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Abstract 

This thesis explores the extent to which electric cars might reduce oil demand 

and greenhouse gas emissions in key markets: China, France, Germany, 

India, Japan and the United States. To meet this objective, a dynamic model 

capable of simulating the market evolution of nine powertrain technologies 

between 2000 and 2030 is developed.  

The model consists of an econometric sub-model, soft-linked with a system 

dynamics sub-model. The purpose of the time-series econometric sub-model 

is to project country-specific total car stock. To this end, six single-equation 

regressions based on autoregressive integrated moving average or autoregres-

sive distributed-lag techniques are estimated. The purpose of the system 

dynamics sub-model is to represent feedback processes and facilitate policy 

analysis. The effects of six policy measures are examined: emission stand-

ards, energy taxation, electric car purchase subsidies, investment in recharg-

ing stations, investment in hydrogen refuelling infrastructure and desired car 

occupancy. The dynamic hypothesis of the model captures feedback loops 

that may stimulate the market development of electric cars. The six countries 

are interlinked to simulate technological progress concerning the electric 

vehicle battery. In particular, its cost, price and capacity, together with the 

resulting electric range of the car, are investigated. Two scenarios are con-

structed: under the Alternative Scenario, the market uptake of electric cars is 

faster due to a favourable policy package. This leads to a decline in oil 

demand and direct greenhouse gas emissions as well as to an increase in 

electricity demand from cars compared to the Reference Scenario.  

The methodological linkage of econometrics and system dynamics, together 

with the endogenisation of the electric vehicle battery price evolution by 

explicitly modelling six major car markets, is the main contribution of this 

study. Its major limitations prompt further research on the representation of 

supply-side aspects (i.e. battery and vehicle manufacturers) using alternative 

methods such as agent-based modelling. 
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1 Introduction 

In this introductory chapter, the main motivation and objective of this study 

are highlighted (section 1.1). The chapter also describes the research focus 

and scope, together with the structure of the thesis (section 1.2). 

1.1 Motivation and objective 

There are three major societal issues under discussion at the time of writing: 

(i) climate change; (ii) energy transition; and (iii) economic prospects. In its 

Fourth Assessment Report, the Intergovernmental Panel on Climate Change 

(IPCC) claimed that global warming is unequivocal (IPCC, 2007c), high-

lighting possible serious adverse impacts of climate change. Six years later, 

in its Fifth Assessment Report the IPCC identified human action as a princi-

pal cause leading to warming of the climate system (IPCC, 2013). A major 

influence on climate is exerted by emissions from road vehicles (Uherek et 

al., 2010), which accounted for around 80% of the more than doubling in 

transport-related greenhouse gas (GHG) emissions that has taken place since 

1970 (IPCC, 2015). In 2010, the transport sector accounted for ca. 23% of 

total energy-related CO2 emissions, generating 6.7 GtCO2 of direct emissions 

worldwide (IPCC, 2015). One sectoral mitigation strategy is road electrifica-

tion. In the context of the international climate negotiations hosted by the 

United Nations Framework Convention on Climate Change (UNFCCC), a 

declaration on electro-mobility and climate change was announced in Paris in 

December 2015 (UNFCCC, 2015). 

The issue of energy transition is related to a shift from fossil-based to non-

fossil-based energy supply and use. In 2014, the transport sector accounted 

for 64.5% of world oil use (IEA, 2016e). Oil represents 93% of world final 

energy use by the transport sector (IEA, 2016d). Swedish physicist Kjell 

Aleklett (2012) contends the thesis that peak oil, which refers to the idea that 

most of the Earth’s oil has been found (Deffeyes, 2010), will severely affect 
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transport. The main industrial economies are currently highly dependent on 

oil. For example, 90% of the crude oil needed in the EU is imported (EC, 

2016d). Whereas in the short-term oil importing countries have a high inter-

est in securing access to oil supplies at an affordable price; in the long-term, 

they have a strong incentive to transition towards a non-oil-based economy. 

Renewable energy provides an opportunity for this. 

Today’s major economies are examples of market capitalism, with a mix of 

public and private sector involvement. In this type of economic system, 

capital accumulation and innovation are commonly considered two key 

drivers of positive gross domestic product (GDP) change (i.e. economic 

growth). From this follows that public policy-makers and private investors 

favour and promote positive technological change (i.e. technological pro-

gress). In general, investments in the development and commercialisation of 

new products are made, with infant industries emerging and suddenly altering 

the market status quo, spurring clashes between incumbents and new entrants 

in the process and leading, eventually, to market losers and winners. Techno-

logical progress in the automotive industry is perhaps best symbolised today 

by the (re-)introduction of electric vehicles (EVs). Its recent emergence has 

been described by Dijk et al. (2013). The losers and winners of this competi-

tive process are yet to be determined. 

In terms of systemic risks, climate change and resource scarcity may be seen 

as examples of a particular type of current threats (cf. Renn (2014)). These 

three issues, mitigation policy against climate change, energy transition 

towards renewables and technology-led economic growth, are interlinked. 

Sperling and Gordon (2009) go as far as identifying electric-drive technology 

as a key solution in transport. Consequently, the future market development 

pathway of electric cars and its key implications are of significant interest. 

From today’s perspective, this development is highly uncertain. It is this 

prospect that motivates this work.  

This thesis presents the results of a doctoral study that aimed at providing 

scientifically-sounded orientation on possible evolutions of electric cars as 

well as on their corresponding energy and emissions impacts until the year 

2030 in key markets. The means towards it is by carrying out a modelling 



1.1  Motivation and objective 

3 

exercise which entails the development of a computer model that enables the 

construction of scenarios.  

Complex problems, such as the one under investigation, usually require an 

interdisciplinary understanding and there are obvious limits as to whether 

this can be achieved by a single individual. Given the background knowledge 

of the author, the main perspective comes from the social sciences. 

In 1920, British economist Alfred Marshall ([1920] 2013) [1842-1924] 

emphasised the practical use of economics a discipline that helps understand 

problems, according to British transport economist Kenneth Button (2010). 

Being a piece of applied research, and as such geared towards solving practi-

cal problems (Rogers, 2003), this thesis revolves around the transition from 

conventional to alternative car technologies in line with the three issues 

previously introduced. This is supported by international policy goals that 

aim to upscale the number of electric cars deployed worldwide from 1 mil-

lion in 2015 (ICCT, 2015) to 20 million by 2020 (EVI, 2015) and to more 

than 100 million by 2030 (UNFCCC, 2015). But policy goals do not neces-

sarily translate into reality. This thesis sheds light on this uncertain pathway, 

drawing on insights in matters that concern energy, environmental and 

transport economics and policy. 

The objective is articulated in the following research question: 

“To what extent might electric cars reduce oil demand in key markets?” 

One simple way of answering this question is by accepting that the interna-

tional policy goals on electric cars deployment are realised and, by assuming 

that each electric car replaces one average gasoline car, computing the corre-

sponding oil saved. A more elaborated, though not necessarily more accurate, 

answer than this shall be presented in this thesis. Furthermore, the analysis is 

complemented by estimating the resulting amount of GHG emissions.  
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1.2 Focus, scope and structure 

Based on the aforementioned objective, this research focuses on four aspects, 

described in the following. 

This work considers one type of motor vehicles: passenger light-duty vehi-

cles (PLDVs) (see section 3.4 for definitions). In particular, it takes the 

(passenger) car or auto(mobile) as the unit of analysis. In addition, the focus 

is on a specific technological dimension of cars: the ‘powertrain’. This is the 

term adopted to refer to the propulsion system, drivetrain or driveline 

(cf. (Lovins, 2013) (p. 18) for definitions). Different kinds of (car) power-

trains imply different types of fuels (see Figure 4.1). Currently, most cars are 

powered by either gasoline or diesel worldwide (IEA/OECD, 2009). 

The focus also lies on selected public policies which influence the market 

penetration of EVs. These policies are usually designed at the country level, 

commonly arising from the authority of a central or federal government, and 

are sometimes complemented by a regional or state government. An example 

is fuel taxation. Besides the focus on policies at the country level, it is argued 

that a multi-country scope is desirable to model more realistically the future 

market evolution of electric cars and to compare regulation relevant to the 

automotive industry across countries. The main reason for this is due to the 

fact that the automotive sector in general and battery manufacturing in 

particular have a global nature. Though desirable, a global model represents 

an extreme case. At the other end of the spectrum, a model may analyse 

powertrain adoption taking the household as the unit of analysis. From the 

outset, data availability and resources render this approach as unfeasible for 

the author. Instead, six major car markets are used as a proxy of the global 

uptake of electric cars in this work. The disadvantage of having to focus on 

aggregate variables is partially offset by the international perspective it 

offers. The countries investigated are China (CN), France (FR), Germany 

(DE), India (IN), Japan (JP) and the United States (US). These countries meet 

two criteria: (i) have, or are expected to have in the next years, a large 

(> 30 million) car stock; and (ii) are currently members of the Electric  

Vehicles Initiative (EVI), thereby showing publicly commitment to EV 
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deployment (EVI, 2016a). Besides, these countries are major emitters of 

GHGs and participate in ongoing climate negotiations. Together, these six 

countries accounted for about 46% of world transport GHG emissions in 

2010 ((UNFCCC, 2016); 2012 data for China) and over 60% of global car 

sales in 2016 (OICA, 2017). 

For modelling purposes, a compromise between a rather short time horizon 

such as 2020, where the impact of alternative powertrains is expected to be 

low, and a very long time horizon such as 2050, where uncertainty is greatest, 

was found with a time horizon extending until 2030. 

For the sake of clarity, what lies beyond the scope of this work is highlighted: 

 Negative effects of car travel, such as accidents, air pollution and conges-

tion, are not considered.  

 A comprehensive representation of the supply side, with a focus on the 

automotive sector, is beyond scope. At the intersection between market 

and policy, there exist regular reports, such as those by the International 

Council on Clean Transportation (ICCT) and the Oak Ridge National  

Laboratory (ORNL), that present in-depth up-to-date market analysis.  

 The interactions between personal travel by car and other modes of 

transport, such as non-motorised and public transport, are beyond scope. 

In the context of urban mobility, Kelly and Zhu (2016) contend that the 

solution to foreseeable challenges lies on public transport, not on zero 

emission vehicles (ZEVs). See also Creutzig et al. (2015). 

 The implications of car sharing and autonomous cars are not explored. 

For a recent analysis, see e.g. Chen et al. (2016). 

These exclusions are motivated by simplification purposes. They also high-

light starting points for further research. Specific future research needs are 

indicated in chapter 7. 

The remaining of the thesis is structured as follows. Chapter 2 explores the 

uncertain market evolution of electric cars from different standpoints. Chap-

ter 3 examines methodological issues, presenting a survey of main research 
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programmes and methods. In chapter 4, the modelling exercise is described. 

Chapter 5 and chapter 6 show the results of two different scenarios: the 

Reference Scenario (RS) and the Alternative Scenario (AS), respectively. In 

chapter 7, conclusions are drawn and limitations identified. Finally, two 

appendices complement this work. 
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2 The uncertain market evolution 
of electric cars 

This chapter introduces fundamental ideas (section 2.1), offers a brief histori-

cal account (section 2.2) and reviews relevant literature (section 2.3). The 

chapter concludes with a few remarks. 

2.1 Fundamental ideas 

There are several long-standing main concepts in economics that are, more 

implicitly than explicitly, incorporated in this work: 

 Scarcity of resources: Defined by Robbins ([1932] 2007) as the science 

connecting human ends with scarce means that have alternative uses, the 

allocation of scarce resources given competing uses remains the main 

challenge in economics (Dahl, 2004). 

 Choice: Marshall ([1920] 2013) pointed out that human wants approach 

infinity. Hence given scarcity of resources and innumerable wants, hu-

mans have to make economic decisions and choices.  

 Opportunity cost: The concept of opportunity costs is essential to analyse 

non-renewable resources (Sweeney, 1993). More generally, opportunity 

costs shape economic decisions, as pointed out by American economist 

Richard Thaler* (2015)1. 

 Trade-off and valuation: Whenever there are alternative uses and oppor-

tunity costs involved, trade-offs arise. The action to choose implies judge-

ment (Robinson, 1973). Two important value judgements in our context 

are: (i) between private or social discounting (cf. Baumol (1968)); and (ii) 

the role of the ‘precautionary principle’ (refer to Foster et al. (2000)). 

                                                                    
1  An asterisk denotes that the author was awarded the Nobel Memorial Prize in Economic 

Sciences. 
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 Incentives: The structure of economic incentives affects economic behav-

iour and choices. In the context of climate change, Nordhaus (2013) high-

lights the power of the incentives structure and claims that a high carbon 

price is the most effective incentive. 

2.1.1 The car and the oil markets 

Economic theory helps shed light into the three issues that motive this piece 

of research (climate change, energy transition and economic prospects). To 

analyse each of them, it seems wise to consider the economic ideas of exter-

nalities, imperfect competition and innovation. 

From a microeconomic perspective, analysing the way markets operate is 

core to economics (Gravelle and Rees, 2004). The market represents an 

exchange between producers and consumers. In this work, of interest is the 

car market. Paraphrasing Marshall ([1920] 2013: 283): the supply price of a 

car is the price at which it will be delivered by car-makers for sale to that 

group of car purchasers whose demand for it we are considering in the car 

market From this statement, two strands of analysis emerge: (i) the nature of 

demand; and (ii) the structure of the market.  

Concerning the nature of demand, economic thinkers have since long claimed 

that the satisfaction of human needs underpins production and exchange. 

Such a claim can be found in the writings of, among others, Scottish moral 

philosopher Adam Smith ([1776] 2008) [1723-1790], Austrian economist 

Carl Menger (2007) [1840-1921] and British economist John Maynard 

Keynes ([1936] 2015) [1883-1946]. The benefits of possessing a car are 

generally considered to be increased mobility, convenience and independence 

(Ponting, 2011). Car ownership may be conceived not only as a useful 

material good, but also as what Marshall ([1920] 2013) termed an ‘immaterial 

good’. In turn, car ownership may be interpreted as an example of ‘conspicuous 

consumption’ (Veblen, 2014), a general idea put forward by Norwegian-

origin American economist Thorstein B. Veblen [1857-1929]. In this regard, 

the car may be understood as a means of acquiring social status. Contempo-

rary observers in wealthy countries may conclude that this remains as valid 
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today for cars as it was for other positional goods in 1899, when Veblen 

wrote. Thus it can be deduced that there are some psychological or social 

factors that may play a role in the demand for cars, in addition to the purely 

economic or material ones. So far, the working of the car market may con-

cisely be described as follows: a person believes (s)he may satisfy her/his 

mobility and/or immaterial needs by demanding a car which is the result of a 

production process (i.e. manufactured using raw materials and a mix of 

human and non-human labour). A voluntary exchange between the consumer 

and the car-maker, usually via a dealership, takes place at an agreed market 

price for acquiring/selling a car. Economists such as Canadian economist 

John K. Galbraith (2015) [1908-2006] and Spanish economist José Luis 

Sampedro (2010) [1917-2013] identified the presence of an additional mech-

anism to the exchange process, symbolised by marketing and attempts to 

shape consumer wants The results by Kwoka (1993) indicate that sales for a 

particular car model may grow as a consequence of advertising expenditure. 

This point shall be taken up later, in the context of market structure. In sum, 

conditional to money budget constraints and availability of consumer loans 

that determine a person’s ability to pay, (s)he may be willing to pay to own a 

car. The fact that the car owner faces a high upfront cost, typical of consumer 

durables, means (s)he is likely to commit to car ownership for several years 

and has little incentive not to drive the car purchased during that period of 

time. Although a driving license and insurance are officially required to use 

it, what is really essential is a source of energy. Disregarding energy inputs in 

the production process, it is in this way that the car market and the energy 

market are more visibly linked. Today, the strongest link appears to be 

between the car market and the oil market. In economic terminology, the 

internal combustion engine (ICE)-car and gasoline fuel are complementary 

goods. A weaker link has been established, via first-generation biofuels or 

‘agrofuels’, between the car market and the food market. Currently, a new 

link between the car market and the electricity market is emerging. It is thus 

unsurprising that EVs are often promoted by electric utilities (Wolf, 2009). 

Figure 2.1 represents a hypothetical situation in the oil market, using the 

scientific device known as ceteris paribus (Marshall, [1920] 2013). Let us 

assume the shift of the demand curve from 𝐷𝑡  to 𝐷𝑡+1 due to increased 
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vehicle registrations in emerging economies. Given the shapes of the demand 

and supply curves (inelastic and linear, for simplicity), the market price 

increases as a result (moving from point A to B). Thus a temporarily high oil 

price economically justifies the deployment of more expensive extraction 

techniques (e.g. hydraulic fracturing and directional drilling) and an increase 

in supply is initiated, which takes time to materialise. If demand remains at 

that level, once the additional supply comes into the market (the supply curve 

shifts from 𝑆𝑡 to 𝑆𝑡+2), the price changes abruptly (from B to C). Figure 1 is a 

simple example of economic analysis, and admittedly static. Nevertheless, 

this figure highlights graphically three issues: (i) a crucial concept in eco-

nomics, that of stable equilibrium, between demand and supply; (ii) the 

effects of changes given the nature of oil demand, or more precisely, of one 

of its refined products: gasoline; and (iii) the role of time lags. In the oil 

market, three principal sources of sudden changes (i.e. shocks) can be identi-

fied: nature or resource-driven affecting availability of supply, human-driven 

on the supply side and human-driven on the demand side. In 2008, Hamilton 

suggested an increasing role to be play by scarcity rent in the oil market. See 

also Hall and Hall (1984). 

 

Figure 2.1: Oil supply and demand curves 

Source: Own work [the electronic version of this thesis contains coloured figures] 

The market structures mentioned above are generally considered by econo-

mists as examples of market failure, which create welfare losses. Two addi-

tional sources of market failure are: (i) information asymmetry (see Akerlof 
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(1970) for an example in the secondary car market by American economist 

George Akerlof*); and (ii) external effects termed ‘externalities’, such as 

GHG emissions.  

Given that the nature of car demand, including its external effects (see Parry 

et al. (2007)), and the structure of the car market lead to a market failure, the 

optimal allocation of resources is not guaranteed (cf. sections on welfare in 

manuals such as Johansson (1991) and Varian (1992)). Whenever the actions 

of an economic agent directly affects the well-being of another economic 

agent, an externality occurs (Mas-Colell et al., 1995). Although the market 

structure is important, a concern of greater importance in this work is GHG 

emissions, an externality that affects a number of agents as large as people 

inhabit planet Earth, with negative consequences for most of them. In situa-

tions where an externality affects a large number of people, the solution of 

direct negotiation and voluntary agreement is unlikely to succeed (Baumol 

and Oates, 1988). Market failures suggest that the government may play a 

role (Johansson, 1991). Hence government intervention is, in such cases, 

justified by standard economic theory. However, the possibly of ‘government 

failure’, as stressed by e.g. Wolf (1993) and proponents of public choice 

theory, should not be excluded. A proportion of economists propose market-

based incentives, as opposed to regulations (also known as command and 

control (CAC), see Turner et al. (1994)), to mitigate externalities such as 

GHG emissions. For example, the design and implementation of an emissions 

trading system (ETS), such as the EU ETS in 2005, whereby a carbon market 

is created and a carbon price determined, is motivated by the idea of the 

externality being caused by a missing market. In general, economists tend to 

favour the internalisation of external costs, by reflecting these costs in the 

market price. Ideally, a Pigouvian tax (see Pigou [1920] 2013) equalling the 

social marginal cost should suffice. In reality, measuring the social marginal 

damage is unfeasible (Baumol and Oates, 1971). 

After externalities and imperfect competition, the third fundamental idea 

briefly examined is innovation. Since its beginnings, the automotive industry 

has run a long knowledge race, with examples of just-in-time and Jidōka 

concepts originating in Japan (Rawlinson and Wells, 1996). The automotive 



2  The uncertain market evolution of electric cars 

12 

sector is currently undergoing an intense process of product development. 

Mitchell et al. (2010: 3) speak of the new ‘auto deoxyribonucleic acid 

(DNA)’ with electrically driven, intelligent and interconnected cars. With 

regards to e-mobility (electro-mobility or electric mobility), the governments 

of EVI countries invested more than 3 billion dollars in EV battery and fuel 

cell research and development (R&D) over the period 2008-2012 (EVI, 

2013). To Ederer and Ilgmann (2014), e-mobility represents the application 

of planned economy ideas in transport policy. In the EU, the automotive 

sector is the largest private investor in R&D (EC, 2016a), investing 44.7 

billion euros per year, ca. 5% of the industry’s total turnover (ACEA, 2016). 

Governments protect intellectual property rights by issuing patent laws 

(Chang, 2010: 60; 122). In 2012, car-makers featured among the main recipi-

ents of US patents (Auto Alliance, 2016). Two examples of government 

involvement and support: the German State of Lower Saxony holds a 20% 

share in Volkswagen (VW, 2016); the US Department of Energy, under the 

Loan Programs Office, issued a low-interest loan of 465 million dollars to 

Tesla Motors in 2010 (DOE, 2016a), which was repaid by the firm (Tesla, 

2016). Governments tend to consider the automotive a strategic sector. 

Whereas regions like the EU pursue to maintain their leading position as 

vehicle manufacturer (EC, 2016b), countries like China aim at gaining from 

developing a new industry, see WB (2011). This new industry, if successful, 

may shift the centre of gravity not only from the ‘construction-oil-car’ to the 

‘information-electrochemical-car’ conglomerate but also between manufac-

turing world regions, possibly altering trade balances.  

The car market per se is likely to be an excessively limited framework of 

analysis for it only focuses on the supply, demand and market price for cars. 

A broader perspective may perhaps be offered by introducing the idea of  

a system. After all, road traffic is not a matter of counting the number of  

cars on the road but a system that requires management (Bertalanffy,  

[1968] 2003). The term ‘ecosystem’ is used to refer to ‘innovation systems’  

(Mazzucato, 2015) and the more specific ‘car ecosystem’ shall be adopted 

often in this thesis to convey the idea that the car market is changing, through 

powertrain innovation, and being increasingly influenced by its surrounding 

environment. In the context of sustainability, the need not only for technical 
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but also for socioeconomic and institutional innovation is stressed by  

Grunwald and Kopfmüller (2006). Admittedly, this term may be subject to 

criticism, for the prefix ‘eco-’ has ecological connotations. 

2.1.2 On complex systems, uncertainty and scenarios 

“A system may be defined as a set of elements standing in interrelation 

among themselves and with environment” (Bertalanffy, [1968] 2003: 252) 

[emphasis added]. Meadows and Wright (2008) make this definition more 

complete by stressing that any system serves a function or purpose. What is 

the function of the car ecosystem? A basic distinction is between an intended 

function and an actual function, and these may not necessarily be the same at 

all times. It can be argued that the intended function of the car ecosystem is 

mainly the long-term satisfaction of people’s mobility needs, defined as 

accessibility to destinations spatially distant from the point of origin. If this is 

also the actual function, it can be said that the actual function of the system is 

determined by the demand side. In this way, car-makers are thought to 

anticipate people’s mobility needs and act in accordance with business 

criteria such as increasing sales and profits. If, however, the actual function 

of the system over time shifts and becomes determined by the supply side, a 

mismatch between the intended function and the actual function appears. For 

example, a car-maker may increase its short-term profits by carrying out 

malpractices that may negatively affect personal mobility in the long-term. In 

the presence of such a divergence between intended and actual functions, the 

system may not work as envisaged. In such a case, intervention in the system 

(whether a system may be successfully controlled, managed or, at least, 

influenced is another issue) may be helpful to restore its original purpose and 

ensure its functioning.  

A particular system may be seen from a different perspective as a sub-system, 

as being part of a wider system (Laszlo, 1996). For instance, the car ecosystem 

may be seen as a sub-system of the transport system. One step further, one 

may conceive the transport system as a sub-system of the social system. This 

hints at some concept of nested systems and system hierarchy. A system 

combines a physical structure (e.g. engines and vehicles) and a less visible 
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system structure (e.g. driving rules) (Bossel, 2007a). The system of interest in 

this work can be characterised as a socio-technical system, in the sense that 

the system integrates the natural environment and people with their artefacts 

(Miser and Quade, 1985). As highlighted by Simon (1984), by ‘artefacts of 

man’ such as cars one usually understands ‘technology’, but technology is 

not simply things: it also refers to knowledge. Socio-technical systems are 

characterised by complexity properties (Miser and Quade, 1985). Whereas 

Forrester (1971) pointed out that social systems are more complex than 

technical systems, Boulding (1988) went a step further and asserted that they 

are the most complex systems. A complex social entity such as the economy 

(Heilbroner, 1999) can be understood through complexity analysis. For 

example, Randall Wray (2015a: 16) views economics as “the science of 

extraordinarily complex social systems […] subject to interdependence, 

hysteresis, cumulative causation, and “free will” influenced by expectations” 

(see also section 3.1.3). Complex systems and nonlinear dynamics are associ-

ated with chaos, which emerged as a new science in the 1970s (Gleick, 

2011). Complexity may be regarded as one dimension of the car ecosystem. 

 

Figure 2.2: Concepts related to systems uncertainty  

Source: Adapted from Gómez Vilchez et al. (2016) 

In addition to complexity, the second dimension of interest related to systems 

is uncertainty. Walker et al. (2003) define uncertainty as any deviation from 

absolute determinism. By equating ‘certainty’ with ‘determinism’ and ‘uncer-

tainty’ with ‘nondeterminism’ or ‘stochastic’, a working taxonomy is pro-

posed and illustrated in Figure 2.2. Terms commonly found in the literature 
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related to the concept of ‘deep uncertainty’ include ‘Knightian’, ‘Keynesian’, 

‘fundamental’, ‘irreducible’, ‘radical uncertainty’ or, to some, even ‘ambiguity’ 

(cf. Lavoie (2014)). In the context of the economics of climate change, 

Weitzman (2009) speaks of ‘fat-tailed structural uncertainty’ or ‘deep struc-

tural uncertainty’. In essence, deep uncertainty refers to a level of uncertainty 

that is so high that it cannot be even measured. For an elaborate description 

of deep uncertainty, see Lempert (2003) and Walker et al. (2013). In econom-

ics, thought about uncertainty has a long tradition. For example, Lawson 

(1988) highlights the accounts of American economist Frank H. Knight 

[1885-1972], J. M. Keynes and those of the subjectivist and rational expecta-

tions traditions. As commonly understood, what distinguishes risk from deep 

uncertainty is the suitability of applying probability theory. As indicated by 

Hoover in Mills and Patterson (2007), prominent economists such as Mill, 

Marshall and Robbins thought that probability distributions could not be 

successfully applied to economics because of the complexity of social inter-

actions.  

Figure 2.3 shows a representation of the possible combination of these two 

system dimensions. Each axis may be understood as consisting of different 

layers or levels. At one extreme lies ‘facts’, with a low level of complexity 

and a low level of uncertainty; at the other extreme, ‘speculations’, character-

ised by a high level of complexity and a high level of uncertainty. ‘Scenari-

os’, broadly defined as including ‘projections’ and ‘explorations’, can be seen 

as dealing with medium to high levels of complexity and uncertainty. As 

Dieckhoff et al. (2014) point out, the boundaries of the definition of ‘scenari-

os’ are not clear and the following terms are often found in the literature with 

a similar meaning: ‘prognosis’, ‘visions’, ‘roadmaps’ or ‘projections’. In any 

case, they are all dealing with statements about the uncertain future. The 

inconvenience is that, because of this, they can be interpreted by people in 

different ways. Therefore, an asymmetry between the intentions of scenario 

producers (e.g. modellers) and the interpretation by scenario consumers (e.g. 

policy-makers or other users) may arise. The view that scenarios are neither 

forecasts nor predictions has been stated by e.g. Common (2005), Zurek and 

Henrichs (2007), IPCC (2007a) and Dieckhoff (2011). Some authors refer to 

scenarios as hypothetical stories about the future and distinguish between 
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projections and forecasts, with the latter conveying a greater sense of likeli-

hood (WBCSD, 2004). Deep uncertainty may be broadly interpreted as 

fluctuating between projections and speculations. 

 

Figure 2.3: Projections, scenarios and explorations | Source: (Zurek and Henrichs, 2007: 1284) 

In terms of forecasting energy prices, energy economist Carol Dahl (2004: 

33; cf. Fig. 2-4) acknowledges that this activity has not been very successful. 

To Taleb (2010), who uses oil prices as an example, the problem is the 

unawareness of such forecasting errors. To Clements and Hendry (1998), 

forecast failure hints at the occurrence of unanticipated changes.  

Cullenward et al. (2010) argue that it is unlikely that energy and economic 

systems, dynamic by nature, are predictable. This brings time, which may be 

added as a third dimension in our conceptualisation, onto the canvas. Alt-

hough chaotic systems are considered to be deterministic, predicting their 

behaviour for long time horizons is unlikely to be possible (Sterman, 2000). 

“The line that separates the possibly predictable future from the unpredicta-

ble distant future is yet to be drawn” (Kahneman, 2013: 221). That line 

perhaps underscores the fact that predictability may be not absolute, but a 

matter of degree. Makridakis and Taleb (2009) speak of ‘low levels of 

predictability’, which is interpreted as deep uncertainty here. Perhaps a new 

attitude towards forecasting is needed to deal with the future (Makridakis et 

al., 2009). Broadly speaking, there may be three possible attitudes today 
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towards the prospect of EV market uptake: (i) radically sceptical; (ii) over-

optimistic (conversely, over-pessimistic); or (iii) moderately sceptical. These 

attitudes may be reformulated into the view endorsed by American philoso-

pher John Dewey ([1910] 1997: 108-109) [1859-1952]: “taken merely as a 

doubt, an idea would paralyze inquiry. Taken merely as a certainty, it would 

arrest inquiry. Taken as a doubtful possibility, it affords a standpoint, a 

platform, a method of inquiry”. The merit in the third option leads to a 

moderately sceptical position that sees rapid EV market uptake as a doubtful 

possibility. 

Swedish economist Gunnar Myrdal* (1990) [1898-1987] contended that a 

‘system’ does not exist in the real world, but can nevertheless be used as an 

analytical device to analyse social phenomena. Systems theory (see Boulding 

(1956) and Bertalanffy ([1968] 2003)) or systems thinking (see Meadows and 

Wright (2008)) is useful in this work in at least two respects: (i) as an analyt-

ical application that facilitates public policy analysis (Walker, 1978); and (ii) 

as a modelling tool that allows scenario analysis (Swart et al., 2004). These 

authors distinguish between the ‘participatory’ and the ‘problem-oriented’ 

approach in scenario analysis. The emphasis of this work is on the latter. A 

practical way of conducting scenario analysis is by first defining a simple 

analytical framework, considered in turn.  

2.1.3 Analytical framework 

The skeleton of the modelling exercise is formed by an accounting principle 

expressed as an identity. The role of identities is clarified by e.g. Hendry 

(1995) and Common (2005). The research question posed in chapter 1 indi-

cates that the dependent variable is oil use (past consumption and future 

demand). This can be formulated at a more specific level, in terms of gasoline 

and diesel use, or at a more general level, in terms of energy use from car 

travel. Thus by extension, other relevant types of fuels available in the market 

may be included. Energy use can be thought of as an environmental impact 

for oil has to be extracted from Earth. Chertow (2000) credits Commoner, 

Ehrlich and Holdren with having identified key factors that cause environ-

mental impacts. This was captured in an identity known as IPAT (‘Impact’, 
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‘Population’, ‘Affluence’ and ‘Technology’) (Commoner et al., 1971). As 

can be seen, Eq. 2.1 is of a multiplicative nature. If the interest lies in the 

rates of growth, the logarithmic transformation may be applied as an approx-

imation, which results in the additive formulation shown in Eq. 2.2.  

I ≡ P ∗ A ∗ T  (2.1) 

lnI ≡ lnP + lnA + lnT  (2.2) 

Once energy demand has been derived, it can be relatively easy to calculate 

their corresponding direct emissions and relatively difficult to estimate their 

associated indirect emissions. In the context of the Assessment Reports by 

the IPCC, the IPAT identity has been reformulated as the Kaya identity 

(Kaya (1990) in IPCC (2000)). In transport research, another well-known 

variant of these equations is ASIF (‘Activity’, ‘Modal Structure’, ‘Modal 

Energy Intensity’ and ‘Carbon Content of Fuels’), introduced by Schipper 

and Marie-Lilliu (1999). ASIF is the most applied framework to analyse 

transport CO2 emissions (ADB, 2010).  

𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒ℎ,𝑡 ≡  𝑆ℎ,𝑡  ∗        VKTℎ,𝑡         ∗        휆ℎ,𝑡                      ∀ℎ, 𝑡 (2.3) 

[litre/year]       [car]   [(km/car)/year]      [litre/km] 

GHGℎ,𝑡
𝑇𝑇𝑊,𝑓

  =       ξℎ,𝑡
𝑓

 ∗       EFℎ,𝑡
𝑇𝑇𝑊,𝑓

                                         ∀ℎ, 𝑡 (2.4) 

[CO2/year]      [MJ/year]            [CO2/MJ] 

Let us focus on 𝑆ℎ,𝑡 in Eq. 2.3, which can be interpreted as a stock variable 

affected by a sales inflow 𝑠ℎ,𝑡 and a scrappage outflow 𝑟ℎ,𝑡, as in Eq. 2.5. 

𝑆ℎ(𝑡) = ∫ [𝑠ℎ(𝑡) − 𝑟ℎ(𝑡)]𝑑𝑡 + 𝑆ℎ(𝑡0)
𝑡

𝑡0
 (2.5) 

[car]           [car/year] [car/year]         [car] 

As long as there are cars being powered by different sources of energy, the 

interest in this work must be in the car stock disaggregated by technology, 

not only in the aggregate car stock. Following a general framework suggested 

by Chatfield (2003), two possible ways of working with 𝑆ℎ,𝑡 can be applied: 
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Top-down approach: 

𝑠ℎ,𝑖,𝑡          =   휁ℎ,𝑖,𝑡     ∗       𝑠ℎ,𝑡
𝑎𝑔𝑔

                                            ∀ℎ, 𝑖, 𝑡 (2.6) 

[car/year]     [dmnl]      [car/year] 

where: 휁 is dimensionless (dmnl), ∑ 휁𝑖
9
𝑖=1 = 1 and i represents technology. 

Bottom-up approach: 

𝑠ℎ,𝑡
𝑎𝑔𝑔

         =    ∑ 𝑠ℎ,𝑖,𝑡
9
𝑖=1                                                                ∀ℎ, 𝑡 (2.7) 

[car/year]       [car/year]  

The top-down approach may be more flexibly updated with new projections 

of 𝑆ℎ,𝑡
𝑎𝑔𝑔

. For this reason, it is the preferred approach in this thesis. This choice 

is a posteriori reinforced by the results of the literature review and data 

screening. Each of the terms in Eq. 2.3-2.6 is consistent with objects or 

substances that can be observed and/or measured in the real world. Therefore, 

these variables may be quantified and empirical testing conducted. The 

applied data is shown in section 3.4. 

2.2 Historical perspective 

The importance of history to economics has been notably stressed, among 

others, by Austrian-born American economist Joseph A. Schumpeter (1954) 

[1883-1950] and J. K. Galbraith. For it is not by ignoring the past that the 

present may be understood (Galbraith, 1991).  

French engineer N. L. Sadi Carnot [1796-1832], whose path-breaking work 

in 1824 initiated the science of thermodynamics (Gribbin, 2011), credited 

Savery, Newcomen, Smeaton, Watt, Woolf, Trevithick, and others, as the 

inventors of the steam engine (Carnot, [1824] 1986). A steam engine pow-

ered the drilling rig used by Edwin L. Drake when he famously found oil in 

the US state of Pennsylvania in 1859 (Aleklett, 2012). Two years later, 

Nikolaus A. Otto [1832-1891] received a patent for his internal combustion 

engine (ICE); in 1867, he built a first four-stroke engine; in 1893, Rudolf 
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Diesel [1858-1913] developed the first diesel engine (Wolf, 2009). As British 

economist Kenneth E. Boulding (1988) [1910-1993] noted, the availability of 

oil and advances in gasoline refining soon filled the niche that had emerge for 

cars. Around a century and a half later, it is not uncommonly acknowledged 

that cars are “the lynchpin of the Second Industrial Revolution” (Rifkin, 

2011: 122), “one of the great industrial success stories” (Sperling and  

Gordon, 2009: 1), and “the new product that had the greatest industrial and 

social impact in the twentieth century” (Ponting, 2011: 329). Part of the 

success stems from technical but also organisational improvements. For 

instance, few years before American industrialist Henry Ford [1863-1947] 

doubled the wage most of his factory employees received (Raff & Summers, 

1987), he had managed to run his business in a way that reduced automobile 

prices from 2,000 dollars in 1906 to 700 dollars in 1907 (Wolf, 2009). In 

1911, Frederick Winslow Taylor [1856-1915] published his influential 

‘Principles of Scientific Management’, whose analysis of efficiency in 

manufacturing greatly influenced technology and business (McClellan and 

Dorn, 2006). Society’s perception of the car transmuted from novelty to 

familiarity in a decade (Yergin, 2012). In the US, the economic boom of the 

1920s was emblematically symbolised by the success of General Motors 

(Ahamed, 2009), the same car-maker that introduced in 1996 the electric car 

known as EV1 (Sell, 2015).  

Although in many ways, EVs are a new product (Urban et al., 1996), the 

history of electricity-powered vehicles is long (see e.g. Mom (2013)). Build-

ing on the previous work by Italian physicist Luigi Galvani [1737-1798], 

Alessandro Volta [1745-1827] invented in 1800 the pile (i.e. battery), which 

could store electricity (McClellan and Dorn, 2006). Almost one century later, 

EVs found their first commercial application in the New York City’s taxi 

fleet, nine years after Andreas Flocken [1845-1913] built the first four-

wheeled electric car in Germany (EVI, 2013). The recognised advantages of 

the electric car over the steam car comprised cleanness, low noise and effi-

ciency. In contrast, the dependence on batteries with very low energy density 

and slow recharging remained a serious disadvantage (Serra, 2013). Besides 

steam, gasoline and pure electric, a fourth type of propulsion combining 

thermal and electric energy sources co-existed: the hybrid car. The history of 



2.2  Historical perspective 

21 

the hybrid powertrain is basically as old as the electric (Mom, 2013). For key 

historical dates for cars, see Sperling and Gordon (2009: 17). The competi-

tion among the steam, electric and gasoline car ended for all practical purpos-

es by 1905 (Yergin, 2012). One of the disadvantages of the gasoline car was 

ultimately removed thanks to the invention in 1911 of an engine-starting 

device by Charles F. Kettering [1876-1958], for which he received the 

US1150523A patent (Kettering, 1915). 

The benefits of the car to its users are offset by its costs to society. When first 

introduced, the car was perceived not only to be faster than the horse but also 

cleaner (Ponting, 2011). At that time, nobody expected they would become 

decades later the main source of urban pollution (Commoner, 2014). Odum 

(2013: 215) speaks of the “wasteful automobile culture”. As already indicat-

ed, economic theory suggests that perfectly competitive markets are efficient 

and do not require government intervention, with the exception of providing 

a working legal framework for private (including intellectual) property and 

market exchange (see also Barr (2012)). The idea of self-regulated private 

markets was studied and dismissed by Hungarian-American economist Karl 

P. Polanyi (2001) [1886-1964], for whom regulation and markets jointly 

emerged. Mazzucato (2015) suggests that car diffusion was enabled by the 

government, besides the prominent role played by the market. Government 

involvement has historically served various functions in the car ecosystem, 

described next. 

With regards to mitigation of the negative effects of cars, the US government 

granted French engineer Eugène J. Houdry [1892-1962] the US2742437A 

patent for his catalytic converter (Houdry, 1956). The US Clean Air Act to 

control air pollution was enacted in 1963 (EPA, 2016). Underpinning this 

legislation was the ‘polluter-pays-principle’, whose application the OECD 

encouraged to its members, with some exceptions, in 1972. By this principle, 

“the cost of these [pollution prevention and control] measures should be 

reflected in the cost of goods and services which cause pollution in produc-

tion and/or consumption” (OECD, 1972: online; unpaged). Shortly after this 

idea was under discussion, the first oil crisis took place (see Issawi (1978)), 

with the average crude oil price climbing from 3.29 to 11.58 current dollars 
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per barrel (bbl) between 1973 and 1974 (BP, 2016). According to Ganser 

(2013), the dollar crisis was a key contributor to the oil crisis. As a reaction, 

the US enacted fuel economy standards in 1975. Test cycles were imple-

mented in Europe, Japan and the US in the late 1960s and early 1970s (see 

Fig. 2.58 in Giakoumis (2016)). 

The acting of government as regulator means that compliance on part of the 

regulated agent is required by law. Two recent real-world cases of non-

compliance in Europe may be found by looking at the communications by the 

Spanish Comisión Nacional de los Mercados y la Competencia (CNMC), 

whose sanctions in 2015 for anti-competitive practices, including cartel 

formation, were: 131 million euros imposed on car-makers and 32 million on 

oil corporations (CNMC, 2016).  

Part of what is extraordinarily taken from industry as a result of punishment 

(via fines) for economic misbehaviour may be extraordinarily given back to 

industry by means of financial support (e.g. for ecological innovations). In 

periods of economic crisis, unemployment generally rises. The idea of 

government intervention during crises to achieve faster economic recovery 

belongs to the realm of what is generally known as ‘Keynesianism’. The 

most recent developments are to be framed in the context of the global 

financial crisis and the present stagnation in the Eurozone. As a result of the 

2007-2008 financial crisis, the US government implemented the Automotive 

Industry Financing Program (AIFP) with the aim of preventing a major 

disruption of the US automotive sector. Through the AIFP, the Treasury 

provided 81 billion dollars (Treasury, 2012). From the initial investment of 

51.0 billion dollars that was conceded to one major US car-manufacturer, 

39.7 billion dollars was recovered (Treasury, 2016). The phenomenon of 

‘privatizing profits and socializing losses’ can be traced, in the context of 

banking, to US president Andrew Jackson (Doorman, 2013).  

Today, economic recovery in many regions is not complete and changes in 

the automotive marketplace, in terms of new powertrain availability, are 

happening. In addition to the revival of EVs, plans to introduce commercial 

hydrogen fuel cell cars in the market have been announced (Rifkin, 2003) and 

have very recently become reality (Toyota, 2016). As a result of the ZEV 
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mandate by the US state of California in 1990, not only awareness of the 

EV1 but also of the fuel cell electric vehicle raised (Yergin, 2011). Given 

persistent energy efficiency and emissions concerns, Yergin (2011) expects 

that today’s transport system will change dramatically in the next decades. 

Clô (2008) considers the required penetration time of battery electric and fuel 

cell to be excessively long. In 2009, Sperling and Gordon expressed confi-

dence that the market will in the future be dominated by battery electric and 

fuel cell vehicles, with some share probably accorded to biofuels. In the same 

year, Service (2009) summarised the position by the expert community: it 

will take at least 20 years to see the impact of alternative vehicles, with only 

battery electric and fuel cell technologies providing solutions in the long-run.  

2.3 Techno-economic aspects of electric cars 

This brief section is devoted to the main techno-economic aspects of EVs, 

with a focus on the European market. Admittedly, the details exposed here 

risk at becoming quickly outdated, as advancements in this sector are taking 

place at a high pace. EVs have features that are unique, compared to their 

ICE counterparts. In a stylised manner, Figure 2.4 shows the main differences 

among conventional vehicles (CVs), hybrid electric vehicles (HEVs), plug-in 

hybrid electric vehicles (PHEVs), range-extender electric vehicles (REEVs), 

battery electric vehicles (BEVs) and fuel cell (FC) vehicles.  

REEVs are not explicitly modelled in this work. Two types of EVs are 

examined here: BEV and PHEVs. In addition, FC cars are considered. As can 

be seen, the most prominent component of these powertrains is the battery 

and the fuel cell system, respectively. At their current stage of development, 

these components have a large impact on the price tag of these technologies. 

Figure 2.5 gives an overview of purchase prices by type of powertrain and 

segment (excluding luxury (F), sport coupés (S) and multi-purpose (M)) in 

Germany in early 2017. Segments can be used as a proxy for car size, with A 

and B representing small cars and C medium-sized cars. EVs in these seg-

ments were priced below 40,000 EUR. As expected, larger cars tended to be 

more expensive. Large PHEVs cost a minimum of 40,000 EUR. In the 
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executive (E) and sport utility vehicles (SUV) (J) segments, FC cars and 

BEVs with very large battery capacities (100 kWh) display prices exceeding 

65,000 EUR, which are well above the prices of the rest of the cars shown in 

that figure. 

 

Figure 2.4: Types of car, by powertrain | Source: Adapted from e-Mobil BW (2011) 

The purchase price is however only one, though the most important, of the 

multiple factors that need to be taking into account for perform a total cost of 

ownership (TCO) analysis (see Gómez Vilchez et al. (2013a)). To date, 

incentives have been offered in various markets to increase the attractiveness 

of EVs, thus altering the TCO. For a list of incentives in Norway, the most 

successful EV market in terms of sales market share so far, see Figenbaum et 

al. (2015).  

Compared to the ICE, the electric motor (e-motor) is more efficient. Two 

types of e-motors are currently used in EVs: induction and permanent magnet 

motors. The latter require rare earth elements such as dysprosium and neo-

dymium, which have been affected by price volatility in the past and have 

been ranked by Moss et al. (2013) as critical metals. Greater efficiency can 

exert some influence on the TCO but it remains unclear how much more 

efficient e-motors may become over the next years. The composition and 

durability of the battery influences the TCO, especially for BEVs. Battery 

technology is complex and still evolving. The present work dramatically 

CV HEV PHEV BEV FCREEV
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oversimplifies. For HEVs, nickel–metal hydride (Ni-MH) batteries are 

widespread, though this is expected to change. Some PHEVs, such as the 

BYD Qin, have a lithium iron phosphate (LFP or LiFePO4) battery. Lithium-

ion (Li-ion or LIB) batteries are common in BEVs and different types of 

LIBs co-exist in the market: mainly lithium iron phosphate (LFP), nickel-

cobalt-aluminum oxide (NCA) and nickel-manganese-cobalt oxide (NMC). 

These batteries vary in their chemical mix and properties, with NMC batter-

ies relying more on a key resource: cobalt. Deterioration of the battery can 

occur through utilisation (e.g. how often and with how much power it is 

recharged) and ageing. Some OEMs have offered a battery warranty of eight 

years. If EV owners seek to keep their cars for much longer, a replacement of 

the battery is likely to be needed.  

 

Figure 2.5: Prices of selected powertrains in Germany in 2017 

Source: Own calculation using original equipment manufacturers’ (OEMs)  

websites and catalogues. Prices may vary depending on the configuration  

(e.g. extras) of the car. 

In the absence of an effective battery leasing or swapping programme, this 

comes at a future expense, to some extent offset by the prospects of selling 

the old battery for stationary purposes (a second-hand market that is yet to be 

fully established). In terms of the capacity of the battery, it affects not only 

the purchase price but also the electric range (e-range) of these cars. Based on 
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EAFO data from early 2017, an average battery capacity of 10 kWh and 

33 kWh was calculated for PHEVs and BEVs, respectively. Fig. 2.6 casts 

light on the correlation between these two variables for a sample of 64 EV 

models (of which 34 were BEVs). 

 

Figure 2.6: Battery capacity and electric range 

Source: Own analysis using data from EAFO (2017) 

The batteries of EVs may be recharged using several types of recharging 

equipment and infrastructure. In the European Union (EU), Directive 94/2014 

distinguishes between ‘normal power’ and ‘high power’ recharging points. 

Whereas the former is defined as power greater than 3.7 kW and up to 

22 kW, the latter is reserved for infrastructure providing power greater than 

22 kW. In the Directive, the technical specifications of each, in terms of types 

of current and connectors supported, are outlined (see annex II in EC (2014)). 

For fast recharging, three standards are currently under competition: the 

combined charging system (CCS), the CHArge de MOve (CHAdeMO) and 

the Tesla Supercharger. While fast recharging at 50-70 kW is common, the 

next generation of ultra-fast recharging stations are expected to enable 

charges above 150 kW and even 350 kW. The possibility of successful 

commercialisation of inductive recharging cannot be completely ruled out at 

this stage. 
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For EV drivers, when it comes to paying for the electricity they consume to 

recharge their car’s battery, several business models have been put to test. 

For instance, FASTNED (2017) offers two main pricing options for making 

use of their fast recharging network in the Netherlands: pay-as-you-go and a 

monthly rate. 

Finally, it is worth stressing that the number of models available can influ-

ence the car market. Based on an understanding of the EAFO database, the 

following aspects can be identified: (i) the number of BEV models in the A 

and B segment is larger than in the rest of the segments, (ii) there are virtual-

ly no PHEVs and FCs commercialised in the segments of small cars, (iii) for 

FCs, only large cars have been launched into the market to date. It can be 

expected that the recent trend towards increasing the number of EV models 

and variants available in the market will continue over the next years. 

2.4 Previous research 

E-mobility is currently a very active topic of research and media attention. 

The literature available is growing fast, especially if grey literature and news 

are not disregarded, which limits coverage of the whole spectrum of studies. 

The variables highlighted in Eq. 2.3-2.6 have been used to organise this 

review into four strands: car ownership modelling, choice of type of car, car 

travel demand and car-related fuel intensity and emissions policies. This 

section summarises the outcome of the literature review and is deliberately 

short, for a review of key studies and additional surveys of methods and 

models have been presented by the author elsewhere (see in particular 

Jochem et al. (2018)). 

The first strand of literature considered is car ownership modelling. Car 

ownership models have been reviewed and compared by e.g. de Jong et al. 

(2004) and Anowar et al. (2014). Figure 2.7 shows an overview of projec-

tions of global vehicle stock. A significant amount of the available studies 

conclude that high growth in car ownership is to be expected in non-OECD 

countries, particularly in Brazil, Russia, India, China, South Africa (BRICS 
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countries). This seems to be an unsurprising consequence of greater affluence 

and the ‘demonstration effect’ (Button et al., 1982).  

 

Figure 2.7: Overview of projections of the global vehicle stock 

Source: Adapted from Gómez Vilchez et al. (2013b) 

Most of these projections seem to be based on the assumption of unlimited or 

unconstrained growth over the projection period. A common distinction is 

made between unlimited growth, often modelled with an exponential func-

tion, and limited growth, popularly represented by an S-shaped function. The 

list of S-shaped curves commonly applied include the Verhulst or logistic  

(by Shell, cf. Figure 42 in Dörner (2003)), power growth (Tanner, 1977) and 

Gompertz (by the Deutsche Institut für Wirtschaftsforschung (DIW), cf. 

Figure 42 in Dörner (2003)). Growth functions differ in their estimates of 

origins, slopes and ceilings (Griliches, 1957). For this type of nonlinear 

function, the determination of the saturation level is crucial (as discussed by 

Button et al. (1982)).  
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The previous studies have an aggregate focus and do not provide information 

on the types of car in use. A second strand of literature more in line with the 

choice of car powertrain technology, either from the point of view of the 

market (diffusion) or from the perspective of the individual consumer (adop-

tion), has developed (see also Table 4.1 in Gómez Vilchez et al. (2014)). 

Concerning technology diffusion, innovation theory has been used to parti-

tion the market into various segments (see Rogers (2003)) and trace the 

diffusion over time of new products (Bass, 1969) (Bass, 2004), (Mahajan et 

al., 1991). In applied work on vehicle technology uptake, the structure of the 

Bass model has been used by e.g. Wansart (2012) (see also Al-Alawi and 

Bradley (2013)). With regards to adoption of new car technology, a vast 

literature that takes individuals as the unit of analysis and assumes that their 

choices are discrete has emerged. This literature stresses heterogeneity of car 

options and consumer preferences. Notwithstanding, these studies contain 

models based on two distinct frameworks: (i) statistical models resulting 

from discrete choice analysis; and (ii) simulation models based on agent 

interaction and the emergence of macro behaviour. Discrete choice studies 

have usually made use of stated preference data, which is of hypothetical 

nature (see Hensher (2010); other data issues are mentioned in section 3.4). 

Moreover, given its statistical basis, differences between sample and popula-

tion are likely to appear (see Table 1 in Hackbarth and Madlener (2016)). As 

a result, it is not unusual to find a divergence between the simulated market 

shares and the actual market shares of new cars. As an example, Shepherd et 

al. (2012) apply a scaling factor of value 6/20 to the estimates by Batley et al. 

(2004). This example also illustrates the division of labour in modelling car 

technology uptake: whereas some researchers conduct choice analysis and 

estimate discrete choice models, others apply the results of the former in 

simulation models that take into account other aspects of relevance (see a list 

of studies in, respectively, Table 3.2 and Table 4.1 in Gómez Vilchez et al. 

(2015)). The link between discrete choice and diffusion models has recently 

been investigated by Jensen et al. (2016). In terms of simulation of adoption 

by agents, Mueller and de Haan (2009) developed an agent-based model at 

the household level using data from Switzerland. They assumed bounded 

rational decision-makers to simulate car choice. A review of this type of 

studies is given by Gnann (2015).  



2  The uncertain market evolution of electric cars 

30 

The third strand of literature of interest is car travel demand. Elasticity 

analysis represents a fruitful way of investigating this. The importance of 

transport elasticities has been highlighted by Wohlgemuth (1997). Button 

(2010) shows the effect, with an adjustment lag, between sharp increases in 

gasoline prices and improvements in car miles per gallon (MPG) in the US 

(see his Table 8.3 in p. 272). Evidence supports the idea that the elasticity of 

car fuel demand with respect to (w.r.t.) fuel prices is inelastic, even in the 

long-run Johansson and Schipper (1997) (for a comprehensive review of 

transport elasticities, see also Goodwin (1992) and Litman (2013)). With 

regards to the price elasticity of demand w.r.t. to the electricity price, suffi-

cient evidence has not accumulated yet, but based on theoretical considera-

tions, it is expected to be also inelastic. This is due to the fact that electricity 

costs represent a smaller proportion of operating costs for an electric car than 

fuel costs for a conventional car. In the future, given the possibility of EV 

and electricity demand growth, the structure of the electricity market may 

become, for transport analysis, a very important economic issue. 

Lastly, the four strand of literature refers to policies that affect car-related 

fuel intensity and emissions. By car-related fuel intensity it is meant the fuel 

economy or fuel efficiency of new cars. Small (2012) and Tran et al. (2013) 

contain a list of policies of interest. This includes fuel economy programmes, 

whose impacts are hard to predict (Anderson et al. (2011). Using a discrete 

choice model, Goldberg (1998) found evidence suggesting that California’s 

Corporate average fuel efficiency standards (CAFE) incentivised the devel-

opment of more efficient vehicles. The ZEV mandate was analysed, from the 

perspective of car-makers with a focus on ZEV credits, by Walther et al. 

(2010). By assuming a risk neutral agent, Sallee et al. (2016) cautiously 

conclude that fuel economy is valued by consumers. However, Larrick and 

Soll (2008) have highlighted the problem of consumer perception in the US 

when the metric MPG is used. An alternative to regulation by means of fuel 

economy standards is the market-based mechanism known as ‘feebate’ or 

bonus-malus schemes (Greene et al., 2005). de Haan et al. (2009) updated 

their aforementioned Swiss model to simulate feebates, of which an earlier 

example, albeit using a different method, was offered by Ford (1995) for the 

state of California, concluding in Ford and Sun (1995) that a feebate system 
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can be controlled by planners without requiring accurate EV sales forecasts. 

System dynamics was applied in that work, which was updated in BenDor 

and Ford (2006) with a model extension that enabled the exploration of 

scrappage programmes. The system dynamics method has proved useful to 

examine the market evolution of new vehicle technology (see Shepherd 

(2014) and Table 4.2 in Gómez Vilchez et al. (2014)). Finally, Tsang et al. 

(2012) identify barriers to EV adoption and policy interventions. 

In addition, there is a set of studies that are highly relevant to the topic of this 

thesis that rely on computer models that contain features of the different 

strands. They range in their geographical boundary and level of aggregation 

of the car stock from global and highly aggregated (some of them are multi-

country, if not strictly speaking global) to country-specific and relatively 

disaggregated. In the social sciences, world models are the most ambitious 

(Bunge, 2015). An acknowledged problem with world models in general, and 

Integrated Assessment Models (IAMs) in particular, is the representation of 

behaviour. McCollum et al. (n.d.) recently propose a framework to improve 

this. Four examples of IAMs are DNE21+, GCAM, MERGE, and WITCH 

(see Aldy et al. (2016) for details and also Schwanitz (2013)). For an over-

view of some global models of interest, see Table 3.1 in Gómez Vilchez et al. 

(2015). Country-specific, and in some cases regional (e.g. US state) models 

typically represent the car stock in much greater detail than multi-country 

models do (see a list with main features in Table 6 in Jochem et al. (2018)). 

See also the review by Linton et al. (2015).  

Finally, one practical way of dealing with uncertain future developments is 

by means of scenario analysis. There is a tradition for developing supply-side 

energy scenarios that dates back to the 1970s, prepared by oil corporations 

(see e.g. Shell (2016)). In recent years, scenarios studies focusing on renew-

able energy have also been published by campaigning organisations (see e.g. 

Greenpeace (2016)). In contrast, demand-side scenarios are less common, as 

pointed out by Wietschel et al. in Dieckhoff (2011)). Since transport is an 

end-user of energy, a scenario study that focuses on the transport sector, such 

as the one presented in this thesis, may be understood as an example of a 

demand-side energy scenario study. Transport or mobility scenarios are also 
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becoming increasingly available. Rijkee and van Essen (2010) provide a 

review of transport scenarios. 

2.5 Concluding remarks I: Modelling tasks 

Three key ideas on the car market prevail: (i) it is subject to market failure 

caused by a structure with a less than optimal degree of competition and by 

the presence of externalities; (ii) these provide an economic justification for 

the intervention of government which also, together with the private sector, 

promote industrial innovation; and (iii) the car market should not be seen in 

isolation, but interlinked with other markets as part of a wide system. Hence 

the suggested emphasis is on car ecosystems, not on car markets.  

Government intervention in the car ecosystem generally arises on various 

grounds: as an initial facilitator, including guarantor of intellectual property, 

of an infant industry; as a regulator concerned with negative effects; as a 

supporter of a mature industry in periods of downturns and weak demand. In 

terms of mitigating negative impacts, the concern about pollution preceded 

the concern about oil scarcity, which preceded the concern about climate 

change. New car powertrain technology is today seen by many governments 

as a necessary means to reduce GHG emissions in transport and as a desirable 

compromise between society’s needs and producers’ requests. EVs are 

making a comeback in the market, in a better yet possibly still fragile shape 

than in the past. On technology hypes or fads, particularly of the car industry, 

see Bakker (2010). 

The research question stated in section 1.1 has been framed in terms of a 

possibility (“might”), not of a very likely (“will”) or certain outcome (cf. the 

scenario typology by Börjeson et al. (2006)). This is in line with the view that 

the car ecosystem under study is highly complex and uncertain, and can 

consequently hardly be forecasted. If the successful market penetration of a 

particular car powertrain depends on user acceptance, energy prices and 

technological development and these cannot be forecasted, it follows that the 

uptake of that powertrain cannot be forecasted either. This problem arises 
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when assessing the chances of the electric car, as it depends on the price 

evolution of the battery price, a rather uncertain development. Against this 

backdrop, the scenarios approach may be more appropriate than the forecast-

ing/prediction approach to answer the research question.  

Based on the analytical framework applicable to the construction of scenari-

os, four broad strands of research were identified. When selectively com-

bined, these strands provide the basis for most of the system models of 

interest in this work. The adjective that better describes these model-based 

studies is diversity. For even if some of them are based on the same method, 

they use different numerical assumptions and structures as well as give 

alternative weights to the ideas of the various strands of literature. 

The main four modelling tasks to be accomplished (see chapter 4) based on 

theory (concepts) and evidence (historical observation) are:  

(i)   Projection of car ownership and the resulting aggregate car sales 

(ii) Simulation of the market shares by car technology 

(iii) Estimation of travel demand by car and energy use 

(iv) Calculation of corresponding GHG emissions 

Before proceeding to tackling these modelling tasks, chapter 3 describes the 

methodology, whereby suitable methods are identified and selected. In that 

chapter, the content-related trade-off between width and depth is noticeable, 

whereby the author deliberately errs on the former. This is despite admittedly 

risking oversimplification. The perceived advantage of this choice of exposi-

tion is the setting of a relatively plural methodological background that 

facilitates, it is hoped, the comprehension of chapter 4. 
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3 Methodological considerations 
for dynamic modelling 

In section 1.2, the endeavour to develop a model that meets the research 

objective was indicated. Since modelling entails methodological decisions 

(Boland, 2014), it may be salutary to briefly reflect on the ‘methodology’, 

which arguably encompasses the ‘method’. These are respectively described 

in section 3.1 and section 3.2. Computer models are considered in section 

3.3. In section 3.4, data issues are given treatment. Finally, section 3.5 

outlines the chosen method and the modelling stages. 

3.1 Economic methodology 

The distinction between economic methodology and economic method is 

highlighted by Boumans et al. (2010) who define economic methodology as 

the philosophy of science for the economics discipline. First, patterns of 

scientific reasoning in economics are outlined. In section 3.1.2, positive and 

normative economics are briefly examined. The diversity of economic 

research, at an institutionalised level, is sketched in section 3.1.3.  

3.1.1 Scientific reasoning in economics 

British philosopher Bertrand Russell (2004: 486) [1872-1970] concluded that 

the founding fathers of modern science possessed a combination of “immense 

patience in observation, and great boldness in framing hypotheses”. He 

regarded Copernicus [1473-1543], Kepler [1571-1630], Galileo [1564-1642], 

and Newton [1642-1727] as forerunners in forging science. German econo-

mist Hermann Heinrich Gossen (1854: VI) [1810-1858] perceived the merits 

of his own work to be comparable to those of Copernicus’. From the incep-

tion of modern economics in 1776 (communis opinio relates it to the publica-

tion of Adam Smith’s seminal work), economists have found inspiration in 
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the work of scientific pioneers. Since the age of the scientific discoveries 

made by Galileo and Newton, economic scientific reasoning has polarised 

into the positivist-inductive and the abstract-deductive views (Palazuelos, 

2000). These two types of reasoning were contrasted by British economist 

William S. Jevons (1874) [1835-1882] as follows: while the process of going 

from less general towards more general truths is induction, the contrary is 

deduction.  

Russell (2004) acknowledged that British philosopher Francis Bacon 

[1561-1626] is the father of modern inductivism, which has had a great 

influence on the methodology of science (Lakatos, 1971), especially in those 

social sciences that are more analytically-oriented (Ortúzar and Willumsen, 

2001). A precursor in empirical economics was the Briton William Petty 

[1623-1687] (Palazuelos, 2000) (cf. chapter 1 of ‘Verbum Sapienti’ by Petty 

([1664] 1963). More than a century later, British political economist Thomas 

R. Malthus ([1798] 2008) [1766-1834] emphasised the importance of exper-

iment or experience in confirming theories. From the work by these two 

economists, two methodological issues stick out: the importance of empirical 

information (i.e. statistical data) and the role of experiments.  

In contrast, French philosopher René Descartes [1596-1650] opposed the 

inductive approach proposed by Bacon, attempting instead to deduce the 

consequence from the cause (McClellan and Dorn, 2006). To Palazuelos 

(2000), the apriorist approach was initiated in economics by Adam Smith and 

virtuously developed by David Ricardo. Economic data is imperfect and, in 

contrast to the natural sciences, controllability of experiments in economics is 

seldom possible. Furthermore, Austrian-British philosopher of science Karl 

Popper (2007: 4) [1902-1994] highlighted ‘the problem of induction’, that is, 

“the question whether inductive inferences are justified, or under what 

conditions”. For these reasons, a proportion of economists leans towards 

(abstract) deduction and downplays the importance of induction. In econom-

ics, two famous ‘method disputes’ may be mentioned: the first one is consid-

ered next, the second is postponed to section 3.1.2. 

In 1891, British economist John Neville Keynes [1852-1949] published his 

work on economic methodology in an attempt to reconcile the opposing 
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views that were at the core of the ‘Methodenstreit’ that took place during the 

1880s between Carl Menger, from the Austrian School, and German econo-

mist Gustav von Schmoller [1838-1917], who represented the German 

Historical School (Blaug, 2008). J. N. Keynes (1891) understood that eco-

nomics, regardless of the use of deduction, starts and ends with observation. 

According to Dewey ([1910] 1997), an act of thought is complete when it 

involves both induction and deduction. By the end of the nineteenth century, 

the inductive and the deductive approaches were both considered to be 

complementary (Spanos, 2006). With origins in the Vienna Circle in the 

1920s (Hahn et al., 1929), the logical positivist movement endorsed the view 

that scientific knowledge has two sources of inference: inductive from data 

and deductive from axioms (Hoover in Mills and Patterson (2007)). Logical 

positivists regarded mathematics, logic and the natural sciences in very  

high esteem (Okasha, 2002). By the 1950s, the positivist vision was widely  

accepted, both in the natural and in the social sciences (Caldwell, 1980).  

As indicated by Blaug (2008), the view that the natural and the social sciences 

share the same methodology is known as methodological monism. He con-

trasts methodological monism with methodological dualism, which relates  

to the view that the social sciences may employ a different methodology. To 

Reardon (2009), pluralism represents the antithesis of monism. The differ-

ence between natural and social sciences was highlighted by Austria-

Hungary-born economist Friedrich A. von Hayek* [1899-1992] and, some fifty 

years earlier, by Marshall. Whereas the latter had emphasised the nature of 

human behaviour (Marshall, [1920] 2013); the former stressed the complexity 

arising from the actions of a large number of individuals (von Hayek, 1975). 

So far, the discussion has been pitched at a generic level. In transport model-

ling, positivism, in its various variants, is the most common philosophy 

(Timms, 2008). He links positivism with instrumentalism, in particular with 

the prediction accuracy relevant to naïve instrumentalism. This leads to 

American economist Milton Friedman* [1912-2006], who put forward the ‘as 

if’ behavioural hypothesis (Friedman and Savage, 1948), a defense of the 

adoption of unrealistic assumptions in economic analysis (see Friedman 

(1953)). This position was termed by American economist Paul Samuelson* 



3  Methodological considerations for dynamic modelling 

38 

[1915-2009] the ‘F-Twist’ (called by Blaug (2008) the ‘irrelevance-of-

assumptions’ thesis), a methodological stance Samuelson regarded as harm-

ful to empirical research (see Archibald et al. (1963)).  

It can be argued that, in opposition to the underlying monism of logical 

positivists, two alternatives are represented by pragmatism and realism, in its 

various forms. Pragmatism is usually linked to the ideas of American philos-

ophers Charles S. Peirce [1839- 1914], William James [1842-1910] and John 

Dewey (Robson, 2011). Concerning realism, a particular strand of this 

methodological position of interest to economics is ‘causal’ realism, with its 

pursuit towards discovering causal factors (Timms, 2008) and its emphasis 

on cause-effect relationships (Boumans et al., 2010). The variant known as 

‘transcendental’ or ‘critical’ realism has found its niche in economics through 

the work by Lawson (2006) (see also Holt et al. (2009)). 

The scientific status of economics has been examined by many authors. In 

the view of Schumpeter (1954), ‘scientific economics’ is the result of con-

ducting economic analysis that is based on four techniques: statistics, theory, 

‘Wirtschaftssoziologie’ (economic sociology) and, most importantly, history. 

Boulding (1988) understood economics as a multi-faceted (social) science. 

To Marshall ([1920] 2013), economics is a pure and applied science. The role 

of economics as a policy science has been stressed by e.g. Blaug (2008) and 

Boumans et al. (2010). The latter links this with the original name of  

economics (i.e. political economy). Foley (2009: xv) rejects the idea that 

economics is a deductive or inductive science. He speaks of ‘the Adam’s 

fallacy’ and regards economics as “speculative philosophical discourse”. For 

J. M. Keynes, economics was a moral science based on value judgements and 

introspection (Keynes and Skidelsky, 2015). Max-Neef and Smith (2014) 

underscore the fact that Adam Smith, J. M. Keynes and Myrdal considered 

economics to be a moral science. If economics may in fact be better  

described as a moral science, normative aspects cannot be completely  

ignored. Argentine philosopher of science Mario Bunge endorses the common 

distinction between positive and normative economics, examined in the next 

section, and concludes that the status of scientific, semi-scientific or pseudo-

scientific may in principle apply to normative economics, but also to positive 
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economics (Bunge, 2015). He concludes that the economic discipline is today 

a semi- or proto-science. Keen (2011) holds the slightly less optimistic view 

that economics is still at the stage of being a pre-science. 

3.1.2 Positive and normative economics 

J. N. Keynes (1891) demarcated a clear line between political economy and 

its application. Today, the distinction is referred to as positive economics and 

normative or welfare economics, with the latter encompassing value judge-

ments related to the desirability of changes in the economy (Johansson, 2008). 

Scottish philosopher David Hume [1711-1776] had famously distinguished 

between ‘is’ and ‘should’, a distinction German sociologist Max Weber 

[1864-1920] strongly emphasised. He was involved in the ‘zweiten 

Methodenstreit’ (second method dispute) or ‘Werturteilsstreit’ (value judge-

ment dispute) (see Pierenkemper (2012)) and recommended that social 

scientists strive for objectivity and avoid making judgements of value. In his 

view, this was a logical consequence of separating empirical knowledge and 

value judgements (Weber, 2010). It is important to remark that in the social 

sciences the ‘should’ may become the ‘is’ over time. Bunge (2015) describes 

two types of predictions in the social sciences: passive and active. The latter 

type is made to guide human action, and it can be linked to the idea of a self-

fulfilling prophecy. He also discusses economic ‘laws’, which he considers 

have permanent properties, and economic trends, which have temporary 

properties and may be reversed by human action. In our context, it is  

important to understand the annual rate of GHG emissions as a trend, not as 

an economic law. In contrast, the Carnot cycle relates to a scientific law, in 

this case a thermodynamic law. The law of supply and demand is seen as the 

quintessential example of an economic law (cf. Figure 2.1). 

John Locke [1632-1704], George Berkeley [1685-1753] and David Hume are 

considered representatives of British empiricism, the philosophy that ruled in 

the eighteenth century. The last of the three arrives at the conclusion that a 

rational belief does not exist. German philosopher Immanuel Kant 

[1724-1804] sought to refute this idea (Russell, 2004). Sedlacek and Havel 
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(2013) highlight Kant’s antiutilitarianism. Bunge (1979) identifies three rival 

conceptions of the nature of society: individualism (atomism or reduction-

ism), holism (collectivism) and systemism. Barr (2012) distinguish between 

libertarian, collectivist and liberal theories, with the latter grounded in the 

utilitarian philosophy. Today, utilitarianism, based on the ideas by British 

Jeremy Bentham [1748-1832], James Mill [1773-1836] and his son John 

Stuart Mill [1806-1873], is regarded as a major theory of ethics (Faber and 

Manstetten, 2007). The need for economists to take ethics into account in 

their work was highlighted by e.g. Marshall ([1890] 2013) and Boulding 

(1988). Indian economist Amartya Sen* (1991) laments the increasing 

distance that separates economics and ethics  

British economist Joan Robinson [1903-1983] described economics as a 

mixture of science and ideology (Robinson, 1973). She and Myrdal are 

perhaps the economists who have more strongly emphasised the need to 

make values explicit in economics (Pasinetti, 2010). That ideology affects the 

social sciences, in particular economics, is an acknowledged fact (Bunge, 

2014). In particular, the connection between economics and politics has been 

highlighted by e.g. economists Albert O. Hirschman (2013) [1915-2012] and 

Joseph E. Stiglitz* (2016). Finally, Bunge (2015) encourages economists to 

declare their value judgements in normative economics because, in his view, 

the act of hiding them is dishonest. 

3.1.3 Research programmes in economics 

Once the main approaches to scientific reasoning and the dichotomy positive-

normative economics have been introduced, a collection of research pro-

grammes and school of thought active in the discipline are presented. These 

emerge at a more institutional level that previously discussed. It can be 

argued that the introduction of schools of thought in economics is desirable 

due to four main reasons: (i) the larger the number of schools indicated, the 

fuller the picture of options in economic research; (ii) underpinning each 

school is a particular philosophy; (iii) the policy recommendations from each 

school in most cases differ; and most importantly, (iv) embracement of the 

core ideas of a certain school is likely to determine the type of methods that 
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may be applied to answer a research question in economics. For example, 

logical positivism may be regarded as the philosophy that mainly underpins 

econometrics Hoover in Mills and Patterson (2007)). Econometrics is as-

sessed differently by several schools of thought. For instance, it is favoured 

by neoclassical economists, partially accepted by Post-Keynesian economists 

and, since it is the result of blending empiricism and mathematics, methodo-

logically rejected by Austrian economists. For differences in modelling 

transport futures by various schools of thought, see Creutzig (2016). 

3.1.3.1 Research programmes: orthodox and heterodox economics 

Hungarian philosopher of science Imre Lakatos [1922-1974] understood 

science as competing programmes with their own ‘hard core’ (i.e. essential 

propositions) (Hoover in Mills and Patterson (2007)). Lakatos et al. (1980) 

distinguished between successful ‘progressive’ and unsuccessful ‘degenerat-

ing’ problemshifts or research programmes. Lavoie (2014) uses the terms 

research programmes, research traditions and paradigms interchangeably.  

He identifies two research programmes in economics, which he calls the 

‘orthodox’ and the ‘heterodox’ programmes. Today, the orthodox programme 

is exemplified by neoclassical economics, which is also the main school of 

thought in economics. In contrast, the heterodox programme comprises var-

ious schools of thought, understood as alternatives to neoclassical economics.  

3.1.3.2 Schools of thought in economics 

A set of schools of thought in economics are introduced below (see also 

Figure 3.1). The goal of this section is not to judge and determine which 

school is the best, but to identify salient features of each of them that are in 

principle relevant to the research question posed in this study. This list is not 

exhaustive (for instance, Marxist economics is not included, admittedly due 

to insufficient exposure by the author). For a more comprehensive view, see 

also e.g. Figure 1 in Radzicki (2003), chapter 18 in Keen (2011) and Table 

1.2 in Lavoie (2014).  



3  Methodological considerations for dynamic modelling 

42 

 

Figure 3.1: Overview of schools of thought in economics 

Source: Own work based on the references cited in the main text 

Neoclassical economics: Jevons, Menger and French economist Léon Walras 

[1834-1910] are recognised as leaders of the marginal revolution and fathers 

of neoclassical economics (Pierenkemper, 2012), a term seemingly coined by 

Veblen (Czech, 2013). Before focusing on the environmental branch of 

interest, two general methodological features of neoclassical economics are 

highlighted: (i) the reliance on ‘methodological individualism’, which strongly 

emphasises individual behaviour as the foundation for representing social 

phenomena (Blaug, 2008) (cf. Austrian economics below); and (ii) the 

assumption of rational choice behaviour (cf. behavioural economics below). 

The former led to the idea of ‘microfoundations’, viewed by e.g. Nelson 

(1984) as an attempt to shrink macroeconomics into microeconomics. In 

order to arrive at aggregate behaviour from individual behaviour in economic 

models, the strategy of the ‘representative agent’ is the preferred choice of 

neoclassical economists (Hoover, 2010). The main disadvantage of such 

assumption, especially when it comes to empirical testing, has been pointed 

out by e.g. Kirman (1992). The linkage between macro behaviour and micro 

behaviour, adopting the assumption of the representative agent, has been 

under debate for years (see e.g. Colander (2006), King (2012), Vroey (2016) 

and also section 3.2.5). The branch of neoclassical economics dealing  

with the environment is known as neoclassical environmental economics 

(henceforth, for short, environmental economics) and may be further divided 

into a sub-branch that focuses on natural inputs or resources (known as 

natural resource economics) and a sub-branch that focuses on problems 
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associated with waste or pollution resulting from economic activity. From 

early contributions by Jevons (1866), Gray (1914) and Hotelling (1931), 

environmental economics has become a major branch of economics (Pearce, 

2002). From the perspective of environmental economics, efficiency and 

optimality in the use of environmental services are to be framed not only in a 

static (intra-temporal) but also in a dynamic (inter-temporal) dimension 

(Perman, 2011). As an example of intertemporal calculation of the costs and 

benefits of climate action, Nordhaus (2013) usually applies in his own studies 

a discount rate that reflects an annual real rate of return on capital of ca. 4% 

or greater. Lower discount rates were used in the prominent ‘Stern Review’ 

(Stern, 2007). The assumption of a higher or lower discount rate in economic 

research leads to different conclusions and policy implications concerning the 

desirability of public investment to mitigate emissions. This difference 

becomes significant in the calculation of sustainable development, where a 

long time horizon is accounted. The general policy implication of this school 

is that optimal government intervention, partially justified as a result of 

market failure arising from the presence of externalities, can be precisely 

defined. Often, this leads to the conclusion that little government involve-

ment is desirable. 

Ecological economics: British Frederick Soddy [1877-1956], who was 

awarded the Nobel Prize in Chemistry in 1921, Romanian economist Nicholas 

Georgescu-Roegen [1906-1994] and K. E. Boulding are generally regarded as 

the precursors of ecological economics. Soddy’s work constitutes an early 

effort to connect energy and ecology with economics (Daly, 1991). Georges-

cu-Roegen’s ‘bioeconomics’ (term superseded by ‘ecological economics’ 

(see Mayumi and Martinez-Allier (2001))) represents a strong critique to 

neoclassical economics (Bonaiuti in Georgescu-Roegen (2003)) (Carpintero 

and Redondo, 2006). Boulding wrote an essay (Boulding in (Jarrett, 2013)), 

where he contrasted the open with the closed economy, which influentially 

paved the way to ecological economics (Pearce, 2002). This pluralistic and 

interdisciplinary school (Jusmet and Martinez-Alier, 2013) pays attention  

to the interactions between the environment and the economy (Shmelev, 

2011). Following Martinez-Alier in Rosser et al. (2010), a striking difference 

between mainstream and ecological economists lies in their view of whether 
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the economy is an open or a closed system. Whereas from the perspective of 

environmental economists, the focus is generally on value and its associated 

cost-benefit analysis; from the point of view of ecological economists, the 

focus is on managing resources and ecosystems (Naredo, 2015). Costanza 

(1989: 4) distinguishes between ‘technological optimism’ and ‘technological 

pessimism’, linking the latter with current economic thinking working under 

the assumption of unlimited economic growth. Ecological economists attach 

utmost importance to the laws of thermodynamics (Georgescu-Roegen, 

1971). As Carnot ([1824] 1986) had understood, the motive power of com-

bustibles could not be utilised in full. Ecological economists also draw a line 

between economic scarcity (recall section 2.1) and physical scarcity, with the 

latter determined by entropy (Daly, 1991). The view that the man should be 

the master of nature, promoted from opposite directions by Bacon and Des-

cartes (McClellan and Dorn, 2006), is not entirely shared by ecological 

economists (see Becker et al. (2005)). According to Faber (2008), two 

normative aspects (nature and justice) and one methodological (time) are the 

basic characteristics of ecological economics. The general policy implication 

of this school is that public planning and management of natural resources is 

desirable to attain sustainability (i.e. to ensure the long-term preservation of 

Earth and its inhabitants). 

Institutional economics (IE: Original IE, not to be confused with Neoinstitu-

tional) / Evolutionary economics: Schumpeter (2014) acknowledged the 

contribution of the German Historical School in spreading the ‘evolutionary’ 

and the ‘organic’ points of view, stressing that economics cannot be divided 

into a collection of isolated economic agents. Nevertheless, Veblen contended 

that economics was in 1898 still at a pre-evolutionary stage (Veblen, 1898). 

Evolutionary biology was for him the adequate methodological model in eco-

nomics (Foley, 2009). Early leaders of IE were Henry C. Adams [1851-1921], 

Charles H. Cooley [1864-1929], who also contributed to transport theory (see 

Cooley (1894)), Veblen and Wesley C. Mitchell [1874-1948] (Hamilton, 1919). 

Jr (1967) credited John R. Commons [1862-1945] with having explained  

how the economy evolves. As noted by Hamilton (1970), institutionalism is 

evolutionary and Darwinian, not mechanistic and Newtonian. Culture, whose 

dynamic aspect is technology, is the focus of the institutionalist (Hamilton, 
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1970) and the point of departure of analysis using ‘circular and cumulative 

causation’ (O’Hara, 2008) (see also section 3.5). Radzicki (1990) considers 

that IE bases its philosophy on the pragmatic instrumentalism of Dewey and 

its methodology in the pattern-modelling approach (see section 3.5). The 

general policy implication of this school is that it is desirable to understand 

institutions and control them in a manner that leads to a well-functioning 

economy. 

Post-Keynesian economics: Taking the work of J. M. Keynes as seminal, 

several strands of Post-Keynesian economics have flourished (see King 

(2002)). In general, Post-Keynesians remain suspicious of key assumptions 

made in neoclassical models (see a list in JPKE (1978: 3-4)) and particularly 

stress the frequent presence of fallacies of composition in orthodox economic 

analysis (see Table 1.4 in Lavoie (2014)). For a list of nine distinctive fea-

tures of Post-Keynesian economics, see Pasinetti (2010: 195-209). Post-

Keynesian economics attaches due importance to the principle of effective 

demand (i.e. demand-led models) and monetary macroeconomics (Godley 

and Lavoie, 2016). In the view of Post-Keynesians, the eigendynamics of the 

economic system lead to instability but policies may stabilise it (Minsky, 

2008). In the context of energy and environmental issues, Post-Keynesians 

dismiss economic analysis based on perfect foresight premises that result in 

long-run Pareto-optimal allocations as misguided policy formulations (JPKE, 

1978). The general policy implication of this school is that it is desirable that 

the government plays a major role in the economy, proactively to reduce 

financial instability as well as reactively in periods of economic downturns.  

Austrian economics: Menger is regarded as the father of the Austrian  

School of economics, which has an earlier antecedent in the Spanish School 

of Salamanca. Two major Austrian thinkers were Ludwig von Mises 

[1881-1973] and von Hayek. The key differences between neoclassical and 

Austrian economics are listed by Soto (2012) in his Table 1.1. Palazuelos 

(2000) contrasts two main ‘marginalists’ groups: those economists (British, 

Swiss, Swedish and Americans) preferring the use of mathematics versus 

(vs.) those Austrian economists opposing mathematical economics and 

favouring a logico-deductive approach. As first defined by Schumpeter 
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(1908: 3), methodological individualism “bases certain economic processes 

on the actions of individuals”. The methodology of the Austrian School is 

‘praxeology’ (see Dolan and Studies (1976)). According to Blaug (2008), 

modern Austrian economists deny the possibility of prediction in economics 

and the validity of empirical testing, a view he dismisses. Two additional 

methodological issues worth remarking are: (i) the time dimension (Garrison, 

1984); and (ii) disequilibrium processes (see chapter 1 in Rizzo (1979)). 

Austrian economists attach due importance to these. For a description of 

Austrian environmental economics in the context of climate change, see 

Dawson (2012), who argues that neoclassical environmental economics is not 

compatible with individual freedom, as understood by classical liberals. To 

him, climate change is not a market failure, but an illustration of interpersonal 

conflict arising from competition for resources. In his view, Austrian eco-

nomics accords no role to public policy in dealing with climate change. The 

general policy implication of this school is that laissez-faire is desirable, so 

that government does not diminish individual freedom.  

Behavioural economics (including experimental economics): Avineri (2012) 

argues that neoclassical economics underpins mainstream transport policy-

making. Although the assumption of maximising behaviour is widespread in 

economic modelling (Boland, 2014), it has been subjected to criticism both 

internally and externally. The internal critique refers to the one put forward 

by a proportion of economists who defend the conception of the economic 

agent as an ‘animal spirit’. As pointed out by American economist Robert 

J. Shiller* (2015: xvi), this term, popularised by J. M. Keynes, relates to “the 

fluctuations in the basic driving force in human actions”. External criticism 

has come mainly from psychologists. The differing views held by neoclassi-

cal economics and psychology are highlighted by McFadden (1999) (see his 

Table 1 for a list of cognitive anomalies), who contrasts the Chicago-man 

model (Lucas, 1986) (Becker, 1993) (also known as homo oeconomicus or 

economic man) with the Kahneman-Tversky (K-T) man. German philosopher 

Nida-Rümelin (2011) speaks of the homo oeconomicus ideology. Further-

more, the original work by Muth (1961) has served as a basis for rational 

expectations modelling. Blanchard (1983) found evidence supporting inter-

temporal optimisation with rational expectations in the US car industry, at 
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least in the context of inventory management. However, the hypothesis of 

rational expectations is currently under debate, as it is being increasingly 

perceived as unsound (Kirman, 2014) and a weakness of neoclassical  

economics (Foley, 2009). The application of expected utility theory as a 

description of economic behaviour under risk was criticised by Israel-born 

psychologists Amos Tversky [1937-1996] and Daniel Kahneman*, who 

suggested an alternative: prospect theory (Kahneman and Tversky, 1979), 

which is capable of integrating risk and ambiguity (Wakker, 2010). Cognitive 

economics, represented by Kahneman and Tversky’s work, and experimental 

economics, by the work of American economist Vernon L. Smith*, originally 

developed independently (Motterlini and Piattelli Palmarini in Kahneman et 

al. (2012)). Fehr in Rosser et al. (2010) speaks of the satisfactory union 

between behavioural and experimental economics. Thaler (2015) defines the 

relatively new field of behavioural economics as economics with a dose of 

other social sciences, prominently psychology. As forerunners of Kahneman 

and Tversky, he cites Swiss mathematician Daniel Bernoulli [1700-1782] and 

American economists Herbert Simon* [1916-2001] and Thomas Schelling* 

[1921-2016]. With regards to method, experiments play a crucial role in 

behavioural economics. The general policy implication of this school is that 

social ‘nudges’ (cf. Sunstein and Thaler (2012)) may be a desirable option to 

improve decision-making. Some behavioural economists advocate the idea of 

‘libertarian paternalism’ (Thaler and Sunstein, 2003). 

Complexity economics: Holt et al. (2011) contend that a new era of complexi-

ty economics has replaced the neoclassical era. Notorious complexity ideas 

include: ‘tipping points’, ‘(path) dependence’, ‘discontinuity’, ‘fractals’ and 

‘emergence’. Complexity economics strives for applying these ideas to 

economic analysis, especially in the context of quantitative finance. “Com-

plexity portrays the economy not as deterministic, predictable, and mechanis-

tic, but as process dependent, organic, and always evolving” (Arthur, 1999: 

107). Complexity science (cf. Johnson (2009)), and complexity economics in 

particular, are very active areas of research (see e.g. Goodwin (1990), 

Metcalfe and Foster (2007), Arthur (2014) and Faggini and Parziale (2014)). 

On ‘tipping points’ and ‘critical’ points, thresholds or transitions, see 

Scheffer et al. (2009). Polish-born French and American mathematician 
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Benoît Mandelbrot [1924-2010] developed fractal theory and suggested that 

dependence and discontinuity effects are part of markets (Mandelbrot and 

Hudson, 2010). Axtell in Colander (2006) pointed out that ‘emergence’ is 

closely related to ‘self-organisation’ and to the economic ideas of the ‘invisi-

ble hand’ (Smith, [1776] 2008) and ‘spontaneous order’ (Hayek, 1966). The 

general policy implication of this school is that a complex adaptive system 

can be influenced, but not controlled. As opposed to the ‘standard policy 

frame’, Colander and Kupers (2014: 31) speak of ““activist laissez-faire” 

policy” as part of the ‘complexity frame’. 

Boumans et al. (2010) attribute the aforementioned first method dispute to 

competition between different schools of thought. As a matter of fact, the 

research schools highlighted above may compete or cooperate. Neoclassical 

economics is contested for its insistence on inter alia: equilibrium (by Aus-

trian and Post-Keynesian), the representative agent (by institutional and 

complexity), perfect rationality (by behavioural), conceptualising the econo-

my as a circular system (by ecological). Even if environmental and ecological 

economists give due attention to the role of the environment, they conceptu-

ally differ as the latter adopt the view that the economy is an open, not a 

closed and circular system. German-American economist Karl William Kapp 

[1910-1976], who was an example of work on institutional and ecological 

economics, lamented that the economic idea of externalities, first proposed 

by Marshall, was being used excessively to analyse environmental problems 

(Kapp, 1978). Martinez-Alier in Rosser et al. (2010) credits him with the 

insight of understanding an externality as a cost-shifting success, and not as a 

market failure (an idea in consonance with the prevailing conventional 

wisdom). Given the differences between the two research programmes, 

cooperation seems feasible for only a subset of the schools that are part of the 

heterodox programme (see also the discussion by Lavoie (2014)). As an 

example, although Swedish economist J. G. Knut Wicksell [1851-1926] was 

an intellectual source of inspiration for Austrian economists and J. M. 

Keynes (Wolf, 2014), the general policy recommendations derived from 

Austrian and Post-Keynesian economic analyses can hardly be more distant. 

Hence it would be naïve to expect fruitful cooperation for most schools from 

the heterodox programme. However, for some of them, a certain form of 
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synthesis may be accomplished over time by cooperating. The intellectual 

link between Post-Keynesian and ecological economics has recently been 

explored by Holt et al. (2009) and the idea of ‘green Keynesianism’ is gain-

ing attention. Although Post-Keynesian and ecological economists methodo-

logically agree on the role of irreversibility and dynamics, they have virtually 

opposing views on the need for economic growth and thus challenges remain. 

The link between Post-Keynesian and institutional economics has been 

suggested by e.g. Radzicki in Harvey and Garnett (2008: chapter 9) (see also 

section 3.5 for an example of actual collaboration). It has crystalized in Post-

Keynesian Institutionalism (PKI), which synthesises the work of Commons 

and J. M. Keynes (Whalen, 2008) and highlights the role of evolution in the 

macroeconomy (Zalewski and Whalen, 2010).  

3.2 Economic methods 

At a general level, an economic method reflects how economic analysis is 

undertaken. Since there are many possible ways of doing this, there are many 

methods that can be potentially used in economic analysis. In this section, 

only a few of them, not ranked in accordance with their perceived importance 

but listed in chronological order, are briefly surveyed. For a more detailed 

treatment of methods, with a focus on EV market penetration, see the work 

by the author and colleagues (Jochem et al., 2018)). For exposition, the 

choice of methods was: (i) motivated by a priori considerations of the poten-

tial usefulness of the method to answer the research question (because of this, 

Austrian economics represented no longer an option); (ii) guided by Table 

3.1 (see section 3.2.1); and (iii) influenced by the result of the literature 

review (section 2.3). Although the initial attitude of the author towards the 

choice of method was generally open and conditional to an assessment of 

strengths and weaknesses, there have been four main exceptions: neuroeco-

nomics, econophysics, game theory and IAM. Background knowledge has 

prevented the author from getting on time anything close to the method 

practiced by neuroeconomists and econophycisists. Neuroeconomics can be 

understood as the investigation of the biological factors of human behaviour, 

both individual and social (Fehr in Rosser et al. (2010)) (cf. Smith (2007), 
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especially chapter 14, and Glimcher and Fehr (2013)). It can be argued that 

econophysics (see Buchanan (2013)) and agent-based modelling (see section 

3.2.5) may be seen as being part of the complexity research programme. 

However, Gallegati in Rosser et al. (2010) highlights differences between 

them in terms of tools. Econophysics rely on tools from the realm of statisti-

cal mechanics and theoretical physics (Mantegna and Stanley, 1999).  

Besides, the recent (for many, still present) economic crisis has been too 

important to ignore issues of method in academic economics. In particular, 

scepticism on the usefulness of the type of macroeconomic modelling known 

as dynamic stochastic general equilibrium (DSGE) for economic policy has 

notably increased lately (see Caiani et al., (2016) for key criticisms). In this 

respect, Bezemer (2009) lists a number of economists who anticipated the 

financial crisis with success. Incorporating some of their ideas in this doctoral 

work seems to be opportune. Game theory, owing to the minimax theorem by 

Hungarian-American mathematician John von Neumann [1903-1957] (Luce 

and Raiffa, 2012), may, despite its name, also be considered a method. The 

possibility of applying game theory in this work has been excluded primarily 

on the grounds that it is largely static (Neumann and Morgenstern, 2007), 

more theory-focused, and not suitable to answer the research question ade-

quately. Admittedly, game theory shapes real-world strategic behaviour of 

transnationals (e.g. car-makers) at the industry level as well as governments 

at the international arena (e.g. foreign policy, climate negotiations). However, 

it requires a level of abstraction and rationality on part of the modelled agent 

that lies far from what is judged to be practically admissible in the dynamic 

context of this work. Not only DSGE models embrace general equilibrium 

theory, but also IAMs, which combine knowledge on human and natural 

systems, often rely on them, particularly those whose focus is on policy 

optimisation (see e.g. Weyant et al. in Bruce et al. (1996: chapter 10)). Given 

the partial scope of this thesis, a truly general, global approach is unattainable. 

Veblen drew a line between high prestige and low practical knowledge 

(esoteric) and low prestige and high practical knowledge (exoteric)  

(Galbraith, 1991). This work leans towards the latter. The existence of a 

unique, perfect and objective method has been questioned by Blaug (2008). 

See Bunge (2014: 68-69) for his proposal of the key ingredients that generally 

constitute successful scientific research.  
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3.2.1 Quantitative methods in applied economics 

As a preliminary step, research methods may be categorised as qualitative or 

quantitative. Swart et al. (2004) distinguish between qualitative and quantita-

tive scenario analyses as well as a combination of them (‘integrated scenarios’). 

An approach to combine qualitative and quantitative scenarios is ‘story and 

simulation’ (SAS) (Alcamo, 2008) (see also Weimer-Jehle et al. (2016)). 

Trutnevyte et al. (2014) introduced a two-step approach to link qualitative 

narratives (storylines) with multiple models. The advantage of quantitative 

analysis, from a mathematical perspective, is that it by definition conveys a 

qualitative result, expressed as the direction of a change of a certain variable 

(Chiang and Wainwright, 2005). In the case presented in this thesis, the first 

words of the research question (“To what extent…”) already signal the need 

for obtaining magnitudes. Hence the methods considered in this work are of a 

quantitative nature. Furthermore, contemporary computers facilitate the task 

of applying quantitative methods and building quantitative models. In this 

thesis, the use of mathematics and the computer should be seen as a means to 

answering the research question, not as an end in itself. Therefore mathemat-

ics and the computer are to be interpreted in this thesis as tools and, as such, 

they possess advantages and disadvantages.  

Two French minds were pioneers in mathematical economics: mathematician 

Antoine Augustin Cournot [1801-1877], with his focus on pure theory, and 

engineer-economist Jules Dupuit [1804-1866], with his interest in applica-

tions (Touffut, 2007). In the twentieth century, British economist John 

Hicks* [1904-1989] and American economists Paul Samuelson and Kenneth 

Arrow* made economics substantially more mathematical (Thaler, 2015). W. 

S. Jevons ([1879] 2013) had expressed the view that only a mathematical 

treatment of economics could render it a science, at the same time acknowl-

edging that a mathematical treatment of the subject does not necessarily mean 

the attainment of truth. Boulding (1988) warned of the power and danger of 

using mathematics in economics: simplicity and formalism. The application 

of quantitative methods using computers in economics is generally known as 

computational economics. With caveats (see section 3.3), the pros of using 

computers in principle exceed its cons.  
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Table 3.1: Methods in energy, transport and ecological economics 

Energy Transport Ecological 

Econometrics Demand allocation 
Environmental input-output 

analysis 

Energy balances Matrix estimation Life cycle assessment 

Game theory Regression analysis Multicriteria decision aid 

Input-output analysis Simulation Optimisation 

Network modelling Time series analysis Simulation 

Optimisation - - 

Simulation - - 

Time series analysis - - 

Source: Based on Dahl (2004: 23) for energy, Bell and O’Flaherty (1997: 110) for transport and 

Shmelev (2011: 134) for ecological economics 

Meadows in Randers (1980)) examined four methods to model social sys-

tems: econometrics, input-output analysis, system dynamics and optimisa-

tion. The first three, together with linear programming, were listed by Walker 

(1978) as being popularly applied in policy analysis studies.  

Table 3.1 gives an overview of methods commonly applied in energy, 

transport and ecological economics, as identified by authors from these 

fields. As noted in section 3.1.3, two radically different schools of thought in 

economics dealing with environmental issues co-exist at present time. In 

Table 3.1, only the usual methods of ecological economics are shown, for 

much of environmental economics is based on neoclassical methods that are 

usually found also in the fields of energy and transport. Since Table 3.1 

shows a selection, other methods are missing: the noticeable absence, though 

perhaps implicit in simulation, is agent-based modelling.  

In energy economics, a categorisation of models into top-down and bottom-

up, arising from the application of different methods, is common (cf. 

Sensfuss (2008) and Herbst et al. (2012)). In the context of personal 

transport, Schafer and Victor (1999) concluded at the turn of the millennium 

that the methods available to researchers are not suitable for making long-
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term projections of personal transport. Dargay (2008) distinguishes between 

two main types of studies on personal transport choice, each based on differ-

ent methods: (i) those focusing on the attributes of the transport system; and 

(ii) those focusing on the characteristics of the individuals. Whereas the 

former tend to be based on dynamic models that rely on aggregate data; the 

latter require disaggregate survey data. McFadden (2007) considers three 

levels at which travel behaviour have been modelled: (i) physical analogies 

(e.g. gravity model); (ii) models using rational behaviour theory; and (iii) 

models using the results of other social sciences that do not assume the level 

of rationality of (ii). 

In the remainder of section 3.2, four methods are briefly presented: (i) econ-

ometrics; (ii) input-output analysis; (iii) system dynamics; and (iv) agent-

based modelling. For each method, the sequence of exposition covers histori-

cal background, main features and examples. It is common to distinguish 

between macroeconomics and microeconomics and this, in turn, is mirrored 

in econometrics, with a separation between macroeconometrics and microe-

conometrics (Greene, 2011).  

3.2.2 Econometrics 

Economic analysis along the lines of econometrics had existed before this 

method was institutionalised in the 1930s through the creation of Economet-

ric Society and the Econometrica journal. In its first editorial, Norwegian 

economist Ragnar Frisch* (1933: 1) [1895-1973] asserted that the object of 

econometrics was “a unification of the theoretical-quantitative and the 

empirical-quantitative approach to economic problems”. Prominent develop-

ers of the econometric method by mid-century were Dutch economist Jan 

Tinbergen* [1903-1994], Dutch-American economist Tjalling C. Koopmans* 

[1910-1985], Norwegian economist Trygve Haavelmo* [1911-1999] and 

American economist Lawrence R. Klein* [1920-2013] (see e.g. Christ 

(1994)). Early scepticism towards econometric models was notably expressed 

by J. M. Keynes (1939) and the critiques by American economists Robert 

Lucas Jr.* (1976) and Christopher A. Sims* (1980) influenced later devel-

opments. According to Morgan (1992), the founding ideal of econometrics 
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had collapsed by the 1950s. Today, several approaches to econometrics co-

exist (see e.g. Pagan (1987), Hoover (2005) and Kennedy (2008)). Further-

more, decision analysts and statisticians have differing views on the philo-

sophical foundations of their disciplines (Raiffa, 1968). Unsurprisingly, this 

situation applies to econometrics, with common distinctions between classi-

cal or frequentist and subjectivist or Bayesian econometrics as well as be-

tween parametric estimation and others. For an overview of the purposes of 

econometrics, see Intriligator (1983).  

3.2.2.1 Dynamic econometrics 

Macroeconometrics is also known as aggregate econometrics, dynamic 

econometrics or time-series econometrics. This method is distinct from time 

series analysis (TSA) (Newbold and Granger, 1989), in either its time-

domain or frequency-domain variant. Both dynamic econometrics and TSA 

are statistical methods (Clements and Hendry, 1998) but reflect the scientific 

tension between abstraction and observation (recall section 3.1.1). At one 

extreme, economists use data to fit their theoretical models and assign a 

minor role to the statistical properties of data. At the other extreme, statisti-

cally-minded economists attach little weight to economic theory. The time-

domain TSA approach is best illustrated by the set of models popularised by 

British statisticians George E. P. Box [1919-2013] and Gwilym M. Jenkins 

[1932-1982] (Box and Jenkins, 1976). This set includes autoregressive 

moving average (ARMA) and autoregressive integrated moving average 

(ARIMA) models. An alternative is represented by autoregressive distribut-

ed-lag (ADL) models, which seek to integrate econometric theory in the 

statistical model. In line with the latter, an econometric approach known as 

the London School of Economics (LSE) approach (see Gilbert (1986); 

(1989)) originated from the work by British economists J. Denis Sargan 

[1924-1996], Clive Granger* [1934-2009] and David F. Hendry (see Sargan 

(1964) in Hendry and Wallis (1984)) and Davidson et al. (1978)).  

It has been operationalised into the general-to-specific (GETS) modelling 

approach, in contrast to the specific-to-general or simple-to-general approach 

(cf. Lütkepohl (2007)). 
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3.2.2.2 Discrete choice analysis 

A variant of microeconometrics, or disaggregate econometrics, of special 

interest is qualitative choice analysis, more commonly known today as 

discrete choice (DC) analysis. American economist Daniel McFadden* has 

been instrumental to its development (see e.g. Manski (2001)).  

The fact that many decisions in transport can be characterised as being 

indivisible (Glaister, 1981) means that a discrete representation of individual 

choices may be appropriate (Manski and McFadden, 1981). In those cases, 

logit analysis, or logistic regression, complements ordinary regression analy-

sis (Cramer, 2003). In a discrete choice setting, the set of alternatives is 

assumed to be finite, exhaustive and the alternatives mutually exclusive 

(Train, 2009). Furthermore, the maintained assumption of measurability of 

utility is needed (Hensher, 2010). DC models include an error term and are 

thus considered probability models (Gujarati and Porter, 2009). Depending 

on the assumptions imposed on the error term, different types of DC models 

may be estimated (see e.g. Ben-Akiva and Lerman (1985)). A more recent 

type of DC model is the mixed logit (Hensher and Greene, 2003). Besides, 

though DC models traditionally relied on the random utility maximisation 

(RUM) assumption, the alternative hypothesis of random regret minimisation 

(RRM) has gained attention in recent years (see Chorus et al. (2008), Chorus 

(2012) and Hensher et al. (2013)). 

In principle, the advantage of the DC method is its ability to predict the 

demand for new goods (Beggs et al., 1981). For this reason, the method has 

been popularly applied in the context of vehicle choice. An early example is 

provided by Train (1986). More recently, the market introduction of EVs has 

been vastly investigated using DC analysis (recall section 2.3). In practice, 

the ex ante estimates derived from state-preference surveys may be different 

from the actual values. Using the new San Francisco Bay Area Rapid Transit 

(BART) as a real-world case, McFadden and Talvitie (1977) examined 

successfully disaggregate travel demand models based on DC (see Part II, 

chapter 3 for a comparison of pre-BART and post-BART model estimates). 
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3.2.3 Input-output analysis 

Russian-origin American economist Wassily W. Leontief* [1906-1999] 

developed in the early 1930s, with colleagues at Harvard University, the 

input-output (I-O) method whose application resulted in I-O tables. As 

described by his founder, the method was a new attempt to combine economic 

theory with empirical facts (Leontief, 1986). Since the purpose of I-O analy-

sis is to understand interdependences in the industrial economy, it is also 

known as interindustrial analysis (Miller and Blair, 2009).  

I-O analysis, which is closely related to linear programming, is an example of 

linear economics (Dorfman et al., 1988). There has been a historical devel-

opment from linear I-O models, static or dynamic, to nonlinear I-O models 

(cf. Zhang (2001)). See Rose and Casler (1996) for the evolution of the I-O 

method towards I-O structural decomposition analysis (SDA). 

I-O analysis is a method widely applied in economics (Miller and Blair 

(2009) citing Baumol (2000)) and perhaps the most popular method for 

regional analysis, in part due to its versatility (Rose and Miernyk, 1989). 

Regarded as a powerful method by ecological economists (Jusmet and 

Martinez-Alier, 2013), I-O analysis has been applied in the field of energy 

(including future scenarios (Blair, 2013)) and the environment (see respec-

tively chapters 9-10 in Miller and Blair (2009)). Carter (1974) analysed the 

impacts of new energy technologies on economic growth using a closed 

dynamic I-O model. Another example is provided by Baumol (2000).  

I-O analysis is also not uncommonly applied in combination with other 

methods, such as econometrics. An example is the model known as PANTA 

RHEI, which includes several car technologies (see e.g. Meyer (2005)). 

3.2.4 System dynamics 

The system dynamics (SD) method was founded by American electrical 

engineer Jay W. Forrester [1918-2016] at Massachusetts Institute of Tech-

nology (MIT) in 1957. Initially known as ‘industrial dynamics’ for its focus 
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on corporate and industrial problems, it was later renamed ‘system dynamics’ 

after a wider field of applicability was recognised (Forrester, 1971).  

The representation of feedback processes (servomechanisms, information-

feedback or feedback-control systems) is at the core of the method (Forrester, 

[1961] 2013). Specifically, Forrester (1971: 110) understood social systems 

as “multi-loop nonlinear feedback systems”. Wheat (2007) shows an example 

of how feedback processes may be represented in SD based on the economic 

hypotheses of Walras and Marshall. Some feedback structures are so com-

mon that they have been called ‘generic structures’ or ‘system archetypes’ 

(see appendix 2 in Senge (2010)). 

Although feedback processes are conceptualised as closed systems (Forrester, 

[1961] 2013) and SD stresses the ‘endogenous point of view’ (Richardson, 

2011), most SD models of the socio-economy are open (Radzicki and  

Tauheed, 2009), include sources and sinks that reflect the model boundaries, 

and may be driven by exogenous factors.  

Radzicki (1990) highlighted the similarities between SD and institutional 

economics. More recently, he identified synergies between SD and Post-

Keynesian, institutional, ecological and behavioural economics (Radzicki in 

Meyers (2009)). Rather than a method, Lavoie (2014) has classified SD as a 

school of thought. For contributions of SD to economics, see Radzicki in 

Meyers (2009)). The strengths and weaknesses of SD for transport modelling 

were assessed by Abbas and Bell (1994). Twenty years later, Shepherd 

(2014) reviewed SD applications in the transport field. A prominent example 

of SD modelling in transport is the ASsessment of TRAnsport Strategies 

(ASTRA) model (Schade, 2005) (Krail, 2009) (Fiorello et al. (2010)). With 

regards to the market penetration of alternative vehicle technologies, SD has 

been applied vigorously in recent years (recall section 2.3). 

3.2.5 Agent-based computational economics 

Agent-based modelling (ABM) is commonly regarded as a method and 

known in economics as agent-based computational economics (ACE) (Hamill 
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and Gilbert, 2016). Still considered a new research method (Gallegati in 

Rosser et al. (2010)), it has gained popularity in the late decades. ACE 

highlights agent interaction in dynamic economic systems (Tesfatsion in 

Colander (2006)). In ACE, an economic agent is an autonomous and adaptive 

entity (Guerci and Hanaki, 2012). Agents are assumed to possess limited 

information, which leads to satisficing but not optimal choices (Gallegati, 

2016). Agent interaction takes place via rules that are prescribed (Farmer and 

Foley, 2009), without the need for a central coordinator (Caiani et al., 2016). 

Page (2008) summarises the four main characteristics of ABM: (i) heteroge-

neity; (ii) learning; (iii) externalities; and (iv) networks. Machine learning 

allows agents to react to the changing environment (Junges and Klügl, 2013). 

The unclear connection between network structure and economic macro-

behaviour (Kirman and Zimmermann, 2012) may be clarified by ABM, 

which can elicit emerging macro structure from individual or micro behav-

iour (Gilbert, 2008), for individual action may result in surprising collective 

or macro behaviour (Schelling, 2006). The critique by Lucas (1976) was 

influential in encouraging models with microfoundations (see section 3.1.3.2 

above). Currently, ABM represents the alternative modelling approach to 

microfoundations to the dominant DSGE (Gallegati, 2016). ABM enables the 

modelling of agent interaction, which is required in truly microfounded 

models (Gallegati in Rosser et al. (2010)). 

ABM are computer simulations (see e.g. Miller and Page (2009)) found 

useful in energy and transport research: see Sensfuß and Ragwitz in Möst 

(2008) for an example of the electricity sector and Eppstein et al. (2011) for 

the simulation of the PHEV market uptake. Kieckhäfer et al. (2014) show how 

ABM may be jointly applied with SD to simulate EV market penetration.  

3.3 Dynamic models for decision support 

According to Bell and O’Flaherty (1997: 103), “models are simplified repre-

sentations of reality which can be used to explore the consequences of par-

ticular policies or strategies”. Models are contextual (Rodrik, 2015), prob-

lem-oriented and viewpoint-dependent (Ortúzar and Willumsen, 2001). 
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Models can be classified in accordance with several dimensions (see e.g. 

Bossel (2007a: 24-25)). Four relevant dimensions examined in this section 

are: (i) mental vs. computer models; (ii) linear vs. nonlinear models; (iii) 

optimisation vs. simulation models; and (iv) discrete-time vs. continuous-

time dynamic models.  

To support decision-making under uncertainty, a choice between the use of 

the mental model of the decision-maker and a computer model, which may in 

turn enrich the original mental model, must be made (Sterman, 2000). The 

mental model is neither complete nor precisely stated. In contrast, the com-

puter model must be made explicit (Forrester, 1971). By computer model it is 

meant the application of a methodology, based on one or more methods, 

using a computer and historical data for a certain purpose. According to 

Knight (2012: 16), “the aim of science is to predict the future for the purpose 

of making our conduct intelligent”. To improve economic decision-making, 

future-oriented thinking is likely to be helpful. An important task of scientific 

policy advice is to construct model-based scenarios (Acatech, 2015). When 

decisions are complex and important, computer models tend to be preferable. 

For example, the European Commission encourages the use of ‘model-based 

decision support tools’ (see e.g. EC (2015)), interpreted as scientifically-

sounded computer models that inform policy-making. Unfortunately, com-

puter modelling is not exempt from the ‘garbage in-garbage out’ problem 

(Foley, 2009). The use of computers allows a more efficient development of 

large-scale and complex models. However, this is not without its own perils, 

for it significantly increases the efforts needed to trace and understand the 

connections between model input and output. In the context of mobility 

scenarios until 2030, Kuhnimhof et al. in Hülsmann and Fornahl (2013) 

lament the pretension of exactness that model-based projections create, an 

exactness that Marshall ([1920] 2013) had long argued is less achievable in 

the sciences that deal with humans. No pretension of exactness in this work is 

made and the recommendation by Manski (2013) on the need to move policy 

analysis from incredible certitude (point prediction) to credible interval 

prediction is seriously taken. But arguably the advantages of making comput-

er model-based numerical statements about the future offset its potential 

disadvantages. Two of these advantages are recognised: (i) it enables experi-
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ments (Ruth and Hannon, 1997); and (ii) it facilitates the quick visualisation 

of indirect (side and far-reaching) effects (Dörner, 2003).  

The second dimension of interest relates to the distinction made long ago in 

economics by Malthus ([1798] 2008) between arithmetic (linear) and geomet-

ric (nonlinear) relationships, in particular growth. Nonlinearity in economics 

conveys the idea of an economic limit or level of saturation. By 1879, Jevons 

(2013) recognised that linear functions are seldom, if ever, a feature of 

economics, a reality increasingly perceived by economists (Baumol, 1970). 

More generally in social systems, nonlinearity is not the exception (May, 

1976). Whereas linear systems can be subjected to the principle of superposi-

tion, most nonlinear systems cannot be solved analytically (Strogatz, 2014: 8; 

see also Fig. 1.3.1 on p. 10). When Jevons wrote, computers were not availa-

ble. Analytical tractability of a given economic problem was a necessity. 

Fortunately, today computers provide us with a way of representing nonline-

arities, thereby helping us tackle at least one level of complexity in social 

systems. Hence this represents another rationale for using computer models.  

In broad terms, models may be primarily based on one of the following 

modelling techniques: (i) optimisation; (ii) simulation; or on a mixture of 

both. At the core of economic analysis lies optimisation (Lancaster, 1987). 

For three purposes of simulation, see Gilbert and Troitzsch (2005: 4-5). 

Optimisation models, which are methodologically more challenging, generally  

allow less dynamic complexity than simulation models (Moxnes in Rahmandad 

et al. (2015)). The choice of technique largely depends on the purpose of the 

model. On the application of optimising procedures in the context of energy 

scenarios, Grunwald (2011) has sounded a note of caution. Models may also 

contain a mixture of optimisation and simulation, thereby complementing 

each other, as illustrated by three examples: (i) econometric models may 

result from minimisation of least squares and simulation of future values over 

a certain lead time; (ii) system dynamics models are inherently simulation 

models but may also incorporate the outcomes of calibration or policy opti-

misation; (iii) a modelling exercise may be based on an optimisation pathway 

replicated by a simulation pattern (see an example in Haasz et al. (2018)). 

Typically, the simulation pattern is portrayed on a Cartesian plane where the 
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variable ‘time’ is shown in the abscissa. Ergo simulation is often understood 

as dynamic simulation. 

In economics, Swiss economist de Sismondi [1773-1842] was a precursor of 

dynamics (see e.g. Schumpeter in Sismondi (2011)). Conceptualising EV 

market uptake as an evolving process is an invitation to adopt the system 

(recall section 2.1.1) view and to consider two key aspects of any system: its 

state description and its dynamics (Boulding, 1988). More specifically, 

interest in how the system changes over time leads to consideration of  

dynamic(al) system theory (Bertalanffy, [1968] 2003). Since the computer 

model developed in this thesis explicitly takes time into account, the question 

of how time is mathematically treated consequently arises. The distinction is 

between discrete-time and continuous-time dynamic models. In economics, 

the former are specified as difference equations and the latter as differential 

equations (Lancaster, 1987). Though some economists in the 1950s argued 

that a continuous representation of economic systems is more accurate, 

discrete-time models became the norm (see Richardson (1991)). To Marshall 

([1890], 2013), nature determines that time is continuous. The assumption of 

time continuity was rejected by Mandelbrot and Hudson (2010), who pro-

posed a more flexible approach to time (termed ‘time deformation’). In 

addition, a distinction between logical time and historical time can be made 

(see Robinson (1980)). The pros and cons of differing interpretations of the 

element of time are summarised in section 3.5. Finally, Shone (2002) high-

lights the importance of dimensionality in economic dynamics. 

3.4 Data availability, collection and quality 

In the modelling exercise, data is needed for two reasons: (i) to feed the 

model; and (ii) to evaluate the model results in view of the empirical evi-

dence, thereby validating the model. The analytical framework described in 

section 2.1.3 helps identify data requirements. Three data issues are consid-

ered next: (i) data availability; (ii) data collection; and (iii) data quality. 
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Economic data is the main window to the observation of economic behaviour 

(Griliches, 1986), but modelling requires not only numerical data (Forrester, 

1980). Ford and Flynn (2005) point out at the spectrum of information 

available to model builders, including social system data. Social measure-

ments in general, and economic data in particular, is mainly non-experi-

mental (i.e. observational) (Spanos, 1999), related to unique phenomena 

(Morgenstern, 1963) and either discrete or continuous (Greene, 2011) (see 

also Stevens (1946)). Following section 1.2, this study requires data related to 

policy at the country level. This indicates a rather high level of aggregation, 

closer to the ‘macro’ model (which deals with the interplay between policy-

makers and economic agents (Greene, 2011)) than to the ‘micro’ model in the 

widespread distinction in economics between the ‘micro’, ‘meso’, and 

‘macro’ levels. The inevitability of data aggregation is highlighted by Hendry 

(1995) and its opportunities and risks pointed out by Button (2010). More 

specifically, low-frequency (annual) time series is the preferred data for the 

dynamic model to be developed. Seasonality is excluded from this analysis. 

For some aspects, analysis would require more disaggregated data but this is 

often not available (see Pasaoglu et al. (2014) for an example in the context 

of driving and recharging profiles for electrically-driven vehicles in the EU). 

Today, the Internet provides availability to a substantial amount of aggregat-

ed data from secondary sources (see chapter 4). On the negative side, missing 

data points in those sources is not unusual. To partially compensate for this, 

the set of available information has been increased, with caveats, by judge-

mentally considering the grey literature.  

With regards to data collection, Button (2010) highlights two pertinent 

issues: (i) confidentiality if data collection is undertaken by a commercial 

firm, which reduces the level of transparency available to the modeller; and 

(ii) in the context of transport statistics, the fact that most of the data collect-

ed relates to the physical aspects of transport systems and is of limited value 

for economic analysis of travel behaviour. As noted by Leontief (1986), there 

is a natural time lag between data gathering and availability. 

Perhaps, the most critical issue relates to data quality, which is influenced by 

data availability and collection and in turn affects the quality of the model 
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results. The presence of large errors in economic statistics was acknowledged 

by Belarus-born American economist Simon S. Kuznets* [1901-1985] (see 

Kuznets (1950)). Three brief examples of issues encountered in this study 

that affect data quality are worth mentioning (the problematic matter of stated 

preference data was highlighted in section 2.3). The first example relates to 

the temporal and spatial consistency of statistical definitions. Table 3.2 shows 

the example of the term LDV, which encompasses different sets of vehicles 

depending on the institution responsible for collecting the data. Besides, light 

trucks are more often used for passenger activities in the US compared with 

other countries (ORNL, 2016), and this is hard to disentangle from available 

statistics. The second example concerns the co-existence of two datasets from 

seemingly reliable sources showing very different historical evolutions of the 

same variable (defined in both sources as ‘passenger car stock / cars in use’) 

in Japan (see Figure 3.2). This discrepancy has a large effect on the model 

output (estimation of total car-related oil use and GHG emissions). The third 

example relates to the availability of car-related data disaggregated by power-

train. In EVI data, there is a slight discrepancy between the cumulative sales 

and the total EV stock. Lack of evidence of sales prior to 2008 does not mean 

evidence of absence of EVs. As long as different sources for each powertrain 

are used, the possibility of a mismatch between the sum of these and aggre-

gate data from another source appears. The other possibility is to use only 

one source, but this is unfortunately not feasible. For instance, the German 

Kraftfahrt-Bundesamt (KBA) does not provide online separate data for FF, 

PHEV and BEV (KBA, 2016). It remains to be seen whether it shall also 

show separate data for FC in the future. 

Table 3.2: LDV, as defined by various institutions 

Term IEA/OECD* EU** US DOE*** 

Light-duty vehicle 

(LDV) 

Automobiles, SUVs,  

mini-vans, light trucks 
Cars, vans 

Cars, vans,  

SUVs, pickups 

Source: *IEA/OECD (2009: 113); **Eurostat (2016); ***AFDC (2015) 
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Five final remarks concerning data: (i) data conversions to the standard 

scientific IS format (e.g. from miles per US gallon (MPG) to litre/km) are 

made; (ii) the units of measurement of data are shown in this work inside 

square brackets; (iii) given data availability (partially influenced by the 

language skills of the author) and quality, the data collected for the European 

countries and the US appear to be more satisfactory for analysis than the ones 

obtained for the Asian countries;; (iv) the data gathered is summarised and 

stored in a suitable format, so that it may be readily used to feed the model 

(see appendix I); and (v) the data issues considered in this section have 

implications for the selection of method, considered next. 

 

Figure 3.2: Data discrepancy for Japan 

Source: Based on the sources indicated in the legend (see appendix I) 

3.5 Concluding remarks II: Method 
assessment and selection 

In the previous sections, methodological traditions related to schools of 

thought and methods in economics were introduced. The schools often differ 

not only in method but also in their policy recommendations (prominently, on 
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the desirable degree of government intervention in economic issues). In sum, 

conventional car market downfall and electric car market uptake (henceforth 

‘car market upturn’) may be modelled with ideas from different schools of 

thought. Some tentative hypotheses are: by assuming that the choices of 

individual consumers are based on a purely rational TCO basis (neoclassical 

economists’ view); by modelling car purchasers as rationally bounded and 

incorporating additional psychological factors (behavioural economists’ 

view); by emphasising the role of government policy to promote the energy 

transition in the automotive sector (e.g. ‘green Keynesianism’ adopting the 

Post-Keynesian view); by considering in-market competition of different 

niches along Darwinian lines (evolutionary economists’ view); by stressing 

energy flows, taking into account physical constraints and acknowledging the 

desirability to reduce car usage (ecological economists’ view). That any 

methodology has its own limits was a point suggested by Austrian philoso-

pher of science Paul Feyerabend ([1975] 2010) [1924-1994]. All the methods 

presented in section 3.2 have three features in common: (i) are quantitative 

methods; (ii) may be implemented in computer software; and (iii) are regard-

ed as a priori suitable for answering the research question of this thesis.  

A clearer statement of the model purpose is due before the selection of the 

method is elucidated. Boland (2014) distinguishes between pure or abstract 

models and applied models, the latter being divisible into explanatory models 

and models that provide policy recommendations. The purpose of the model 

developed in this thesis is to facilitate policy analysis in the context of car 

market upturn. Manski (2013) highlights three relevant issues related to 

policy analysis: (i) its goal is the provision of information necessary to 

policy-making; (ii) the prediction of policy outcomes is hard; and (iii) an 

honest communication of imperfect knowledge is desirable. The policy 

analysis based on the developed model shall support the exploration, adopt-

ing the ‘what-if’ device, of policy options that contribute to the car market 

upturn. For this, the set of information found useful concerns the policy 

options shown in section 4.3. This does not necessarily mean that the model 

shall deliver definite answers to policy issues, but it may instead offer, in line 

with the idea suggested by Colander and Kupers (2014), visions to policy. 
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Ultimately and as a result of the method selection, the model should enable 

its user to obtain responses to the following four modelling questions: 

1. What are the projected aggregate car stock and annual sales? 

2. What are the possible market shares and resulting car-mix?  

3. What is the estimated demand for energy? 

4. What are the corresponding GHG emissions? 

These questions are based on the previously identified modelling tasks (recall 

section 2.4). Although projections and forecasts are needed to attain this 

(modelling question 1), forecasting is by no means the purpose of the model.  

With regards to the selection of method, this decision requires the assessment 

of the methods identified in section 3.2 and the consideration of these steps: 

(i) choice on the preferred modelling approach; (ii) choice between a single-

method and a multi-method model. If a multi-method model is favoured, 

justification on the feasibility and desirability of linking the selected methods 

is needed. 

The first choice is between a bottom-up and a top-down modelling approach. 

A third alternative is the development of a hybrid model that integrates both 

approaches. It is argued that dynamic econometrics, I-O analysis and SD may 

be classified as top-down modelling approaches. The crucial decision is 

whether methodological individualism shall be pursued or not. Because of 

the purpose of the model and the need to keep complexity at a manageable 

size, which is constrained by data availability and requires a high level of 

aggregation, the answer is negative. Hence a top-down approach is preferred 

and disaggregate econometric and ABM methods shall not be applied. 

The second choice is that between a single method and a multi-method top-

down model. The risk of an inflexible methodological stance is highlighted 

by Buongiorno (1996). See also Jick (1979) for the idea of ‘triangulation’. 

Since the modelling exercise was partitioned into different modelling tasks 

(recall section 2.4), a multi-method approach appears feasible, provided that 

each method is a priori suitable for one or more modelling tasks. In principle, 

it is desirable to use the same method to answer modelling questions 2-3, for 
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they are closely related and call for a method capable of simulating the 

system-wide effects of policy. But consistent with Eq. 2.6 (section 2.1.3), 

modelling question 1 may be answered using a distinct method, compatible 

with the generation of projections. This represents an opportunity for devel-

oping a model that draws from two different methods. 

The need for a dynamic model that captures the complex aspects of the car 

ecosystem reverts to consideration of: (i) historical time; (ii) cumulative 

causation; and (iii) feedback processes. Historical time leads to causality 

(Pasinetti, 2010). Norwegian-born statistician Herman Wold [1908-1992] 

emphasised that: (i) causality is an indispensable concept in science (Wold, 

1954), and (ii) simultaneity is absent in economic relationships for they are 

always characterised by a time lag between cause and effect (Charemza and 

Deadman, 1997). The notion of ‘cumulative causation’ was mentioned by 

Veblen and expanded (‘circular and cumulative causation’) by Myrdal and 

Hungarian economist Nicholas Kaldor [1908-1986] (see Veblen (1898), 

Myrdal (1944: appendix 3) and Berger (2008)). The application of this notion 

demonstrates that collaboration between economists that hold views con-

sistent with the institutional and Post-Keynesian schools is a possibility. 

Economists working under the heterodox programme accord due importance 

to storytelling (Lavoie, 2014), “a method of theorizing that binds together 

facts, low-level generalizations, high-level theories, and value judgements in 

a coherent narrative” (Blaug, 2008: 251). Pattern modelling, a term coined 

by American philosopher Abraham Kaplan [1918-1993], is storytelling 

carried out in a systematic manner, which seems adequate to analyse situa-

tions shaped by a multiplicity of factors (Wilber and Harrison, 1978). The 

formalisation of these ideas in quantitative terms occurs by modelling feed-

back processes with the aid of computers. By the late 1980s, Boulding (1988) 

perceived that the idea of positive and negative feedback was steadily spread-

ing in economics. Richardson (1991) offers a historical account of the devel-

opment of feedback thought in the social sciences and identifies two major 

conceptual threads: cybernetics and servomechanism (see Wiener ([1948] 

1961) and Brown and Campbell (1948), respectively). An interesting early 

example of implicit feedback modelling was given by German-born physicist 

Albert Einstein, winner of the Nobel Prize in Physics in 1921, when writing 
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on the 1930 economic crisis (Einstein, [1949] 2005). Richardson (1991) 

concludes that only two methods consistent with the concept of mutual 

causality (circular and cumulative causation and feedback) may help analyse 

dynamic social systems: econometrics and SD. Among the various approach-

es to econometrics (recall section 3.2.2), there is one (the aforementioned 

LSE approach that emerged in Britain) that explicitly models feedback 

processes, highlighting the close link between servomechanisms and error 

correction terms (Hendry et al., 1984).  

Based on the previous discussion, the conclusion that the joint consideration 

of the econometric and the SD method represents an adequate means of 

inquiry is reached. Consequently, econometrics and SD are the two methods 

selected for the modelling exercise. Specifically, dynamic econometrics is 

used to answer modelling question 1 and the SD method is applied to develop 

the main model that delivers answers to the modelling questions 2-4. Data 

issues also influenced this decision, because dynamic econometrics requires 

long time series for each of the countries analysed, which are only available 

for variables such as population, GDP and total car stock. 

Once the selection of methods has been made, the coherence of their philo-

sophical underpinnings requires at least a brief consideration. Sommer (1984) 

examines the methodological “tensions” and possibly conflicting co-

existence of econometrics and SD. He rightly indicates that econometrics and 

SD suffer from a paradigm conflict, a conclusion that had also been reached 

by Meadows in Randers (1980). In fact, when the ‘Limits to Growth’ report, 

perhaps the most well-known example of SD modelling, was released 

(Meadows et al., 1972), it faced strong criticism (see e.g. Nordhaus (1973) 

and Beckerman (1974)). Whereas logical positivism underpins econometrics 

(recall section 3.1.3), pragmatic instrumentalism influences SD (Forrester, 

1985). A list of arguments by proponents of the econometric and SD used to 

defend their own methods is collected in Gómez Vilchez (2016b). In particu-

lar, it can be argued that the modelling assumptions of discrete time and 

white noise (econometrics) as opposed to, respectively, continuous time and 

pink noise (SD) can hardly be reconciled. Notwithstanding, Sommer (1984) 

also points out that a certain problem might require the application of both 
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methods. The author is in agreement with this statement and, despite the 

differences in philosophies, the reliance of both methods on the empirical 

approach can be contested with immense difficulty (see e.g. Hendry (1995: 4) 

and Forrester ([1961] 2013: 18)). Moreover, Richardson (1991) places both 

methods in the servomechanism thread. Apel et al. (1978) indicate that there 

are situations in modelling complexity where econometrics may be more 

advantageous than SD. Finally, there is evidence that the two methods may 

be combined (see the studies by Buongiorno (1996) and Smith and van 

Ackere (2002) on forestry and health, respectively). 

The sole purpose of the dynamic econometric sub-model is to deliver key 

projections for the main model. This sub-model is stochastic and, being of a 

statistical nature, it is a descriptive (Bunge, 2015) ‘black-box’ (von Hayek in 

Bunge (1964)) (see also Bossel (2007a)) that cannot imply causation (cum 

hoc ergo propter hoc). Furthermore, this sub-model is the result of solving 

difference equations and hence the estimated values are prone to alterations 

due to unexpected changes (Boulding, 1988). Blanchard (2008) recalls the 

Lucas critique condemning that established relationships between variables 

can break down in the presence of policy regime shifts. In practice, a single-

equation regression sub-model is estimated for each country using dynamic 

econometrics. For this, the software employed is EViews®. 

As Hicks (1995) suggested, the introduction of policy variables in a model 

opens the door to analysis beyond econometrics. SD, which is an example of 

pattern modelling (Radzicki, 1990), facilitates policy analysis and design 

(SDS, 2014). The SD sub-model (main model) is essentially deterministic, 

but noise may be added. In practice, the developed SD sub-model is based on 

a system of equations that comprises the six countries. The software used is 

Vensim® DSS, which facilitates the modelling of stock and flow structures 

and dimensional analysis, two crucial aspects in dynamic modelling. 

A final methodological question remains: Does a model connection (soft 

linkage) suffice or is a model integration or combination (hard linkage) 

needed? It is argued that a soft linkage between models is adequate. Sterman 

(2000: 438) provides reasons for not integrating regression equations into  

SD models.  
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The development of the model and how the two sub-models, each being the 

result of a different methods, are connected are explained in the next chapter. 

It remains to be seen at the end of this thesis whether the methodological 

linkage of econometrics and system dynamics is one of the main contribu-

tions of this study. 
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4 Model development 

In this chapter, a description of the developed model is given, with an  

emphasis on the model assumptions (section 4.2). 

4.1 Overview 

4.1.1 Model description 

As indicated in section 1.1, the variables of ultimate interest in this thesis are 

energy use and GHG emissions, which correspond to the final model output. 

For this, intermediate model output concerning the car-mix (recall modelling 

question 2 in section 3.5) is needed. Determination of the possible car-mix 

should be interpreted as a means to generate the final model output, not as the 

goal of modelling. The sets of car technologies (nine elements) and energy 

sources (seven elements) included in the model are shown in Figure 4.1. Only 

PHEVs are assumed to be powered by two different energy sources: gasoline 

and electricity. Admittedly, these relationships do not exhaust all present and 

future technical possibilities, but they represent a reasonable approximation 

to what consumers can expect from the market in the near future.  

 

Figure 4.1: Car technologies and energy sources linkages | Source: Gómez Vilchez (2016a) 
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First of all, three model subscripts are created: h for country, i for technology 

and j for the type of GHG emission. In addition, a t subscript denotes time. In 

the econometric part, time is treated in a discrete fashion; in the SD part, time 

is conceptually continuous and computationally approximated in a discrete 

manner.  

4.1.1.1 Modules 

Next, a modular approach is implemented with the following nine modules: 

Population-GDP, Car Stock, Travel Demand by Car, Infrastructure, Attrib-

utes, Market Behaviour, Energy, Emissions and Policy. Using the ‘multiple 

view’ capability of Vensim®, each module is embedded in one or more 

‘views’ and the modules are interlinked using ‘shadow variables’ (defined in 

other views (Vensim, 2016)). Figure 4.2 illustrates the modular structure of 

the model.  

In the remainder of this section, each module is concisely introduced: 

1. Module Population-GDP: The aim of this module is to incorporate the 

external projections on population and GDP. Here, income per capita 

(intermediate output) is derived from population and GDP (inputs). Oth-

er macroeconomic variables are used to translate money values from 

nominal to real. 

2. Module Car Stock: The aim of this module is to fulfil the modelling task 

1 (i.e. projection of car ownership and the resulting aggregate car sales) 

and part of the modelling task 2 (i.e. simulation of the market shares by 

car technology). Thus the module contains the results of the econometric 

sub-model. It generates the intermediate model output and sends this in-

formation to Energy and Emissions. 

3. Module Market Behaviour: This module aims at partially fulfilling 

modelling task 2. The module comprises the model’s main behavioural 

assumptions. 
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4. Module Travel Demand by Car: This module seeks to partially fulfil 

modelling task 3 (i.e. estimation of travel demand by car and energy 

use). The module contains three alternative ways (expected, simulated 

and desired) of representing travel demand by car. 

5. Module Infrastructure: The goal of this module is to partially fulfil 

modelling task 2. The module relates policy variables to the deployment 

of public refuelling and recharging infrastructure.  

6. Module Attributes: The aim of this module is to partially fulfil modelling 

task 2. The module is divided into three broad classes of car attributes: 

Technical Features, Production Costs and Consumer Costs, each with its 

own view. 

7. Module Energy: This module consists of: Energy Prices, Electricity Mix 

and Energy Use, each embedded in a separate view. The goal of each 

sub-module is respectively: (i) to accommodate the assumptions con-

cerning the price evolution of the different energy sources; (ii) to reflect 

assumptions on power generation by source; and (iii) to fulfil the model-

ling task 3. 

8. Module Policy: The goal of this module is to attain the model purpose: to 

facilitate policy analysis. It hosts the decisions, to be determined by the 

model user, that affect the policy variables of the model. Hence the mod-

ule represents the core of the modelling exercise and affects the rest of 

the modules.  

9. Module Emissions: This module consists of six sub-modules: Emission 

Factors, New Car Emissions, Manufacturing and Scrappage, Tank-to-

Wheel (TTW), Well-to-Tank (WTT) and Lifecycle. In sum, this module 

seeks to fulfil modelling task 4 (i.e. calculation of corresponding GHG 

emissions). 
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Figure 4.2: Overview of the developed model  

Source: Adapted from Gómez Vilchez et al. (2016) 

4.1.1.2 Variables 

Economic variables may be expressed as either:  

(i)  “Flows through time [...] or stocks at a moment of time” (Baumol, 

1970: 127). This distinction is crucial in a dynamic model. Stocks are 

also known as state variables. In economics, flows and stocks are re-

spectively known as rates and levels (Sterman, 2000). In Vensim®, 

flow variables are represented by the icon  and stock variables by a 

box. Clouds symbolise sources and sinks, located beyond the system 

boundaries. 
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(ii)  Exogenous or endogenous. This distinction is important in a model 

that provides policy recommendations (Boland, 2014). For the econ-

ometric sub-model, the terminology independent and dependent varia-

bles is preferred for customary reasons. 

In addition, there is a third important distinction concerning the model 

variables that should be taken into account:  

(iii)  Desired or actual state variables. The advantage of differentiating 

between the desired states (decision-makers’ goals) and the actual 

states of the system has been stressed by Sterman (2000). For exam-

ple, whereas the model variable ‘projected aggregate total car stock’ 

would represent the desired state, the variable ‘aggregate car stock’ 

would represent the actual state of the system. Drawing from Gilboa 

(2009), any model user that attempts to make rational choices should 

distinguish between those model variables (s)he may control and the 

rest (in this case, between the desired and actual states). 

In the Car Stock module, it is important to differentiate between the car 

market share and the car-mix (cf. modelling question 2 in section 3.5). By 

market share it is meant the configuration of the annual car sales by power-

train, expressed in percentage terms (e.g. 0.6 or 60% market share of gasoline 

denotes that 60% of the new cars sold in a market are gasoline). The term 

car-mix is borrowed from the literature of the energy field, where it is com-

mon to speak of the electricity-mix. By car-mix it is meant the configuration 

of the car stock by powertrain in a particular year, expressed in percentage 

terms (e.g. a value of 0.4 or 40% share of diesel cars in the car-mix denotes 

that 40% of the car stock is powered by diesel cars). Both variables are 

dimensionless [dmnl], and they are attached to variables with different 

dimensions. The market share variable is associated with the flow variable 

aggregate sales rate, measured in [car/year]. The car-mix variable is linked 

to the stock variable aggregate car stock, measured in [car]. 
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Table 4.1: Model boundary chart: variables included, by type 

 

Model input: Exogenous variables Model (intermediate 

and final) output: 
Endogenous variables 

Data / projections / own 
assumptions 

Policy inputs 

C
o

n
st

an
ts

 

Learning curve based on battery 

cost reduction fraction [dmnl] 

Value added tax [%] Effect of learning 

experience on battery 

cost [dmnl] 

Utility coefficients [dmnl] Target load factor 
[passenger/car] 

 

V
ar

ia
b

le
s 

Population  

[passenger] 

Emission standards 

[gCO2/km] 

New car sales 

[car/year] 

Gross domestic product [dollar] Target PKM per cap 
[pkm/passenger] 

Car stock  
[car] 

PKM per cap [pkm/passenger] Car taxes  

[dollar/car] 

EVB cost based on 

capacity  
[dollar/battery] 

Car average lifetime [year] Energy taxes 

[dollar/unit] 

Market share by 

technology [dmnl] 

Car prices [dollar] Carbon intensity 

electricity mix 

[gCO2eq] 

Vehicle-km travelled 

[km] 

Number of stations [station]  **Energy use  

[unit] 

Energy prices [dollar/unit*] **GHG emissions 

[gCO2eq] 

Emission factors [gCO2eq/unit]  

* Unit = per unit of fuel / ** Energy use and emissions from car travel. 

Two types of model input are identified: (i) (historical) data and projections, 

which are obtained from external sources (e.g. international organisations or 

forecasting firms), and own assumptions (assumptions made by the modeller 

based on his judgement, motivated by the lack of reliable data); and (ii) 

policy inputs (in this case, the controllable variables). Whereas the former are 

assumed by the modeller, the latter are to be determined by the model user. In 

this thesis, the author has acted as both modeller and model user, for the 

purpose of developing the model and conducting scenarios, respectively. 

With the exception of the module Policy, each module may be affected by 
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exogenous variables or variables (exogenous and/or endogenous) from other 

modules. Furthermore, two types of quantities are considered: constants and 

variables. A summary of the main variables included in the model, and their 

nature, as well as the variables excluded from the model, for reasons of either 

boundary or level of aggregation, is shown in Table 4.1 and Table 4.2.  

Table 4.2: Model boundary chart: variables excluded, by reason 

DUE TO BOUNDARY DUE TO AGGREGATION 

Road infrastructure (e.g. network length) Car size (e.g. B or C segment) 

Traffic congestion Engine displacement / horsepower 

Speed  Alternative modes of transport (e.g. bus) 

Travel time Type of recharging plugs 

Value of travel time savings (VTTS) Population by age and gender 

Generalised cost of travel Number of driving license holders 

Car inventories held by manufacturers Car travel demand by purpose of the trip 

International oil market dynamics Vehicle-km travelled by powetrain 

Trade tariffs (e.g. car import duties) Emissions credits and penalties 

 

An example of how some of these variables are conceptually connected is 

shown in the next section, where the core dynamic hypothesis of this model 

is sketched. 

4.1.2 Dynamic hypothesis 

As mentioned in section 2.4, various studies based on SD models have 

examined the market uptake of new car technologies. This thesis attempts  

to demarcate from them by highlighting the following dynamic hypothesis, 

implemented in the SD model. Whereas positive signs in causal links  

(arrows) denote positive polarity, negative signs indicate negative polarity. 

Whereas the letter R denotes a reinforcing (positive) feedback loop, B  

means balancing (negative) feedback (see chapter 5 in Sterman (2000)). For 
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example, the higher the EV battery price, the lower the EV sales, and the 

higher the EV sales, the lower the EV battery price (at least at the current 

stage of development, where cost reductions are dependent on the volumes of 

batteries manufactured). This circularity, ceteris paribus, is captured by a 

reinforcing feedback loop R. 

 

Figure 4.3: Dynamic hypothesis | Source: Own work using Vensim® 

Hence this dynamic hypothesis seeks to capture the basic feedback loop 

between quantity and price as well as additional feedback processes. In 

particular, it shows the mutual causality between the number of electric cars 

sold and the price of the battery (at present, the main cost component in 

BEVs). As opposed to the available studies, the variable ‘EV sales’ is mod-

elled jointly for China, France, Germany, India, Japan and the US. To the 

best knowledge of the author of this thesis, this feedback process had not 

been modelled by explicitly considering the main EV markets until now. 



4.1  Overview 

79 

4.1.3 Stages in model building  

For each of the methods applied in this work, there are standard descriptions 

of the modelling process (i.e. stages or phases in model building). For exam-

ple, see Patterson (2000) for dynamic econometrics and Sterman (2000) for 

SD. Although the exposition of the modelling process is sequential, in reality 

it is iterative. In addition, this modelling exercise requires a description of the 

method linkage. 

 

Figure 4.4: Information exchange between sub-models | Source: Own work 

Firstly, assumptions concerning population, GDP and crude oil price are 

adopted. These assumptions are maintained throughout the modelling exer-

cise. Then the SD model is used to generate the assumption of the gasoline 

fuel price per country. This information may be used to feed the econometric 

sub-model. The output of the econometric sub-model (i.e. car ownership)  

is then fed into the SD model. The stylised iterative process is shown in 

Figure 4.4. 

Following section 3.5, the model connection, thereby harmonising both 

methods, is illustrated by the feedback loop shown in Figure 4.5. Given the 

divergence in values between the econometric aggregate total car stock and 

the simulated (SD) aggregate car stock, primacy is given to the former. 

Hence the econometric projections are re-interpreted as desired values. Then, 

a correction is forced onto the SD sub-model, which attempts to replicate the 

dynamic behaviour of the econometric projection. In essence, this reflects a 

SD

sub-model

Econometric

sub-model

Population / GDP / Oil price 
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stock management problem (see chapter 17 in Sterman (2000)). As a result of 

the negative feedback and the presence of time delays, there is the risk that 

the system displays oscillating behaviour. To avoid that, the appropriate 

decision rule must be found (see sections 4.2.9.3 and 5.2.2). 

 

Figure 4.5: The ‘market dynamics’ feedback loop | Source: Own work using Vensim® 

4.2 Assumptions 

This section describes the modeller’s assumptions, namely equations and 

numerical values. The assumptions listed in each sub-section relate to the 

most important variables of the model (see also appendices I and II). The 

simplifications described in the next sections are motivated by the purpose of 

the model and the need to keep assumptions at a manageable level. Some of 

the strongest assumptions are, if not fully relaxed, at least tested in chapter 5. 

4.2.1 Population 

Population can be differentiated by gender and age and this could be captured 

by a complex ageing stock-and-flow structure that models birth, mortality 

and net migration rates. In addition, data on the proportion of the population 

that is unemployed and holds a driving license might be exploited. Population 

is simplified in this model by considering only total population.  
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Figure 4.6: Population: data and projections  

Source: Data (1950-2015) and projections (2016-2030) from UN (2016) 

Figure 4.6 shows total population in each of the six countries analysed, based 

on historical data (data or d) (solid lines) and projections (proj. or p) (dotted 

lines) from UN (2016). The values for the projections are taken from the 

scenario termed ‘medium fertility variant’. France, Germany and Japan are 

on the right-axis. China and India are the two most populous countries in the 

world. They accounted for ca. 37% of the world population in 2015. 

Together, the six countries analysed accounted for ca. 45% of world 

population. In the same year, the total population of France and Germany 

represented ca. 28% of the total EU28 population. For these two countries, a 

few historical values slightly differ from those reported by Eurostat (2016). 

4.2.2 Gross domestic product 

An indication of economic wealth for each country, captured by the size of 

the economy as measured by the variable gross domestic product (GDP), is 

needed. In the model, this is expressed in per capita, nominal and real terms.  
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Figure 4.7 shows country-specific historical data and assumed future values 

for the real GDP change rate, in these cases real GDP growth, expressed as 

percentage per year. The base year, for this and the rest of real variables, is 

2005 for Japan, 2009 for the US, 2011 for India and 2010 for the rest. The 

historical data and part of the projected values (2016-2021) are from IMF 

(2016). For the period 2022-2030, absence of information led the author to 

apply his own assumption, namely a martingale, where the best projection of 

a variable is its antecedent outcome (Hendry, 1995). For many economic time 

series, this type of naïve model (Simon, 1959) provides satisfactory results 

(Hyndman and Athanasopoulos, 2012). 

 

Figure 4.7:  Real GDP change rate: data and projections 

Source: Data (1980-2015) and projections (2016-2021) from IMF (2016) and  

own assumptions (2022-2030) 

Based on the assumed future values from the previous figure and knowledge 

of initial values of real GDP [country currency], the behaviour over time of 

real GDP in each country currency (abbreviated as ‘currency’ in the equa-

tions) can be calculated. Recall from the white arrows in Figure 4.4 that these 

assumptions affect both the econometric and SD sub-models. The actual 
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calculations to derive real GDP are different (see Eq. 4.1 for the econometric 

sub-model and Eq. 4.2 for the SD sub-model). 

𝐺𝐷𝑃ℎ,𝑡+1
𝑟𝑒𝑎𝑙          =    

𝐺𝐷𝑃 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒ℎ,𝑡+1
𝑟𝑒𝑎𝑙

100
∗  𝐺𝐷𝑃ℎ,𝑡

𝑟𝑒𝑎𝑙 + 𝐺𝐷𝑃ℎ,𝑡
𝑟𝑒𝑎𝑙   (4.1) 

Adopting a stock-and-flow structure in the SD sub-model, the assumptions of 

fractional rate of change, real GDP change rate [year-1] (Figure 4.7), and the 

initial value of the stock variable real GDP [country currency] are used to 

determine the inflow variable real GDP rate [country currency/year].  

𝐺𝐷𝑃ℎ
𝑟𝑒𝑎𝑙(𝑡) = ∫ [(

𝐺𝐷𝑃 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒ℎ
𝑟𝑒𝑎𝑙

100
∗ 𝐺𝐷𝑃ℎ

𝑟𝑒𝑎𝑙)(𝑡)] 𝑑𝑡 + 𝐺𝐷𝑃ℎ
𝑟𝑒𝑎𝑙(𝑡0)

𝑡

𝑡0
 (4.2) 

[currency]                   [year-1]           [currency]            [currency]  

As a result of the different treatment each method gives to time, there is a 

discrepancy in the calculated values, unimportant for the modelling purpose. 

The results are shown, based on the SD values, in Figure 4.8. 

 

Figure 4.8: Real GDP: data and projections 

Source: Data (1980-2015) and projections (2016-2021) from IMF (2016)  

and own assumptions (2022-2030) 
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These projections deliver an optimistic picture: no economic crisis is in sight 

during the model time horizon. The assumed overall trend shows economic 

growth. Ecological economics is the only school mentioned in section 3.1.3 

with proponents of zero economic growth (i.e. steady-state economy; see 

Daly (1991)) or de-growth. No attempt has been made in this work at analys-

ing the financial system. These projections are pragmatically adopted to 

proceed with the modelling exercise. In addition to considering economic 

indicators in real terms, such as 𝐺𝐷𝑃ℎ,𝑡
𝑟𝑒𝑎𝑙  [country currency], as needed for 

the econometric sub-model, it is of interest for the SD sub-model to work 

with variables in nominal as well as in dollar terms (i.e. 𝐺𝐷𝑃ℎ,𝑡
𝑛𝑜𝑚 [dollar]).  

4.2.3 Price level and exchange rates 

Given the purpose of the model, the target model user is supposed to under-

take policy analysis at the country level. In this modelling exercise, it is 

desirable to work with prices in dollar as well as in the currency units of the 

country where the economic policy is examined, both in nominal and real 

terms. The latter is done by considering the price level. The concept of 

purchasing power parity (PPP) is not applied. If country comparisons are 

needed, e.g. in the context of panel data econometric estimation, the consid-

eration of PPP values becomes important. This is not the case in this work. 

With regards to the price level, two common measures are the GDP deflator 

and the consumer price index (CPI), which often move closely (Blanchard, 

2008). The assumptions concerning the price level, measured as annual 

inflation using the GDP deflator (abbreviated GDP def) [%/year] are shown 

in Figure 4.9. Using values from, the author calculated the assumed price 

level following Eq. 4.3. 

𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛ℎ,𝑡 = {
(

(𝐺𝐷𝑃 𝑑𝑒𝑓ℎ,𝑡+1−𝐺𝐷𝑃 𝑑𝑒𝑓ℎ,𝑡)

𝐺𝐷𝑃 𝑑𝑒𝑓ℎ,𝑡
) ∗ 100;  𝑡 < 2021

𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛ℎ,2020                                             ;  𝑡 ≥ 2021
  (4.3) 
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Adopting these assumptions for the future price level, the implications for the 

GDP deflator [index] for each country are derived using the same type of 

formulae as in Eq. 8 and 9 for respectively the econometric and the SD part. 

The results, this time based on the dataset used for the econometric sub-

model, are shown in Figure 4.10.  

𝐺𝐷𝑃 𝑑𝑒𝑓ℎ,𝑡 =
𝑝𝑟𝑖𝑐𝑒ℎ,𝑡

𝑛𝑜𝑚

𝑝𝑟𝑖𝑐𝑒ℎ,𝑡
𝑟𝑒𝑎𝑙                                                        ∀ℎ, 𝑡 (4.4) 

Note that the GDP deflator reflects the assumption shown in Eq. 4.4 (see 

Blanchard (2008)). With this information, prices can thus be translated from 

real into nominal terms using Eq. 4.5. 

𝑝𝑟𝑖𝑐𝑒ℎ,𝑡
𝑛𝑜𝑚 = 𝑝𝑟𝑖𝑐𝑒ℎ,𝑡

𝑟𝑒𝑎𝑙 ∗ 𝐺𝐷𝑃 𝑑𝑒𝑓ℎ,𝑡                                   ∀ℎ, 𝑡 (4.5) 

 

Figure 4.9:  Price level: data and projections 

Source: Own calculation (1980-2021) using IMF (2016) and own assumptions 

(2022-2030) 
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US dollars [$] (see section 4.2.5), for which no adjustment is necessary if we 

are dealing only with the US market. However, for non-US countries the 

selection of the appropriate currency is required. This means that for China, 

France and Germany, India and Japan we are interested in expressing the 

relevant variables in their own currencies, respectively in yuan (renminbi) 

[¥], euro [€], rupee [₹] and yen [¥].  

 

Figure 4.10: GDP deflator: data and projections 

Source: Own calculation (1980-2021) using IMF (2016) and own assumptions 

(2022-2030) 

 

Figure 4.11: Exchange rates: data and projections 

Source: Data (2000-2015) from WB (2016) and own assumptions (2016-2030) 
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In the model, there are two units used to denote currency: dollar and country 

currency. In the process of translating prices from dollars to other country 

currencies, an explicit consideration of the exchange rate is needed, for such 

a rate reflects the country price per unit of foreign currency (Eichengreen, 

2008). The assumptions concerning the official nominal exchange rates 

(𝑒𝑥𝑟ℎ,𝑡
𝑛𝑜𝑚), needed only for the SD sub-model, are shown in Figure 4.11. 

As can be seen, stability in exchange rates is assumed. Moreover, it is implic-

itly assumed that France and Germany continue to be part of the monetary 

union. Successful model-based forecasts of exchange rates in a floating 

system have not been generated yet (Wray, 2015b). The assumed exchange 

rates shall be used to translate the oil price into country currencies. 

4.2.4 Income per capita 

GDP per capita is used as a proxy for disposable income per capita. The 

examination of income distribution and its impact on car ownership is desira-

ble but beyond the scope of this work. Instead, the simplifying assumption of 

the average income per capita is adopted. 

 

Figure 4.12: Nominal income per capita: data and projections 

Source: Own calculation (2000-2021) using IMF (2016), WB (2016) and  

own assumptions (2022-2030) using UN ( 2016) 
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Based on the assumed values of real GDP, GDP deflator, exchange rates and 

population shown in the previous sections, the variable GDP per capita can 

be derived and expressed in real and nominal terms. Figure 4.12 shows 

nominal income per capita in dollars. Figure 4.13 shows real income per 

capita, expressed in relative terms taking the year 2000 as reference.  

 

Figure 4.13: Real income per capita, indexed: data and projections 

Source: Own assumptions based on IMF ( 2016) and WB ( 2016) 

4.2.5 Conventional fuel prices I: crude oil prices 

By conventional fuel it is meant the type of oil-based fuel that powers con-

ventional cars, namely gasoline and diesel fuels. By conventional cars it is 

meant gasoline (G) and diesel (D) cars. The fuel price refers to the retail or 

end-user price that can be seen by drivers at the pump or fuel dispenser 

located in a refuelling station. The modelled fuel price consists of: (i) a tax 

part and (ii) the rest (i.e. non-tax). The tax part is usually expressed in  

the same unit of account of the retail price (i.e. [country currency/litre]). In 

contrast, the main component of the non-tax part is defined by the interna-

tional oil market and is expressed in dollars per barrel of oil [dollar/bbl]. 

Calculations are needed to bring these components to a consistent unit of 

measurement (e.g. country currency/litre in Eq. 4.6, which shows the exam-

ple for diesel).  
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The tax part is described in section 4.2.6, the terms 𝑜𝑖𝑙ℎ,𝑡
𝑛𝑜𝑚 and 휈ℎ,𝑡

𝑛𝑜𝑚 are 

examined in this section. Whereas 𝑜𝑖𝑙ℎ,𝑡
𝑛𝑜𝑚  refers to the nominal price of crude 

oil; 휈ℎ,𝑡
𝑛𝑜𝑚 denotes other costs, such us transport, refining, retailing (including 

marketing) and profit margins. 

𝑑𝑖𝑒𝑠𝑒𝑙ℎ,𝑡
𝑛𝑜𝑚 =   𝑜𝑖𝑙ℎ,𝑡

𝑛𝑜𝑚  +  휈ℎ,𝑡
𝑛𝑜𝑚   +  𝜏ℎ,𝑡

𝑛𝑜𝑚  +  𝑉𝐴𝑇ℎ,𝑡
𝑛𝑜𝑚         ∀ℎ, 𝑡 (4.6) 

    

              non-tax                           tax    

Figure 4.14 shows the historical data for 𝑜𝑖𝑙𝑡
𝑛𝑜𝑚, expressed in terms of 

dollar/bbl. The barrel of reference is Brent. It also depicts three scenarios for 

future prices. These refer to the scenarios termed ‘low oil price’, ‘reference 

case’ and ‘high oil price’ by EIA (2016a). 

 

Figure 4.14: Oil price: data and scenarios 

Source: Data (1970-2015) from (BP, 2016) and scenarios (2016-2030)  

from (EIA, 2016a) 
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country currency/litre. To achieve unit consistency, the following formula-

tions (Eq. 4.7-4.8) are implemented in the SD sub-model. 

𝑜𝑖𝑙ℎ,𝑡
𝑛𝑜𝑚,𝑑𝑖𝑒𝑠𝑒𝑙     =         𝑒𝑥𝑟ℎ,𝑡

𝑛𝑜𝑚        ∗          
𝑜𝑖𝑙ℎ,𝑡

𝑛𝑜𝑚 

(159∗(1+𝜃ℎ,𝑡
𝑑𝑖𝑒𝑠𝑒𝑙))

   ∀ℎ, 𝑡  (4.7) 

[currency/litre]   [currency/dollar]    [(dollar/bbl)/((litre/bbl)*dmnl)] 

 

𝑝𝑟𝑖𝑐𝑒ℎ,𝑡
𝑛𝑜𝑚 = 𝑝𝑟𝑖𝑐𝑒ℎ,𝑡

𝑟𝑒𝑎𝑙 ∗ 𝐺𝐷𝑃 𝑑𝑒𝑓ℎ,𝑡                                               ∀ℎ, 𝑡 (4.8) 

One barrel is assumed to contain 159 litres of oil. The assumed constant 

average refinery oil processing gain is determined by 휃, which reflects a 

value of 6%. As a reference, the 2000-2014 average for the US was 6.5% 

(DOE, 2016b). Again, 𝑒𝑥𝑟 denotes the official exchange rate. 

 

Figure 4.15: Overview of the sub-module ‘Energy prices’ | Source: Own work using Vensim® 

4.2.6 Conventional fuel prices II: energy taxes 

The tax part of the conventional fuel price can be split into: the value added 

tax (VAT) and the non-VAT concept. The assumptions concerning VAT 

from section 4.3.2 apply here. In this field, the non-VAT concept is common-
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ly referred to as energy tax (e.g. the taxe intérieure de consommation sur les 

produits énergétiques (TICPE) (former taxe intérieure de consommation sur 

les produits pétroliers (TIPP)) in France and the Energiesteuer (former 

Mineralölsteuer in Germany). The International Energy Agency (IEA) names 

the non-VAT part of the tax excise tax (IEA, 2016b). In this work, the varia-

bles fuel tax gasoline, fuel tax diesel and electricity tax are chosen to repre-

sent non-VAT taxation of respectively gasoline, diesel and electricity. The 

introduction of an eco tax for conventional fuel, in addition to the fuel tax, 

has been suggested in policy debates. Although this may be motivated by 

public acceptability issues (the idea of ‘framing’ in behavioural economics 

comes into mind), the introduction of an eco tax can, from a modelling 

perspective, simply be represented in the model as higher values of the 

energy tax.  

The assumptions concerning the tax part of energy prices can be amended by 

the policy inputs examined in sections 4.3.2 and 4.3.3. 

Below Figures 4.16-19 show the historical and simulated price evolution of 

conventional fuels, expressed in nominal dollars, in China, India, Japan and 

the US. Historical data, available on a bi-annual basis, is taken from GIZ 

(2016). For France and Germany, annual data is available from IEA (2016b). 

Because of the assumptions concerning the exchange rates, the values of each 

source for the European countries vary slightly. Figures 4.20-21 show the 

historical and simulated price evolution of conventional fuels, expressed in 

nominal euros, in France and Germany. 

For the period 2016-2030, the values of the reference scenario in Figure 4.14 

are used to calculate the conventional fuel prices in each country. This can be 

appreciated in the French and German series. 
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Figure 4.16:  Fuel prices in China: data vs. simulations 

Source: Data (2000-2014) from GIZ (2016) and own simulations (2000-2015) 

based on BP (2016) and IEA (2016b) 

 

Figure 4.17:  Fuel prices in India: data vs. simulations 

Source: Data (2000-2014) from GIZ (2016) and own simulations (2000-2015) 

based on BP (2016) and IEA (2016b) 

0.00

0.50

1.00

1.50

2.00

2.50

[n
o

m
in

a
l 
d

o
ll

a
r
 /

 l
it

r
e
]

gasoline (data)

diesel (data)

gasoline (RS)

diesel (RS)

0.00

0.50

1.00

1.50

2.00

2.50

[n
o

m
in

a
l 
d

o
ll

a
r
 /

 l
it

r
e
]

gasoline (data)

diesel (data)

gasoline (RS)

diesel (RS)



4.2  Assumptions 

93 

 

Figure 4.18:  Fuel prices in Japan: data vs. simulations 

Source: Data (2000-2014) from GIZ (2016) and own simulations (2000-2015) 

based on BP (2016) and IEA (2016b) 

 

Figure 4.19:  Fuel prices in US: data vs. simulations 

Source: Data (2000-2014) from GIZ (2016) and own simulations (2000-2015) 

based on BP (2016) and IEA (2016b) 
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Figure 4.20:  Fuel prices in France: data and scenarios 

Source: Data (2000-2015) from IEA (2016b) and own simulations (2016-2030)  

using Fig. 4.14 

 

Figure 4.21:  Fuel prices in Germany: data and scenarios 

Source: Data (2000-2015) from IEA (2016b) and own simulations (2016-2030)  

using Fig. 4.14 
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4.2.7 Alternative fuel and electricity prices 

In addition to the two types of conventional fuels mentioned in the previous 

sections, two types of alternative fuels are considered in this work: (i) liquids 

such as ethanol 85 (E85) and autogas (also known as propane in the US); and 

(ii) gases such as CNG and hydrogen (H2). Finally, electricity completes the 

set of seven energy sources incorporated in the model. Three types of energy 

units are appropriate: litre, kilogramme [kg] and kilowatt-hour [kWh]. They 

are used to express the price of alternative fuels and electricity (see Figure 

4.22). Taken collectively, conventional fuel, alternative fuel and electricity 

prices reflect the modelled energy prices. These assumptions are part of the 

Energy Prices sub-module of the Energy module. The prices of electricity, 

conventional and alternative fuels influence the choice of powertrain by the 

market. For EV drivers, the electricity price is thought to be the end-user 

price displayed in a recharging column or smart meter and billed by the 

electric utility. 

E85 is one main type of biofuel (see Magdoff (2008) for others). Its inclusion 

in the model is motivated by recent policy discussions concerning the role of 

biofuels along two lines: (i) as a source of competition between food and 

vehicle fuel (Hill et al., 2006) (Magdoff and Foster, 2011); and (ii) as an 

instrument to mitigate emissions (Scharlemann and Laurance, 2008) (see 

section 4.2.13).  

The assumed fuel price is used to estimate travel demand tentatively. For the 

econometric sub-model, considered next, the assumed fuel price (again 

gasoline only, for simplicity) is used as a potential explanatory variable for 

France, Germany and the US. For the rest, given the absence of reliable 

historical data, the assumed oil price is used as a proxy.  
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Figure 4.22:  Electricity prices for households: data and simulations 

Source: Data (2000-2015) from IEA (2016b), projection for the US from EIA 

(2016a) and own simulations (2016-2030) 

4.2.8 Car ownership 

Notwithstanding that forecasting is not the purpose of the model (recall 

section 3.5), it is desirable to have acceptable forecasts of key variables. It is 

argued that car ownership is, in this regard, the most crucial variable of the 

modelling exercise. It is common in the literature to measure car ownership 

(𝑜𝑤𝑛) as the ratio between aggregate total car stock (𝑐𝑎𝑟) and population 

(𝑝𝑜𝑝), typically expressed in car ownership per capita [car/person] (often 

scaled to ownership per 1,000 people [car/thousand people]). The convention 

is followed here. For the US, this variable excludes minivans, pick-up trucks 

and SUVs. As a result, no conclusions should be drawn on the number of 

passenger vehicles in this country. The reason for this exclusion is because 

these three types of vehicles have higher fuel consumption than passenger 

cars, which requires significant additional modelling efforts. The Japanese kei 

cars represent another example, at the opposite extreme. 

0.00

0.10

0.20

0.30

0.40

[c
o

u
n

tr
y

 c
u

r
r
e
n

c
y

 /
 k

W
h

]

FR (data)

FR (RS)

DE (data)

DE (RS)

US (data)

US (projection)



4.2  Assumptions 

97 

Economic theory provides clues about the multiple factors that determine the 

demand for cars (see e.g. Gómez Vilchez (2016a)). The information set 

available to the author at the time of writing conditions the econometric 

exercise. Access to reliable data for most of the a priori variables of interest is 

pending. 

Previous econometric research on car ownership has been surveyed by the 

author elsewhere (see section 2 in Gómez Vilchez (2016a)). Worth mention-

ing is the GETS modelling approach adopted by Romilly et al. (1998) and 

Romilly et al. (2001). For the UK, Romilly et al. (1998) found that only three 

of the eight explanatory variables they examined were statistically signifi-

cant: real personal disposable income per capita, real motoring cost index, 

real bus fare index. Here, the real fuel price (the real oil price, given lack of 

data, for CN, IN, JP) is used as a proxy for the real motoring cost. They also 

found a co-integrating relationship between car ownership per capita and the 

three explanatory variables using a sample of 42 observations.  

ARIMA modelling typically requires a minimum of 50, and preferably 100, 

observations (Box and Jenkins, 1976). Unit root and co-integration testing is 

also subject to small-sample bias. The available series of y contain: 35 (CN), 

55 (FR), 46 (DE), 34 (IN), 56 (JP), 55 (US) historical observations. This is, 

however, the longest series, and other variables are characterised by T = 35. 

As a result, this piece of applied work is not fully unproblematic (see section 

7.2). Since this work proceeds with a small sample, it is therefore pertinent to 

ask whether an appropriate approximation of the underlying data-generation 

process (DGP) of the analysed series is possible with the available infor-

mation. 

This section focuses on the econometric results of modelling car ownership. 

In what follows, six single-equation models are introduced. Along the way, 

brief detours to describe specific modelling issues in each sub-section are 

offered. As part of the econometric exercise, some pre-testing has been 

carried out. The presentation of the outcomes of these tests is postponed to 

section 5.2.1, devoted to testing. The interested reader may prefer to read that 

section now, before checking the estimated equations.  
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4.2.8.1 Car ownership in China 

In addition to analysing the levels of the series, it is desirable to inspect 

changes and relative changes after applying suitable transformations 

(Kirchgässner et al., 2012). A common one is the economic approximation 

illustrated by Brandt and Williams (2007). First differencing helps remove 

the trend and the log transformation can stabilise the variance (Lütkepohl and 

Krätzig, 2004). In addition, the latter can be usefully exploited in the pres-

ence of an exact unit root and cointegration (Banerjee et al., 1993). 

The time plots of 𝑜𝑤𝑛 and ∆𝑜𝑤𝑛 as well as their counterparts expressed in 

natural logarithms (henceforth, for short logs) are shown for CN in Figure 4.23.  

 

 

Figure 4.23: Key time plots for China 

Source: Own work using EViews® (see appendix I for dataset sources) 

  



4.2  Assumptions 

99 

The visual conclusion is that the variable of interest is nonstationary. Nonsta-

tionarity may be investigated by means of fractionally integrated processes, 

discrete shifts in the time trend (Hamilton, 1994) or, as in this work, unit root 

tests. In the next sections, this property of the series is examined more care-

fully (formal tests are illustrated in section 5.2.1).  

The value of �̂�𝑘=1 for the natural log of 𝑜𝑤𝑛 (𝑙𝑜𝑤𝑛) is 0.913. The correlo-

gram of 𝑙𝑜𝑤𝑛, which provides information on the sample autocorrelation 

(AC) and sample partial autocorrelation (PAC), is shown in Figure 4.24. 

At this point, two possible modelling paths emerge: ARIMA or ADL model-

ling (recall section 3.2.2.1).  

From the perspective of this work, one unsatisfactory feature of ARIMA 

models is that they are statistical, not economic models (Vogelvang, 2004). 

Economic theory suggests a relationship between consumer durables and 

income, which in the literature appear to have unit roots. For this reason, this 

work attempts to embrace the ADL alternative. Notwithstanding, it is still 

desirable to estimate ARIMA models so that model comparisons can be made 

and their respective forecasts evaluated (see section 5.2.2). A final remark 

before embarking on model specification and estimation: EViews® has a 

feature that enables automatic selection of ARIMA and ADL models; by 

applying it, models with lower forecasting errors than the ones reported in 

this thesis may be found.  

As suggested by economic theory, the variable real income per capita 

(𝑟𝑖𝑛𝑐_𝑐𝑜𝑢𝑛𝑡𝑟𝑦) is used in the econometric sub-model. For this, the assump-

tions highlighted in section 4.2.4 are adopted. Figure 4.25 shows a time plot 

of this series in logs. 
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Figure 4.24: Correlogram of ∆𝑙𝑜𝑤𝑛 for China | Source: Own work using EViews® 

 

Figure 4.25: Car ownership and real income in China 

Source: Own work using EViews® (see appendix I for dataset sources) 

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.093 -0.093 0.3195 0.572

2 -0.015 -0.024 0.3284 0.849

3 0.171 0.169 1.4880 0.685

4 0.043 0.077 1.5635 0.815

5 -0.144 -0.134 2.4409 0.785

6 0.045 -0.011 2.5310 0.865

7 -0.144 -0.169 3.4689 0.839

8 -0.052 -0.039 3.5956 0.892

9 -0.062 -0.064 3.7812 0.925

10 0.007 0.031 3.7836 0.957

11 0.042 0.093 3.8782 0.973

12 -0.081 -0.089 4.2412 0.979

13 -0.043 -0.073 4.3505 0.987

14 0.136 0.065 5.4789 0.978

15 0.101 0.151 6.1316 0.977

16 -0.078 -0.031 6.5486 0.981
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The second modelling path entails the specification and estimation of ADL 

equations. Firstly, a static linear regression or ADL(0,0) is specified in logs 

as in Eq. 4.9.  

𝑙𝑜𝑤𝑛𝑡 = 𝛽0 + 𝛽1𝑙𝑟𝑖𝑛𝑐𝑡 + 휀𝑡  (4.9) 

The results of estimating such a relationship for China are shown in  

Table 4.3. This output hints at problematic issues that shall be examined in 

this section and in section 5.2. Suffice to state here that the fact that 𝑅2 is 

greater than the Durbin-Watson (DW) statistic is a signal that the regression 

may be spurious (Granger and Newbold, 1974). Using time series to estimate 

a static regression results in a model affected by residual autocorrelation 

because it omits dynamics (Hendry, 1995). To avoid this, two main steps can 

be followed: (i) specify and estimate the general, unrestricted ADL model; 

and (ii) test restrictions (Charemza and Deadman, 1997). 

Table 4.3: First static regression on Chinese 𝑙𝑜𝑤𝑛 

 

Source: Own work using EViews® 

What about including additional explanatory variables? An available candi-

date is the log of the real oil price (𝑙𝑟𝑜𝑖𝑙). The effect of adding this variable to 

the previous regression is illustrated in Table 4.4. 

Dependent Variable: LOWN_CN

Method: Least Squares

Sample: 1980 2010

Included observations: 31

Variable Coefficient Std. Error t-Statistic Prob.  

C -22.09397 0.214207 -103.1432 0.0000

LRINC_CN 1.822443 0.023732 76.79193 0.0000

R-squared 0.995106     Mean dependent var -5.703227

Adjusted R-squared 0.994938     S.D. dependent var 1.413748

S.E. of regression 0.100589     Akaike info criterion -1.693200

Sum squared resid 0.293428     Schwarz criterion -1.600685

Log likelihood 28.24461     Hannan-Quinn criter. -1.663043

F-statistic 5897.001     Durbin-Watson stat 0.988593

Prob(F-statistic) 0.000000
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In addition to the problems pointed out for the results shown in Table 4.3, the 

estimated parameter for 𝑙𝑟𝑜𝑖𝑙 in Table 4.4 has a sign that is contrary to 

theoretical expectations. 

Table 4.4: Second static regression on Chinese 𝑙𝑜𝑤𝑛 

 

Source: Own work using EViews® 

To add dynamism to the regression, a lagged dependent variable 𝑙𝑜𝑤𝑛𝑡−1  

(in EViews® 𝑙𝑜𝑤𝑛(−1)) is now included (see Eq. 4.10). The estimated 

output is shown in Table 4.5. 

𝑙𝑜𝑤𝑛𝑡 = 𝛽0 + 𝛽1𝑙𝑜𝑤𝑛𝑡−1 + 𝛽2𝑙𝑟𝑖𝑛𝑐𝑡 + 휀𝑡  (4.10) 

Though appropriate for ARIMA modelling, the Q-stat should not be used for 

residuals of a stochastic difference equation (Harvey, 1990). To test for serial 

correlation, the Breusch-Godfrey Lagrange multiplier serial correlation 

LMSC test, or BG(𝑝) test, is used (Breusch, 1978) (Godfrey, 1978). The null 

hypothesis is that there is no autocorrelation up to the predefined lag order 𝑝. 

For Eq. 4.10, a value of 𝑝 = 2 is selected, that is, testing for second-order 

autocorrelation. The following decision rule applies: if prob-values are close 

to zero, then reject the null; otherwise, do not reject. In this case, the BG-test 

Dependent Variable: LOWN_CN

Method: Least Squares

Sample: 1980 2010

Included observations: 31

Variable Coefficient Std. Error t-Statistic Prob.  

C -22.52347 0.298744 -75.39382 0.0000

LRINC_CN 1.841796 0.024673 74.64784 0.0000

LROIL_CN 0.062482 0.031709 1.970451 0.0587

R-squared 0.995702     Mean dependent var -5.703227

Adjusted R-squared 0.995395     S.D. dependent var 1.413748

S.E. of regression 0.095934     Akaike info criterion -1.758543

Sum squared resid 0.257694     Schwarz criterion -1.619770

Log likelihood 30.25741     Hannan-Quinn criter. -1.713306

F-statistic 3243.531     Durbin-Watson stat 1.115349

Prob(F-statistic) 0.000000



4.2  Assumptions 

103 

stat (Obs*R-squared) is 2.03 and its associated probability value (Prob), 

based on 𝜒2(𝑝), is 0.36 or 36%. Hence, do not reject the null. 

Table 4.5: Dynamic regression on Chinese 𝑙𝑜𝑤𝑛 

 

Source: Own work using EViews® 

A normality test is the Jarque-Bera (JB), which tests the null that the residu-

als are normally distributed (see EViews (2016) for details). Figure 4.26 

shows the results of this test for Eq. 4.10. Hence the normality assumption is 

not rejected. 

 

Figure 4.26: Jarque-Bera test on Chinese dynamic regression | Source: Own work using EViews® 

Dependent Variable: LOG(OWN_CN)

Method: Least Squares

Sample (adjusted): 1981 2010

Included observations: 30 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

C -5.329780 3.210324 -1.660200 0.1084

LOWN_CN(-1) 0.763419 0.145966 5.230133 0.0000

LRINC_CN 0.456193 0.261940 1.741591 0.0930

R-squared 0.997342     Mean dependent var -5.628924

Adjusted R-squared 0.997145     S.D. dependent var 1.374974

S.E. of regression 0.073469     Akaike info criterion -2.289257

Sum squared resid 0.145739     Schwarz criterion -2.149137

Log likelihood 37.33886     Hannan-Quinn criter. -2.244432

F-statistic 5065.108     Durbin-Watson stat 2.183791

Prob(F-statistic) 0.000000
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When the equation includes lagged dependent variables, dynamic simulation 

is used to derive forecasts (see EViews (2016) for details). Based on 

Eq. 4.10, a forecast, together with standard error (S.E.) bands, is generated 

(see Figure 4.27). The quality of this projection is assessed in section 5.2.2. 

 

Figure 4.27: Projections of car ownership in China | Source: Own work using EViews® 

The historical data and assumed future values for population and GPD per 

capita were shown in, respectively, section 4.2.1 and 4.2.4. In addition, the 

assumptions concerning crude oil and fuel prices were mentioned in sections 

4.2.5 and 4.2.6. 

4.2.8.2 Car ownership in France 

Figure 4.28 shows 𝑜𝑤𝑛, 𝑙𝑜𝑤𝑛, ∆𝑜𝑤𝑛 and ∆𝑙𝑜𝑤𝑛 for the French series.  

ARIMA models are a powerful way of representing the past behaviour of a 

series under the assumption that it is, or in some cases can be made, station-

ary (i.e. 𝑦 ~ 𝐼(0)). This means that the series’ distribution is independent 

from time (Stock and Watson, 1988) and “the process remains in equilibrium 

about a constant mean level” (Box and Jenkins, 1976: 7).  

The goal is to find an ARIMA model of 𝑙𝑜𝑤𝑛 that shows no residual autocor-

relation and contain few p and q statistically significant terms. The choice  

of these terms is guided by the information shown in the correlograms  
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(Figures 4.29-4.30) (see Figure 1.7 in Box and Jenkins (1976) for their 

proposed stages in ARIMA model building).  

 

 

Figure 4.28: Key time plots for France 

Source: Own work using EViews® (see appendix I for dataset sources) 

For France, the value of �̂�𝑘=1 for 𝑙𝑜𝑤𝑛 is 0.918. The correlogram of ∆𝑙𝑜𝑤𝑛 

can be seen in Figure 4.29. This information can be used to inform initial 

model specifications. 



4  Model development 

106 

 

Figure 4.29: Correlogram of ∆𝑙𝑜𝑤𝑛 for France | Source: Own work using EViews® 

Because the SACF tappers off slowly and the probabilities (Prob) associated 

with the Q-statistic are zero, the hypothesis that this French series is ∆2𝑙𝑜𝑤𝑛 

may be conjectured. The correlogram in second differences is shown in 

Figure 4.30.  

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.854 0.854 41.640 0.000

2 0.771 0.152 76.208 0.000

3 0.675 -0.053 103.19 0.000

4 0.569 -0.101 122.77 0.000

5 0.486 0.004 137.35 0.000

6 0.412 0.010 148.07 0.000

7 0.359 0.043 156.38 0.000

8 0.317 0.024 163.00 0.000

9 0.272 -0.034 167.97 0.000

10 0.197 -0.158 170.65 0.000

11 0.189 0.164 173.16 0.000

12 0.174 0.069 175.34 0.000

13 0.133 -0.114 176.65 0.000

14 0.135 0.067 178.03 0.000

15 0.105 -0.071 178.88 0.000

16 0.125 0.149 180.12 0.000

17 0.066 -0.249 180.48 0.000

18 0.027 -0.021 180.54 0.000

19 -0.007 -0.009 180.54 0.000

20 -0.039 -0.015 180.68 0.000

21 -0.075 -0.019 181.20 0.000

22 -0.104 -0.006 182.23 0.000

23 -0.117 -0.030 183.56 0.000

24 -0.130 0.015 185.27 0.000
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Figure 4.30: Correlogram of ∆2𝑙𝑜𝑤𝑛 for France | Source: Own work using EViews® 

In the case of France, the analysis so far suggests that an 𝐴𝑅𝐼𝑀𝐴(𝑝, 2, 𝑞) 

model is appropriate. An ARIMA model is specified as in Eq. 4.11.  

∆2𝑙𝑜𝑤𝑛𝑡 = 𝛽0 + 휀𝑡 + 𝛽1휀𝑡−1  (4.11) 

Table 4.6 shows the corresponding estimates of the ARIMA(0,2,1) model. 

The estimator used to estimate the ARIMA model is maximum likelihood 

(ML) (see any of the cited econometric textbooks and EViews (2016) for 

details). The ARIMA model requires that the roots of the polynomial lie 

outside the unit circle (Charemza and Deadman, 1997).  

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.316 -0.316 5.5889 0.018

2 -0.104 -0.226 6.2072 0.045

3 0.169 0.067 7.8708 0.049

4 0.017 0.094 7.8871 0.096

5 -0.172 -0.112 9.6819 0.085

6 -0.061 -0.199 9.9136 0.128

7 0.087 -0.064 10.395 0.167

8 -0.149 -0.148 11.827 0.159

9 0.211 0.209 14.789 0.097

10 -0.075 0.023 15.174 0.126

11 0.062 0.090 15.443 0.163

12 0.024 -0.004 15.485 0.216

13 -0.015 -0.034 15.502 0.277

14 0.160 0.231 17.408 0.235

15 -0.340 -0.241 26.252 0.035

16 0.140 -0.003 27.796 0.033

17 0.031 0.019 27.874 0.046

18 -0.057 0.003 28.143 0.060

19 0.013 0.154 28.159 0.080

20 0.088 -0.000 28.840 0.091

21 -0.035 -0.074 28.949 0.115

22 0.020 0.074 28.986 0.145

23 0.083 -0.046 29.659 0.159

24 -0.138 0.093 31.571 0.138
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Table 4.6: ARIMA model for French 𝑙𝑜𝑤𝑛 

 

Source: Own work using EViews® 

A value of 0.38 is reported for the inverted MA roots, which meets the 

criterion that the inverted roots lie within the unit circle (Vogelvang, 2004) 

(see Figure 4.31). 

 

Figure 4.31: Roots of the French ARIMA(0,2,1) model | Source: Own work using EViews® 

Dependent Variable: D((LOG(OWN_FR)),2)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Sample: 1962 2010

Included observations: 49

Convergence achieved after 32 iterations

Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.  

C -0.001808 0.000946 -1.910971 0.0623

MA(1) -0.384128 0.172781 -2.223201 0.0312

SIGMASQ 0.000104 1.51E-05 6.864628 0.0000

R-squared 0.130083     Mean dependent var -0.001809

Adjusted R-squared 0.092260     S.D. dependent var 0.011040

S.E. of regression 0.010519     Akaike info criterion -6.208829

Sum squared resid 0.005089     Schwarz criterion -6.093003

Log likelihood 155.1163     Hannan-Quinn criter. -6.164885

F-statistic 3.439300     Durbin-Watson stat 1.985430

Prob(F-statistic) 0.040550

Inverted MA Roots       .38
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The Ljung-Box Q-statistics test specifies the null that there is no autocorrela-

tion at lag 𝑘. That is, the Q-stat values indicate whether the residuals are 

white noise up to order 𝑘 (see EViews (2016) for details). The correlogram of 

the residuals, which includes Q-stat, from Eq. 4.11 is shown in Figure 4.32. 

The null of white noise residuals up to order 16 cannot be rejected. 

 

Figure 4.32: Correlogram of the residuals for France | Source: Own work using EViews® 

Figure 4.33 shows the French 𝑙𝑟𝑖𝑛𝑐 and 𝑙𝑜𝑤𝑛 series. As indicated in section 

5.2.1, the possibility of a cointegration relationship between these two series 

is not formally investigated. 

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.002 -0.002 0.0001

2 -0.055 -0.055 0.1582 0.691

3 0.147 0.147 1.3350 0.513

4 -0.017 -0.021 1.3509 0.717

5 -0.226 -0.215 4.2442 0.374

6 -0.126 -0.158 5.1734 0.395

7 0.013 -0.003 5.1839 0.520

8 -0.083 -0.031 5.6069 0.586

9 0.196 0.251 8.0011 0.433

10 0.022 -0.030 8.0335 0.531

11 0.089 0.069 8.5576 0.575

12 0.080 -0.013 8.9900 0.623

13 0.034 0.025 9.0693 0.697

14 0.065 0.138 9.3744 0.744

15 -0.304 -0.298 16.182 0.302

16 0.034 0.077 16.267 0.365

17 0.018 0.025 16.292 0.433

18 -0.034 0.051 16.388 0.497

19 0.035 0.124 16.488 0.559

20 0.089 -0.094 17.167 0.579
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Figure 4.33: Car ownership and real income in France 

Source: Own work using EViews® (see appendix I for dataset sources) 

Using the estimated ARIMA(0,2,1) model, projections for the French car 

ownership series are computed (see Figure 4.34). 

 

Figure 4.34: Projections of car ownership in France | Source: Own work using EViews® 

4.2.8.3 Car ownership in Germany 

For Germany, the time plots of 𝑜𝑤𝑛, 𝑙𝑜𝑤𝑛, ∆𝑜𝑤𝑛 and ∆𝑙𝑜𝑤𝑛 are shown in 

Figure 4.35. For this series, the presence of a temporary change in level is 

obvious. The possibility of structural breaks is examined in section 5.2.1. 
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Figure 4.35: Key time plots for Germany 

Source: Own work using EViews® (see appendix I for dataset sources) 

A value of �̂�𝑘=1= 0.925 is obtained for 𝑙𝑜𝑤𝑛. Figure 4.36 shows the correlo-

gram of this series in first differences. Figure 4.37 illustrates the dynamic 

behaviour of 𝑙𝑜𝑤𝑛 and 𝑙𝑟𝑖𝑛𝑐. The effect of the recent economic crisis on 

income per capita is visible. 

The possibility of two breaks is included in the estimation process. For that, a 

dummy (dum) variable that takes the value of 1 from 1992-2006 is created.  
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Figure 4.36: Correlogram of ∆𝑙𝑜𝑤𝑛 for Germany | Source: Own work using EViews® 

 

Figure 4.37: Car ownership and real income in Germany 

Source: Own work using EViews® (see appendix I for dataset sources) 

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.137 0.137 0.8993 0.343

2 0.158 0.142 2.1322 0.344

3 0.109 0.074 2.7323 0.435

4 0.110 0.070 3.3594 0.500

5 0.162 0.123 4.7486 0.447

6 0.107 0.050 5.3660 0.498

7 0.105 0.043 5.9777 0.542

8 0.081 0.023 6.3510 0.608

9 0.117 0.064 7.1525 0.621

10 0.008 -0.060 7.1567 0.711

11 0.021 -0.031 7.1840 0.784

12 -0.002 -0.038 7.1844 0.845

13 0.048 0.026 7.3353 0.884

14 0.194 0.178 9.9001 0.769

15 -0.283 -0.365 15.546 0.413

16 0.071 0.120 15.912 0.459

17 -0.023 0.007 15.950 0.527

18 -0.068 -0.106 16.317 0.570

19 0.011 0.046 16.327 0.635

20 0.009 0.072 16.334 0.696



4.2  Assumptions 

113 

Table 4.7: Dynamic regression on German 𝑙𝑜𝑤𝑛 

 

Source: Own work using EViews® 

A dynamic model is specified following Eq. 4.12. The estimator used to 

estimate the ADL model is ordinary least squares (OLS) (see any of the cited 

econometric textbooks and EViews (2016) for details). The relevant output is 

shown in Table 4.7. 

𝑙𝑜𝑤𝑛𝑡 = 𝛽0 + 𝛽1𝑙𝑜𝑤𝑛𝑡−1 + 𝛽2𝑙𝑟𝑖𝑛𝑐𝑡−1 + 𝑑𝑢𝑚 + 휀𝑡  (4.12) 

The estimated model yields statistically significant parameters. Both the 

assumptions of normality and no serial correlation cannot be rejected. Projec-

tions of car ownership in Germany based on this model are made. The future 

values of this series are depicted in Figure 4.38. 

 

Figure 4.38: Projections of car ownership in Germany | Source: Own work using EViews® 

Dependent Variable: LOWN_DE

Method: Least Squares

Sample (adjusted): 1981 2010

Included observations: 30 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

C -8.000563 1.037753 -7.709504 0.0000

LOWN_DE(-1) 0.268687 0.079822 3.366093 0.0024

LRINC_DE(-1) 0.725367 0.095632 7.585004 0.0000

DUM 0.114996 0.012339 9.319944 0.0000

R-squared 0.992353     Mean dependent var -0.803207

Adjusted R-squared 0.991471     S.D. dependent var 0.210070

S.E. of regression 0.019401     Akaike info criterion -4.923455

Sum squared resid 0.009786     Schwarz criterion -4.736628

Log likelihood 77.85182     Hannan-Quinn criter. -4.863687

F-statistic 1124.709     Durbin-Watson stat 1.222879

Prob(F-statistic) 0.000000
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4.2.8.4 Car ownership in India 

Figure 4.39 shows the dynamic behaviour of 𝑜𝑤𝑛, 𝑙𝑜𝑤𝑛, ∆𝑜𝑤𝑛 and ∆𝑙𝑜𝑤𝑛 

for India. 

 

 

Figure 4.39: Key time plots for India 

Source: Own work using EViews® (see appendix I for dataset sources) 

Before continuing with the exposition of the estimated equations, a brief 

detour is appropriate. In empirical time-series econometric modelling, almost 

every type of single-equation model is captured by the autoregressive distrib-

uted-lag model ADL(1,1) (cf. Table 7.1 in Hendry (1995), which shows a 

general typology; compare with section 2 in Ajanovic et al. (2012), which 

focuses on its application to transport-related fuel demand estimation). 

Following Hendry (1995) and expressing Eq. 4.9 in logs: 

𝑦𝑡 = 𝛽1𝑥𝑡 + 𝛽2𝑦𝑡−𝑝 + 𝛽3𝑥𝑡−𝑞 + 휀𝑡   
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where 휀𝑡 is an uncorrelated error, an innovation in which normality and 

homoscedasticity are assumed. That is, 휀𝑡~𝑁𝐼𝐷(0, 𝜎2). From this general 

ADL(p,q) model, an ADL(1,1) can be derived. From such an ADL(1,1) 

model, several models can be empirically identified (see Hendry and Richard 

(1983) and Hendry et al. (1984)). Two models commonly used in economics, 

as a result of applying parameter restrictions, are shown in Figure 4.40. 

 

Figure 4.40: General ADL(1,1) and two specific models  

Source: Own interpretation of Hendry (1995)  

Using Monte Carlo simulation techniques, Hendry (1995) examines the 

goodness of fit of the standard error in nine models that arise from the gen-

eral ADL(1,1) model, identifying ‘growth-rate or differenced-data’, ‘partial 

adjustment’, ‘common factor’ (COMFAC) and ‘equilibrium correction’ 

models as the most desirable ones by this measure. In line with the discussion 

in section 3.2.1, some of these models are more consistent with economic 

theory than others.  

For the Indian series, the value of �̂�𝑘=1 for 𝑙𝑜𝑤𝑛 is 0.906. For ∆𝑙𝑜𝑤𝑛, the 

correlogram is shown in Figure 4.41.  

Figure 4.42 represents a time plot of 𝑙𝑜𝑤𝑛 and 𝑙𝑟𝑖𝑛𝑐. Both series appear to 

move in the same direction. 

A static regression that includes an explanatory variable other than real 

income per capita is specified according to Eq. 4.14. 

𝑙𝑜𝑤𝑛𝑡 = 𝛽0 + 𝛽1𝑙𝑟𝑖𝑛𝑐𝑡 + 𝛽2𝑙𝑟𝑜𝑖𝑙𝑡 + 휀𝑡       (4.14) 
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Figure 4.41: Correlogram of ∆𝑙𝑜𝑤𝑛 for India | Source: Own work using EViews® 

 

Figure 4.42: Car ownership and real income in India 

Source: Own work using EViews® (see appendix I for dataset sources) 

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.260 0.260 2.4328 0.119

2 0.264 0.210 5.0237 0.081

3 0.162 0.060 6.0386 0.110

4 -0.040 -0.157 6.1031 0.192

5 0.038 0.029 6.1613 0.291

6 -0.092 -0.079 6.5206 0.367

7 -0.061 -0.017 6.6877 0.462

8 -0.092 -0.061 7.0778 0.528

9 0.214 0.338 9.2897 0.411

10 0.148 0.080 10.385 0.407

11 0.035 -0.151 10.450 0.490

12 0.124 -0.013 11.292 0.504

13 0.048 0.099 11.426 0.575

14 -0.053 -0.155 11.594 0.639

15 0.027 0.040 11.641 0.706

16 -0.066 0.044 11.933 0.749
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The results of estimating such a static regression are shown in Table 4.8. The 

estimated parameters are statistically significant. Moreover, the sign of the 

coefficient attached to the real oil price matches, as opposed to the one 

estimated for the Chinese series, the theoretical expectation. However, this 

model is discarded as it is seriously affected by serial correlation. 

Table 4.8: Static regression on Indian 𝑙𝑜𝑤𝑛 

 

Source: Own work using EViews® 

By dropping 𝑙𝑟𝑜𝑖𝑙 from Eq. 4.14, a new equation is estimated. The resulting 

residuals are saved. Then the unit-root test is performed on the new residuals 

series. The value of the ADF t-stat obtained is -1.20. Since 𝐻0: 𝑦~𝐼(1), it is 

concluded that no cointegration relationship between the Indian 𝑙𝑜𝑤𝑛 and 

𝑙𝑟𝑖𝑛𝑐 holds. 

Alternatively, the same dynamic regression employed for China is estimated 

here for the Indian series. The results are shown in Table 4.9. As can be seen, 

𝑙𝑟𝑖𝑛𝑐 turns out not to be statistically significant under this specification. 

Notwithstanding, the results of the JB and BG tests contribute to conclude 

that the assumptions of non-normality and serial correlation can be rejected. 

In the absence of a more satisfactory model specification, forecasts are 

computed. The results are shown in Figure 4.43. 

Dependent Variable: LOG(OWN_IN)

Method: Least Squares

Sample: 1980 2010

Included observations: 31

Variable Coefficient Std. Error t-Statistic Prob.  

C -23.09067 0.338047 -68.30607 0.0000

LRINC_IN 1.739188 0.029001 59.97029 0.0000

LROIL_IN -0.093968 0.016159 -5.815051 0.0000

R-squared 0.994290     Mean dependent var -5.444870

Adjusted R-squared 0.993882     S.D. dependent var 0.662470

S.E. of regression 0.051818     Akaike info criterion -2.990393

Sum squared resid 0.075183     Schwarz criterion -2.851620

Log likelihood 49.35110     Hannan-Quinn criter. -2.945157

F-statistic 2437.671     Durbin-Watson stat 0.670483

Prob(F-statistic) 0.000000
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Table 4.9: Dynamic regression on Indian 𝑙𝑜𝑤𝑛 

 

Source: Own work using EViews® 

As can be seen, car ownership in India is projected to grow rapidly. 

 

Figure 4.43: Projections of car ownership in India | Source: Own work using EViews® 

4.2.8.5 Car ownership in Japan 

The 𝑜𝑤𝑛 series, expressed in first differences and logs (𝑙𝑜𝑤𝑛, ∆𝑜𝑤𝑛 and 

∆𝑙𝑜𝑤𝑛) are shown for Japan in Figure 4.44. 

Dependent Variable: LOG(OWN_IN)

Method: Least Squares

Sample (adjusted): 1981 2010

Included observations: 30 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

C -1.681077 1.286429 -1.306777 0.2023

LOWN_IN(-1) 0.936314 0.053515 17.49643 0.0000

LRINC_IN 0.135177 0.095639 1.413397 0.1690

R-squared 0.998975     Mean dependent var -5.410039

Adjusted R-squared 0.998899     S.D. dependent var 0.644278

S.E. of regression 0.021379     Akaike info criterion -4.758153

Sum squared resid 0.012341     Schwarz criterion -4.618033

Log likelihood 74.37230     Hannan-Quinn criter. -4.713328

F-statistic 13154.80     Durbin-Watson stat 1.840029

Prob(F-statistic) 0.000000
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Figure 4.44: Key time plots for Japan 

Source: Own work using EViews® (see appendix I for dataset sources) 

The series 𝑙𝑜𝑤𝑛 displays a value of 0.904 for �̂�𝑘=1. As in the case of France, 

it is desirable to plot the series in second differences. The correlogram of 

∆2𝑙𝑜𝑤𝑛 can be seen in Figure 4.45. 

However, when the possibility that the Japanese 𝑙𝑜𝑤𝑛 series can be charac-

terised as having a unit root is tested (see section 5.2.1), such assumption 

cannot be rejected. In view of this, it is explored whether a cointegration 

relationship between 𝑙𝑜𝑤𝑛 and 𝑙𝑟𝑖𝑛𝑐 can be established. In order to do that, a 

static regression is first estimated (see Table 4.10). Following the procedure 

described in the previous section, a unit root test is performed on the residu-

als of this static regression. The numerical outcome is an ADF t-stat ap-

proaching -2.58. Based on the values provided by Hamilton (1994) (Case 1 in 

his Table B.9), the null can be rejected only at the 10% level of statistical 

significance. Tentatively, it is held that the Japanese 𝑙𝑜𝑤𝑛 and 𝑙𝑟𝑖𝑛𝑐 may be 

cointegrated. When cointegration is present, the error correction model 
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(ECM) is an adequate type of ADL(1,1) model (Hendry, 1995). Hence, 

finding a cointegration relationship opens up the opportunity to estimate an 

ECM. Thus if ‘car ownership’ and ‘income per capita’ are indeed cointegrat-

ed (see the formal test in section 5.2.1), their relationship can be expressed in 

terms of an ECM. In economics, cointegration analysis is exploited in e.g. 

cliometrics (Greasley and Oxley, 2011). 

 

Figure 4.45: Correlogram of ∆2𝑙𝑜𝑤𝑛 for Japan | Source: Own work using EViews® 

 

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.132 0.132 0.9881 0.320

2 0.038 0.021 1.0715 0.585

3 0.112 0.106 1.8125 0.612

4 0.130 0.105 2.8367 0.586

5 -0.028 -0.064 2.8868 0.717

6 0.046 0.044 3.0205 0.806

7 -0.085 -0.123 3.4820 0.837

8 0.095 0.122 4.0741 0.850

9 0.250 0.245 8.2875 0.505

10 0.091 0.039 8.8539 0.546

11 0.023 0.011 8.8926 0.632

12 0.140 0.050 10.309 0.589

13 -0.087 -0.188 10.870 0.622

14 -0.018 -0.000 10.894 0.694

15 -0.062 -0.075 11.188 0.739

16 -0.094 -0.040 11.888 0.752

17 -0.086 -0.046 12.496 0.769

18 -0.001 -0.069 12.496 0.821

19 -0.054 -0.024 12.749 0.851

20 -0.038 -0.071 12.874 0.883

21 0.042 0.044 13.032 0.907

22 0.052 0.118 13.290 0.925

23 0.022 0.052 13.336 0.944

24 -0.075 -0.066 13.907 0.949
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The formal link between cointegration and error correction occurs thanks to 

the Granger Representation Theorem (Banerjee et al., 1993), put forward by 

Granger (1981) (see the proof in e.g. Granger and Weiss (1983) in Karlin et 

al. (2014)) and also Engle and Granger (1987)). 

 

Figure 4.46: Car ownership and real income in Japan 

Source: Own work using EViews® (see appendix I for dataset sources) 

As shown in Figure 4.40, one option is a growth-rate model. However, this 

type of model discards potentially useful information. In contrast, ECMs 

retain information about long-run relationship between variables, expressed 

in terms of levels (Hendry in Engle and Granger (1991)). That is, not only 

short-run but also long-run relationships can be examined by employing 

ECMs (Pickup, 2014). Engle and Granger (1987) in Engle and Granger 

(1991) mention the work by Phillips (1957) and Sargan (1964) as early 

examples of the ECM, a type of model that has found, as they note, wide use 

in economics. 



4  Model development 

122 

Table 4.10: Static regression on Japanese 𝑙𝑜𝑤𝑛 

 

Source: Own work using EViews® 

Following Vogelvang (2004), an ECM model for the Japanese series is 

estimated. Table 4.11 shows summary information. The estimated parame-

ters, including the error correction, are statistically significant (however, 

𝑙𝑜𝑤𝑛𝑡−2 at the 10% level). 

Table 4.11: ECM regression for Japan 

 
Source: Own work using EViews® 

Dependent Variable: LOG(OWN_JP)

Method: Least Squares

Sample: 1980 2010

Included observations: 31

Variable Coefficient Std. Error t-Statistic Prob.  

C -24.54926 1.455403 -16.86767 0.0000

LOG(RINC_JP) 1.559005 0.096763 16.11164 0.0000

R-squared 0.899510     Mean dependent var -1.101849

Adjusted R-squared 0.896045     S.D. dependent var 0.286608

S.E. of regression 0.092409     Akaike info criterion -1.862853

Sum squared resid 0.247641     Schwarz criterion -1.770338

Log likelihood 30.87422     Hannan-Quinn criter. -1.832695

F-statistic 259.5851     Durbin-Watson stat 0.151748

Prob(F-statistic) 0.000000

Dependent Variable: D(LOWN_JP)

Method: Least Squares

Sample (adjusted): 1983 2010

Included observations: 28 after adjustments

White heteroskedasticity-consistent standard errors & covariance

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.009429 0.002465 3.825471 0.0009

D(LOWN_JP(-1)) 1.035830 0.219338 4.722523 0.0001

D(LOWN_JP(-2)) -0.341604 0.183678 -1.859794 0.0758

D(LRINC_JP(-2)) -0.108168 0.045487 -2.377978 0.0261

RESID_CO -0.070979 0.019197 -3.697494 0.0012

R-squared 0.926941     Mean dependent var 0.026704

Adjusted R-squared 0.914235     S.D. dependent var 0.017492

S.E. of regression 0.005123     Akaike info criterion -7.549881

Sum squared resid 0.000604     Schwarz criterion -7.311987

Log likelihood 110.6983     Hannan-Quinn criter. -7.477154

F-statistic 72.95336     Durbin-Watson stat 2.019203

Prob(F-statistic) 0.000000     Wald F-statistic 57.67342

Prob(Wald F-statistic) 0.000000
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The estimated equations shown in Table 4.10 and Table 4.11 can be written 

as follows: 

Static: 𝑙𝑜𝑤𝑛𝑡 = −24.55 + 1.56𝑙𝑟𝑖𝑛𝑐𝑡 + 휀𝑡        (4.15) 

ECM:  ∆𝑙𝑜𝑤𝑛𝑡 = 0.01 + 1.04∆𝑙𝑜𝑤𝑛𝑡−1 − 0.34∆𝑙𝑜𝑤𝑛𝑡−2 − 0.11∆𝑙𝑟𝑖𝑛𝑐𝑡−2 − 0.07휀𝑡−1    

 (4.16) 

Whereas Eq. 4.15 can be interpreted as the non-spurious long-run equilibrium 

relationship, Eq. 4.16 reflects its associated short-run ECM. The latter, whose 

constant term represents the level of equilibrium (Hendry, 1995), introduces 

past disequilibrium as an explanatory variable (Maddala and Kim, 1998). 

 

Figure 4.47: Projections of car ownership in Japan | Source: Own work using EViews® 

Figure 4.47 shows the Japanese car ownership projections based on the 

estimated long-run equation.  
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4.2.8.6 Car ownership in the US 

Figure 4.48 shows the time plots of 𝑜𝑤𝑛, 𝑙𝑜𝑤𝑛, ∆𝑜𝑤𝑛 and ∆𝑙𝑜𝑤𝑛 using US 

data. Two declines, in 1990 and 2009, are remarkable (see section 5.2.1). It is 

worth reminding the reader that this series excludes SUVs. 

 

 

Figure 4.48: Key time plots for the US 

Source: Own work using EViews® (see appendix I for dataset sources) 

The �̂�𝑘=1 value of 𝑙𝑜𝑤𝑛 equals 0.919. The possibility that the US series is 

also ∆2𝑙𝑜𝑤𝑛 is considered (see Figure 4.49). 
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Figure 4.49: Correlogram of ∆2𝑙𝑜𝑤𝑛 for the US | Source: Own work using EViews® 

Figure 4.50 shows the behaviour of the US series for income and car owner-

ship. The drop in income in 2008-2009 was followed by a sharp decline in 

car ownership. As noted in section 5.2.1, the possibility of a cointegration 

relationship between these two series is not examined. 

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.243 -0.243 3.3063 0.069

2 -0.127 -0.198 4.2322 0.121

3 -0.024 -0.121 4.2657 0.234

4 -0.106 -0.194 4.9349 0.294

5 -0.016 -0.150 4.9512 0.422

6 0.076 -0.042 5.3128 0.504

7 0.016 -0.027 5.3299 0.620

8 0.026 0.009 5.3728 0.717

9 -0.034 -0.031 5.4503 0.793

10 -0.013 -0.013 5.4623 0.858

11 -0.052 -0.068 5.6520 0.896

12 0.100 0.069 6.3654 0.897

13 -0.154 -0.157 8.0922 0.838

14 -0.001 -0.108 8.0923 0.884

15 0.198 0.122 11.114 0.744

16 -0.132 -0.076 12.494 0.709

17 -0.039 -0.089 12.615 0.762

18 0.069 -0.005 13.008 0.791

19 -0.196 -0.213 16.288 0.638

20 0.207 0.096 20.074 0.453

21 0.165 0.218 22.541 0.369

22 -0.137 -0.020 24.310 0.331

23 -0.093 -0.095 25.147 0.343

24 -0.022 -0.055 25.194 0.395
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Figure 4.50: Car ownership and real income in US 

Source: Own work using EViews® (see appendix I for dataset sources) 

A key distinction related to the persistence of shocks or innovations is  

between ‘short’ and ‘long’ memory processes. In the former, an original 

shock to the series has basically no impact on its present values (Engle and 

Granger, 1991). In the latter, persistence is greater (Patterson, 2000). Beran et 

al. (2013) credit Granger with having discovered long memory processes in 

economics. Whereas white noise can be considered a representation of short 

memory, a random walk is a way of expressing a long memory process. 

Sterman (2000) warns against the use of white noise in SD models and 

contests that in real systems shocks are persistent. 

Table 4.12 provides info on the estimated regression equation for US 𝑙𝑜𝑤𝑛. 

The original inclusion of real income and the fuel price led to poor estimates. 

Dummies have been included to reflect the dramatic drop in the series values 

in 1991 and 2009. Based on these results, the hypothesis of no serial correla-

tion cannot be rejected. Also, the normality assumption cannot be rejected 

using the JB test. 
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Table 4.12: Dynamic regression on US 𝑙𝑜𝑤𝑛 

 
Source: Own work using EViews® 

Finally, the projections of car ownership in the US using the regression in 

Table 4.12 are shown in Figure 4.51. Following the downwards trend dis-

played by the last available observations, the projected trajectory leads to a 

strong decline in car ownership. 

 

Figure 4.51: Projections of car ownership in the US | Source: Own work using EViews® 

Dependent Variable: LOWN_US

Method: Least Squares

Sample: 1980 2010

Included observations: 31

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.023244 0.023441 0.991572 0.3302

LOWN_US(-1) 1.037688 0.032929 31.51273 0.0000

DUMMY -0.050424 0.011003 -4.582709 0.0001

@YEAR>2008 -0.024496 0.008613 -2.844150 0.0084

R-squared 0.980017     Mean dependent var -0.721421

Adjusted R-squared 0.977797     S.D. dependent var 0.071359

S.E. of regression 0.010633     Akaike info criterion -6.129787

Sum squared resid 0.003053     Schwarz criterion -5.944756

Log likelihood 99.01169     Hannan-Quinn criter. -6.069471

F-statistic 441.3865     Durbin-Watson stat 2.192004

Prob(F-statistic) 0.000000
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4.2.9 Car stock 

The future values of car ownership estimated in this section can be treated as 

forecasts. In conjunction with the population assumptions mentioned in 

section 4.2.1 (see Eq. 4.17), these values represent the projected aggregate 

total car stock. 

𝑆ℎ,𝑡
𝑎𝑔𝑔

  =          𝑦ℎ,𝑡        ∗      𝑝𝑜𝑝ℎ,𝑡                                     ∀ℎ, 𝑡         (4.17) 

[car]        [car/people]      [people] 

As a result of the econometric output outlined in the previous section, the  

following projections of the car stock in each country are derived (see  

Figure 4.52). 

 

Figure 4.52: Car stock by country: data and projections 

Source: Own work using EViews® (see appendix I for dataset sources) 

Clearly, the projections concerning China and the US appear to be contrary  

to expectations (see section 5.2.2). In particular, the results for China are 

largely determined by the optimistic GDP growth assumptions adopted in the 
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exercise. The Chinese car stock projection would entail a number of annual 

car sales for an extended period that is hard to conceive. Because of this, the 

econometric results from China are not inserted in the SD sub-model. In-

stead, a cap to annual car sales is imposed, so that the initial exponential 

development is succeeded by a period of decelerated growth in Chinese car 

stock. With regards to the US values, the effect of the US financial crisis in 

the last available observations is difficult to counteract. For simplicity, a 

recovery in the car stock level, as opposed to the extrapolation of the recent 

trend, is modelled. The result of implementing these amendments in the SD 

sub-model can be seen in Figure 4.53. For China, there is a persistent gap 

between the data and the simulation values, due to computational issues, and 

a change in the growth rate around 2015-2016.  

As a product, the car is highly heterogeneous. Two main rationales for 

product differentiation are technical specifications set by regulation and 

market segmentation motivated by marketing strategies. The types of car 

available in the market differ in e.g. makes and variants, footprint, weight, 

power and other features. This model simplifies this level of complexity by 

assuming a hypothetical average car and focusing on the powertrain and age 

aspects. 

 

Figure 4.53: Car stock in China and the US: data vs. Simulations 

Source: Own work using Vensim® (see appendix I for dataset sources) 
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The car stock is implemented in the SD model using a stock-and-flow struc-

ture with three main components: state variables, scrappage rates and sales 

rates. Two balancing (i.e. negative) feedback loops (B1 and B2) are repre-

sented (see Figure 4.54). The initial values of key variables are shown in 

section 5.1. 

4.2.9.1 State variables 

The state variables of the stock-and-flow framework are based on an ageing 

chain (see chapter 12 in Sterman (2000)) consisting of three stocks . These 

are called new car stock (𝑆ℎ,𝑖,𝑡
𝑛𝑒𝑤), middle car stock (𝑆ℎ,𝑖,𝑡

𝑚𝑖𝑑) and old car stock 

(𝑆ℎ,𝑖,𝑡
𝑜𝑙𝑑 ). The sum of these stocks results in total car stock. Each stock is 

disaggregated by powertrain technology, denoted 𝑖. In terms of initial values, 

whereas 𝑆ℎ,𝑖,𝑡
𝑛𝑒𝑤 reflects previous car sales, a 60:40 split of the remaining car 

stock between 𝑆ℎ,𝑖,𝑡
𝑚𝑖𝑑 and 𝑆ℎ,𝑖,𝑡

𝑜𝑙𝑑  is assumed. 

In principle, there is no explicit distinction between the primary car market 

and the secondary car market (used or second-hand cars). Some readers 

might find it useful to re-interpret the 𝑆ℎ,𝑖,𝑡
𝑜𝑙𝑑  as the secondary car market. 

4.2.9.2 Scrappage rates 

Meadows and Wright (2008) point out that humans tend to underestimate the 

role of outflows in a stock-and-flow structure. In the model, the variable car 

scrappage rate is an outflow from 𝑆ℎ,𝑖,𝑡
𝑜𝑙𝑑 . As Sterman (2000) notes, for con-

sumer durable products such as cars, a first-order process does not usually 

approximate well the discard rate. One possibility is to assume yearly values 

of the scrappage rate. Another one is to derive probability distributions such 

as Weibull. Yet another possibility is to assume an average car lifetime value 

that remains constant throughout the simulation period. The last option is 

preferred for simplicity. However, this assumption shall be tested for the 

German case. The theorem by Little (1961) may be applied to a stock-and-

flow structure in dynamic equilibrium. This is a useful approximation in 

saturated car markets and has been employed by e.g. Wansart (2012) and 

Thies et al. (2016). Based on survival rates, Davis et al. (2010) point out that 

the average car lifetime in the US is 17 years. In the model, a value of 
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16 years is assumed for all countries. In addition, for Germany the impact of 

the 2009 scrappage scheme (see section 4.3) is also modelled. 

4.2.9.3 Sales rates 

The variable car sales rate (s), an inflow to 𝑆ℎ,𝑖,𝑡
𝑛𝑒𝑤, is causally linked to the 

variable aggregate demand for new cars. This variable translates the adjust-

ment mechanism that connects the econometric output and the SD sub-model 

(this is visible in Figure 4.54) into a flow variable. 

Already in 1938, de Wolff (1938) distinguished between ‘the demand for first 

purchase’ and ‘the demand for replacement’. If the modelled market is 

saturated, there appears to be little need to make this distinction. However, 

since this work includes fast-growing Asian markets, the distinction proposed 

by de Wolff (1938) is retained. 

Consequently, Eq. 2.6 becomes Eq. 4.10. 

𝑠ℎ,𝑖,𝑡          =  (휁ℎ,𝑖,𝑡
𝑓𝑖𝑟𝑠𝑡

   ∗      𝑠ℎ,𝑡
𝑓𝑖𝑟𝑠𝑡

) + (휁ℎ,𝑖,𝑡
𝑟𝑒𝑝

   ∗       𝑠ℎ,𝑡
𝑟𝑒𝑝

)       ∀ℎ, 𝑖, 𝑡 (4.18) 

[car/year]      [dmnl]      [car/year]    [dmnl]      [car/year] 

where: 𝑓𝑖𝑟𝑠𝑡 refers to first sales, 𝑟𝑒𝑝 means repeated sales and ∑ 휁𝑖
9
𝑖=1 = 1. 

The terms in Eq. 4.18 are explained in the next two sections. 

4.2.10 Market segmentation 

Before tackling choice, it is useful to introduce the idea of market segmenta-

tion, a pillar in marketing science (see chapter 9 in Kotler et al. (2008)). In 

this model, the market is divided into two groups, first-time car purchasers 

and repeating car purchasers, each of which is in turn further divided into 

four sub-groups: habit(-oriented), innovators, low-cost buyers and utility 

maximisers (see Figure 4.55). 

It is implicitly assumed that whereas innovators are high-income consumers, 

low-cost buyers have low-income. One might associate the habit sub-group 
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with loyalty. However, this would be misleading. Although brand loyalty 

appears to be a feature of the car market, powertrain loyalty is less clear to 

date. The utility maximisers sub-group includes consumers who basically 

behave in line with the assumption of economic rationality. 

 

Figure 4.55: Overview of the sub-module ‘Market Segmentation’ 

Source: Own work using Vensim® 

Table 4.13 shows the initial values of each sub-group for a particular market. 

Given the lack of data for these variables, two approaches were considered: 

(i) performing an internal calibration of the SD sub-model using a plausible 

range of values; or (ii) making theoretical assumptions informed by the 

literature. The second approach was adopted. The justification for the as-

sumed values is the following. For the first-time car purchasers: (i) all of 

them are thought to be low-income people (i.e. they are not innovators who 

can afford the most expensive technology but, instead, buy the powertrain 

with the lowest purchase price); and (ii) since it is the first time they buy a 

car, habit plays no role. For repeating car purchasers, (i) experience basically 

clusters them in either the habit or utility maximisers segments; (ii) in line 

with innovation theory (see Figure 1.2 in Mahajan et al. (2000)), high-income 

innovators represent a small fraction of the market; and (iii) assuming that the 

first car purchase takes place at the age of 18-20 and a car has an average 

lifetime of 16 years, repeating purchasers are assumed to buy their second 
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and third cars at the age of ca. 35 and 51 years, respectively. By that time, it 

is likely that those purchasers have accumulated sufficient working experi-

ence not to receive a low-income salary.  

Table 4.13: Market segmentation, values (%) in 2000 in France 

Type of purchase Habit 
High-income 

innovators 

Low-income  

low-cost 

Utility  

maximisers 

First purchasers 0 0 100 0 

Repeat purchasers 74 1 5 20 

Source: Own assumptions 

The initial values in Table 4.13 differ by country. Furthermore, the propor-

tion of each sub-group within a market does not necessarily remain constant 

over the simulation period. It is implicitly assumed that, as alternative power-

trains become more visible (e.g. media, roads), the size of the habit sub-group 

decreases and the number of utility maximisers grows. Thus as the car choice 

becomes more complex due to the increased availability of powertrains, a 

larger number of factors is incorporated in the decision-making process of 

prospective car purchasers (in essence, a flow from the habit to the utility 

maximisers sub-groups takes place). 

4.2.11 Technology choice 

The question of how technology is selected leads to an explicit mathematical 

representation of human choice behaviour. This is not a trivial issue, especially 

when choice behaviour has to be depicted over time. In such a dynamic 

context, is stability of consumer preferences a reasonable assumption? 

Intertemporal optimisation breaks down if preference stability does not hold 

(Thaler, 2015). Veblen provided the insight that, in a dynamic context, the 

assumption that tastes are given does not hold (Boulding, 1988). 

Depending on the degree of economic rationality assigned to consumers, two 

extreme cases appear: choice is the result of either intuitive feeling or of a 
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thorough TCO analysis. The latter can be rendered to monetary quantifica-

tion. When the future has to enter the TCO calculation, as that happens with 

prospective prices, strong assumptions are required. One such assumption is 

rational expectations (as indicated in section 3.1.3.2). The adoption of such 

assumption in the context of this work would imply that the prospective car 

purchaser has perfect foresight (Hommes, 2013) and knows the future evolu-

tion of energy prices and batteries, anticipating policy. In reality, common 

experience dictates that car purchasing decisions involve a mix of intuitive 

feeling and reasoning. And, after all, errare humanum est. The ability to learn 

is also a human characteristic. In SD, expectations are generally modelled as 

adaptive learning processes (Sterman, 1987). 

In this thesis, technology choice relates to the selection of a particular car 

powertrain by the car purchasers, grouped as shown in Table 4.13. 

Ben-Akiva and Lerman (1985) categorise decision rules in four classes: 

dominance, lexicographic, satisfaction and utility. Inspired by this classifica-

tion, Table 4.14 shows the decision rules assumed in the model. As with the 

values in Table 4.13, the choice of decision rules is based on theoretical 

considerations and motivated by a lack of data. Empirical evidence on car 

technology choice exists, but it mainly originates from DC studies assuming 

that only the utility rule applies. In the model, (i) low-cost buyers purchase 

the powertrain with the lowest purchase price, initially represented by the 

gasoline car; (ii) once a new powertrain becomes commercially available, its 

degree of innovativeness becomes highest, which appeals to innovators; (iii) 

habit-oriented consumers replace their car without switching to other power-

trains; and (iv) utility maximisers make their choice after taking into account 

a range of powertrain attributes. 

For the segment that is assumed to make purchase decisions based on the 

utility maximisation rule, a crucial variable is the expected use of the car, 

measured in km, which leads to explicit consideration of travel demand. As 

PHEVs can be powered by gasoline and electricity, a 50% split in VKT (i.e. 

half of the mileage run by a PHEV is on gasoline and the other half on 

electricity) is assumed in the model. The attributes influencing attractiveness 

are shown in section 4.2.17.  



4  Model development 

136 

Table 4.14: Decision rules and technology choice 

Market segment Decision rule Technology choice 

Low-income 

low-cost 
Dominance The powertrain with the lowest purchase price is chosen 

High-income 

innovators 
Lexicographic 

The powertrain with the highest degree of  

innovativeness is chosen 

Habit Satisfaction The current powertrain is chosen again 

Utility  

maximisers 
Utility 

The powertrain that offers the maximum level 

of utility is chosen 

Source: Own assumptions 

4.2.12 Travel demand by car 

Travel demand by car can be understood in terms of two metrics: as an 

indicator of performance based on passenger-km (PKM) travelled, and as an 

indicator of vehicle usage based on vehicle-km travelled (VKT). This section 

focuses on car usage and the key variable is defined as annual average VKT by 

car (also referred to as mean driving distance, or simply mileage), expressed 

in [(km/car)/year].  Three ways of representing this variable are included in 

the model: as expected, simulated or desired values, denoted respectively 

𝑉𝐾𝑇ℎ,𝑡
𝑒𝑥𝑝

, 𝑉𝐾𝑇ℎ,𝑡 and 𝑉𝐾𝑇ℎ,𝑡
∗ . The latter is examined in section 6.2.6. The 

simplest approach is to assume a constant expected value. Given the lack of 

data for China and India, this is not a totally unjustified approach. Moreover, 

any prospective car purchaser is likely to have an expectation of the annual 

distance (s)he may drive by car. For simplicity, it is assumed that the ex-

pected average car service life has a value of 200,000 km. In addition, recall 

from section 4.2.9 that the total average car lifetime is 16 years. The ex-

pected annual average VKT by car value can be calculated as in Eq. 4.19. For 

mature car markets for which data is available, this approach is extremely 

simplistic.  

𝑉𝐾𝑇ℎ,𝑡
𝑒𝑥𝑝

            =
𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑙𝑖𝑓𝑒ℎ,𝑡

𝑒𝑥𝑝

𝜅ℎ,𝑡
=

200,000

16
= 12,500     ∀ ℎ, 𝑡    (4.19) 

[(km/car)/year]  [km/car] / [year]           [(km/car)/year] 
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The second approach is based on simulating 𝑉𝐾𝑇ℎ,𝑡 using the economic 

concept of elasticity. As noted in chapter 2, the literature on transport elastici-

ties is abundant. Using US data for the period 2000-2006, the elasticities 

w.r.t. real GDP per capita and w.r.t. real gasoline price were simply derived 

using a logarithmic functional form. No comparable data after 2006 is availa-

ble (recall section 3.4). The estimated values are respectively 1.13 and -0.13. 

These are in line with values found in the literature (see e.g. Table 4 in 

Johansson and Schipper (1997)). Since the model formulated was static, these 

values reflect the long-run elasticities. Eq. 4.20 captures how this information 

was formulated in the SD sub-model. Figure 4.56 shows the simulated 

behaviour of US VKT over time. The sharp decrease in the oil price in recent 

years results in an increase in simulated annual average VKT by car. Implicitly 

assumed is the idea that the US government does not correct gasoline taxes 

for future inflation. 

𝑉𝐾𝑇ℎ,𝑡           =      𝑉𝐾𝑇ℎ,𝑡0
     ∗ ((

𝑟𝑖𝑛𝑐ℎ,𝑡

𝑟𝑖𝑛𝑐ℎ,𝑡0

)𝜂𝑟𝑖𝑛𝑐 ) ∗ ((
𝑟𝑓𝑢𝑒𝑙ℎ,𝑡

𝑟𝑓𝑢𝑒𝑙ℎ,𝑡0

)𝜂𝑟𝑓𝑢𝑒𝑙)  (4.20) 

[(km/car)/year]     [(km/car)/year]     [dmnl]                    [dmnl] 

The problem with using elasticities as exponents is that growth is uncon-

strained and this again becomes an unrealistic feature for the Chinese and 

India variables. The proposition that travel demand by car is unbounded is 

rather weak. There are physical limits as to how much time people can daily 

spend on travelling, particularly by car using congested roads (see e.g. Metz 

(2012) and the review by Mokhtarian and Chen (2004)). For these two 

countries, the first approach is therefore preferred and retained. Better data is 

expected to shed light about this issue in the next years. An alternative 

modelling approach, not examined here, would be to analyse passenger-km 

(PKM) per capita and cap 𝑉𝐾𝑇ℎ,𝑡 accordingly. 

Furthermore, in France and Germany there is a sizeable difference between 

the annual average VKT by gasoline car and the annual average VKT by 

diesel car. However, this difference is minor for the US (see Figure 4.57). For 

Japan, this data was not available. The main pro of having VKT values 

disaggregated by powertrain for France are Germany becomes visible when 
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energy use by type of fuel is estimated; the cons relate to the inherent diffi-

culties that this disaggregation entails for simulating the market choices of 

technologies. Therefore, the use of an average values represents a pragmatic 

approach to model the choice of powertrain. 

 

Figure 4.56: Travel demand (VKT) in the US: data vs. simulation 

Source: Own estimation (see appendix I for dataset sources) 

 

Figure 4.57: Travel demand (VKT) by powertrain and country 

Source: (SOeS, 2016) (VIZ, 2016) and (NHTS, 2009) 
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Figure 4.58 provides an overview of this module, as implemented in the SD 

software. 

 

Figure 4.58: Overview of the module ‘Travel Demand by Car’ | Source: Own work using Vensim® 

4.2.13 Infrastructure 

Travel demand by car presupposes fuel availability, achieved through a 

network of refuelling infrastructure with a certain number of stations (i.e. 

nodes interconnected by road links). Admittedly, the spatial aspects of 

infrastructure are not given due treatment in this work. The length of roads 

plays no role in the model. Instead, the analysis is simplified by considering 

only the number of stations in operation in each country.  

The deployment of refuelling infrastructure can be conceived as a growth 

process reaching a saturation level. From the generalised logistic curve, 

various main growth models can be derived (see e.g. section 4 in Tsoularis 

and Wallace (2002)). Computational numerical methods facilitate the task of 

simulating any type of nonlinear growth behaviour (Sterman, 2000). In the 

model, the user has the possibility to change the assumptions concerning the 

deployment of refuelling infrastructure for BEVs and FCs (see section 4.3.5). 

For PHEVs, a simplifying assumption is adopted: potential car purchasers do 

not pay attention to recharging infrastructure, as they can use conventional 
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stations to fill the tank. Refuelling infrastructure for CVs, HEVs and PHEVs 

is represented by the variable conventional fuel filling stations, which relies 

on historical information. For CN and IN, it is assumed that there are respec-

tively 150,000 and 100,000 stations selling gasoline and diesel by 2030. For 

the rest of the countries, the future values are assumed to remain constant at 

11,356 (FR), 14,151 (DE) and 156,100 (US) stations. For the alternative fuels 

E85, autogas and CNG, see Eq. 4.21. An example is shown in Figure 4.59. 

These assumptions are maintained throughout the modelling exercise. 

𝐼ℎ(t)      = ∫ [𝑔ℎ   ∗    𝐼ℎ     ∗ (
𝑡

𝑡0
1 −

𝐼ℎ

𝐶𝐶ℎ
)(𝑡)]𝑑𝑡 + 𝐼ℎ(𝑡0)   (4.21) 

[station]     [year-1] [station]        [dmnl]              [station] 

where 𝐼 denotes the stock of alternative fuel infrastructure (i.e. number of 

E85, autogas and CNG stations), 𝑔 the fractional growth rate and 𝐶𝐶 the 

assumed carrying capacity or saturation level. 

 

Figure 4.59: Evolution of refuelling infrastructure in Germany 

Source: Own assumptions based on ADAC (2016), Autogastanken24 (2016), 

MWV (2016) and dena (2016) 

The expectation of refuelling infrastructure installed capacity and thus fuel 

availability influences car production, deployment and commercialisation. 
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The relationship between refuelling infrastructure and car powertrain market 

uptake is commonly framed in the literature as a ‘chicken-and-egg’ problem. 

In the model, two basic extreme conditions apply: an absolute one and a 

relative one. The absolute condition can be formulated as follows: if there are 

zero stations for a certain fuel, then there are no car sales of the type of 

powertrain that only uses that fuel (emphasis added because this does not 

apply to PHEVs). Note that the reverse does not hold. For example, the fact 

that private registrations of LPG cars in Japan is non-existent does not neces-

sarily mean that there are no autogas stations in that country, because other 

types of vehicles such as taxis may be running on autogas and therefore 

demand the fuel. The logic of this formulation is challenged when a distinc-

tion between public and private refuelling infrastructure is made. The notable 

case is electric vehicle supply equipment (EVSE). Even if public EVSE is 

non-existent, some people may choose to buy an EV if they have their own 

private recharging point. The key message is that, from a modelling perspec-

tive, it is hard to capture how refuelling infrastructure affects powertrain 

choices. In an attempt to simplify the modelling task, a relative condition is 

established: the market considers the possibility of purchasing a certain 

powertrain, depending on the fuel availability in stations, relative to the most 

popular one (i.e. gasoline). This is reflected in the variable relative station 

coverage. The module can be seen in Figure 4.60. 

 

Figure 4.60: Overview of the module ‘Infrastructure’ | Source: Own work using Vensim® 
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4.2.14 Fuel intensity, battery capacity and range 

In addition to infrastructure coverage and recharging time for BEVs, other 

attributes that affect the choice decision of the utility maximisers segment 

include: purchase price, usage cost, (driving) (e-)range and CO2 emissions (it 

is implicitly assumed that prospective consumers judge the environmental 

performance of the car solely in terms of this regulated source of GHG 

emission). How the values of these attributes are derived is the topic of this 

and the next sections. The sub-module ‘Technical Features’ covers the fuel 

intensity of the car stock, the capacity of the EVB and the corresponding 

(electric) range by powertrain. Figure 4.61 shows this sub-module.  

To model fuel efficiency of the car stock over time, three fuel intensity stocks 

are created, using a coflow structure (see chapter 12 in Sterman (2000)). This 

is consistent with the ageing chain formulation of the car stock. The initial 

values of each fuel intensity stock are given in the dataset. The future values 

affecting the fuel efficiency of new conventional cars are determined by the 

model user through the policy input targeting emission and car efficiency 

standards (see section 4.3.1). 

The assumptions on the average car fuel consumption, together with the 

assumed size of the tank per powertrain determine the range, expressed in 

km. For PHEVs, the range on gasoline is for simplicity selected for the 

purchase decision, thus implicitly assuming that PHEV drivers are not 

affected by range anxiety. However for BEV drivers, this issue is critical. 

Therefore, the capacity of the EVB is used. In the developed model, the 

variables related to the battery apply to PHEVs and BEVs, but there is no 

explicit consideration of the different types of batteries. Instead, the metric of 

interest is simply ‘price per kWh’. For example, an EVB priced at 

7,200 dollars reflects the assumption of a 24 kWh battery pack at 300 dollars 

per kWh. 
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As can be seen in Figure 4.62, when the assumed EVB cost goes below a 

certain threshold, a sharp increase in the capacity of the battery that features 

in the EV takes place (the timing is scenario-dependent). In this case, the 

figure shows that the rise is from 8 kWh to 16 kWh and from 24 kWh to 

30 kWh for PHEVs and BEVs, respectively. This is consistent with the recent 

offering of a 30 kWh EVB for the Nissan Leaf, which previously had a 

24 kWh pack. In sum, through a mechanism that relates reductions in the cost 

of EVBs to increases in size (kWh per pack), the capacity of the EVB is time-

variant in the simulations. The main rationale for adding extra EVB capacity 

is to increase e-range. However, this benefit is offset by an increase in the 

purchase price of the EV. 

 

Figure 4.62: Evolution of electric vehicle battery capacity | Source: Own work using Vensim® 

Recall the feedback loops in section 4.1.2. The EVB price does not only 

affect technology attractiveness and choice via the PHEV and BEV purchase 

price. It also influences the battery capacity, which in turn affects e-range. 

This involves a simultaneous feedback loop. In the SD sub-model, simul-

taneity is prevented after introducing a delay by modelling battery capacity as 

a stock variable. For simplicity, it is implicitly assumed that the energy 

density of the battery remains constant. In the future, research on new materi-

als may generate very high energy density batteries that become a disruptive 

technology. 
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4.2.15 Production costs 

A key model variable is the purchase price by type of powertrain. This is 

assumed to be the result of market prices (production or manufacturing costs 

plus profits) and taxation, respectively determined by car-makers and gov-

ernment. Car manufacturing cost comprises the cost of labour and raw 

materials for multiple components, such as chassis and engine. The com-

plexity of car manufacturing and its broader supply chain activity is neglected 

in this work. Also in reality, trade barriers can lead to significant price 

differentials for certain powertrains, at least temporarily. Examples include 

relatively high import tariffs of foreign hybrid cars in China and India. If 

there is no domestic production of the powertrain, such tariffs are expected to 

alter the choice of technology by the market. Tariffs are not modelled, but 

their possible existence should be born in mind by the reader interpreting the 

model results. To simplify matters, a reasonable price for a medium size 

gasoline (G) car is chosen, and the VAT is deducted to reflect its production 

cost. It is implicitly assumed that this production cost already includes the 

car-maker’s profit. The G car is powered by the spark-ignition (SI) engine 

(commonly, Otto) and this also applies to FF, LPG and CNG cars. For 

convenience, these are assumed to be dedicated, as opposed to bi-fuel (cf. 

Figure 4.1), and no distinction is made between direct and port injection SI 

engines. In contrast, the compression-ignition (CI) engine (commonly, 

Diesel) powers the diesel (D) car. Compared to gasoline cars, an extra cost of 

only 100 dollars is required for FFVs and at least 2,000 dollars for diesel 

engines and CNG cars (Sperling and Gordon, 2009). Conversions, illegal or 

not, of gasoline cars to FF, LPG or even CNG in the after-sales market are 

possible in the real world but ignored in the modelling exercise for simplicity. 

The conventional (non-plug-in) hybrid technology (i.e. HEVs) is thought to 

be mature and therefore its battery cost component is not explicitly modelled. 

Instead, it is assumed that this powertrain has a slightly higher price than CVs 

due to the small battery. For EVs, the non-battery components are less 

expensive than for CVs. Conversely, two components are added to the 

production process of EVs and substantially alter their purchase price: the 

electric vehicle battery (EVB) for PHEVs and BEVs, and the fuel cell for 

FCs. Figure 4.63 offers an overview of this sub-module. 
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This distinction between cost and price is important, especially in the context 

of batteries and fuel cells. A realistic model representation of this process 

would incorporate decision rules that attempt to capture car-manufacturers’ 

strategies concerning R&D and desired return on investment (ROI) for 

batteries. But this approach is beyond scope. Production costs and purchase 

prices depend not only on powertrain but also on the size of the car and 

targeted consumers. For example, SUVs and luxury cars are more expensive 

than a compact car, because they are more costly to manufacture and are 

marketed and priced for high-income drivers. Arguably, whereas production 

costs may decrease over time, this does not necessarily translate into lower 

purchase prices. An example is a situation where manufacturers consider that 

consumers can still bear the prevailing prices. The manufacturers’ price 

setting process is not explicitly modelled. Instead, a mark-up is assumed. 

Figure 4.64 shows the assumed nominal car manufacturing price for technol-

ogies relying on the ICE (with the exception of HEVs and PHEVs) for 

Germany. 

 

Figure 4.64: Evolution of car prices in Germany | Source: Own work using Vensim® 
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4.2.16 Consumer costs 

In this work, the two streams of costs faced by prospective buyers of a certain 

powertrain are: ownership and usage. Figure 4.65 shows how these streams 

are organised. To simplify, depreciation does not enter the economic calcula-

tion of costs. Since the insurance premium is assumed not to vary across 

powertrains, it has also been disregarded. The two components of usage cost 

are the driving cost and the maintenance cost. The usage cost is calculated 

over the entire assumed lifetime of the car. 

 

Figure 4.65: Overview of the sub-module ‘Consumer Costs’ | Source: Own work using Vensim® 

The driving cost is influenced by the efficiency of the powertrain and the 

corresponding energy price. With regards to the maintenance cost, the same 

value is used for all the powertrains, with the exception of BEVs. Since the 

model assumes that the service life of the EVB is 100,000 km, a battery 

replacement needs to take place after 8 years of the date the BEV was pur-

chased. Since the assumed average car lifetime is 16 years, one battery 

replacement is necessary over the car lifetime. This entails an additional cost 

for those consumers characterised in this work as utility maximisers. This 

extra cost is added as part of the calculation of maintenance costs, for it 

represents the cost these consumers face if the wish to maintain the usability 
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of their purchased BEV. Figure 4.66 shows the assumed values for the US 

market at certain years. As can be seen, whereas the value reflecting the 

maintenance cost for the gasoline car remains constant, the value capturing 

the maintenance cost for the BEV decreases over time. This is caused by the 

price evolution of the EVB.  

 

Figure 4.66: Evolution of maintenance costs in the US | Source: Own assumption 

4.2.17 Powertrain attractiveness 

It seems reasonable to assume that consumers can choose what is available or 

will soon be available in the market. Examples include: the recent market 

commercialisation of FC cars and the pre-orders for the Tesla Model 3. It is 

uncertain when these new products will be introduced in other countries. 

Interestingly, the aforementioned BEV branded Nissan Leaf is expected to be 

introduced in the Indian market in 2018. That is, around 8 years after it was 

first successfully commercialised in its domestic Japanese market. Also, there 

is preliminary empirical evidence of correlation between the number of 

models/makes of a powertrain available in the market and sales of that 

powertrain. But this mainly depends directly on private business decisions, not 

governments. The exceptions are perhaps State-owned enterprises (SOEs), 

such as the major Chinese car manufacturers. Examples of car-makers with a 
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mixed stock ownership by family, government and foreign capital can be 

found in Europe (Groupe PSA and Volkswagen AG). Since the model does 

not account for models/makes, this correlation cannot be taken into account. 

In the model, choice is influenced by a measure of ‘powertrain attractive-

ness’, which differs by market segment (see section 4.2.11). Attractiveness 

can be constrained by powertrain availability, which is determined by the 

year in which the powertrain technology was introduced in the market. For 

instance, electric cars are not available in the market at the beginning of the 

simulation and hence the attractiveness of these powertrains is constrained to 

zero. Figure 4.67 shows the sub-module ‘Attractiveness’. The model assump-

tions encapsulated in this sub-module are applicable to the innovators and 

utility maximisers segments.  

For the innovators sub-group, the higher the degree of perceived innovative-

ness, the higher the attractiveness and, in turn, the market share of the power-

train. The degree of innovativeness is modelled as a stock variable, affected 

by the inflow gaining innovativeness and the outflow losing innovativeness. 

Whereas the inflow is determined by the timing of the market introduction of 

a given powertrain in each country, it is assumed that the degree of innova-

tiveness can fade away using a 5-year constant. Between 2015 and 2030, 

BEVs are simulated to have the highest degree of perceived innovativeness. 

Because the degree of innovativeness is not a function of the simulated 

policies, the values do not differ between scenarios.  

For the utility maximisers sub-group, the choice of technology, attractiveness 

is determined in a more elaborated way. In a first step, a vector of country-

invariant coefficients is chosen, thereby characterising the six attributes 

considered: purchase price, usage cost, range, recharging time, emissions and 

station coverage (see Eq. 4.22). The default coefficients are shown in  

Table 4.15. In interaction with the simulated values of the attributes, which 

differ across countries, a measure of utility for each attribute is obtained. In 

this context, the powertrain of reference is the gasoline car. Alternative 

specific constants have not been included. By imposing an additive formula-

tion, unrestricted attractiveness is derived.  
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In a subsequent step, attractiveness is restricted in two ways: (i) by power-

train availability, which prevents that a certain powertrain (e.g. FC) is chosen 

if availability is zero (e.g. because there are no H2 filling stations); and (ii) by 

a measure of popularity (Eq. 4.23). The latter is represented by the stock 

variable degree of popularity (pop), which can be altered by the inflow 

gaining popularity and the outflow losing popularity (Eq. 4.24). The inflow 

is influenced by the aforementioned degree of innovativeness, to which an 

adjustment time (AT) ranging from 3 to 9 years is added. In other words, a 

popularisation effect through which powertrains that are perceived as innova-

tive (i.e. recently introduced in the market) become popular after some years 

is modelled. Given the decision rules assumed for each sub-group (recall 

Table 4.14), such popularisation effect can shape the choice of only the utility 

maximisers sub-group. Similar to the degree of innovativeness, the degree of 

popularity can erode over time. In this case, a time lag with a value equal to 

10 years is assumed to define the outflow. As expected, BEVs are the most 

popular powertrain in all the countries in 2030. Because popularity is mod-

elled as a function of innovativeness, the simulated values again do not 

change between scenarios. However, powertrain attractiveness as perceived 

by the utility maximisers sub-group does change between scenarios. The 

reason for this being that the simulated policies have an impact on the power-

train attributes. 

𝑈ℎ𝑖𝑡 =  𝑒(𝛼𝑖𝑡∗𝑝𝑟𝑖𝑐𝑒ℎ𝑖𝑡)+(𝛽𝑖𝑡∗𝑐𝑜𝑠𝑡ℎ𝑖𝑡)+(𝛾𝑖𝑡∗𝑟𝑎𝑛𝑔𝑒ℎ𝑖𝑡)+(𝛿𝑖𝑡∗𝑡𝑖𝑚𝑒ℎ𝑖𝑡)+( 𝑖𝑡∗𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛ℎ𝑖𝑡)+(𝜃𝑖𝑡∗𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒ℎ𝑖𝑡)  (4.22) 

𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠ℎ,𝑖,𝑡      =    𝑎ℎ,𝑖,𝑡   ∗   𝑈ℎ,𝑖,𝑡   ∗   𝑝𝑜𝑝ℎ,𝑖,          ∀ℎ, 𝑖, 𝑡 (4.23) 

[dmnl]                              [dmnl]     [dmnl]      [dmnl]  

𝑝𝑜𝑝ℎ,𝑖(t)      = ∫ [( 
𝑔𝑎𝑖𝑛𝑖𝑛𝑔ℎ,𝑖

𝐴𝑇
ℎ,𝑖
𝑖𝑛𝑓𝑙𝑜𝑤 )(𝑡) − (

𝑡

𝑡0

𝑙𝑜𝑠𝑖𝑛𝑔ℎ,𝑖

𝐴𝑇
ℎ,𝑖
𝑜𝑢𝑡𝑓𝑙𝑜𝑤)(𝑡)]𝑑𝑡 + 𝑝𝑜𝑝ℎ,𝑖(𝑡0)   (4.24) 

[dmnl]                     [dmnl/year]             [dmnl/year]               [dmnl] 
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Table 4.15: Utility coefficients, by attribute 

Purchase 

price  

Usage cost  (e-)Range  Recharging 

time 

Emissions 

 

Station 

coverage 

(𝛼) (𝛽) (𝛾) (𝛿) (휀) (휃) 

-0.5 -0.5 0.1 -0.1 -0.05 0.05 

Source: Own assumptions 

Figure 4.68 shows the dynamic behaviour of the variables degree of innova-

tion (inno) and pop, in relative terms, for gasoline and electric cars in Japan 

(in this market diesel cars remain unpopular).  The perceived innovation and 

popularity of gasoline cars starts declining after the commercialisation of 

EVs. The market introduction of PHEVs has a temporary adverse impact on 

the perceived innovation of BEVs. However this powertrain recovers quickly 

under the assumption that better batteries with greater e-range are perceived 

by the market as a series of innovative steps. The behaviour of PHEVs could 

be interpreted as a representation of fads. Due to the assumed time lags 

between innovation and popularisation, whereas the innovativeness of BEVs 

exceeds that of gasoline cars in 2012, the former become more popular than 

the latter only in 2019. 

 

Figure 4.68: Simulated relative degree of popularity in Japan | Source: Own work using Vensim® 
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With regards to the remaining two market segments, attractiveness is defined 

as follows: for the habit sub-group, the powertrain scrapped yields the highest 

level of attractiveness; for the low-cost sub-group, the cheapest powertrain 

(i.e. the one with the lowest purchase price at the year the choice is made) 

yields the greatest attractiveness. 

4.2.18 Electricity generation 

China, which has become the world’s largest generator of electricity, and 

India display a trend towards increased electricity generation. The rest of the 

analysed countries have a relatively stable level of electricity generation 

activity, with a recent dip caused by the financial crisis. This may change as a 

result of EV uptake, as it will be shown later. 

Currently, across the countries analysed in this work the degree of market 

concentration varies. In France and China, concentration is high: State-owned 

Électricité de France (EDF) is the main French electric utility and the Chi-

nese market is split in two electric utilities: Guójiā Diànwǎng Gōngsī (State 

Grid Corporation of China (SGCC)), the largest in the world, and Zhōngguó 

Nánfāng Diànwǎng (China Southern Power Grid Company Limited (CSG)). 

Regional players are present in Germany and Japan, where the electricity 

market continues to be shaped by the Fukushima nuclear disaster in 2011 (the 

short-term impact of this event is visible in Figure 4.73). In India, the market 

consists of public sector undertakings (PSUs), state-level corporations and 

private firms. The latter play a major role in the US, an early example of 

electricity market liberalisation. The trend towards decentralisation of elec-

tricity generation is not examined in this work. Figures 4.69-4.74 show how 

the utilities of these countries chose to generate electricity in the past using 

the energy sources available to them: oil, coal, natural gas, nuclear and 

renewables. Only in Japan does oil still hold a non-negligible share. There is 

an overall growing trend, at different paces in each country, for renewables. 

Coal dominates production in China and India. The mix is more diversified in 

Germany and the US. In France, nuclear energy reigns. Nuclear phase-out is 

underway in Germany, with inactivity in German nuclear power plants to be 

expected by 2022.  
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Figure 4.69: Electricity generation in China by source 

Source: Data (2000-2013) based on IEA (2016a) 

 

Figure 4.70: Electricity generation in France by source 

Source: Data (2000-2013) based on IEA (2016a) 
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Figure 4.71: Electricity generation in Germany by source 

Source: Data (2000-2013) based on IEA (2016a) 

 

Figure 4.72: Electricity generation in India by source 

Source: Data (2000-2013) based on IEA (2016a) 
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Figure 4.73: Electricity generation in Japan by source 

Source: Data (2000-2013) based on IEA (2016a) 

 

Figure 4.74: Electricity generation in the US by source 

Source: Data (2000-2013) based on IEA (2016a) 
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Assuming that the planned nuclear and renewables targets materialise (the 

extent to which the new US government reverses the policy pledges of the 

previous administration has not been taken into account), two types of sce-

narios for 2030 can be generated by giving different weights to coal and 

natural gas generation. In a hypothetical gas scenario, gas would fulfil the 

required electricity needs with gas turbine power plants gaining market share 

at the expense of alternatives. In the coal scenario, coal-fired power plants 

would continue to play an important role. This last scenario is the one adopted 

for reporting in this thesis. The assumed country-specific electricity mix is 

shown in Figure 4.75. It is assumed that oil will play no role in electricity 

generation in the future. The implications of neither merit-order situations nor 

emission trading schemes have been modelled. Simply, a trade-off between 

marginal cost (low for carbon, higher for natural gas) and carbon intensity 

(high for carbon, lower for natural gas) underpins the selected scenario. 

 

Figure 4.75: Electricity mix (coal scenario) by country in 2030 | Source: Own assumptions 

4.2.19 Energy use 

Figure 4.76 gives an overview of the ‘Energy Use’ sub-module. As can be 

recalled from section 4.2.12, the analysis of energy use may be framed in 

terms of expected travel demand or simulated travel demand. In the exposi-

tion, expected travel demand is chosen. 
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4.2.20 Emissions 

Three types of emissions are included in this modelling exercise: CH4, CO2 

and N2O. Because these gases are long-lived and have a global impact, the 

emission metric known as global warming potential for a hundred-year 

horizon (GWP-100) is conventionally adopted. But the choice of emission 

metric and time horizon is still under scientific debate (for a discussion of 

alternative metrics, see Shine (2009) and chapter 8 in IPCC (2013)). The 

assumed emissions values are respectively 25, 1 and 298 gCO2eq/gram (IPCC, 

2007b). Table 4.16 shows the assumed energy content (E) and emission 

factors (EFs) for five types of fuel included in the model. Since these values 

are used to calculate on-road emissions, the values assumed for electricity 

and hydrogen are zero. Eq. 4.25 shows how emissions are calculated in the 

Emission Factors sub-module. 

𝐺𝐻𝐺𝑓                        =   ∑ (𝐺𝑊𝑃𝑗         ∗      (𝐸𝐹𝑗
𝑓

   ∗            𝐸𝑓))𝑗   (4.25) 

[gCO2eq/unit of fuel]     [gCO2eq/gram]   [gram/MJ]   [MJ/unit of fuel] 

Table 4.16: Energy content and emission factors by fuel 

Fuel type 
Energy content Emission factor by type of GHG 

[MJ/litre] [gCH4/MJ] [gCO2/MJ] [gN2O/MJ] 

Gasoline 34.2 0.025 69.3 0.008 

Diesel 38.6 0.0039 74.1 0.0039 

E85 25.6 0.018 71.4 0** 

Autogas 26.8 0.062 63.1 0.0002 

CNG 50.0* 0.092 56.1 0.003 

*The unit is [MJ/kg]. **Representative of the bioethanol market in Brazil. Source: IPCC (2006)  

Figure 4.77 illustrates a summary of these calculations. Once CH4 and N2O 

emissions are taken into account, CNG supersedes diesel as the largest 

emitting fuel, with values close to 3,000 grams per kg and litre, respectively. 

Electricity and H2 emit no direct GHG emissions. However, the information 
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shown here is not directly related to emissions per km. For this, the corre-

sponding car-related fuel efficiencies by powertrain need to enter the calcula-

tion. This is considered next and described for the direct CO2 emissions of 

new cars by Eq. 4.26. The exception is PHEVs, which can be powered by 

more than one fuel.  

𝐶𝑂2𝑖,𝐶𝑂2,𝑡
𝑇𝑇𝑊  =               휆𝑖,𝑡           ∗   (𝐸𝐹𝐶𝑂2

𝑇𝑇𝑊,𝑓
   ∗            𝐸𝑓)      (4.26) 

[gram/km]     [unit of fuel/km]     [gram/MJ]     [MJ/unit of fuel] 

From the perspective of current regulation and consumer choice, only the 

direct CO2 emissions of the average new passenger car are of interest. This is 

part of the New Car Emissions sub-module. The implicit assumption is that 

consumers only consider CO2 emissions, as reported in manufacturers’ 

catalogues, in their decision-making process, thereby disregarding other types 

of GHG emissions. Notwithstanding, calculation of CH4 and N2O is desirable 

for a more accurate picture and this is included in the model. 

 

Figure 4.77: Direct GHG emissions by energy source 

Source: Own work based on data shown in Table 4.16 
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Figure 4.78: Direct emissions by powertrain in Germany 

Source: Own work based on data shown in Table 4.16 

In addition to direct or TTW emissions, it is of interest to provide information 

on indirect or WTT emissions. Based on the assumed electricity mix (section 

4.2.18) and the EFs for electricity highlighted in Table 4.17, WTT emissions 

for this type of source of energy can be derived. The results are shown in 

Figure 4.79. The values originated from the coal and gas scenarios differ, as 

expected. The behaviour in the case of Germany and, particularly, France 

require a brief explanation. Since nuclear energy generation is assumed to 

have the lowest value, any attempt to reduce its share will inevitably lead to 

higher emissions, ceteris paribus. 

Table 4.17: WTT electricity emissions by energy source 

Emission factors Oil Coal Natural gas Nuclear Renewables 

gCO2eq/kWh 840 1,001 469 16 27* 

*Unweighted average of wind, PV and concentrated solar. Source: Edenhofer et al. (2011) 
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Overall, the resulting WTT emissions related to EVs can be treated as con-

servative for two main reasons. Firstly, the scenario adopted for reporting 

emissions in this thesis is the coal one. Secondly, the EF for coal found in 

Edenhofer et al. (2011) represents the value at the fiftieth percentile of a 

literature review that comprised 52 references. The statistical range goes from 

675 to 1,689 gCO2eq/kWh. Since the EFs in Table 4.17 are assumed to remain 

constant throughout the simulation period, efficiency gains that may occur in 

the future are neglected. In the particular case of coal and natural gas, the 

assumption of static EFs is unlikely to hold, because investments in carbon 

capture and storage (CCS) may be made. In Edenhofer et al. (2011), the  

EFs from coal with CCS range from a minimum of 98 to a maximum of 

396 gCO2eq/kWh. In contrast to other energy carriers, it is important to stress 

that the EF for coal is subject to uncertainty arising not only from the tech-

nology employed to burn it, but also from the product itself. Different types 

of coals such as anthracite (i.e. hard coal) or lignite (i.e. brown coal) possess 

varying grades or levels of quality that affect emissions. For an example of 

EFs for coal used in German power plants, see FfE (2010). 

 

Figure 4.79: Carbon intensity of electricity generation by country 

Source: Data (2000-2013) based on (IEA, 2016a) and own assumptions 
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Taking into account WTT emissions associated with EVs is crucial. In 

addition, WTT emissions for the rest of fuels are required to obtain a less 

biased picture. The focus is on average emissions, and this reflects the im-

plicit assumption that EVs do not affect the average carbon intensity of the 

grid. This is unrealistic. An increase in the number of registered EVs leads to 

an increase in the demand for electricity, and this has implications for the 

sources of energy used to supply electricity. Research on marginal vs. aver-

age emissions from electricity generation is active. As noted in section 

4.2.18, capturing these feedback effects requires a more elaborate description 

of the electricity system that depicted here. 

With regards to the WTT emissions arising from upstream H2 and CNG 

production, there is also a lot of uncertainty as to which values can be plausi-

bly assumed. What is clear is that these are different from zero. Based on 

Canadian values, Cetinkaya et al. (2012) performed an LCA using various 

methods and found that GHG emissions related to hydrogen production range 

from 970-2,412 (using respectively wind and photovoltaic electrolysis) to 

11,893 as a result of natural gas steam reforming (NGSR). The latter is still 

the most common way of generating H2 (Turner, 2004). In the model, the 

2,412 value is selected given the expectation that electrolysis will play a 

greater role by 2030. Concerning CNG, for simplicity the same WTT values 

assumed for oil-based products are adopted for CNG. Note that differences 

between conventional natural gas and shale gas are to be expected. For more 

details, see Burnham et al. (2012), who used the Greenhouse gases, Regulat-

ed Emissions, and Energy use in Transportation (GREET) model. 

In recent years, there has been a boom in unconventional oil extraction, with 

hydraulic fracturing accounting for 51% of US crude oil extraction in 2015 

(EIA, 2016b). The WTT emissions of oil-based fuels are expected to differ if 

they are the result of conventional or unconventional oil extraction activity. 

To account for this possibility in the model, a stock that reflects the dynamic 

evolution of the share of conventional and unconventional oil was created. 

Throughout the modelling exercise, it shall be assumed for all the countries 

that the share of unconventional oil extraction and corresponding upstream 

emissions increases, as visible from Figure 4.80. 
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Figure 4.80: Oil extraction and upstream emissions | Source: Own assumptions 

Recently, the impact of indirect land use changes (ILUC) in the context of 

biofuel generation has been under much discussion. First generation biofuels, 

also known as agrofuels, can be produced from agricultural crops with 

differing environmental impacts. In the model, the variable indirect land use 

change CO2eq from biofuel production has a value of 34, which corresponds 

to 1G of ethanol production from wheat. According to Ecofys (2016), values 

may range from 14 (production from maize) to 231 (from palm oil). Figure 

4.81 shows the upstream emission assumptions for the remaining fuels. 

Finally, the model has a blend of 85% ethanol and 15% gasoline for FF cars 

set by default. 

Figure 4.82 shows the results of adding the assumed WTT GHG emissions to 

the numbers from Figure 4.78. Again, Germany is taken as an example and 

2015 values, reported in gCO2eq/km by powertrain, are derived. Based on this 

WTW metric, it can be deduced that FCs and BEVs are no longer zero 

emission technologies. But compared with the rest, these powertrains still 

rank as the lowest emitting. As the global trends towards greater extraction of 

unconventional oil and decarbonisation of the electricity grid continue, the 

WTW GHG emissions gap between electric and conventional cars can be 

expected to widen. 
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Figure 4.81: Upstream emissions by alternative fuel | Source: Own assumptions 

 

Figure 4.82: WTW emissions by powertrain in Germany 

Source: Own work based on data shown in Tables 4.16-4.17 and own assumptions 
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Strictly speaking, this modelling exercise is not an example of a lifecycle 

assessment/analysis (LCA). Instead, the work relies on values from desk 

research, if readily available, and own assumptions (see e.g. Figure 4.81). 

Hence these are generic and not specific, average values perhaps. As Ball and 

Wietschel (2009) indicate, in order to reach policy conclusions on the value 

of alternative fuels or powertrains, a thorough LCA is not required. 

Table 4.18: Car manufacturing and scrappage emissions 

Variable Name Value [Units] Source 

EV battery emissions 120 [kgCO2eq/kWh] Samaras and Meisterling (2008) 

Car manufacturing emissions 8,500 [kgCO2eq/car] Samaras and Meisterling (2008) 

Car scrappage emissions (ICE) 1,170 [kgCO2eq/car] Notter et al. (2010) 

Car scrappage emissions (BEV) 1,140 [kgCO2eq/car] Notter et al. (2010) 

4.3 Policy inputs 

The set of policies available to the model user in the version of the model 

presented in this thesis encompasses policy options of regulatory (standards) 

and economic nature (taxation, subsidies and investment). In this work, the 

terms policy input, variable, instrument, option and measure are used inter-

changeably. This section concisely describes the policy inputs that are related 

to the module Policy (see Figure 4.83). For further details on the numerical 

values adopted in the scenarios exercise, see Table 6.1 in section 6.1). Final-

ly, the role of budgets is illustrated. It is adventurous to ignore political 

realities by presuming that actual governments will devote quasi-unlimited 

resources to H2 infrastructure deployment or sustain EV subsidies for many 

years. The basic framework is represented by means of Eq. 4.27. 

𝐵ℎ(t)      = ∫ [𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑠ℎ  (𝑡) −  𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠ℎ
𝑡

𝑡0
(𝑡)]𝑑𝑡 + 𝐵ℎ(𝑡0)   (4.27) 

[currency]      [currency/year]   [currency/year]             [currency] 

where 𝐵 denotes a dedicated fund, as part of the government budget. 
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The implications of policies for the public budget are captured by the three 

stocks in that figure, namely the CV fund, the e-mobility fund and, for 

Germany, the scrappage fund. An example of the latter is an endowment of 

5 billion euros in 2007-2008, entirely depleted in 2009 (the year the scrap-

page scheme was implemented in Germany). 

4.3.1 Emission and efficiency standards 

The only regulatory instrument examined in this work refers to emission 

standards. Although specifically designed in the context of reducing direct 

CO2 emissions from cars, they are directly related to fuel consumption. 

Therefore, emission standards may be interpreted as car-related fuel efficien-

cy or fuel economy standards. In this thesis, the goal of this policy instrument 

is to reduce fuel use and direct CO2 emissions from new conventional cars. A 

linear relationship between litres of conventional fuel and grams of CO2 is 

assumed. 

4.3.2 Value added tax 

The value added tax (VAT) is also known as consumption tax in Japan and 

sales tax in the US. Conventionally understood, the goal of this policy in-

strument is to generate revenues. This variable is included in the model, 

albeit the country-specific value of VAT (i.e. VAT rate) remains constant 

throughout the modelling exercise. Figure 4.84 shows the percentage of VAT 

in each country in 2015. Between 2000 and 2015, the values are the same 

with two exceptions: (i) in France, VAT was 19.6% between 2000 and 2013; 

in Germany, VAT was 16% over the period 2000-2006. Although different 

products may have differing VAT rates reflecting preferential taxation (e.g. 

differing VAT rates for natural gas and electricity in France (IEA, 2016b)), it 

is assumed for simplicity that the same VAT rate applies to all the relevant 

variables in each country.  
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Figure 4.84: Value added tax rate by country | Source: Wikipedia (2016) 

4.3.3 Energy taxation 

The goal of this policy instrument is to influence energy prices. Energy 

taxation also provides a source of government revenue (see again Figure 

4.82). Economic policy inputs are set by the model user in nominal terms, 

encouraging the user to reflect on the inflation assumptions. Recalling 

Eq. 4.6, the energy tax is expressed by 𝜏ℎ,𝑡
𝑛𝑜𝑚. In particular, three examples of 

such policy input are given: fuel tax gasoline, fuel tax diesel and electricity 

tax. Throughout the modelling exercise presented here, the electricity tax, 

constrained by data availability, remains unchanged.  

4.3.4 EV purchase subsidies 

The goal of this policy instrument is to reduce the purchase price of EVs, 

thereby making them a more attractive option for prospective car purchasers. 

EV subsidies also represent a source of government expenditure (see again 

Figure 4.82). In this thesis, subsidies for only PHEVs and BEVs are  

examined.  
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4.3.5 Investment in refuelling infrastructure 

The goal of investing in refuelling and recharging infrastructure is to facili-

tate the market uptake of AFVs and EVs. The deployment of public refuel-

ling infrastructure represents a source of government expenditure (see again 

Figure 4.82). In order to invest in public refuelling infrastructure, information 

on deployment prices is needed. This is summarised in Table 4.19. The 

values are expressed in nominal terms and are assumed, for simplicity, to 

remain constant for the period 2015-2030. The implicit assumption is that 

potential reductions in deployment costs are offset by inflation. Fast EVSE is 

assumed to be more expensive than slow EVSE. 

Table 4.19: Deployment costs of EVSE and H2 refuelling infrastructure (2015) 

[curren-

cy/station] 
CN FR DE IN JP US 

Slow EVSE 59,161 8,566 8,566 609,443 1,150,000 9,500 

Fast  

EVSE 
379,877 55,000 55,000 3,913,000 7,384,000 61,000 

H2 6,227,000 901,659 901,659 64,150,000 121,040,000 1,000,000 

Source: own assumptions based on DOE (2015) 

Three policy inputs are available: investment in public slow EVSE, public fast 

EVSE and public H2 refuelling stations. As indicated in section 4.2.13, the 

assumptions concerning E85, autogas and CNG refuelling infrastructure 

remain unchanged. 

4.3.6 Desired car occupancy level 

The policy input termed desired car occupancy rate is thought to affect travel 

demand by car. The variable of interest in this case is the desired annual 

average VKT by car (𝑉𝐾𝑇ℎ,𝑡
∗ ), which complements the other two approaches 

described in section 4.2.12. 
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5 Reference scenario and testing 

This chapter reports on two aspects: the results of simulating the Reference 

Scenario (section 5.1) and the outcomes of model testing (section 5.2). The 

second scenario, called the Alternative Scenario (AS), is introduced in 

chapter 6. 

5.1 RS simulation 

As indicated in section 1.1, the model is capable of generating more than one 

scenario. For this thesis, two scenarios were constructed. This section illus-

trates the Reference Scenario (RS), which can be thought of as a business-as-

usual (BAU), current or base(line) scenario.  

According to the SD documentation tool known as SDM-Doc (see appendix 

II), the version of the model presented in this thesis contains 573 variables, of 

which 35 are state variables. When subscripts are taken into account, the 

number of elements exceeds 6,000. In order to solve the system of equations 

of the SD model, so that the dynamic behaviour of the modelled nonlinear 

system can be simulated, numerical integration is executed in Vensim®. 

Instead of using the data functions available in the software, the dataset is 

directly imported and loaded into the model, which speeds up computation. 

Using a standard laptop and Euler integration, only a few seconds of runtime 

are needed to obtain the model results. To find the approximate solution to 

the set of ordinary differential equations, initial values are required. Key 

initial values are shown in Tables 5.1-5.4.  
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Table 5.1: Initial values for the sales rate in 2000, by country and technology 

Tech-

nology 
CN FR DE IN JP US 

G 475,000 1,080,849 2,349,934 285,000 4,229,674 8,627,384 

D 25,000 1,046,485 1,026,002 15,000 17,698 22,823 

FF 0 0 0 0 0 112,820 

LPG 0 6,309 0 0 0 208 

NG 0 0 0 0 0 5,138 

HEV 0 0 0 0 12,500 9,350 

PHEV 0 0 0 0 0 0 

BEV 0 0 0 0 0 0 

FC 0 0 0 0 0 0 

Source: Based on information from the appendices 

Table 5.2: Initial values for the new car stock (𝑆𝑛𝑒𝑤) in 2000, by country and technology 

Tech-

nology 
CN FR DE IN JP US 

G 475,000 1,080,849 2,349,934 285,000 4,229,674 8,627,384 

D 25,000 1,046,485 1,026,002 15,000 17,698 22,823 

FF 0 0 0 0 0 112,820 

LPG 0 6,309 1,181 0 0 208 

NG 0 0 2,685 0 0 5,138 

HEV 0 0 0 0 12,500 9,350 

PHEV 0 0 0 0 0 0 

BEV 0 0 0 0 0 0 

FC 0 0 0 0 0 0 

Source: Based on information from the appendices 
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Table 5.3: Initial values for the middle car stock (𝑆𝑚𝑖𝑑) in 2000, by country and technology 

Tech-

nology 
CN FR DE IN JP US 

G 4,581,280 10,241,220 21,033,660 3,420,000 26,245,020 74,925,600 

D 241,120 5,144,412 3,198,600 150,000 2,616,000 60,000 

FF 0 0 0 0 0 48,000 

LPG 0 70,015 229 0 0 108,000 

NG 0 0 651 0 0 61,200 

HEV 0 0 0 0 22,741 12,000 

PHEV 0 0 0 0 0 0 

BEV 0 0 0 0 0 0 

FC 0 0 0 0 0 0 

Source: Based on information from the appendices 

Table 5.4: Initial values for the old car stock (𝑆𝑜𝑙𝑑) in 2000, by country and technology 

Tech-

nology 
CN FR DE IN JP US 

G 3,054,187 6,827,480 14,022,440 2,280,000 17,496,680 49,950,400 

D 160,747 3,429,608 2,132,400 100,000 1,744,000 40,000 

FF 0 0 0 0 0 32,000 

LPG 0 46,676 152 0 0 72,000 

NG 0 0 434 0 0 40,800 

HEV 0 0 0 0 15,161 8,000 

PHEV 0 0 0 0 0 0 

BEV 0 0 0 0 0 0 

FC 0 0 0 0 0 0 

Source: Based on information from the appendices 

At this stage, a collection of country-specific model output may be presented. 

The next charts, which show car stock under the RS, serve this purpose. Under 

this scenario, conventional cars continue to dominate the market until 2030.  
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Gasoline cars clearly dominate the Chinese market under the RS, represent-

ing 92% of the car-mix in 2030. As can be seen in Figure 5.1, HEVs rank 

second, with a share of 5% in 2030. Diesel retains its edge in the European 

countries, albeit with a declining future trend in France. Figure 5.2 shows that 

the number of gasoline and diesel cars in use in France under the RS is 

simulated to decline to ca. 6 and 12 million in 2030, respectively. Hybrid 

technology plays an increasing role over the simulation period. 

 

Figure 5.1: Car stock in China under the RS | Source: Own work using Vensim® 

  

Figure 5.2: Car stock in France under the RS | Source: Own work using Vensim® 
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In the German market, a relatively stable stock of gasoline cars in simulated 

under the RS (Figure 5.3). Two powertrains exhibit visible future growth: 

diesel and PHEV. Whereas the former ends up accounting for over one-third 

of the car stock, the latter penetrates the market at a relatively slow but solid 

pace, reaching 4% of the car-mix in 2030. 

Figure 5.4 shows that gasoline cars dominate the Indian market under the RS, 

followed by HEVs and, to a lesser extent, PHEVs and diesel cars. 

 

Figure 5.3: Car stock in Germany under the RS | Source: Own work using Vensim® 

 

Figure 5.4: Car stock in India under the RS | Source: Own work using Vensim® 
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In the case of Japan, by 2030 gasoline cars account for ca. 85% of the car 

stock under the RS (Figure 5.5). The number of PHEVs in use is simulated  

to reach almost 7 million, or ca. 10% of the market, in 2030. In the US,  

the market position of gasoline cars is virtually uncontested under the RS 

(Figure 5.6). Unique to this market is the modest stock of FF cars powered by 

E85: 3.5 million in 2030. 

 

Figure 5.5: Car stock in Japan under the RS | Source: Own work using Vensim® 

 

Figure 5.6: Car stock in the US under the RS | Source: Own work using Vensim® 
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The overall picture under the RS is that the market uptake of alternative 

powertrains has little reflection in the car stock until 2030. LPG and NG cars 

remain a niche option. In terms of electric cars, only PHEVs are simulated to 

gain some traction in the market under the RS.  

In terms of direct CO2 emissions, Figure 5.7 shows the results of the RS. 

China’s emissions are simulated to exceed those of the US in this decade, 

clearly becoming the largest emitting country of the ones analysed by 2030. 

In that year, TTW CO2 emissions in India and the US are simulated to reach a 

similar level. For the rest of the countries, a steady decline takes place. 

In the remaining part of this chapter, key assumptions are tested, without 

altering the values of the policy inputs described in section 4.3. This last task 

shall be performed in chapter 6. 

 

Figure 5.7: Direct CO2 emissions from cars under the RS | Source: Own work 
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empirical and application. The modelling exercise developed in the context of 

this thesis was particularly striving for application validity. In addition, a 

series of tests were conducted. Hensher et al. (2005) distinguish between 

maintained assumptions and testable assumptions. Some of the testable 

assumptions are checked in this section. For the methods used in this thesis, 

testing is important. Hendry (1980) emphasises the role of econometric 

testing. As a matter of fact, the number of econometric tests proposed in the 

literature is overwhelming. Sterman (2000) lists appropriate tests for SD 

models, including statistical ones (see his chapter 21). This section is divided 

into two broad types of model testing: pre-testing (section 5.2.1) and post-

testing (section 5.2.2).  

5.2.1 Pre-testing 

Building the SD sub-model was a highly iterative process and some of the 

usual tests have been performed rather informally, such as tests on boundary 

adequacy and behaviour reproduction. The main pre-tests undertaken for the 

SD sub-model were: (i) the integration error test; and (ii) the dimensional 

consistency test. 

SD conceptualises integral (or differential) equations. In practice, computer 

simulations applying numerical methods (usually Euler or Runge-Kutta), 

based on discrete mathematics, are used to approximate the solution. Morrison 

(2008) claims that 4th-order Runge-Kutta integration has the greatest versa-

tility. But in models with random disturbances, Sterman (2000) is cautious 

about its use. Bossel (2007b) concludes that the Euler-Cauchy numerical 

integrator is generally adequate for the purposes of SD models. 

The SD sub-model, which retrieves annual data (see section 3.4), uses by 

default a time step or delta time (DT) equal to 1 year. In order to avoid 

spurious dynamics arising from the DT error (Sterman, 2000), it is useful to 

test alternative DT values. A common procedure is to reduce DT by half and 

observe whether, and to what extent, the behaviour of the modelled system 

changes (see e.g. Ford (2010)). The numerical test is conducted by simulating 

the RS using the alternative DT values 0.5, 0.25, 0.125, 0.0625. For many 
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variables the test results in no changes in values and the overall behaviour of 

the system is not affected. Notwithstanding, it is desirable to examine the 

effect of different DT values on variables that are characterised by e.g. 

historical jumps. For illustrative purposes, Figure 5.8 shows the outcome of 

this test on the variable aggregate total car stock for Germany. There are 

some differences between the behaviour using the faster DT=1, which suffic-

es to replicate the historical data during the period of interest 2006-2008, and 

the rest. In addition to adjusting DT, the type of numerical integration may 

also be tested. The most common alternative to Euler in Vensim® is repre-

sented by 4th-order Runge-Kutta, which delivers greater accuracy. The 

outcome of this test is also visible in Figure 5.8. However, when discontinui-

ties are present in SD models, this alternative may pose integration problems, 

as noted above. Finally, it is worth noting that there is a trade-off between the 

DT error and errors arising from truncation and round-off in SD models 

(Sterman, 2000). For the purpose of this model, Euler integration with DT=1 

is judged to provide a reasonable solution. 

 

Figure 5.8: Integration error test using alternative DT values  

Source: Own work using Vensim® (see appendix I for dataset sources) 
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The remaining of the section is devoted to pre-testing for the econometric 

sub-model (recall section 4.2.8). Three main bodies of tests are reported: (i) 

unit root tests; (ii) structural break tests; and (iii) cointegration tests. Testing 

for unit roots is motivated by the possibility that time series follow a unit root 

process and by the result of the visual inspection of the data in section 4.2.8. 

Testing for structural breaks is considered because it can alter the conclusions 

derived from unit root tests, as shown by Perron (1989). If two series that are 

𝐼(1) are cointegrated, an ECM may be specified. The hypothesis of a cointe-

grated relationship can be formally tested. 

The first body of tests arises from the need to investigate whether the pro-

cesses under study are trend stationary (TS) (i.e. have a deterministic trend), 

difference stationary (DS) (i.e. have a stochastic trend) or a mix of both 

(Juselius, 2007). In theory, this is an important question, for the alternative 

remedies (detrending vs. differencing to eliminate the trend (Enders, 2014)) 

differ in implications (Baltagi, 2011). In practice and given the available 

sample, inferential errors may occur from unit root testing (Greene, 2011).  

Two types of tests of unit roots are considered: (i) the augmented Dickey-

Fuller (ADF) test, whose null hypothesis is that the time series process has a 

unit root (𝐻0: 𝑦 ~ 𝐼(1)) (Dickey and Fuller, 1979); and the Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) test, which holds the 𝐻0 that the series is 

stationary (𝑦 ~ 𝐼(0)) (Kwiatkowski et al., 1992).  

Do the series under analysis contain a single or multiple unit roots? Dickey 

and Pantula (1987) compare the traditional testing sequence with their alter-

native, concluding that the latter is more appropriate. Banerjee et al. (1993) 

and Enders (2014) also seem to endorse their alternative testing sequence for 

this task. To be consistent with the GETS approach, Charemza and Deadman 

(1997) suggest that the choice of augmentation be determined after systemat-

ically reducing the number of augmentations by imposing restrictions. For 

the ADF test, the lag selection is automatically determined based on the 

Akaike information criterion (AIC). In small T the AIC is perhaps better than 

the (Schwarz) Bayesian information criterion (S)BIC (Enders (2014) and 

Pickup (2014) citing Harvey (1993)). In some cases, a lag of order one is 
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manually chosen for 𝑙𝑜𝑤𝑛. Whereas only the intercept is added to test for 

∆𝑙𝑜𝑤𝑛; intercept and trend terms are included for 𝑙𝑜𝑤𝑛. The reported 

t-statistic values are based on MacKinnon (1996). The following decision 

rule is adopted: if the t-statistic is greater than the critical value (𝑡𝑐) at the 5% 

level, then the conclusion reached is ‘do not reject 𝐻0’; if the t-statistic is 

significant at the 5% level, then the decision is ‘reject 𝐻0’. With regards to 

the KPSS test, the decision rule adopted is: if the test statistic is greater  

than 𝑡𝑐 at the 5% level, then ‘reject 𝐻0’. The asymptotic 𝑡𝑐 values are taken 

from Kwiatkowski et al. (1992) (see EViews (2016) for further details). 

Table 5.5-Table 5.10 show a summary of unit root testing for each of the 

countries of interest. 

Table 5.5: Unit root testing for CN series 

 𝐻0: 𝑆𝑒𝑟𝑖𝑒𝑠~𝐼(1) 𝐻0: 𝑆𝑒𝑟𝑖𝑒𝑠~𝐼(0) 

ADF test KPSS test 

Variable Lag #  Intercept Intercept + 

Trend 

Intercept Intercept + 

Trend 

∆𝑙𝑜𝑤𝑛 0 

t-stat -6,100 

 

0,278 

 

 

 

 

5% -2,954 0,463 

p-value 0,000 – 

conclusion Reject Do not reject 

𝑙𝑜𝑤𝑛 1 

t-stat 

 

-1,444 

 

0,170 

5% -3,553 0,146 

p-value 0,828 - 

conclusion Do not reject Reject 

∆𝑙𝑟𝑖𝑛𝑐 1 

t-stat -4,223 

 

0,074  

 

 

 

5% -2,954 0,463 

p-value 0,002 – 

conclusion Reject Do not reject 

𝑙𝑟𝑖𝑛𝑐 3 

t-stat 

 

-2,822 

  

5% -3,558 

p-value 0,200 

conclusion Do not reject 

Source: Own work using EViews® (see appendix I for dataset sources) 
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Table 5.6: Unit root testing for FR series 

 𝐻0: 𝑆𝑒𝑟𝑖𝑒𝑠~𝐼(1) 𝐻0: 𝑆𝑒𝑟𝑖𝑒𝑠~𝐼(0) 

ADF test KPSS test 

Variable Lag #  Intercept Intercept + 

Trend 

Intercept Intercept + 

Trend 

∆𝑙𝑜𝑤𝑛 0 

t-stat -2,140 

 

0,826 

 
5% -2,919 0,463 

p-value 0,230 – 

conclusion Do not reject Reject 

∆𝑙𝑟𝑖𝑛𝑐 0 

t-stat -3,783 

 

0,336 

 
5% -2,951 0,463 

p-value 0,007 – 

conclusion Reject Do not reject 

𝑙𝑟𝑖𝑛𝑐 1 

t-stat 

 

-1,048 

 

0,175 

5% -3,548 0,146 

p-value 0,923 – 

conclusion Do not reject Reject 

Source: Own work using EViews® (see appendix I for dataset sources) 

Table 5.7: Unit root testing for DE series 

 𝐻0: 𝑆𝑒𝑟𝑖𝑒𝑠~𝐼(1) 𝐻0: 𝑆𝑒𝑟𝑖𝑒𝑠~𝐼(0) 

ADF test KPSS test 

Variable Lag #  Intercept Intercept + 

Trend 

Intercept Intercept + 

Trend 

∆𝑙𝑜𝑤𝑛 0 

t-stat -5,736 

 

0,707  

 

 

 

5% -2,930 0,463 

p-value 0,000 – 

conclusion Reject Reject 

𝑙𝑜𝑤𝑛 1 

t-stat 

 

-1,031 

 

0,216 

5% -3,516 0,146 

p-value 0,929 – 

conclusion Do not reject Reject 

∆𝑙𝑟𝑖𝑛𝑐 1 

t-stat -5,345 

 

0,264  

 

 

 

5% -2,954 0,463 

p-value 0,000 – 

conclusion Reject Do not reject 

𝑙𝑟𝑖𝑛𝑐 1 

t-stat 

 

-2,357 

 

0,174 

5% -3,548 0,146 

p-value 0,394 - 

conclusion Do not reject Reject 

Source: Own work using EViews® (see appendix I for dataset sources) 
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Table 5.8: Unit root testing for IN series 

 𝐻0: 𝑆𝑒𝑟𝑖𝑒𝑠~𝐼(1) 𝐻0: 𝑆𝑒𝑟𝑖𝑒𝑠~𝐼(0) 

ADF test KPSS test 

Variable Lag #  Intercept Intercept + 

Trend 

Intercept Intercept + 

Trend 

∆𝑙𝑜𝑤𝑛 0 

t-stat -3,710 

 

0,473 

 
5% -2,957 0,463 

p-value 0,009 - 

conclusion Reject Reject 

𝑙𝑜𝑤𝑛 1 

t-stat 

 

0,030 

 

0,184 

5% -3,558 0,146 

p-value 0,995 – 

conclusion Do not reject Reject 

∆𝑙𝑟𝑖𝑛𝑐 0 

t-stat -4,235 

 

0,680 

 
5% -2,951 0,463 

p-value 0,002 – 

conclusion Reject Reject 

𝑙𝑟𝑖𝑛𝑐 1 

t-stat 

 

-0,916 

 

0,188 

5% -3,548 0,146 

p-value 0,942 – 

conclusion Do not reject Reject 

Source: Own work using EViews® (see appendix I for dataset sources) 
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Table 5.9: Unit root testing for JP series 

 𝐻0: 𝑆𝑒𝑟𝑖𝑒𝑠~𝐼(1) 𝐻0: 𝑆𝑒𝑟𝑖𝑒𝑠~𝐼(0) 

ADF test KPSS test 

Variable Lag #  Intercept Intercept + 

Trend 

Intercept Intercept + 

Trend 

∆𝑙𝑜𝑤𝑛 0 

t-stat -3,541 

 

0,662 

 
5% -2,917 0,463 

p-value 0,011 - 

conclusion Reject Reject 

𝑙𝑜𝑤𝑛 1 

t-stat 

 

-2,588 

 

0,225 

5% -3,495 0,146 

p-value 0,287 – 

conclusion Do not reject Reject 

∆𝑙𝑟𝑖𝑛𝑐 0 

t-stat -4,016 

 

0,491 

 
5% -2,951 0,463 

p-value 0,004 – 

conclusion Reject Reject 

𝑙𝑟𝑖𝑛𝑐 1 

t-stat 

 

-1,831 

 

0,173 

5% -3,548 0,146 

p-value 0,667 – 

conclusion Do not reject Reject 

Source: Own work using EViews® (see appendix I for dataset sources) 

Table 5.10: Unit root testing for US series 

 𝐻0: 𝑆𝑒𝑟𝑖𝑒𝑠~𝐼(1) 𝐻0: 𝑆𝑒𝑟𝑖𝑒𝑠~𝐼(0) 

ADF test KPSS test 

Variable Lag #  Intercept Intercept + 

Trend 

Intercept Intercept + 

Trend 

∆𝑙𝑜𝑤𝑛 0 

t-stat -2,732  0,821  

5% -2,918 0,463 

p-value 0,075 - 

conclusion Do not reject Reject 

∆𝑙𝑟𝑖𝑛𝑐 0 

t-stat -4,067 

 

0,379 

 

5% -2,951 0,463 

p-value 0,003 - 

conclusion Reject Do not reject 

𝑙𝑟𝑖𝑛𝑐 1 

t-stat 

 

-1,473 

 

0,177 

5% -3,548 0,146 

p-value 0,819 - 

conclusion Do not reject Reject 

Source: Own work using EViews® (see appendix I for dataset sources) 
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As a result of these formal tests, it can be concluded that the examined series 

display nonstationary properties. This is in line with the preliminary visual 

inspection of the data. From this analysis, the following inferences are drawn: 

 CN: 𝑙𝑜𝑤𝑛~𝐼(1) and 𝑙𝑟𝑖𝑛𝑐~𝐼(1) 

 FR: 𝑙𝑜𝑤𝑛~𝐼(2) and 𝑙𝑟𝑖𝑛𝑐~𝐼(1) 

 DE: 𝑙𝑜𝑤𝑛~𝐼(1) and 𝑙𝑟𝑖𝑛𝑐~𝐼(1) 

 IN: 𝑙𝑜𝑤𝑛~𝐼(1) and 𝑙𝑟𝑖𝑛𝑐~𝐼(1) 

 JP: 𝑙𝑜𝑤𝑛~𝐼(1) and 𝑙𝑟𝑖𝑛𝑐~𝐼(1) 

 US: 𝑙𝑜𝑤𝑛~𝐼(2) and 𝑙𝑟𝑖𝑛𝑐~𝐼(1) 

This information can support the specification of both ARIMA and ADL 

models. Some caveats are due: (i) for China, the null of stationarity using the 

KPSS test for 𝑙𝑟𝑖𝑛𝑐 could not be rejected; (ii) for Japan, the correlogram in 

Figure 4.44 was displayed in second differences; but ADF and KPSS unit 

root testing provides no evidence of 𝑌~𝐼(2); and (iii) for France and the US, 

the outcomes of the unit root tests suggest 𝑙𝑜𝑤𝑛~𝐼(2), but the presence of 

such series is not very usual in applied econometric work. 

The second body of tests relates to structural breaks. A sudden change in 

structure, which may be caused by a policy regime change (Enders, 2014), is 

the feature of nonstationarity that is the hardest to handle (Chatfield, 2003). 

Nelson and Plosser (1982) argued that nonstationary economic time series are 

often due to unit roots. However, they did not take into account structural 

breaks. Perron (1989) did so by specifying a single predetermined (i.e. non-

endogenous) break in the series, thereby reaching a different conclusion. 

Research by Zivot and Andrews (2002) using an estimated breaking point led 

them to a conclusion more in line with the original of Nelson and Plosser 

(1982). These papers highlight the importance of unit root testing that takes 

into account the possibility of breakpoints. In the presence of structural 

breaks, unit root tests have low power (Campos et al., 1996).  
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In view of the risk of drawing erroneous inferences, it is desirable to contrast 

the previous outcomes of unit root testing with the results of testing for 

structural breaks. In EViews®, this can be examined by conducting unit root 

tests with a breakpoint (see EViews (2016) for details). The view that unit 

root testing for structural change should be performed on the full sample is 

accepted by Enders (2014). 

The following historical events may have a priori impacted some of the series 

under study: oil crises and price shocks (1973-74; 1979; 1990), Japanese 

asset price bubble (1986-1991), German reunification (1990) and economic 

crises. The latter include the early 1990s recession in the US and the 2007-

2009 financial crisis.  

From section 4.2.8, structural breaks in the German and US series were 

visible. The results of breakpoint unit root testing for each country is shown 

below. Table 5.11 provides a summary of the test for the German series 

𝑙𝑜𝑤𝑛: (i) an additive outlier (AO) test was chosen, that is, with an immediate 

break; (ii) an intercept break (𝐷𝑈𝑡), that is a level dummy, was specified; (iii) 

EViews® reports the break date at the beginning of the new regime as  

𝑇𝐵 = 1992; and (iv) 𝐻0: 𝑦 ~ 𝐼(1) cannot be rejected. 

Table 5.11: Breakpoint unit root testing on German 𝑙𝑜𝑤𝑛 

 
Source: Own work using EViews® (see appendix I for dataset sources) 

Null Hypothesis: LOWN_DE has a unit root

Trend Specification: Intercept only

Break Specification: Intercept only

Break Type: Additive outlier

Break Date: 1992

Break Selection: Minimize Dickey-Fuller t-statistic

Lag Length: 0 (Automatic - based on Schwarz information criterion,

        maxlag=9)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -1.597444  > 0.99

Test critical values: 1% level -4.949133

5% level -4.443649

10% level -4.193627

*Vogelsang (1993) asymptotic one-sided p-values.
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The results for the US series 𝑙𝑜𝑤𝑛 are shown in Table 5.12: (i) the test was 

specified as an innovation outlier (IO), that is, with a gradual break; (ii)  

a trend break (𝐷𝑇𝑡), that is a trend slope change, was specified; (iii)  

𝑇𝐵 = 2008; and (iv) 𝐻0: 𝑦 ~ 𝐼(1) cannot be rejected.  

Table 5.12: Breakpoint unit root testing on US 𝑙𝑜𝑤𝑛 

 
Source: Own work using EViews® (see appendix I for dataset sources) 

In sum, whereas the result of testing for a breakpoint in the German series is 

in line with the previous unit root test; this is not the case for the US series. 

Here, the null of a unit root process cannot be rejected when testing for a 

breakpoint. Testing for multiple breakpoints could provide additional insights. 

The possibility that two 𝐼(1) series are cointegrated is examined. In the 

developed model, the dependent variable is ‘car ownership’ (car/population). 

The possibility of a cointegration relationship between ‘car ownership’ and 

‘income per capita’, in logs, is investigated. Preliminary data analysis sug-

gests that such a relationship is present in some of the countries investigated.  

So far, China, Germany, India, Japan are identified as potential candidates for 

determining a cointegrated relationship. Testing for cointegration is therefore 

conducted for the series of these countries. Establishing such a relationship 

Null Hypothesis: LOWN_US has a unit root

Trend Specification: Trend and intercept

Break Specification: Trend only

Break Type: Innovational outlier

Break Date: 2008

Break Selection: Minimize Dickey-Fuller t-statistic

Lag Length: 1 (Automatic - based on Schwarz information criterion,

        maxlag=8)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -3.702076  0.3013

Test critical values: 1% level -5.067425

5% level -4.524826

10% level -4.261048

*Vogelsang (1993) asymptotic one-sided p-values.
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for France and the US becomes more complicated because of the need to 

include additional explanatory variables and assume future values of these.  

If a cointegrated relationship is found, an arrow of causation from income to 

car ownership shall be established by the author on grounds of economic 

theory. In practice, this means that the assumption of future income per capita 

would determine the forecasted level of car ownership and, in turn, the 

projected aggregate total car stock in each of the countries examined. 

With regards to the SD sub-model, an important type of pre-test is dimen-

sional analysis. Any model equation is either dimensionally correct or incor-

rect. Whereas the former does not necessarily mean that the relationship is 

correct, the latter clearly signals a problem (Ford, 2010). Note that in the SD 

sub-model, 𝑝𝑜𝑝 is expressed in terms of passenger, not people. This is simply 

done to ensure dimensional consistency when this variable is related to 

common metrics found in transport statistics, such as passenger/km. In 

Vensim®, the units of all the equations of any SD model can be checked for 

consistency in an automated manner. When applied to the SD sub-model 

developed in this work, the software delivers a message of unit consistency. 

This is interpreted as a positive outcome in testing for dimensional consistency. 

5.2.2 Post-testing 

As indicated previously, there is no pretention in this work of conducting an 

exercise of fine forecasting accuracy. Notwithstanding, an evaluation of the 

car ownership projections, as shown in section 4.2.8, is informative. Optimal 

forecasts are defined as those yielding the lowest mean square error (MSE) 

(Box and Jenkins, 1976) (Pindyck and Rubinfeld, 1991). EViews® reports the 

root mean square error (RMSE) and the Theil inequality statistic, which can 

be decomposed into the bias, variance and covariance proportions. With the 

exception of the US, the bias proportion is high, suggesting that there is room 

for improvement in these forecasts, particularly for China and Japan. Con-

cerning similar work, Table 5.13 provides a summary of selected studies and 

their main results. 
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With regards to the SD sub-module, two tasks are performed: (i) a compari-

son of model fit for selected results; and (ii) sensitivity analysis. 

Table 5.13: Alternative 2030 projections of car stock 

Million cars in year 

2030, by country 
CN FR DE IN JP US 

Adopted in this study 267 26 54 162 69 134 

Other studies 335-390* 47 47 143-157* NA 223-231* 

*Private LDVs. Source: EC (2016c), Huo and Wang (2012) and IEA (2016c) 

Figure 5.9 and 5.10 provide visual information on the data and simulated 

values of gasoline and diesel car stock in the European countries. Figure 5.11 

illustrates the model output for HEVs in Japan and its discrepancy with 

available data points. Figure 5.12 shows the model output on AFVs in the 

US. For China and India, this type of disaggregated data is not available for 

the powertrains considered. Fortunately, data on EV sales and stock for all 

the countries investigated in this thesis is available. The model output high-

lighting EVs shall be shown in chapter 6. In the RS, there are no FC cars in 

any country, because the H2 infrastructure is insufficient to make this tech-

nology attractive. 
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Figure 5.9: Gasoline and diesel car stock in France 

Source: Own work using Vensim® (see appendix I for dataset sources) 

 

Figure 5.10: Gasoline and diesel car stock in Germany 

Source: Own work using Vensim® (see appendix I for dataset sources) 
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Figure 5.11: Hybrid (HEV) car stock in Japan 

Source: Own work using Vensim® (see appendix for I dataset sources) 

 

Figure 5.12: Alternative fuel  car stock in the US 

Source: Own work using Vensim® (see appendix I for dataset sources) 
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The constants of the model are readily amenable to sensitivity analysis. The 

assumption of the average car lifetime has implications for the speed of 

technology transition. The higher this value, the longer the process, ceteris 

paribus. To demonstrate this, the value of the total average car lifetime is 

lowered, from 16 years to 12 years. As a result, alternative powertrains 

achieve a slightly higher share in the car mix (see an example in Figure 5.13). 

 

Figure 5.13: Testing a shorter average car lifetime in France | Source: Own work using Vensim® 

In the model, the EVB cost is affected by the learning rate and the cumulative 

production of EVs. By endogenising the latter, the EVB cost can be altered. 

The partial endogenisation of the EVB cost is tested using several values (see 

Figure 5.14). As shown in the figure, the evolution of the EVB cost curve is 

higher in the RS, which rules out endogenisation. RS13, RS14 and RS15 

refer to endogenisation for the years 2013, 2014 and 2015, respectively. This 

means that the experience curve no longer relies on historical data on cumu-

lative EV production, but is instead based on the cumulative EV production 

simulated in the model. For instance, under RS15, the EVB cost is deter-

mined using data for the period 2000-2014 and the simulated cumulative EV 

production for the period 2015-2030. This formulation is adopted in both the 

RS and the AS. In this way, the six countries investigated in this work are 

jointly connected, thereby determining their future EV market evolution.  
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Figure 5.14: Testing for year of battery cost endogenisation 

Source: Data and projection from EVI (2016b) and own simulation 

A more systematic way of testing numerical values is represented by sensitiv-

ity analysis. This technique provides insights into uncertainty and policy 

robustness (Struben and Sterman, 2008). Vensim® facilitates performing 

Monte Carlo (MC) simulation to accomplish sensitivity analysis. As an 

example of univariate sensitivity analysis, the variable learning rate is 

chosen as a potentially critical candidate. A uniform probability distribution 

ranging from a minimum value of 0.05 to a maximum value of 0.2 is defined 

for the cost reduction fraction, which affects the EVB learning rate. Two 

hundred simulations are performed and their impact on the BEV stock in  

the US is plotted. Figure 5.15 is the result. As can be seen, the value of the 

BEV stock in the US under the RS is slightly lower than the data suggests. As 

time goes by, the dynamic confidence bounds widen. By 2030, MC simula-

tions point at a possible divergence of almost 500,000 BEVs, most of it 

above the RS. 
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Figure 5.15: Monte Carlo simulation for battery cost reduction 

Source: Own work using Vensim®  
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6 Alternative scenario, policy 
analysis and impacts 

This chapter outlines the simulation of the Alternative Scenario (section 6.1) 

as a result of conducting policy analysis (section 6.2). Finally, the impacts on 

energy demand and emissions are summarised (section 6.3). 

6.1 AS simulation 

The RS sought to simulate, for each country, one possible future develop-

ment pathway of the car-mix and its impacts (e.g. direct CO2 emissions). The 

defining feature of that scenario was the absence of new policy measures. 

Given the policy goal (recall section 1.2) of reducing oil demand and GHG 

emissions from cars, success was rather limited under that scenario. To 

perform policy analysis and compare results with the RS, different scenarios 

may be constructed. As part of the development of the model, a large number 

of simulations were performed. By simply changing one parameter, a differ-

ent scenario emerges. This thesis does not seek to illustrate the results of 

many scenarios, the exception being the Monte Carlo analysis from the 

previous section. The model is capable of generating a large number of 

scenarios and any potential model user may explore this possibility. In this 

chapter, the AS is introduced. The AS is a normative attempt to – paraphras-

ing Knight – make conduct more intelligent, thereby decreasing car-related 

oil demand and GHG emissions further. In practice, this task is entrusted to 

the model user, who implements a feedforward loop by altering only the 

policy inputs. The dotted arrows departing from the Energy and Emissions 

modules in Figure 4.2 denote the feedforward loop modelled under this AS. 

There are two practical ways to achieve this: (i) by backcasting, thereby 

defining policy targets and changing the policy inputs as needed to meet 

them; or (ii) amending the values of the policy inputs in a relatively realistic 

manner, as judged by the model user, and letting the dynamic behaviour to 
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play out. An example of the first approach can be found in Haasz et al. 

(2018). The second approach is adopted in this thesis. Table 6.1 shows the 

differences in values between the two scenarios presented in this thesis for 

three policy measures. In addition, under the AS other policies are intro-

duced: purchase subsidies for PHEVs and BEVs between 2017 and 2020 and 

investment in recharging and hydrogen refuelling infrastructure between 

2017 and 2019. The country-specific purchase subsidy levels are ¥10,000 

(CN), €3,000 (FR and DE), ₹80,000 (IN), ¥400,000 (JP) and $3,000 (US) for 

PHEVs and ¥15,000 (CN), €4,000 (FR and DE), ₹100,000 (IN), ¥500,000 

(JP) and $4,000 (US) for BEVs. In terms of infrastructure, electric cars 

benefit from the following investments in recharging stations: ¥2.7 bn (CN), 

€95 mio (FR), €44 mio (DE), ₹59 mio (IN), ¥31 bn (JP) and $137 mio (US). 

The assumed investment in hydrogen refuelling stations under the AS is as 

follows: ¥12 mio (CN), €5.4 mio (FR), €30 mio (DE), ₹256 mio (IN), ¥9 bn 

(JP) and $7 mio (US). 

The AS is constructed by amending the policy inputs in the data file (see 

appendix I). The procedure is as follows: the model user changes the values 

in the orange cells of the Excel file named ‘Data’ that accompanies the model 

(see Figure 6.1). Next, the data file is re-imported in Vensim®, so that the 

database the software is working with is up-to-date (i.e. reflects the most 

recent changes in the policy inputs). Then, a new simulation can be run.  

 

Figure 6.1: Excerpt of the ‘Data’ spreadsheet linked to the model 

Source: Own work using Excel®  

 

 

Policy input 2014 2015 2016 2017 2018 2019 2020 2021

emission standard average new car[France] 114 95

fuel tax gasoline[France] 0,61 0,62 0,64 0,64 0,64 0,64 0,64 0,64

fuel tax diesel[France] 0,43 0,49 0,50 0,64 0,64 0,64 0,64 0,64

EV purchase subsidy[France,PHEV] 0 0 0 3000 3000 3000 3000 0

EV purchase subsidy[France,BEV] 0 0 0 4000 4000 4000 4000 0

budget public slow EVSE deployment[France,BEV] 7E+07 0 0 7E+07 7E+07 7E+07 0 0

budget public fast EVSE deployment[France,BEV] 2E+07 0 0 2E+07 2E+07 2E+07 0 0

budget public H2 station deployment[France,FC] 5E+06 0 0 5E+06 5E+06 5E+06 0 0

linear interpolation between initial and final value

https://en.wikipedia.org/wiki/%C2%A5
https://en.wikipedia.org/wiki/%C2%A5
https://en.wikipedia.org/wiki/%C2%A5
https://en.wikipedia.org/wiki/%C2%A5
https://en.wikipedia.org/wiki/%C2%A5
https://en.wikipedia.org/wiki/%C2%A5
https://en.wikipedia.org/wiki/%C2%A5
https://en.wikipedia.org/wiki/%C2%A5
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Below Figures 6.2-6.7 show the simulated EV stock, with a distinction 

between PHEV and BEV, compared with historical data from each country. 

The simulated values are, until 2015, the same under the RS and the AS. As 

can be seen, the model underpredicts for China and the US and overpredicts 

for the rest, especially for India in 2015. It is worth remembering that the 

market evolution of electric powertrains is still at an early stage and the data 

covers only a few years, so it is not possible to discern a solid trend. 

 

Figure 6.2: EV stock in China (2005-2015): simulation vs. data 

Source: Based on EVI (2016b) and own simulation 

 

Figure 6.3: EV stock in France (2005-2015): simulation vs. data 

Source: Based on EVI (2016b) and own simulation 
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Figure 6.4: EV stock in Germany (2005-2015): simulation vs. data 

Source: Based on EVI (2016b) and own simulation 

 

Figure 6.5: EV stock in India (2005-2015): simulation vs. data 

Source: Based on EVI (2016b) and own simulation 
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Figure 6.6: EV stock in Japan (2005-2015): simulation vs. data 

Source: Based on EVI (2016b) and own simulation 

 

Figure 6.7: EV stock in the US (2005-2015): simulation vs. data 

Source: Based on EVI (2016b) and own simulation 

Furthermore, the sum of the EV stock values of the six countries analysed in 

this work is shown in Figure 6.8. As can be seen, EV market uptake begins 

later in the model but catches up by 2015. The six countries examined account 
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Figure 6.8: World EV stock and in analysed countries 

Source: Based on EVI (2016b) and own simulation 

 

Figure 6.9: EV stock scenarios in analysed countries | Source: Own simulation 

In terms of future car stock by powertrain, Figure 6.9 shows the total EV 

stock of the six countries analysed in this work put together, highlighting the 

increasingly wider spectrum of possibilities that lie between the RS and the 

AS. By 2030, the possibility space is defined by ca. 34 million electric cars at 

the lower end and over 250 million at the upper end. 

0.0

0.5

1.0

1.5

[m
il

li
o

n
 c

a
r
s]

Sim PHEV (6 countries) Sim BEV (6 countries)

Data PHEV (6 countries) Data EV (6 countries)

Data EV (world)

0

50

100

150

200

250

300

[m
il

li
o

n
 e

le
c
tr

ic
 c

a
r
s]

CN, FR, DE, IN, JP, US



6  Alternative scenario, policy analysis and impacts 

204 

By country, Figures 6.10-6.15 are the counterparts of Figures 5.1-5.6, albeit 

for the AS. Under this scenario, FC cars are constrained to zero, a restriction 

that shall be lifted in the next section. 

 

Figure 6.10: Car stock in China under the AS | Source: Own work using Vensim® 

 

Figure 6.11: Car stock in France under the AS | Source: Own work using Vensim® 

0

50

100

150

200

250

300

[m
il

li
o
n

 c
a
r
s
]

FC

BEV

PHEV

HEV

NG

LPG

FF

D

G

0

5

10

15

20

25

30

35

[m
il

li
o

n
 c

a
r
s]

FC

BEV

PHEV

HEV

NG

LPG

FF

D

G



6.1  AS simulation 

205 

In the markets with rapid motorisation, the simulated growth in EV stock is 

impressive. These countries benefit from projected growth in car ownership, 

overcoming the conventional technology lock-in. In the mature car markets, 

the AS leads to the simulation of a larger BEV stock (recall that in the figures 

based on the RS, BEVs were not visible). Still, EVs represent a minor pro-

portion of the car market until 2030. Nevertheless, a trend towards e-mobility 

begins to emerge and the importance of EVs in the simulated markets is 

increasing. 

 

Figure 6.12: Car stock in Germany under the AS | Source: Own work using Vensim® 

Remarkable kinks can be seen for China and India. This can be mainly 

explained by the size of the market assumed to purchase a car for the first 

time using a decision rule that favours low-cost technology. As soon as an 

alternative powertrain becomes cheaper than conventional cars, a portion of 

the market adjusts very fast. In this simulation, the Chinese market polarises 

into two powertrains (gasoline and BEV), equally important by 2030. In the 

case of India, the steady gasoline and diesel car stock beyond 2025 is the 

result, not of zero conventional car sales, but of a low sales rate virtually 
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Figure 6.13: Car stock in India under the AS | Source: Own work using Vensim® 

 

Figure 6.14: Car stock in Japan under the AS | Source: Own work using Vensim® 

Unique to Japan is the fact that, under the AS, the split between PHEVs and 
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Figure 6.15: Car stock in the US under the AS | Source: Own work using Vensim® 

 

Figure 6.16: Car mix (%) in 2030: RS vs. AS | Source: Own work 
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To facilitate the comparison of results between both scenarios, RS and AS 

are plotted together in Figure 6.16 using 2030 values of the car mix in each 

country. 

How the AS was constructed is the topic of the next section. For illustrative 

purposes, only one country is presented for each policy input. The chosen 

examples should not be mistaken as case studies examining policies under 

discussion. 

6.2 Model-based policy analysis 

In China, EVs are also known as new energy vehicles (NEVs). The promo-

tion of NEVs is being pushed through ambitious policies, including a strin-

gent technology quota mandate applicable to new car sales. This policy 

measure is not investigated in this work. Instead, the effect of changing the 

policy input explained in section 4.3.1 is described. Under the AS, the intro-

duction of stricter emission standards for new cars is simulated. By assuming 

that it falls on conventional cars’ shoulders, a decrease in the fuel intensity of 

the average new gasoline and diesel car can be expected (see Figure 6.17).  

In the model, pushing the technical limits to improve the ICE, so that more 

stringent standards can be met, leads to higher manufacturing costs. This is 

not entirely unrealistic, given the position of OEMs on such regulation. A rise 

in the cost of manufacturing the powertrains that rely on the ICE (with the 

exceptions of HEVs and PHEVs), is modelled under the AS (see Figure 6.18),  

and assumed to be fully passed onto the purchase price. Mathematically, it is 

assumed that OEMs incur in a 20% rise in manufacturing cost when the fuel 

intensity of gasoline and diesel cars relative to the year 2000 falls below 0.7. 
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Figure 6.17: Setting stricter standards in China | Source: Own work using Vensim® 

This policy measure is regarded as a cost-effective means of reducing oil use 

and emissions in transport (Sperling and Gordon, 2009). Figure 6.19 illus-

trates the simulated reduction of oil demand associated with this measure. 

However, its lasting success depends on potential rebound effects, which 

requires further examination. 

 

Figure 6.18: Effect of stricter standards on car prices in China 

Source: Own work using Vensim® 

fuel intensity new car litre

0.1

0.075

0.05

0.025

0

2000 2004 2008 2012 2016 2020 2024 2028

Time (Year)

li
tr

e/
k
m

fuel intensity new car litre[China,G] : RS

fuel intensity new car litre[China,G] : AS

fuel intensity new car litre[China,D] : RS

fuel intensity new car litre[China,D] : AS

0

50,000

100,000

150,000

200,000

[y
u

a
n

 /
 c

a
r
]

G (RS)

G (AS)

D (RS)

D (AS)



6  Alternative scenario, policy analysis and impacts 

210 

 

Figure 6.19: Effect of stricter standards on oil demand in China 

Source: Own work using Vensim® 

Among the countries analysed, diesel cars are popular only in European 

countries. Cames and Helmers (2013) suggest that the dieselisation process 

initiated in the 1980s and 1990s was motivated by the search of a market for 

middle distillates. Favourable taxation for diesel fuel has facilitated this 

process. Recent events have questioned the environmental merits of diesel 

cars. An increase in the tax rate for diesel fuel shall be explored. Raising this 

type of indirect tax can be thought of as a market-based solution to tackle an 

environmental externality and interpreted as a corrective or Pigouvian tax 

(Stiglitz and Rosengard, 2015). Below Figure 6.20 shows the pairing of the 

tax rate of diesel and gasoline in France the year 2017. This example illus-

trates the effect of changing the policy input explained in section 4.3.3. 

The short-term effect of matching the level of taxation for diesel and gasoline 

is that the pump price for both fuels is similar and, as a result, new diesel cars 

become less attractive, ceteris paribus. Figure 6.21 illustrates the effects of 

this policy on the sales rate of three powertrains (diesel, HEV and PHEV), 

measured as the difference with respect to the tax regime in place under RS. 

As can be seen, the impact on diesel car sales is rather low, and most of the 

‘lost sales’ are diverted towards conventional hybrids in 2018. 
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Figure 6.20: Introducing higher diesel taxation in France | Source: Own work using Vensim® 

 

Figure 6.21: Effect of a higher diesel tax on sales rates in France | Source: Own work 
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The effect of the EV purchase subsidies on the EV purchase prices can be 

seen in Figure 6.22. The combined effect of this measure with the emission 

standard is not examined here. Remember that the model assumes an increase 

in the average EVB capacity in 2020. The simulated EV purchase subsidies 

help smooth the price shock associated with this increase. Despite these 

subsidies, the modelled EV prices are still slightly higher than the price of a 

new gasoline car (cf. Figure 4.64). However, thanks to the simulated tempo-

rary subsidies, BEVs beat earlier gasoline cars on a TCO basis (see Fig-

ure 6.23). Beyond 2020, the removal of EV purchase subsidies reflects the 

belief that the EV market may be in a good position to sustain itself. 

 

Figure 6.22: Effect of purchase subsidies on EV prices in Germany 

Source: Own work using Vensim® 
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Figure 6.23: Effect of EV purchase subsidies on TCO in Germany 

Source: Own work using Vensim® 

Furthermore, the effect of deploying recharging infrastructure for EVs is 

illustrated, taking India as an example. This example shows the application of 

the policy input explained in section 4.3.5. Under the RS, the number of 

future recharging stations is stagnant. Figure 6.24 shows that investment in 

recharging infrastructure under the AS results in almost a doubling in re-

charging stations. This number is still dwarfed by the amount of refuelling 

stations for conventional fuels and has little impact, ceteris paribus, on EV 

market uptake, as visible in Figure 6.25. A step further is represented by the 

simulation run named ‘AS high infras investment’, which keeps investment 

constant throughout the time horizon of the model, leading to over 1,300 

recharging stations deployed in 2030. Despite this extra boost, the result on 

the simulated BEV sales rate is still poor. Remember that because of the 
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remain basically unaltered. 
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Figure 6.24: Expanding recharging infrastructure in India | Source: Own work using Vensim® 

However, the situation differs depending on how the budget for recharging 

infrastructure deployment is allocated. So far, it has been assumed that the 

proportion of fast recharging stations is below 5%. Under a new simulation run 

named ‘AS high fast infras’, the available EV budget is earmarked solely for 

the roll-out of fast recharging stations. As a consequence of this, the propor-

tion of fast recharging stations jumps to over 35% by 2030 (see Figure 6.26).  

 

Figure 6.25: Effect of expanding infrastructure on BEV sales in India 

Source: Own work using Vensim® 
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With this emphasis on allocating available resources to fast recharging 

infrastructure, the simulated BEV sales rate increases much more vigorously. 

Paradoxically, the effect of less recharging stations with a larger proportion 

of fast recharging on BEV sales is greater than having a larger number of 

recharging stations dominated by slow recharging. 

 

Figure 6.26: Split slow/fast recharging stations in India under ‘AS high fast infras’ 

Source: Own work 

The individual effects of four policy measures have been presented so far, 

using country-specific examples. These include stricter emission standards 

for new cars in China, higher diesel taxation in France, EV purchase subsi-

dies in Germany and recharging infrastructure investment in India. As a 

matter of fact, the AS consists of the simultaneous introduction of these four 

policy measures in each of the six countries analysed in this study. In addi-

tion, two additional policy measures shall be briefly considered: (i) invest-
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regards to its effect on the market uptake of FC cars in Japan. Figure 6.27 
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Figure 6.27: Expanding hydrogen infrastructure in Japan | Source: Own work using Vensim® 

As a result of that level of investment, the simulated composition of the car 

stock in Japan is altered (see Figure 6.28). It can be concluded that annual 

sales of FC cars grow very fast between 2021 and 2024 and make a fast 

impact on the market. By 2030, this simulation shows that FC is becoming a 

widespread powertrain. Underlying these simulation results are assumptions 

that relate to the cost of FC technology. Figure 6.29 make these transparent. 

 

Figure 6.28: Effect of expanding hydrogen infrastructure on car stock in Japan 

Source: Own work 
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Figure 6.29: Evolution of FC cost and FC car price in Japan | Source: Own work using Vensim® 
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Figure 6.30: Effect of a desired car occupancy level on travel demand in the US 

Source: Own work using Vensim® 
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Figure 6.31: Effect of a desired car occupancy level on travel demand in France 

Source: Own work using Vensim® 

To conclude this section, the effect of policies on EV stock can be assessed 

individually or in combination (i.e. policy bundle or package). Figure 6.32 

gives an example using the simulation for France. The effect of policies is 

measured with respect to the RS, both in 2020 (left panel) and 2030 (right 

panel). The four policy measures considered are: stricter efficiency standards, 

higher diesel taxation, EV purchase subsidies and investment in recharging 

infrastructure. The column on the left reflects the additive effects of simulat-

ing each policy individually (i.e. in isolation). Conversely, the column on the 

right is the result of simulating all the four policy measures in combination.  

 

Figure 6.32: Individual policies vs. policy package: ∆ EV stock w.r.t. RS in France 

Source: Own work 
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The graph shows that the simulated policy package has positive synergies for 

EVs, outperforming additive individual policy measures. Over time, the 

differences diminish. Among the individual measures, stricter efficiency 

standards turn out to be the most effective policy option. 

6.3 Impacts on energy demand and emissions 

The final model output of both scenarios is compared in this section. In terms 

of energy demand, oil and electricity are examined. To facilitate the compari-

son among countries, the model output shown in this section is based on the 

VKT value assumed in Eq. 4.19. The interested reader may replicate the 

results by applying the two alternative metrics highlighted in section 4.2.12. 

The next figures show the evolution of oil demand from car travel activity per 

country, highlighting the differences between scenarios. In general, oil 

demand is lower in the AS vis-à-vis the RS, as expected. For the fast-growing 

Asian markets, the difference in simulated oil demand is substantial. Oil 

demand is reported by taking into account the average yield by fuel (recall 

Figure 4.15) and refers to the sum of the demand from CVs, HEVs and 

PHEVs (as shown in Figure 4.1). 

Figure 6.33 shows the indirect impact of electric cars on oil demand in China 

for both scenarios. In 2016, the simulated oil demand from cars is 1.32 bn bbl 

per year. With respect to this year, in 2030 demand doubles in the RS. Under 

the AS, oil demand is 57% lower than in the RS in 2030. This can be partially 

explained by the stricter emission standards (see Figure 6.17). Compare the 

results of Figure 6.33 with those of Figure 6.19, which relied on the setting of 

more stringent efficiency standards in isolation (that is, without support 

measures such as EV purchase subsidies or recharging infrastructure deploy-

ment). Here, oil demand from Chinese cars turns out to be lower (-42% in 

2030). This is can be traced to faster BEV uptake (cf. Figure 5.1 and Figure 

6.10) as a result of the policy packages simulated for the six countries under 

the AS. 
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Figure 6.33: Oil demand from cars in China | Source: Own work 

Annual oil demand from car travel activity in France is shown in Figure 6.34. 

In 2016, oil demand remains at ca. 365 million bbl. The simulated 2016-2030 
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16% (i.e. lower in the AS). 

 

Figure 6.34: Oil demand from cars in France | Source: Own work 

0

500

1,000

1,500

2,000

2,500

3,000

[m
il

li
o

n
 b

b
l 

/ 
y

e
a

r
]

CN (RS) CN (AS)

0

200

400

600

800

1,000

[m
il

li
o

n
 b

b
l 

/ 
y

e
a

r
]

FR (RS) FR (AS)



6  Alternative scenario, policy analysis and impacts 

222 

In Germany, annual oil demand from cars stands at 935 million bbl in the 

simulation. For this country, a reduction in oil demand of about 13% between 

2016 and 2030 is attained for the RS (see Figure 6.35). Compared to the RS, 

a 29% fall in demand is simulated in the AS. 

 

Figure 6.35: Oil demand from cars in Germany | Source: Own work 
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Figure 6.36: Oil demand from cars in India | Source: Own work 

 

Figure 6.37: Oil demand from cars in Japan | Source: Own work 
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Figure 6.38: Oil demand from cars in the US | Source: Own work 
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Figure 6.39: Electricity demand from cars in China | Source: Own work 

 

Figure 6.40: Electricity demand from cars in France | Source: Own work 
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Figure 6.41: Electricity demand from cars in Germany | Source: Own work 

 

Figure 6.42: Electricity demand from cars in India | Source: Own work 
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Figure 6.43: Electricity demand from cars in Japan | Source: Own work 

 

Figure 6.44: Electricity demand from cars in the US | Source: Own work 
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Figure 6.45: Simulated direct CO2 emissions per km | Source: Own work 
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Figure 6.46: GHG emissions from cars in China under AS | Source: Own work 
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Figure 6.47: GHG emissions from cars in France under AS | Source: Own work 
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In Germany, a 12% fall in total GHG emissions from cars between scenarios 

is simulated (that is, lower in the AS). Under this scenario, in total 

137 MtCO2eq are annually emitted by 2030: a modest 8% reduction w.r.t. 

2016. Nearly half of the emissions can be attributed to TTW processes 

(Figure 6.48). 

As expected, total GHG emissions from cars in India grow dramatically over 

the model time horizon (from ca. 100 MtCO2eq in 2016 to over 600 MtCO2eq 

in 2030 under the AS). The process mostly responsible for this growth is 

M&S (Figure 6.49). Interestingly, India represents the exception when it 

comes to differences between both scenarios: emissions are 4% higher under 

the AS. This can be explained by the results from Figure 6.13 and the as-

sumptions from Table 4.18. 

 

Figure 6.48: GHG emissions from cars in Germany under AS | Source: Own work 
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Figure 6.49: GHG emissions from cars in India under AS | Source: Own work 

 

Figure 6.50: GHG emissions from cars in Japan under AS | Source: Own work 
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Figure 6.51: GHG emissions from cars in the US under AS | Source: Own work 
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7 Conclusions 

In this final chapter, a summary is provided and conclusions drawn (section 

7.1). Finally, the perceived limitations of this study are communicated and 

suggestions for further research offered (section 7.2).  

7.1 Summary and conclusions 

7.1.1 Summary 

In this thesis, possible futures of the car ecosystem were explored, with nine 

powertrain technologies and six countries in scope. The focus lay on conven-

tional cars (gasoline and diesel) and electric cars (plug-in hybrid electric and 

battery electric). Their implications for energy use and greenhouse gas 

emissions between the years 2000 and 2030 were considered. 

The major markets analysed were China, France, Germany, India, Japan and 

the United States. For that, a dynamic model was developed, structured into 

nine interlinked modules: Population-Gross Domestic Product, Car Stock, 

Travel Demand by Car, Infrastructure, Attributes, Market Behaviour, Energy, 

Emissions and Policy. The model consisted of a time-series econometric sub-

model and a system dynamics sub-model. Whereas the purpose of the former 

was to project aggregate car stock in each country, the purpose of the latter 

was to simulate and analyse the effect of policy measures.  

These sub-models were soft-linked through the gasoline price and car owner-

ship projections. The same assumptions on population, gross domestic 

product and crude oil price were used in both sub-models for consistency. 

The econometric sub-model comprised six single-equation regressions based 

on autoregressive integrated moving average or autoregressive distributed-lag 

estimation techniques. The core of the modelling exercise was the system 

dynamics sub-model, where endogenous feedback processes were represent-
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ed. The dynamic hypothesis captured three reinforcing and two balancing 

feedback loops that may stimulate or suppress the market development of 

electric cars. The six countries were interlinked to simulate technological 

progress concerning the electric vehicle battery pack. In particular, its cost, 

price and capacity, together with the resulting electric range of the car, were 

investigated. 

The developed model is suitable for constructing and simulating scenarios. It 

can provide answers to the following questions: 

1. What are the projected aggregate car stock and annual sales? 

2. What are the possible market shares and resulting car-mix?  

3. What is the estimated demand for energy? 

4. What are the corresponding greenhouse gas emissions? 

Out of the numerous scenarios that were simulated during the model building 

process, two main scenarios were constructed and reported: the Reference 

Scenario and the Alternative Scenario. For each country, a given policy input 

was highlighted for illustrative purposes. In total, the set of policy instru-

ments examined under the Alternative Scenario included: emission or effi-

ciency standards, energy taxation, electric car purchase subsidies and invest-

ment in recharging infrastructure. Two further policy measures were 

presented: investment in hydrogen refuelling infrastructure and desired car 

occupancy.  

In sum, compared to the Reference Scenario the diversification of the car-mix 

is stronger in the Alternative Scenario, with a faster market uptake of electric 

cars. This leads to a decline in oil demand and increase in electricity demand 

from cars. Consequently, the direct emissions of the average new car, meas-

ured in grams of CO2 per km, is lower in the Alternative Scenario than in the 

Reference Scenario.  
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7.1.2 Conclusions and policy recommendations 

In addition to the concluding remarks from chapter 2 and chapter 3 and as a 

result of this model-based study, the following main conclusions are drawn 

and key policy recommendations derived: 

Conclusion 1: Setting stricter CO2 emission standards for new conventional 

cars, which translate into higher car fuel efficiencies, leads to a reduction in 

oil-based energy use from car travel activity, ceteris paribus. To this end, this 

policy is the most effective of the four examined. The decline in oil demand 

is greater if: (i) the four policies are combined; and (ii) stricter CO2 emission 

standards for new conventional cars are introduced in the other countries 

simultaneously.  

Recommendation 1: If the primary policy goal is not to reduce vehicle-km 

travelled by car while reducing oil-based energy use from car travel activity, 

the governments of major car markets should recognise that stricter CO2 

emission standards are a key, though partial, solution towards this goal. 

International coordination on this policy would be beneficial. 

Conclusion 2: More stringent CO2 emission standards are expected to rise the 

manufacturing cost and corresponding price of conventional cars but higher 

fuel efficiency also lowers the operating cost faced by the drivers of conven-

tional cars. For diesel cars, this last effect can be offset by aligning conven-

tional fuel taxes. In this manner, a higher diesel tax increases the operating 

cost of diesel cars and reduces the attractiveness of this powertrain. 

Recommendation 2: If the primary policy goal is not to reduce vehicle-km 

travelled by car while reducing diesel use from car travel activity, higher 

conventional fuel taxes may complement the policy on CO2 emission stand-

ards. The governments of countries where dieselisation is high should also 

consider the possibility of increasing diesel taxation. The additional tax 

revenue could be used to temporarily cross-subsidise alternative powertrains.  

Conclusion 3: If electric cars penetrate the market at the expense of conven-

tional cars, it follows that the demand for conventional fuel and direct emis-
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sions (i.e. CO2 emissions of the average new car sold and greenhouse gas 

emissions from the car stock) are, ceteris paribus, lowered.  

Recommendation 3: If the primary policy goal is not to reduce vehicle-km 

travelled by car while lowering direct CO2 emissions and oil-based energy 

use from car travel activity, diversification of the car-mix compared to the 

present situation is desirable. Combinations of conventional fuel taxes, 

purchase subsidies for electric cars and investment in recharging infrastruc-

ture, particularly enabling fast recharging, are needed. A bundle of coherent 

policies is expected to have a greater impact than isolated measures or a 

bundle of incoherent policies. An example of the latter would be to offer 

purchase subsidies for electric cars while removing gasoline and diesel taxes. 

Conclusion 4: When other types of greenhouse gas emissions (CH4 and N2O) 

besides CO2 are modelled, the reported level of emissions increases for most 

fuels and the a priori benefits of a fuel may be subjected to review. By further 

extending the model boundaries to take into account indirect greenhouse gas 

emissions, a more complete assessment of the relative environmental merits 

of each powertrain technology can be undertaken.  

Recommendation 4: If the policy goal is not to reduce vehicle-km travelled 

by car while lowering total greenhouse gas emissions from car travel activity, 

policy measures that completely ignore upstream or well-to-tank as well as 

car manufacturing and scrappage emissions are expected to lead to policy 

failure. An example of this is a policy stance that promotes electric cars while 

favours electricity generation by coal. 

Conclusion 5: Nonlinearities and adopted numerical assumptions largely 

determine the outcome of the simulation of powertrain choice. A simultane-

ous shift in battery price, battery capacity increase and cost-competitiveness 

of electric cars (facilitated by the effect of stricter emission standards on 

manufacturing prices and by temporary purchase subsidies) result in a tipping 

point, whereby a much larger proportion of consumers suddenly chooses this 

powertrain. Notwithstanding, supply-side conditions may constrain power-

train choice. 
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Recommendation 5: Model users are advised to complement the lessons 

learned from using the model presented in this work with those that can be 

learned by applying models that focus on the automotive industry and take 

into account the production process. For policy, close and regular monitoring 

of the evolution of key system variables (e.g. battery price) becomes a neces-

sity. The timing of policy measures might have a noticeable effect on the 

market, as illustrated by the German example in section 6.2. 

Overall, the analysis presented in this thesis, including the policy part in 

chapter 6, should be received with a healthy dose of scepticism, for it is based 

on the development of a formal model that is the result of the mental model 

of the author. Though this mental model has been enriched through the 

modelling process, understanding of the evolving system under investigation 

remains incomplete. The purpose of the model reflects different levels of 

ambition, ranging from a modest contribution to ongoing research to an open-

source teaching tool to policy-making decision support. For the highest level 

of ambition, additional modelling efforts from the scientific community are 

welcomed. 

In this thesis, a multi-method approach has been adopted and an early attempt 

to connect in a single modelling framework the dynamic econometrics and 

system dynamics methods has been made. The possible theoretical conflict 

between both methods has been neither completely ignored nor overempha-

sised, for it is concluded that researchers with skills in only one of these two 

methods would benefit from exposure to the other.  

It is argued that the methodological linkage of econometrics and system 

dynamics, together with the endogenisation of the electric vehicle battery 

price evolution by explicitly modelling six major car markets, is the main 

contribution of this study. The key outcome of this work is the development 

and provision of a framework for forward-looking thinking that can be 

reproduced, applied, improved and extended.  
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7.2 Limitations and further research 

7.2.1 Limitations 

The conclusions and policy recommendations highlighted in the previous 

section need to be qualified in view of the following major limitations: 

Limitation 1: Setting stricter CO2 emission standards for new conventional 

cars may result in a preference for purchasing (larger) conventional cars as 

well as in greater annual average vehicle-km travelled. However, this work is 

limited by a lack of disaggregation of cars by size and insufficient analysis on 

the role of rebound effects.  

Limitation 2: Removing the tax differential between gasoline and diesel by 

rising the latter as well as adjusting conventional fuel taxes to maintain real 

conventional fuel prices might add inflationary pressure. In the 1970s, the 

linkage between the oil price and inflation was revealed. Although  

Blanchard (2008) found that this relation diminished in recent years, the 

possibility that this feedback process is dormant cannot be ruled out. 

Limitation 3: Analysis of the inter-temporal optimal policy package aiming at 

the best combination of conventional fuel taxes, purchase subsidies for 

electric cars and investment in recharging infrastructure has not been per-

formed.  

Limitation 4: The results on emissions are limited by the fact that (i) air 

pollutant emissions from cars have been excluded from this study; (ii) neither 

the practical implications of setting emission standards using gCO2eq/km as 

the metric of reference nor the impact of upgrading current driving test cycles 

have been explored; (iii) different fuel pathways are possible and upstream 

greenhouse gas emissions may vary widely depending on the method of 

extraction and/or production employed for each fuel, which can be tested in 

the model through sensitivity analysis but should ideally be tackled by 

researchers specialised in lifecycle assessments; (iv) the prospects of battery 

recycling and re-use as secondary storage devices have been neglected; and 
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(v) annual average vehicle-km travelled by car may increase while well-to-

wheel greenhouse gas emissions do not. This may happen if the use of car 

sharing increases sufficiently. Per each car sharing unit, up to twenty cars 

may be replaced (Rifkin, 2011). As a result of widespread car sharing activi-

ty, private car ownership rates are thus expected to decrease and the lower the 

number of private cars produced, the less car manufacturing and scrappage 

emissions. The emergence of car sharing (see e.g. Jackson (2011)) has not 

been explicitly accounted for. 

Limitation 5: Uncertainty surrounds the preferences of the market as regards 

novel car technologies. It is important to emphasise that the current work is, 

at best, a crude preliminary approximation to the ideal of representative and 

accurate market outcomes. Understanding the complexity of human behav-

iour, in the context of car purchase decisions, and its mathematical represen-

tation remains a challenge. Any model assumption described in chapter 4, 

particularly those concerning the market segmentation and the associated 

decision rules (sections 4.2.10 and 4.2.11, respectively), can be challenged by 

theory and new evidence. Furthermore and since the market uptake of electric 

cars is still at an early stage, its future evolution may be either spurred or 

hindered by feedback processes not accounted for in this work, especially 

when a longer model time horizon (say, until 2050) is considered. For exam-

ple, the expected increase in the price of raw materials to manufacture elec-

tric vehicle batteries as a result of increasing demand and possible trade 

restrictions by exporting countries, which can negatively affect the purchase 

price of electric cars, has not been modelled. 

In addition, two specific methodological limitations are stressed: 

Limitation 6: Concerning the use of econometrics, this work is adversely 

affected by a small sample and the invocation of asymptotic properties (see 

Maddala and Kim (1998)) as well as by the lack of an in-depth forecast 

assessment. On a different note, one may nowadays question the role, fruitful 

in the past, of traditional econometrics to successfully forecast future car 

ownership, given the prospects not only of car sharing but also of connected 

and automated vehicle concepts. 
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Limitation 7: With regards to the application of system dynamics, this work 

is limited by the need to conduct more comprehensive model analysis and 

further testing (for additional tests, see chapter 21 in Sterman (2000)). The 

solution to the stock management problem (recall section 4.1.3) found is 

adequate for the model purpose but not always ideal, as visible in the 2015-

2016 dips in Figure 6.46, Figure 6.48 and Figure 6.50. It is worth remember-

ing that the desired values arising from the econometric projections are time-

variant. 

7.2.2 Further research 

Based on the aforementioned limitations of this study, specific lines of 

further inquiry are indicated below. 

Expanding model boundaries: 

The modelled system is non-autonomous and is largely dependent on the 

assumed future socio-economic (population, gross domestic product, infla-

tion) conditions. The model boundaries can be expanded to incorporate 

missing feedback processes and to capture the ‘endogenous point of view’ 

(recall section 3.2.4). Three processes can be enumerated: the effect of 

electro-mobility on the oil price, the battery manufacturing sector and its 

contribution to employment and the economy. Furthermore, the inclusion of 

additional vehicle markets would be beneficial. 

Further model disaggregation: 

The concept of average, influentially used (see Morgan (1992)) by Belgian 

mathematician Adolphe Quetelet [1796-1874], is exploited in this work. Two 

prominent variables are: income per capita and the hypothetical average car. 

In contrast, Page (2010) emphasises diversity in complex systems and men-

tions quantile regression. This approach could be applied in future work to 

examine income distribution and how this affects car ownership in each of 

the countries under study. With regards to the average car, only one type of 

car is assumed for each powertrain technology. Although this is sufficient to 

derive the final model output, it represents a constraint to policy analysis. The 
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benefits of disaggregating cars by size or segment are, however, offset by the 

increasing complexity in modelling powertrain choice. This means that any 

attempt at further disaggregating the variable car should take into account the 

implications for the technology choice sub-module. 

Sophisticated time-series and discrete choice econometric analysis: 

The econometric projections shown in section 4.2.8 contain high and low 

bounds. For China, the optimistic growth assumptions concerning gross 

domestic product lead to projections of car stock that are well above those 

found in other studies. It is worth emphasising that in China a quota system 

for vehicle registration is in place in various cities. As a result, the future 

behaviour of car stock may be less bullish than anticipated. Access to reliable 

longer series, thereby incorporating omitted variables, and refinements of the 

econometric models presented in this thesis by experienced time-series 

econometricians is expected to improve car ownership projections. Specifi-

cally, better statistical judgment is needed to do research on: (i) general 

problems of statistical inference in time-series models based on nonstationary 

economic data (see Yule (1926) and Banerjee et al. (1993)); and (ii) applica-

tion of problematic unit root tests (see the strong case Maddala and Kim 

(1998) make against the use of well-established tests due to low-power 

problems). Harvey (1997) warns against misleading unit root testing and 

autoregressions. In a motionless world, extrapolation suffices (Hendry, 

1995), but technological innovations entail randomness (Enders, 2014). As 

Makridakis and Hibon (2000) note, simple statistical methods may outper-

form sophisticated ones and more accurate forecasts are on average obtained 

when methods are combined. 

With regards to the behavioural assumptions on choice, more sophisticated 

representations of technology choice by the market may be investigated and 

implemented in the model. The results of new country-specific discrete 

choice analysis, preferably based on increasingly available revealed prefer-

ences, can be embedded into the model in a relatively simple manner. Fur-

thermore, a new module that considers the competition between public 

transport, car sharing and private car ownership may be created, whereby 
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modal split is explicitly modelled. Statistical testing of various nesting 

frameworks may be conducted. 

Contrasting alternative methods: 

The fourth conclusion deserves a remark on modelling approach. Since the 

simulation of accurate (i.e. perfect match with real-world observations) 

market shares by car technology was not the goal of modelling, the model 

was not completely forced to replicate historical data on this by incorporating 

extra factors and calibration efforts were relatively modest. However, the 

simulated market shares remain important, for they influence the final model 

output. A trade-off between theoretical and empirical consistency was faced 

by the model builder. Basically, the path chosen was: (i) to segment the 

market and define decision rules for each segment; (ii) to create a pseudo 

discrete choice modelling framework thereby assuming that part of the 

market maximises utility; and (iii) to constrain the weighted values of this 

segment of the market by a measure of popularity. The point is that more 

accurate simulation of market shares is expected to improve the results. At 

present, it remains unclear to the author what the most successful path to 

achieve this in the context of dynamic modelling of car technology uptake is. 

The framework recently recommended by Jensen et al. (2016) may provide a 

good basis for further research. As Vroey (2016) suggests, a researcher may 

take an alternative path at a previous bifurcation point once a dead end is 

reached. In this context, agent-based modelling is a candidate worthwhile 

exploring, e.g. extending the work by Kieckhäfer et al. (2014) to other 

countries. This is not a suggestion that a dead end has been reached for joint 

system dynamics/discrete choice modelling. Instead, in the absence of a 

discrete choice model tailored to the requirements of system dynamics and 

based on comprehensive surveys regularly conducted in the key car markets, 

agent-based modelling may be an alternative method to contrast with. 

Extending policy options: 

Only a subset of available policy instruments was considered. For example, 

car registration taxes may be also applied, for they alter relative purchase 

prices. If the car insurance premium is in reality tied to the purchase price, it 
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should also be explicitly modelled. Importantly, public investment in re-

search and development activities can also contribute to facilitate critical 

transitions. It would also be interesting to model three real-world policies 

explicitly: the electric car mandate in China, the bonus-malus scheme in 

France and the top-runner programme in Japan. 

Finally, further work is essentially required in two respects: (i) as a continu-

ous process of monitoring the system under study, updating the database as 

new data points and other information become available; and (ii) as a one-

time exercise of retrospection, to take place in about fifteen years from now. 

In this regard, Sampedro (1967) provides a source of inspiration and a strong 

motivation for revisiting in the future the work presented here. Until then… 

… discere faciendo. 
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Appendix 

Appendix I – Database 

Microsoft® Excel is chosen as the type of file that contains the data employed 

in the modelling exercise. The data file, named Data.xls, divides data into six 

tabs (coloured in blue) used to feed EViews® and one tab (white) to feed 

Vensim®. This data tab includes a legend that indicates the type and level of 

reliability of the values shown in the cells. An empty dark brown cell indi-

cates that historical data was not available to the modeller at the time the 

modelling exercise reported here took place. The cells for policy inputs that 

may be changed by the model user when building alternative scenarios are 

coloured in orange. In addition, the database has two tabs that contain, for 

each variable, information on the units of measurement, data source and, 

often, remarks. Particularly remarkable are the knowledge gaps, marked in 

grey. These cells quickly signal areas where data is still needed. 

Table A.1 offers an overview of one of the tabs of the dataset, namely the one 

concerning econometric data. The data file is, with some restrictions imposed 

by original sources, available from the author of this thesis upon request.  
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Table A.1: Overview of the econometric dataset 
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own Car ownership car / passenger 1980-2014 – 
Own calculation based on data on 

car stock and population 

car Car stock car 

1980-1996 (ORNL, 2016) Own estimates for 81-84; 87; 89 

1997-2007 
(IRF, 2016) 

(various) 

Since the 2001 value is N/A, it 

was calculated by subtracting 

"Lorries and Vans" from "Total" 

in the IRF database. Vehicles in 

use: Passenger cars 

2008-2014 (OICA, 2016) 
Vehicle in use, passenger car, 

estimated figures for 2010-2014 

pop Population passenger 1980-2030 (UN, 2016) 
Total population. Future values 

using the middle fertility scenario 

gdp Nominal GDP country currency 
1980-2021 (IMF, 2016)   

2022-2030 Own Vensim output 

def GDP deflator dmnl 
1980-2021 (IMF, 2016) Base year 2010 

2022-2030 Own Vensim output 

rinc 
Real GDP  

per cap 

country  

currency / 

passenger 

1980-2030 – 

Own calculation based on data  

on real GDP and population.  

Base year 2010 

oil 
Nominal 

crude oil price 
dollar/bbl 1980-2030 

(BP, 2016) 

(EIA, 2016a) 
  

fr
 

own Car ownership car / passenger 1960-2014 – 
Own calculation based on data on 

car stock and population 

car Car stock car 
1960-2010 

(IRF, 2016) 

(various) 
  

2011-2014 (CCFA, 2016) Au 1er janvier 

pop Population passenger 1960-2030 (UN, 2016) 
Total population. Future values 

using the middle fertility scenario 

Gdp Nominal GDP country currency 
1980-2021 (IMF, 2016)   

2022-2030 Own Vensim output 

def GDP deflator dmnl 

1960-1979 (WB, 2016) 
Note this source uses the same 

base year as IMF (2016) 

1980-2021 (IMF, 2016) Base year 2010 

2022-2030 Own Vensim output 

rinc 
Real GDP  

per cap 

country  

currency / 

passenger 

1980-2030 – 

Own calculation based on data  

on real GDP and population.  

Base year 2010 

 Fuel 

Nominal 

gasoline  

fuel price 

country  

currency / litre 

1983-1989 (MEEDM, 

2016) 

Essence ordinaire 

1990-1999 Super sans plomb 95 

2000-2015 
(IEA, 2016b) 

(various) 
Premium unleaded (95 RON) 

2016-2030 Own Vensim output 



Appendix 

301 

vkt 
Vehicle-km 

travelled 
vkm/year 1990-2014 (SOeS, 2016) Annual total cars 

avkm 
Average VKT 

per car 
km/car/year 1990-2014 Own Calculation using vkt and car 

d
e

 

own Car ownership car / passenger 1970-2013 – 
Own calculation based on data on 

car stock and population 

car Car stock car 

1970-2004 
(IRF, 2016) 

(various) 

Missing values 1971, 1976, 1977, 

1992. Own interpolation 

2005-2015 (KBA, 2016) 
Note KBA reports stock as  

of 1. January 

pop Population passenger 1960-2030 (UN, 2016) 

Total population. Future  

values using the middle  

fertility scenario 

gdp Nominal GDP country currency 
1980-2021 (IMF, 2016) 

Data until 1990 refers to German 

federation only (West Germany) 

2022-2030 Own Vensim output 

def GDP deflator dmnl 

1960-1999 (WB, 2016) 

Note this source uses the same 

base year as IMF (2016), however 

discrepancies are present (not the 

case for FR) 

2000-2021 (IMF, 2016) Base year 2010 

2022-2030 Own Vensim output 

 

rinc 
Real GDP  

per cap 

country  

currency / 

passenger 

1980-2030 – 

Own calculation based on data  

on real GDP and population.  

Base year 2010 

fuel 

Nominal 

gasoline  

fuel price 

country  

currency / litre 

1970-1972 
(MWV, 2016) 

Normalbenzin 

1973-1999 Superbenzin  

2000-2015 
(IEA, 2016b) 

(various) 
Premium unleaded (95 RON) 

2016-2030 Own Vensim output 

vkt 
Vehicle-km 

travelled 
vkm/year 

1990-2015 
(KBA, 2016) 

(DIW, 2012) 
  

2000-2001 
(IRF, 2016) 

(various) 
  

avkm 
Average VKT 

per car 
km/car/year 1990-2015 Own 

Calculation using vkt  

and car values 

in
 

own Car ownership car / passenger 1980-2013 – 
Own calculation based on data on 

car stock and population 

car Car stock car 1980-2013 (GoI, 2016) Cars including jeeps and taxis 

pop Population passenger 1980-2030 (UN, 2016) 
Total population. Future values 

using the middle fertility scenario 

gdp Nominal GDP country currency 
1980-2021 (IMF, 2016)   

2022-2030 Own Vensim output 

Def GDP deflator dmnl 
1980-2021 (IMF, 2016) Base year 2011 

2022-2030 Own Vensim output 

rinc 
Real GDP  

per cap 

country  

currency / 

passenger 

1980-2030 – 

Own calculation based on data  

on real GDP and population.  

Base year 2011 

oil 
Nominal 

crude oil price 
dollar/bbl 1980-2030 

(BP, 2016) 

(EIA, 2016a) 
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jp
 

own Car ownership car / passenger 1960-2015 – 
Own calculation based on data on 

car stock and population 

car Car stock car 1960-2015 (JAMA, 2016) 

 See also (IRF, 2016) 

(various), (JARI, 2016),  

(OICA, 2016), (ORNL, 2016),  

(Wards, 2016) 

pop Population passenger 1960-2030 (UN, 2016) 
Total population. Future values 

using the middle fertility scenario 

Gdp Nominal GDP country currency 
1980-2021 (IMF, 2016)   

2022-2030 Own Vensim output 

def GDP deflator dmnl 
1980-2021 (IMF, 2016) Base year 2005 

2022-2030 Own Vensim output 

rinc 
Real GDP  

per cap 

country  

currency / 

passenger 

1980-2030 – 

Own calculation based on data  

on real GDP and population.  

Base year 2005 

oil 
Nominal 

crude oil price 
dollar/bbl 1980-2030 

(BP, 2016) 

(EIA, 2016a) 
  

u
s  

own Car ownership car / passenger 1960-2014 – 
Own calculation based on data on 

car stock and population 

car Car stock car 
1960-2011 

(FHWA, 

2016) 

Car stock subject to methodologi-

cal changes after 2012. Hence I 

used OICA data instead. 

2012-2014 (OICA, 2016) Vehicle in use, passenger car 

pop Population passenger 1960-2030 (UN, 2016) 
Total population. Future values 

using the middle fertility scenario 

gdp Nominal GDP country currency 
1980-2021 (IMF, 2016)   

2022-2030 Own Vensim output 

def GDP deflator dmnl 
1980-2021 (IMF, 2016) Base year 2009 

2022-2030 Own Vensim output 

rinc 
Real GDP  

per cap 

country  

currency / 

passenger 

1980-2030 – 

Own calculation based on data  

on real GDP and population.  

Base year 2009 

fuel 

Nominal 

gasoline  

fuel price 

dollar/litre 

1960-1990 (EIA, 2016a) 

Leaded Regular Gasoline, U.S. 

City Average Retail Price. Annual 

average price incl. Taxes. Own 

conversion using value = 3.78541 

litre/gallon 

1991-2014 (EIA, 2016a) 

Regular Motor Gasoline, All 

Areas, Retail Price. Annual 

average price incl. Taxes. Original 

units in US gallons. Own 

conversion using value = 3.78541 

litre/gallon 

vkt 
Vehicle-km 

travelled 
vkm/year 1960-2006 

(FHWA, 

2016) 

After 2006, data non comparable 

due to methodological changes 

avkm 
Average VKT 

per car 
km/car/year 1960-2006 Own Calculation using vkt and car 
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Appendix II – Transparency Checklist  
for Model Reproducibility 

Encouraged by the recommendations on model transparency and reproduci-

bility made by Bossel (2007a) and Rahmandad and Sterman (2012), this 

section includes key aspects of model documentation. Figure 8.1 shows an 

excerpt of the ‘model assessment results’ using SDM-Doc (see Martinez-

Moyano (2012)).  

 

Figure A.1: Model assessment results | Source: Own application of SDM-Doc (2016) 

The main equations of the model were shown in chapter 4. The model devel-

oped in that chapter has been named TE3 (Transport, Energy, Economics, 

Environment) and is available from the author of this thesis upon request 

here: www.te3modelling.eu/model. For the complete model code, the inter-

ested reader is advised to download the SDM-Doc software, available from 

SDM-Doc (2016), and apply this tool to the model.  
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In the context of model-based energy scenario studies, Cao et al. (2016) 

propose a transparency checklist. The application of such the checklist to this 

modelling exercise is captured in Table A.2. 

Table A.2: Application of the transparency checklist 

 
Source: Cao et al. (2016) 

Transparency level Page number

1 Author, Institution Each author and corresponding institution shown on page(s): Title

2 Aim and funding Info included on page(s): xxv

3 Key term definitions A glossary is included on page(s): xv-xxviv

4 Sources All sources of secondary data summarised on a table on page(s): Appendix I

5 Pre-processing
The data used had to be modified before being fed into the model. 

The procedure is indicated on page(s): Appendix I

6 Identification of uncertain developments Only quantitative factors of uncertainty are considered on page(s): 195-196

7 Uncertainty consideration Info included on page(s): 221-227

8 Storyline construction Info included on page(s): 197-199

9 Assumptions for data modification Info included on page(s): 80-167

10 Model fact sheet The key features of the model are described verbally on page(s): 71-79

11 Model specific properties Model strengths and weaknesses are shown on page(s): 64-70; 238-240

12 Model interaction Linkages between submodels and/or models described on page(s): 79-80

13 Model documentation The model code is available elsewhere, as stated on page(s): Appendix II (see weblink)

14 Output data access Access to model output data is facilitated, as indicated on page(s): Appendix II (see weblink)

15 Model validation The validation method applied is shown on page(s): 179-194

16 Post-processing There was no need to modify the model output If applicable, insert number

17 Sensitivity analysis Info included on page(s): 194-196

18 Robustness Info not included If applicable, insert number

19 Results - recommendation - relationship Info included on page(s): 235-237

20 Uncertainty communication Info included on page(s): 195-196; 239

Evidence

Model

Results

Conclusions and Recommendations

Criterion

General Information

Empirical Data

Assumptions


	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Car types and powertrain technologies
	Countries
	Econometrics
	Emissions
	Fuels
	Other
	Units of measurement of variables

	List of Symbols
	Variables
	Subscripts
	Superscripts
	Sets

	Acknowledgments and accountability
	1 Introduction
	1.1 Motivation and objective
	1.2 Focus, scope and structure

	2 The uncertain market evolution of electric cars
	2.1 Fundamental ideas
	2.1.1 The car and the oil markets
	2.1.2 On complex systems, uncertainty and scenarios
	2.1.3 Analytical framework
	Top-down approach:
	Bottom-up approach:


	2.2 Historical perspective
	2.3 Techno-economic aspects of electric cars
	2.4 Previous research
	2.5 Concluding remarks I: Modelling tasks

	3 Methodological considerations for dynamic modelling
	3.1 Economic methodology
	3.1.1 Scientific reasoning in economics
	3.1.2 Positive and normative economics
	3.1.3 Research programmes in economics
	3.1.3.1 Research programmes: orthodox and heterodox economics
	3.1.3.2 Schools of thought in economics


	3.2 Economic methods
	3.2.1 Quantitative methods in applied economics
	3.2.2 Econometrics
	3.2.2.1 Dynamic econometrics
	3.2.2.2 Discrete choice analysis

	3.2.3 Input-output analysis
	3.2.4 System dynamics
	3.2.5 Agent-based computational economics

	3.3 Dynamic models for decision support
	3.4 Data availability, collection and quality
	3.5 Concluding remarks II: Method assessment and selection

	4 Model development
	4.1 Overview
	4.1.1 Model description
	4.1.1.1 Modules
	4.1.1.2 Variables

	4.1.2 Dynamic hypothesis
	4.1.3 Stages in model building

	4.2 Assumptions
	4.2.1 Population
	4.2.2 Gross domestic product
	4.2.3 Price level and exchange rates
	4.2.4 Income per capita
	4.2.5 Conventional fuel prices I: crude oil prices
	4.2.6 Conventional fuel prices II: energy taxes
	4.2.7 Alternative fuel and electricity prices
	4.2.8 Car ownership
	4.2.8.1 Car ownership in China
	4.2.8.2 Car ownership in France
	4.2.8.3 Car ownership in Germany
	4.2.8.4 Car ownership in India
	4.2.8.5 Car ownership in Japan
	4.2.8.6 Car ownership in the US

	4.2.9 Car stock
	4.2.9.1 State variables
	4.2.9.2 Scrappage rates
	4.2.9.3 Sales rates

	4.2.10 Market segmentation
	4.2.11 Technology choice
	4.2.12 Travel demand by car
	4.2.13 Infrastructure
	4.2.14 Fuel intensity, battery capacity and range
	4.2.15 Production costs
	4.2.16 Consumer costs
	4.2.17 Powertrain attractiveness
	4.2.18 Electricity generation
	4.2.19 Energy use
	4.2.20 Emissions

	4.3 Policy inputs
	4.3.1 Emission and efficiency standards
	4.3.2 Value added tax
	4.3.3 Energy taxation
	4.3.4 EV purchase subsidies
	4.3.5 Investment in refuelling infrastructure
	4.3.6 Desired car occupancy level


	5 Reference scenario and testing
	5.1 RS simulation
	5.2 Testing
	5.2.1 Pre-testing
	5.2.2 Post-testing


	6 Alternative scenario, policy analysis and impacts
	6.1 AS simulation
	6.2 Model-based policy analysis
	6.3 Impacts on energy demand and emissions

	7 Conclusions
	7.1 Summary and conclusions
	7.1.1 Summary
	7.1.2 Conclusions and policy recommendations

	7.2 Limitations and further research
	7.2.1 Limitations
	7.2.2 Further research
	Expanding model boundaries:
	Further model disaggregation:
	Sophisticated time-series and discrete choice econometric analysis:
	Contrasting alternative methods:
	Extending policy options:



	References
	Appendix
	Appendix I – Database
	Appendix II – Transparency Checklist  for Model Reproducibility




