 8 10 54 56 58 x in m

shot 1shot 27

receiver 1 receiver 48

edge of 

slate quarry

Figure 5.3.: Sketch of the acquisition geometry with positions of receivers (red triangles) and sources (stars). The
x-axis is equivalent to the axis used in the following for the parameter models.

5.2. Observed data and preprocessing

The acquired data is of very high quality because of the ideal conditions given by the golf course.
Still, it is necessary to do some preprocessing of the data before inverting it. In this section, we
will explain the preprocessing steps that were applied on the data. In the following, we will only
work with the SH data.

The �rst processing step is to subtract the two shots from the opposite directions at each shot
position. By this, the P/SV polarized signal components that remain in the single shots are
removed since they are polarized in the same manner for both shots, while the SH components
are oppositely polarized so that they get enhanced by the subtraction.
The next, most important step is the 3D to 2D conversion. In a 2D simulation as we use it
with IFOS2D, sources are always implicitely considered to be line sources orientated along the
third, missing axis (y). However, real data is always generated in 3D, even if only one pro�le is
used, since the waves excited by the hammer blows are propagating from these point sources in
all directions. The geometrical spreading of point and line sources is di�erent, so that real and
simulated data would di�er even for the true model in phases and amplitudes only because of the
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line source assumption in the simulation. Trying to simulate the real data with 2D line sources
will therefore introduce errors that are not caused by the subsurface model. The measured data
thus has to be converted to be comparable to the 2D simulated data. We use therefore the direct
wave transformation proposed by Forbriger et al. (2014), which consists of a convolution of the
data with

√
t−1 and a multiplication with r

√
2
√
t−1, where r stands for the o�set.

Next, we mute on all traces the signals recorded before the onset of the clearly visible refracted
wave since we know that they are only noise that we do not want to be �tted by the inversion.
Additionally, we add at the beginning of the signal 0.02 s of zeros to avoid artifacts that could
be caused later by �ltering or inverting of the source time function. Finally, we resample the
data that was acquired with a time sampling of ∆t = 250 ms with a new time sampling of ∆t =
0.04 ms to guarantee a stable simulation. The original total recording time was T = 1.5 s, but
we clip the data now at t = 1.1 s because this time interval contains the main part of all signals.
A �lter is not applied to the data, since it will be �ltered during the inversion and we thus avoid
double �ltering.

Figures 5.4 to 5.6 show the seismograms of �rst, last and middle shot after preprocessing. For
better visualization, the seismograms are normalized tracewise. The data quality is excellent,
almost no noise is visible even in the un�ltered data. Only on the traces next to the sources
low-frequency noise is visible which can be easily removed with a high-pass �lter. For some shots,
the nearest traces are clipped because the amplitudes were too high to be registered, therefore we
will mute for the inversion traces with o�sets smaller than 3 m. The seismograms are dominated
by the Love wave that is highly dispersive as we can see in the �rst and the last shot. Addition-
ally, a refracted wave that forms the �rst onsets is clearly visible, its low slope indicates a layer
with a high velocity as its origin. For far-o�set traces, the amplitudes of the refracted wave are
even higher than those of the surface wave, which is rather unusual and probably caused by high
attenuation in the shallow part of the subsurface.

The frequency content of the data can be seen in �gures 5.7 and 5.8. Figure 5.8 shows the
averaged amplitude spectrum of all 27 shots. The main frequency content of all data lies in
the range between 10 Hz and 110 Hz, with a maximum of the spectrum at about 30 Hz. High
amplitudes also occur for very low frequencies, they correspond to the low-frequency noise on
the near-o�set traces and will be removed during the inversion with a high-pass �lter, since all
frequencies below the eigenfrequency of 4.5 Hz should be removed anyway. In �gure 5.7, the
amplitude spectra of all traces of shot 27 are plotted separately. This allows us to see the o�set-
dependency of the amplitude spectra and so to di�erentiate the frequency contents of surface
and body waves. All in all, the frequencies lie between 10 Hz and 100 Hz. The spectra are wider
at small o�sets, probably because of more noise caused by the people that executed the hammer
shots. With increasing o�set, the frequencies are shifted slightly to lower frequencies. Especially
for the furthest o�sets, the spectra can be divided into two parts separated at 50 Hz. Di�ering
from the traces with smaller o�sets, here the amplitudes of frequencies larger than 50 Hz are as
large or even larger than for lower frequencies. In the seismogram (�gure 5.4), we have already
noticed that the refracted wave has for large o�sets higher amplitudes than the Love wave. From
this observation, we come to the conclusion that the frequency part above 50 Hz corresponds to
the refracted wave, while the frequencies of Love wave are mainly in the interval between 10 Hz
and 50 Hz. This distinction will be helpful if we want to focus during the inversion on one single
wave type.



5.2. Observed data and preprocessing 39

Figure 5.4.: Particle velocity vy (SH component) from shot 1 at x = 57.5m after preprocessing. The velocities
are normalized tracewise, no �lter is applied.

Figure 5.5.: Particle velocity vy (SH component) from shot 27 at x = 5.5m after preprocessing. The velocities
are normalized tracewise, no �lter is applied.
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Figure 5.6.: Particle velocity vy (SH component) from shot 14 at x = 31.5m after preprocessing. The velocities
are normalized tracewise, no �lter is applied.

Figure 5.7.: Amplitude spectra of all traces of shot 27.
The spectra are normalized tracewise.
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Figure 5.8.: Average amplitude spectrum of
all 27 shots.
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Since the wave�eld in near-surface data is dominated by surface waves, we take a closer look on
the dispersion curves. Figure 5.9 shows exemplarily the phase velocity spectrum of shot 27 (with
the source at x = 5.5 m). The �rst mode of the Love wave can clearly be distinguished from
frequencies of about 20 Hz on. For lower frequencies, the phase velocity is increasing rapidly
and is because of the resolution hard do distinguish. The high phase velocities result from the
high velocities of the shale, which is because of its depth only reached by the low-frequency
components of the Love wave. From about 37 Hz on, a second mode of the Love wave is visible.
For frequencies higher than 40 Hz, the phase velocity of the Love wave changes only slightly, it
stays almost constantly at values of 120 m

s to 130 m
s , which should correspond approximately to

the velocities in the upper layer. Additionally, in this frequency range, high amplitudes occur
for high phase velocities of 1000 m

s to 1500 m
s . Those amplitudes probably correspond to the

refracted wave, and the velocities thus give us a �rst estimation of the velocity of the Posidonia
shale. The frequency range (f > 40 Hz) of the refracted wave also matches the observations in
the amplitude spectra in �gure 5.7.

Figure 5.9.: Phase velocity spectrum of the real data of shot 27.

5.3. Inversion

5.3.1. Initial model

To derive an initial model for FWI, we make use of the information contained in the surface
waves. An one-dimensional shear-wave velocity model can be derived from the inversion of the
dispersion curves (Xia, 2014). For the initial model of the quality factor Q, the amplitudes of
the Love wave are used to estimate the attenuation coe�cients, from which the Q-values are
calculated (Gao et al., 2018). The subsurface is here assumed to be isotropic, so that we will
use for FWI the same initial velocity model for horizontal and vertical velocities. The resulting
initial model consists of two layers over halfspace with a thickness of both layers of 1 m (see table
5.1). The �rst two layers have very low velocities of 108 m

s and 165 m
s , respectively, which �ts

to typical velocities of loose shallow sediments. A very high contrast exists between the second
layer and the halfspace which has an estimated velocity of 1500 m

s . This velocity belongs to the
solidi�ed Posidonia shale, from which we know from the outcrop that its top edge lies in a depth
of about 2 m (see �gure 5.2). For the attenuation factor Q of shear waves we get a value of Q = 70
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in the shale layer, which can be seen as quasi elastic. In the layers above, the attenuation is
much stronger with values of Q = 7.5 and Q = 15, respectively. Especially in the �rst layer, very
high attenuation occurs, which explains why in the seismograms for far o�sets the amplitudes of
refracted waves are higher than those of the Love waves. Our in-situ observations also �t to this
low Q-value, when installing the geophones we could see that the soil of the golf course consisted
of very loose-packed sand of which we can assume a high attenuation. The strong attenuation
in the shallow part makes it essential to calculate the wave propagation during FWI with the
vicoelastic equations, since it can not be neglected on that scale.
The densities of the initial model are estimated from the in-situ observations and from the shear-
wave velocities. For the loose sediments in the �rst two layers, we assume densities of 1800 kg

m3

and 1900 kg
m3 , respectively. To the shale layer which is more consolidated, a density of 2200 kg

m3 is
assigned. Since the sensitivity of Love waves towards the density is much weaker than towards vs,
the results will not be in�uenced much even if the densities of the initial model are not correct,
therefore this rough estimation is su�cient as initial model.

Table 5.1.: Velocities vs, densities ρ and values of attenuation factor Q for the initial model. The values are
derived from phases and amplitudes of the Love wave. z denotes the top edge of the respective layers.
The velocities vs will be used as initial values for both horizontal and vertical velocity models.

z in m vs in m/s ρ in kg
m3 Q

0 108 1800 7.5
1 165 1900 17
2 1500 2200 70

Figure 5.10 shows the observed data of shot 1 together with the data calculated in the initial
model. To make both data sets better comparable, the source signal of the synthetic data was
estimated by an inversion of the source time function. This is done by a method proposed by
Pratt (1999) which is basically a least-squares optimization which minimizes the mis�t between
synthetic and real data by adjusting the source time function.

Figure 5.10.: Real data (blue) and synthetic data calculated in the initial model described in table 5.1 (red) of
shot 1, located at x = 57.5m. As source signal, the inverted source time function is used. Only
every third trace is displayed, all traces are normalized.

It can be seen in �gure 5.10 that the initial model is already well explaining some parts of the
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data. The onset times of the refracted wave �t to the real data, which means that velocity and
depth of the fast shale layer are already in the correct range, but the waveforms still look very
di�erent. For the �rst half of the traces, the parts of the Love wave with the highest amplitudes
are also similar to the real data, the �t seems there at least to be good enough to avoid cycle
skipping. For the traces with higher o�set, the �t becomes worse, there too high amplitudes
occur directly after the refracted wave. All in all, the initial model explains the main phases and
seems to be good enough to be used as starting model for FWI.

5.3.2. Inversion procedure

For the inversion, we do not use as initial model exactly the model described in the previous
section. When layer interfaces are already given in the initial model, their position will only
hardly be changed by the inversion, even if they are not at the correct position. Therefore, we
smooth the model slightly to allow also changes of the interfaces. Figure 5.11 shows the vertical
pro�le of the initial velocity and density models. A problem of this model lies in the high velocity
contrast between the second layer and the half space. The half space, which corresponds to the
shale layer, is the part of the subsurface we are most interested in, since it is there that we assume
strong anisotropy. However, because of the high velocity contrast, most energy coming from the
sources at the surface is re�ected at this interface, so that almost no waves are penetrating into
the shale layer. Consequently, the observed waveforms are mainly in�uenced by the parameters
of the �rst two layers and only weakly sensitive to the shale parameters. Especially the sensitivity
towards the vertical velocity is extremely weak, since almost no waves that can be registered are
traveling vertically through the shale layer. Surface waves that penetrate deep enough will mainly
give information about the horizontal velocity. The problems of this sensitivity is exemplarily
shown in �gure 5.12. We calculated the wave propagation in two di�erent models with one of
them being the isotropic model described in table 5.1. The second one is almost identical with the
only di�erence that the shale halfspace has a di�ering vertical velocity of 1200 m

s . The di�erence
of 300 m

s between horizontal and vertical velocity, which corresponds to an anisotropy of 25 %, is
quite strong but still in the range of what we expect from the Posidonia shale. The seismograms
of the �rst shot are shown together in �gure 5.12. It can be seen that the waveforms are almost
identical, especially for near o�sets. Small di�erences occur only at large o�sets, but even there
parts of the Love wave are still very similar. The small di�erences could easily be explained by
other features in the model than anisotropy of the halfspace. It will therefore be very challenging
to retrieve from the data information about the anisotropic halfspace.
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Figure 5.11.: Vertical pro�les of initial velocity and density models, created by a slight smoothing of the models
de�ned in table 5.1.

To deal with the problem of high velocity contrast, we perform two consecutive inversions. In
the �rst one, we focus only on the upper part of the model. Because of the high contrast that is
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Figure 5.12.: Seismograms calculated numerically in the isotropic model described in table 5.1 (blue) and in the
same model but with vs,ver = 1200 m

s
in the halfspace instead of 1500 m

s
(red). Only every third

trace is displayed, all traces are normalized.

still existing in the smoothed initial model, model updates occur only above the interface at 2 m
depth. The deeper parts of the model can only be modi�ed if the shallow part is nearly correct.
We use thus in a second inversion the (smoothed) result of the �rst inversion as initial model
and apply a weighting to the gradients so that they are enhanced for the deeper model parts.
Details about this procedure and the results will be shown in the next section.

The model space has a total size of 500 x 100 grid points with a grid spacing of ∆h = 0.125 m.
The total simulation time is 1.1 s and we use a time sampling of 0.04 ms to guarantee a stable
simulation. The absorbing boundaries have on all sides a width of 10 gridpoints. As in our
synthetic tests, we use a multiscale inversion and start with low frequencies to reduce the e�ects
of cycle skipping. The data is always �ltered with a high-pass with a corner frequency of 8 Hz
and with an increasing low-pass �lter with in the �rst stage a corner frequency of 12 Hz. We
extend the �lter in steps of 3 Hz for the �rst inversion, for the second one in �ner steps of 2 Hz,
and consider only frequencies up to 40 Hz since tests showed that using higher frequencies does
not improve the inversion results. As we could see in �gure 5.9, the dispersion curve of the Love
wave is very �at for higher frequencies, which means that the additional information content
of those frequencies is small so that we can ignore them. At the beginning of each frequency
step, we invert for the source time function to reduce e�ects introduced by a wrong source time
function. Objective function, preconditioning and other parameters are chosen equally to the
synthetic tests if nothing else is mentioned.
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5.3.3. Results

Figure 5.13 shows the initial models and the results for the vs,ver, vs,hor and ρ models after the
�rst inversion. Di�erences between initial and �nal models are very small and occur only in the
upper �rst 2 m of the model. As discussed before, because of the high velocity contrast of the
bedrock most energy is re�ected at the interface and not propagating into the deeper part of
the subsurface, so that the model is only updated in the shallow part. In the models for vertical
velocity and density, we can distinguish an interface at a depth of 0.5 m to 1 m. The thickness of
the top layer varies laterally, it has the highest thickness in the middle of the model and becomes
thinner towards both sides. The velocity of this top layer did not change signi�cantly compared
to the initial model, which indicates that the velocity of the soil estimated from the dispersion
curves was already quite accurate. Below this layer, a zone of increased vertical velocity and
density is visible in the left half of the model. The result for vs,hor shows almost no visible
di�erences to the initial model except from artifacts near to the surface.
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Figure 5.13.: Initial models and inversion results for vertical velocity vs,ver, horizontal velocity vs,hor and density
ρ at the �rst inversion stage.

To improve those results, a second inversion is calculated with initial models based on the pre-
vious inversion results. The models are smoothed with a horizontal gaussian �lter to remove the
artifacts that occur especially in the horizontal velocity model. Additionally, since we want to
enhance the model updates in the deeper part, the interface at 2 m depth is smoothed stronger
than before to make it possible that the position of this interface gets changed by the inversion.
Therefore, we use a sinus-shaped increase of the velocity from 1.5 m to 3.75 m where the velocity
of 1500 m

s is reached.

Since we assume that the shallow part of the models got reconstructed properly by the �rst
inversion, we allow only small updates of the parameters in this part. We multiply the gradients
used to calculate the updates with a depth-dependent weighting function that suppresses updates
in the upper �rst meter and instead ampli�es the updates in greater depths. The values of those
weighting factors are shown in �gure 5.14. In the �rst meter, the gradient is multiplied with
0.1 to reduce the updates in the shallow part. For depths between 1 m and 3.75 m, the factor
increases sinusoidally, and the gradients at depths greater than 3.75 m are multiplied with 50.
This weighting matrix is applied to all three gradients.
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Figure 5.14.: Depth-dependent weighting function that is multiplied with the velocity and density gradients to
enhance model updates in the deeper part.
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Figure 5.15.: Initial models and inversion results for vertical velocity vs,ver, horizontal velocity vs,hor and density
ρ at the second inversion stage. The second row shows the results of the VTI inversion, the third
row the results of an isotropic inversion where as initial model the initial vs,ver model (�rst row)
was used.

In �gure 5.15, the initial models and the results of the second inversion are shown. Additionally
to the results of the VTI FWI, we also show the results of an isotropic FWI. For the anisotropic
FWI, stronger model updates appear now mainly between 1 m and 2 m depth, but below the
models still do not change a lot. Only the density model shows a reduced density on the right



5.3. Inversion 47

side over the complete depth of the model. In the velocity model, only an interface in around
1 m depth can be distinguished, but not even the top edge of the shale can be identi�ed reliably,
it can only be vaguely estimated in the vs,ver model. For the isotropic inversion, we used the
initial model of vs,ver as initial vs model. The �nal velocity model contains a low-velocity layer
slightly above 2 m depth. It is visible along the whole pro�le and its depth �uctuates by maximal
half a meter. The comparison with the outcrop at the test site shows that this structure could
correspond to the top edge of the shale layer. Thus, the velocity near the interface and in the
shale layer is not at all reconstructed properly by the isotropic inversion, but the visible velocity
structure could probably indicate the location of the shale interface.

From the vertical and horizontal velocities, it is possible to calculate the Thomsen parameter γ
with equation (2.3). The γ models for both inversion stages are shown in �gure 5.16. In the
�rst stage, we see clearly the interface of the bedrock at ca. 1.5 m which is caused by the initial
model (see �gure 5.11). Below this interface, γ remains zero since the velocities are not changed.
Above, a layer with positive γ values is visible in the �rst 0.5 m, followed on the left side by
a zone with negative γ values. The values reach from -0.2 up to 0.6 which is quite unrealistic
for soil and for the sediments that had no obvious anisotropic structure. A weak anisotropy of
those materials is possible, but we would expect there rather values of γ smaller than 0.1. Still,
the γ model allows an identi�cation of the interface between �rst and second layer. It can be
assumed that the zones with di�erent values and di�erent sign correspond to di�erent materials,
so that we can di�er from that between the soil and the sediment layer below. After the second
inversion, the structures visible in the γ model are similar but slightly extended in depth. The
sharp interface at the top of the shale disappeared due to the stronger smoothing of the initial
model, but below 2 m γ still has values near to zero, even if in this part the strongest anisotropy
is expected. In the left part of the model, the area with negative γ values just above the assumed
location of the shale interface is still visible, the values became even smaller during the second
inversion and reach thus values in the range of -0.5. In the same depth on the right side of the
model, a positive γ anomaly occurs with values up to 0.8. Those values, as well the negative as
the positive, are far too high to be realistic. They are probably caused by the fact that in this
case, the Love waves are far more sensitive to the horizontal velocity than to the vertical velocity,
so that updates of vs,hor are stronger which results in high values of γ. Especially the negative
values likely do not correspond to the true model, since in shale we expect a higher horizontal
velocity compared to the vertical one. A negative γ could occur if the shale is rotated so that
the layering is orientated along the z-axis, but from the observations in the �eld this is not the
case at our test site. We thus can not resolve the anisotropy of the shale properly with the used
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Figure 5.16.: Models of Thomsen parameter γ calculated from the vertical and horizontal velocity models after the
�rst and the second inversion stage, respectively. Attention should be paid to the di�erent colorbars.
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method. The very high γ values could be an indication for anisotropy in the deeper model, but
they do not describe the model correctly. From the inversion results, we can only estimate the
top edge of the shale layer, since below no model updates occur.

To evaluate the quality of the inversion results, we compare in �gure 5.17 the seismograms cal-
culated in the �nal models of the second inversion stage with the observed data for the �rst and
the last shot. The data �t of VTI and isotropic inversion is quite similar, from the seismograms
it can not be seen that one of both inversion performs signi�cantly better. This corresponds to
the values of the L2 mis�t that were in the same order of magnitude for both inversions. The

Figure 5.17.: Observed seismograms (black) �ltered with a low-pass �lter of 40Hz compared with the �nal seis-
mograms resulting from the isotropic (green) and VTI FWI (orange) for shot 1 and shot 27. Only
every third trace is displayed, all traces are normalized.
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comparison of the seismograms from the �rst and the last shots shows a much better data �t for
shot 1 which is located at x = 57.5 m. There, the main phases of the Love wave and also the
beginning of the refracted waves are well �tted. The �t gets worse for far o�sets and for late
times. On the contrary, for shot 27 (located at x = 5.5 m), the inverted seismograms do not really
�t the observed data. Here, even the phases of the Love wave with the highest amplitudes are
not �tted properly. This di�erence in the data �t indicates that the inverted models are better
on the side of shot 1, i.e. in the right half. For the left side, which in�uences mostly the seismo-
grams of shot 27, the data �t shows that the model can not correspond to the true subsurface.
Thus, the part of the model with negative γ values seems not to explain the data properly, while
the right side with high positive γ gives a good data �t. This matches our observations and ex-
pectations, since a negative γ is rather unrealistic at this site where the shale is lying horizontally.

All in all, it was in this case not possible to retrieve the anisotropy of the Posidonia shale
properly with FWI. The inversion results show that the high velocity contrast of the bedrock is
still problematic for the inversion, even if we amplify the updates in greater depths. Since we
have even in the smoothed initial model a steep increase of velocities, it is di�cult to enhance
only the deep gradients. The smooth course of the weighting function causes a similar ampli�-
cation around the interface, so that the initial strong contrast of the gradients remains almost
unchanged. On the other hand, for depths further below the interface at 2 m, the strong ampli-
�cation of the gradients does not compensate for the lack of information in the data. It seems
that the recorded data does not contain enough information about the shale layer, since almost
no waves are penetrating into this layer, and if they do they are not registered since they do not
get re�ected back. Another reason for the failure of the inversion could simply lie in the initial
models. They are probably di�ering too much from the true models, so that the inversion gets
stuck in a local minimum because of cycle skipping. Further reasons might lie in the handling of
attenuation. We use during the whole inversion the same Q model as passive parameter for the
viscoelastic forward modeling. The Q values were retrieved as 1D model from the amplitudes of
the Love wave. However, it is possible and even probable that this model does not correspond
to the true attenuation. To improve the results, it could be an option to invert also for Q in
addition to the other three parameters. On the other hand, this additional parameter would also
increase the ambiguity of the inverse problem and the computational cost, so that it can not be
assured that this would really ameliorate the results.
Other options to improve the results are a di�erent preprocessing of the data or a di�erent in-
version procedure. A separation of body and surface waves for example could make it easier to
enhance model updates in the deeper part of the model. For sure the FWI work�ow could also
be improved, e.g. by alternating single-parameter inversions with multi-parameter inversions to
compensate for the di�erent sensitivities of the parameters. However, testing all those options
would go beyond the scope of this work.





6. Conclusions

In this work, we implemented successfully the full-waveform inversion for SH waves in vertically
transversely isotropic media. The inversion allows to invert simultaneously for the three model
parameters density, horizontal velocity and vertical velocity. Additionally, attenuation is consid-
ered by using the quality factor Q as passive parameter, which means that the wave propagation
is calculated with the viscoelastic equations for a given Q model which is not updated during the
inversion. We focused in this thesis on the application of the anisotropic FWI on shallow-seismic
data.

The anisotropic calculation of wave propagation was implemented with the �nite-di�erence
method and benchmarked by comparison with an analytical solution and with the isotropic
forward solver. Sensitivity tests showed that a VTI structure of the subsurface has signi�cant
e�ects on the waveforms of both Rayleigh and Love waves, but the e�ects are much stronger on
Love waves. Because of this higher sensitivity of Love waves, we applied FWI in this work only
on the SH component of seismic waves. When dealing only with Love waves, a VTI medium
can be described by three parameters, which are the density ρ, the horizontal velocity of prop-
agation vs,hor and the vertical velocity vs,ver, which is only one additional parameter compared
to the isotropic case. The sensitivity tests also showed that Love waves, even if they are propa-
gating horizontally, are sensitive to both horizontal and vertical velocities. Therefore, it should
in theory be possible to reconstruct from Love waves both velocities with FWI. Those expec-
tations were con�rmed by the application of the anisotropic FWI to synthetic data. It was
possible to reconstruct the models of vs,hor and vs,ver almost perfectly, even if the models were
not spatially correlated. In contrast, it was not possible to retrieve the density properly with the
multi-parameter FWI. An additional crosstalk test showed that the crosstalk between the two
velocities is very weak or even not noticeable, while the density inversion is highly in�uenced by
structures appearing in the velocity models, especially in the vs,ver model. We thus consider the
density models, in contrast to the velocity models, as not reliable. A comparison of the inversion
results with the results of an isotropic FWI showed that it is possible to �nd an isotropic model
that explains the VTI data as good as the VTI model, even if we have in this case only one
velocity model and thus lose all information about anisotropy. If the spatial structures of vs,ver
and vs,hor are di�erent, this will not be visible in the isotropic result, and nothing will indicate
that the assumption of an isotropic subsurface is wrong. Therefore, the application of anisotropic
FWI is recommended when there is a suspicion that the subsurface has a VTI structure, as an
isotropic inversion would then not be able to resolve the correct models.

As a �rst �eld data application, we tried to invert data that was acquired next to a slate quarry
near Stuttgart. At this site, loose sediments are overlaying the bedrock formed by Posidonia
shale, which we assume to be highly anisotropic. Unfortunately, it was not possible to recon-
struct with FWI the anisotropy of this shale. The main reason for this is the high velocity
contrast of more than 1000 m

s between the shale and the overlying materials. This causes a re-
�ection of most wave energy at this interface, so that the recorded seismograms contain almost
no information about the shale layer. Attempts to reduce this problem by weighting the model
updates stronger with increasing depth did not lead to satisfying results. Another reason for the
failure of the inversion is probably the consideration of attenuation only as passive parameter.
An additional inversion for Q might produce better results, since the used Q model likely does
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not correspond to the true attenuation.

All in all, we think that the inversion results could still be improved by the application of a
di�erent preprocessing or by a di�erent inversion work�ow. For certain, the inversion would be
less problematic if the velocity contrast of di�erent materials was smaller or if waves also got
re�ected at the bottom edge of an anisotropic layer. Therefore, further tests, probably also with
di�erent data sets, have to be carried out to investigate the full potential of the VTI inversion.
Our synthetic tests showed the capabilities of the anisotropic FWI, and we believe that also
a VTI inversion of �eld data is possible which will produce high-resolution models containing
additional information about the anisotropic properties of the subsurface.
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Appendix

A. Analytical solution

We show here the equations after Payton (1983) used in section 3.1 to calulate the analytical
solution of VTI wave propagation.

The wavefronts in VTI media are de�ned through the x- and z-coordinates of their locations
as a function of the angle θ at a certain time t. There are always two wavefronts (x−, z−) and
(x+, z+) at the same time, one of the P-wave and one of the SV-wave, respectively. The equations
for their analytical calculation are

x±(θ) =
sin θ

2AR±

(
2β sin2 θ + γ cos2 θ ∓ cos2 θ(k1 cos2 θ − k2 sin2 θ)√

B2 − 4A

)
(.1)

z±(θ) =
cos θ

2AR±

(
2α cos2 θ + γ sin2 θ ± sin2 θ(k1 cos2 θ − k2 sin2 θ)√

B2 − 4A

)
(.2)

with

α = c33/c55 (.3)

β = c11/c55 (.4)

γ = 1 + αβ − (c13/c55 + 1)2 (.5)

k1 = 2α(β + 1)− γ(α+ 1) (.6)

k2 = 2β(α+ 1)− γ(β + 1) (.7)

(.8)

and the functions of θ

A(θ) = α cos4 θ + γ cos2 θ sin2 θ + β sin4 θ (.9)

B(θ) = (α+ 1) cos2 θ + (β + 1) sin2 θ (.10)

R±(θ) =

(
B(θ)±

√
B2(θ)− 4A(θ)

2A(θ)

)1/2

(.11)

Additionally to the wavefronts, it is also possible to calculate the displacement for receivers
located along the axis of symmetry. Due to the radiation pattern, the vertical displacement uz
can only be calculated for a vertically directed source and the horizontal displacement ux only
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for a horizontal source. We introduce four functions of z̄ = t
√
c55/ρ as

F1(z̄) =

(
1

4β
− 2β(α− z̄2)− (γ − (β + 1)z̄2)

4β
√
D

)(
−(γ − (β + 1)z̄2) +

√
D

−2(α− z̄2)(1− z̄2)

)1/2

(.12)

F2(z̄) =

(
1

4β
+

2β(α− z̄2)− (γ − (β + 1)z̄2)

4β
√
D

)(
−(γ − (β + 1)z̄2) +

√
D

2(α− z̄2)(1− z̄2)

)1/2

(.13)

G1(z̄) =

(
1

4
− 2(1− z̄2)− (γ − (β + 1)z̄2)

4
√
D

)(
−(γ − (β + 1)z̄2) +

√
D

−2(α− z̄2)(1− z̄2)

)1/2

(.14)

G2(z̄) =

(
1

4
+

2(1− z̄2)− (γ − (β + 1)z̄2)

4
√
D

)(
−(γ − (β + 1)z̄2) +

√
D

2(α− z̄2)(1− z̄2)

)1/2

(.15)

With those four functions, the Green's functions of vertical and horizontal displacement Uz and
Ux can be calculated:

for |z̄| ≥
√
α Ux = 0 and Uz = 0

for 1 ≤ |z̄| ≤
√
α Ux = F1 and Uz = G1

for 0 ≤ |z̄| ≤ 1 Ux = F1 + F2 and Uz = G1 +G2

(.16)

Those equations are only valid in this form if (α+ β) < γ < (1 + αβ), which is the case for the
parameter we use in our calculation. To calculate the displacements ux and uz from the Green's
functions, they have to be convolved with the source signal, i.e. in our case the Ricker wavelet.
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B. Synthetic tests
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Figure B.1.: a) True models used to produce the pseudo-observed data. b) Initial models for the inversion. c)
Results of the anisotropic FWI. d) Results of isotropic FWI applied on the VTI data.
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Figure B.2.: L2 mis�t of VTI and isotropic FWI plot-
ted over the number of iteration. The
jumps in the mis�t function correspond
to increases of the frequency content of
the data used for the inversion.

Figure B.3.: Pseudo-observed data (black) and veloc-
ity seismograms calulated in the �nal in-
verted models of anisotropic (blue) and
isotropic FWI (red) for the �rst shot lo-
cated at x = 2m.
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