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Abstract: The standard SAE J3016 provides a definition for levels of driving automation;
however, shared control algorithms that have successfully been applied to vehicle automation,
do not reasonably fit into the levels proposed by the standard. In this paper, the rich literature
about levels of automation taxonomies is reviewed regarding the applicability to all automation
concepts. Most definitions provide qualitative rankings of different levels of automation for
specific applications. However, from an engineering perspective, a quantitative and generic
approach would generate great benefit for the design, analysis and evaluation of human-machine
systems. Thus, criteria for a desirable metric of levels of automation are discussed and a
continuous and quantitative measure based on the options available to the human is proposed.
The application to an advanced driver assistant system example is demonstrated and future ways
to leverage the potential of the metric within and beyond automated driving are examined.

Keywords: Levels of Automation, Human-Machine Systems, Automatic Control, Shared
Control, Human Factors, Human-Centered Design

1. INTRODUCTION

In order to make the interaction of humans with complex
systems as safe, convenient and efficient as possible, the
systems can be automated to relieve the human from
workload. To reach this goal does not necessarily mean to
reduce the human interaction with the automated system
to a minimum as this may cause out-of-the-loop effects
that can lead to highly dangerous situations (Bainbridge
(1983); Endsley and Kiris (1995)).

Shared control provides a way to address this issue by
bridging the gap between manual control (MC) and full
automation (FA) using the potential of a cooperation of
human and automation (Abbink et al. (2012); Pacaux-
Lemoine and Itoh (2015)). Shared control has been suc-
cessfully applied to a large variety of applications, among
others a lot of work has been conducted in the research
field of automated driving (Nishimura et al. (2015); Peter-
meijer et al. (2015); Ludwig et al. (2018)).

In this particular field, the standard SAE J3016 (SAE
International (2018)) is often used to categorize automated
systems . It classifies them into six levels of automation
(LoA). The LoA span the whole range from MC to FA.
However, the levels lack the ability to reasonably include
systems that allow both the driver and the automation
to influence the same degree of freedom of the vehicle at
the same time. Additionally, the six levels only provide
a qualitative classification, thus not allowing for a com-
parison of systems within a level or systems not covered
by the standard. In particular, an impartial, quantitative
comparison of automated systems is not possible.

These issues make it impossible to use the SAE J3016 for
discussing systems involving a cooperation of driver and
automation like the shared control approaches mentioned

before. Therefore, the question arises whether other litera-
ture approaches are capable of doing so. In order to assess
if a certain definition is suitable, the authors would like to
propose the following criteria that, in the authors’ opinion,
are essential for fruitful future engineering work:

Proposition 1. (Criteria for LoA definition).

(1.1) The LoA must span the range from MC to FA.
(1.2) The order of the intermediate levels must be

consistent to increasing automation.
(1.3) The LoA must represent the continuum between

MC and FA.
(1.4) The definition must include a systematic quan-

titative metric of LoA.

The criteria presented in Proposition 1 were selected for
the following reasons: Criterion (1.1) is necessary to ensure
that there is a representation for every possible LoA. To
make sure the definition is conform with the general under-
standing of the term LoA, Criterion (1.2) is added. Various
research understands the LoA as a continuum which is
expressed by Criterion (1.3) (Parasuraman et al. (2000);
Draper (1995); Milgram et al. (1995)). Miller (2018) even
argues that “any [discrete] levels structure will omit detail
that might be critical”. While a continuous definition can
always be binned to create a discrete one, the reverse
is not possible because of the loss of information. To
design, analyze and parameterize automated systems in
a systematic manner, Criterion (1.4) is introduced.

Since a definition of LoA that fulfills all criteria given in
Proposition 1 necessarily covers all automated systems
in the range from MC to FA, it would automatically
include shared control approaches. Thus the goal of this
publication is to provide a metric of LoA that satisfies



these requirements, allowing for a systematic analysis and
design of automations for human-machine systems.

The remainder is organized as follows: Section 2 presents
and discusses the existing literature definitions of LoA.
The lack of a taxonomy fulfilling all criteria of Proposi-
tion 1 motivates the need for the approach introduced in
Section 3. It is then elaborated on this new definition by
illustrating the shifting LoA of a vehicle with advanced
driver assistant systems. Section 4 discusses the features
of the novel metric while Section 5 summarizes the insights
and gives an outlook on future research.

2. LITERATURE DEFINTIONS OF LOA

Extensive research has been conducted in the field of LoA.
Vagia et al. (2016) provide a comprehensive overview over
the existing literature; however, there is no classification
of the taxonomies regarding their applicability to open
questions in engineering. In the following, the most rel-
evant taxonomies are introduced and assessed regarding
the criteria presented in Proposition 1 to determine their
capability to provide the desired engineering access to
the topic. The results of this assessment are compiled in
Table 1.

2.1 History of LoA definitions

The concept of LoA originates in manufacturing. With
the increasing replacement of human labor by machines,
Bright (1958) proposes 17 levels of mechanization ranging
from work by hand to work executed by machines that an-
ticipate required actions and adjust accordingly. Working
on undersea teleoperators, Sheridan and Verplank (1978)
introduce a generic taxonomy of ten LoA starting with the
human handling all tasks and the computer only executing
them to the computer deciding about and executing the
tasks as well as informing the operator. Until today their
work is one of the most widely used, adapted and cited LoA
definition (Vagia et al. (2016)). Endsley (1987) proposes
a taxonomy of four LoA for expert systems in advanced
cockpits ranging from a system that makes recommen-
dations to the pilot to a fully automated system. This
makes it the first definition in this compilation to leave out
MC. Later on, Endsley and Kiris (1995) add the MC level
while investigating which LoA to choose to minimize the
out-of-the-loop performance problem. Endsley and Kaber
(1999) also extend the approach to a ten LoA taxonomy
that covers the whole range of LoA including a dedicated
shared control level. In contrast to the previously de-
scribed approaches, Riley (1989) proposes an “automation
state” consisting of two dimensions: The first dimension
comprises twelve LoA ranging from MC to autonomous
operation, the second one rates the system’s intelligence on
a seven level scale. Thus each automation state is defined
by a certain combination of LoA and system intelligence.
Draper (1995) understands the LoA as continuum and pro-
vides a taxonomy that partitions this continuum into five
types of control and gives nine example levels within these
types. Defining under which condition to use telerobotics,
Milgram et al. (1995) use a three dimensional model made
up by a continuous measure for LoA, the extent to which
the environment is structured and the extent of knowl-
edge about the environment. For the dimension of LoA

five discrete levels ranging from MC to FA are proposed.
Being the only quantitative approach in this literature
compilation, Wei et al. (1998) use the ratio of weights of
the automated tasks to the weights of all tasks with the
weights representing task complexity, criticality and diffi-
culty. Each task is either automated or not. Focusing more
on human-machine-interaction, Parasuraman et al. (2000)
propose to partition human-machine-interaction into four
aspects, namely information acquisition, information anal-
ysis, decision selection and action implementation. Each of
these aspects features continuous LoA ranging from MC
to FA. Lorenz et al. (2001) propose three LoA for fault-
management in simulated spaceflight operations with low,
medium or high support by the automation. Due to the
specific application they do not follow the usual MC to
FA scheme. In contrast to this, Proud et al. (2003) cover
the full range from MC to FA for a spaceflight vehicle.
They identify the four tasks observe, orient, decide and
act as relevant ones and define eight tailored LoA for
each of these tasks. Frohm et al. (2008) analyze previous
taxonomies with a special focus on manufacturing and
propose an approach with a mechanical & equipment and
information & control aspect, each with a scale of seven
LoA.

2.2 Discussion of literature definitions

Interpreting Table 1, one finds that most literature defini-
tions fulfill Criterion (1.1) and all meet the requirements
of Criterion (1.2). Apart from Draper (1995) and Parasur-
aman et al. (2000) all of the taxonomies introduce discrete
levels only, thus not fulfilling Criterion (1.3).

The work of Draper (1995) and Parasuraman et al. (2000)
is universal enough to include all automated systems in the
continuum of LoA. However, also due to the universality
of the approaches, it remains unclear how to assign a given
automated system a specific level of automation. This
makes them useful theoretical concepts but inappropriate
to generate the engineering access this paper strives for.

Wei et al. (1998) provide the only quantitative measure of
LoA. However, it only works for applications that allow
the definition of discrete tasks, which is for example not
the case in the afore-mentioned shared control examples.

To sum up, Table 1 clearly states that none of the existing
taxonomies fulfills all the criteria of Proposition 1 and thus
none of them provides a way for a systematic and generic
engineering access to the topic. Addressing this issue,
Section 3 describes a generic and systematic quantitative
definition of LoA.

3. DEFINITION AND METRIC

As e.g. Parasuraman et al. (2000) state, to address the
issue of LoA conclusively, one would have to consider both
the actions that are carried out by the human and the
psychological reasons for them. Since the latter factor is
extremely complex and still part of ongoing research, in
this paper we want to focus on the actions carried out by
the human only.

In order to develop a definition of LoA that satisfies the
requirements described in Section 1, the meaning of LoA



Table 1. Assessment of literature definitions of LoA regarding the criteria defined in Proposition 1.

Publication No. of LoA Criterion (1.1) Criterion (1.2) Criterion (1.3) Criterion (1.4)

Bright (1958) 17 3 3 × ×
Sheridan and Verplank (1978) 10 3 3 × ×
Endsley (1987) 4 × 3 × ×
Endsley and Kiris (1995) 5 3 3 × ×
Endsley and Kaber (1999) 10 3 3 × ×
Riley (1989) 12 3 3 × ×
Draper (1995) 9 3 3 3 ×
Milgram et al. (1995) 5 3 3 × ×
Wei et al. (1998) N/A 3 3 × 3

Parasuraman et al. (2000) N/A 3 3 3 ×
Lorenz et al. (2001) 3 × 3 × ×
Proud et al. (2003) 8 3 3 × ×
Frohm et al. (2008) 7 3 3 × ×
SAE International (2018) 6 3 3 × ×

needs to be specified first. Despite the different choice
of the specific LoA, in the authors’ understanding there
is a common baseline in literature considering the action
implementation (e.g. Sheridan and Verplank (1978)):

Proposition 2. (Meaning of LoA in the action context).
The LoA should be the higher, the more the au-
tomation supports the human by preselecting certain
options thus reducing the complexity of the task.

Striving for quantitative, option-based LoA (OLoA) α,
this verbal definition needs to be mapped to numbers:
Starting with the two extreme values it is intuitive to
choose an OLoA of zero for MC and an OLoA of one
for FA. These two extremes span a continuous range of
α ∈ [0, 1] in between. To define OLoA in this span, a model
of the interaction between human, automation and system
is required. As the state space representation is one of the
most versatile models for system behaviors, the following
model is chosen:

dx

dt
= f (x,uH ,uA, t) (1)

In (1) x denotes the system state, f the system dynamics
that can be nonlinear and time-variant, uH the inputs
of the human and uA the inputs of the automation
respectively. In the most general case, the input of the
automation can depend on the system state, the input of
the human and the time t. The dependencies on t are not
shown explicitly here and in the following to improve the
readability, nevertheless x, uH and uA are functions of t.

In accordance with Proposition 2 we only consider au-
tomations that preselect the options of the human in the
following; all other automations are regarded to be part of
the analyzed system.

3.1 Quantitative Definition of OLoA

To quantitatively compare automated systems regarding
their LoA, a measure of the OLoA needs to be defined first.
In the case of systems with multiple degrees of freedom
(DoFs) the overall system OLoA is the result of the OLoA
of each individual DoF as the OLoA of the respective
DoFs are independent. To define the OLoA of one DoF,
a mathematical description of the action options of the
human at any given point of time is required. Thus, this

section starts by introducing a mathematical description
of the options, then OLoA is defined for one DoF and
finally ways to analyze systems with multiple DoFs and
even multi-agent systems are presented.

Description of options in one DoF Assuming there is
a cost J caused by applying a certain input uH , the
desirability of different action options (state transitions
caused by the human) can be assessed by evaluating
which cost would be caused by choosing a certain action.
State transitions causing low cost are good options for the
human and the higher the cost, the less desirable is the
option. If J (uH)→∞, the corresponding state transition
is not feasible at all. The following function ξ describes the
minimum cost for a certain state transition in a DoF i:

ξ

(
dxi

dt

)
=

min
uH

J (uH) if
dxi

dt
= f i (x,uH ,uA)

∞ otherwise
(2)

Here we assume that J : Rm → R≥0. Equation (2) already
describes which options come at which cost thus forming a
possible starting point for a study of the problem, however
it is worth considering

exp

(
−ξ
(
dxi

dt

))
∈ [0, 1] (3)

as it has better mathematical properties while still con-
taining all the information of (2). Please note that max-
ima of (2) turn to minima in (3), making it a function
describing which state transitions can easily be initiated
by the human (exp(−ξ) → 1) and which are impossible
(exp(−ξ) = 0).

Measure for options in one DoF The function exp (−ξ)
rates the options available to the human, so the next step
towards a quantitative OLoA is to define a measure ζ for
the amount of options available to the human.

Every maximum of exp(−ξ) describes state transitions
that are favored by the automation and can be realized
with little human effort, so the more local maxima exp(−ξ)
has, the more options are easily available to the human.
Additionally the surrounding of the local maxima should
be considered: If exp(−ξ) decreases rather slowly there are
a lot of state transitions that can easily be achieved, if the
peak in exp(−ξ) is very narrow, there is one precise option
for the human. Thus, in order to define a measure for the



amount of options available to the human, the dispersion
ζi around the maxima is computed:

ζi =

∫ ∞
−∞

(
dxi

dt
− µ

(
dxi

dt

))2

exp (−ξ) ddxi

dt
(4)

In (4) µ is defined as follows, to ensure that the dispersion
is calculated around each corresponding maximum:

µ

(
dxi

dt

)
=



ξmax1
if
dxi

dt
∈ (−∞, ξmin1 ]

ξmax2
if
dxi

dt
∈ (ξmin1

, ξmin2
]

...
...

ξmaxn
if
dxi

dt
∈
(
ξminn−1

,∞
)

(5)

Here, ξmaxi
denotes the positions of the maxima of exp(−ξ)

and ξmini
denotes the positions of the minima. All in all,

the less and the more precise options are available to the
human, the smaller is ζi and vice versa.

Definition of OLoA in one DoF Using ζi as a measure for
the options available to the human, OLoA can be defined
in the following way with ζai

denoting the measure of
options with automation and ζmi

denoting the ones in MC:

αi (ζai , ζmi) = 1− ζai

ζmi

(6)

The closer the available options are to the ones in manual
mode, the lower αi gets. If the automation does not
influence the system at all, the options are identical to
MC, resulting in an OLoA of 0. In the FA mode the human
is left with no options apart from the one chosen by the
automation, causing ζai

= 0 thus resulting in an OLoA
of 1. Between MC and FA, an automated system with a
higher OLoA leaves the human with less options to choose
from, thus capturing the meaning presented in Proposition
2:

1− ζa1

ζm
< 1− ζa2

ζm
⇔ ζa1

ζm
>
ζa2

ζm
⇔ ζa1

> ζa2
≥ ζm (7)

Definition of OLoA for systems Until now, only one DoF
of the system has been considered. To assign an OLoA
to a system γ with NS states and even to a multi-agent
system of NA agents {γ1, ..., γNA

}, the following approach
is proposed by computing the average OLoA:

α ({γ1, ..., γNA
}) =

1

NA

NA∑
j=1

1

NSj

NSj∑
i=1

αji

(
ζaji

, ζmji

)
(8)

If every DoF of every agent is operated manually an OLoA
of 0 results, with increasing automation of the individual
DoF the OLoA of the multi-agent-system increases until
it reaches 1 if every DoF of every agent is FA.

Analysis of automated systems The definition presented
above can be used as a tool to analyze automated system
behavior in various ways. First of all, (8) itself can be
used to assess the OLoA of an automated system over
time. A very intuitive way to use this information, is to
define a certain scenario to test the automation and then
evaluating the average OLoA during the test procedure:

αT =
1

T

∫ t0+T

t0

α (γ) dt (9)

While this is a useful tool for analysis in practice, (9)
depends highly on the scenario and might thus be biased.
Alternatively (8) can be used to analyze automated sys-
tems without the need for scenarios by considering the
average OLoA of a defined workspace V of the state space:

αS =
1∫

V
1dV

∫
V

α (γ) dV (10)

Due to the independence of test scenarios, (10) is useful for
the design and impartial analysis of automated systems.

3.2 Comparison of automated systems

So far it is possible to assign a quantitative OLoA to an
automated system using (8), (9) or (10). One purpose of
doing so is to compare automated systems in a systematic
way. To define a metric in a mathematical sense, the
following properties would formally need to be fulfilled by
a distance d (Bühler and Salamon (2018)):

d (γ1, γ2) = 0⇒ γ1 = γ2 (11)

γ1 = γ2 ⇒ d (γ1, γ2) = 0 (12)

d (γ1, γ2) = d (γ2, γ1) (13)

d (γ1, γ2) ≤ d (γ1, γ3) + d (γ3, γ2) (14)

In this specific context it is not reasonable to require all
four properties: Equation (11) would require to assign a
unique OLoA to every automated system; however, it is
possible to achieve the same system behavior for a single
system using different automations. In this case it would
be desirable to assign the same OLoA to both automated
systems. Thus, property (11) should be dropped in order to
define a reasonable metric; the remaining properties (12)
to (14) ensure a reasonable behavior of the metric. Based
on the OLoA definition, a distance d can be defined over
the set of automated systems as follows:

d (γ1, γ2) = |α (γ1)− α (γ2)| (15)

It is easy to show that (12) to (14) hold for the definition
above, thus (15) defines a type of metric called pseudomet-
ric. This verifies that using (15) allows for a reasonable
systematic comparison of automated systems. Applying
the definition introduced in this section, the next section
presents an example evaluation of different automations in
the context of advanced driver assistant systems.

3.3 Example

In this example, a moving car approaches an immobile car
with an initial distance of 150m with an initial velocity. At
the beginning the driver of the moving car controls the car
manually, then the first of three automation subsystems
starts applying an increasing counterforce on the gas pedal
to prevent the human from accelerating further with the
acceleration aacc. Thus, the vehicle is operated in a shared
control mode. As the car gets closer to the obstacle, the
second subsystem is activated and both the driver and the
automation are able to apply a deceleration by breaking
with abreak. First, the automation starts by applying a
small but increasing abreak that can be overruled by the
human. Once the car is within a certain critical distance
to the obstacle, the third subsystem of the automation will
enforce a safe stop by breaking with the minimal (negative)



abreak independent of the inputs by the human. For safety
reasons the actual acceleration applied to the vehicle is
always the minimal desired acceleration:

v̇ =

{
aacc if abreak = 0

abreak otherwise
(16)

aacc = uH − uA (17)

abreak = min {0, uH , uA} (18)

As an example cost function, J(uH) = |uH | is chosen.
Fig. 1a shows the resulting option functions exp (−ξ) at
certain positions for a driver assistant system A. The
effect of the counterforce that prevents the driver from
accelerating can be observed in the right half of the plot
through the increasing cost of larger accelerations. Once
the automation starts breaking, the options of the human
are limited to an area in the left half of the plot. As soon as
the emergency breaking starts, the automation will apply
the maximum deceleration thus leaving the human with
no option but the one chosen by the automation.

The monotonous decrease of ζa leads to increasing OLoA
shown in Fig. 1b for three example driver assistant sys-
tems. While starting with an OLoA of 0 for the MC part,
the OLoA increases with increasing counterforce starting
at s = −100m for system A. At s = −50m the automation
starts breaking, thus increasing the OLoA further and at
s = −30m the emergency break is initiated, transitioning
the system into a FA mode with an OLoA of 1. Compared
to system A, system B applies twice the counterforce, thus
increasing the cost of large accelerations for the human
leading to a higher OLoA. System C uses the same coun-
terforce as system B, however, it already starts applying
a counterforce at s = −130m hence increasing the OLoA
earlier than systems A and B. In order to quantitatively
compare the three systems, the average OLoA αS is com-
puted using (10) for the entire scenario (s ∈ [−150m, 0m]).
The results are presented in Table 2.

Table 2. Quantitative Comparison of different systems

System Average OLoA αS

System A 0.5577

System B 0.5725

System C 0.6372

The fact that system C supports the human more than
system B and system A is captured correctly, just as
system B is ranked slightly higher than system A. Thus,
this example demonstrates that the OLoA is able to as-
sess automated systems in a reasonable quantitative way,
validating definition (8) as well as the derived measures.

4. DISCUSSION

Considering Proposition 1 again, one finds that OLoA
fulfills all four criteria: Using (8), the continuous range
between and including MC and FA is covered. Addition-
ally, the definition of OLoA fulfills Criterion (1.2), as (7)
proves and provides a basis for a systematic metric as dis-
cussed in Section 3.2. Thus, OLoA is able to categorize all
automated systems while being consistent to established
definitions like the SAE J3016. In contrast to SAE J3016
and many of the literature definitions discussed above,
OLoA is not tailored to a certain application area; it is

universally applicable and not only able to rank certain
automations but provide a pseudometric for the quan-
titative comparison of automated systems. Even though
the example illustrated above stems from the automotive
field, it is possible to apply the definition and pseudometric
to systems that go far beyond it: Aerospace systems can
be studied just as robotic assistant systems and basically
every other automated system relevant in practice.

While this paper presented a proposition to define OLoA
using a continuous state space representation, it can eas-
ily be adapted for both time- and value-discrete state
space representations by replacing the system dynamics
and input variables with their discrete counterparts. In
contrast to existing approaches, the proposed metric can
be evaluated automatically without the need for human
contribution which makes it an impartial tool for a fair
comparison of different systems either at a given point in
time with (8), using (9) in a specific scenario or applying
(10) even independent of scenarios that might be biased
towards a certain automation.

5. CONCLUSION

The literature definitions of LoA often do not cover all
automations, are usually application specific and do not
provide a way to quantitatively determine and compare
different automated systems. In this paper, a continuous
and quantitative definition and metric of LoA based on
an analysis of the action options available to the human is
proposed and examined. The OLoA pseudometric provides
a platform for a systematic and impartial comparison of
automated systems. In future research and applications
it can be used for the systematic engineering of the
design, analysis and evaluation of human-machine systems
overarching the boundaries of specific application areas.

While this paper focuses on a LoA definition based on
the action options of the human, psychological aspects
like information acquisition, information processing and
decision processes may also play an important role but
are not understood well enough to extend a quantitative
definition to all of these aspects yet. However, they should
be included in a quantitative definition of LoA in future.
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