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Abstract

Areas with strong topography and complex subsurface geology like the Canadian foothills are of

interest for exploration geophysics. They pose particular processing and imaging challenges, though.

In order to create under these circumstances subsurface images with high resolution, sophisticated

methods such as full-waveform inversion (FWI) have to be applied. FWI is, in principle, capable

of producing highly detailed parameter models of the subsurface by iteratively updating a starting

model to match both traveltimes and amplitudes of simulated data with data recorded in the field.

When using land data, in particular when strong surface waves are observed that lead in combination

with topographic variations to significant surface wave scattering effects, elastic wave propagation

has to be considered. Previous works studying FWI in areas with topographic variations used, e.g.,

the spectral element method. While this method has the advantage that it has the intrinsic ability to

meet the free surface condition in case of a non-planar top surface, it is also hard to implement and

hard to use efficiently. Hence, the aim of this work is to investigate, if the use of the finite-difference

method paired with the improved vacuum formulation that fully satisfies the free surface boundary

condition is also justifyable. The finite difference method has the advantage that it is widely used and

much simpler than the spectral element method. I show that the staircase effect has a major influence

on Rayleigh waves but not on body waves. This influence can be reduced by choosing a discretization

which is much finer than that needed for body waves. However, even without such fine discretization

my approach is able to simulate wavefields with sufficient accuracy for FWI applications. I perform

simultaneous reconstruction of P-wave velocity, S-wave velocity and density using synthetic data

simulated with the spectral element method. I demonstrate that errors in my scheme result only in a

thin high-velocity layer below the topographic surface of the P-wave velocity model. Furthermore,

I investigate the impact of strong 3D effects, like they occur in mountainous regions, on 2D FWI.

The result of this investigations is that in case of a 3D model which is constant in one dimension the

recorded data can be easily transformed such that it is almost eqivalent to the 2D data regardless of

the surface topography. In this case 2D FWI still produces sufficiently accurate results. In case of

topographic variations perpendicular to the acquisition line, however, this transformation is no longer

applicable. Thus, 2D FWI fails under such conditions.
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Zusammenfassung

Regionen mit starker Topographie und komplexer Geologie, wie das Vorgebirge der kanadischen

Rocky Mountains, sind von Interesse für die Explorationsgeophysik. Solche Regionen stellen aller-

dings eine große Herausforderung für geophysikalische Bildgebungsverfahren dar. Um unter solchen

Umständen hochauflösende Abbildungen des Untergrunds zu generieren, sind komplexe Methoden

wie die Wellenforminversion (WFI) von Nöten. Die WFI ist, im Prinzip, dazu fähig hochgradig

detaillierte Parametermodelle des Untergrunds durch iterative Verbesserung eines Startmodells zu

erzeugen, sodass sowohl die Laufzeiten als auch die Amplituden von simulierten Daten mit den im

Feld gemessenen Daten übereinstimmen. Bei Landdaten, insbesondere wenn starke Oberflächen-

wellen beobachtbar sind, welche, in Kombination mit topographischen Variationen, zu signifikanten

gestreuten Oberflächenwellen führen, muss elastische Wellenausbreitung berücksichtigt werden. Vo-

rangegangene Studien nutzten z.B. die Spektralelementemethode. Während diese den Vorteil hat,

dass die Randbedingung der freien Oberfläche auch bei nicht-planarer Oberfläche intrinsisch erfüllt

ist, ist sie schwieriger zu implementieren und auch schwieriger effektiv nutzbar. Daher ist das Ziel

dieser Arbeit zu untersuchen, ob die Nutzung der Finite-Differenzen-Methode in Kombination mit der

verbesserten Vakuumformulierung ebenfalls effizient ist. Mit der verbesserten Vakuumformulierung

ist die Randbedingung der freien Oberfläche ebenfalls erfüllt. Die Finite-Differenzen-Methode hat

den Vorteil, dass sie bereits weit verbreitet und außerdem einfach zu nutzen ist im Vergleich zur

Spektralelementemethode. Ich zeige, dass der Treppeneffekt einen starken Einfluss auf Rayleigh-

aber nicht auf Raumwellen hat. Dieser Einfluss kann verringert werden, indem eine Diskretisierung

gewählt wird, welche wesentlich feiner ist, als die Kriterien für Raumwellen verlangen. Allerdings

ist meine Herangehensweise auch ohne solche feinen Diskretisierungen in der Lage, Wellenfelder

mit ausreichender Genauigkeit für die Anwendung in der WFI zu simulieren. In meiner Arbeit nutze

ich simultane Inversion der P-Wellengeschwindigkeit, der S-Wellengeschwindigkeit und der Dichte

unter Verwendung synthetischer Daten, welche mit Spektralelementemethode simuliert sind. Ich

demonstriere, dass Fehler in meinem Schema nur zu einer dünnen Hochgeschwindigkeitszone unter

der Oberfläche des Modells der P-Wellengeschwindigkeit führen. Darüber hinaus untersuche ich

den Einfluss von starken 3D-Effekten, wie sie in bergigen Regionen auftreten, auf die 2D WFI. Das

Ergebnis dieser Untersuchung ist, dass im Falle eines 3D Modells, welches konstant in einer Di-

mension ist, die aufgezeichneten Seismogramme leicht transformiert werden können, sodass diese

äquivalent zu 2D Daten sind, unabhängig von der Topographie. In diesem Fall produziert die 2D

WFI ausreichend gute Ergebnisse. Im Falle von topographischen Variationen senkrecht zur Akquisi-

tionsgeometrie allerdings, ist die verwendete Transformation nicht mehr anwendbar, weshalb die 2D

Inversion unter diesen Bedingungen versagt.
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Chapter 1

Introduction

Land seismic data becomes more and more interesting for explorations seismics because easy marine

targets are already explored and new technical advances, like drones and wireless geophones, make

seismic acquisitions on land easier and cheaper. Unlike in marine environments, the surface where

the acquisition geometry is placed on can have significant height differences. One such region are

the Canadian Foothills where, as of today, oil and gas are produced for decades. One of the earliest

investigations of the Canadian Foothills was done by Gray and Marfurt (1995) which studied the per-

formance of Kirchhoff depth migration in mountainous areas and created the well known Canadian

Foothill model. For a successful migration one requires a velocity model of the subsurface. In the past

velocity analysis is a foothills setting was, e.g., done using manual velocity picking in a geologically

constrained time-migration workflow (Vestrum, 2007). Such methods require a lot of manual work

and can only produce very smooth velocity models which are not sufficient for imaging of complex

geologies.

A method which is capable of producing highly resolved parameter models of the subsurface is full-

waveform inversion (FWI). As the name already suggests, goal of the method is to find a subsurface

model which explains both amplitude and phase of the recorded seismograms. This means that the

method uses all of the information content inside the recorded data other than, e.g., traveltime to-

mography which uses only arrival times. The theoretical concepts of FWI were already developed in

the early 1980s by Tarantola (1984). However, this method is computational so expensive that large

data sets can only be processed on high-performance computers since the last decade (Brossier et al.,

2009; Sears et al., 2010; Prieux et al., 2013). The high computational cost is still the limiting factor

and restricts the use of FWI often to 2D applications. The main contributor to this cost is the forward

problem, that is to simulate synthetic data given a subsurface model, which needs to be solved a lot

of times during FWI. There exist various different numerical methods to solve this forward problem.

The method which is most commonly used in FWI applications is the finite-difference (FD) method

because of its simplicity and effectivity.

There are only a few FWI applications on land data so far but it becomes increasingly popular over

the last few years. Examples are Plessix et al. (2013); Mei and Tong (2015); Zheng et al. (2016).

However, all these authors use the accoustic approximation which requires massive preprocessing

to remove elastic effects from the data, most notably the surface waves. In case of strong surface
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topography removal of the elastic effects becomes even more challenging because of surface wave

scattering and, to my knowledge, there is no example where this has been done successfully. Hence,

elastic FWI has to be used in such a setting. To my knowledge the only study which used elastic FWI

on land data with strong topographic variations is Trinh (2018). The author used the spectral element

method (SEM) to solve the forward problem in 3D. This method is known to produce very accurate

results in case of surface topography (Komatitsch and Tromp, 1999) but is also harder to implement

and more difficult to use than the FD method. Thus, the goal of my work is to investigate, if the

FD method can also be used for FWI applications in regions with strong topography. Since 2D FWI

is currently more popular than 3D FWI because of the immensly reduced computational cost, I also

investigate if a setting with topography can be handled as such.



Chapter 2

Theory

In this chapter I would like to introduce the basic theory used in this work. It is divided into two parts.

In the first part I introduce the most relevant concepts which are needed to solve the elastic forward

problem in seismics. Forward problem in this context means, to calculate the seismic wavefield given

a certain distribution of model parameters. In the second part I discuss the inverse problem whose

goal is the opposite of the forward problem, that is, to find a model that explains the partly measured

wavefield.

2.1 Forward problem

Before solving the inverse problem of FWI it is necessary to understand the forward problem. First,

I introduce the elastic wave equation and the concepts needed to derive it. After that I explain the

transition from the continuous equation to its discretized form which is required for numerical simu-

lations.

2.1.1 Elastic wave equation

Derivation

In this section the equations for elastic wave propagation are derived. Conceptually, the derivation

follows closely Aki and Richards (2002) to which I also refer the reader for a more thorough expla-

nation. In an elastic medium a linear relation between stress and strain is assumed. This relation is

described by the generalized Hooke’s law. Using Einstein notation this can be written as

σij = Cijklεkl , i, j, k, l ∈ [1, 3] . (2.1)

Stress σ and strain ε are second-order tensors while the stiffness tensor C is of fourth order. This

means C has 81 components; however, not all of them are independent. As σ and ε are symmetric,

the number reduces to 36 and for energy reasons, it is further reduced to 21 independent components.



4 CHAPTER 2. THEORY

For isotropic media the stress-strain relation can be instread described with only two parameters,

called Lamé parameters:

σij = λTr(ε)δij + 2µεij (2.2)

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.3)

The constant λ is the first Lamé parameter and µ is the second Lamé parameter, also known as shear

modulus. Both parameters are considered time-invariant. The symbol δij is the Kronecker delta and

ui is the displacement of a particle in direction of the ith dimension of a Cartesian coordinate system.

The relation between the Lamé parameters and seismic velocities is

vp =

√
λ+ 2µ

ρ
, vs =

√
µ

ρ
. (2.4)

The parameter vP denotes the velocity of a P-wave and vS that of a S-wave. In these relations the

mass density ρ also occurs which is, like the Lamé parameters, considered time-invariant. Besides the

stress-strain relation another important concept for elastic wave propagation is Newton’s second law.

Considering an arbitrary finite volume V with bounding surface S inside a deformable body yields∫
V
ρ
∂2~u

∂t2
dV =

∫
V

~f dV +

∫
S

~T (~n) dS (2.5)

The left-hand side of 2.5 represents the inertial forces of the volume V and the right-hand side repre-

sents the sum of the body and surface forces acting on the volume. This means, that ~f are the body

forces acting on a unit volume of V and ~T are the forces acting on a unit area of S. The vector ~T is

also called traction. The traction can be expressed in terms of the stress tensor σ as

Ti = σijnj . (2.6)

The vector ~n is of unit length and pointing outward normal to the surface S. Using 2.5 and 2.6

together with Gauss’ divergence theorem yields∫
V

(
ρ
∂2ui
∂t2
− fi −

∂σij
∂xj

)
dV = 0 (2.7)

Since this expression has to be independent of the volume V , the integrand has to be zero. This gives

the equation of motion

ρ
∂vi
∂t

= fi +
∂σij
∂xj

. (2.8)

Here, the equation is written in terms of the particle velocity ~v. Equations 2.2, 2.3 and 2.8 completely

describe wave propagation in linear elastic media. Taking the time derivative of equations 2.2 and 2.3
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is the final step towards the velocity-stress formulation of elastic wave propagation:

∂σij
∂t

= λ
∂εrr
∂t

δij + 2µ
∂εij
∂t

(2.9)

∂εij
∂t

=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(2.10)

Matrix-vector formulation

A more compact formulation of the forward problem can be achieved by writing equations 2.8 - 2.10

in terms of matrices and vectors. By rearranging the equations they can be written in the form:

~F (~ξ,m) = M−1

(
∂~ξ

∂t
−~b

)
−Q~ξ = 0 . (2.11)

The new vectors ~ξ and~b represent all the different wavefields and the corresponding sources, respec-

tively. Considering only two spatial dimensions, they can be written as

~ξ =


vx

vy

σxx

σyy

σxy

 ~b =



fx/ρ

fy/ρ

∂σ
(0)
xx
∂t

∂σ
(0)
yy

∂t
∂σ

(0)
xy

∂t


(2.12)

A small change to the formulation in the previous sections is the introduction of source terms for the

stress components σ(0)
ij . These are useful for acoustic sources. The first matrix M in 2.11 consists of

the model parameters m which are λ, µ and ρ. The second matrix Q in the equation are the spatial

derivatives:

M =


ρ 0 0 0 0

0 ρ 0 0 0

0 0 A B 0

0 0 B A 0

0 0 0 0 µ−1

 Q =



0 0 ∂
∂x 0 ∂

∂y

0 0 0 ∂
∂y

∂
∂x

∂
∂x 0 0 0 0

0 ∂
∂y 0 0 0

∂
∂y

∂
∂x 0 0 0


(2.13)

A =
λ+ 2µ

4µ(λ+ µ)
B = − λ

4µ(λ+ µ)
(2.14)

The third spatial dimension can easily be added by extending the vectors and matrices with the z-

components. Equation 2.11 does not have to be changed for that. I, however, only write down the 2D

representations because they are shorter and for the majority of my work I use 2D forward modeling.

2.1.2 Standard staggered grid (SSG)

In simple cases the system of equations derived in chapter 2.1.1 can be solved analytically. For

complex media, however, a numerical approach is necessary. In most of this work finite differences
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are used. This requires a discretization of the physical system in space and time. Model parameters

λ, ρ and µ, particle velocities and stresses are all discretized on Cartesian grids. The grid spacing

is called dh and the interval between two time steps is dt. The parameter dh is equal for all spatial

dimensions. By writing the derivatives in equations 2.8, 2.9 and 2.10 as finite differences, Virieux

(1986) showed that the spatial grids of vx, vy and σxy have to be staggered to ensure that the partial

differential equations refer to the same grid point. The standard staggered grid in two dimensions is

shown in figure 2.1. One can see that the stress components σxx and σyy and the model parameters

are placed on full grid points. The x-component of the particle velocity vx is shifted by half a grid

point in x-direction and vy is shifted by half a grid point in y-direction. The stress component σxy is

shifted in both directions by half a grid point. Using second-order centered finite differences the time

derivatives of σ and ~v can be approximated by

∂vi
∂t

∣∣∣∣n+ 1
2

≈
vn+1
i − vni

dt
(2.15)

∂σij
∂t

∣∣∣∣n ≈ σ
n+ 1

2
ij − σn−

1
2

ij

dt
(2.16)

Regarding the notation, upper indices indicate the time step. Substituting the derivatives in 2.2 and

2.8 with the FD approximation yields the following scheme for updating the two parameters:

vn+1
i ≈ vni +

dt
ρ

∂σji
∂xj

∣∣∣∣n+ 1
2

(2.17)

σ
n+ 1

2
ij ≈ σn−

1
2

ij + dtλ
∂

∂t
Tr ε

∣∣∣∣n δij + 2 dtµ
∂εij
∂t

∣∣∣∣n (2.18)

The next step is to also discretize the spatial derivatives. In the following part indices i and j refer

to full spatial grid points while the components of stress and velocity are listed explicitly for each

dimension. In order to keep a consistent notation, indices which are used to address grid points are

separated with a comma while indices which indicate a component of a tensor are not separated. By

combining equations 2.17 and 2.18 with 2.10 one can write the discretized elastic wave equation as

follows:

σ
n+ 1

2
xx,i,j = σ

n− 1
2

xx,i,j + ∆t · λi,j

(
∂vx
∂x

∣∣∣∣n
i,j

+
∂vy
∂y

∣∣∣∣n
i,j

)
+ 2 ·∆t · µi,j

∂vx
∂x

∣∣∣∣n
i,j

(2.19)

σ
n+ 1

2
yy,i,j = σ

n− 1
2

yy,i,j + ∆t · λi,j

(
∂vx
∂x

∣∣∣∣n
i,j

+
∂vy
∂y

∣∣∣∣n
i,j

)
+ 2 ·∆t · µi,j

∂vy
∂y

∣∣∣∣n
i,j

(2.20)

σ
n+ 1

2

xy,i+ 1
2
,j+ 1

2

= σ
n− 1

2

xy,i+ 1
2
,j+ 1

2

+ ∆t · µi+ 1
2
,j+ 1

2

(
∂vx
∂y

∣∣∣∣n
i+ 1

2
,j+ 1

2

+
∂vy
∂x

∣∣∣∣n
i+ 1

2
,j+ 1

2

)
(2.21)

vn+1
x,i+ 1

2
,j

= vn
x,i+ 1

2
,j

+
∆t

ρi+ 1
2
,j

(
∂σxx
∂x

∣∣∣∣n+ 1
2

i+ 1
2
,j

+
∂σxy
∂y

∣∣∣∣n+ 1
2

i+ 1
2
,j

)
(2.22)

vn+1
y,i,j+ 1

2

= vn
y,i,j+ 1

2

+
∆t

ρi,j+ 1
2

(
∂σyx
∂x

∣∣∣∣n+ 1
2

i,j+ 1
2

+
∂σyy
∂y

∣∣∣∣n+ 1
2

i,j+ 1
2

)
(2.23)
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Table 2.1: Taylor coefficients for second- to eighth- order FD operators.

Order N β1,N β2,N β3,N β4,N

2 1
4 9 / 8 -1 / 24
6 75 / 64 -25 / 384 3 / 640
8 1225 / 1024 -245 / 3072 49 / 5120 -5 / 7168

One can see that in equations 2.21, 2.22 and 2.23 density and shear modulus need to be known on

half grid points. Moczo et al. (2002) showed, that the accuracy of the finite-difference modeling can

be increased by arithmetically averaging the density of two adjacent grid points and harmonically

averaging the shear modulus of four adjacent grid points:

ρi+ 1
2
,j =

ρi,j + ρi+1,j

2
ρi,j+ 1

2
=
ρi,j + ρi,j+1

2
(2.24)

µi+ 1
2
,j+ 1

2
=

4

µ−1
i,j + µ−1

i+1,j + µ−1
i,j+1 + µ−1

i+1,j+1

(2.25)

Time indices are omitted here because model parameters are invariant in time.

2.1.3 FD operators

While for computational reasons time derivatives are only approximated by second-order FD oper-

ators, the spatial derivatives can be approximated by higher-order operators. These consider more

surrounding grid points for approximating the derivatives which gives more exact results but comes

also with more computational cost. The derivative of a variable f at grid point i can be approximated

by:

∂f

∂x

∣∣∣∣
i

≈ 1

dh

[
N∑
n=1

βn,N

(
fi+ 1

2
+n − fi− 1

2
−n

)]
. (2.26)

The parameter N is the order of the FD-operator and βn,N are the coefficients of the operator. Note

that the coefficients depend on N , so they have to be estimated for each order separately. This

estimation can be done via Taylor series expansion (Jastram, 1992). The Taylor coefficients are listed

in table 2.1 for orders ranging from 2 to 8.

2.1.4 Numerical stability

Finite-difference modeling uses a discretization in space and time. To minimize computational cost it

is desirable to choose the distance between two adjacent points on the spatial grid dh and the time dif-

ference between two consecutive time steps dt as large as possible. However, these parameters cannot

be arbitrary. They have to be chosen dependent of various other parameters, or else the simulation

is numerically unstable. There are two kinds of instabilities. The first kind is grid dispersion and it
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Table 2.2: Required points per wavelength for Taylor operators as calculated by Köhn (2011).

FD order 2 4 6 8 10 12

n 12 8 6 5 5 4

occurs if dh is too large. To avoid grid dispersion the following criterion has to be met (Köhn, 2011):

dh ≤ λmin

n
=

vmin

nfmax
(2.27)

This means that dh has to be smaller than n points per minimum wavelength λmin. The minimum

wavelength in turn depends on the maximum frequency of the source signal and the minimum seismic

velocity of the medium. The required value of n depends on the order and type of the FD operator.

For Taylor operators n is listed for different orders in table 2.2.

The second type of numerical instability is Courant instability. It occurs if the temporal sampling dt

is too coarse. Courant et al. (1928) show, that in 2D dt has to meet the following criterion:

dt ≤ dh
h
√

2vmax
(2.28)

This means, that dt has to be smaller than the time required for a wave to propagate between two

adjacent grid points. The parameter h is the sum of the FD-coefficients, so it is dependent on the FD

order:

h =
N∑
n=1

βn,N (2.29)

2.1.5 Initial and boundary conditions

The forward problem described by equations 2.8, 2.9 and 2.10 is ill-posed. This means it has many

solutions. To obtain a unique solution initial and boundary conditions are needed. In the elastic case

the initial conditions are

vx|t=0 = vy|t=0 = 0 , (2.30)

σxx|t=0 = σyy|t=0 = σxy|t=0 = 0 (2.31)

at every grid point (Virieux, 1986). This means the system is in equilibrium at time t = 0. Since we

can not and also don not need to model the entire Earth in applied seismics, boundary conditions at

the edges of the model are necessary. The top of the model is usually the Earth’s surface which is a

special kind of boundary. The other three edges of the model have to absorb the wavefield in order to

mimic a quasi-infinite medium. Without this absorption the wavefield would be reflected at the model

boundary which is not what happens in the real world. In the following, two boundary conditions are

presented which absorb the wavefield and the free surface boundary is discussed in more detail.
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Absorbing boundaries

A very easy way of damping the wavefield is a simple taper. Cerjan et al. (1985) suggested a taper of

the form:

Gi = exp
(
−[0.015(wb − i)2]

)
i ∈ [1, wb] . (2.32)

The parameterwb is the boundary width in grid points. The procedure works by tapering the wavefield

in the wb outer most grid points of the model with coefficients Gi. At i = 1 the damping is strongest

while at i = wb the wavefield remains unchanged. A much more effective damping method are

convolutional perfectly matched layers (C-PML) introduced by Komatitsch and Martin (2007). They

stretch the coordinates in the frequency domain in a way that incoming plane waves never reach the

actual boundary but decay exponentially. Since this only works perfectly for exact solutions of the

wave equation, some reflections occur when working with a discretized solution. To mitigate this

effect additional damping is introduced. In practice C-PMLs require replacing the spatial derivatives

described by equations 2.19 - 2.23 inside the boundary region.

Free surface

Above the free surface the particle displacement is not defined and the displacement of the free sur-

face itself is not constrained like internal interfaces (Aki and Richards, 2002). This means, that the

boundary condition is

σxy = σyy = 0 . (2.33)

In case of a planar free surface the numerical implementation is often done via the stress image

method first proposed by Levander (1988). This method is obtained by considering equations 2.2 and

2.3 and solving them under condition 2.33:

σyy = 0 = λ
∂ux
∂x

+ (λ+ µ)
∂uy
∂y

(2.34)

σxy = 0 = µ

(
∂ux
∂y

+
∂uy
∂x

)
(2.35)

These equations can be fulfilled by extending the grid above the free surface by half the length of the

FD operator and setting the stresses there accordingly. However, for an inclined free surface this is

more complicated. Robertson (1996) generalized this approach for a topographic surface. However

this approach requires the categorization of each surface grid node. Depending on that there are, in the

2D case, seven strategies how stresses and velocities have to be updated which reduces the efficiency

of the forward calculation. Besides this approach there are many more. A much more elegant method

was proposed by Zahradník et al. (1993) and Graves (1996). They suggested the discretization of

space above the free surface as vacuum. Hence, this method is called the vacuum formulation. In

vacuum all model parameters are zero and the free surface is treated like an internal interface. This

has the advantage that no special treatment of the free surface is necessary which saves computational
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time. The only requirement is that the grid is extended at the top by half the size of the FD operator.

The downside of this formulation is that it is only stable for second-order FD operators (Graves, 1996)

and that condition 2.33 is not completely fulfilled. To tackle this problem Zeng et al. (2012) proposed

an improved vacuum formulation. It combines the suggestion by Mittet (2002) that the averaged shear

modulus at free-surface grid nodes should be zero if any of the nodes participating in the averaging is

zero (equation 2.25) with the averaging scheme by Moczo et al. (2002). Since density occurs in the

denominator in equations 2.22 and 2.23 the averaging has to be adapted accordingly:

ρ−1
i+ 1

2
,j

=

0 if ρi,j = 0 and ρi+1,j = 0

2
ρi,j+ρi+1,j

otherwise
(2.36)

ρ−1
i,j+ 1

2

=

0 if ρi,j = 0 and ρi,j+1 = 0

2
ρi,j+ρi,j+1

otherwise
(2.37)

µi+ 1
2
,j+ 1

2
=


4

µ−1
i,j +µ−1

i+1,j+µ−1
i,j+1+µ−1

i+1,j+1

if µi,j , µi+1,j , µi,j+1, µi+1,j+1 6= 0

0 otherwise
(2.38)

This modification ensures that the traction-free boundary condition is fulfilled for an arbitrary free

surface topography. It also stabilizes the modeling with higher-order FD operators. The proposed

averaging moves the free surface upward by half a grid point as visualized in figure 2.2. This means

that the only parameters which lay on the free surface are the stress component σxy and the particle

velocities. All other parameters are either above the free surface where they are zero or in the elastic

medium where they do not need to be considered for the free surface. Hence, the only condition to

check is if σxy = 0 on all surface grid points. However, this is always the case since the averaging

scheme sets µi+ 1
2
,j+ 1

2
to zero on the free surface.

2.1.6 Spectral-element method

The finite-difference method used in the majority of tests in this work because of its simplicity has a

major drawback. Interfaces between different media which are tilted relative to the regular grid are

approximated by staircases. At strong interfaces like, e.g., the free surface this leads to significant

scattering at the edges of the staircases. A method which is able to represent these interfaces more

accurately is the spectral-element method since it fulfills the free-surface condition implicitly (Igel,

2017). Like in the finite-element method these elements can be skewed and have curved boundaries.

Figure 2.3 shows a qualitative comparison of the free-surface representation in the FD model and in

the SEM model. Inside each spectral element the wavefield is approximated by Lagrange polynomi-

als. In combination with a special interpolation technique this simplifies the computation in a way

that makes it very efficient on parallel hardware. While irregular elements that match the interfaces

inside the model improve the accuracy of the method they also make model generation harder since

most popular models are defined on regular grids. Generating good meshes for these models often

requires professional software. For tests that involve the spectral-element method I use the software

specfem2d which was initially developed by Komatitsch and Vilotte (1998) but nowadays has a large

number of contributors. For instance the C-PMLs were implemented by Xie et al. (2014) and the
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x

y

(i, j)

σxx, σyy
ρ, λ, µ

(i, j + 1)

(i+ 1, j)

vx, ρx

vy, ρy σxy, µxy

Figure 2.1: Standard staggered grid (SSG) as
proposed by Virieux (1986). Some parame-
ters are not defined on full grid points (i, j)
but on half grid points which are shifted by
dh/2.

Figure 2.2: Shift of the free surface by the
improved vacuum formulation as shown by
Zeng et al. (2012). White circles represent
full grid points where σxx and σyy are speci-
fied. Velocities vx and vy are located on black
squares and black circles, respectively. The
stress component σxy is located on white tri-
angles.

SCOTCH partitioning method was implemented by Martin et al. (2008). Both these features are used

during my tests.

Figure 2.3: Qualitative comparison of the free surface in the FD model which is defined on a regular
grid (left) and the SEM model which is defined on an irregular mesh (right). In the FD model grey
represents the vacuum grid-points.

2.2 Full-waveform inversion

While the goal of the forward problem is to obtain data from a given model, the goal of the inverse

problem is to find a model which explains the data. However, unlike the forward problem the inverse

problem in seismics is highly ambiguous, i.e. the result of inversion is only one possible realization of

a model which explains the data. Classical inversion methods like, e.g., traveltime tomography only

use a fraction of the information contained in the data. The advantage of full-waveform inversion is
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that it uses both amplitude and phase information of the recorded wavefield. In this section I first

motivate the theoretical concepts of FWI and then show how it can be implemented as algorithm.

2.2.1 Misfit function

In section 2.1 I described how to solve the forward problem of seismic wave propagation. This

problem can generally be expressed as applying a nonlinear forward operator F on a model m which

yields the synthetic data ~dsyn:

~dsyn = F(m) (2.39)

The model m is an adequate parametrization of the physical system under investigation. In my case

it is m = {ρ;λ;µ}. The goal of FWI is to find a model mopt such that ~dsyn produced by this model

matches the observed data ~dobs. Mathematically, the difference between observed and synthetic data

can be expressed as a scalar misfit function J(~dobs, ~dsyn). In principle, the misfit function can be

defined arbitrarily, in this case, however, I use the L2 norm of the data residuals ∆~d:

J(m) =
1

2

∫
x

∫ T

0
(∆~d)2 dt dx (2.40)

∆~d = ~dsyn − ~dobs (2.41)

When using multiple shots equation 2.40 also includes a sum over all shots, so the total misfit is the

sum off all misfits per shot. This means, finding mopt is equivalent to finding the global minimum of

J . For this type of problem there exist many algorithms which minimize J on a local or global scale.

However since the computational effort to solve the forward problem is still relatively large, gradient-

based algorithms are the only ones feasible. They start with an initial model m0 and iteratively

improve it by calculating the gradient of J with respect to m. This gives the following general rule

for updating the model in each iteration (Fichtner, 2011):

mi+1 = mi − αAi∇mJ(mi) (2.42)

The parameter α is some step length which with the gradient is scaled and A is a positive definite

matrix which depends on the optimization method used. Since F is nonlinear, J is also nonlinear,

which means by simply following the gradient it can easily happen that only a local minimum of J

is found by this process. Approaches how this can be avoided are presented later. Another challenge

is that equation 2.42 requires the calculation of the gradient. Calculating this gradient explicitly by

changing each model parameter on each grid point by a tiny distortion δm and then evaluating the

misfit is an impossible task because of the enormous number of model parameters and again the time

required to solve the forward problem. The most efficient way of calculating the gradient is the adjoint

method, which are presented in the next section.
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2.2.2 Adjoint-state method

The adjoint-state method for calculating gradients of an objective function in a seismic context was

first introduced by Tarantola (1986). I do not show the complete derivation of the gradients since

they do not play a key role in the topic of my work. However, I would like to give a brief motivation

how they can be calculated for a single shot using the method of augmented Lagrangian function

following Plessix (2006). This method minimizes an objective function with a set of constraints. In

this case the objective function is equation 2.40 and the constraints are the forward problem. Here

the matrix-vector formulation of the forward problem 2.11 is used since it combines the first-order

partial differential equations in velocity-stress formulation and one side of the equation is set to zero.

This allows to construct the Lagrangian L by subtracting the constraints multiplied with the Lagrange

multiplier ~ψ from the misfit function without changing the expression:

L(~ξ, ~ψ,m) = J(~ξ,m)− ~ψ · ~F (~ξ,m) (2.43)

=
1

2

∫
x

∫ T

0
(∆~d)2 −

∫ T

0

∫
x

~ψ

(
M−1

(
∂~ξ

∂t
−~b

)
−Q~ξ

)
dt dx (2.44)

Since ~F (~ξ,m) is zero by construction one can write

L(~ξ, ~ψ,m) = J(m) . (2.45)

This means that finding the desired gradient dJ
dm is equivalent to finding dL

dm . Applying the chain rule

yields

dL(~ξ, ~ψ,m)

dm
=
∂L(~ξ, ~ψ,m)

∂~ξ

∂~ξ

∂m
+
∂L(~ξ, ~ψ,m)

∂m
. (2.46)

The goal is now to eliminate the first summand which can be done by finding a ~ψ such that

∂L(~ξ, ~ψ,m)

∂~ξ
=
∂J

∂~ξ
− ~ψ

∂ ~F

∂~ξ
= 0 . (2.47)

I skip solving this equation step by step and jump right to its solution:

M−1∂
~ψ(τ)

∂τ
−∆~d = −Q~ψ(τ) (2.48)

τ = T − t (2.49)

One can see that equation 2.48 looks very similar to the forward equation 2.11 with the differences

being the signs and that the sources are now the data residuals. This equation is called the anti self-

adjoint equation. Hence ~ψ is the solution to the forward problem with sources ∆~d, they are called

adjoint wavefield and adjoint sources, respectively. The introduction of τ means that this forward

problem has to be solved backward in time with terminal conditions equal to the initial conditions

of the traditional forward problem. In order to use the same implementation for calculating ~ψ as for
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calculating ~ξ the signs have to be replaced by substitution:

~ψ = B~Φ , B =


1 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1

 (2.50)

After finding ~ψ the last step is to use equation 2.43 to write the gradients as

∂J

∂m
= −B~Φ

∫ T

0

(
∂M−1

∂m

∂~ξ

∂t
−∆~d

)
dt . (2.51)

When using multiple shots, the gradients of all the individual shots are summed to form the final

gradient.

2.2.3 Additional methods used in FWI

Step-length estimation

As already shown in equation 2.42, the gradient of the misfit function needs to be scaled with a scalar

α. This scalar is called the step-length since it determines how large the allowed model updates are.

The step-length has to be chosen carefully because choosing a step-length too large results in huge

jumps through the parameter space of the misfit function so that the actual minimum is never reached.

On the other hand, if the step-length is too small there is a very slow convergence and since FWI is

computationally very expensive this is not desirable either. Another complication is that different

iterations of FWI need different step-lengths. At the beginning when the misfit is large there should

also be a large step length to invert the general structure of the model. At the end of FWI, when only

small features need to be inverted a smaller step length is required. Hence in every iteration a search

for the optimal step length is conducted. This step length estimation is based on a parabolic line

search suggested by Nocedal and Wright (1999). This algorithm theoretically requires two additional

forward calculations to calculate a parabolic fit. However, I use an improved version where we use

more forward calculations for a better fit but do not use all shots.

Conjugate-gradient method

Instead of always updating the model with equation 2.42 I use the preconditioned conjugate-gradient

method (PCG) by Nocedal and Wright (1999). This method uses equation 2.42 only in the first

iteration. Subsequently, it updates the model via:

mi+1 = mi − αiAi∇mJ̄i (2.52)

∇mJ̄i = ∇mJi − βi∇mJ̄i−1 (2.53)
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Various authors have proposed different choices of βi. In the software I use the definition by Polak

and Ribière (1969) is implemented:

βi =
(∇mJi)T (∇mJi −∇mJi−1)

||∇mJi−1||2
(2.54)

The preconditioning matrix A is calculated with the K1 method by Plessix and Mulder (2004).

Source time function inversion

In many cases, e.g., if explosive sources are used, the source signature is unknown. To overcome

this problem I use the source time function inversion (STF) following Pratt (1999). The conceptual

starting point of this technique is the modified discrete forward-modeling equation in the frequency

domain:

S~̃u(ωk) = s(ωk)
~̃
f(ωk) (2.55)

The tilde represents the Fourier transform of the corresponding quantities and S is a complex-valued

impedance matrix which represents the model parameters. In the elastic case all parameters except S

depend on the discrete frequencies ωk. The goal is to find the complex scalar s such that its product

with ~̃
f corresponds to the real source signature at ωk. This is achieved by minimizing the misfit

function 2.40 which can be done analytically. The result is:

s(ωk) =
~dT~u∗

~uT~u∗ + ε
(2.56)

The asterisks in equation 2.56 represents the complex conjugate. The parameter ε is not part of the

analytical solution but has been added to stabilize the equation if the denominator is small. This

so-called water level can help significantly, especially in the presence of noise.

Multi-scale approach

A common problem of gradient-based optimization as in FWI is that the algorithm converges towards

a local minimum. While almost never the true global minimum is found, the goal should be to find

at least a local minimum in the proximity of the global minimum. One way to avoid undesirable

local minima is choosing a good starting model m0 so there is a high chance that by going down the

gradient of the misfit function the global minimum is reached. In practice this is rarely a viable option

because the knowledge of the site under investigation is usually very limited. One can, however, do

not only one but multiple FWIs consecutively and use that smooth models generate smooth misfit

functions (Fichtner, 2011). Each of these FWIs is called a stage of the FWI workflow and uses a

certain subset of the data. By starting to invert the low-frequency content which is only sensitive to

the large-scale variations in the model one can obtain a model m̃ which is closer to the true model

thanm0 and hopefully also the global minimum of that frequency range. After that higher frequencies

are introduced stage by stage. The idea is that these new frequencies compared to the previous stage
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modify the misfit function only so much that m̃ still lies near the new global minimum which can

then be found by another FWI.

2.2.4 FWI algorithm

After introducing the theoretical concepts of FWI the purpose of this section is to combine them to

form the FWI algorithm. A visual representation of the simplified FWI algorithm is shown in figure

2.4. In this figure there are two starting points, the true model mtrue and the starting model m0. In

the real world the true model is unknown but we can measure it by acquiring seismic data ~dobs. The

synthetic data ~dsyn belonging to m0 can be obtained by forward modeling (see section 2.1). During

this forward modeling the preconditioning matrix A is also calculated. By subtracting ~dobs and ~dsyn
one obtains the data residuals ∆~d which are used in the misfit function J described in section 2.2.1

to get a scalar value quantifying the difference between the data sets. With this misfit one has to

decide if the data fit is good enough. If not m0 has to be updated. For this the gradient of J has to be

calculated according to section 2.2.2 which requires the forward modeling of the adjoint wavefield.

These gradients are calculated for each shot, then multiplied by A and summed. From this summed

gradient the conjugate gradient ∇mJ̄ is calculated. With ∇mJ̄ an optimal step-length α is being

searched. In the last step the product of α and ∇mJ̄ is subtracted from m0 and the next iteration

starts with the new model m1.

true model starting model m0

acquisition forward modelling updated model
mi+1 = mi − αAi∇mJ

calculate gradients
∇mJ and step length α

field data ~dobs synthetic data ~dsyn
back propagation of

residual wavefield

residuals ∆di no

misfit function
residuals minimised or
stop criterion reached?

best model yes

Figure 2.4: Workflow of the FWI process. The blue box indicates the loop over the iteration steps.
In the case of a purely synthetic FWI the acquisition is replaced by a forward modeling.
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Model

The models I use in my work are all part of the 2D synthetic model by Gray and Marfurt (1995)

which is known as the Canadian Foothills model. In its original form the model describes only

the distribution of vP because it was intended for acoustic modeling with constant density. This

distribution is shown in figure 3.1. The highest velocity is 5900 m s−1 and the lowest velocity is

3500 m s−1. It is discretized with a grid spacing of 10 m in vertical direction and 15 m in horizontal

direction. The structure of the model can be described as a linear velocity gradient in vertical direction

overlayed with complex features of various sizes and shapes. These features have different, but mostly

constant, velocities. The structure resembles the geology beneath the foothills of the Canadian Rocky

Mountains in the area of northeastern British Columbia. The dimensions of the model are 25 km

in length and 10 km in depth with the sea level located 2 km below the top of the model. The free-

surface, which is the uppermost interface, shows strong topographic variations with height differences

of up to 1.5 km. In the original definition of this model all velocities above the top interface are set

to 4000 m s−1. This is convenient for acoustic modeling because it minimizes the interaction of the

wavefield with this interface. In my work this interaction is very important so, according to the

vacuum formulation, the velocities are changed to 0 m s−1. Since I use elastic modeling in this work,

the remaining parameters have to be derived from the P-wave velocity. A common way to get the

S-wave velocity is to assume a constant Poisson’s ratio ν. I choose ν to be 0.25 which is a common

value for crystalline rocks like, e.g., granite and limestone (Gercek, 2007). The relation between ν

and the Lamé parameters is

ν =
λ

2(λ+ µ)
. (3.1)

Together with equations 2.4 a Poisson’s ratio of 0.25 results in the relation

vP
vS

=
√

3 . (3.2)

To derive the density I use the empiric Gardner relation (Gardner et al., 1974) which is

ρ = 310
kg s

1
4

m
13
4

v
1
4
P . (3.3)
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The vS and ρ models obtained with these relations are also shown in figure 3.1. Since they are both

based on the vP model all parameter models are spatially correlated.

The model is accompanied by the pressure seismograms modeled with the acoustic approximation

by Gray and Marfurt (1995). I will not use these seismograms because they do not account for most

phases found in seismograms one would record in the real world. It can be expected that surface

waves, which do not occur when the acoustic wave equation is used, dominate the recorded seismo-

grams in such a setting. Removing them with sufficiently small error from the seismograms in a way

which is also applicable during FWI is an impossible task. Beyond that, using only phases which ar-

rive before the surface waves is also no valid strategy because in complex media conversions between

P- and S-waves have an effect which is not negligible. However, I will use the same receiver spacing

like the authors throughout all my tests, i.e. 15 m. The original source spacing is 90 m. In my work I

use an increased source spacing of 150 m to save computing time.
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Figure 3.1: The Canadian Foothills model which in its original form only describes the vP distribu-
tion but has been extended for elastic modeling using equations 3.2 and 3.3.
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Chapter 4

Forward modeling

The goal of this chapter is to analyze how well a 2D FD solver can model the wavefield in a medium

with strong surface topography on the scale of exploration seismics. This analysis is split into three

parts. In the first part I test the validity of the 2D FD method using the improved vacuum formulation

(IVF) on a scale of exploration seismics. The IVF as presented in section 2.1.5 was introduced by

Zeng et al. (2012) in a near-surface context. Such near-surface studies are usually conducted with a

large number of grid points per wavelength and only a small number of wavelengths are propagated.

This means, the applicability in the setting of exploration seismics is not guaranteed. This test is done

with a planar free surface. The goal of the second test is to analyze the influence of a surface with

topographic variations. The question that should be answered is how discretization and large offsets

affect the accuracy of the FD simulation in such a setting. Discretization plays an important role

because FWI is computational already very costly. Therefore, the discretization should be as coarse

as possible. In the last part of this chapter I answer the question how well 3D wave propagation found

in the real world can be considered a 2D problem in the case of no variation of the model in the third

dimension and in case of variations of the free surface.

4.1 Comparison to analytical solution

The goal of this test is to compare the FD simulation using the IVF with an analytical solution to

investigate if Rayleigh waves are modeled correctly at large offsets. Analytical solutions for seismic

wave propagation are only possible with very simple models. The procedure to obtain an analytical

solution is to calculate the Green’s function describing the model and then convolving it numerically

with a source wavelet.

4.1.1 Methodology

The model I consider in this test is that of a 2D elastic half-space with a free surface. For my tests I

use the implementation by Berg (1994). This program computes the response of a vertically-oriented

directional point source. The parameters of the half-space are chosen similar to the parameters found
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near the surface of the Canadian Foothills model. They are vP = 3800 m s−1, vS = 2200 m s−1 and

ρ = 3000 kg m−3. Before setting up the acquisition geometry, one has to define the discretization

of the FD model. In order to calculate the spatial discretization needed, all parameters required in

equation 2.27 have to be defined. The minimum velocity is the S-wave velocity of 2200 m s−1 which

is approximately the minimum velocity of the Canadian Foothills model described in chapter 3. Since

this test is done with a future FWI application in mind and FWI works best with low frequencies, I

choose a time-shifted Ricker wavelet with a 5 Hz center frequency fc as my source signal. The time-

shifted Ricker wavelet sR with amplitude A is defined as:

sR = A(1− 2τ2)e(−τ2) (4.1)

τ = πfc

(
t− 1.5

fc

)
(4.2)

This wavelet and its amplitude spectrum are shown in figure 4.1. By looking at the amplitude spec-

trum one can observe that the maximum frequency is about 15 Hz. Besides, I choose a fourth-order

FD operator for all of my tests. With equation 2.27 the resulting spatial discretization needed is about

18 m. As another limiting factor Zeng et al. (2012) show that the required number of grid points per

wavelength is larger for correct surface wave simulations using the IVF compared to traditional body-

wave simulations. Beyond that, the discretization should allow for lower velocities than the ones in

the model because during inversion it uncertain if the minimum velocity of the true model is not un-

dercut. Because of all these circumstances, I choose a spatial discretization of dh = 7.5 m. This grid

spacing has the additional advantage that no receiver interpolation is needed for a receiver spacing of

15 m. By using this values, equation 2.28 yields a temporal sampling of dt = 1 ms. Because the mod-

els in later tests have velocities up to about 6000 m s−1, I already set my temporal sampling in this test

to dt = 0.7 ms. This reduces the grid dispersion even further and also makes the tests more compara-

ble. At this point I wold like to point out that only in recent years frequencies lower than 5 Hz can be

acquired on land (Mahrooqi et al., 2012). However, results do not depend directly on frequency but

on grid points per wavelength. So in case only high frequencies are available, the same results can be

achieved by using a finer discretization to balance the grid points per wavelength. Since the ultimate

goal is to invert the Canadian Foothills model, the acquisition geometry of this test should match that

needed for the model. The vertical size of the model is 10 km, so I choose a maximum offset which

is similar to that value. For a good visualization I choose 28 receivers starting at 375 m offset with a

spacing of also 375 m. The resulting maximum offset is 10.5 km. The acquisition geometry is located

one grid point below the free surface because the free surface is shifted upward by half a grid point by

the IVF and the vertical component of my receivers is shifted downward by half a grid point because

of the staggered grid. Placing the receivers on the free surface is not an option in the FD case because

then the horizontal component would be inside the vacuum. To mimic an infinite half-space in the FD

simulation I extend the model at both sides in the horizontal direction by a buffer zone with a width

of 20 grid points and then C-PMLs with a width of another 20 grid points. The depth of the model is

set to 3750 m. This is beyond the penetration depth of surface waves. So the total grid size is 1481

× 500 grid points. The 20 grid points at the bottom of the model are also part of a C-PML in order

to dampen reflections from the bottom edge. As time interval for the simulation I choose 6 s, so the

number of time steps is 8572. This way the Rayleigh wave is recorded at all receivers.
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Figure 4.1: Left: A Ricker wavelet defined by equation 4.1 with a center frequency of 5 Hz. Right:
Its amplitude spectrum in the range from 0 Hz to 20 Hz.

4.1.2 Wavefield discussion

In this section I discuss the simulated wavefields for a better understanding of the phases found in the

seismograms. Instead of showing the snapshots of the velocity fields, I show their spatial divergence

and curl. This has the advantage that the divergence is related to the compressional energy (EP ) and

the curl is related to the shear energy (ES). Following Morse and Feshbach (1953) and Dougherty

and Stephen (1988) they can be calculated as follows:

EP = (λ+ 2µ)(div ~v)2 (4.3)

ES = µ(−curl ~v)2 (4.4)

Figure 4.2 shows the two wavefield components after 1 s and 3 s. Since the Rayleigh wave is a

P-SV wave it contains compressional and shear energy, and hence it is visible in both wavefield

components shown here. Unique to this setup is that in a homogeneous half-space the Rayleigh

wave is not dispersive. The dispersive property arises only in media with depth-dependent velocity.

Furthermore, one can observe that the P-wave separates quickly from the Rayleigh wave because of

the velocity contrast between vP and vS while, even after 3 s, the Rayleigh wave and S-wave have

barely separated. In case the relation between vP and vS can be described by equation 3.2, which is

the case in all of my tests, the Rayleigh wave propagates with a velocity of 92% of vS (Müller, 2007).

It can also be observed that the amplitude of the Rayleigh wave decays much slower than that of the

body waves. Theory predicts that the amplitude of the Rayleigh wave decays ∝ 1√
r

with distance r

while that of body waves decays ∝ 1
r (Aki and Richards, 2002). A positive consequence in the real

world is that Rayleigh waves have a better signal-to-noise ratio at far offsets compared to body waves.

The last wave type observable is the P-S wave. It is a refracted S-wave excited by the P-wave at the

free surface.
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4.1.3 Results

The vertical velocity component of the receivers is displayed in figure 4.3. To identify the visible

phases, it is useful to look at the snapshots of the wavefield as shown in figure 4.2. The most prominent

phase is the Rayleigh wave while the P-wave and S-wave are only faintly visible. Regarding the P-

wave, the reason for this is that it propagates and oscillates parallel to the free surface, and hence

cannot be recorded with the vertical component of a receiver. Furthermore, the source radiates P-

waves mostly in the vertical direction which also affects their recorded amplitudes.

From figure 4.3 one can observe that the difference between the FD and the analytical solution is

not very significant compared to the amplitude of the Rayleigh wave. A possible explanation for the

difference is the fictitious layer caused by the IVF since the difference does not seem to be a product

of grid dispersion or violation of the CFL condition. These two reasons can be excluded because the

phase would be shifted consistently and increasing with offset towards either earlier or later arrival

times than the analytical solution. The conclusion drawn from this test is that a grid spacing of 7.5 m

and a time step interval of 0.7 ms is sufficient to model Rayleigh waves at large offsets if there is no

topography present.
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Figure 4.2: Spatial divergence and curl of the FD velocity wavefield for two points in time. The
different phases visible in each plot are labeled accordingly. The horizontal black line near y = 0 m
is the free surface. I show no legend for the colors because they are clipped for better visualization
and my simulations are not conducted with true physical units.
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Figure 4.3: Top: The vertical velocity components of all 28 receivers calculated analytically and by
FD simulation with IVF. All traces are normalized to their maximum. The prominent event visible
is the Rayleigh wave. Bottom: A zoom in on this wave for the nearest offset in the left and for the
farthest offset in the right.
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4.2 Comparison to spectral element solution

After investigating the requirements to model Rayleigh waves at large offsets with a flat free surface,

the next step is to check the requirements needed in the presence of topography. In complex media

there is no analytical solution available and I have to use another numerical method as a reference.

The numerical method I use as a reference is the spectral element method. The spectral element

method is known to produce accurate results in case of surface topography because the shape of the

elements can be adapted to the shape of the free surface and the free surface condition is fulfilled

implicitly. The accurate results come, however, at the cost of a more challenging implementation

and a more complex model generation procedure. Generating good spectral element meshes requires,

especially in complex models, a lot of work and expertise. In my experience the spectral element

method has a higher computational cost than the FD method if the mesh is not perfectly adapted to

the model. Hence, the goal of this test is to find the minimum requirements to model Rayleigh waves

sufficiently accurately in this scenario and then to decide, weather these requirements are acceptable

for an FWI application.

4.2.1 Methodology

In order to test the IVF in the presence of topography I use the spectral element method as a reference.

Since it is challenging to ensure that the models used for the two types of forward modeling are

equivalent, I generate a simplified version of the Canadian Foothills model. The simplified version

reduces the leftmost 7.8 km of the model to its most characteristic features. These features are in

some cases also extended to form a layered model. This allows for an easy parametrization of the

interfaces which are needed to generate the irregular mesh for the spectral element method. The

original part of the model and the simplified version are shown in figure 4.5. The layers are generated

by picking a few points where an interface is located and then using spline interpolation to get the

y-values for the remaining grid points. These interfaces are then modified to be flat near the edges

of the model. This improves the damping by the C-PMLs. Damping is crucial in this test because

reflections at the boundaries which occur in only one of the two methods can distort the result. The

exact model parameters of the simplified model are listed in table 4.2. Since most of the features in

the Canadian Foothills model have a constant velocity, the velocities of the corresponding features in

the simplified model are equivalent. In the other regions where there is a velocity gradient, I chose

a single velocity which represents that section on average reasonably well. The parameters vs and ρ

are derived with equations 3.2 and 3.3, respectively.

For FD modeling I generated four versions of the simplified model with different discretizations

via different spline interpolations of the interfaces, starting with the interfaces defining the SEM

model. The spline interpolation is used because it generates smoother interfaces the finer the chosen

discretization. The chosen discretizations are dh = 3 m, dh = 3.75 m, dh = 5 m and dh = 7.5 m.

These values all have in common that they do not require receiver interpolation at a receiver spacing

of 15 m. The FD simulation is done with a 6th-order FD operator. The spectral element model is

discretized with a constant number of elements in the x-direction and a constant number of elements

per layer in the y-direction. The number of element in x-direction is 520 and the number of elements
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in y-direction in each layer is listed in table 4.2. The total number of elements along y is 380. These

numbers are chosen in a way such that there are smaller elements near the surface and larger elements

in the lower parts. With this number of elements the solution is definitely converged. There is a good

chance that the number of elements can be reduced significantly but the priority of this test is on

making sure that the FD model and the SEM model are, in fact, equivalent. For this reason I would

like to keep the size of the spectral elements comparable to the size of the FD grid spacing.

The source is a vertical force placed on the surface in the center of the model. As source signal

I choose again the 5 Hz time-shifted Ricker wavelet. This wavelet has a maximum frequency of

approximately 15 Hz (see figure 4.1). For this test I choose a simulation time of 5 s with a time step

interval of dt = 0.1 ms. The simulation time is shorter than in the previous test because of the shorter

offsets. Furthermore, dt is smaller because, given the spatial discretization, it is required by the SEM.

The width of the C-PMLs in the spectral element model is 10 elements and the length of one element

is approximately 15 m. The width of the boundaries in the FD simulation is chosen such that it is the

same. While the C-PMLs do not behave the same in the two methods, they are thick enough so that

edge reflections are almost completely dampened in both cases. Reflections within the boundary zone

play no role since they are outside the scope of the acquisition geometry and also dampened by the

C-PMLs. Regarding the source and receiver positions in the SEM model, the shift of the free surface

introduced by the IVF and the shift of the vy receivers by the staggered grid have both to be taken

into account. To be precise, receivers cannot be placed at the exact same location in both methods

because the SEM automatically places the receivers on the most appropriate control node inside an

element, and hence the exact position is unknown. However, this location error is much smaller

than dh because one element has an edge length of approximately 15 m and I use 9-node elements.

Using the minimum velocity in the model and the maximum frequency of the source signal, table 4.1

shows the chosen discretizations in terms of minimum points per wavelength (ppw) for both P- and

S-waves. Measuring discretization in ppw has the advantage that it unifies the source signal frequency

and the velocity of the medium which makes it easier to compare discretizations of FD simulations

on different scales.

Table 4.1: Chosen spatial discretizations in terms of minimum points per wavelength (ppw) for P-
and S-waves.

dh in m minimum ppw (P) minimum ppw (S)

7.50 36 21
5.00 53 31
3.75 71 41
3.00 89 51

4.2.2 Wavefield discussion

In the presence of topography the dominant phases of the wavefield are mostly caused by interactions

with the free surface. To visualize the wavefields I again use equations 4.3 and 4.4 which separate

the compressional and the shear component. Figure 4.4 shows that, except for the direct and P-S

converted waves, all visible phases are surface waves or converted from surface waves. It can be
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observed that the mountain peak located at x≈2800 m acts as a diffraction point where P- and S-

waves are being scattered. Phase number 6 is a back-scattered surface wave coming from the right

and reflected from the left side of the mountain. Phase number 7 is a doubly scattered Rayleigh wave,

which is reflected first at the left and then at the right flank of the mountain, and hence propagating

to the left again but with a small delay compared to the original Rayleigh wave. Phase number 10

is an S-wave converted from the Rayleigh wave when it propagated down the left mountain flank

and reached the base which acts as another diffraction point. Since the compressional content of the

Rayleigh wave is smaller than the shear content the P-wave equivalent of this wave is not directly

visible. As the sixth layer has a high velocity compared to the adjacent layers there is a guided P-

wave observable (phase number 8). All in all, there are a lot of high-amplitude surface-wave phases

observable which partly overlap each other. This makes the identification of body-wave phases in the

seismograms impossible after the first arrival of the Rayleigh wave.

1

3

4

3 7

8

6

2

33 67

5

9

10

Figure 4.4: Spatial divergence and curl of the FD velocity wavefield after 1.6 s with the contour of
the underlying velocity model. The source is located in the center of the model at the surface and the
model is discretized with dh = 3 m and dt = 0.1 ms. Amplitudes are clipped such that the phases in
each plot are visible in the best way. 1: Direct P-wave, 2: Direct S-wave, 3: Rayleigh wave, 4: P-
wave diffracted at mountain peak, 5: S-wave diffracted at mountain peak, 6: Backscattered Rayleigh
wave, 7: Doubly scattered Rayleigh wave, 8: Guided P-wave, 9: P-S converted waves, 10: S-wave
diffracted at mountain base.

4.2.3 Results

Figure 4.7 shows a detailed comparison of some selected traces. For a broad overview with less detail

see the seismograms in figures A.1 to A.4 in the appendix. In all seismograms the phase with the

highest amplitude is the Rayleigh wave. Before their first arrival some body waves are observable and

after their first arrival is a superposition of body waves and reflected Rayleigh waves. The reflected

Rayleigh waves dominate in amplitude over the body waves. In this figure one can clearly observe

that the waveforms of the FD simulations become increasingly similar to the waveform of the spectral

element simulation for smaller values of dh. However, even at dh = 3 m the waveforms show some

differences. It seems that especially the surface waves arrive slightly earlier in the spectral element

seismograms and smaller dh also leads to earlier arrivals in the FD seismograms. When looking at the
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body waves which arrive earlier than the surface waves, some phases can be found which match well

regardless of discretization and some show the same trend as the surface waves. Since body waves

can only be directly observed in the seismograms before the onset of the surface wave it is hard to

make any assertions about them. However, the observations that can be made lead to the hypothesis

that the body wave phases which are influenced by discretization propagate parallel to the free surface

like the surface waves. Because discretization of the free surface and direction of propagation relative

to the free surface seem to be key factors the reason for this observations has to be the staircase effect.

Since the smooth topography of the spectral elements has to be approximated by staircases in the FD

method each stair-step acts as a diffractor. This effect varies with the inclination of the interface since

up to a dipping angle of 45◦ the number of diffractors per unit length of the free surface increases.

This is shown e.g. by Kunz and Luebbers (1993). The staircase effect also depends on dh because

at infinitely small dh the dipping surface is smooth again. Thus, the effect has to vanish. Since the

difference in model parameters is particularly strong at the free surface these diffractions have higher

amplitudes than the diffractions occurring at dipping internal interfaces. The difference between the

methods also increases with offset. The offset dependence of the difference between FD and SEM

seismograms is better visible in figure 4.6. Here the RMS difference between the methods is shown

as function of dh and offset. In this figure the general observable trend is that the difference increases

with offset and with the value of dh. This leads to the conclusion that the error resulting from the

staircase effect accumulates with offset. However, there is no strict increase with offset, e.g., at offset

3000 m there is a spike in the RMS difference which suggests that it also depends on the shape of

the topography at each receiver position. This also makes sense because, e.g., receivers located in the

valley at around x = 2000 m certainly record more energy from reflected body waves while much of

the surface wave energy gets reflected at the mountain flank to the right. On the other hand, receivers

on the mountain flank to the left of the valley record mostly surface waves while body wave paths are

being blocked by the topography. From the results it is apparent that a discretization with dh = 7.5 m

is not enough to reach convergence of the near-surface wavefield.

In conclusion, one would need a very fine discretization to model surface waves correctly. However,

such a fine grid would need a tremendous amount of computational resources. Since FWI is already

quite costly, in most cases such discretizations are not feasible. This raises the question, how FWI

deals with the error in the forward simulation and if these resulting errors are small enough to justify

the use of FD-based FWI. This is investigated in the next chapter. Finally, it can be said that such

smooth interfaces as produced by the spectral element method in this test are not a perfect represen-

tation of real topography either. So the differences shown in this test are a worst-case scenario. One

also has to be aware of the fact that the spectral element method is not free of errors either. But,

since the FD solution seems to converge towards the SEM solution for small grid spacings and small

offsets, it is proven to be an adequate reference.
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Figure 4.5: Left: The P-wave velocity of the left part of the Canadian Foothills model up to x =
7.8 km. The y-axis is limited to 7 km. Right: The simplified version of this section which is a layered
model containing only the most relevant interfaces.

Figure 4.6: The RMS error between the verti-
cal velocity components recorded at all receivers
simulated with the SEM and with the FD-method
at different discretizations.

Table 4.2: Model parameters of the simplified
model shown in figure 4.5. The S-wave velocity is
calculated with equation 3.2 and the density with
equation 3.3. Both parameters are then rounded
to the closest integer value.

Layer vP in m s−1 # of spectral

elements along y

1 4400 50

2 4000 50

3 5200 50

4 4700 30

5 4300 40

6 5600 20

7 4600 50

8 5700 20

9 4900 20

10 5700 20

11 5800 30
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Figure 4.7: Selected time intervals of traces at different offsets modeled with SEM and the FD-
method using different discretizations. The traces shown are all velocity seismograms recording the
vertical component. All the time windows show the first arriving body waves followed by the high-
amplitude surface wave.

4.3 3D effects

So far I have only considered 2D models with 2D wave propagation. However, the real world is

3D. Compared to 2D, waves have different amplitudes because of stronger geometrical spreading

and also different phases. As 2D FWI is already costly enough, doing a 3D inversion is not an op-

tion, at least for me. The goal of this section is to assess the impact of 3D effects on the recorded

seismograms. To do this I conduct two tests. In the first test I investigate only the effect of the dif-

ferent wave propagation in 3D compared to 2D and test a method to mitigate these differences. In

the second test I investigate the effect of 3D out-of-plane reflections of surface waves and body waves.

4.3.1 3D wave propagation

To investigate the effect of 3D wave propagation alone, i.e. without out of plane reflections, I first

select a subdomain of the model introduced in chapter 3 because 3D simulations are computationally

expensive and it is not necessary to consider the whole model to see 3D effects. This test is conducted

only with the FD-method and not with the SEM to focus on the influences of topography rather than

the different forward solvers. I use a 4th-order FD operator, a grid spacing of dh = 7.5 m and a

time step interval of dt = 0.7 ms. The selected subdomain is the upper left part of the model and

has a width of 1040 grid points and a depth of 740 grid points which is equal to 7800 m × 5500 m.
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I choose this region because it has one of the strongest height variation of the free surface found in

the model. Then I continue this model in the third dimension which is done in a symmetric way, so

that there are no heterogeneities in the added dimension. This is often called a 2.5D model. I set

the length of this new dimension to 400 grid points, which equals 3 km. The acquisition geometry,

which I also would like to use in later inversion tests, is set at the center of the new axis. This way

influences from the boundaries are not an issue. While I only discuss the center shot in this section,

overall I simulate 48 shots with a spacing of 150 m and a receiver spacing of 15 m. The first shot is

located 375 m away from the left model boundary to ensure no significant influence from boundary

reflections. With the given model dimensions and shot spacing the same distance is between the last

shot and the right boundary. o absorb boundary reflections I use C-PMLs with a width of 20 grid

points. The two component receivers start at the first shot position and end at the last shot position

which results in 470 receivers in total. This setup is shown in figure 4.8. Here, I do not show the other

parameter models to avoid redundancy but they are calculated with equations 3.2 and 3.3 from the vP
model. As a source signal I use a Ricker wavelet with a center frequency of 10 Hz which is set off

as a vertical source. With this new elastic model and acquisition geometry I perform a 3D forward

simulation. I also calculate the 2D seismograms with the corresponding 2D model as a reference.

As I do both, 2D simulations and 3D simulations, in this test, I can also compare the computational

resources needed for the two settings. The simulation of a single shot in the 2D setup took about

37 s on 20 cores which corresponds to 0.2 core-hours. In the 3D setup a single shot took about 11

minutes and 36 s on 2240 cores which corresponds to 433 core-hours. This is an increase by a factor

of more than 2000 which gives a good insight why 3D elastic inversions are rarely done. At first

this difference seems unrealistic because the model size increased only by a factor of 400. However,

in 3D there is massively more communication between CPUs needed and using less CPUs for less

communication is also not an option because of memory limitations. I obtained these values with the

hardware of the ForHLR II cluster. The CPUs of this cluster have a base clock-speed of 2.6 GHz.

The 3D equivalent of the seismic source in a 2D simulation would be an infinitely long line source

along the third dimension. In a real measurement we deal, however, at least approximately with point

sources. To solve this problem I use the reflected wave transformation proposed, e.g., by Forbriger

et al. (2014) which converts a point source measurement to that of a line source. The procedure sug-

gested by them is first to convolve each trace of the seismogram with
√
t−1 to transform the phases

and then taper each trace with
√
t to correct the amplitudes. The exact amplitude correction for a ho-

mogeneous medium would be a multiplication with vph
√

2t where vph is the phase velocity. However,

the constants are omitted because I do not use true amplitudes but only relative amplitude informa-

tion. This method has to be tested first because it has never before been applied to a model of that size

and that complexity. Applying the transformation to the shot gather of shot 23 results in the trans-

formed seismograms shown in figure 4.9. Although the transformation is meant for body waves the

figure shows that it works surprisingly well for surface waves and even reflected surface waves. While

the phase shift needed in the transformation is the same for body and surface waves, the amplitude

correction factor is different. For surface waves the amplitude correction has to be ∝
√
t−1. Since

there is only a difference in amplitude and not in phase, the direct surface waves are automatically

"corrected" with the right amplitude factor by trace normalization which is also used during FWI.

One would expect that this causes problems because the wrongly corrected amplitudes of the surface
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waves offset the amplitude correction of all other phases. Around t = 1 s the factors
√
t and

√
t−1

do not differ by much. So, as long as the first arriving surface wave arrives close to that time, the

body waves are also correct. A larger discrepancy is observable at larger offsets. Here, the difference

between the two factors causes the transformed body waves to have a smaller amplitude than they

should have. The reflected wave transformation also does not correct the direct wave properly, this

can be seen in zoom 1 of figure 4.9. On the other hand, it seems that the reflected wave transfor-

mation in combination with the constant amplitude offset introduced by trace normalization works

really well for reflected surface waves as can be seen in zoom 2 of figure 4.9. The conclusion of the

visual interpretation of the seismograms is that overall the reflected wave correction in combination

with trace normalization works well for direct and scattered surface waves and at near offsets also for

body waves. At far offsets the amplitude transformation of the body waves has some shortcomings

but, since the phases are transformed correctly, there is a good chance that this has no big influence

on FWI.

Figure 4.8: On the right is the 2.5D extension of the true vP model shown on the left with the shot
positions marked with red stars.

4.3.2 3D topography

After showing in the previous section that the reflected wave transformation yields sufficiently good

results in case of a 2.5D medium, the goal of this section is to see its performance in a 3D medium.

For this I construct a 3D model from the 2.5D model which is shown in figure 4.10. A more detailed

description of how I constructed this model can be found in appendix B. The basic idea of this 3D

model is that the deeper geology can still be approximated by a 2.5D medium and only the surface

topography, and hence also the near-surface geology, are truly 3D heterogeneous. I constructed this

model also in a way that the slice in the xy-plane along the acquisition geometry is equivalent to

the 2D model used previously. This means, the acquisition geometry is at exactly the same position

as in the previous test. The only thing different to the previous test is the surface shape to the left

and right of the acquisition line, the size and everything else is the same. Applying the reflected
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Figure 4.9: Result of the 3D to 2D conversion for the 2.5D model. The upper plot shows 12 equidis-
tant traces in the vy shot gather of shot 23. The traces are scaled with t and normalized for better
visualization of late arrivals. The two plots at the bottom show a zoom in the locations marked by
black boxes in the upper plot. The left zoom shows the first arrivals of the body waves and the surface
wave. The right zoom shows a superposition of body waves and scattered surface waves.

wave transformation yields the result shown in figure 4.11. One can observe that the transformation

performs very poorly in this case. Neither surface waves nor body waves are transformed correctly

regardless of the arrival time. There are large differences both in amplitude and in phase. It is also

noticeable that the amplitude of later arriving phases is greatly reduced compared to the 2.5D case

which means that much of the wave energy is scattering at the topography away from the receivers.

This result is not surprising because it is obvious that in case of strong 3D variations of the free surface

a line source transformation makes no sense. Out-of-plane reflections of surface waves can also have

a huge influence on the recorded seismograms. All in all, this 3D setting is probably beyond the limit

of what can be reduced to a 2D problem. Although the subsurface geology in still 2.5D, the influence

of surface reflections is too strong. In conclusion, there is only a slim chance that FWI is capable to

invert body waves which penetrate inside the 2.5D subsurface of the model. Even though they are

transformed correctly, the superimposing surface waves probably have too much of an effect.
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Figure 4.10: Left: The visualization of the 3D model which is generated by combining a heteroge-
neous surface with the 2.5D model shown in figure 4.8. As I use lighting in this figure to improve the
visualization of the surface topography I do not show a legend for the colors. Right: The contour of
the surface topography. The height shown in this plot is relative to the lowest point of the surface. In
both plots the shot positions are indicated by red stars.
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Figure 4.11: Result of the 3D to 2D conversion for the 3D model. The upper plot shows 12 equidis-
tant traces in the vy shot gather of shot 23. The traces are scaled with t and normalized for better
visualization of late arrivals. The two plots at the bottom show a zoom in the locations marked by
black boxes in the upper plot. The left zoom shows the first arrivals of the body waves and the surface
wave. The right zoom shows a superposition of body waves and scattered surface waves.
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Chapter 5

Inversion with topography

In this chapter I use FWI on synthetic land data in the presence of topographic variations. In general

this chapter is divided into two parts. In the first part I investigate the consequences of the error done

by using FD solvers on FWI. This section is based on the results obtained by the forward modeling

test in section 4.2. In the second part I investigate how 3D effects like shown in section 4.3 affect 2D

FWI.

5.1 Applicability of FD solvers

Goal of this section is to test the applicability of FD solvers for FWI in regions with strong topo-

graphic variations. As seen in section 4.2, especially for surface waves, there are significant discrep-

ancies between the SEM solution and the FD solution. These discrepancies increase with increasing

grid spacing dh. To test the applicability of FD solvers for FWI in regions with strong topographic

variations I invert SEM seismograms with a FD-based FWI in this section. To evaluate the result

of this inversion I use the same settings to invert pseudo-observed data simulated with the same FD

solver as used in FWI.

5.1.1 Low-frequency inversion

In this section I first introduce the general workflow, techniques and parameters used in the inversion

tests. With these settings I then conduct two inversions. In the first inversion I invert pseudo-observed

data modeled with the same FD solver as used in FWI. This means, the impairments coming from

incorrectly modeled surface waves do not have any effect in this test. The result is used as a reference

solution for the second inversion in which I use pseudo-observed data simulated with the SEM. As

shown in section 4.2, discretization is a critical issue. To reduce the computational cost I assume a

modern acquisition where low frequencies are recorded in this test. Lower frequencies mean longer

wavelengths and thus less grid points needed in total to obtain a certain number of grid points per

wavelength. Low frequencies also means there is a reduced risk for cycle skipping. This describes

the unwanted process that an event in the synthetic data is fit to a wrong event in the observed data and



40 CHAPTER 5. INVERSION WITH TOPOGRAPHY

in a consequence of the local optimization used in FWI. Cycle skipping occurs if the corresponding

events in the synthetic data and field data are separated by more than half a period. To avoid cycle

skipping multi-scale FWI as described in section 2.2.3 is used. However, this only helps if the starting

model fulfills the half a period criterion of the lowest frequencies recorded.

Methodology

In this section I introduce the most important parameters of the FWI algorithm. I start with the pa-

rameters I use for the FD forward solver. I use a FD solver which is of second order in time and

fourth order in space because higher orders do not bring any significant improvements since the spa-

tial discretization is still relatively fine. Since the model shown in section 4.2 is based on the model

I want to invert in this test and which I show later, the impairment of the surface waves depends on

dh in the same way as in the forward modeling test. The discretization I choose for my inversion test

is dh = 7.5 m for two reasons. The first is that the forward modeling test shows large mismatches

between SEM and FD seismograms when using this dh. This means, the effect of the poor discretiza-

tion will definitely be observable in the FWI result. Second, because this dh is the largest of the tested

discretizations in section 4.2 it requires the least computational effort. FWI itself is already costly so

the goal is to reduce the required computational resources whenever possible. The size of the models

is similar to that of the model used in section 4.2 to keep the offset-dependent error of the FD solution

in the same range. The exact dimensions are 7800 m in length and 7050 m in depth which is equal to

1040 grid points and 940 grid points, respectively. Following criterion 2.28, I set dt to 0.7 ms. With

the average velocities in my model I estimate the simulation time needed to be 7 s. This should be

more than enough for an S-wave to travel from a source in the upper left corner of the model to the

lowest reflector and then to a receiver at the upper right corner and also should be enough to record

most multiples.

For the SEM simulations, which are needed to obtain the pseudo-observed seismograms for the sec-

ond inversion, different discretizations are required. In this test I do not adapt the SEM mesh to the

internal interfaces of the model but only to the surface. Since it is known that staircase effects at in-

ternal interfaces are negligible in body wave simulations with the FD method, they are also negligible

in this case. To save some computational resources I choose a fine discretization of the SEM mesh

near the surface and a coarser discretization in the deeper part. Up to y = 2.5 km the SEM mesh

is 100 elements in height. Below this depth the mesh has another 150 elements in height and the

elements have a rectangular shape. So the total number of elements in the vertical direction is 250.

In horizontal direction there are 520 elements in both regions of the mesh. Over all, this results in

a relatively high number of spectral elements. The reason is that I want to ensure the similarity of

the SEM model and the FD model. The time discretization needed with this spatial discretization is

0.1 ms.

The true and starting models used in this test are shown in figure 5.1. The true models are the upper-

left sub-region of the Canadian Foothills model introduced in chapter 3. I do not use the full model

because the chosen sub-region has one of the strongest topographic variations of the free surface and

also has a reasonable size. Hence, if the inversion is successful in this region, it can be applied to all

other regions of the model. The models shown in the figure are the models used for the FD method.
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To obtain the SEM version of the true model, I use nearest-neighbor interpolation to deduce the ma-

terial parameters of the spectral elements from the FD model. This interpolation preserves the sharp

interfaces of the model. To minimize the effect of boundary reflections I use C-PMLs which have a

thickness of 20 grid points in the FD case and 10 elements in the SEM case. I use C-PMLs in this test

rather than absorbing boundaries because the absorption works different in the two methods I want to

compare, so I need to make sure it works almost perfectly. Reflections occurring in one method but

not the other could result in artifacts in the inverted models. C-PMLs work best when there are no

reflectors parallel to the edge they cover inside them because in their theoretical derivation a constant

model along the normal direction is assumed (Komatitsch and Martin, 2007). Hence, I remove all

variations perpendicular to the model boundaries inside the C-PMLs. The starting model is a linear

velocity gradient. This gradient is different to the true gradient which underlies the Canadian Foothills

model because true velocities are unknown in the real world. The assumption that seismic velocities

and density increase with depth holds in most cases so this starting model requires only little a-priori

information.

Regarding the acquisition geometry I place all sources and receivers just below the free surface such

that they are not located within the half grid point layer introduced by the IVF (see section 2.1.5). I

use 470 two-component receivers which record the particle velocity. For the inversion I use 48 ver-

tical velocity sources. To further minimize the effect of boundary reflections I keep a distance of 50

grid points between the start and end of the acquisition geometry and the model edges. This results in

a horizontal receiver spacing of 15 m and a horizontal shot spacing of 150 m. Shot positions are also

indicated in figure 5.1.The first reciever is placed at the position of the first shot and the last receiver

at the position of the last shot. As I want to use the STF inversion introduced in section 2.2.3, I need

to define two source signals. A true source signal which is used to produce the pseudo-observed data

and a synthetic source signal which is used as a starting signal for the STF inversion. As true source

signal I use the same 5 Hz Ricker wavelet as in the forward modeling tests. As synthetic wavelet

I choose as sin3 wavelet because of its low-frequency content which guarantees the stability of the

simulation needed for STF inversion. The sin3 wavelet is defined as:

ssin =

A sin(πfc(t− tshift))3 if tshift ≤ t ≤ tshift + f−1
c

0 otherwise
(5.1)

Like in the definition of the Ricker wavelet A describes the amplitude, fc the center frequency and

tshift the time shift. All required parameters for the two sources are listed in table 5.1. The frequen-

cies of the two wavelets are very similar since the frequency needed for the synthetic source can be

estimated easily from the amplitude spectrum of the observed seismograms.

For the STF inversion I do not use the entire shot gathers because the strong reflected surface waves

are otherwise visible in the inverted source signals. I rather use tapered gathers where only the first

arriving body waves and the direct surface wave is used. For shot 24 the full and the tapered version

of the shot gather are shown in the top row of figure 5.2. To generate this taper I automatically pick

the first onset of each seismogram trace. Up to 0.5 s after each picked onset the taper is 1 and after

that a cosine taper with the length of another 0.5 s is used which acts as the transition to the muted

part. Since I use synthetic seismograms the automated picking can be done easily. In the presence of

noise the definition of the muting taper probably has to be done manually for each shot.
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During inversion I use the preconditioned conjugate gradient method, step length estimation and the

multi-scale approach which all have been introduced in section 2.2.3. For the multi-scale approach I

use a 2 Hz and 4 Hz low-pass filter consecutively in the first stages before I use the entire frequency

content. The filter type I use is a fourth-order causal Butterworth filter. The filter is causal rather

than zero-phase to avoid wrap-around effects of the first arrivals at low corner-frequencies. Figure 5.3

shows how this filter affects the source signal in time and frequency domain.

In section 4.2 I show that surface waves suffer most from the staircase effect. As of their high am-

plitudes, however, they dominate the misfit function. To mitigate their influence, and thus boost the

influence of body waves, I also use a fk filter in every second stage. Body waves should not be affected

much by the staircase effect near the surface and also allow for better model updates in the deeper

regions of the model. I use this filter in every second stage because the inversion of surface waves is

more stable and I want to use the information about the subsurface contained in the surface waves.

The effect of the filter is exemplary shown in figure 5.4 for shot 24. In the spectrum the separation of

body and surface waves is not very clear. However, there are clear energy maxima observable which

have to correspond to the surface waves but the transition to the body waves which have to be located

at higher frequencies and lower wave numbers is continuous. The reason for the poor separation is

that the receivers are not on a straight line because of the topography which distorts the k part of the

spectrum. A velocity filter with a corner velocity of 2000 m s−1 has its transition zone right below

the energy maxima in the spectrum as is indicated by the red lines in the figure. Comparing the seis-

mograms where this filter is applied to the original one in time domain which is shown on the right

of the figure one can see that in most traces the separation of body waves and surface waves works

surprisingly well. To minimize the effect of the fk transform on the body waves I mute them in the

fk domain instead of the surface waves and then subtract the resulting filtered seismograms from the

original ones in time domain. With this result I can be confident to use the filter during FWI. As

misfit function I use the L2 norm with normalized seismograms which increases the weight of far

offset traces. This also gives larger model updates in the deeper parts and thus weakens the impact of

surface waves on the gradient. Finally the complete workflow is shown in table 5.2. I conduct a STF

inversion at the beginning of each stage and then again every tenth iteration. This way the increase

of computational cost coming from the additional forward modelling needed for the STF inversion is

not too significant but large changes in the inverted model which happen inside a stage can still be

used for improving the STF.

Table 5.1: Parameters of the synthetic and the true source signal. The true signal is calculated with
equation 4.1 and the synthetic signal with equation 5.1. Amplitude A has no unit because our code
does not scale the sources to their true physical units. This is not problematic because recording true
amplitudes is very difficult in practice, and hence rarely done.

type A fc in Hz tshift in s

true source Ricker 1.0 5.0 0.00
synthetic source sin3 1.5 6.0 0.15
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Table 5.2: Inversion workflow. In every all three model parameters are beeing inverted. Higher stages
use higher frequency content until the last stages use the entire frequency spectrum of the source. The
fk filter is used in every second stage.

Stage vP vS ρ filter edge in Hz fk filter
1 X X X 2 −
2 X X X 2 X
3 X X X 4 −
4 X X X 4 X
5 X X X - −
6 X X X - X

Results and Discussion

The six inverted models resulting from the two inversions are shown in figure 5.1. One can observe

that the inverted vP and vS models of both inversions match the true models to a very high degree.

The edges of the model features are slightly smoother than in the true model but this is a result of the

low frequencies used. One can also observe that the inverted vS models appear to be a little better

resolved than the vP models. This is reasonable because S-waves have a shorter wavelength than P-

waves. Both inverted velocity models fail to reconstruct the true velocity of the high velocity feature

on the left just below a depth of 4 km but only reconstruct the increase in velocity at the edges of the

feature. The reason for that is that only some reflected waves illuminate this feature because it is not

in the center of the acquisition geometry. In general, the limit with this acquisition geometry seems

to be around a depth of 4 km because there appear to be more random fluctuations in the smooth

background velocity gradient below this depth. On the first look, the resulting vP and vS models are

very similar for both the inversions. In the inverted vP model where the SEM data is used, however,

high velocity artifacts occur near the surface, especially in regions with strong topography. For better

visualization zooms of these artifacts are shown in figure 5.5. For reference the true model and the

inverted model for which FD data is used are also shown in the figure. This figure proves that the

high velocity zones cannot be found in the true model or the inverted model which is obtained using

pseudo-observed data from the FD method. This means, the artifacts are connected to the SEM data.

This is plausible because, as seen in section 4.2, the surface waves are slightly faster in the SEM

seismograms compared to the FD seismograms even though the underlying models are equivalent.

To balance this velocity difference the inversion introduces high velocity zones. Interestingly, the

high velocity artifacts cannot be observed in the vS model. Out of the three parameters I invert for the

inverted density model has by far the largest error. In general, areas where the true model has higher

densities than the starting model are overestimated and regions where it is the other way around are

underestimated. The inversion seems not to be capable to invert the true values but only density

contrasts. This behavior is expected and also common for FWI. The problem with inverting density

is that it mostly affects the amplitudes of the reflected waves rather than their phases. This makes

the inversion more difficult. Some authors like, e.g., Brossier et al. (2009) do not invert for density

because of that reason. Nevertheless, I will do so because it yields the advantage that artifacts from

non-physical modeling can be collected in the density model which improves inversion of the other

parameters as shown, e.g., by Przebindowska et al. (2012). As a result, I show inverted density models
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from now on for the sake of completeness but I do not discuss them.

With this high velocity zones in the vP model the inverted data matches the pseudo-observed data to

a very high degree. The data fit is equivalent to that of the inversion which uses FD data as is shown

in figure 5.6. The figure shows that in both inversions the inverted seismograms almost perfectly

align with the pseudo-observed seismograms in all parts of the shot gather. There are some errors

observable at large offsets and at very late arrival times but these errors are very localized, and hence

considered minor. The good data fit is also a consequence of the STF inversion result which is shown

in figure 5.2 for shot 24 of the inversion which uses FD data. The inverted source signal matches the

true source signal to a point where they cannot be distinct visually when using tapered seismograms.

The inverted source signal which uses no taper and is shown for reference has some oscillations at

around 1.5 s which are caused by the high amplitude reflected surface wave. Without tapering, the

amplitude of the first minimum of the inverted signal has also a slight error. The reason for this are

probably notches in the amplitude spectrum of late arriving phases which are caused by interference.

Finally, the misfit development for both inversions is shown in figure 5.7. It can be observed that

the final misfit is below 20% of the initial misfit which is that obtained with the starting model. The

inversion which uses SEM data takes about 50 iterations longer than the one which uses FD data.

While the misfits after the fifth stage are almost equivalent in both inversions, the misfit after the sixth

stage of the SEM data inversion is ca. 5% points lower than that of the FD data inversion. While this

sounds surprising at first, the difference is not really significant. When comparing previous stages of

the inversions, the differences are in the same order of magnitude and regardless the relative misfits

are the same after stage 5. In general, this comparison of misfits is only possible to a limited degree

because the STF inversion also has a considerable influence on it. Although body waves have smaller

amplitudes the misfit in stages where I use a fk filter is higher than in stages where I do not because I

normalize each trace before calculating the adjoint sources. Furthermore, the misfit without fk filter is

dominated by surface waves. The inversion of surface waves is more stable because their sensitivity

is significantly higher and focused on a smaller region compared to body waves. The figure of the

misfit development also justifies the use of the STF inversion in every tenth iteration of each stage.

E.g. in the first stages there are iterations where the misfit decrease stagnates but then, after a new

STF inversion is executed, it decreases again rapidly.
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Figure 5.1: The first row shows the true parameter models used for the inversion tests. In the second
row the corresponding starting models are shown. In this models I also show the source positions
indicated with red stars. The last two rows show the inversion results. In the penultimate row are
shown the inverted models when using pseudo-observed data coming from a FD solver. The last row
shows the result when using pseudo-observed data coming from a SEM solver.
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Figure 5.2: The upper row shows image plots of the raw and tapered shot gather for shot 24. These
image plots are clipped and scaled linear with time to improve the visualization. The tapered shot
gathers are used for STF inversion. The lower row shows the inverted source signatures used in the
fifth stage of the inversion which uses FD data. Shown is a comparison of the inverted signal when a
the taper is used (right) and when it not (left).
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Figure 5.3: Source wavelet in time and frequency domain with and without frequency filters used
during the inversion. With lower corner frequency of the filter the amplitude of the wavelet decreases
and the length increases.

Figure 5.4: The plot on the left hand side shows the fk spectrum of the vx receivers at shot 24 which
is located in the center of the acquisition geometry before filtering. The red lines are the borders of the
fk-filter flanks. The plot on the right hand side shows the result of the filtering in time domain. The
plotted surface wave seismograms correspond to the inverse 2D Fourier transform of the filtered fk
spectrum and the plotted body wave seismograms correspond to the difference between the original
seismograms and the surface wave seismograms. Shown are only 12 equidistant traces of the original
469 traces for better visualization. For the same reason I also show only the first 2.5 s of the total time
which is 7 s.
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Figure 5.5: Comparison of the central near surface region between the true vP model, the inverted
model using FD data and the inverted model using SEM data. In the SEM data inversion strong high
velocity artifacts are observable.

Figure 5.6: Comparison of the pseudo-observed and inverted vy seismograms for shot 24. On the
left is shown the result of the FD data inversion and on the right the result of the SEM data inversion.
The upper plots shows an overview of the shot gather of shot 24 and the lower ones shows a zoom on
the trace which is indicated by the black box in the overview.
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Figure 5.7: Shown is the misfit development for the inversion which uses FD data and the inversion
which uses SEM data. Plotted on top of the curves are black crosses which indicate the end of a stage.
The misfits are normalized to that of the starting model.
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5.1.2 Moving to higher frequencies

The previous tests are conducted with very low frequencies because of the inaccurate modeling of

surface waves at fewer grid points per wavelength, as shown in section 4.2. Since the result of section

5.1.1 are far better than expected the next step is a test with higher frequencies. Frequencies below

5 Hz can only be acquired on land since a few years (Mahrooqi et al., 2012). If this test is successful

older data sets can also be used for FWI.

Methodology

The methodology of this test is almost the same as the one of the test in section 5.1.1. Only the

source signal and starting model are adjusted. The new source parameters are listed in table 5.3. The

center frequency of the source in this test is double that of the last test. Using criterion 2.27 yields

that with a spatial discretization of dh = 7.5 m the grid dispersion is still acceptable. Starting the

inversion with higher frequencies requires a better starting model to prevent cycle-skipping. Instead

of a linear gradient I use a strongly smoothed version of the true model. The smoothing is done in a

three step process. The first step is setting all vacuum grid points in the true vP model to 4000 m s−1.

This is the approximate velocity near the surface and prevents a strong low-velocity zone near the top

surface after the smoothing. The second step is the actual smoothing. For this I use a spatial filter

which is applied in the kk domain after a 2D Fourier transform of the substituted model. The spatial

filter removes all features which are smaller than 1600 m which is approximately two wavelengths

close to the surface and less than that in the deeper regions. The last step is replacing the previously

substituted grid points with vacuum to restore the free surface. The starting models for vS and ρ

are derived from the starting model of vP with equations 3.2 and 3.3, respectively. The new starting

models are shown in figure 5.9. As an alternative, if no good starting model is available, Warner et al.

(2013) presented a way to down-shift the frequencies of the field data to prevent cycle-skipping. Since

this method requires considerable additional computational resources I will conduct this test under

the assumption that a sufficient starting model is available. Such a starting model can be obtained,

e.g., by travel-time tomography.

The new frequency band used in this test also requires a change in the frequency filters used. Field

data often demands the use of small frequency steps (Thiel, 2018). Hence, I use the frequency band

from 5 Hz to 11 Hz with a step interval of 1 Hz. I also increase the filter order from 4 to 8. With

the higher corner frequencies, compared to the previous test, this filter order becomes stable and the

increase in filter order improved the convergence of the FWI significantly. The new workflow is

shown in table 5.4.

Results and Discussion

The misfit development with this new frequency band is shown in figure 5.8. The misfit decreases

significantly in each stage, so the chosen frequency steps are justifiable. The inverted models are

shown in figure 5.9. In general they look very similar to the inverted models of the previous test (see

figure 5.1). Up to a depth of ca. 3 km there are no obvious differences observable. The high velocity
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Table 5.3: Parameters of the synthetic and the true source signal with realistic frequencies. The true
signal is calculated with equation 4.1 and the synthetic signal with equation 5.1. Amplitude A has no
unit because our code does not scale the sources to their true physical units. This is not problematic
because recording true amplitudes is very difficult in practice, and hence rarely done.

type A fc in Hz tshift in s

true source Ricker 1.0 10.0 0.00
synthetic source sin3 1.5 12.0 0.15

Table 5.4: Inversion workflow. In every all three model parameters are beeing inverted. Higher stages
use higher frequency content. The fk filter is used in every second stage.

Stage vP vS ρ filter edge in Hz fk filter
1 X X X 5 −
2 X X X 5 X
3 X X X 6 −
4 X X X 6 X
5 X X X 7 −
6 X X X 7 X
7 X X X 8 −
8 X X X 8 X
9 X X X 9 −
10 X X X 9 X
11 X X X 10 −
12 X X X 10 X
13 X X X 11 −
14 X X X 11 X

feature in the lower left below 4 km seems to be reconstructed better now but the reason for this is

that it is already present in the starting model. The high velocity feature at a depth of ca. 3.5 km

seems to have lower velocities now than the true model. In the previous test the inverted velocities of

this feature match the true velocities better. To quantify this difference and to compare the inverted

models of this test with the inverted models of the previous test regarding their absolute amplitudes

figure 5.10 shows a vertical slice through the parameter models. One can observe that up to y ≈ 3 km

the inverted velocity models of this test match the inverted models of the previous test. On the

other hand, below y ≈ 3 km the inverted velocity models of this test show significant shortcomings

compared to the models of the previous test. While the P-wave velocity of the feature at y ≈ 3.5 km

is inverted almost perfectly in the previous test, the inverted velocity in this test is ca. 300 m s−1 less

than the true velocity. This difference has to be related directly to the used frequencies. Since the high

velocity zone above, which is broader in y-direction, is reconstructed well, wavelengths which are too

short cannot be the reason. I assume the reason to be the different sensitivity of the higher frequencies.

One important wave type for FWI are diving waves because they contain long wavelength information

(Zhou et al., 2015). Their rays are bent upwards again because of the velocity gradient. Diving waves

have a Fresnel zone in the shape of a "banana doughnut" (Dahlen et al., 2000). At low frequencies

these are wider than at high frequencies where they ultimately converge to a ray. It is possible that

the high sensitivity zone of the banana doughnut with a 5 Hz source barely intersects the discussed

model feature but the one of a 10 Hz source is too thin which results in low sensitivity for the feature.
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To validate that theory I calculate the finite-frequency sensitivity kernels for the two different source

signals using the implementation in specfem2d which follows Liu and Tromp (2008). The sums of

these kernels for all shots are shown in figure 5.12. To display these kernels I use a logarithmic color

scale because of the large range of sensitivities. Regarding the previous assumption two observations

are important. The first is that indeed there is an arc of high sensitivity observable in the vP and vS
kernels with a 10 Hz source which has its apex just above the discussed model feature. The second

observation is that the sensitivity in both the vP and the vS kernel is higher in 3 km depth when using

a 5 Hz source than when using a 10 Hz source. In general the sensitivity in the vP kernel with a

5 Hz source is more evenly distributed compared to 10 Hz, so that the arc is not observable at that

frequency. The even distribution has two reasons. The first is that the sensitivity of the diving wave

is spread over a larger area with the 5 Hz source, and hence the sensitivity per unit area is smaller.

The second reason is that the background sensitivity is higher in the 5 Hz case because surface waves

penetrate deeper into the earth. Diving waves are only recorded at the maximum offset possible with

this acquisition geometry. So, in order to utilize diving waves for the inversion of deep regions in the

model, one needs a larger acquisition geometry.

There are some additional observations that can be made from the sensitivity kernels. In all kernels

shown the by far highest sensitivity is near the surface. In the first kilometer below the surface the

vS sensitivity decreases by two orders of magnitude. The vP sensitivity decreases even faster. Only

about 100 m below the surface the sensitivity is already two magnitudes lower than at the surface.

This directly shows the zone dominated by surface waves. The thickness of this high-sensitivity zone

also depends on the frequency of the source signal. Below the high-sensitivity zone the values are

relatively stable up to a depth of ca. 3 km. Especially with the 10 Hz source one can see from the

density kernel that there is a high sensitivity at the model interfaces but not in the large regions in

between which explains why the inverted density models shown so far correctly display interfaces but

completely fail to match the absolute values of the true models.
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Figure 5.8: Progression of the data misfit for all iterations during the inversion of SEM data with
a center frequency of 10 Hz. Stage changes are indicated by vertical dashed lines. The misfit is
normalized to that of iteration 0 witch is the starting model. In all stages the inversion is done for all
three model parameters. In each stage with an even number an fk filter is being used.
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Figure 5.9: The top row shows the starting models used for the test with a 10 Hz source wavelet. The
bottom row shows the resulting inverted models. White represents the area above the free surface
where all parameters are set to vacuum.
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Figure 5.12: Finite frequency sensitivity kernels for a source with a center frequency of 5 Hz (top
row) and a center frequency of 10 Hz (bottom row). Shown are the absolute values of the sensitivity
normalized to their maximum. For better orientation the model is shown in white dotted contour lines.
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5.2 Inversion with 3D effects

Goal of this section is to invert the 2.5D model and 3D model presented in section 4.3 using 2D FWI.

The results from the comparison of the 2D and 3D seismograms were very similar in case of the 2.5D

model, so it is expected that this test will be successful. For the 3D model this is not the case, so it is

unlikely for the inversion to be successful.

Methodology

As observed data I use the converted seismograms of the test in section 4.3. For a detailed description

of the acquisition geometry I also refer the reader to this section. Like in the previous inversion tests

I use STF inversion to better mimic realistic conditions. The source signal used for the STF inversion

is described in section 5.1.2. Since the pseudo-observed data is generated with the FD method again,

the near surface artifacts observed in the tests with SEM should now be vanished again. As a starting

model I choose the same starting model used in section 5.1.2 because the center frequency of my

source signal is still 10 Hz. Since the true 3D models are slightly smaller in the vertical direction

the starting model is adjusted accordingly. Also the inversion strategy is the same as in the previous

section.

Results

The inversion result when using the 2.5D true model is shown in figure 5.13. Compared to previous

inversion results the inverted vP model has a deteriorated quality. While the high velocity artifact

near the surface vanished as predicted, the rest of the model seems to have more fluctuations than

before. Also the velocities of the model feature at ca. 2 km depth are not accurately reconstructed.

This cannot be said about the inverted vS model. Here up to a depth of ca.3 km the absolute values

of the inverted velocities almost perfectly match the true velocities. A likely reason for this behavior

is the incorrect amplitude normalization discussed in section 4.3.1. This mostly affects the vP model

since the amplitudes of body waves in the converted 3D seismograms are off by a constant factor.

The relative amplitudes of the surface waves are correct because of trace normalization and as shown

in section 5.1.2 their sensitivity for vS goes much deeper than their sensitivity for vP . However, a

decreased quality of the inverted vP model and an unaffected inverted vS model matches the results of

Auer et al. (2013) who investigated asymptotic 3D to 2D transformations for crosshole FWI. They use

the same phase correction but different amplitude factors and probably no normalized seismograms

during the inversion. Since in a crosshole experiment no surface waves occur there might be other

effects contributing to the decreased quality of the inverted vP model.

The result when using the 3D model is shown in figure 5.14. One can see that this inversion fails

completely. There is only a slight improvement to the starting model and strong artifacts are now

observable in the vP and vS models. This result is expected because of the poor similarity between

the 2D and 3D seismograms which is shown in section 4.3.

The conclusion drawn from this test is that 2D FWI is only possible if the topography of the free
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surface is homogeneous in at least one dimension. In case of a surface which varies in all directions

2D FWI fails and 3D wave propagation has to be considered. One could test, if slight 3D variations of

the free surface topography lead to errors which are acceptable. However, even finding an area which

has topography but only weak 3D variations of it in the scale of exploration seismics in the real world

is nearly impossible. Hence, I do not investigate this any further.
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Figure 5.13: Inverted models with a 2.5D true model. White represents the area above the free
surface where all parameters are set to vacuum.
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Figure 5.14: Inverted models with a 3D true model. White represents the area above the free surface
where all parameters are set to vacuum.
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Chapter 6

Summary & Conclusions

The goal of this work is to investigate the feasibility of the 2D FD method for FWI applications in

regions with strong topographic variations of the Earth’s surface on the scale of exploration seismics.

Because one of the most characteristic features of land data are strong surface waves, which are also

scattered at the surface topography, I use the elastic wave equation in my work. The free surface is

implemented using the improved vacuum formulation which allows the creation of models with, in

principle, arbitrarily shaped free surfaces. Since this formulation fulfills the traction-free boundary

condition via the model parameters and no special treatment of the free surface grid points is needed

during the simulation it is very efficient and thus well suited for FWI applications. The only consider-

able drawback of this formulation is that continuous shaped surfaces are approximated by staircases. I

show that these staircases can have a large influence on waves which travel parallel to the free surface

such as surface waves. It is shown that coarser discretizations shift the arrival of the main energy of

surface waves to later times. The effect of the staircases is reduced the finer the model is discretized.

However, for an efficient use of the FD method such fine discretizations are not an option. In case

one wants to model surface waves with a very high accuracy the spectral element method, which is

used as a reference in my work, is, although more difficult to implement and to use, the more suitable

method. The FD solution seems to converge towards the SEM solution for very fine discretizations,

although, complete convergence is not reached in my tests. In my inversion tests I use FD-based FWI

to invert synthetic data simulated with the SEM and show that the differences in the seismograms,

even when coarse discretizations are used, don’t have a major influence on the inversion result. The

inverted models of the P-wave velocity and S-wave velocity are very similar to the true models used.

The only notable artifact the use of SEM data produces is a thin high-velocity zone just below the free

surface of the vP -model which balances the observed time shift. In my inversion tests I also show

that because of surface waves the near-surface region of the vS-model is especially well reconstructed

and highly resolved. However, because of their large amplitudes they dominate the inversion so they

should, if possible, also be filtered in some stages of the inversion to obtain a better reconstruction of

deeper model regions. In all of my inversion tests I was not able to invert the true densities but only

density contrasts. To mimic more realistic conditions I also invert the source signal. These inverted

signals match the true signals almost perfectly. In addition to the validation of the FD method I also

investigate the influence of 3D effects, such as they occur in regions with strong topography, on 2D
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FWI. Here, I am able to show that phases and relative amplitudes of 3D point sources can be easily

transformed to their 2D equivalent in case the model is 2.5D i.e., has no variations perpendicular

to the acquisition line. If such variations are present, which is probably always the case in the real

world, the transformation fails and hence also 2D FWI. Only in case of 2.5D models the 2D FWI

yields sufficient inverted models. However, even in this case the errors done by the transformation

lead to a deterioration of the inverted models.
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Appendix A

Comparison of FD and SEM
seismograms

Figure A.1: Comparison of SEM seismograms and FD seismograms generated with a model dis-
cretization of dh=3 m. The top plot shows a shot gather with a selection of receivers and the bottom
plot shows the elevation for reference. The lowest point of the free surface has an elevation of 0 m.
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Figure A.2: Comparison of SEM seismograms and FD seismograms generated with a model dis-
cretization of dh=3.75 m. The top plot shows a shot gather with a selection of receivers and the
bottom plot shows the elevation for reference. The lowest point of the free surface has an elevation of
0 m.
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Figure A.3: Comparison of SEM seismograms and FD seismograms generated with a model dis-
cretization of dh=5 m. The top plot shows a shot gather with a selection of receivers and the bottom
plot shows the elevation for reference. The lowest point of the free surface has an elevation of 0 m.
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Figure A.4: Comparison of SEM seismograms and FD seismograms generated with a model dis-
cretization of dh=7.5 m. The top plot shows a shot gather with a selection of receivers and the bottom
plot shows the elevation for reference. The lowest point of the free surface has an elevation of 0 m.



Appendix B

3D model generation

There is no straight forward solution to generate a 3D model from a 2D model. In my case the purpose

of the 3D model is to investigate the effect of 3D heterogeneous topography. Hence, the geological

features below the surface can and also should be homogeneous in the third dimension. This means,

the only heterogeneity I need to add is that of the free surface. As a starting point for the 3D model

generation I choose the 2.5D model described in section 4.3.1. Next, I construct a random surface

with the constraint that the curve at z = nz/2 ·dh is the same as the surface of my 2D model. To avoid

confusion, from now on I refer to the surface of the 2D model as line surface. As a second constraint

I choose that the surface has to be inside the bounds of the line surface. I.e., the surface should at no

point be lower/higher than the lowest/highest point of the line surface. This has the advantage that

no extremely high mountains or extremely deep valleys are generated. In practice, I construct this

surface by generating random curves which are parallel to the z-axis, intersect the line surface and

are equally spaced. Then, I interpolated these curves and the line surface on the entire xz-plane to

form a surface. As interpolation algorithm I chose the v4 method implemented in MATLAB because,

unlike cubic interpolation, it causes no strong fluctuations.

With this method I am able to obtain a surface which looks natural and has height differences in the

same order of magnitude as the ones present in the 2D model. Now only at a few locations the new

surface has the same height as the surface of the 2.5D model. In the next step I set all grid-points

above the new surface to vacuum. All grid points which are vacuum in the 2.5D model but lay below

the new surface I fill with the value of the grid-point right at the surface of the 2.5D model. The model

generation procedure is visualized in figure B.1.
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Figure B.1: Illustration of the 3D model creation process. The procedure starts with the surface
line of the 2D model (upper left). Then, random curves are added which are parallel to the z-axis,
intersect the surface line and have a constant spacing in x-direction (upper right). These curves are
then interpolated on the entire xz-plane (lower left). The surface is then combined with the 2.5D
model (figure 4.8) by cutting out or filling up the differences (lower right).
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