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Abstract

Selenium plays an important, but vastly neglected role in human nutrition with a narrow gap

between dietary deficiency and toxicity. For a potential biofortification of food with Se, as

well as for toxicity-risk assessment in sites contaminated by Se, modelling of local and

global Se cycling is essential. As bioavailability of Se for rice plants depends on the specia-

tion of Se and the resulting interactions with mineral surfaces as well as the interaction with

Se uptake mechanisms in plants, resulting plant Se content is complex to model. Unfortu-

nately, simple experimental models to estimate Se uptake into plants from substrates have

been lacking. Therefore, a mass balance of Se transfer between lithosphere (represented

by kaolinite), hydrosphere (represented by a controlled nutrient solution), and biosphere

(represented by rice plants) has been established. In a controlled, closed, lab-scale system,

rice plants were grown hydroponically in nutrient solution supplemented with 0–10 000 μg L-

1 Se of either selenate or selenite. Furthermore, in a series of batch experiments, adsorption

and desorption were studied for selenate and selenite in competition with each of the major

nutrient oxy-anions, nitrate, sulfate and phosphate. In a third step, the hydroponical plants

experiments were coupled with sorption experiments to study synergy effects. These data

were used to develop a mass balance fitting model of Se uptake and partitioning. Adsorption

was well-described by Langmuir isotherms, despite competing anions, however, a certain

percentage of Se always remained bio-unavailable to the plant. Uptake of selenate or sele-

nite by transporters into the rice plant was fitted with the non-time differentiated Michaelis-

Menten equation. Subsequent sequestration of Se to the shoot was better described using

a substrate-inhibited variation of the Michaelis-Menten equation. These fitted parameters

were then integrated into a mass balance model of Se transfer.
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Introduction

It has been known for years that Se is both essential (< 55 μg/d [1]) and toxic (> 400 μg/d [2])

to humans. There is also a growing awareness of Se as a rare and non-renewable resource [3]

as well as an environmental pollutant—both geogenically [4], and anthropologically [5]. Cur-

rently, Se research faces two equally important, yet entirely diverse goals [3]: (1) securing Se

nutrient resources for future generations, and (2), management of Se-enriched waste deposits

to protect the environment and improve the quality of life in areas of contamination. For both

issues, a quantitative understanding of selenium speciation and abundance on the path from

the soil into the plant, and during the partitioning into different plant organs is crucial. This

calls for experimental models that integrate a (necessarily reduced) combination of the litho-

sphere, hydrosphere and biosphere, while, at the same time, remain time defined and con-

trolled with respect to their parameters. While Se transfer has been studied in different models

and observational scales, none of these approaches has allowed addressing both the combina-

tion of all three spheres while also enabling standardization of parameters:

1. lab-scale modelling, i.e. surface complexation models [6, 7], sequential extraction proce-

dures [8], plant-uptake and incorporation of nutrients which have culminated in the NST

model 3.0 [9] has, so far, only addressed one of the spheres;

2. local-scale modelling, i.e. environmental and agronomical case studies, such as Kesterson

Reservoir (USA), Punjab (India) [10, 11] or field experiments on phytoremediation [12]

and biofortification, [13, 14, 15, 16] have to deal with the parameters present in the respec-

tive system and, thus, do not allow for parameter control; Therefore, only partial mass bal-

ance models or transfer equations can be derived from such studies.

3. global-scale modelling [5, 17], i.e. oceanic, atmospheric and terrestrial fluxes for global risk

prediction, by their very nature, lack the aspect of parameter control as well.

Unfortunately, each of these approaches has its challenges and limitations and it is not pos-

sible to combine them into a more comprehensive model as their parameters and approaches

vary significantly. For example, there have been many lab-scale studies on sorption behavior of

Se onto various soils [8, 18, 19, 20] and minerals, such as [6, 7, 21, 22, 23, 24, 25, 26, 27], as well

as plant Se-uptake studies [1, 20, 28, 29] and inner-plant Se transport [30, 31]. While these

have greatly increased mechanistic understanding, their focus was not on providing interdisci-

plinary insight. Although this was attempted with the NST model [9], data for Se have so far

not been included and the amount of parameters required, therefore making it an impractical

tool for quick estimations of Se content. Moreover, environmental case studies and field exper-

iments both share the drawbacks of having to quantify too many influencing inorganic,

organic, anthropogenic and climatic parameters in a non-closed system, such that are specific

for a given region. Therefore, the conclusions are not easily transferrable [32]. This lack of data

is also the reason why modelling the global Se cycle is still in its early stages and requires more

data [5].

So far, little emphasis has been placed on mass balancing the Se transfer and cycling in the

Critical Zone [33], which includes soil substrates, soil solutions as well as plants. A suitable

example for a soil substrate mineral, is kaolinite—a ubiquitous mineral found in soils of

regions with rice agriculture. Kaolinite is considered to be a good model for interactions of

anions with clay mineral surfaces, because of the lack of cation exchange interference. While

interactions with iron oxides and hydroxides—also a good model for anion exchange and also

a frequent mineral found in soils with rice agriculture—have been researched more fully [22,
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23, 24, 25, 26], Se adsorption onto clay minerals, particularly onto kaolinite has barely been

studied [34], and mechanisms of Se uptake into plants are far from fully understood [35].

In our study, we, therefore, used a simplified experimental model of the Critical Zone to

calculate the mass balance in a closed-system approach [36]. First, three compartments (both

sources & sinks for Se) were defined: kaolinite was used to represent the lithosphere, a con-

trolled nutrient solution represented the hydrosphere, and rice as the most important staple

crop on this planet was used to represent the biosphere. Then, batch experiments were per-

formed to determine adsorption and desorption processes of selenite or selenate onto or from

kaolinite in the presence of competing oxyanions typically used for plant fertilization. After

that, a combined experimental set-up explored the combination of Se adsorption and simulta-

neous plant uptake of Se. Finally, all data obtained in this experimental model were used to cal-

culate Se transfer between the three compartments. This allowed the generation of a simplified

mass balance model. With this novel approach, we hope to provide a simple and effective tool

to estimate the risk of both Se toxicity and deficiency in rice plants at any potentially elevated

Se concentrations at local-scale agricultural sites.

Materials and methods

Adsorption and desorption behavior of Se on kaolinite

To characterize Se adsorption-desorption behavior, a series of 24-h sorption batch experi-

ments was carried out with 0.5 g kaolinite (AKW KN 83 Amberger Kaolinwerke) in 10 mL of

KCl-solution (Merck, p.a. 1.04936.1000) resembling the later used nutrient solution in ionic

strength (7.735 mmol L-1) and the adsorbent-to-solution ratio. Solutions were spiked with 0–

5000 μg L-1 Se as either Na2SeO3 (AlfaAesar 12585) or Na2SeO4 • 10 H2O (VWR BDH Prolabo

302113L). After washing the substrate from the previous adsorption solution with 9.5 mL of

double-distilled water, desorption of easily exchangeable Se from the previously adsorbed kao-

linite was achieved by using 9.5 mL of 0.1 mol L-1 K2HPO4 (Merck, p.a. 1.05105.1000), a well-

known soil extraction step [37]. While the nutrient solution contained a plant-focused anion

concentration ratio between nitrate (5000 μM), phosphate (400 μM) and sulfate (750 μM), to

study competition effects, the adsorption experiments were repeated with three solutions con-

taining in 0,1 mmol of KCl- (Merck, p.a. 1.04936.1000) and equal concentrations of anions,

either an addition of 750 μmol L-1 of nitrate as KNO3 (Merck p.a. 1.05101.0500), or an addition

of 750 μmol L-1 sulfate as K2SO4 (Merck, p.a. 1.05153.0500) or an addition of 750 μmol L-1

phosphate as KH2PO4 (Merck, p.a. 1.04873.1000).

Combined kaolinite Se-sorption and plant Se-uptake experiments

To study combined effects of Se sorption processes and Se-uptake by plants, a coupled hydro-

ponic experiment was devised (Fig 1 left). The rice used was Oryza sativa ssp. japonica (cv.

Nihonmasari), cultivated in a direct line obtained in 1991 from NIAR, the National Institute

for Agricultural Resources, Tsukuba. Nine caryopses per plant box were dehusked, and sur-

face-sterilized with ethanol (80%) and NaOCl (5%) and germinated in agar-filled (0.7% phy-

toagar, Duchefa Direct) 1.5-mL reaction-tubes placed in closed Magenta boxes (Sigma Aldrich

V8380, V8505 & C0667) and cultivated in the dark at 28˚C. After 5 days, their roots reached

the nutrient solution (in double-distilled water: 2500 μM Ca(NO3)2 • 4H2O, 375 μM K2SO4,

325 μM MgSO4 • 6H2O, 400 μM KH2PO4, 8 μM H3BO3, 0.4 μM CuSO4, 0.75 μM ZnSO4 •

H2O, 1.2 μM MnSO4 • H2O, 50 μM CaCl2, 0.075 μM Na2MoO4 • 2H2O, 75 μM C6H5O7Fe).

The solution, which was spiked with 0–10,000 μg L-1 Se as either Na2SeO3 (AlfaAesar 12585)

or Na2SeO4 • 10 H2O (VWR BDH Prolabo 302113L) had by then already pre-equilibrated

with the 8.5 g of kaolinite (Amberger Kaolinwerke, AKW KN 83, purity: 88.9%).
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PLOS ONE | https://doi.org/10.1371/journal.pone.0214219 April 19, 2019 3 / 15

https://doi.org/10.1371/journal.pone.0214219


To separate plant influence from sorption influence, controls were prepared parallel to the

hydroponic experiments in glass bottles containing 170 mL Se spiked nutrient solution and 8.5

g kaolinite, but no plants (Fig 1 right). Boxes and bottles were kept closed for the duration of

the experiment in a climate chamber at 70% humidity, with a day-night cycle (daylight: 8 a.

m.–4 p.m.) and a transition period of 1 hour for dawn and dusk, respectively, and correspond-

ing temperatures of 28 ˚C (day) and 22 ˚C (night).

Sampling and sample preparation for Se analysis

All plants were harvested (harvest yield: 86% ±6 of all planted caryopses), rinsed externally

with Millipore water and separated above the caryopses into root and shoot, which were

weighed separately to determine fresh weight and then freeze-dried at 0.05 mbar and -20˚C for

Fig 1. Experimental set-up for the combined kaolinite Se-sorption and plant Se-uptake experiments using 8.5 g kaolinite

substrate and 170 mL nutrient solution containing 0–10000 μg L-1 Se as selenate or selenite (full experiment in the plant-box on

the left and the plant-less control on the right).

https://doi.org/10.1371/journal.pone.0214219.g001
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24 h to determine plant dry weight. For plant digestion [38], each bulk sample (roots or shoots

per plant-box: 0.01–0.1 g) was digested with 1 mL of double-distilled water, 3 mL of concen-

trated HNO3 (subboiled) and 1 mL of 30% H2O2 (p.a.) Teflon vessels. Each batch of 10 diges-

tion samples included one blank and one plant standard (0.1 g NBS SRM 1567a Wheat Flour)

to verify digestion quality. Across all digestions, recovery of this standard was 89% (±7). Each

nutrient solution and sorption solution was sampled twice into 20-mL patho-vessels (Böttger

08-313-1001); 15 mL of solution sample were frozen at -20˚C until anion analysis with IC, the

other 15 mL were acidified with 50 μL of HNO3 (VWR 20429.320 p.a. sub-boiled) and stored

at 4 ˚C for ICP-MS measurement of Se.

Se analysis in digestion samples with HG-FIAS

Total Se-content of the roots and shoots of plants harvested from all three set-ups was analysed

with HG-FIAS (Hydride Generation Flow Injection Atomic Absorption Spectroscopy;

Perkin Elmer AAnalyst200, FIMS-400 Hydride Generation System). Total Se in samples was

completely reduced to selenite for 15 min in 6 M Hg-free HCl (Merck, 37%, 1.13386.2500) in a

water bath pre-heated to 75 ˚C and then diluted to 1 M HCl with double-distilled water and

measured with HG-FIAS. For calibration, 10 mL of Se standard solution (1000 μg L-1 Se, Roth

Rotistar ICP) were reduced to selenite in 6 M HCl in the same way. From this solution, calibra-

tion concentrations of 0.5, 0.75, 1, 2, 4, 5, and 6 μg L-1 Se were prepared with 1 M Hg-free HCl.

Reduction quality and drift correction was assessed using a multi-element drinking water stan-

dard (PromoChem Trace Metals QCP 050–1 and QCP 050–2 combined, with 252 μg L-1 Se).

This drinking water standard recovery was 108% (±7) across all measurements.

Anion analysis of phosphate, nitrate and sulfate with IC

Ion chromatography (IC) analysis of anions was conducted using a Dionex ICS 1000 with

an IonPac AS14 column coupled with an IonPac AG14 pre-column and an eluent of 3.5 mmol

L-1 Na2CO3 and 1.0 mmol L-1 NaHCO3 (flow rate: 1.1 mL/min). After thawing, samples were

diluted by factor 4 and measured after calibrating with a multi-ion IC-standard calibration

solution (Alfa Aesar, Specpure) diluted to 2, 5, 10, 20, 40 mg L-1 Cl- and 4, 10, 20, 40, 80 mg L-1

NO3
- and SO4

2- and 6, 15, 30, 60, 120 mg L-1 PO4
3-. Using an Anion Self-Regenerating Sup-

pressor (ASRS 300), conductivity of samples was detected at an applied current of 25 mA for

an injection volume of 25 μL. Linear drift correction was applied using re-measurements of

calibration standards after every 10 samples. Overall analysis quality was confirmed using a

river water standard (BATTLE-02, Environment Canada; 42.4 mg L-1 Cl-, 0.194 mg L-1 F-, 149

mg L-1 SO4
2-) measured with a dilution factor of two. This river water standard retrieval was

105% (±2) across all measurements.

Analysis with ICP-MS

Analysis of 77Se, 78Se, and 82Se was performed using an inductively coupled plasma mass spec-

trometer (ICP-MS) X-Series 2 (Thermo Fisher Scientific) in CCT-Ed mode (Collision Cell

Technology—Energy Discrimination). Five mL of sample were diluted by factors of 2–10 in

1% subboiled HNO3. Each sample was spiked with 50 μL of internal standard (10 μg L-1 Sc,

Merck 1.70349.100; 10 μg L-1 Rh, Merck 1.70345.0100; 10 μg L-1 In, Merck 1.70324.0100; 10 μg

L-1 Tm, Merck 1.70361.0100) for internal drift correction. Calibration was carried out using an

ICP-Se standard solution (Merck 1.70350.0100) in concentrations between 0.5 and 1000 μg L-1

Se. Samples were measured with a dilution factor of 2–5. Linear drift correction was applied

using re-measurements of calibration standards after every 10 samples and overall analysis

quality was confirmed using a trace metal standard CRM-TMDW-A (High Purity Standards)

Selenium transfer from mineral surface into rice plant
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with a dilution factor of five. This trace metal standard retrieval was 107% (±6) across all mea-

surements of all Se isotopes.

Modelling Se adsorption onto kaolinite

Using Origin Pro 2015G, the experimental Se adsorption data was fitted to a Langmuir iso-

therm model (Eq 1) in which q describes the adsorption density of the solute in g/kg, qmax

describes the maximum surface density of the solute in g/kg, KL is the conditional Langmuir

equilibrium constant and c describes the concentration of solute in solution in g L-1 [39].

q ¼ qmax
KL � c

1þ KL � c
ð1Þ

When subtracting the amount of the Se exchangeable by K2HPO4, the amount of irreversibly

adsorbed Se was obtained, which was also modelled using Eq 1.

Modelling Se uptake into rice plants. Plant-Se content appears to be the result of trans-

porter protein activity of the sulfate and phosphate transporters [35]. With the experiment

duration of 19 days suggesting steady-state kinetics, plant Se content was modelled using a

Michaelis-Menten model (Eq 2), with v describing the initial reaction velocity, vmax

determining the maximum reaction velocity, cs describing the substrate concentration in

solution and km as the Michaelis-Menten constant for the binding of the substrate to the

enzyme [40].

v ¼
vmax � cs
Km þ cs

ð2Þ

As this study’s focus is not the parameters of enzyme kinetics, but the resulting plant-Se

content cp and the maximum plant-Se content cmax, the time component t in the velocity

fraction is reduced for v (Eq 3) and vmax (Eq 4), similar to the original NST model [41].

v ¼
cp
t

ð3Þ

vmax ¼
cpmax

t
ð4Þ

This provides the non-time differentiated Michaelis-Menten model used to fit the experi-

mental data of Se content in rice seedlings used in this study (Eq 5).

cp ¼
cpmax � cs
Km þ cs

ð5Þ

Furthermore, the substrate excess inhibition version of the Michaelis-Menten equation

(Eq 6), reduced as shown in Eqs 3 and 4, was tested on the Se sequestration within the plant,

with the parameter ki describing the dissociation of the substrate from the transporting

enzyme.

cp ¼
cpmax � cs

Km þ cs � 1þ
cs
ki

� � ð6Þ

To increase model reliability, data from Se uptake into rice seedlings under similar condi-

tions previously published [42] were also included in the model.
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Results

Se adsorption onto kaolinite—Influences of nutrient solution anions

Compared to the adsorption of pure selenite onto kaolinite in the presence of 7735 μM KCl,

neither the presence of 750 μM N as nitrate in KCl solution nor the presence of 750 μM S as

sulfate in KCl solution had any significant influence (±14%) on selenite adsorption (Fig 2, left).

The presence of 750 μM of P as phosphate in KCl solution, on the other hand, lowered the sele-

nite adsorption down to 12–38% (xmean = 20% ±9) compared to pure selenite adsorption in

KCl. In the presence of nutrient solution, selenite adsorption was 36% ±10 of the pure selenite

adsorption in KCl. As the nutrient solution contained 400 μM P as phosphate, the resulting

inhibition of selenite adsorption seen in the presence of nutrient solution could theoretically

be calculated to be 70% phosphate-induced (Fig 2, left).

Compared to the adsorption of pure selenite onto kaolinite in the presence of 7735 μM

KCl, selenate adsorption, however, was inhibited by each of the ions to various degrees (Fig 2,

right). While selenate adsorption was moderately lowered down to 66–80% (xmean = 72% ±5)

by 750 μM N as nitrate in KCl solution, it was very strongly reduced down to 2–10% (xmean =

5% ±3) and 2–8% (xmean = 6% ±2) by the equivalent amounts of S as sulfate in KCl solution

and P as phosphate in KCl solution, respectively. However, in the presence of nutrient solu-

tion, selenate adsorption was 15% ±5 of the pure selenate adsorption in KCl and, therefore,

inhibited less in the combination of 5000 μM of N as nitrate, 400 μM P as phosphate and

750 μM as sulfate than with 750 μM of each ion individually (Fig 2, right).

When calculating the adsorption of the competing ions onto the kaolinite surface (Fig 3),

nitrate adsorption was 1.4 mg kg-1 ±0.6 and 1.1 mg kg-1 ±0.6 in the presence of selenite and sel-

enate, respectively, and can, therefore, be regarded as remaining constant regardless of initial

Se concentration. Sulfate adsorption was 21.2 mg kg-1 ±8.2 and 34.1 mg kg-1 ±6.7 in the pres-

ence of selenite and selenate, respectively, and can, therefore, also be considered constant

regardless of initial Se concentration. Phosphate (Fig 3, left) adsorption however, showed a

decrease in adsorption onto kaolinite of 178 mg kg-1 ±24 with a 34-% decrease from 214 to 141

mg kg-1 adsorption with the increase of initial Se as selenite. This was not observed with statis-

tical significance in the presence of Se as selenate (Fig 3, right), where phosphate adsorption

remained constant at 132 mg kg-1 ±7.

Fig 2. Adsorption of Se onto kaolinite modelled with the Langmuir equation (Eq 1). Values for fitting parameters qmax and KL

given in Table 1.

https://doi.org/10.1371/journal.pone.0214219.g002
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In the subsequent de-sorption experiment, previously adsorbed Se was shown to be

exchangeable using K2HPO4; 85.1% ±5.4 and 88.5% ±3.5 were exchangeable by K2HPO4 as sel-

enite and selenate, respectively, with no trend regarding the initially applied Se concentration.

The remaining inexchangeably adsorbed Se (S1 Table) was also fitted with the Langmuir iso-

therm (Fig 4) with good correlations (Table 1) of R2 = 0.93 and R2 = 0.96 for selenite and sele-

nate, respectively.

Se uptake into the seedling—Modelling total uptake vs. Se partitioning

When accounting purely for the Se amount taken up by the plant over the course of 14 days of

Se contact, regardless of its partitioning inside the plant tissue (Fig 5), plant uptake increased

with the addition of solution-Se content for both selenite and selenate. When Se was added as

selenite, uptake into the plant increased more strongly between the addition of 0–2400 μg L-1

Se, while it increased with lesser inclination between additions of 2400–12 000 μg L-1 Se. Sup-

plying the solution with 2377 μg L-1 Se as selenite, for example, resulted in 186 mg kg-1 ±13

total plant Se concentration, while supplying the solution with 11 378 μg L-1 Se—a

Fig 3. Adsorption of Se and competing anions nitrate, phosphate and sulfate onto kaolinite.

https://doi.org/10.1371/journal.pone.0214219.g003

Fig 4. Selenite and selenate adsorption which was inexchangeable by K2HPO4 was considered biounavailable.

https://doi.org/10.1371/journal.pone.0214219.g004
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concentration more than 4 times higher—led to a total plant Se content of 276 mg/kg ±14,

which is an increase of only 1.5. For the addition of Se as selenate, however, plant uptake

increased steadily with Se solution concentration between 0 and 12 000 μg L-1 Se. Supplying

the solution with 12 430 μg L-1 Se resulted in total Se plant content of 962 mg kg-1 ±32.

These data were fitted using the non-time differentiated Michaelis-Menten equation (Eq 5).

Fitting selenite uptake (Fig 5, left) produced cpmax = 296 mg kg-1 ±16 and Km = 1708 ± 230

with a good correlation (R2 = 0.94). Fitting selenate uptake (Fig 5, right) produced cpmax =

2428 mg kg-1 ±378 and Km = 22240 ±4661 and showed a better correlation (R2 = 0.97).

However, differentiating Se uptake into shoots or roots enabled more detailed fittings.

When comparing fittings of the non-time differentiated Michaelis-Menten equation with the

fittings of its substrate-inhibited variation (Fig 6), both allowed for good fitting results with

corr. R2 > 0.8 (Table 2). For the roots, irrespective of the Se speciation, the Michaelis-Menten

fitting and its substrate-inhibited variation converged into nearly identical fits (Fig 6, Table 2).

Table 1. Values and statistics for the experimental data fitting of selenite and selenate adsorption onto kaolinite.

Se adsorption solution mode qmax KL fitting statistics

value SD value SD χ2 red. corr. R2

selenite

pure Se adsoption 60.29 4.32 1.86 E-4 2.04 E-5 0.3832 0.9948

inexchangeable Se 2.42 0.20 1.50 E-3 3.57 E-4 0.0396 0.9336

nitrate & Se 60.64 1.63 2.17 E-4 1.01 E-5 0.0586 0.9996

phosphate & Se 33.22 4.89 3.63 E-5 3.15 E-5 0.0499 0.9841

sulfate & Se 46.99 5.79 2.37 E-4 5.23 E-5 0.9096 0.9895

nutrient solution & Se 28.53 2.98 1.41 E-4 2.31 E-5 0.1538 0.9914

selenate

pure Se adsoption 112.83 2.12 1.51 E-4 4.26 E-6 0.0733 0.9997

inexchangeable Se 4.29 0.31 8.53 E-4 1.61 E-4 0.0618 0.9636

nitrate & Se 85.24 0.37 1.38 E-4 9.27 E-7 0.0011 0.9999

phosphate & Se 2.05 0.12 5.77 E-4 6.87 E-5 0.0009 0.9965

sulfate & Se 7.99 4.83 1.19 E-4 1.06 E-4 0.1107 0.9111

nutrient solution & Se 32.09 4.99 8.64 E-5 1.86 E-5 0.1126 0.9913

https://doi.org/10.1371/journal.pone.0214219.t001

Fig 5. Uptake of Se into the total rice plant seedling modelled with the non-time differentiated Michaelis-Menten equation

(Eq 5).

https://doi.org/10.1371/journal.pone.0214219.g005
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Selenium uptake into the shoots, however, yielded a better fit for the substrate-inhibited

Michaelis-Menten equation (Table 2)—particularly if Se was applied as selenite (corr. R2 =

0.90 vs. 0.83).

Discussion

The mass balance fitting model

To calculate the mass transfer concentrations from the experimental closed-system model for

a simple mass balance fitting model, the separately studied processes of adsorption, bioavail-

able exchange and plant uptake were combined. This approach was considered appropriate, as

in practical application, the process of plant growth is slower than adsorption or desorption

processes [43] and the growing rice plant, therefore, is placed in an already equilibrated system

Fig 6. Uptake of Se into shoots and roots of rice plant seedlings modelled with the non-time differentiated Michaelis-Menten

(MM) equation (Eq 5) and its substrate-inhibited (SI-MM) variation (Eq 6). SI-MM fitting for the roots was nearly identical to the

MM fit for both selenite and selenite.

https://doi.org/10.1371/journal.pone.0214219.g006

Table 2. Values and statistics for the experimental data fitting of selenite and selenate uptake into the total plant, shoots and roots using the non-time differentiated

Michaelis-Menten (MM) equation (Eq 5) and its substrate-inhibited (SI-MM) variation (Eq 6).

plant tissue model cpmax KM Ki fitting statistics

value SD value SD value SD χ2 red. corr. R2

selenite

plant-MM 295.5 16.1 1707.9 230.1 - - 350.30 0.9481

shoot-MM 143.6 12.4 856.2 216.3 - - 433.1 0.8320

shoot-SI-MM 1113.6 1565.7 12014.8 18451.9 975.6 1571.4 259.73 0.8993

root-MM 492.5 28.3 2205.1 295.1 - - 788.3 0.9499

root-SI-MM 492.5 28.6 2205.1 298.6 5.2 E108 0 807.1 0.9487

selenate

plant-MM 2428.3 377.7 22239.9 4661.1 - - 1070.9 0.9731

shoot-MM 3608.3 441.4 22770.2 3735.9 - - 1359.1 0.9840

shoot-SI-MM 1.1 E6 2.4 E8 7.7 E6 1.7 E9 47.7 1034.1 1282.2 0.9849

root-MM 1934.2 847.6 47882.1 24774.6 - - 410.0 0.9476

root-SI-MM 1934.2 857.7 47882.0 25067.7 9.0 E93 0 419.8 0.9436

https://doi.org/10.1371/journal.pone.0214219.t002
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similar to the experimental model [42]. The appropriateness of the fitting equations can, there-

fore, be evaluated separately for each process.

Se adsorption and desorption

The fact that Se ad- and desorption can be fitted with Langmuir very well—independently of

the competing ions—is fortunate for a simple model, as attempted with this study and also

shown in other studies [43, 44]. However, as previously noted [45], Langmuir fitting itself

allows for no information on mechanistic properties during the sorption process. What this

study was able to show, however, was that there is a notable amount of inexchangeably bound

selenite and selenate (15 and 10%, respectively), which cannot be exchanged—even by phos-

phate anions. This allows the conclusion that similar to iron-oxide surfaces [24], clay mineral

surfaces allow for innersphere-complexation for Se-anions, with selenite bound as a binuclear

bidentate complex and selenate bound as a mononuclear monodentate complex as has previ-

ously been suggested [7, 25]. This explains the differences between selenite and selenate found

when comparing adsorption behavior in competition with other nutrient anions. While the

binuclear bidentate selenite—kaolinite complex formation is only notably hampered by the

presence of phosphate, the mononuclear, monodentate selenate—kaolinite complex formation

is influenced by all nutrient anions, particularly sulfate and phosphate. Nitrate is believed to

act as an inhibitor mainly because of its size and high. In all cases, however, a large portion of

Se can be exchanged again from the mineral surface and is, therefore, considered 85–89% bio-

available and highly mobile for kaolinite surfaces. In contrast, soils with a high content of iron

oxides or hydroxide minerals show such a high affinity for Se anions that environmental Se

concentrations can be considered irreversibly bound [22, 23, 24, 25, 26, 27, 42].

Se uptake and distribution within the plant

As discussed previously in the literature [35], selenite and selenate differ not only in the trans-

porters with which they are taken up into the plant, but also the transportation pathways

within the plant. This is why selenate is preferentially partitioned to shoots, while selenite

uptake is preferentially partitioned to roots [42], which is also apparent in Fig 6. With the

main reason for modelling the Se cycle being to understand the uptake of Se into animals and

humans [5], modelling the differentiation between the plant compartments is necessary.

Similar to the all-encompassing Langmuir isotherm equation, applying the Michaelis-Men-

ten equation not to a specific enzyme, but to the entire process of anion uptake into the plant,

cannot provide detailed mechanistic understanding. However, even with this in mind, the data

show that there is a systematic difference between shoots and roots of the rice plant that affects

both selenite and selenate, because the Michaelis-Menten equation (Eq 5) best describes result-

ing root-Se, while the substrate-inhibited equation (Eq 6) best describes resulting shoot-Se.

Although this applies regardless of the Se speciation (Fig 6), selenite transportation into the

shoot shows a stronger tendency toward the substrate-inhibited fitting than selenate transpor-

tation (Table 2). This allows the conclusion that some form of substrate-excess inhibition

occurs not during the uptake of Se, but at some compartmental boundary within the plant

between root and shoot, most likely at the boundary to the xylem.

Applicability of the model

The main advantage of this experimental approach and the resulting mass balance fitting

model lies in its simplicity. When confronted with the task of estimating Se content in rice

plants for the purpose of toxicity estimation, this model only requires the knowledge of either

Se content in the soil or the soil solution, which can easily be obtained. Moreover, a large,
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previously unexplored range of Se concentrations was covered in this study and the Se distri-

bution between roots and shoots was easily calculable.

Unfortunately, the data are not extensive enough to allow for a fully calculated approach on

the effects of competing anions in varying concentrations, as this would have required many

iterations of competing sorption experiments. However, this is also not all that useful in practi-

cal application, as plants generally require all nutrient anions in abundance to be available for

optimal growth. Influences of varying ion concentrations when applying fertilization were not

the core subject of study, as these are at least partially covered in other studies [9, 28, 29].

While this mass balance fitting model presents a simplistic approach to modelling Se in dif-

ferent compartments of the Critical Zone, this model can easily be expanded in future studies

to cover i.e. other minerals and grown, grain-bearing rice plants. Similar approaches can be

applied to other plant species as well. Applicability for this model can be extended beyond the

quick estimation of Se content in a specific agricultural setting. Using this approach, a global

map of Se content in soil can be overlaid with the expected concentrations of Se in plants, as

the bioavailability is included in the model approach. A small database for a number of soils

and speciation-dependent uptake models for other ions, such as arsenic, cadmium etc. could

provide the basis for this global modelling.
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