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Abstract

The reliability of any day-to-day material is critically dictated by its properties. One factor
which governs the behaviour of a material, under a given condition, is the microstructure.
Despite the absence of any phase transformation, a change in the microstructure would sig-
ni�cantly alter the properties. Therefore, a substantial understanding on the stability of the
microstructure is vital to avert any unexpected catastrophic change in the material properties.

Employing conventional techniques, particularly, experimental investigations to explicate
the evolution of the microstructure is an arduous task, mainly, because the spatial distribu-
tion of the phases extends beyond the regular two-dimensional representation. Consequently,
theoretical treatments are adopted to complement the experimental observations and enhance
the understanding of the shape-instability in a microstructure. With the increasing availabil-
ity of the computational resources, the contribution of the numerical analyses in delineating
the intricacies of complex phenomena has been progressively expanding. In the present work,
one such numerical approach called phase-�eld modelling in employed to analyse the stability
of two- and three-dimensional �nite structures, which dictate the curvature-driven evolution
of the microstructure. A characteristic feature of this numerical approach is the introduction
of a scalar variable, called the phase �eld, in addition to the other thermodynamic variables.
While the inclusion of the phase �eld obviates the need for the interface tracking, which is a
strenuous aspect of the other conventional techniques, it replaces the sharp interface with a
�nite di�use region. Therefore, before adopting and extending the phase-�eld technique, it
is shown that the model recovers the governing law, i.e, Gibbs-Thomson relation, despite the
introduction of the di�use interface. Subsequently, the numerical treatment is employed to
investigate the volume-di�usion governed curvature-induced transformation.

The present study begins with the analysis of the morphological evolution of a discontin-
uous precipitate in a representative lamellar arrangement, in order to realise the in�uence of
the neighbouring structures on the transformation of the individual precipitate. Consistent
with the existing reports, this analysis unravels that the role of the adjacent precipitates in
guiding the evolution of an isolated precipitate decreases signi�cantly with increase in the
distance separating them. Correspondingly, the transformation induced by the curvature dif-
ference associated with the inherent shape of the individual precipitate is extensively inves-
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tigated. As opposed to the existing studies, the present technique renders a cumulative, and
an exhaustive, analysis of the mechanism and the kinetics of the volume-di�usion governed
transformations that are prevalent in the metallic systems. Consequently, critical aspects of
the shape-instability which have hitherto been unknown, or conveniently assumed, is unrav-
eled in this study.



Kurzfassung

Die Verlässlichkeit jedes täglich vorkommenden Materials wird entscheidend durch seine
Eigenschaften bestimmt. Ein Faktor, durch den das Verhalten eines Materials unter einem
gegebenen Zustand geregelt wird, ist die Mikrostruktur. Obwohl keine Phasenumwandlung
vorhanden ist, würde eine Veränderung in der Mikrostruktur die Eigenschaften erheblich
verändern. Deshalb ist ein umfassendes Verständnis der mikrostrukturellen Stabilität notwendig,
um unerwartete katastropische Veränderungen in den Materialeigenschaften zu verhindern.

Es ist nicht einfach, die Mikrostrukturentwicklung durch die Verwendung von konven-
tionellen Techniken, besonders von experimentellen Untersuchungen, zu erklären, da die
räumliche Verteilung hauptsächlich über die reguläre zweidimensionale Darstellung hinaus-
geht. Deshalb werden theoretische Behandlungen übernommen, um die experimentellen
Beobachtungen zu vervollständigen und das Verständnis der Forminstabilität in einer Mikrostruk-
tur zu verbessern. Durch die zunehmende Verfügbarkeit leistungsfähiger Rechner hat der
Beitrag der numerischen Analysen zu der Beschreibung der Komplikationen komplexer Phänomene
schrittweise zugenommen. In der vorliegenden Arbeit wird ein numerischer Ansatz verwen-
det, der als Phasenfeldmodellierung bezeichnet wird, um die Stabilität von zwei- und drei-
dimensionalen �niten Strukturen zu analysieren, durch die die krümmungsgetriebene En-
twicklung der Mikrostruktur bestimmt wird. Mit diesem numerischen Ansatz wird das soge-
nannte Phasenfeld zusätzlich zu den anderen thermodynamischen Variablen als eine skalare
Variable eingeführt, was eine charakteristische Eigenschaft dieses numerischen Ansatzes ist.
Während die Einbindung des Phasenfelds keine Grenz�ächenverfolgung benötigt, was ein
schwieriger Aspekt der anderen konventionellen Techniken ist, ersetzt sie die scharfe Gren-
z�äche mit einem �nit di�usen Bereich. Bevor das Phasenfeldverfahren übernommen und
erweitert wird, wird deshalb gezeigt, dass durch dieses Modell das geltende Gesetz, z. B. die
Gibbs-Thomson-Beziehung, trotz der Einführung der di�usen Grenz�äche wiederhergestellt
wird. Anschließend wird die numerische Behandlung für die Untersuchung der krümmungsin-
duzierten Umwandlung verwendet, die durch die Volumendi�usion bestimmt wird.

Die vorliegende Studie beginnt mit der Analyse der morphologischen Entwicklung einer
diskontinuierlichen Ablagerung in einer repräsentativen lamellaren Anordnung, um den Ein-
�uss der benachbarten Strukturen auf die Umwandlung der einzelnen Ablagerungen ver-
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stehen zu können. Im Einklang mit den bereits existierenden Berichten zeigt diese Anal-
yse, dass die Funktion der benachbarten Ablagerungen, die daraus besteht, die Entwicklung
einer isolierten Ablagerung zu steuern, deutlich abnimmt, wenn der Abstand, durch den die
Ablagerungen voneinander getrennt werden, zunimmt. Entsprechend wird die Umwandlung,
die durch den Krümmungsunterschied induziert wird, der mit der inhärenten Form der einzel-
nen Ablagerungen verbunden ist, umfangreich untersucht. Im Gegensatz zu den existierenden
Untersuchungen liefert das vorliegende Verfahren eine kumulative und vollständige Anal-
yse des Mechanismus und der Kinetik der Umwandlungen, die durch die Volumendi�usion
geregelt werden und in Metallsystemen weit verbreitet sind. Somit werden die kritischen As-
pekte der Forminstabilität, die bis jetzt noch unbekannt waren oder nur vermutet wurden, in
dieser Untersuchung erklärt.
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Chapter 1

Motivation

The e�ect of capillarity in �uids is evident and macroscopically observed. For instance, a
steady �ow of a liquid in the form of a cylindrical jet breaks-up into individual globules under
a de�nite condition. Owing to the macroscopic in�uence of capillarity, the stability of the
�uid �ow has been extensively analysed by both physicist and engineers. In a system of two
immiscible �uids, a de�nite region called the interface separates the constituent phases. When
the morphology of a �uid evolves in response to the capillarity-induced instability, generally,
the mass enclosed by the interface o�ers negligible resistance to the transformation. There-
fore, the shape-change is predominantly governed by the mass transfer along the interface.
The mass transfer along the region distinguishing the �uids, which subsequently results in
the migration of the interface, is referred to surface (or interface) di�usion. In other words,
the transformation of a three-dimensional structure is dictated by the mass transfer along
two-dimensional interface. Theoretical studies investigating the curvature-induced instabil-
ity in �uids, appropriately assume that the consequent morphological evolution is exclusively
governed by the surface di�usion [1, 2, 3]. This consideration averts the need for analysing
the entire domain, and simpli�es the approach by restricting the governing-physics to the
interface region.

Analogous to �uids, although not macroscopically, the curvature-induced transformations
are observed in solid-state systems on a microscopic scale. The microstructure, which depicts
the distribution of the phases in solid-state materials, include structures that inherently exhibit
di�erence in the curvature. Under an appropriate thermodynamic condition, governed by the
curvature di�erence, the phases transform morphologically. Since the driving force for this
evolution implicitly emerges from the shape of the precipitate, the resulting phenomena is
referred to as the shape-instability.

In metallic systems, the properties are considerably in�uenced by the morphology of the
phases in the microstructure. Thus, a comprehensive understanding of the shape-instability
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serves two critical purposes. One, it aides in achieving the desired properties without any
phase transformation. Two, it predicts the stability of a microstructure, in turn a material,
for a given condition. Unlike �uids, since the shape-instability in metallic systems is observed
only on a microscopic level, experimental studies demand both microscopic and in-situ analy-
sis. Therefore, theoretical treatments are employed to delineate the curvature-induced trans-
formations in the microstructure.

Owing to the similarity in the driving force, often the approach formulated to explicate the
e�ect of capillarity in �uid �ow is adopted to analyse the shape-instability [4, 5, 6]. However,
in metallic systems, the mass transfer is not predominantly con�ned to the interface. In other
words, the transformations induced by the shape-instability are not exclusively governed by
surface di�usion. Therefore, a quantitative analysis demands an approach which includes the
role of the volume di�usion by considering the entire domain. Since treating a entire domain is
inherently more complex than the simpli�ed technique that focuses on the interface dynamics,
theoretical investigations encompassing volume di�usion are limited and largely con�ned to
two-dimension [7]. Moreover, due to the lack of in-situ information on the volume-di�usion
governed transformation, analytical studies assume the mechanism of evolution to predict the
kinetics [8, 9, 10]. In order to render a comprehensive understanding of the shape-instability in
metallic systems, in the present work, a well-established numerical approach, which includes
volume di�usion and implicitly considers the temporal change in the entire domain, is adopted
to analyse the curvature-driven transformations.

1.1 Outline

Before delineating the numerical approach that is adopted to investigate the curvature-induced
transformation, various forms of shape-instability observed in the metallic system is intro-
duced in Chapter 2. Subsequently, a review of the theoretical advancements leading up to the
model adopted in the present study is rendered in Chapter 3. In Chapter 4, the model employed
to analyse the shape-instability is introduced. The thermodynamic consistency of the model
in recovering the physical laws, and the framework to incorporate quantitative data is eluci-
dated in Chapter 5. In Chapter 6, a chemo-elastic model which include elastic driving-force
and distinguishes interstitial di�usion from the substitutional is presented. In the subsequent
chapters, the kinetics and the mechanism of the shape-instability induced transformations is
extensively analysed.

To understand the in�uence of the neighbouring structures on the evolution of an iso-
lated precipitate, the morphological evolution of a representative lamellar microstructure is
studied in Chapter 7. In Chapters 8 and 9, the stability of the ribbon-like structures and three-
dimensional rods are respectively investigated. The morphological evolution of the pancake,
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elliptical and faceted plate are correspondingly elucidated in Chapters 10, 11 and 12



Chapter 2

Shape-instabilities in metallic systems

One prominent aspect of the vast �eld of material science involves understanding the in�u-
ence of the microstructure on the properties of the materials [11, 12]. Since the applicability
of any material is in�uenced by its behaviour under an imposed circumstance, the evolu-
tion of the microstructure which dictates the material behaviour is investigated comprehen-
sively. Microstructure, particularly in metallic (alloy) systems, comprises of polycrystalline
arrangement of di�erent phases, wherein each phases are characteristically distinguished
by chemical composition and/or crystallographic arrangement of atoms [13]. Therefore, the
microstructure in�uences the properties by governing the chemical composition and crystal
structure of the material through the volume fraction of the constituent phases. Consequently,
a phase transformation which alters the volume fraction of the phases, introduces a appro-
priate change in the material properties. Di�erent manufacturing process like heat treatment
techniques are meticulously devised to establish precise combination of the phases to render
desired properties.

One feature of the microstructure, in addition to the phase fraction and crystal struc-
ture, which equally in�uences the material properties is the morphology of the constituent
phases. Besides governing the mechanical behaviour of the materials, the shape adopted by
the phases in a microstructure in�uences other properties including magnetic and electrical
conductivities [14, 15, 16]. Therefore, the process chain of a material is not con�ned to the
phase transformation inducing treatments but combines techniques which establish a change
in the morphology of the phases [17, 18]. The shape assumed by the phases in a microstruc-
ture re�ects the transformation mechanism which yields the corresponding phases. For in-
stance, the lamellar arrangement of the ferrite and cementite in pearlitic steel indicates the
co-operative growth of the phases [19]. However, to expand the applicability of the material,
this characteristic morphology of the phases are disrupted through suitable techniques.

Heat treatment is the most common and well-established processing technique which
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Figure 2.1: A schematic representation of the thermal cycle involved in inter-critical and static annealing
treatment.

is predominantly adopted to induce microstructural transformation in metallic systems [20,
21]. Every heat treatment is characterised by a speci�c thermal cycle which renders the mi-
crostructure corresponding to the desired properties. A schematic illustration of the thermal
cycle is rendered in Fig. 2.1. Depending on the role of the phase transformation, the heat
treatment techniques employed to institute a change in the morphological arrangement of
the phases can be broadly categorised. In techniques like inter-critical annealing, the shape-
change is achieved with the aid of the appropriate phase transformation [22, 23]. Whereas,
certain other heat treatment processes, referred to as static annealing, establish the morpho-
logical transformation in the complete absence of any phase transformation [24, 25]. While the
former heat treatment is dictated, and often restricted, by the chemical composition of the ma-
terial, the latter provides a more generalized approach to obtain the essential microstructure.
Therefore, despite the apparently enhanced transformation-rate, the processing technique
which accomplish the morphological change in the absence of the phase transformation is
preferred, owing to its versatility.

As shown in Fig. 2.1, static annealing involves holding the material at high tempera-
ture, marginally below the critical temperature to avoid phase transformation, for a de�nite
period of time [26]. Accordingly, these treatments are also referred to as sub-critical an-
nealing [27, 28]. The thermodynamical principle undergirding the microstructural evolution
which ensues the static annealing is unambiguous and straightforward. The morphological
arrangement in a microstructure, which results from a phase transformation, often inher-
ently exhibit a di�erence in the curvature. Therefore, governed by the inherent curvature-
di�erence, a gradient in the chemical potential is induced in accordance with the Gibbs-
Thomson relation [29, 30]. The induced potential-gradient, eventuates mass transfer as the
components migrate from the region of the high potential to the low potential region. The mi-
gration of the components ultimately establishes the shape-change. The secluded role of the
curvature di�erence in the propelling the shape-change can be unraveled by considering the
interfacial energy. With the interfacial energy density (γ) being a constant, the extensive vari-
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able, overall interfacial energy, increases proportionately with interfacial area. In as-received
microstructures, the interfacial area are rarely at its minimal, and the morphological changes
accompanying the annealing treatment reduces the overall interfacial energy. Therefore, the
microstructural evolution pertaining to the sub-critical annealing can be viewed as the ther-
modynamical ability of the system to reduces it interfacial energy by suitable transforma-
tions. The high temperature, at which the material is held during the sub-critical annealing,
shown in Fig. 2.1, increases the di�usivity of the migrating component thereby enhancing the
rate of transformation. Since these transformations are primarily governed by the inherent
curvature-di�erence in a shape, and ultimately disrupts the shape, the morphological evolu-
tion are called as the shape instabilities [31]. From this brief elucidation it is evident that the
factors which govern the shape evolution, besides the curvature di�erence, are temperature,
interfacial energy density and material parameters like di�usivity.

In the addition to the morphology which emerges from the static annealing, the distribu-
tion of the phases plays a pivotal role in in�uencing the properties of the material [32]. The
distribution of the phase during the morphological evolution is dictated by the transforma-
tion mechanism. Therefore, a comprehensive understanding of the mechanism and kinetics
of the morphological evolution is necessary to optimize the thermal cycle and perceive the
distribution of the phases. Despite the seemingly straightforward principle, the microstruc-
tural evolution pertaining to the shape-change have long been identi�ed to be intricate [33].
Consequently, several investigations have been reported to unravel the complexity of the
curvature-driven transformation [34, 35, 36, 37]. Since the shapes which temporally evolve
during the transformation are convoluted three-dimensional structures, widening the cur-
rent insight on the shape instabilities exclusively through the experimental observations is an
arduous task. Such an analysis would require three-dimensional projection of the microstruc-
ture and periodic observation of its transformation. Therefore, owing to the well-de�ned
thermodynamical principle which undergird these evolutions, theoretical studies have com-
plemented the experimental reports in delineating the complexities [38].

Considering the theoretical treatment of the curvature-driven transformations, the ap-
proach adopted to investigate shape instabilities can largely be categorised as caused and
inherent. Although these distinctions are entirely based on the theoretical approach and pos-
sess no relevance to the physical observations, whatsoever, such distinctions highlight the
proximity of the theoretical considerations in relation to the physical conditions. The caused-
approach was originally introduced around 1880s to analyse the stability of the cylindrical
�ow of �uid jets [1]. Since an ideal in�nitely-long cylindrical rod, owing to the lack of any
curvature di�erence, remains perpetually stable, an external perturbation is introduced to
cause the instability. Rayleigh extensively adopted this approach in seminal works on �uid
jets wherein a numerically well-de�ned perturbation is introduced to the, otherwise, homo-
geneous rod and the criterion for the instability is derived based on the features of the per-
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Figure 2.2: A schematic illustration of the caused approach to investigate the stability of the in�nitely-long
cylindrical rod.

turbation, including amplitude and wavelength [1, 2, 3]. Consequently, these instabilities are
referred to as Rayleigh instabilities. Fig. 2.2 broadly illustrates the caused-approach of under-
standing the instability. To this day, this approach is the primary numerical tool for analysing
the stability of the �uid �ow [39, 40, 41, 42].

Later, Nichols and Mullins extended the caused-approach to understand the stability of the
rods in solid systems [43, 44]. Typically, their semi-analytical treatment involved analysing
the responsive behaviour of the rod to an imposed external disturbance, well-de�ned per-
turbation. Similar to the Rayleigh instabilities, criticality is de�ned based on the nature of
the imposed perturbation. Claiming that the external perturbation resembles the inhomo-
geneity in the cross-section of the rod, this approach has been employed to the metallic sys-
tems [45, 6, 46, 47, 48]. Despite the thermodynamical consistency of this caused-approach,
based on the experimental observations, it is argued that the inhomogeneities pertaining to
the rods in the microstructure are rarely periodic and well-de�ned. Furthermore, it is identi-
�ed that the assumed continuity of the rods is often disturbed by the other forms of instabil-
ities, thus nullifying the approach [36, 37].

The inherent approach of investigating the stability of a structure can be elucidated by con-
sidering the evolution of the �nite rods. The fragmentation of the in�nite rods into small �nite
structures obviates the need for any external disturbances. As shown in Fig. 2.3, the �nite rod,
innately, owing to the presence of the termination, sets up a di�erence in curvature between
the boundaries and adjacent �at surfaces. This curvature di�erence inherently facilitates the
morphological evolution of the rods. In other words, the inherent theoretical-treatment in-
volves analysing the morphological evolution of the structure governed by curvature-di�erence
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Figure 2.3: Morphological evolution governed by the inherent curvature di�erence between the termination
and the �at surface of the �nite structure.

Figure 2.4: Plate morphology assumed by the precipitate in a microstructure and its evolution to cylindrical
rod.

of its shape, devoid of any external perturbation. Interestingly, one of the seminal work re-
porting on shape-change of the �nite rod through inherent-approach adopts the framework
of the caused technique [5]. Unlike the caused-approach which is largely con�ned to the rods,
the inherent technique can be extended to various con�guration. Since the microstructure is
substantially complex in comparison to the regular arrangement of rods, and exhibits wide
range of instabilities, the inherent-approach appears more pertinent than the caused method.

Owing to the intricacies in a microstructure, di�erent forms of instabilities are observed
in the metallic systems [36, 37]. One common form, shown in Fig. 2.3, corresponds to the
spheroidization of the �nite rod. Apart from rod morphology, the phases assume a plate-like
structure as shown in Fig. 2.4a. If these plates are in�nitely long, the caused-approach cannot
be directly extended, since plates are resistant to the external perturbation [43]. However,
it has been experimentally observed that such in�nite plates transform to rods through the
process of cylinderization. A schematic representation of the morphological transformation
accompanying cylinderization is presented in Fig. 2.4. Although the stability of the structure
following the cylinderization can be analysed by adopting caused-approach, the inherent is
apparently only viable option for understanding shape-change leading cylinderization. Sim-
ilar to the �nite rod, the evolution of the in�nite plate is governed by the disparity in the
geometrical form of the sharp edges and face surfaces of plate, which translates to the curva-
ture di�erence.

The rod and plate morphology of the phases (precipitates) often are a component of the
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Figure 2.5: Schematic representation of fault migration wherein the discontinuous structure evolves by
losing its mass to the surrounding regular lamellae.

lamellar microstructure [49, 50, 51, 52]. Lamellar microstructure, which is characteristically
recognised by the alternating arrangement of the phases, is one of well-known microstructure
that spans across di�erent materials. The stability of the lamellar arrangement of the phases
are extensively studied for two reasons. One, as mentioned earlier, to optimize the properties
and expand the applicability of the material [53, 54, 55]. And the other is to prevent the failure
of the material, owing to the behavioural change associated with the morphological evolu-
tion, in high temperature applications [56, 57, 58]. The lamellar microstructure resulting the
processing techniques are not necessarily ideal exhibiting an alternating arrangement of the
continuous structures extending across the grain. During the growth of the phases, often dis-
continuous ‘faulty’ structure are formed which are sandwiched between the regular lamellae,
as shown in Fig. 2.5. The termination of this faulty precipitate introduces a curvature di�er-
ence in relation to the �at surface of its own and neighbouring precipitates. Consequently, the
discontinuous structure evolves dictated by the mass transfer which is induced by the gradi-
ent in the chemical potential. This morphological transformation wherein the discontinuous
precipitate recedes is referred to as the fault migration [59, 60]. A schematic representation
of the fault migration is illustrated in Fig. 2.5. The fault, when viewed as the migration of
the discontinuous termination, is also referred to as termination migration [61, 62]. Here, it is
important to realize that the shape-change exhibited by any �nite structure can be considered
as the termination-migration assisted, since it is the recession of the edges, under the in�u-
ence of the disparity in the curvature between the boundary (termination) and �at surface,
which governs the transformation [63, 64]. However, one distinguishing feature of the fault
migration is the role of the neighbouring structures in augmenting the mass transferred from
the discontinuous precipitate [33, 65].

Besides the faulty structure, the discontinuity is also introduced within a precipitate lamella
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Figure 2.6: Faulty structure forming a branch of the regular lamella and its evolution leading to the inho-
mogeneity in the cross-section of the regular structure.

leading to the formation of the ‘branch’ . Fig. 2.6a shows the schematic representation of
a lamellar branch observed in a microstructure [66, 67]. Similar to the fault structure the
branches introduce curvature-di�erence which consequently leads to the morphological evo-
lution. Owing to the size of the branch and its proximity to the regular structure, the mass
predominantly transfers from the branch which ultimately leads to its disappearance. This
morphological transition exhibited by the branch is referred to as branch elimination [68, 69].
The shape-change associated with the branch elimination is presented in Fig. 2.6. It is evident
from the illustration that the branch elimination introduces a visible inhomogeneity in the
regular structure which might disrupt the stability.

Another form of the instability which disrupts the morphological make-up of the mi-
crostructure is the boundary splitting. The temporal change accompanying the boundary
splitting is schematically shown in Fig. 2.7. This form of instability is exclusively observed in
the precipitate with through-thickness sub-boundary, a boundary that penetrates the entire
thickness of the structure [70, 71, 72]. Boundary splitting is initiated by another equilibration
phenomenon known as thermal grooving [73]. In a triple junction wherein three boundaries
meet, a groove is introduced at high temperature which establishes an equilibrium between
the interfaces based on their corresponding energy density (γ), as shown in Fig. 2.7. The ridges
which accompany the groove introduce a curvature di�erence and eventually vanish, owing
to the mass transfer to the adjacent �at surfaces. This disappearance of the ridge, disturbs
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Figure 2.7: Thermal grooving in the through-thickness boundary leading to the fragmentation of the pre-
cipitate.

the local equilibrium which is subsequently restored by the deepening of the groove. The
combination of these events in a plate-like structures results in boundary splitting as shown
in Fig. 2.7. The fragmentation of the seemingly in�nitely long structures in metallic system is
predominantly achieved by the boundary splitting [74, 75]. In the process chain, the materi-
als are deformed to increase the density of the through-thickness sub-boundary and thereby,
accelerate the morphological change [76, 25, 77, 78].

As opposed to conventional theoretical consideration, a precipitate in a microstructure
frequently interacts with the grain boundary. For instance, the orientation and continuity of
the lamellar arrangement is con�ned to a grain in a polycrystalline structure [79, 80]. There-
fore, the role of the grain boundary in the curvature-driven transformation cannot be over-
looked. Recently, experimental investigations have unraveled that a seemingly continuous
structure fragments near the grain boundary [81], as shown in Fig. 2.8. Although the driving
force for this shape-change is not the inherent curvature-di�erence of the shape, the structure
breaks-up in adherence to the Young’s law [82], which dictates the equilibrium pro�le of the
interfaces at a triple junction.

Apart from the di�erent forms, the shape instabilities are also distinguished by the dom-
inant mode of mass transfer which establishes the morphological change. Correspondingly,
the shape transformation can either be governed by the surface or volume di�usion. Several
critical aspects of the evolution including rate and mechanism are signi�cantly in�uenced by
the mass-transfer mode which dominates [44]. Broadly, it is assumed that the instabilities in
the �uids are dictated by the surface di�usion and the evolutions are numerically analysed
accordingly [83]. However, in solid-state system, particularly in metallic systems, this gov-
erning factor vary with the chemical make-up. The di�erence introduced by the principal
mode of the mass transfer can be elegantly described by considering the respective analytical
framework.

Irrespective of the dominant mode of the mass transfer, or even the form, the shape insta-
bilities are governed by the Gibbs-Thomson relation [29, 30]. The in�uence of the curvature



14 2.0

on the chemical potential, based on this relation, is expressed as

µ(k) = γVmk, (2.1)

where Vmis the molar volume and γ is the interfacial energy density. The curvature k is the
ascertained from the principal radii of the shape R1 and R2 by k ≈ (1/R1 + 1/R2). From
Eqn 2.1, it is evident that any di�erence in the curvature introduces a gradient in the chemical
potential. The chemical-potential gradient consequently induces a mass transfer. The velocity
of the atoms (va) migrating in response to the potential gradient is written as

va = − D

κT
∇µ = −DγVm

κT
∇k, (2.2)

where temperature and Boltzmann’s constant are respectively represented by T and κ. The
initial distinction, based on the mode of mass transfer, is introduced in the analytical formu-
lation through the di�usion co-e�cient or the di�usivity D. In volume-di�usion governed
transformation, volume di�usivity Dv is involved in Eqn. 2.2 while the surface di�usivity Ds

is adopted wherein surface di�usion is dominant.

Consider a binary two-phase system of α and θ wherein the precipitate-θ, which under-
goes the morphological evolution, is enveloped by the matrix-α. Owing to the concentration,
cαeq and cθeq, which represent the equilibrium composition, the phases are in chemical equilib-
rium. Under this condition, if cθeq � cαeq as in cementite and ferrite, the atomic �ux (J ) which
establishes the shape change can be written as

J = vac
θ
eq = −

DγVmc
θ
eq

κT
∇k. (2.3)

In the surface-di�usion governed evolution, the curvature di�erence and mass transfer are
considered exclusively in the surface. Therefore, based on Nernst-Einstein relation [84, 85,
86], Eqn. 2.3 for the shape instabilities dictated by the surface di�usion, the surface �ux is
expressed as

Js = −
DsγVmc

θ
eq

κT
∇sk, (2.4)

where ∇sk is the surface gradient of the curvature. In contrast, for the volume-di�usion
dominant transformation, the curvature gradient in the entire system is considered through
∇k, with volume di�usivity replacing D in Eqn. 2.3.

Owing to the con�ned consideration of the setup in the surface-di�usion governed trans-
formation, the amount of mass transferred per unit area and time is determined from the
surface gradient of the �ux, −J [73]. Correspondingly, the migration rate of an surface ele-
ment in the normal direction reads

∂η

∂t
= −Vm∇sJs =

DsγV
2

mc
θ
eq

κT
∆sk, (2.5)
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Figure 2.8: The shape-change in the lamellar arrangement of the phases initiated by its fragmentation
from the grain boundary.

where∇2
sk is expressed as the laplacian of the curvature, ∆sk. However, since the analytical

formulation of the mass transfer dictated by volume-di�usion considers the entire system, the
normal migration is expressed as

∂η

∂t
=
DvγV

2
mc

θ
eq

κT
∇k. (2.6)

From the above elucidation, it is conceivable that the assumption of the surface-di�usion
governed shape-change, wherein the morphological evolution is solely governed by the atomic
migration along the surface, simpli�es the theoretical approach. In other words, while numer-
ically analysing the microstructural transformation wherein the evolution is exclusively deter-
mined by the surface di�usion, the focus shifts from the entire domain to the interface. Cor-
respondingly, the theoretical investigation on the stability of an isolated three-dimensional
structure, under the consideration of the surface-di�usion dominance, is con�ned to the in-
terface, which is a two-dimensional plane. Although these considerations are appropriate for
the systems wherein the surface di�usion is physically and extensively dominant, like �uid
�ow, it cannot be directly adopted for the metallic system for two fundamental reason. One, in
solid-state systems, the governing mode of mass transfer various with the chemical composi-
tion of the system [87]. Moreover, even if one mode is dominant, the contribution of the other
mode cannot be overlooked, in its entirety. Two, a critical assumption in the theoretical treat-
ment of the surface-di�usion governed evolution is that the mass enclosed by the interface (or
surface) o�ers absolutely no resistance to the morphological change in the structure. Though
such conditions are prevalent in �uids, in metallic systems it is hardly observed. Therefore, a
more de�nitive approach which encompasses the entire system should be adopted to examine
the shape instabilities in solid-state systems.
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Phase-�eld modelling

In understanding any natural phenomenon, theoretical studies have always complemented
the experimental investigations. With the exponential increase in the computational resources,
numerous techniques with unique theoretical framework have been developed to untangle the
intricacies associated with any given physical process. The resulting enhanced understanding
has enabled engineers and scientists to optimally employ the energy resources and render an
e�cient product.

The phase-�eld modelling is one such computational technique which is notably gaining
ground for the past couple of decades. The adoption of this approach in diverse avenues of
research including material sciences [88], �uid dynamics [89], magnetism [90], classical and
quantum mechanics [91, 92] vindicates its versatility. The characteristic features of the phase-
�eld modelling which distinguishes it from its counterparts is of two fold. One, in addition to
the thermodynamic variables, a scalar state-variable referred to as ‘phase �eld’ is introduced.
The phase �eld assumes a constant value in the bulk phases while smoothly varying across
the region separating the phases, called the interface. This unique spatial dependence of the
phase �eld leads to the second characteristic feature of the phase-�eld modelling, which is the
introduction of the di�use interface replacing the sharp one.

In this chapter, as an introduction, the evolution of the theoretical formulations leading
to the phase-�eld model is presented. The phase-�eld technique can broadly be introduced
from two di�erent standpoints. In the ‘top-down’ scheme, the phase-�eld technique is setup
as an aspect of a larger numerical problem, namely free-boundary problem. Whereas, the
‘bottom-up’ framework introduces this simulation technique based on its motivation from the
statistical treatment of physical transformations. In the current work, a meaningful preface
to the phase-�eld modelling is rendered through the bottom-up scheme.

16
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3.1 Order parameter and Landau free energy

Electrical conductivities of most metals are inversely proportional to the temperature. There-
fore, below a critical temperature, a metal exhibits superconductivity by the absolute sus-
pension of its electrical resistivity. Overlooking the microscopic aspect, Landau proposed a
phenomenological approach to analyse the transition from normal to superconductivity by
considering it to be thermodynamically analogous to the second-order or continuous phase
transformation [93]. Although later is was shown that this consideration poses a serious lim-
itation to the model, for the present discussion such constraints are ine�ective.

Consider a system exhibiting a combination of two states of conductivity. In a simple
lattice model, the total energy (Hamiltonian)E of such a system with both normal and super-
conducting fractions is expressed as

E{σi} = −J̃
N∑
i=1

v∑
j 6=i

σiσj −B
N∑
i=1

σi, (3.1)

where σi and v correspondingly represent the conducting state of the lattice point (normal or
superconducting) and co-ordination number, which accounts for the number of neighbouring
lattice points. The interaction energy between the lattices i and j is quanti�ed by the constant
J̃ , and B is the external magnetic �eld. The �rst terms in Eqn. 3.1 encompasses all possible
interaction between the lattices while the second term represents the contribution of the indi-
vidual lattice. The partition function of the system consisting of normal and superconducting
fractions is expressed as

Z =
N∏
i

∑
σi

exp(−βTE{σi}), (3.2)

where N is the total lattice points in the system and βT is the thermodynamic beta, which is
the reciprocal of the κT with the κ and T denoting the Boltzmann constant and temperature.

Landau postulated that the transition to the superconductivity can be phenomenologically
viewed as the increase in the fraction of the superconducting material or growth of the super-
conducting phase. Therefore, to theoretically investigate the transition he distinguished the
superconducting phase from the rest of the system, by introducing a scalar state-variable.

The scalar state-variable, referred to as ‘order parameter (φ)’ , numerically distinguishes
the normal and superconducting fractions of the material by assuming a de�nite value within
a given phase. In the framework of the lattice model, the order parameter can be considered
as the average of a local set of lattice points Ñ , expressed as

φ =
1

Ñ

〈 Ñ∑
1

σi

〉
≡
〈
σi

〉
Ñ
. (3.3)
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In this coarse-graining approach, the local set is assumed to be large enough to encompass
su�cient lattice points, while signi�cantly small when compared to the geometric scale of
the domain.

By treating the order parameter as the fundamental variable, the partition function in
Eqn.3.2 can be written as

Z =

∫ ∞
−∞

dφ exp(−βTV f(φ)), (3.4)

where V is the volume of the system and f(φ) is the order-parameter based free-energy den-
sity. By adopting a thermodynamical description, the free energy density reads

f(φ) =
F (φ)

N
=
U(φ)

N
− TS(φ)

N
(3.5)

where U(φ) and S(φ) are internal energy and entropy, respectively. To ascertain these ther-
modynamic entities (U(φ) and S(φ)) which dictate the free energy density f(φ), the Mean-
�eld approximations, as in Braggs-Williams approach [94], is employed.

Assuming the interaction energy J̃ to be constant, the internal energy can be written
analogous to Eqn. 3.1. Correspondingly, the order-parameter dependent internal-energyU(φ)

reads

U

N
= −J̃

∑
<i,j>

φiφj −B
∑
i

φi = −v
2
J̃φ2 −Bφ, (3.6)

where v is the co-ordination number. The entropy S(φ), in Eqn. 3.5, which is predominantly
dictated by the con�guration, is determined from the density of states, Ω̄. For Ns supercon-
ducting lattices, the total number of con�gurations reads

Ω̄ =
N !

Ns!(N −Ns)!
. (3.7)

Therefore, the contribution of the entropy, given by S = log Ω̄, using Stirling’s approximation
can be written as

S(φ)

N
≈ log 2− 1

2
(1 + φ) log(1 + φ)− 1

2
(1− φ) log(1− φ). (3.8)

By substituting Eqns. 3.6 and 3.8 in Eqn. 3.5, the order-parameter based free-energy den-
sity is written as

f(φ) = −v
2
J̃φ2 −Bφ− T

[
log 2− 1

2
(1 + φ) log(1 + φ)− 1

2
(1− φ) log(1− φ)

]
. (3.9)

It is evident that the above formulation of the free energy density is devoid of the characteristic
critical temperature which governs the transition, under Landau’s consideration. Therefore,
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Eqn. 3.9 is solved for speci�c condition to incorporate the critical temperature. Under the
extremum condition, ∂f

∂φ
= 0, the aforementioned formulation of the free energy density

yields

−J̃φv −B − T

2
log
(1 + φ

1− φ

)
= 0. (3.10)

Correspondingly, from Eqn. 3.10, the order parameter is expressed as

φ = tanh
( J̃φv +B

T

)
. (3.11)

In the absence of the external magnetic �eld (B = 0), and marginally above the critical tem-
perature, wherein the system assumes a homogeneous state with the order parameter, φ = 0,
the critical temperature can be written as Tc = J̃v from Eqn. 3.11. Expanding the free energy
density in Eqn. 3.9 upto fourth order, and incorporating the critical temperature yields

f(φ) = −A−Bφ+
φ2

2
(T − J̃v) +

1

12
Tφ4, (3.12)

where A is a constant. This order parameter based polynomial expansion of the free energy
density is referred to as Landau free energy.

The prominent feature of the Landau free energy is the in�uence of the critical temperature
on the nature of the f(φ). When temperature is greater than the critical temperature (T > J̃v),
both the second order (quadratic) and the fourth order (quartic) terms in Eqn. 3.12 are positive.
Correspondingly, only one minimum exists for the free energy density. However, below the
critical temperature, since only the quartic term is positive, the free energy density exhibits
two mimimas, which is conventionally referred to as double well.

The well-known Landau theory is characteristically formulated for the transition to the su-
perconductivity. Therefore, in order render a coherent description of the theoretical approach
which led to the phase-�eld formulation, a deviation that conforms to the Ising model [95] is
adopted in the above elucidation.

3.2 Ginzburg-Landau free energy functional

Although the description in the previous section begins with the consideration of the entire
system, the approach is simpli�ed by involving constant interaction energy J̃ and expressing
the internal energy for a fraction in Eqn. 3.6. Therefore, the resulting free energy function in
Eqn. 3.12 is con�ned to the bulk volume-fraction of the system which can either be normal
or superconducting. However, in addition to the bulk phases, the system includes the regions
separating the phases which are referred to as interfaces. To formulate a free energy which
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encompasses the interface, the internal energy must be extensively de�ned. Correspondingly,
the internal energy now reads

U ≡ E{σi} = −
N∑
i=1

v∑
j 6=i

[J̃ssσiσj + J̃ss̃(1− σi)σj + J̃s̃s(1− σj)σi (3.13)

+ J̃s̃s̃(1− σi)(1− σj)],

where the interaction between similarly conducting lattice is quanti�ed by J̃ss and J̃s̃s̃, with
the former considering the superconducting lattice while the latter represents the normal
fractions of the system. The interaction between lattices with di�erent conductivities is rep-
resented by J̃ss̃. Furthermore, it is important to note that the formulation in Eqn. 3.13 entails
the consideration that a lattice can either be normal or superconducting.

The internal energy expression in Eqn. 3.13 can be simpli�ed, without compromising on
the intent to include the interface contribution, by assuming J̃ss = J̃s̃s̃ and temporarily sus-
pending the role of any constants. Under these assumptions and introducing the order pa-
rameters, Eqn. 3.13 is written as

E(φ) =
1

2

N∑
i=1

∑
j 6=i

J̃ijφi(~x)(1− φj(~x)), (3.14)

where the spatial dependency of the order parameters are included. Although theoretically, by
considering the interaction between the phases, Eqn. 3.14 encompasses both the bulk phases
and interface, the contribution of the interface is not separate and explicit in the expression.
Therefore, the order parameter term in Eqn. 3.14 is algebraically split as

φi(~x)(1− φj(~x)) =
1

2

{
[φi(~x)− φj(~x)]2 − [(φi(~x)2 + φj(~x)2] + 2φi(~x)

}
, (3.15)

such that �rst term on the right hand side represents the contribution across the phases while
the other terms correspond to the individual phases. In a two-dimensional setup wherein the
co-ordination number, v = 4, the interaction of φi is restricted to the phases at its right (φR),
left (φL), top (φT ) and bottom (φB). Therefore, the �rst term in Eqn. 3.14, can be expanded as∑

j 6=i

(φi − φj)2 = a2
[((φi − φR)2

a2
+

(φi − φT )2

a2

)
+
((φi − φL)2

a2
+

(φi − φB)2

a2

)]
, (3.16)

where a is the in�nitesimal distance separating the phases. The order-parameter terms on the
right hand side of Eqn. 3.16 can be viewed as the gradients of the φi. Correspondingly, the
interaction between the phases which represents the contribution form the interface can be
expressed as ∑

j 6=i

(φi − φj)2 ≈ a2|∇φi(~x)|2. (3.17)
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Substituting Eqn. 3.17 in Eqn. 3.15, the total internal energy of the system which encompasses
the interface is written as

E(φ) =
1

2
a2|∇φi(~x)|2 +

1

2
J̃ [φ(~x)(1− φ(~x))]. (3.18)

It is important to note that the second term on the right hand side of the above expression
is the simpli�ed form its corresponding term from Eqn. 3.15, which accounts for the contri-
bution of the bulk phase. In addition to this contribution of the bulk phase, the role of the
entropy (S(φ(~x), T (~x))) should be included to translate the internal energy into free energy.
Conventionally, mean �eld approximation is employed to formulate the entropy term. After
the inclusion of the entropy, if the free energy contribution of the bulk phase is represented
by f(φ(~x), T (~x)), the resulting free energy functional is expressed as

F (T, φ,∇φ) =

∫
V

{
K̄|∇φ(~x)|2 + f(φ(~x), T (~x))

}
dV, (3.19)

where V is the volume of the system and K̄ is the gradient energy co-e�cient which includes
the interaction energy parameter. This form of the functional is referred to as Ginzburg-
Landau functional [96], wherein the order parameter spatially vary continuously. Chronolog-
ically, the Ginzburg-Landau functional was adopted to Ising’s model around 1970’s [97, 98],
implying that Landau’s theory precedes Ising’ model in their contribution to continuum-�eld
(or phase-�eld) approach.

3.3 Cahn-Hilliard equation

The order parameters, both in Landau theory and Ising model, possess a characterising prop-
erty which aides in distinguishing this approach from other similar numerical treatments. For
instance, in Landau theory, the order parameter which represents the fraction of the system
exhibiting a particular conductivity (normal or superconducting), changes with its conductiv-
ity. Therefore, considering a transformation wherein the normal conducting system changes
entirely to superconducting, the order parameter pertaining to the original system completely
vanishes. In other words, the order parameters elucidated in the previous sections are non-
conserved. Consequently, it becomes unphysical to directly relate this order parameter with
the concentration. However, in their seminal work, Cahn and Hilliard derived an expression
similar to the Landau free energy with concentration replacing the order parameter [99].

It is important to note that the starting points of these two approaches, Landau and Cahn-
Hilliard, are signi�cantly di�erent. While framework of the Landau’s theory is aimed at treat-
ing the transition to the superconductivity as the second-order phase transformation, Cahn-
Hilliard formulated a free energy for the physically realized di�use interface [100, 101]. It is
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interesting to note that such treatment of the interface, as a di�use region instead conven-
tionally perceived sharp division between the phases, dates back to Van der Waal [102, 103].
Therefore, it is reasonable to state that, despite the prevalent understanding, the sharp inter-
face model make comparable assumptions like the phase-�eld approach to treat the interface.
In other words, assumption pertaining to the width of the interface is not exclusively con�ned
to the phase-�eld models.

As described in the previous section, the interface contribution in the Landau approach
was introduced by considering the interaction of the order parameters. In this section, region
separating chemically-distinct phases is treated as a di�use interface wherein the concentra-
tion exhibits a spatial variation. Consider a closed system of a binary alloy with components
A and B, let c be the independent concentration variable representing the mole fraction of
B. If the system comprises of A- and B-rich phases in equilibrium, the overall free-energy
of the system can be expressed as the summation of the free energies wherein the concentra-
tion is homogeneous, representing the bulk phases, and inhomogeneous, characterising the
interface. This consideration entails the assumption that the free energy is continuous across
the interface. Furthermore, the concentration in the inhomogeneous region is determined
by adopting the coarse grain approximation. Correspondingly, the overall free-energy of the
system can be written as

f(c,∇c,∇2c, . . . ) = fbulk(c) + fintf(∇c,∇2c, . . . ), (3.20)

where fbulk(c), expressed as fbulk(c) = fα(c) + fβ(c), is the free energy contribution from
the bulk phases with homogeneous concentration c with α and β representing A- and B-
rich phases, respectively. The free energy contribution from the interface is represented by
fintf(∇c,∇2c, . . . ). Using Taylor’s expansion for the overall free-energy f(c,∇c,∇2c, . . . ),
Eqn. 3.20 transforms to

f(c,∇c,∇2c, . . . ) = fo(c) +

{
∂f

∂∇c
∇c+

∂f

∂∇2c
∇2c+

∂f

∂∇x∇yc
∇x∇yc+ . . . (3.21)

+
1

2

[ ∂2f

∂(∇c)2
(∇c)2 +

∂2f

∂(∇2c)2
(∇2c)2

+
∂2f

∂(∇x∇yc)2
(∇x∇yc)

2 + . . .
]

+ . . .

}
with fo(c) ≡ fbulk(c), the terms enclosed by {. . . } in the above Eqn. 3.21 relate to the in-
terface contribution fintf(∇c,∇2c, . . . ) in Eqn. 3.20. Assuming the system to be con�gura-
tionally isotropic, Eqn. 3.21 can be simpli�ed by eliminating the terms that are equivalent and
mutually-reversed owing to the symmetry. By con�ning to the fourth order, the simpli�ed
form of Eqn. 3.21 reads

f(c,∇c,∇2c, . . . ) = fo(c) +
∂f

∂∇2c
∇2c+

1

2

∂2f

∂(∇c)2
(∇c)2. (3.22)
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Invoking Stokes theorem, the overall free-energy of the system can be expressed as functional
of the form

F (c,∇c) =

∫
V

{
fo(c) + K̃|∇c(~x)|2

}
dV, (3.23)

with V representing the volume and constant K̃ , the gradient energy co-e�cient. If the order
parameters are de�ned based on the concentration, particularly for the second-order phase
transformations like spinodal decomposition, the Cahn-Hilliard functional in Eqn. 3.23 would
resemble Eqn. 3.19, the Ginzburg-Landau functional.

3.4 Phase �eld

From the above elucidation it is evident that the order parameter is versatile and can be conve-
niently de�ned based on the thermodynamical setup of the system. For instance, in Ginzburg-
Landau approach the order parameter represents the conductivity while in Ising’s model, it
is de�ned based on the magnetic spin. Moreover, the spatially-dependent concentration vari-
able in the Cahn-Hilliard formulation can be replaced by the order parameter by de�ning
it appropriately. Despite the di�erence in the nature of the thermodynamic variable which
is employed to de�ne the order parameter, certain features characterise these order param-
eters. The order parameter assume a de�nite value in the bulk phases while spatially vary
in the region separating the phases. Furthermore, it is evident from Eqns. 3.19 and 3.23 that
the order parameter represent a continuum �eld in the system. However, the nature of the
order parameter, conserved or non-conserved, plays a signi�cant role when the system is in
non-equilibrium condition.

Under a non-equilibrium condition, in addition to spatial-dependency, the order param-
eters exhibits temporal-dependency. In accordance with the linear response theory, the tem-
poral evolution of the order parameter is related to the variation derivative of the functional
expressed in Eqn. 3.23 (or Eqn. 3.19). However, the form adopted by this relation depends ex-
plicitly on the nature of the order parameter. For the non-conserved order parameter, de�ned
by the variables like conductivity, magnetic spin or density, the evolution equation is of the
form

∂φ(~x, t)

∂t
= −M̄ δF

δφ(~x, t)
, (3.24)

where M̄ is a constant which governs the mobility of the interface. Eqn. 3.24 is referred to
as time-dependent Ginzburg-Landau equation [104]. Later, Allen and Cahn treated derived
similar expression from the Cahn-Hilliard functional, which is now known as Allen-Cahn
equation [105]. Apart from its applicability, the Allen-Cahn and time-dependent Ginzburg-
Landau equation are numerically analogous. The order parameter when de�ned based on
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conserved variables like concentration, the form of the evolution equation changes to

∂φ(~x, t)

∂t
= M̃∇2 δF

δφ(~x, t)
. (3.25)

The aforementioned form is the simpli�ed representation evolution equation adopted for nu-
merically treating spinodal decomposition. Although it has been shown that both these evolu-
tion equations can be derived from the same probabilistic master equation using path-integral
approach [106], the disparity in Eqns. 3.24 and 3.25 is signi�cant.

Physically, a phase transformation encompasses both conserved and non-conserved com-
ponents. For instance, during solidi�cation, the state of the system is non-conserved, as the
liquid state completely vanishes, whereas the concentration remains conserved. Advance-
ments in the continuum approach, elucidated in previous sections, enabled numerical treat-
ment of both conserved and non-conserved parameters in a single framework [107, 108]. In
this framework, the thermodynamical description of the non-conserved order parameter is
subtle and conventionally, it is understood to represent the nature of the phase-fraction. Such
minimization of the thermodynamic attributions to the order parameter, relaxes the constraint
on the values assumed by the order parameters in the bulk phases. Therefore, by appropriate
formulation, simpler (handle-able) values are assigned to the order parameters for e�cient
numerical treatment. This state variable, with or without any thermodynamic signi�cance,
but restricted to the condition

∑N
i φi = 1 is referred as phase �eld. In other words, phase

�elds are order parameters with relaxed thermodynamical description and con�ned to the
criterion that φα = 1 within phase-α and φα = 0 in the remnant of the system.

3.5 Interface properties

Based on the above elucidation of the phase �eld, under non-equilibrium condition, the func-
tional which governs its evolution can be expressed as

F (·, φ,∇φ) =

∫
V

{fdrv(·) +
K

2
|∇φ(~x)|2 +Hfdw(φ)}dV, (3.26)

where K and H are constants, and fdrv(·) is the ‘driving force’ which governs the temporal
change in the phase �eld. Since the primary focus of this section is to delineate the interface,
an detailed explication of the term fdrv(·) will be resumed in the next section. However, its vital
to note that the driving force in�uences the nature of the double-well function fdw(φ), which
is motivated by the Landau free-energy formulation in Eqn. 3.12. Owing to the phase-�eld
constraint

∑N
i φi = 1, the function fdw(φ) consists of two minimas at 0 and 1. Depending on

the fdrv(·), one of these minimas turns global.

At equilibrium, when fdrv(·) = 0, the free energy functional in Eqn. 3.26 gets simpli�ed
with the contributions restricted to gradient energy term (|∇φ(~x)|2) and double-well function
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fdw(φ). Since the energy of the system is solely dictated by the free energy of the interface
under equilibrium, a corollary of this condition is that the interface contribution based on the
function in Eqn. 3.26 is expressed as

fintf(φ,∇φ(~x)) = Hfdw(φ) +
K

2
|∇φ(~x)|2. (3.27)

Owing to the lack of phase transformation under equilibrium, irrespective of the nature of
the order parameter, ∂φ(~x,t)

∂t
= 0. Consequently, at equilibrium, the variational derivative of

the functional F (φ) is written as

δF

δφ
=
∂fintf(φ,∇φ(~x))

∂φ
−
[
∇∂fintf(φ,∇φ(~x))

∂∇φ(~x)

]
= 0. (3.28)

Assuming that the spatial dependency of phase �eld φ is restricted to X-direction, and con-
sidering a simpli�ed form of the double-well function fdw(φ) = 1

4
(1− φ2)2, Eqn. 3.27 yields

K
∂2φ(x)

∂x2
−H∂fdw(φ)

∂φ
= K

∂2φ(x)

∂x2
−H(φ− φ3) = 0. (3.29)

From Eqn. 3.29, the pro�le of the interface can be written as

φ(x) = tanh
( x

ε
√

2

)
, (3.30)

where the constant ε =
√
K/H . Here, it is important to note that the relation expressed in

Eqn. 3.30 is signi�cantly in�uenced by the choice of fdw(φ). Therefore, with the change in the
double-well function fdw(φ), the pro�le of the interface varies.

The free energy density fintf(φ(~x)) in Eqn. 3.27 is of the dimension of energy per unit
volume. Since fdw(φ) is dimensionless, the dimension of the constant H should be identical
to fintf(φ(~x)). For the similar reason, K is of the dimension, energy per unit length. Now, the
relation ε =

√
K/H yields that dimension of ε is length and thus, relates the width of the

di�use interface.

In principle, having decoupled the interface contribution from the rest of the system in
Eqn. 3.27, the interfacial energy γ can be related to fintf(φ(~x)) as

γ =

∫ ∞
−∞

fintf(φ,∇φ(~x))dx = H

∫ ∞
−∞

[1

2
ε2|∇φ(~x)|2 + fdw(φ)

]
dx. (3.31)

Non-dimensionalising the variable x using the length parameter ε by x̃ = x
ε

and expressing
Eqn. 3.31 yields

γ =
√
KH

∫ ∞
−∞
|∇x̃φ(~x)|2 + fdw(φ)dx. (3.32)
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To solve the terms enclosed by the integrals, Eqn. 3.29 is non-dimensionalised which results
in the condition

∂2φ(x̃)

∂x̃2
=
∂fdw(φ)

∂φ
. (3.33)

Using the above condition, the integral term in Eqn. 3.32 is evaluated, which for the conve-
nience is referred to as I . Therefore, from Eqn. 3.32, the interfacial energy can be written
as

γ = I
√
KH = εIH. (3.34)

Based on the above relation, for a given interface width W , the interfacial energy γ can be
recovered in a phase-�eld model by manipulating the constants H and K . It is evident from
Eqn. 3.27 that the constant H governs the shape, or particularly the amplitude, of the double-
well function fdw(φ). Therefore, as represented in Eqn. 3.34, the width of the di�use interface
(ε) and the product of the energy barrier (H) phenomenologically relates to interfacial energy
(γ).

3.6 Thermodynamic formulation of the functional

The relaxation of the thermodynamic attributions to the phase �eld by the inclusion of a more
coherent variable, widens the applicability of the approach. Therefore, since the preliminary
works of Langer [108] and Hohenberg et al [107], numerous phase-�eld models have been
increasingly reported. Despite being substantially di�erent in its thermodynamical consider-
ation, the similarity in the numerical framework of the di�erent phase-�eld models is one of
the main reason for the growing recognition of this approach.

The framework of the phase-�eld modelling begins with the formulation of the functional.
The thermodynamical makeup of the system is de�ned in the model by the choice of an appro-
priate functional. Moreover, the variation of this functional dictates the resulting phase-�eld
simulation. In this section, the progressive changes in the formulation of the functional, which
led to the model adopted in the present work, is concisely presented.

The driving force which govern the phase transformation is encompassed in the func-
tional. Therefore, in Eqn. 3.26, in addition to the double-well and the gradient energy term
a function, fdrv(·), is included. To simulate the solidi�cation of a pure material, the driving
force is governed by the temperature. Correspondingly, the functional can be expressed as

F (T, φ,∇φ) =

∫
V

[
fdw(φ) +

ε2

2
|∇φ|2 + λU(T )φ

]
dV, (3.35)
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where λ is a dimensionless constant. The term U(T ) governs the driving force through the
relation U(T ) = Cp

(
T−Tm
L

)
, where Tm, Cp and L are the melting temperature, the speci�c

heat and the latent heat, respectively. Based on the sharp interface description of the enthalpy,
a function H(U(T )) is de�ned which reads

H(U(T )) = U(T ) +
l

2
φ (3.36)

with l being a constant. This numerical formulation was adopted in the early works of Cagi-
nalp [109] and Collins et al [110].

For the functional in Eqn. 3.35, the temporal evolution which ensures the minimization of
the overall free energy is written as

−τ ∂φ
∂t

=
δF (T, φ,∇φ)

δφ
= f ′dw(φ) + ε2∇2φ+ λU(T ), (3.37)

where τ is a relaxation constant and the phase-�eld derivative of the double-well function
is represented by f ′dw(φ). Furthermore, owing to the conserved nature of the term U(T ), its
temporal evolution is expressed as

∂U

∂t
= Ko∇2U +

l

2

∂φ

φt
, (3.38)

where the constant Ko accounts for the conductivity.

The monotonic decrease in the free energy is evident in the time-dependent variation of
the functional expressed in Eqn. 3.24 and 3.25. However, for the functional in Eqn. 3.35, the
inclusion of the term which dictates the driving force does not explicitly a�rm this temporal
behaviour. Recognizing this in�uence of the additional term, Penrose and Fife formulated a
di�erent functional which ensures the monotonic change [111]. The formulation of the func-
tional begins with the thermodynamical description of the free energy as a Legendre transform
expressed as

f(T ) = e(T )− Ts(e(T )), (3.39)

where e and s(e) are the energy and entropy density of the system. Therefore, by augmenting
the dependency of the free energy f(T ) on the phase �eld through the conventional double-
well function, the Eqn. 3.39 yields

s(e, φ) = −f(T, φ)

T
+
e

T
(3.40)

where s(e(T ), φ), and f(T, φ) are phase �eld dependent entropy and free-energy density of
the system. From the relation in Eqn. 3.39, the energy density of the system can be expressed
as

e =
∂(f(T (e), φ)/T )

∂(1/T )
. (3.41)
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Based on this thermodynamical consideration, a functional based on the entropy density can
be expressed as

S(e, φ) =

∫
V

[
s(e, φ)− ε2

2
|∇φ|2

]
dV. (3.42)

In this formulation, it is important to note that the dependence of the energy density on the
phase �eld is through its relation to the free energy in Eqn. 3.41. Therefore, subsequently,
an attempt was made to improve the thermodynamical consistency of this approach [112].
Correspondingly, the energy density of the system is written, by distinguishing it between
the phases, as

e(T, φ) = eS(T )h(φ) + eL(T )(1− h(φ)), (3.43)

where eS(T ) and eL(T ) are the energy densities of solid and liquid phases of the system,
respectively. The function h(φ), referred to as interpolation function, changes monotonically
across the interface and satis�es the condition

h(φ) =

1, φ = 1 (solid),

0, φ = 0 (liquid),
(3.44)

Furthermore, in both the bulk phases (φ = 0, 1), the phase-�eld derivative of the interpolation
function must be h′(φ) = 0. This interpolation function is determined from the double-well
function fdw(φ) through

h(φ) =

∫ φ
0
fdw(φ)dφ∫ 1

0
fdw(φ)dφ

. (3.45)

Since the phase �eld assume φ = 1 in solid and φ = 0 in liquid, the double-well function
fdw(φ) = φ2(1−φ)2 is considered and the interpolation is ascertained accordingly. The phase-
�eld evolution equation for this entropy based formulation can be expressed as variation of
the functional de�ned in Eqn. 3.42 as

τ
∂φ

∂t
=
δS(e, φ)

δφ
. (3.46)

Additionally, by appropriately de�ning the mobility M̃ which encompasses the relation ∂s(e,φ)
∂e

=
1

T (e,φ)
, the evolution of the energy density is written as

∂e

∂t
= M̃∇2T. (3.47)

The thermodynamic consistency of this formulation for the solidi�cation of the pure material
is ensured by the monotonic increase in the overall entropy density.
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The numerical descriptions of the functional so far have been con�ned to the phase trans-
formation of a pure material. Wheeler, Beottinger and Mcfadden pioneered the attempt of
simulating the transformation of the binary alloy in an isothermal condition, which is com-
monly referred to as WBM model [113]. This initial approach is an extension of the numerical
treatment adopted for the unary system [114]. The free energy of the components, A and B,
constituting the solid and liquid phase in the binary system is de�ned analogous to the unary
system as

fA(T, φ) = WA

∫ φ

0

p(p− 1)[p− 1

2
− βA(T )]dp, (3.48)

and

fB(T, φ) = WB

∫ φ

0

p(p− 1)[p− 1

2
− βB(T )]dp, (3.49)

respectively. The function β{A,B}(T ) manipulates the double-well function depending on the
temperature and its relation to the melting temperature of the corresponding material (A orB)
andW{A,B} is a constant. Owing to the binary nature of the system, the chemical setup of the
phases can be expressed by one independent concentration variable c. Therefore, invoking the
thermodynamical relation, the free energy density of the entire system, based on Eqns. 3.48
and 3.49, is be expressed as

f(c, T, φ) = cfB(T, φ) + (1− c)fA(T, φ) +
RT

Vm
[c ln c+ (1− c) ln(1− c)], (3.50)

where c is the mole fraction of component B with R and Vm representing universal gas con-
stant and molar volume, respectively. The formulation in Eqn. 3.50 assumes the binary system
to be ideal solution. However, from Eqns. 3.48 and 3.49, free energy description can be ex-
tended for regular solutions as well. Based on the above thermodynamical considerations, the
free energy functional of the system is written as

F (c, T, φ,∇φ) =

∫
V

[
f(c, T, φ) +

ε2

2
|∇φ|2

]
dV. (3.51)

The temporal evolution of the phase �eld is determined from the variation of the functional
F (c, T, φ,∇φ). Furthermore, assuming isothermal solidi�cation, the evolution of the inde-
pendent concentration variable is

∂c

∂t
= ∇

{
[c(1− c)]M̃∇δF (c, φ)

δc

}
, (3.52)

where M̃ is the mobility which encompasses the di�usivity D of the component. The coe�-
cient c(1 − c) is included in the above Eqn. 3.52 to ensure that the mobility is constant with
in a phase and independent of the concentration.
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Several advancements have been made to this initial WBM model to relax certain restric-
tions and improve the applicability of the approach. One major limitation of this model, which
was identi�ed almost immediately, pertains to the very high driving force. With increase in
the driving force governing the phase transformation the interface velocity correspondingly
increases. However, as indicated in Eqn. 3.52, the concentration evolution is predominantly
governed by the di�usivity which is a constant at a given temperature. Therefore, at a very
high interface velocity, the di�using component gets segregated in the interface, which is re-
ferred to solute trapping. To address this limitation, Karma [115] as well as the authors of the
WBM model [116] independently extended the free functional to

F (c,∇c, φ,∇φ) =

∫
V

[
f(c, T, φ) +

ε2

2
|∇φ|2 +

ε̃2

2
|∇c|2

]
dV, (3.53)

by including the gradient concentration term, ε̃2
2
|∇c|2. Another advancements involved the

rede�ning the entire framework to investigate the non-isothermal solidi�cation of the binary
alloys. In this model, while the concentration based description of the free energy remains
unchanged, the approach of Penrose and Fife [111], as well Wang et al. [112], is adopted to
formulate entropy density based functional [117].

In the WBM model, it is evident from the numerical description that a single concentration
�eld is considered for both the solid and liquid phase. Such consideration entails that the
concentration �eld is continuous across the interface and exhibit a spatial dependency. At
each point in the interface, the concentration can be assumed to be the average of the both the
phases. Therefore, this formalism is, at times, referred to coarse grained approach. Although
the framework of the model appears to be thermodynamically consistent, Tiaden et al. have
shown that, in equilibrium, an excess energy is attributed to the interface, particularly due to
the nature concentration �eld [118]. This introduces a non-physical interaction between the
free energy bulk phases with the interface and imposes constraint on the interface parameter.
Furthermore, it has been identi�ed that, since in interface the concentration adheres to the
condition cS = cL = c, where cS and cL concentration in respective liquid and solid phases,
a chemical potential gradient is introduced within the di�use region which should be equal
under equilibrium [119]. To circumvent this limitation and to render an e�cient decoupling
of the interface and bulk free energy contribution, a di�erent approach was rendered by Kim,
Kim and Suzuki, which is referred to as KKS model [120].

In their work, Tiaden et al. [118], while theoretically unravelling the limitation of the WBM
model, presented a groundwork for the KKS model. This initial attempt involves replacing the
continuous concentration variable c with a phase-dependent entity cα, where α can be solid,
liquid or any phase, and relating the concentration of the individual phases through a corre-
lation factor. Since this approach was con�ned to the dilute solutions and thermodynamical
consistency was not completely explicit, it was subsequently superseded by the KKS model.
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The theoretical framework of the KKS model is motivated by the sharp interface descrip-
tion of the similar problem. Correspondingly, the free energy density comprising of the con-
tributions from the bulk phases is expressed as

f(cα, cβ, φ) = h(φ)fα(cα) + (1− h(φ))fβ(cβ), (3.54)

where h(φ) is the interpolation function that satis�es the condition as in previous models,
Eqn. 3.44. The free energy density pertaining to the phases α and β is represented by fα and
fβ , respectively. Here, it is important note this formulation of the bulk free-energy density
in Eqn. 3.54 enables the introduction of physical free energy from the database like CAL-
PHAD. Furthermore, the continuous concentration c in the WBM model is replaced by the
phase-dependent concentrations cα and cβ . However, instead of the correlation factor, these
concentrations are related through the interpolation function as

c(φ) = h(φ)cα + (1− h(φ))cβ. (3.55)

At the interface, the phases are assumed be in equilibrium characterised by the condition

∂fα(cα(~x, t))

∂cα
=
∂fβ(cβ(~x, t))

∂cβ
= µeq(~x, t), (3.56)

where the equilibrium chemical potential is represented by µeq.

Considering the aforementioned numerical and thermodynamical description, the func-
tional under this formalism is expressed as

F (cα, cβ, φ,∇φ) =

∫
V

[
f(cα, cβ, φ) + fdw(φ) +

ε2

2
|∇φ|2

]
dV. (3.57)

The phase-�eld evolution, governed by variation of functional in Eqn. 3.57, can be written as

−τ ∂φ
∂t

= h′(φ)[fα(cα)− fβ(cβ)− µeq(cα − cβ)]− f ′dw(φ)− ε2∇2φ. (3.58)

The temporal evolution of the concentration is similarly expressed as

∂c

∂t
= ∇

[M̃(φ)

fcc
∇∂f

α(cα)

∂cα

]
(3.59)

where the constant fcc = ∂2fα(cα)

∂cα2 plays the role of the coe�cient c(1− c) in the WBM model
and ensures that the mobility M̃(φ), which is dictated by the di�usivity, is constant within a
phase and is independent of the concentration.

3.7 Grand potential

The thermodynamic variable which dictates the phase transformation in the solidi�cation
of the pure material is temperature. This fundamental �eld becomes constant throughout
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the system, irrespective of the phases, once the equilibrium is attained. In the solidi�cation
of the binary alloy, under the isothermal condition, the governing role of the temperature
is assumed by the independent concentration variable. Consequently, the equilibrium con-
dition is ascertained by the phase-dependent concentration reaching a characteristic value,
cαeq and cβeq , de�ned by the free energy plot. It is worth noting that, unlike the tempera-
ture which is an intensive variable, these concentrations are densities of the extensive vari-
able and are not equal at equilibrium, cαeq 6= cβeq. Although there is absolutely no thermody-
namical inconsistencies in the phase-dependency of the concentration variable, this nature of
the fundamental-�eld compromises the computational e�ciency. This compromise is evident
from the condition, Eqn. 3.56, adopted in the KKS model. Since the KKS model, assumes that
the co-existing phases are in equilibrium at the interface, the phase-dependent concentrations
are determined by solving the non-linear relation in Eqn. 3.56 for each phase and component.
In a polycrystalline setup, the amplitude of the calculation increases proportionately with in-
crease in the number of components and phases. The computational load introduced by the
phase-dependent �eld can be averted by considering an intensive variable which is indepen-
dent of the phases. Therefore, a phase-�eld model wherein the chemical potential µ acts as
the dynamic fundamental-variable is more e�cient than the KKS model, particularly for a
multicomponent consideration.

In order to employ the chemical potential as the fundamental �eld which replaces the
concentration, the thermodynamic function de�ning the functional needs to be re-formulated.
Conventionally, in both WBM and KKS model, the functional is de�ned based on the free
energy density fα(cα). The phase-dependent concentration variable in the function fα(cα)

can be replaced by the intensive variable µ by considering the Legendre transform of the free
energy which yields

Ψα(µ) = fα(cα)− µcα. (3.60)

The function Ψα(µ) in the above Eqn. 3.60 is referred to as grand potential density in the
statistical thermodynamic. Furthermore, from Eqn. 3.60 the concentration cα can be expressed

cα = −∂Ψα(µ)

∂µ
(3.61)

Here it is important to note that this description assumes phase transformation in isothermal
condition and hence, the temperature dependency is not indicated.

The nature of the grand potential density Ψα(µ) at equilibrium can be elucidated in a ther-
modynamical framework. Consider a extensive variant of the grand potential which depends
on the volume of the phase, Ψ̃α(µ, V α). Eqn. 3.60 can now be written as

Ψ̃α(µ, V α) = f̃α(cα, V α)− µcα, (3.62)
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Under this condition, since the free energy f̃α(cα, V α) can be expressed as the

f̃α(cα, V α) = Gα − PV α, (3.63)

Eqn. 3.62 reads

Ψ̃α(µ, V α) = Gα − PV α − µcα, (3.64)

where P is the pressure. Invoking the Gibbs-Duhem relation, Gα = µcα, the relation in
Eqn. 3.64 yields,

P = −Ψ̃α(µ, Vα)

Vα
= −Ψα(µ). (3.65)

Since the pressureP is equal at equilibrium, correspondingly, the nature of the grand potential
density at equilibrium is written as

Ψα(µ) = Ψβ(µ) (3.66)

Considering the above description of the grand potential and the its fundamental variable,
chemical potential, a relation between the model formulated based on this thermodynamical
function and solidi�cation of the pure material can be deduced. Free energy of the solid and
liquid phase during the solidi�cation are equal at equilibrium. This equality is not sustained in
the two component system. However, as elucidated through Eqn. 3.66, similar to free energy
in pure system, the grand potential density loses the phase-dependency at equilibrium and
reaches an equal value. Furthermore, akin to the temperature in the solidi�cation of unary
melt, the chemical potential in the binary system assumes an identical value across the in-
terface in the equilibrium. Despite these similarity with the single component solidi�cation,
a phase-�eld model can be formulated based on the grand potential density which does not
compromise in the speci�c quantitative aspects like the WBM model.
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Grand potential based multiphase-�eld
model

A phase-�eld model formulated around the grand potential functional was initially pro-
posed for binary two-phase system [121] and subsequently extended to the multicomponent
multiphase system [122]. Since the simulations analysed in the present work emerge from
the grand potential density based phase-�eld model, a concise description of the model is
rendered in this section. Considering the nature of the theoretical investigations pursued in
the following sections, the model is derived for binary multiphase systems. Furthermore, since
the morphological evolutions reported in this work pertains to the isothermal treatment, the
dependence of temperature on the thermodynamic parameters is overlooked.

As elucidated in the previous sections, the formulation of the phase-�eld model stems
from the description of the functional which encompasses the contribution from bulk phases
and the corresponding interface. The double-well function, or its variant, which penalises
the phase �eld digressing from the de�ned value, along with the gradient energy term can be
categorized as the energetic contribution of the interface. While, the bulk-phase contribution
is formulated based on a thermodynamic function which is associated with a fundamental dy-
namic variable. The approach adopted to numerically treat the function and its corresponding
variable bring about a signi�cant di�erences in the model. In the present model, the functional
Ω(µ,φ,∇φ) is formulated as

Ω(µ,φ,∇φ) =

∫
V

[
Ψ(µ,φ)︸ ︷︷ ︸

bulk

+ εa(φ,∇φ) +
1

ε
w(φ)︸ ︷︷ ︸

interface

]
dV, (4.1)

where the contribution from the bulk phases is dictated by the corresponding grand potential
density Ψ(µ,φ). Owing to the multiphase formulation of the model, in Eqn. 4.1, the phase

37



38 4.0

�eld is vector-valued continuous state variable ofN components,φ = {φα, φβ, . . . , φN}, with
N representing total number of phases. Whereas, the chemical potential is expressed as µ,
since the system comprises of a single independent component.

In a multiphase, the bulk-phase contribution Ψ(µ,φ) is expressed as the interpolation of
individual contributions,

Ψbulk (µ,φ) =
N∑
α=1

Ψα (µ)hα (φ) , (4.2)

where hα (φ) is the interpolation function which satis�es the condition discussed in Sec. 3.6
and Eqn. 3.44. The grand potential density Ψα (µ) of the phase-α adheres to the thermody-
namic description render in the previous Sec. 3.7.

In the current multiphase description, the gradient energy density, εa(φ,∇φ), is de�ned
as the summation of the pairwise interaction between the adjoining phases [123]. The corre-
sponding formulation of the gradient energy density reads

εa(φ,∇φ) = ε
∑
α<β

γαβ[aαβ(qαβ)]2|qαβ|
2, (4.3)

where γαβ is the interface energy density between phase-α and-β. The length-scale parameter
ε dictates the interface width. The fundamental variable in Eqn. 4.3, which is replaced by
phase-�eld gradient in a two-phase system, is the gradient vector, qαβ . This gradient vector
is expressed as

qαβ = φα∇φβ − φβ∇φα. (4.4)

The adjunct parameter aαβ , which is written as the function of the gradient vector in Eqn. 4.3,
de�nitively in�uences the interface energy density and enables the introduction of anisotropy.

Conventionally, the double-well function along with the gradient energy density renders
the interface contribution. However, it has been identi�ed that replacing the well-function
with the obstacle-type potential enhances the stability and numerical e�ciency of the simula-
tion, particularly in a multiphase setup [124, 125]. Therefore, the obstacle-type potential ω(φ)

replaces the well-function in Eqn. 4.1. This potential density ω(φ) is expressed as
1

ε
ω(φ) =

16

επ2

∑
α,β>α

γαθφαφθ +
1

ε

∑
α,β>α,δ>β

γαβδφαφθφδ. (4.5)

While the �rst term in Eqn. 4.5 accommodates all possible interfaces, the second terms ensures
the stability of the interface between the two phases by preventing the formation of the third-
spurious phases. The obstacle potential penalises the phase �eld in combination with the
Gibbs simplex G, which reads

G =

{
φ ∈ RN :

∑
α

φα = 1, φα ≥ 0

}
, (4.6)
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by imposing the criterion that ω(φ) becomes in�nity (ω(φ)→∞), if φ is not con�ned to the
G. The thermodynamical consistency of adopting this combination of ω(φ) and G has already
been extensively reported [126].

The temporal evolution of the phase �eld, as indicated in Eqn. 3.24, is dictated by the
variation of the functional. Accordingly, the phase-�eld evolution equation for the present
model is expressed as

τε
∂φα
∂t

= ε

(
∇ · ∂a (φ,∇φ)

∂∇φα
− ∂a (φ,∇φ)

∂φα

)
− 1

ε

∂w (φ)

∂φα
− ∂Ψ (µ,φ)

∂φα︸ ︷︷ ︸
=:rhsα

−Λ, (4.7)

where τ is the relaxation constant. For a binary system, in order to ensure the zero (vanishing)
interface kinetics, this constant is de�ned as

τ =
(cαeq − cβeq)2(Mc + Fc)

D
∂cα

∂µ

, (4.8)

where cαeq and cβeq are the respective equilibrium composition of phase-α and-β, and D is the
di�usivity. The concentration are expressed as the mole fraction of the independent compo-
nent. In this work the di�usivities of the both phases are assumed to be equal (Dα = Dβ = D).
Furthermore, the constants, Mc and Fc, are in�uence by the interpolation function. For inter-
polation function hα (φ) = φ2

α(3− 2φα), the summation of the constants is Mc +Fc ≈ 0.223.

In the two-phase system, the sum of the phase �eld is retained at 1, apparently, through the
double-well function or its variant. However, in a multiphase setup, the constraint

∑N
α=1 φα =

1 which characterises the multiphase-�eld approach is ensured by introducing Λ, the Lagrange
parameter in Eqn. 4.7. This parameter is written as 1

Ñ

∑Ñ
α=1 rhsα, where Ñ is the number of

active phases. A phase is considered as active only when a gradient exists in the phase-�eld.

A relation between the independent concentration and the grand potential can be ex-
pressed by considering Eqn. 3.62. Correspondingly, the independent concentration of the
system can be expressed as

c(φ) = −∂Ψ (µ,φ)

∂µ
. (4.9)

Substituting Eqn. 4.2 in the above Eqn. 4.9 yields

c(φ) = −
( N∑
α=1

∂Ψα (µ,φ)

∂µ
hα (φ)

)
, (4.10)

which, based on the Eqn. 3.61, can be simpli�ed as

c(φ) =
N∑
α=1

cαhα (φ) . (4.11)
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The invertibility between the concentration and chemical potential, as represented by the
Eqns. 4.9 and 4.11, forms the basis of the model.

The evolution of the fundamental variable, the chemical potential µ, can be derived by
considering the temporal evolution of the concentration described in Eqn. 4.11. Owing to the
invertibility, the concentration in Eqn. 4.11 can be represented by c(µ,φ). Therefore, the time
derivative of the independent concentration variable is written as

∂c

∂t
=
∂c(µ,φ)

∂µ

∂µ

∂t
+
∂c(µ,φ)

∂φ

∂φ

∂t
. (4.12)

However, the temporal evolution of the concentration, when solved separately as the con-
served order parameter (Eqn. 3.25), yields

∂c

∂t
=∇ ·

(
M(φ)∇µ

)
, (4.13)

whereM (φ) is the mobility matrix for the multiphase system. The mobility matrixM (φ) is
written as interpolation of the individual phase mobilities,

M (φ) =
N∑
α=1

DX αgα(φ), (4.14)

with gα(φ) representing the interpolation function. In Eqn. 4.14, X α is a constant which
ensures that the di�usivity D does not vary within a given phase. This constant is de�ned
as ∂cα(µ)

∂µ
. Generally, the interpolation of the di�usivities are di�erent from that of the con-

centration or grand potential density. In other words, often h(φ) 6= g(φ). However, in
view of the thermodynamical description of the present system and microstructural evolution
to be investigated, in this work, no distinction is made between the interpolation functions
(h(φ) = g(φ)).

Having considered the evolution of the concentration, in Eqn. 4.12, and phase �eld in
Eqn. 4.7, it is evident that the temporal dependency of these variable is in�uenced by the
chemical potential. To ascertain the evolution of the chemical potential, based on Eqn. 4.11,
the derivative of the concentration with respect to µ, which is written as

∂c(µ,φ)

∂µ
=

N∑
α=1

∂cα(µ)

∂µ
hα (φ) , (4.15)

is considered. Furthermore, from the same Eqn. 4.11, the second term in the right hand of the
Eqn. 4.12 can be expressed

∂c(µ,φ)

∂t
=

N∑
α=1

cα(µ)
∂hα (φ)

∂t
. (4.16)
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Substituting Eqns 4.13, 4.15 and 4.16 in Eqn. 4.12 and re-arranging the terms, the temporal
evolution in the chemical potential reads

∂µ

∂t
=
[
∇ ·

(
M(φ)∇µ

)
−

N∑
α=1

cα(µ)
∂hα (φ)

∂t

][ N∑
α=1

X αhα (φ)
]−1

. (4.17)

The term
∑N

α=1X
αhα (φ) = X (φ), in the above Eqn. 6.8, is referred to as susceptibility

matrix [121].
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Quantitative treatment of the grand
potential model

5.1 RecoveringGibbs-Thomson relation through the asymp-
totic analysis

Experimental observations unravel that the interface, particularly during a phase transfor-
mation like solidi�cation, is di�use and of the order of few atomic distances [100, 101]. This
nature of the interface seemingly vindicates the di�use interface model over the sharp in-
terface approach, wherein the region separating the bulk phases is considered to be of zero
thickness [127, 128, 129, 130, 131]. However, in view of the dimensions of the emerging mi-
crostructure, the sharp interface consideration is exceedingly complaint with the physical
conditions than models adopting �nitely di�use interface. Consequently, the solutions of the
sharp interface models are generally acclaimed to be quantitative. Furthermore, as elucidated
in the early sections, the phase-�eld approach renders only a phenomenological view with
the state variable phase �eld holding no (real) thermodynamical signi�cance. Therefore, in
the phase-�eld modelling, the quantitative aspect is ensured when the sharp interface solu-
tions are recovered, thereby indicating that the di�use interface does not in�uence the overall
physics of the problem. To that end, a variant of the boundary-layer method, referred to as
matched asymptotic analysis [132], is employed to demonstrate that the model adheres to the
sharp interface solutions and the physical laws.

In principle, the asymptotic analysis investigates the mathematical problem on two di�er-
ent length scales through the matching conditions [109]. Corresponding, in the phase-�eld
modelling, this analysis examines the evolution of the variables, which emerges from the
model formulation, at the inner and outer scale. While inner scale pertains to the interface,

42
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the dimensions of the microstructure (or bulk) is encompassed by the outer scale.

The asymptotic analysis accompanying the early phase-�eld models were con�ned to the
sharp interface limit wherein the model was analysed for the condition that the interface width
tends to zero (ε→ 0) [113]. This analysis unravels the compliance of the phase-�eld approach
to the physical laws, particularly the Gibbs-Thomson relation [29, 30], in addition to other
sharp interface solutions. Although the asymptotic analysis was subsequently extended to
included �nite interface limit [133, 134], since this section primarily aims to prove the adher-
ence of the present model to the Gibbs-Thomson relation, the following analysis is restricted
to the sharp interface limit.

For the grand-potential phase-�eld model, an extensive asymptotic analysis accompany-
ing both sharp and �nite interface limit has already been reported [122]. However, funda-
mentally oriented towards phase transformation, speci�cally solidi�cation, this asymptotic
analysis was reasonably con�ned to the one-dimensional setup. Since the in�uence of the
curvature is absolutely trivial in one-dimension, in this section, the asymptotic analysis is
extended to attest the adherence to the Gibbs-Thomson relation.

For the asymptotic analysis of the present model, a simpli�ed functional with the double-
well function fdw(φ) and the interface width governing parameter Wφ is considered. The
corresponding phase-�eld evolution equation is written as

τ
∂φ

∂t
= −δΩ(µ, φ,∇φ)

δφ
= W2

φ∇2φ− dfdw(φ)

dφ
− ∂Ψ(µ, φ)

∂φ
. (5.1)

The notations like Wφ are adopted to facilitate compliance with the conventional expressions
associated with the asymptotic analysis.

The asymptotic analysis begins by distinguishing the system as inner and outer regions.
In principle, the inner region corresponds to the interface while the outer to the bulk phases.
Since the length scales associated with interface width and microstructure are signi�cantly
di�erently, the scale pertaining to the inner and outer regions are appropriately de�ned. While
in the inner region, the length scale is characterised by xin �Wφ, the length scale in the outer
region considered to be xo � do. The parameter do, referred to as capillary length, is expressed
as do = D

vn
, where D and vn are di�usivity and normal interface velocity, respectively.

The parameters involved in the evolution equation, Eqn. 5.1, are non-dimensionalised ap-
propriately. The non-dimensional terms replacing the parameter in Eqn. 5.1 can be summa-
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rized as

Wφ → ε =
Wφ

do
(5.2)

t→ t̄ = t
(d2

o

D

)−1

τ → D̄ = τ
(W2

φ

D

)−1

Adopting the non-dimensional parameters the evolution equation is written as

D̄ε2∂φ

∂t̄
= ε2∇̄2φ− dfdw(φ)

dφ
− ε∂Ψ(µ, φ)

∂φ
, (5.3)

where ∇̄ is the gradient in the dimensionless scale.

The asymptotic expansion of the fundamental variables φ and µ in the outer and inner
region of the system is expressed as

φo = φo
0 + εφo

1 + ε2φo
2 + . . . (5.4)

µo = µo
0 + εµo

1 + ε2µo
2 + . . .

and

φin = φin
0 + εφin

1 + ε2φin
2 + . . . (5.5)

µin = µin
0 + εµin

1 + ε2µin
2 + . . . ,

respectively. Although inner and outer solutions are written in the scaling powers of ε, these
solutions are distinguished by the length scales associated with the respective regions. There-
fore, before establishing the matching conditions, the length scales are correspondingly non-
dimensionalised. Since the inner region is related to the interface while the outer region is
identi�ed with the microstructure, in the curvilinear co-ordinate system (refer Appendix. A),
the normal u is made dimensionless through ξ = u/Wφ and η = u/do in the inner and outer
region, respectively. The matching conditions are ascertained by extending the interface to
the bulk and retracting the outer to the inner region. Considering a system with phases α and
β which occupy the left and right side of the domain, the matching conditions for the phase
�eld is written as

lim
η→0+

φo
0(η) = lim

ξ→−∞
φin

0 (ξ) = φα (5.6)

lim
η→0−

φo
0(η) = lim

ξ→+∞
φin

0 (ξ) = φβ (5.7)
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Having established the matching conditions, the phase-�eld evolution equation, in Eqn. 5.1,
in the outer region is asymptotically expanded as

D̄ε2∂φ
o
0

∂t̄
=ε2∇̄2φo

0 −
dfdw(φo

0)

dφ
− ε∂Ψ(µo

0, φ
o
0)

∂φ
− εd

2fdw(φo
0)

dφ2
φo

1 (5.8)

− ε2∂
2Ψ(µo

0, φ
o
0)

∂φ2
φo

1 − ε2∂
2Ψ(µo

0, φ
o
0)

∂µ∂φ
µo

1 − ε2d
2fdw(φo

0)

dφ2
φo

2 − . . .

To resemble the expression in Eqn. 5.4, the above Eqn. 5.8 can be re-arranged to

ε2

[
D̄
∂φo

0

∂t̄
− ∇̄2φo

0 +
∂2Ψ(µo

0, φ
o
0)

∂φ2
φo

1 +
∂2Ψ(µo

0, φ
o
0)

∂µ∂φ
µo

1 +
d2fdw(φo

0)

dφ2
φo

2 + . . .

]
(5.9)

= ε0

[
− dfdw(φo

0)

dφ

]
− ε

[
∂Ψ(µo

0, φ
o
0)

∂φ
+
d2fdw(φo

0)

dφ2
φo

1

]
.

In Eqn. 5.9, it evident that the asymptotic expansion is con�ned to the second order. The
equations pertaining to each order of the asymptotic expansion in Eqn. 5.9 separately read

O(ε0) :
dfdw(φo

0)

dφ
= 0 (5.10)

O(ε) :
∂Ψ(µo

0, φ
o
0)

∂φ
+
d2fdw(φo

0)

dφ2
φo

1 = 0

O(ε2) : D̄
∂φo

0

∂t̄
− ∇̄2φo

0 +
∂2Ψ(µo

0, φ
o
0)

∂φ2
φo

1 +
∂2Ψ(µo

0, φ
o
0)

∂µ∂φ
µo

1 +
d2fdw(φo

0)

dφ2
φo

2 = 0.

The equation of the zeroth order can be interpreted as the corollary of the criterion that the
phase �eld acquires a constant value depending on the phase. Accordingly, this lowest order
solution yields

φo
0 =

φα η → −∞

φβ η → +∞.
(5.11)

Furthermore, in the outer region, far from the interface, the phase �eld remain homogeneous
in a given a phase. Therefore, the driving force in the respective phase, away from the inter-
face, exhibit no signi�cant change. Consequently, ∂Ψ(µo

0,φ
o
0)

∂φ
becomes 0 in the �rst order term

in Eqn. 5.10. Extending similar considerations to the second order equation, it can be deduced
that φo

1 = 0 and φo
2 = 0.

The role of the co-ordinate system in the outer region is marginal, owing to the condition
that the phase �eld assumes homogeneous constant value in the bulk phase. However, in
the inner region, which is associated with the interface, the evolution equation should be
appropriately expanded to encompass the curvilinear co-ordinate system. To that end, the
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second order asymptotic expansion of the Eqn. 5.1 is written as

τ

(
∂φ

∂t
− vn

∂φ

∂u
+
∂s

∂t

∂φ

∂s

)
=Wφ

[
∂2φ

∂u2
+

(
1

1 + uk

)
k
∂φ

∂u
+

(
1

1 + uk

)2
∂2φ

∂s2
(5.12)

−

(
1

1 + uk

)3

u
∂k

∂s

∂φ

∂s

]
− dfdw(φ)

dφ
− ∂Ψ(µ, φ)

∂φ
.

Although the above Eqn. 5.12 encompasses the curvilinear system of u and s, it is vital to rec-
ognize that the parameters retain their corresponding dimensions. Therefore, the parameters
are appropriately non-dimensionalised. The normal velocity, vn, is replaced by dimensionless
v̄n which is expressed as v̄n = vn

(
D
do

)−1

. The length scales associated with Eqn. 5.12 are sep-
arately non-dimensionalised considering their description in the system. The length along
normal direction of the interface, u, in the inner region, should be of the order of the interface
width. And accordingly, it is non-dimensionalised through ξ = u

Wφ
. In contrast, the scale of

the curvature and entire interface (interface length as opposed to its width) should be greater
than Wφ

do
and generally, in the order of capillary length. Consequently, the curvature and the

tangential scale is made dimensionless through k̄ = k
do

and Ξ = s
do

, respectively.

The non-dimensionalised evolution equation for the inner region correspondingly reads

D̄ε2∂φ

∂t̄
− D̄εvn

∂φ

∂ξ
+ D̄ε2∂Ξ

∂t̄

∂φ

∂Ξ
=

[
∂2φ

∂ξ2
+

(
εk̄

1 + εξk̄

)
∂φ

∂ξ
+

(
ε

1 + εξk̄

)2
∂2φ

∂Ξ2

]
(5.13)

− dfdw(φ)

dφ
− ε∂Ψ(µ, φ)

∂φ
.

The above Eqn. 5.13 can further be simpli�ed by considering that

εk̄

1 + εξk̄
≈ εk̄ − ξ(εk̄)2 and

(
ε

1 + εξk̄

)2

≈ ε2. (5.14)

Substituting Eqn. 5.14 in Eqn. 5.13 yields

dfdw(φ)

dφ
+ ε

∂Ψ(µ, φ)

∂µ
=
∂2φ

∂ξ2
+ ε

(
k̄
∂φ

∂ξ
+ D̄vn

∂φ

∂ξ

)
(5.15)

+ ε2

(
∂2φ

∂Ξ2
− ξk̄2∂φ

∂ξ
− D̄∂φ

∂t̄
− D̄∂Ξ

∂t̄

∂φ

∂Ξ

)
.

Above Eqn. 5.15 is expressed in a such a way that the asymptotic expansion of the terms on
the right hand side are straightforward. Therefore, the remnant terms on the left hand side of
the Eqn. 5.15 are separately expanded.
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For the asymptotic expansion, the double well function and grand potential density can
be expressed as

fdw(φ) = fdw(φin
0 + δφin) (5.16)

Ψ(µ, φ) = Ψ(µin
0 + δµin, φin

0 + δφin) (5.17)

where δµin = εµin
1 + ε2µin

2 + · · · and δφin = εφin
1 + ε2φin

2 + · · · . The terms on the left hand
side of the Eqn. 5.15 can, therefore, be asymptotically expanded as

∂fdw(φin
0 + δφin)

∂φ
+ ε

Ψ(µin
0 + δµin, φin

0 + δφin)

∂φ
=
dfdw(φin

0 )

∂φ
(5.18)

+ ε

(
∂Ψ(µin

0 , φ
in
0 )

∂φ
+
d2fdw(φin

0 )

∂φ2
φin

1

)
+ ε2

(
∂2Ψ(µin

0 , φ
in
0 )

∂φ2
φin

1 +
∂2Ψ(µin

0 , φ
in
0 )

∂φ∂µ
µin

1

)
.

From Eqn. 5.18, the terms pertaining to the di�erent orders are separately written as

I(ε0) :
∂2φin

0

∂ξ2
− dfdw(φin

0 )

∂φ
= 0 (5.19)

I(ε) : −D̄v̄n0

∂φin
0

∂ξ
= k̄

∂φin
0

∂ξ
+
∂2φin

1

∂ξ2
− d2fdw(φin

0 )

∂φ2
φin

1 −
∂Ψ(µin

0 , φ
in
0 )

∂φ
(5.20)

I(ε2) :
∂2φin

2

∂ξ2
− d2fdw(φin

0 )

∂φ2
φin

2 = D̄
∂φin

0

∂t̄
− ∂2φin

0

∂Ξ2
− (D̄v̄n0 + k̄)

∂φin
1

∂ξ
(5.21)

− (D̄v̄n1 − ξk̄2)
∂φin

0

∂ξ
+
∂2Ψ(µin

0 , φ
in
0 )

∂φ2
φin

1 +
∂2Ψ(µin

0 , φ
in
0 )

∂φ∂µ
µin

1 .

From the order based expansion of the inner solutions, it is evident that the lowest or-
der equation handling curvature k̄ is I(ε) in Eqn. 5.20. Therefore, this inner solution is fur-
ther analysed to understand the role of curvature k̄ in in�uencing the fundamental variable.
Eqn. 5.20 can be re-arranged and expressed as

∂2φin
1

∂ξ2
− d2fdw(φin

0 )

∂φ2
φin

1 = −(D̄v̄n0 + k̄)
∂φin

0

∂ξ
+
∂Ψ(µin

0 , φ
in
0 )

∂φ
(5.22)

Above Eqn. 5.22 is multiplied with ∂φin
0

∂ξ
and integrated as

∫ +∞

−∞

∂φin
0

∂ξ

[
∂2φin

1

∂ξ2
− d2fdw(φin

0 )

∂φ2
φin

1

]
dξ =− (D̄v̄n0 + k̄)

∫ +∞

−∞

(
∂φin

0

∂ξ

)2

dξ (5.23)

+

∫ +∞

−∞

∂Ψ(µin
0 , φ

in
0 )

∂φ

∂φin
0

∂ξ
dξ.
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Integrating the left hand side of the Eqn. 5.23 by parts, and considering ∂2φin
0

∂ξ2 =
dfdw(φin

0 )

∂φ
from

Eqn. 5.19, yields ∫ +∞

−∞

∂φin
0

∂ξ
L(φin

1 )dξ = 0, (5.24)

where L = ∂2

∂ξ2 − d2fdw(φin
0 )

∂φ2 . The term governing the thermodynamic driving force, which is
second term in the right hand side of Eqn. 5.23, can be written as∫ +∞

−∞

∂Ψ(µin
0 , φ

in
0 )

∂φ

∂φin
0

∂ξ
dξ =

∫ +∞

−∞

∂Ψ(µin
0 , φ

in
0 )

∂ξ
dξ −

∫ +∞

−∞

∂Ψ(µin
0 , φ

in
0 )

∂µ

∂µin
0

∂ξ
dξ. (5.25)

In order to solve the term,
∫ +∞
−∞

∂Ψ(µin
0 ,φ

in
0 )

∂µ

∂µin
0

∂ξ
dξ, in the above Eqn.5.25, it is vital to asymp-

totically expand the other fundamental variable, chemical potential (µ). However, since the
present model treats chemical potential as the dynamic variable instead of the concentration,
which is conventionally adopted, a workaround is permitted.

Gibbs-Thomson relation which is predominantly governed by the curvature operates both
in the presence and in the absence of the chemical driving force that dictates the phase trans-
formation. If a thermodynamical condition is assumed wherein the chemical driving force is
absent, in other words the phases are equilibrium across the �at interface, the chemical po-
tentials in the bulk much farther from the interface is equal. This condition can be expressed
as µα = µβ = µeq, where µeq is the equilibrium chemical potential across the �at interface
separating phases α and β.

The second term in the right hand side of Eqn. 5.25 ultimately yields the di�erence in the
chemical potential assumed by the bulk phases far from the interface, ∆µ = µ|∞ − µ|−∞.
Assuming the phases to be chemical equilibrium, the term becomes∫ +∞

−∞

∂Ψ(µin
0 , φ

in
0 )

∂µ

∂µin
0

∂ξ
dξ = 0. (5.26)

In order to solve the remnant term in Eqn. 5.25, which relates to the di�erence ∆Ψ = Ψα(µ, φ)−
Ψβ(µ, φ), the fundamental description of the grand chemical potential function is revisited.
The grand chemical potential of a given phase Θ can be linearly expanded as

ΨΘ(µ, φ) = ΨΘ(µeq, φ) +
∂ΨΘ(µ, φ)

∂µ

∣∣∣∣∣
µeq

(µ− µeq), (5.27)

where Θ could be α or β. Furthermore, µ is the chemical potential that is in�uenced by the
curvature of the interface. In the absence of the curvature, at the chemical equilibrium, since
Ψα(µeq) = Ψβ(µeq), the di�erence in the grand chemical potential is expressed as

∆Ψ =

[
∂Ψα(µ, φ)

∂µ

∣∣∣∣∣
µeq

− ∂Ψβ(µ, φ)

∂µ

∣∣∣∣∣
µeq

]
(µ− µeq). (5.28)
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Since ∂ΨΘ(µ,φ)
∂µ

= −cΘ, the remnant term in Eqn. 5.25 becomes∫ +∞

−∞

∂Ψ(µin
0 , φ

in
0 )

∂ξ
dξ = [cβ(µeq, φ)− cα(µeq, φ)](µ− µeq). (5.29)

Substituting Eqns. 5.26 and 5.29 in Eqn. 5.23 yields the relation

[cα(µeq, φ)− cβ(µeq, φ)](µ− µeq) = (D̄v̄n0 + k̄)

∫ +∞

−∞

(
∂φin

0

∂ξ

)2

dξ. (5.30)

Now, considering
∫ +∞

−∞

(
∂φin

0

∂ξ

)2

dξ = γφ, the change in the chemical potential introduced

by the curvature through Eqn. 5.30 can be written as

(µ− µeq) =
(D̄v̄n0 + k̄)γφ

cα(µeq, φ)− cβ(µeq, φ)
. (5.31)

Above Eqn. 5.31 indicates that the Gibbs-Thomson relation is recovered in the grand potential
phase-�eld model.

5.2 CALPHAD based free-energy description

Depending on the system and its corresponding evolution, the thermodynamic function which
dictates the driving force of the resulting microstructural changes is appropriately chosen to
formulate the phase-�eld model. In addition to the adoption of the suitable function, with
the advancements in the modelling, the description of these functions have been progres-
sively enhanced to render a quantitative simulation. Considering phase transformations in
binary alloys, the evolution is dictated by the chemical composition of the system and par-
ticularly, the nature of the components involved. In other words, the driving force governing
the kinetics and mechanism of the microstructural transformation depend signi�cantly on
the alloy system considered. Therefore, attempts are made to thermodynamically describe
the system based on the corresponding phase diagrams of the components involved. Incor-
porating CALPHAD, CALculation of PHAse Diagrams [135, 136], data in the simulation has
proven to be an e�ective tool in quantitatively de�ning the system. Furthermore, several ap-
proaches have been employed to couple the quantitative data with the simulation setup. Since
the quantitative data essentially comprises of Gibbs energy, chemical potential and equilib-
rium conditions, one approach involves devising a �le through an external CALPHAD soft-
ware, which consists of these thermodynamic parameters, and augmenting it to the modelling
scheme [137, 138]. Moreover, while some modelling techniques adopt locally linearised phase
diagrams by parallely running the CALPHAD software [139, 140], others ‘directly’ couple the
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Figure 5.1: Schematic illustration of the free energy density vs concentration plot pertaining to a binary
system of components i and j.

quantitative data by formulating the phase-�eld model to accommodate the entire CALPHAD
database [141, 142].

Much di�erent from the aforementioned methodologies, in the current study a simpler ap-
proach is extended to incorporate the CALPHAD data. In this approach, the geometric scheme
in the relation between the Gibbs free-energy density and the concentration is exploited to
represent the thermodynamic data in the form of a parabolic equation [143, 144]. The choice
of this simpler, yet e�ective, technique can be justi�ed by realizing that the microstructural
evolution simulated in the present work occur in a chemical equilibrium.

Free energy density of a phase-α, fα(ci, cj), in a binary system with components i and j
can be expressed as

fα(ci, cj) = cifi + cjfj +RT [ci ln ci + cj ln cj], (5.32)

where ci and cj are the mole fractions of components i and j, respectively. Temperature
and universal gas constant are correspondingly represented by T and R in Eqn. 5.32. The
respective free energies of the pure i and j are fi and fj . Owing to the constraint ci + cj = 1,
the number of independent concentration becomes one and if cj is represented by c, Eqn. 5.32
becomes

fα(c) = (1− c)fi + cfj +RT [(1− c) ln(1− c) + c ln c]. (5.33)

Upon considering the in�uence of concentration c on the free energy density, particularly the
geometric trend in the dependence of the fi and fj on c, as schematically shown in Fig. 5.1,
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Figure 5.2: Gibbs free-energy density dependence of austenite on carbon concentration as rendered by the
CALPHAD database (TCFe8) is compared to the �tted curve.

Eqn. 5.33 can be approximated as

fα(c) = Aαc2 +Bαc+Dα, (5.34)

where Aα, Bα and Dα are the phase-dependent coe�cients. Since the free energy density
fα(c) is signi�cantly in�uenced the temperature, the phase-dependent coe�cients vary with
the temperature. However, owing to the isothermal consideration of the present study, the
dependency of the coe�cients on the temperature is not explicitly mentioned.

CALPHAD data provides the Gibbs free-energy density of the phase for a given con-
centration and temperature. However, the model is conventionally formulated based on the
Helmholtz free-energy density. While the Gibbs free-energy density is expressed in term of
per mole, the Helmholtz free-energy density is ascertained for unit volume. Therefore, assum-
ing the molar volume of the phases to be equal (V α

m = V β
m = Vm), the Gibbs and Helmholtz

free-energy density can be related through fα(c) = 1
Vm
Gα(c). Correspondingly, the di�eren-

tiation of the approximated free energy in Eqn. 5.34 yields
∂fα

∂c
= 2Aαc+Bα =

1

Vm

∂Gα

∂c
= µα (5.35)

∂2fα

∂c2
= 2Aα =

1

Vm

∂2Gα

∂c2
. (5.36)

In order to couple the CALPHAD data with the parabolic approximation in Eqn. 5.34, a small
concentration step, ∆c, is de�ned. The Gibbs free-energy density at a base concentration c is
extracted from the CALPHAD database through an external software. If the Gibbs energy at
c is designated as Gα

0 and for the neighbouring compositions as

c+ ∆c→ Gα
1 c+ 2∆c→ Gα

2 (5.37)

c−∆c→ Gα
1̄ c− 2∆c→ Gα

2̄
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by employing �nite-di�erence approximation, using �ve-point stencil scheme, the derivatives
of the Gibbs free-energy density can be calculated through

∂2Gα

∂c2
i

=
−Gα

2 + 16Gα
1 − 30Gα:0 + 16Gα

1̄ −G
α
2̄

12(∆ci)2
(5.38)

and

∂Gα

∂ci
=
−Gα

2 + 8Gα
1 − 8Gα

1̄ +Gα
2̄

12∆ci
. (5.39)

The coe�cientsAα,Bα andDα can be ascertained by combining the Eqns. 5.38 and 5.39 with
Eqns. 5.35 and 5.36. Upon determining the coe�cients which incorporates the quantitative
data to the model, its accuracy is a�rmed by ensuring that the equilibrium conditions are
replicated. By imposing the constrain that chemical potential between the phases is equal
at equilibrium, ∂f

α
eq

∂c
=

∂fβeq
∂c

, using Newton-Raphson iteration technique, it is ensured that the
coe�cients yield equilibrium compositions as rendered by the CALPHAD data. Furthermore,
from Eqn. 5.36, it is evident that the susceptibility matrix X αhα(φ) is the interpolation of the
reciprocal of 2Aα, in a multiphase system.

For all the simulations in the present work, the thermodynamic parameters are extracted
from the CALPHAD-database TCFe8 pertaining to the binary Fe-C system. The data is ac-
cessed through external commercial software, Pandat (v8.1). The Gibbs energy of the austen-
ite phase at 973K as described by the CALPHAD database is plotted in Fig. 5.2. Additionally,
the curve resulting the aforementioned parabolic approximation technique is included. It is
evident from Fig. 5.2, the �tted data exhibits a noticeable compliance with the quantitative
data.

Although this parabolic approximation approach can be extended to all phases irrespec-
tive of the alloy system, additional care must be taken for two de�nitive cases. One, when
equilibrium composition of the phase is very low and close to zero. Ferrite is a prime exam-
ple for this case in Fe-C system. Under this condition, a casual approximation would yield
unphysical negative equilibrium concentration, thus impairing the entire thermodynamical
consideration. This numerical inaccuracy can be averted by choosing the equilibrium con-
centration as the base concentration (c = cαeq) and imposing the condition, cαeq − 2∆c > 0.
The other case which demands attention while adopting the �tting approach is the introduc-
tion of the stoichiometric phases. Since the stoichiometric phases defy the geometric trend
in Fig. 5.1, which forms the basis of the parabolic approach, an polynomial expression cannot
be attained directly. However, based on the information from the CALPHAD database which
pertains to a point (or a small line), a sharp curve is numerically constructed which satis-
�es the equilibrium condition. This numerically built sharp curve ensures that the Gθ → ∞
when the concentration is not the cθeq, where θ is the stoichiometric phase. In Fe-C system,
this approach is adopted for the cementite phase.
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Chemo-elastic phase-�eld model

Phase transformations along with the morphological evolution ensuing the chemical equi-
librium, particularly in metallic systems, are signi�cantly in�uenced by the crystallographic
features of the phases involved [145, 146]. Generally, these crystallographic features include
crystal structures and the lattice parameters. The crystal structure, particularly, is one of
the primary factors which distinguishes the phases in a solid-state system. Therefore, the
spatial arrangement of atoms, besides the chemical composition, independently introduces
an additional component to the energy densities governing the phase evolution. The energy
expended to establish the change in the crystallographic arrangement of the atoms in the
growing phase and the resulting mis�ts in the lattice parameters can be categorized as the
elastic free-energy density. This description of the elastic free-energy density entails the as-
sumption that no irreversible change is introduced in the crystallographic features due to the
additional component. In other words, it is considered that the di�erence in the crystal struc-
ture between the parent and child phase does not induce any plastic deformation during the
evolution. Furthermore, since the crystallographic arrangement of atoms inherently exhibits
anisotropy, an appropriate description of the elastic free-energy density would automatically
in�uence the morphology of the growing phase.

6.1 A multiphase-�eld model

In this section, a multiphase-�eld model which encompasses chemo-elastic contribution is
presented for the binary system. The free energy functional which includes the elastic con-
tribution is expressed as

F(φ,∇φ, c, ε) =

∫
V

fintf(φ,∇φ) + fel(φ, ε) + fch(φ, c)dV, (6.1)

53
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where fel(φ, ε) is the elastic free-energy density. In Eqn. 6.1, it is important to note that the
chemical contribution is coupled as the free energy density fch(φ, c), while the grand poten-
tial density was directly introduced in the functional Ω(µ,φ,∇φ) in Eqn. 4.1. Therefore, it is
agreeable that this formalism is not explicitly built on grand potential but adopts the under-
girding framework in handling the chemical variables, concentration and chemical potential
which would be evident in the following derivation. The contribution of the interface, fintf,
conforms to the formulation elucidated in Chapter 4.

The elastic and chemical free-energy density governing the phase transformation can be
expressed as the summation of the pairwise interaction between the phases. As described
during the asymptotic analysis in Sec. 5.1, the pairwise interaction is considered as the driving
force for the evolution. Correspondingly, the phase-�eld evolution based on the driving force
can be expressed as

∂φα
∂t

= −1

ε

1

Ñ

Ñ∑
β 6=α

Mαβ

[
δfintf

δφα
− δfintf

δφβ
+

8
√
φαφβ

π

(
∆αβ

ch + ∆αβ
el

)]
, (6.2)

where Mαβ is the mobility of the interface pertaining to the region separating the phase-α
and -β. Furthermore, in the above expression ∆αβ

ch and ∆αβ
el correspond to the chemical and

elastic driving force, where ∆αβ
i =

(
δ
δφα

+ δ
δφβ

)
fi with i ∈ {ch, el}. In Eqn. 6.2, Ñ is the

active number of phases, wherein Ñ ≤ N .

The overall chemical free-energy density is expressed as

fch(φ, c) =
∑
α

fαchφα, (6.3)

where the free energies of the individual phases, fαch, are interpolated through the correspond-
ing phase �eld instead of a separate interpolation function, hα(φ). From Eqn. 6.3, the phase-
�eld derivative of the chemical free-energy density is written as

∂fch

∂φα
= fαch +

∑
β

∂fβch
∂cβ

∂cβ

∂φα
φβ. (6.4)

Considering that the phases are equilibrated across the interface, the chemical potentials be-
come phase independent and equal,

∂fαch

∂cα
=
∂fβch
∂cβ

= · · · = µ. (6.5)

Furthermore, the concentration c can expressed as c =
∑

β c
βφβ , analogous to Eqn. 4.11.

Consequently, owing to the mass constraint, the following relation can be derived

∂cβ

∂φα
φβ = −cα. (6.6)
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Substituting Eqns. 6.5 and 6.6, the chemical factor governing the evolution of the phase �eld,
which is expressed in Eqn. 6.4 transforms to

∂fch

∂φα
= fαch − µcα. (6.7)

From Sec. 3.7, the left hand side of Eqn. 6.7 is the Legendre transform of the chemical free-
energy density fαch(cα) and is the grand potential density Ψ(µ). Therefore, having established
that the chemical driving force of the chemo-elastic model is dictated the grand potential
density, the derivation of the model elucidated in Sec. 4 can be adopted and the evolution of
the dynamic variable µ is written as

∂µ

∂t
=
[
∇ ·

(
M(c,φ)∇µ

)
−

N∑
α=1

cα(µ)
∂hα (φ)

∂t

][ N∑
α=1

X αhα (φ)
]−1

. (6.8)

The elastic driving force for the present model is formulated based on the mechanical
jump condition [147, 148]. This introduces a dichotomy wherein the phases are assumed to
be in chemical equilibrium at the interface to establish a continuity in the chemical potential,
while the jump condition is involved in the formulation of the elastic free-energy density.
Particularly, the mechanical jump condition is adopted in the calculation of the stresses and
the corresponding driving force.

Before explicitly formulating the elastic driving force, a homogenized normal vector is
de�ned based on the scalar �eld as

M(φ) =
∑
α<β

φαφβ ⇒ n(M(φ)) =
∇M(φ)

|∇M(φ)|
. (6.9)

The stresses and strains are transformed to the orthonormal basis B = {n, t, s}, which
comprises of the homogenized normal vector formulated in Eqn. 6.9. Subsequently, the fun-
damental elastic variables are expressed in the Voigt notation as

σαB(n) :=
(
σnn, σnt, σns, σ

α
tt, σ

α
ss, σ

α
ts

)T
= (σn,σ

α
t )T,

εαB(n) :=
(
εαnn, 2ε

α
nt, 2ε

α
ns, εtt, εss, 2εts

)T
= (εαn, εt)

T.

(6.10)

With J·K representing the jump of the variables, according to the force balance JσnK = 0

and the Hadamard kinematic compatibility condition JεtK = 0, the jump of the stresses σn
and strains εt vanishes across the interface. Therefore, the continuous contributions of these
fundamental variables, for an in�nitesimal deformation imposed on a single plane, can be
written as

σn := (σnn, σnt, σns), (6.11)

εt := (εtt, εss, 2εts). (6.12)
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Correspondingly, the discontinuous components of the stresses and strains are expressed as

σαt := (σαtt, σ
α
ss, σ

α
ts), (6.13)

εαn := (εαnn, 2ε
α
nt, 2ε

α
ns), (6.14)

respectively. The notation α in the formulation of the discontinuous variables indicates that
the particular stresses and strains are phase-dependent.

The local strain is ascertained from the gradient of the displacement �eld as

ε = (∇u+ (∇u)T )/2, (6.15)

wherein the displacement-�eld gradient, using the Einstein summation convention, is ex-
pressed as (∇u)ij = ∂ui/∂xj .

The sti�ness tensor is de�ned based on the orthonormal basisB. For the ease of handling
in the subsequent treatment, the matrix is fragmented into smaller matrices (blocks) as

Cv
B =



Cnnnn Cnnnt Cnnns Cnntt Cnnss Cnnts
Cntnn Cntnt Cntns Cnttt Cntss Cntts
Cnsnn Cnsnt Cnsns Cnstt Cnsss Cnsts
Cttnn Cttnt Cttns Ctttt Cttss Cttts
Cssnn Cssnt Cssns Csstt Cssss Cssts
Ctsnn Ctsnt Ctsns Ctstt Ctsss Ctsts


=:

(
Cnn Cnt
Ctn Ctt

)
, (6.16)

where Cnn and Ctt are 3 × 3 symmetrical matrices, while Cnt and Ctn are similar matrice
variables which satisfy the condition Ctn = CTnt. This scheme of formulating a tensor is
extended to construct the compliance tensor Sα.

By exclusively considering the continuous variables, the stresses are calculated as

σ̄B =

(
−T̄ −1

nn −T̄ −1
nnT̄ nt

−T̄ tnT̄
−1
nn T̄ tt − T̄ tnT̄

−1
nnT̄ nt

)
︸ ︷︷ ︸

C̄v
B(φ)

(
εn

εt

)
+

(
T̄ −1
nn O

T̄ tnT̄
−1
nn −I

)(
χ̃n

χ̃t

)
︸ ︷︷ ︸

σ̃B

, (6.17)

where the normal and the tangential components of the inelastic strains ε̃α are correspond-
ingly denoted by χ̃n and χ̃t. These normal and tangential parts of the ε̃α are written as

χ̃n =
∑
α

(ε̃αn + T α
ntε̃

α
t )φα, χ̃t =

∑
α

T α
ttε̃

α
t φα, (6.18)

respectively. Furthermore, in Eqn. 6.17, T̄ represents the locally averaged contribution of the
proportionality matrix. This averaged contribution between the continuous and discontinu-
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ous variables is expressed as

T̄ nn :=
∑
α

T α
nnφα := −

∑
α

(Cαnn)−1φα, (6.19)

T̄ nt :=
∑
α

T α
ntφα :=

∑
α

(Cαnn)−1Cαntφα, (6.20)

T̄ tt :=
∑
α

T α
ttφα :=

∑
α

(
Cαtt − Cαtn(Cαnn)−1Cαnt

)
φα. (6.21)

By formulating the transformation matricesMε andMσ as in Ref. [147, 148], in the Carte-
sian coordinate system, the resulting stresses in the Voigt notation can be determined by

σ̄v(φ) = C̄v
(φ)ε̄v + σ̃v(φ), (6.22)

wherein the transformations C̄v
(φ) = MT

ε Cv
B(φ)Mε and σ̃v(φ) = MT

σ σ̃B(φ) is adopted.
For the displacement �eld u, the momentum balance∇ · σ̄(φ) = 0 is solved by transforming
the resulting stress σ̄v(φ) into matrix notation. Accordingly, the stresses in the bulk region
of phase-α are calculated by

σαij = (Cα[ε− ε̃α])ij = Cαijkl(εkl − ε̃αkl). (6.23)

Ultimately, the mechanical driving-force dictated by the derivative of the elastic free-
energy density is written as

∂fel(φ, εB)

∂φα
=
∑
α

∂pα(σn, εt)φα
∂φα

, (6.24)

wherein,

pα(σn, εt) =
1

2

(σn
εt

)
·

(
T α
nn T α

nt

T α
tn T α

tt

)(
σn

εt

)−
(σn

εt

)
·

(
I T α

nt

O T α
tt

)(
ε̃αn
ε̃αt

) (6.25)

+
1

2
(ε̃αt · T α

ttε̃
α
t ) .

The components of proportionality matrix T α, which contributes to the mechanical driving-
force through pα(σn, εt) in Eqn. 6.25, are expressed as

T α
nn := −Sαnn, (6.26)

T α
nt := SαnnCαnt, (6.27)

T α
tt := Cαtt − CαtnSαnnCαnt. (6.28)
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6.2 Phase-�eld model distinguishing interstitial and sub-
stitutional di�usion

In phase-�eld modelling, the interface separating the two phases (α and β) are replaced by
de�nite di�use-region wherein the scalar variable, phase �eld (φ), varies smoothly. Therefore,
the entire system is treated as the combination of the interface and the remnant bulk regions.
Thermodynamically, such a system is described through a functional (F ) as

F(φ,∇φ,S) = Fintf(φ,∇φ) + Fbulk(φ,S), (6.29)

where Fintf and Fbulk(φ,S) are the respective contributions from the di�use interface and
the bulk region, wherein the phase �eld (φ) is constant. Furthermore, in Eqn. 6.29, S is an
independent thermodynamic variable(s) which dictates the contribution of the bulk phases.
Depending on the energetics considered, the nature of the variableS changes. The framework
of the present model follows Ref. [123]. However, since the model is derived for a two-phase
system (α and β), the phase �eld is written as a scalar, φ. Furthermore, φ between the phase-α
and -β are related φα + φβ = 1.

The Ginzburg-Landau type functional is often adopted to describe a system with di�use
interface. Correspondingly, the contribution of the interface reads

Fintf(φ,∇φ) =

∫
V

[
εa(∇φ) +

1

ε
ω(φ)

]
dV, (6.30)

where εa(∇φ) is the gradient-energy term while ω(φ)/ε is the penalising potential. The
length parameter ε dictates the width of the di�use interface. With γ representing the energy
density of the interface separating two phases, α and β, the gradient-energy term is written
as

εa(∇φ) = εγ|∇φ|2. (6.31)

As opposed to the double-well potential, which is conventionally used for penalising the state
variable, the double-obstacle potential is employed in this formulation. The double-obstacle
potential, ω(φ), is expressed as

ω(φ) = γ
16

π2
φ(1− φ), φ ∈ [0, 1]. (6.32)

The role of the obstacle-type potential in enhancing the numerical and computational e�-
ciency has already been discussed in Refs. [124, 125].

For the present analysis, the elastic and the chemical contributions of the bulk phases are
considered. Therefore, the functional which represents the bulk-phase contribution extends
to

Fbulk(φ,S) = Fel(φ,Sel) + Fch(φ,Sch), (6.33)
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where Fel(φ,Sel) and Fch(φ,Sch) represent the elastic and the chemical contributions of the
phases, respectively.

6.2.1 Elastic model for displacive transformation

The elastic contribution from the bulk phases in formulated as the Helmholtz free energy. For
a consistent derivation, wherein the bulk phase and the interface are energetically decoupled,
the approach in Ref. [147] is employed.

In a solid-state system with singular surface, the traction vectors are equal across the
interface. This force balance between the two phases, α and β, reads

σαn = σβn, (6.34)

where n is the normal vector to the interface separating α and β. The normal vector in the
di�use interface is expressed as

n =
∇φ
|∇φ| , (6.35)

where |∇φ| =
√
∇φ ·∇φ. The jump condition which results from the force balance, in

Eqn. 6.34, is written as

JσKn = 0, (6.36)

where J·K represents the jump in the variable across the interface. Furthermore, according
to Hadamard compatibility condition [149], the continuity of the displacement vector (u) is
expressed as

J∇uK = anT , (6.37)

where a is an arbitrary vector and (anT )ij = ainj is the corresponding dyadic product. The
corollary of Eqn. 6.37, which describes the jump of the displacement vector in the normal
direction, is

J∇uKt = 0, (6.38)

where t is a tangential vector.

For the present derivation, the total strain, ε, is treated as the summation of elastic strain,
εel, and inelastic eigenstrain, ε̃. This total strain is related to the displacement vector as

ε = εel + ε̃ =
1

2

[
∇u+ (∇u)T

]
. (6.39)
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From Eqns. 6.38 and 6.39, the total strain along the tangential direction of the αβ-interface
can be expressed as

(εαel + ε̃α)t = (εβel + ε̃β)t, (6.40)

where εαel and ε̃α are phase-dependent elastic and inelastic strain. Based on Eqn. 6.40, a jump
condition for the tangential strain across the interface can be de�ned as

Jεel:t + ε̃tK = 0. (6.41)

In baseB = {n, s, t}, with �xed normal vector n and two tangential vectors, s and t, the
jump in the total strain across the interface is expressed as

Jεel:B + ε̃BK =

Jεel:nn + ε̃nnK Jεel:ns + ε̃nsK Jεel:nt + ε̃ntK
Jεel:ns + ε̃nsK 0 0

Jεel:nt + ε̃ntK 0 0

 . (6.42)

The phase-dependent normal components of the strain are distinguished from the phase-
independent tangential components, using Voigt notation as

εαel:B + ε̃αB = [(εαel:nn + ε̃αnn), 2(εαel:ns + ε̃αns), 2(εαel:nt + ε̃αnt)︸ ︷︷ ︸
:=εαel:n+ε̃αn=εαn

, (6.43)

(εel:ss + ε̃ss), (εel:tt + ε̃tt), 2(εel:st + ε̃st)︸ ︷︷ ︸
:=εel:t+ε̃t=εt

]T

Similarly, based on jump condition in Eqn. 6.36, the phase-dependent and -independent com-
ponents of the stresses are realised as

σαB = (σnn, σns, σnt︸ ︷︷ ︸
σn

, σαss, σ
α
tt, σ

α
st︸ ︷︷ ︸

σαt

)T = (σn,σ
α
t )T . (6.44)

Despite the elegant formulation, in-consistencies are introduced in the phase-�eld model
when the bulk and interface are not e�ciently decoupled. It has been shown that by the
appropriate choice of the continuous variables, that smoothly vary across the interface, the
unphysical contribution of the bulk phases to the interface can be averted [120, 121]. Based on
the jump conditions, which facilitate the distinction of the phase-dependent and -independent
components in Eqns. 6.43 and 6.44, the tangential strain (εt) and the normal stress (σn) are
considered as the continuous variables in the present model.

The elastic free-energy in phase-α, using elastic strain (εαel:B), is expressed as

fαel (ε
α
el:B) =

1

2

(
εαel:B · CαBεαel:B

)
, (6.45)
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where CαB is the sti�ness matrix of the phase-α. By encompassing the inelastic eigenstrain,
ε̃αB , the free energy formulation transforms to

fαel (ε
α
B) =

1

2

[
(εαB − ε̃αB) · CαB(εαB − ε̃αB)

]
. (6.46)

For the above formulation, it has been shown that the phase-�eld evolution is governed by
the di�erence in the Legendre transform of the free energy [113]. Therefore, the elastic driving
force, based on Eqn. 6.46, is expressed as

pα(εt, σn) =
1

2


(σn · εt − ε̃αt ) · T α

(
σn

εt − ε̃αt

)− (σn · ε̃αn), (6.47)

where tensor T α encompasses all material parameter. Above Eqn. 6.47, which is the Legendre
transform of the free energy, while describing the driving force, renders its formulation based
on the continuous variables, εt and σn. In this section, aspects of the model which is perti-
nent to the present analysis is elucidated, for a comprehensive understanding the readers are
directed to Refs. [147].

6.2.2 Model for di�usion

For simulating di�usion-governed (reconstructive) phase transformation, the quantitative in-
formation including the equilibrium concentration are recovered from the CALPHAD database.
Often, these data are not inherently compatible for the formulation of a multi-physics model.
For instance, the CALPHAD database provides the concentration based (chemical) free-energy
is the form of the Gibbs free-energy, while, even in the present model, the elastic contribution
is formulated based on Helmholtz free-energy. Therefore, by assuming that the molar volume
of the phases are equal (vm), the Gibbs free-energy is converted to Helmholtz free-energy by

fαch(cα) =
1

vm
Gα(cα), (6.48)

where cα is a continuous vector which represents the concentration of each component in
mole fraction, cα = {cα0 , cα1 , cα2 , . . . }. Although the free energy formulated in Eqn. 6.48 en-
compasses multicomponent systems, the mole-fraction based concentration expression re-
stricts its applicability [150]. Particularly, the substitutional and interstitial di�usion, which
are prevalent in a multicomponent system, cannot be distinguished in a free energy formu-
lation based on mole fraction. Furthermore, mole-fraction based formulation cannot be em-
ployed to model transformation under para-equilibrium conditions, wherein di�usion occurs
selectively in certain components. By adopting number density, number of moles per volume,
to represent concentration, these limitations have been considerably addressed [151, 152].
Moreover, recently, site fraction has been employed to analyse the phase transformations
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in system with several sub-lattices [142]. In the present model, site fraction is adopted in the
framework of the grand-potential formulation to distinguish the interstitial and substitutional
di�usion [121].

Consider a system of two sub-lattices. One corresponding to the regular lattices, which
is henceforth referred to substitutional, while the other is associated with the inherent voids
formed by the crystallographic arrangement of atoms, interstitial. Since the sizes of the substi-
tutional lattice is signi�cantly di�erent from the interstitial site, a component is often limited
to one of the sub-lattices [153]. Therefore, the concentration is expressed through two con-
tinuous vectors, yαint = {yαint:0, y

α
int:1, . . . , y

α
int:j} and yαsub = {yαsub:0, y

α
sub:1, . . . , y

α
sub:l}, with each

representing a sub-lattice. Site fraction of a component i, which occupies interstitial site, in
phase-α is expressed as

yαint:i =
nαint:i∑j
i=0 n

α
int:i

=
Nα

int:i∑j
i=0N

α
int:i

, (6.49)

where nαint:i and
∑j

i=0 n
α
int:i are number of i atoms in α and total number of interstitial sites,

respectively. By incorporating Avagadro’s number, as in Eqn. 6.49, site fraction can be de�ned
as the ratio of number of moles of i (Nα

int:i) and the total interstitial sites in moles (
∑j

i=0N
α
int:i).

From Eqn. 6.49 it follows that
∑j

i=0 y
α
int:i(=

∑l
k=0 y

α
sub:k) = 1. Furthermore, based on Eqn. 6.49,

site fraction and mole fraction can be related as

yαint:i = cαi

(
Nα∑j

i=0N
α
int:i

)
, (6.50)

where Nα summation of number of moles of individual components (Nα
i ) in α. Since Nα and∑j

i=0 N
α
int:i, which is total number of interstitial sites in α, are constant, Eqn. 6.50 yields the

relation cαi = aαinty
α
int:i, where aαint is the number of interstitial sites per atom in α. Similar

relation can be derived for the substitutional alloying elements. However, it should be noted
that the constants, aαint and aαsub, depend extensively on the crystal structure of the phases.

The free energy of the phase-α, using the conjugate pairs, is expressed as

Gα =
l+2∑
i=0

µαi N
α
i , (6.51)

where µαint:i is the chemical potential andNα
i is the number of mole of i inα. By associating the

components to their respective sub-lattices, and correspondingly transforming the chemical
potential, the free energy reads

Gα =

j∑
i=0

µαint:iN
α
int:i +

l∑
k=0

µαsub:kN
α
sub:k. (6.52)
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From above Eqn. 6.52, the free energy based on the site fractions is written as

Gα(yαint,y
α
sub) =

j∑
i=0

Nα
int:i

 j∑
i=0

µαint:iy
α
int:i

+
l∑

k=0

Nα
sub:k

 l∑
k=0

µαsub:ky
α
sub:k

 , (6.53)

where yαint:i and yαsub:k are site fractions of i and k in α, respectively. By separating one com-
ponent from each sub-lattices, the free energy can be written as

Gα(yαint,y
α
sub) =

j∑
i=0

Nα
int:i

µαint:0y
α
int:0 +

j∑
i=1

µαint:iy
α
int:i

+
l∑

k=0

Nα
sub:k

µαsub:0y
α
sub:0 +

l∑
k=0

µαsub:ky
α
sub:k

 .
(6.54)

Since
∑j

i=0 y
α
int:i(=

∑l
k=0 y

α
sub:k) = 1, Eqn 6.54 transforms to

Gα(yαint,y
α
sub) =

j∑
i=0

Nα
int:i

µαint:0 +

j∑
i=1

(
µ̃αint:i

)
yαint:i

+
l∑

k=0

Nα
sub:k

µαsub:0 +
l∑

k=1

(
µ̃αsub:k

)
yαsub:k


(6.55)

where µ̃αint:i and µ̃αsub:k are the di�usional potentials that read

µ̃αint:i = µαint:i − µαint:0 (6.56)

µ̃αsub:k = µαsub:k − µαsub:0. (6.57)

In a multicomponent system with more than one sub-lattice, thermodynamically [154,
155], the chemical potential is estimated by

µαint:i =
∂Gα

∂Nα
int:i

+
∂Gα

∂yαint:i

∂yαint:i

∂Nα
int:i

+
∑
j

∂Gα

∂yαint:j

∂yαint:j

∂Nα
int:i

. (6.58)

Solving the partial derivatives in the second and third terms on the right-hand side of Eqn. 6.58
yields the relation

∂yαint:i

∂Nα
int:i

=
1− yαint:i∑j
i=0N

α
int:i

and
∂yαint:j

∂Nα
int:i

=
−yαint:j∑j
i=0 N

α
int:i

. (6.59)

By substituting Eqn. 6.59 in Eqn. 6.58, the chemical potential of a component in the interstitial
site is expressed as

µαint:i = Gα
m +

1∑j
i=0 N

α
int:i

 ∂Gα

∂yαint:i
−
∑
j

yint:j
∂Gα

∂yαint:j

 , (6.60)
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where Gα
m is the molar free-energy of phase-α. Similarly, the chemical potential of a substi-

tutional component can be written as

µαsub:k = Gα
m +

1∑j
i=0N

α
sub:k

 ∂Gα

∂yαsub:k

−
∑
l

ysub:l
∂Gα

∂yαsub:l

 . (6.61)

From Eqns. 6.60 and 6.61, the di�usion potentials of the interstitial and substitutional com-
ponents are expressed as

µ̃αint:i =
1∑j

i=0N
α
int:i

[
∂Gα

∂yαint:i
− ∂Gα

∂yαint:0

]
(6.62)

µ̃αsub:k =
1∑l

k=0N
α
sub:k

[
∂Gα

∂yαsub:k

− ∂Gα

∂yαsub:0

]
, (6.63)

respectively. Substituting the above relations in Eqn. 6.55, the free energy can be expressed
in terms of site fractions and di�usion potentials. Furthermore, based on Eqn. 6.48, the Gibbs
free-energy is transformed to Helmholtz free-energy.

When the phase-α and -β are in chemical equilibrium, the chemical (di�usion) potential
of a component across the interface are equal. Therefore, at equilibrium, Eqn. 6.55, yields the
relation

∂Gα

∂yint:i
=

∂Gβ

∂yint:i
= µ̃int:i (= µint:i) (6.64)

∂Gα

∂ysub:k

=
∂Gβ

∂ysub:k

= µ̃sub:k. (6.65)

In Eqn. 6.54, which introduces the di�usion potential, the solvent is conventionally considered
as the 0th component in the substitutional sub-lattice. In the interstitial sub-lattice, since the
entire sites are rarely �lled in any alloy-system, the vacant-sites are treated as 0th component.
The interstitial vacancies render zero contribution of the thermodynamic nature of the system.
Therefore, the di�usion potential of a component in the interstitial sub-lattice is considered
equal to its respective chemical potential. This equivalence in the chemical and di�usion
potential of the interstitial components is stated in Eqn. 6.64.

Based on Eqn. 6.64, the chemical and the di�usion potential of the corresponding inter-
stitial and substitutional component are treated as the continuous variables [120, 121]. The
continuous variables are adopted as the dynamic variables by considering the Legendre trans-
form of the chemical free-energy, which results in the grand chemical-potential density. The
grand chemical-potential for the phase-α with interstitial and substitutional lattice is written
as

Ψα(µint,µsub) = fαch(yαint(µint),y
α
sub(µsub))−

 j∑
i=1

µint:iy
α
int:i(µint) +

l∑
k=1

µ̃sub:ky
α
sub:k(µsub)

 ,
(6.66)
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where µint is a continuous vector representing the chemical potential of j interstitial compo-
nents, while µsub corresponds to the di�usional potential of l substitutional components. By
using the interpolation function h(φ), the grand potential density of a two-phase system is
expressed as

Ψ(µint,µsub) = Ψα(µint,µsub)h(φ) + Ψβ(µint,µsub)(1− h(φ)). (6.67)

The formulation of the grand chemical potential in Eqn. 6.66 yields the relation

∂Ψα(µint,µsub)

∂µint:i
= −yαint:i (6.68)

Therefore, based on Eqns. 6.67 and 6.68, the continuity of the interstitial and substitutional
components is expressed as

yint:i(φ) = yαint:ih(φ) + yβint:i(1− h(φ)) (6.69)

ysub:k(φ) = yαsub:kh(φ) + yβsub:k(1− h(φ)). (6.70)

Since the aforementioned continuity is derived from the equilibrated chemical (di�usion) po-
tential, in Eqn. 6.64, the bulk phases and interface are e�ciently decoupled [121].

6.2.3 Evolution equations

The evolution of the phase �eld is phenomenologically governed by the minimization of the
overall free energy, which includes chemical and elastic component. Correspondingly, the
phase-�eld evolution, ascertained from the variational derivative of the functional de�ned in
Eqn. 6.29, reads

τε
∂φ

∂t
= −δF (φ,∇φ,S)

δφ
= −

[
∂F

∂φ
−∇ · ∂F

∂∇φ

]
. (6.71)

In the above Eqn. 6.71, τ is the inverse of the interface mobility [123]. Consistency of the
present formulation is recovering the capillarity has already been elucidated in Ref. [156]

For the evolution of the continuous variables associated with the elastic free-energy, the
momentum balance equation is solved [147]. However, during the phase transformation,
which is predominantly governed by the concentration and inelastic eigenstrain, the sys-
tem is in mechanical equilibrium. Therefore, the evolution equation of the elastic variables is
determined by solving

ρ
∂2u

∂t2
=∇ · σ = 0, (6.72)

where ρ is the mass density and the divergence of stress is (∇ · σ)i = ∂σij/∂xj .
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The evolution of the chemical (di�usional) potential is derived by considering the tempo-
ral evolution of the concentration. The change in the concentration, in site fractions, of an
interstitial component i with time is written as

∂yint:i

∂t
=
∂yint:i(µint:i, φ)

∂µint:i

∂µint:i

∂t
+
∂yint:i(µint:i, φ)

∂φ

∂φ

∂t
. (6.73)

By incorporating the conventional formulation of the concentration evolution, the temporal
change in the interstitial chemical potential is expressed as

∂µint:i

∂t
=

∇ ·
[
Mint:ij(φ)∇µint:i

]︸ ︷︷ ︸
:=

∂yint:i
∂t

−
[
yαint:i

∂h(φ)

∂t
+ yβint:i

∂(1− h(φ))

∂t

] (6.74)

[
X α

int:ijh(φ) +X β
int:ij(1− h(φ))

]−1

,

where Mint:ij(φ) is the mobility which encapsulates the di�usivity of the component. The
mobilityMint:ij(φ) is written as

Mint:ij(φ) = Dα
int:ijX α

int:ijh(φ) +Dβ
int:ijX

β
int:ij(1− h(φ)), (6.75)

where Dα
int:ij and Dβ

int:ij is the di�usivity matrix pertaining to phase-α and -β, respectively.
Furthermore, in Eqns. 6.74 and 6.75, the susceptibility matrix which ensures constant di�u-
sivity in a given phase is represented by X α

int:ij . The susceptibility can be ascertained from
the well-known Darken factor [121, 157, 158].

Similar to the interstitial chemical-potential in Eqn. 6.74, the evolution of the di�usion
potential is derived, and expressed as

∂µ̃sub:k

∂t
=

∇ ·
[
Msub:kl(φ)∇µ̃sub:k

]︸ ︷︷ ︸
:=

∂ysub:k
∂t

−
[
yαsub:k

∂h(φ)

∂t
+ yβsub:k

∂(1− h(φ))

∂t

] (6.76)

[
X α

sub:klh(φ) +X β
sub:kl(1− h(φ))

]−1

.

The substitutional mobility (Msub:kl(φ)) is of the form Mint:ij(φ) in Eqn. 6.75. However, the
mobilityMsub:kl(φ) involves di�usivity of substitutional components (Dα

sub:ij andDβ
sub:ij) and

the corresponding susceptibility matrices, X α
sub:kl and X β

sub:kl.

Generally, a de�nite smooth-function(s) is adopted to interpolate the variables across the
di�use interface [159, 156]. However, recently, it has been shown that employing phase �eld
(φ) as the interpolation function for the chemo-elastic model enhances the computational
e�ciency while being thermodynamically consistent [160]. Therefore, for the present model,
the phase �eld is considered as the interpolation function (h(φ) = φ).
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Chapter 7

Fault migration in lamellar
arrangement of phases

An ‘ideal’ lamellar microstructure, with the alternating arrangement of the constituent phases,
is characterised by the morphology of its precipitate. It is assumed that the distribution of the
precipitate is homogeneous and extends uniformly across the matrix. Correspondingly, such
ideal con�guration of the phases is considered to be stable [65, 161]. However, as mentioned
in introduction, curvature di�erence in these seemingly ideal microstructure is introduced in
two ways. One, due to non-uniformity in the cross-section of the precipitate and the other,
owing to the presence of the termination. Since the non-uniformity in the structure is rel-
atively less prevalent in the solid-state metallic systems, the threat to the stability imposed
by the termination. Particularly, in the form of the discontinuous and �nite ‘faulty’ structure.
Therefore, in this chapter the morphological changes introduced by the lamella-fault is ex-
tensively investigated.

7.1 Analytical framework

The movement of the discontinuous structure accompanying the termination migration has
already been schematically introduced in previous chapter. An analytical relation for the
recession of the faulty lamella can be derived by considering an elementary con�guration of
the phases as shown in Fig. 7.1. Similar setup has been adopted in the previous works, wherein
the evolution is investigated by involving ln cosh-cylinder co-ordinate system [162, 163].

As illustrated in Fig. 7.1, the two-dimensional setup comprises of a discontinuous �nite
structure positioned between in�nite regular-structures. The interlamellar spacing, which
is the distance between the precipitates, is represented by atm. The morphological change
during the fault migration is characterised by the recession of the termination. Therefore, for

68
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Figure 7.1: A representative depiction of the fault migration for a �nite duration of ttm in discontinuous
lamellar arrangement of phases.

�nite duration of ttm, the fault migrates over a de�nite distance, ηtm. For the present analytical
treatment, magnitude of ttm is considered to be su�ciently small so that the regular structures
remain visibly �at despite the mass transfer from the fault. Furthermore, in order to quantify
the curvature di�erence, the tip of the �nite lamella is encapsulated with a hemisphere of
radius ltm/2, where ltm is the width of the precipitate.

The presence of the termination introduces the curvature di�erence in the lamellar setup.
Consequently, a gradient in the chemical potential, proportional to the curvature di�erence,
is induced which facilitates mass transfer from the tip to the surrounding �at surfaces. If the
area available for mass transfer from the tip is represented byAtm, then the volume transferred
during the �nite interval ttm can be expressed as

δVtm = |JAt|tm, (7.1)

where Jtm is the �ux of the atoms per unit area.

The atomic �ux Jtm is ascertained from the velocity of the migrating species, vtm. As
introduced in the early chapter, for a volume-di�usion governed transformation, the velocity
of the atoms migrating in response to the potential gradient (∇µ) induced by the curvature
di�erence reads

vtm =
DVm
κT
∇µ, (7.2)
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Figure 7.2: Two-dimensional domain setup considered for the simulation of the termination migration.

where D and Vm correspond to the volume di�usivity and the molar volume, while κ and T
are Boltzmann’s constant and temperature, respectively. Therefore, from Eqn. 7.2, the atomic
�ux is expressed as

Jtm = vtmc
θ
eq =

DVmc
θ
eq

κT
∇µ, (7.3)

where cθeq is the equilibrium composition of the precipitate-θ. Eqn. 7.5 entails the assumption
that cθeq >> cαeq, where equilibrium concentration of matrix-α is represented by cαeq.

Owing to the elementary nature of the setup, the chemical potential gradient can be writ-
ten as

∇µ =

γVm

[(
1
R1

+ 1
R2

)
s
−
(

1
R1

+ 1
R2

)
s̃

]
a

=
2γVm
atmltm

, (7.4)

where, if the hemispherical tip and the �at surfaces in Fig. 7.1 are respectively distinguished
as source (s) and sinks (s̃), R1 and R2 are their corresponding principal radii of curvature [8,
9, 10]. Based on Eqn. 7.4, the atomic �ux is expressed as

Jtm =
2DV 2

mγc
θ
eq

κT

(
1

atmltm

)
. (7.5)

Considering the morphology of the faulty structure, the tip area which exclusively acts as
the source for the mass transfer is written as Atm = πltm

2
. Furthermore, from the depiction in

Fig. 7.1, the amount of the mass transferred during the interval ttm reads

δVtm = ηtmltm. (7.6)
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Table 7.1: Parameters used in the present work.

Parameter Value Units

Temperature (T ) 973 K
Interfacial Energy (γ) 0.49 Jm−2

Di�usivity in ferrite(Dα) 2 x 10−9 m2s−1

Di�usivity in cementite(Dθ) 2 x 10−9 m2s−1

Molar volume (Vm) 7 x10−6 m3/mole
Equilibrium concentration(cθeq) 0.25 mole fraction
Equilibrium concentration(cαeq) 0.00067 mole fraction

Therefore, by incorporating the expressions for the volume of the mass transferred δVtm, the
available area Atm and the �ux Jtm, the �nite duration can be written as

τt =
ηtmltmκT

DV 2
mγc

α
eq

atm. (7.7)

The corollary of the above Eqn. 8.21 is that the time taken for the transfer of a de�nite volume
δVtm remains unchanged with time. Therefore, the volume fraction of the faulty structure
should decrease linearly exhibiting no change in slope with time.

Existing studies [162, 163] relate the interlamellar spacing atm with the rate of migration
through

∂ηtm

∂t
∝ a−2

tm . (7.8)

The above expression indicates that for a given interlamellar spacing, the migration velocity
of the lamella-fault is constant. Correspondingly, similar to the volume (δVtm), the tip of the
faulty lamella recedes at a constant rate, exhibiting no dependence on time. In order to ver-
ify these multifaceted claims of the present and previous theoretical studies, the termination
migration is simulated by employing the phase-�eld approach.

7.2 Two-dimensional simulation of the fault migration

7.2.1 Domain con�guration

A simulation domain as shown in Fig. 7.2, is set up to investigate the morphological changes
accompanying the termination migration. The evolution equations characterising the present
phase-�eld model is discretised using �nite di�erence approach on uniform numerical grid.
These equations are subsequently solved by Euler’s forward marching scheme. An equidistant
grid of dimension ∆x = ∆y(= ∆z) = 2×10−9 is considered for the entirety of the work. The
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Figure 7.3: Themorphological evolution in the lamellar precipitate accompanying the recession of the faulty
structure. The distribution of the high and low potential which govern the mass transfer is overlayed.

interface width is de�ned by assigning a de�nite value to the length parameter ε. A width of
approximately six grid points is established by a�xing the length parameter at ε = 2.5×∆x.
The simulations are e�ciently performed by decomposing the larger domains into smaller
fragments through Message Passing Interface (MPI) standard. Additionally, the numerically
accuracy of the numerical treatment is enhanced by non-dimensionalising the parameters
involved. The chemical equilibrium between the matrix-α and precipitate-θ is established by
incorporating CALPHAD-based parameters.

In addition to the present analysis, the aforementioned numerical scheme is adopted for
all the theoretical investigations elucidated in this work. Moreover, the thermodynamical
parameters adopted in all the numerical and analytical treatments are tabulated in Table. 7.1.
Since the present analyses exclusively examine the volume-di�usion governed morphological
changes, the equal di�usivities are assigned to both the phases, matrix and precipitate, to
ensure the dominance of volume di�usion.

7.2.2 Mechanism and kinetics of the evolution

The recession exhibited by the discontinuous ‘faulty’ lamella sandwiched between the regular
structures, which are separated by a distance of 2atm = 0.003×10−6m, is illustrated in Fig. 7.3.
This graphical depiction is an isoline representation wherein phase �eld of value φθ = 0.5

is considered to schematically distinguish the phases by acting as the interface. Depending
on the distribution of the chemical potential, certain regions of the microstructural setup
(Fig. 7.2) act as ‘source’ or ‘sink’ . Regions wherein the potential is relatively higher become
source, since they lose mass to the low potential regions, which are sinks. Employing chemical
potential as the dynamic variable enables the visualization of these sources and sinks. In
Fig. 7.3, these active regions are highlighted in red and blue.
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Figure 7.4: The temporal change in the volume of the discontinuous lamellar-fault. The position of the tip
during the fault migration is monitored and included as subset.

The time t involved in all forthcoming discussion is a dimensionless quantity which is
normalised by the parameter τ ′ = a3

tmκT

DγV 2
mc

θ
eq

. This non-dimensionalising parameter is formu-
lated based on the analytical framework elucidated in the early chapter and is coherent with
existing studies [8, 10, 9].

Consistent with the existing consideration, owing the presence of the termination, the tip
of the fault becomes the source of the evolution, as illustrated in Fig. 7.3 at t = 1.34. More-
over, the �at nature of the neighboring structures introduces the curvature di�erence which
consequently establishes a potential gradient. Governed by the disparity in the chemical-
potential distribution, the mass transfers from the high-potential source to the low-potential
sinks. While the mass transferred to the adjacent sinks disturbs the homogeneity of the regular
lamellae, the tip position of the discontinuous precipitate progressively varies. This recession
of the faulty structure is referred to as the fault migration.

Pioneering numerical treatments of the volume-di�usion governed termination-migration,
involving ln cosh-cylinder co-ordinate system [162, 163], indicate that the pro�le of the reced-
ing fault tip is preserved during the transformation. The morphological evolution rendered
by the phase-�eld simulation, as shown in Fig. 7.3, adheres to this theoretical claim for the
given interlamellar spacing, 2atm = 0.003× 10−6m.

In order to verify the analytical relation in Eqn. 8.21, the volume of the discontinuous
precipitate is measured during the evolution. The temporal change in the volume of the faulty
structure is illustrated in Fig. 7.4. A linear monotonic decrease in the volume, as observed in
Fig. 7.4, asserts that the time taken to transfer a de�nite volume from the faulty to the regular
precipitate is constant throughout the transformation. This trend in the temporal change
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Figure 7.5: Change in the kinetics of the termination migration under the in�uence of the interlamellar
spacing.

of the volume expounds the consistency of the evolution with Eqn. 8.21. Furthermore, to
examine Eqn. 7.8, the position of the tip during the transformation is monitored and plotted as
a subset of Fig. 7.4. Similar linear monotonic change in the tip position during the termination
migration indicates that the recession rate, as expressed in Eqn. 7.8, remains constant for a
de�nite interlamellar spacing.

7.2.3 In�uence of the interlamellar spacing

The spacing between the precipitates in a lamellar microstructure which result from the co-
operative growth of the phases is in�uence by the thermodynamic conditions. To understand
the role of the interlamellar spacing on the evolution of the discontinuous precipitate, termi-
nation migration in di�erent setups, akin to Fig. 7.2, with various spacing (2atm) is analysed.
The recession rate under di�erent interlamellar spacing is ascertained and the graphically
depicted in Fig. 7.5. A convincing agreement with the analytical proportionality in Eqn. 7.8
is evident in Fig. 7.5, which emphasises the consistency of the approach in simulating the
curvature-governed evolution in a multiphase system. The observed decrease in the migra-
tion rate with the increase in the interlamellar spacing is due to the proportional increase in
the time taken for the mass transfer from the source to the neighbouring sinks.

Isoline representation of the morphological evolution accompanying the termination mi-
gration, under di�erent interlamellar spacing, is shown in Fig. 7.6. Independent of the spac-
ing between the regular structures, the faulty lamella, which is distinguished in red, recedes.
However, it is interesting to note that, in contrast to Fig. 7.3 where 2atm = 0.003×10−6m, the
pro�le of the tip changes during the evolution in Fig. 7.6. In all the interlamellar conditions,



Chapter 7. 75

Figure 7.6: The in�uence of the spacing between the regular structures on themorphological evolution of the
�nite precipitate. Three di�erent domain setups with varying spacing, 2atm = 0.05× 10−6, 0.08× 10−6

and 0.1× 10−6m, are considered.

Figure 7.7: The in�uence of the interlamellar distances, 2atm = 0.05×10−6, 0.08×10−6 and 0.1×10−6m,
on the amount of mass transferred to the surrounding lamellar structures.
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2atm = 0.05× 10−6, 0.08× 10−6 and 0.1× 10−6m, the well-de�ned tip transforms to a ridge
(or perturbation) during the migration. Furthermore, it is noticeable in Fig. 7.6 that with the
increase in the interlamellar spacing the size of the perturbation progressively intensi�es.

The upsetting of the shape of the fault tip can be elucidated by considering the morphol-
ogy of the discontinuous precipitate. The shape of the lamella-fault comprises of the inherent
�at surfaces leading up to the tip. Therefore, with increase in the interlamellar spacing, sinks
begin to develop within the �at surfaces of the evolving precipitate, in addition to the sur-
rounding regular structures. In other words, as the neighbouring structures become more
distant, the mass from the tip gets transferred to its own �at surface resulting in the distor-
tion of its pro�le. With increase in the interlamellar spacing the size of the ridge formed at
the tip correspondingly increase. Although this behaviour is apparently similar to the evolu-
tion of the �nite structure [5], the mechanism of mass transfer from the fault to the regular
structure introduces a signi�cant di�erence.

The increase in the magnitude of the tip perturbation with the interlamellar spacing indi-
cates that the amount of mass transferred progressively decreases with 2a. In order to inves-
tigate the in�uence of the interlamellar distance on the atomic �ux to the adjacent structures,
the volume change in the fault precipitate, for a de�nite duration, is ascertained. As shown
in Fig. 7.7, the amount of mass transferred to the in�nite lamellae, during the termination mi-
gration, noticeably reduces with the spacing. In other words, the characteristic mass transfer
which di�erentiates the fault migration from the evolution of the isolate structure decreases
with the distance 2a. Therefore, in a coarse microstructure, wherein the lamellar structures are
considerably distant, the role of the neighbors in the evolution of the precipitates is minimal.
Correspondingly, the precipitate evolves like an isolated structure, despite the complexity of
the microstructure.

7.3 Three-dimensional simulation of the fault migration

The theoretical treatment of the fault migration, particularly governed by the volume dif-
fusion, are often restricted to the two-dimension. As discussed earlier, unlike the surface-
di�usion governed evolution, since the analysis of the volume-di�usion dictated phenomenon
demands the consideration of the entire domain, the 2-dimensional setup is computationally
favoured. However, owing to the e�ciency of the present phase-�eld approach, the investi-
gation of the fault migration is extended to the three-dimension.

Akin to the previous studies, a simple three-dimension system is con�gured to analyse
the evolution of the discontinuous precipitate. The elementary setup with the interlamellar
spacing of 2atm = 0.04 × 10−6m, and the respective evolution of the lamella-fault is shown
in Fig. 7.8. Although the dimension of the system restricts the choice the minimum distance
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Figure 7.8: The migration of the three-dimensional faulty precipitate and the consequent change in the
morphology of the regular lamellar structures.

Figure 7.9: The change in the volume of the three-dimensional discontinuous structure, for a given period
of time, in di�erent lamellar arrangements with varying interlamellar spacing.

between the structures (2atm), the morphological changes broadly remain unaltered. As il-
lustrated in Fig. 7.8, the three-dimensional faulty precipitate recedes by losing it mass to the
neighbouring regular structures, which in-turn disturbs the uniformity of its cross-section
(highlighted in red).

Despite the proximity of the neighbouring precipitates, a slight deviation is introduced
in the tip pro�le of the evolving precipitate in Fig. 7.8. The change in the morphology of
the tip during the recession suggests that two factors contribute to the evolution of the fault.
These factors, as observed in the coarse two-dimensional setup, include the volume lost by
the fault to the regular lamellar and the mass transferred to its own low potential region (�at
surface). In order to quantify the mass transferred to the regular structures in relation to the
interlamellar spacing, the volume change accompanying the evolution under di�erent setups
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Figure 7.10: The role of the distance separating the regular structures (2atm) in governing the kinetics of
the fault migration in three-dimensional setup.

are presented in Fig. 7.9. Similar to the two-dimensional migration, as shown in Fig. 7.7, the
amount of the mass lost to the regular precipitate progressively decreases with increase in
the distance. Moreover, Fig. 7.9 indicates that, in the three-dimensional systems, the mass
gained by the lamellar precipitates drastically reduces with increase in spacing. Therefore, it
is conceivable that beyond a critical distance the in�uence of the neighbours are negligible and
the precipitate evolves like as isolated structure governed by the inherent curvature-di�erence
in its shape.

Of the two factors contributing to the recession of the faulty structure, the prominent role
is assumed by the mass transferred from the discontinuous to the regular structures. Since,
as shown in the Fig. 7.9, the mass lost by the fault precipitate to the surrounding lamellae de-
creases signi�cantly with the increase in spacing, the migration rate noticeably reduces with
interlamellar distance. In Fig. 7.10, the in�uence of the spacing on the kinetics of the evolu-
tion is illustrated. Consistent with the volume-change in the discontinuous precipitate, the
recession kinetics reduces substantially with increase in the interlamellar spacing (2atm). The
relation in Eqn. 7.8 is included in Fig. 7.10. However, it is evident that a noticeable deviation
from this relation is observed in Fig. 7.10. The lack of complete agreement with the predicted
relation can be attributed to two critical components of the present investigation. One, unlike
the analytical treatment, the present work considers the fault migration in a three-dimensional
setup. Two, the mass transfer from the fault tip to its own �at surfaces is not explicitly con-
sidered in the existing studies. These two factor introduce the deviation from the analytical
relation. By �tting the recession rates resulting from the simulation, a di�erent relation is
derived which can be expressed as

∂ηtm

∂t
∝ a−0.8

tm . (7.9)
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The above expression includes mass transfer to the neighbouring precipitates and the inherent
�at surfaces during the fault migration in the three-dimensional system.

7.4 Conclusion

The lamellar microstructure is plainly described as a alternating arrangement of the seem-
ingly continuous phases, precipitate and matrix. During the phase transformation, which
yields the lamellar microstructure, the continuity of the precipitate is often disturbed due to
factors like dislocation density [164]. The discontinuity, in an otherwise ideal arrangement of
the phases, introduces a curvature di�erence owing to the presence of the termination. Con-
sequently, a di�erence in the chemical potential distribution is introduced which actuates a
mass transfer from the region of high potential to the low potential. Since, owing to the curva-
ture, the region of low potential is assumed by the �at surface of the surrounding continuous
structures, the evolution of the faulty discontinuous precipitate is analysed in relation to its
neighbours. In the present analysis, the morphological evolution of the faulty precipitate, re-
ferred to as fault migration, is numerically analysed using phase-�eld approach in both two-
and three-dimension. This investigation a�rms that the recession of the discontinuous struc-
ture is predominantly governed by the mass transferred to the adjacent regular precipitates.
Furthermore, it is shown the volume lost by the evolving precipitate, for a de�nite duration,
decreases with the interlamellar spacing. Consequently, a proportionate decrease in the ki-
netics of the migration is observed with increase in the distance between the precipitates.

Present analysis unravel that the pro�le of the fault tip is preserved during the migration
exclusively in the �ner lamellar microstructure, wherein the interlamllar spacing is small.
With increase in the spacing between the regular structures, an additional mass transfer path
is introduced. This additional mass transfer from the fault tip to its own �at surface occurs
when the lamellar structures are separated by larger distance. The inherent accumulation of
the mass in the �at surface of the discontinuous structure disturbs the pro�le of the tip and
introduces a ridge (or perturbation). The size of this ridge increases with the interlamellar
spacing indicating that the evolution is predominantly governed by the inherent mass dif-
fusion in widely spaced system. In other words, owing to the increased distance between
the regular structures, the discontinuous precipitate transforms like an isolates structure in a
coarse microstructure. Ultimately, the vital corollary of this investigation is that, even though
the microstructure typically comprises of numerous precipitate distributed in the matrix, the
understanding of the evolution of an isolated structure is pivotal, since the role of the neigh-
bours is signi�cantly in�uenced by its distance. Correspondingly, the analysis of the shape
instabilities in the upcoming chapters are largely con�ned to the isolate structure.
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Cylinderization of the ribbon-like
structures

Conventional micrographs depict the lamellar microstructure as the alternating arrangement
of the constituent phases [165, 61]. These two-dimensional images, however, do not render a
comprehensive description of the precipitate morphology. During the phase transformation,
the shape adopted by the precipitate in a given lamellar microstructure is governed by several
factors including the chemical makeup of the material [166], transformation temperature [167]
and microscopic homogeneity [168]. While the eutectic transformation inherently yields rod-
like precipitates [169], the cementite in the pearlite exhibit plate morphology [170]. In some
cases, it has been identi�ed that the precipitate assumes a ribbon-like morphology wherein
the length seemingly extends in�nitely, while the cross-section is de�nite [171]. Moreover,
the ribbon-like shapes (or semi-in�nite plates) form an integral segment of the morphological
evolution of complex structures [172, 173]. A schematic representation of the shape change
observed during the transformation of the semi-in�nite plates has already been introduced in
Fig. 2.4. This morphological evolution, referred to as the cylinderization [36], is extensively
analysed through the phase-�eld simulations in the present chapter.

8.1 Domain setup

Numerical investigations of the fault migration, in the previous chapter, indicate that the in-
�uence of the neighbouring structures decreases signi�cantly with increase in the distance
separating the precipitates. Moreover, since an inherent curvature-di�erence is often intro-
duced in an isolate structure owing to its shape, an understanding on the stability of the
individual shapes is critical for describing the stability of the microstructure. Therefore, for
the present analysis, a two-dimensional setup as shown in Fig. 8.1 is considered, wherein

80
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Figure 8.1: The domain setup considered for the investigation of the cylinderization. The precipitate-θ of
aspect ratio (wrb/lrb =) 6 is embedded onto the matrix α.

precipitate (θ) is in chemical equilibrium with the matrix. The observed morphology of the
precipitate is the cross-section of the in�nite ribbon-like structure.

A pivotal di�erence in the analytical treatment of the stability of the in�nite and �nite
structure lies in the parameters pertinent to the morphology, which govern the transforma-
tion. In the investigation of the in�nite structure, the geometrical nature of the introduced
perturbation in�uences the evolution of the precipitate, whereas the ratio of the width to
thickness, called the aspect ratio, is the governing shape-factor for �nite structures. In addi-
tion to the numerical studies, this shape factor has been realised in the experimental investi-
gations as well [174, 175]. Correspondingly, the thickness of the precipitate, shown in Fig. 8.1,
is set at lrb = 0.008× µm [81] and the width wrb is varied to accommodate the desired aspect
ratio. Furthermore, in the spirit of the existing studies [8], hemispherical caps are augmented
on both the ends of the plate for the elegant description of the curvature di�erence. The radius
of the hemispherical ends is a�xed at lrb/2. The thermodynamical parameters involved in the
simulations are tabulated in Table 7.1. No explicit distinction is made between the di�erent
modes of mass transfer, surface and volume di�usion. Additionally, the equal di�usivities in
both the matrix and precipitate ensures that the volume di�usion is the operating mode of
di�usion.
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Figure 8.2: An isoline representation (φ = 0.5) of the temporal change in the morphology of the precipitate
of aspect ratio 6 during curvature-driven transformation.

8.2 Cylinderization of capped ribbon-like structure

8.2.1 Morphological evolution

Fig. 8.2 shows the morphological changes accompanying the cylinderization of the precipitate-
θ of aspect ratio (wrb/lrb =) 6. Akin to the fault migration, the presence of termination(s) in-
troduces a curvature di�erence in the system. However, unlike the multiphase setup wherein
the curvature di�erence established between the faulty and surrounding regular structures
predominantly dictates the fault migration, in cylinderization, the driving force established
within the individual precipitate exclusively governs the evolution.
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As shown in Fig. 8.2 at t = 0, where t is the non-dimensionalised time, the morphology of
the precipitate encompasses two terminations owing to the �nitude of its cross-section. The
presence of these terminations introduces a di�erence in curvature between the capped ends
and the �at surface of the precipitate. Owing to this curvature di�erence, a gradient in the
chemical potential is induced, in accordance with the Gibbs-Thomson relation. Governed by
the potential gradient, the mass begins to transfer from the region of the high potential to the
low potential. In other words, the curved ends of the plates act as the source for the mass
transfer. Furthermore, since the atomic �ux prefers shortest di�usion path, the �at surfaces
adjacent to the capped ends become the sink. Consequently, the mass from the termination
gets deposited on the immediate �at regions which leads to the formation of the terminal
perturbations or ridges. The formation of the ridges, as shown in Fig. 8.2 at t = 13.04, disturbs
the morphology of the terminations. Despite the change in the termination pro�le, the ends
continue to lose mass to the adjacent low potential region. The progressive mass transfer,
governed by the potential gradient, facilitates the stable growth of the ridges.

The stable growth of the ridges, as illustrated in Fig. 8.2, occurs at the expense of the inher-
ent �at surfaces. Therefore, the corresponding morphological evolution appears as the shrink-
ing of the precipitate. With time, the continually growing terminal perturbations coalesce and
transform the cross-section of the precipitate into capsule-like structure, as shown in Fig. 8.2
at t = 82.61. The capsule morphology resembles the initial con�guration of the precipitate
with signi�cantly low aspect-ratio. Therefore, the subsequent temporal change follows the
mechanism identical to evolution of the precipitate in the initial stages of the cylinderization.
However, since the amount of the �at surface resulting from the coalescence of the ridges are
visibly much lower, the mass gets deposited in the central region of the capsule-like precipi-
tate instead of forming the secondary longitudinal perturbations. Owing to the mass transfer
to the central region, the precipitate assumes a elliptical structure. The elliptical precipitate,
governed by the potential gradient induced by the inherent curvature-di�erence, ultimately
transforms into a spherical structure, as shown in Fig. 8.2 at t = 270. The entire scheme of
the morphological changes leading to the cylinderization can be summarized by considering
the incremental shift in the low potential region. Particularly, from its terminal proximity in
the initial stages to the central position following the coalescence of the ridges.

8.2.2 Analytical investigation of the cylinderization kinetics

8.2.2.1 Analytical framework

The pioneering attempt to analytically investigate the kinetics of the cylinderization is at-
tributed to the Courtney and Kampe [8]. The approach begins by identifying three speci�c
stages in the evolution, namely initial, midpoint and �nal. The driving force at each of these
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Figure 8.3: The temporal change in the driving force which governs the simulated transformation is com-
pared with the analytically calculated driving force.

stages of evolution is ascertained, in a simpli�ed form, from the corresponding geometry of
the precipitate. In the initial stages, since the geometry of the precipitate, particularly the
curvature di�erence, is numerically well-de�ned, the driving force is consistently expressed.
Moreover, the evolution ends with the complete elimination of the curvature di�erence, and
correspondingly, the driving force at the �nal stage is �ttingly considered to be zero. Despite
these appropriate treatment of the driving force, the curvature di�erence at the midpoint of
the cylinderization is assumed in its entirety, owing to the lack of a complete description of the
shape-change. The geometry of the precipitate at the midpoint is assumed to be the average
of the initial and �nal state, and the concentration (potential) gradient is de�ned accordingly.

The phase-�eld model adopted to numerically examine the cylinderization considers chem-
ical potential as the dynamic variable. Since the gradient of the chemical potential which, in
accordance with the curvature di�erence, enables the mass transfer that ultimately results
in the cylinderization, the temporal evolution of the driving force can be monitored directly.
Accordingly, the di�erence in the highest and lowest potential at a given time of the trans-
formation, ∆µ(x, t) = µ+(x)|t − µ−(x)|t, is calculated from the simulation. The temporal
change in the chemical-potential di�erence (∆µ(x, t)) is subsequently ascertained.

The evolution of the potential di�erence accompanying cylinderization is plotted along
with the analytically formulated driving force in Fig. 8.3. Since the analytical calculations are
con�ned to the three speci�c points, initial, midpoint and �nal, the curve is numerically �tted
for this representation. Furthermore, both the driving force and time are normalised for the
comparative depiction in Fig. 8.3.

The graphical representation of the temporal change in the driving force, illustrated in
Fig. 8.3, unravels that the existing theoretical treatment predicts a nearly linear decrease in
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the driving force with time. This un-physical evolution of the curvature di�erence (driving
force) can be attributed to the geometrical assumptions made concerning the morphology
of the precipitate at the midpoint of the cylinderization. On the other hand, it is evident
from Fig. 8.3 that the phase-�eld simulation yields relatively more coherent evolution of the
potential di�erence. Therefore, the analytical approach is revisited with the aide of the present
simulations.

8.2.2.2 Revisiting the theoretical treatment

The morphology of the precipitate, of aspect ratio (wrb/lrb =) 6, at the initial (t0:c), midpoint
(t 1

2
:c) and �nal (t1:c) stage of the cylinderization is illustrated in Fig. 12.4. In the present anal-

ysis, the �nal stage (t1:c) is characterised by the aspect ratio of the precipitate, such that t1:c is
time taken to complete the cylinderization (wrb/lrb = 1). As predicted by the existing studies,
the precipitate assumes a elliptical shape at the midpoint of the transformation.

Assuming that the driving force encompasses the instantaneous morphology of the pre-
cipitate, the overall driving force of the cylinderization, Γ̄c, can be expressed as
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where Γ0:c, Γ 1
2

:c and Γ1:c are the respective driving forces are initial, midpoint and �nal stage of
the transformation. The driving force which is expressed as the function ofAi:c, area available
for the mass transfer, di�erence in the equilibrium concentration induced by the curvature
(δci:c) and the di�usion distance (δxi:c) indicates the transitory nature of Γi, with i ∈ {0, 1

2
, 1}.

Furthermore, separating the concentration gradient as δci:c and δxi:c renders a straightforward
solution for the driving force. Since the cylinderization halts with the driving force becoming
zero, Γ1:c → 0, Eqn. 8.1 becomes
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Based on the termination pro�le, the area available for the di�usion at the initial stages of
the evolution can be considered as A0:c ≈ nd(λ

lrb
2

). The pre-factor nd in the area A0:c refers
to the number of di�usion paths, which is de�ned as nd = 4, owing to the symmetry of the
present con�guration. Furthermore, the seemingly in�nite length of the plate, which is along
viewing angle of Fig. 8.1 is assumed to be λ. In accordance with the Gibbs-Thomson relation,
the change in the equilibrium concentration introduced by the curvature is written as

δci:c =
cθeqγVm

κT

[( 1
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+
1
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)
sources

−
( 1

R3
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1

R4

)
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]
, (8.3)
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Figure 8.4: An isoline representation of the precipitate morphology at the initial (t0:c), midpoint (t 1
2

:c) and
�nal (t1:c) stage of the cylinderization simulated using the phase-�eld model.

where R1, R2, R3 and R4 are the principal radii of high-potential sources and low-potential
sinks, respectively. The thermodynamical constants involved in Eqn. 8.3 are interfacial energy
density (γ), molar volume (Vm), Boltzmann’s constant (κ) and absolute temperature (T ). At the
initial stages the principal radius of the source R1 is well-de�ned owing to the hemispherical
cap. Furthermore, since the sinks are �at surfaces, 1

R3
+ 1

R4
= 0. Therefore, the concentration

di�erence at the initial stage of the cylinderization reads

δc0:c =
2cθeqγVm

κT lrb
. (8.4)

From the morphology of the precipitate at t0, the di�usion length can be written as

δx0:c =
1

4
(2w + πlrb − 4rrb) , (8.5)

where rrb is the radius of the rod emerging from the cylinderization process. The driving force
based on the di�usion area and the concentration gradient is expressed as

Γi:c
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δx

)
i:c

)
= DVmAi:c

(
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)
. (8.6)

Therefore, by substituting Eqns. 8.4 and 8.5 and incorporating the area available for volume
di�usion in Eqn. 8.6, the driving force at the initial stage of the cylinderization is determined
by

Γ0:c =
DV 2

mc
θ
eqγ

κT

16λ

lrb(2wrb + πlrb − 4rrb)
. (8.7)
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Existing analysis assumes that the geometry of the structure at the midpoint of the cylin-
derization is the average of the dimension at the initial and �nal stage [8]. Under such con-
sideration, the distance relating the concentration gradient is expressed as

δx 1
2

:c =
lrb
4

[
wrb

lrb
+ (π − rrb)

rrb

lrb

]
, (8.8)

and correspondingly, the concentration di�erence reads

δc 1
2

:c =
cθeqγVm

κTrrb
. (8.9)

However, Fig. 8.3 indicates that the aforementioned assumption, and the resulting expressions
in Eqns. 8.8 and 8.9, render a thermodynamically inaccurate description of the temporal evo-
lution of the driving force. Particularly, owing to the over-estimation of the driving force at
the midpoint, the progressive decrease in the curvature di�erence appears to be linear. In
order to rectify this misappropriation, the geometrical description of the precipitate at the
midpoint is recovered from the phase-�eld simulations.

The morphology of the precipitate at the midpoint of the evolution is presented in Fig. 12.4,
distinguished in blue. Owing to the elliptical shape of the precipitate two geometrical param-
eters, semi-major (arb) and -minor (brb) length, are introduced. The area available for the
volume di�usion at this stage of the cylinderization can be considered as A 1

2
:c ≈ 4(λbrb). Ge-

ometrical treatments, Ref. [176], postulate that the principal radii of the elliptical structures
can be calculated as
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2
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1
2

.

By adopting Eqn. 8.10, the curvature at the source and sink of the elliptical precipitate is
ascertained.

The concentration di�erence introduced by the curvature, based on the geometrical pa-
rameters arb and brb, is written as
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Furthermore, since the perimeter of the ellipse is calculated as 2π
(
a2
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2

) 1
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which the di�using mass needs to transverse to accomplish the cylinderization is expressed
as
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(a) Parameter prb at the midpoint of cylinderization is ascertained from the simulation of plates with
di�erent aspect ratios. The in�uence of the thickness lrb on the prb is illustrated by considering initial
structures of two di�erent thickness (lrb = 0.008, 0.009µm).

(b) The dimensionless geometric variable (prblrb ) is determined and presented for various aspect ratios.
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Unlike the conventional phase transformations, since the constituent phases are in chem-
ical equilibrium, the corresponding volume fractions remain unchanged during cylinderiza-
tion. Therefore, the radius of the cylinder, which results from the morphological transforma-
tion, can be directly estimated from the initial dimensions of the plate by

rrb =

(
4wrblrb + πl2rb

4π

) 1
2

. (8.13)

Intuitively, the geometrical parameters of the elliptical structure, arb and brb, formed at the
midpoint of the cylinderization can be expressed in terms of the radius rrb. Exploiting the
inter-dependencies of the geometrical parameters, the analytical treatment is simpli�ed by
introducing a variable prb = rrb

arb/brb
. The parameter prb while encompassing the geometry of

the midpoint precipitate, reduces the number of variables involved in this analytical treatment.
In order to the numerically quantify prb, the dimensions of the elliptical structure at midpoint
of the evolution is ascertained from the simulation, for di�erent plates, and plotted in Fig. 8.5a.

Interestingly, beyond the aspect ratio 4, the geometric parameters appears to be indepen-
dent of the initial aspect-ratio of the precipitate. However, in order encompass the in�uence
of the thickness (lrb), plates with increased thickness (lrb = 0.009µm) is numerically investi-
gated and included in Fig. 8.5a. Since the volume of the precipitate increase with the increase
in the thickness, the midpoint variable prb correspondingly increases. Furthermore, it is vital
to note that, since prb is expressed as the ratio rrb and arb/brb, the parameter assumes length
unit. Therefore, to normalise the variable and to eliminate its dependencies on the initial
con�guration of the precipitate, the ratio of prb and thickness (lrb) is subsequently considered.

Fig. 8.5b shows the numerical nature of the normalised parameter prb/lrb (dimensionless)
for plates of di�erent aspect ratios. Evidently, in the plates with aspect ratio 5 and above,
the geometric term prb/lrb is independent of the initial size and thickness of the precipitate.
Furthermore, based on Fig. 8.5b, dimensions of the precipitate at the midpoint of the cylin-
derization can be ascertained through

arb

brb
≈ rrb

1.25lrb
. (8.14)

In addition to enabling the calculation of the curvature di�erence at the midpoint, the above
relation can be employed to estimate the degree of cylinderization. For instance, the ratio of
the major- and minor-axis length will be less than the de�nite value rrb

1.25lrb
, if the cylinderiza-

tion is beyond its midpoint.

By incorporating the parameter prb, the concentration di�erence introduced at the mid-
point of the cylinderization is written as
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while the corresponding di�usion-length is expressed as

δx 1
2

:c =

(
rrb

8prb

) 1
2
{
π(r2

rb + p2
rb)

1
2 − 2

[
2prb(rrb − prb)

] 1
2

}
. (8.16)

Substituting the Eqns. 8.15 and 8.16 in Eqn. 8.6, the driving force at the midpoint of the
cylinderization reads

Γ 1
2

:c =
DV 2

mc
θ
eqγ

κT

(
8
√

2λbrb

) (
r3

rb + p2
rb − 2p3

rb
)

r2
rb

{
π(r2

rb + p2
rb)

1
2 − 2

[
2p(rrb − prb)

] 1
2

} (8.17)

By combining the driving forces at the initial and midpoint of the cylinderization, as in Eqn. 8.2,
the overall driving-force is expressed as

Γ̄c =
DV 2

mc
θ
eqγ

κT

(8
√

2λ

3

)
√

2

lrb(2wrb + πlrb − 4rrb)
+

brb
(
r3

rb + p2
rb − 2p3

rb
)

r2
rb

[
π(r2

rb + p2
rb)

1
2 − 2

(
2prb(rrb − prb)

) 1
2

]
 .

(8.18)

From the overall driving-force the time taken for the cylinderization is estimated by the rela-
tion

t1:c =
δVc

Γ̄c
, (8.19)

where δVc is the amount of volume transfer required for the cylinderization of the plate. Since
the volume of the precipitate is preserved during the morphological evolution, the required
mass transfer is expressed as

δVc = r2
rb

π − lrb
rrb

[
1−

(
lrb

2rrb

)2
]
− 2sin−1

(
lrb

2rrb

) . (8.20)

Combining Eqns. 8.18 and 9.4 in Eqn. 8.19, the dimensionless time taken for the cylinderiza-
tion is written as

t1:c

τ ′
=

3

8
√

2
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rrb

lrb

)2


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√
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rb)

r2
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[
π(r2

rb+p2
rb)

1
2−2(2rrbprb−2p2
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1
2

]


, (8.21)

where τ ′ = l3rbκT

DV 2
m c
θ
eqγ

is the non-dimensionalising factor.

The time taken for the cylinderization of plates with di�erent aspect ratios is calculated
based on the semi-analytical treatment elucidated above. The contribution of the simulation
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Figure 8.6: The cylinderization kinetics predicted by the simulation-aided semi-analytical treatment
(Eqn. 8.21) is compared with the outcomes of the phase-�eld simulations.

to the present theoretical formulation, though pivotal, is con�ned to the precipitate geom-
etry at the midpoint (t 1

2
). Therefore, the simulation results are compared to the predictions

of the analytical treatment in Fig. 12.5. Evidently, the results of the phase-�eld simulations
noticeably agree with the predictions of the present semi-analytical approach. Here it is vital
to note that, as shown in Figs. 8.5a and 8.5b, since the smaller plates of aspect ratios 3 and
4 do not exhibit the geometrical consistency at the midpoint, for the comparison in Fig. 12.5,
appropriate relation which is similar to Eqn. 8.14 is adopted. By �tting the data points, an ex-
pression for the in�uence of the aspect ratio on the kinetics of the cylinderization is obtained
which reads

t1:c

τ ′
= 17.58

(
wrb

lrb

)1.52

. (8.22)

The above relation indicates that with increase in the aspect ratio, the time taken for cylinder-
ization increases smoothly and monotonically. The predominant factor contributing to this
monotonic increase in the cylinderization time is the increase in the volume required to be
transferred (δVc) with the aspect ratio of the plate.

8.3 Cylinderization of faceted ribbon

During the phase transformation, several factors govern the morphology of the precipitate in
the lamellar arrangement. Amongst these factors, the crystallographic relation between the
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Figure 8.7: Morphology of the faceted precipitate of aspect ratio 6 at the initial, midpoint and end of the
cylinderization.

phases renders a pivotal in�uence on the shape of the precipitate. Correspondingly, in speci�c
alloy systems, precipitates assume a faceted morphology which are characterised by sharp
edges [177]. Since, the principal curvatures along the sharp regions of the faceted precipi-
tates are analytically ill-de�ned, hemispherical caps are augmented to facilitate the theoretical
treatment. Irrespective geometry of the shape, it has been shown that the phase-�eld approach
elegantly handles the curvature while recovering the sharp interface solutions [133, 134].
Therefore, the kinetics and mechanism of the cylinderization exhibited by the faceted rib-
bons are analysed in this section.

In Fig. 12.7, the shape of the faceted precipitate at the initial, midpoint and �nal stages
of the cylinderization is shown. Similar to the capped ribbons, the faceted structures assume
elliptical shape at the midpoint of the evolution. Analytical treatment of the cylinderiza-
tion, considered in the previous section, cannot be extended to the faceted shape, since the
curvature di�erence which govern the driving force is analytical ill-de�ned. Therefore, the
evolution rates are entirely determined from the phase-�eld simulations.

Change in the cylinderization time with increase in the aspect ratio of the plates is graphi-
cally presented in Fig. 12.6. Irrespective of the morphology of the plates, since the transforma-
tion mechanism is unaltered, the time taken for the cylinderization monotonically increases
with time. With the increase the size (aspect ratio) of the faceted ribbon, the mass trans-
ferred to cylinderise the precipitate proportionately increases. Correspondingly, as shown in
Fig. 12.7, the transformation time increases.
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Figure 8.8: Increase in the time taken for the cylinderization of the faceted structure with increase in the
aspect ratio. The in�uence of size on the cylinderization kinetics of the capped ribbons are included to
render a comparative investigation.

8.4 Comparing the cylinderization of the capped and faceted
ribbons

8.4.1 The rate of transformation

The numerical investigations unravel that the in�uence of the aspect ratio on the cylinderiza-
tion time of the faceted rods (t1:cf) can be expressed as

t1:cf

τ ′
= 11.22

(
wrb

lrb

)1.57

. (8.23)

The above relation along with the outcomes of the simulations are presented in Fig. 12.7.
In addition to the cylinderization kinetics of the faceted structures, the time taken for the
transformation of the capped precipitates are included in Fig. 12.7. Two factors contribute
to the noticeable disparity in the cylinderization kinetics of the capped and faceted plates.
One, for a given aspect ratio, owing to the capped ends, the amounts of mass transfer (δVc)
required to transform the capped structure is greater than the faceted precipitate. Two, since
the termination pro�le of the capped and faceted precipitates are substantially di�erent, the
initial driving force correspondingly vary. This disparity in the initial curvature-di�erence
additionally contributes to the di�erence in the evolution rate shown in Fig. 12.7.

The curvature at the ends of the plate characterises the morphology of the precipitate.
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While, in the capped precipitate, the curvature is well-de�ned, the principal curvature is zero
in the faceted structure. In order to distinguish the role of the termination geometry on the
kinetics of the cylinderization, the in�uence of the additional volume introduced by the hemi-
spherical caps is delineated.

As elucidated above, the amount of mass transfer which is required to cylinderise the plate
is not the same for the capped and faceted structure, despite the equal aspect ratio. In the
capped ribbons, the hemispherical caps add to δVc , and consequently, prolong the cylinder-
ization time. Therefore, the time taken for the migration of the additional volume is estimated
from the required mass-transfer pertaining to the capped (δVc) and faceted precipitate (δVcf).
Adopting the overall driving force formulation in Eqn. 8.18, the time taken for the transfer of
the additional volume, which is introduced by the hemispherical ends in the capped structures,
is estimated by

t̃c
τ ′

=
δVc − δVcf

Γ̄c

=
3

32
√

2

πl2rb
√

2
lrb(2wrb+πlrb−4rrb)

+
brb(r3

rb+p2
rb−2p3

rb)

r2
rb

[
π(r2

rb+p2
rb)

1
2−2(2prb(rrb−prb))

1
2

]

. (8.24)

The time taken for the migration of the ‘cap-volume’ can be eliminated from the cylin-
derization time of the capped structures, thereby ensuring that, for a given aspect ratio, the
required mass-transfer (δVc) are equal in capped and faceted structures. The transformation
kinetics after discarding the role of the additional cap-volume is included in Fig. 12.7. Conceiv-
ably, the cylinderization rate of the capped structures is apparently enhanced by the elimina-
tion of the time required for the transfer of the cap-volume. Furthermore, despite the increase
in the aspect ratio of the plate, since the cap-volume remains unchanged, the decrease in the
cylinderization time is seemingly independent of the precipitate size. In Fig. 12.7, the ob-
served di�erence between the transformation kinetics of the capped (discontinuous red lines)
and faceted (solid blue lines) is exclusively governed by the characteristic morphology of the
termination. Moreover, it is evident from Fig. 12.7 that the faceted termination accelerates the
morphological evolution, when compared to the smooth ends of the capped precipitates.

8.4.2 Curvature-enhanced kinetics

Despite the diminution of the cylinderization time pertaining to the capped precipitate, through
the Eqn. 8.24, Fig. 12.7 indicates that the transformation rate is considerably higher in the
faceted precipitate. Since the required volume-transfer is made identical for faceted and
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Figure 8.9: The change in the cylinderization rate induced solely by the morphology of the terminations
which is ascertained through the Eqn. 8.25.

capped precipitates by eliminating the contribution of the cap-volume, the sole factor con-
tributing to the disparity in the kinetics is the curvature at the ends of the precipitate. Par-
ticularly, it is evident that the sharp edges of the faceted ribbon enhance the cylinderization
kinetics when compared to the curved terminations of the capped structures. The increased
rate of transformation, which is governed by the initial di�erence in the curvature, can be
quanti�ed as

ten:c

τ ′
=

1

τ ′

[(
t1:c − t̃c

)
− t1:cf

]
. (8.25)

In the above Eqn. 8.25, t1:c and t̃c correspond to the time taken for the cylinderization of the
capped precipitate and migration of the cap-volume. Therefore, the term t1:c − t̃c on the
right hand side of Eqn. 8.25 represents the time taken for the mass transfer in the capped
precipitate, which is equalised in relation to its corresponding faceted ribbon. Furthermore,
the cylinderization time of the faceted plate is represented by t1:cf. Irrespective of the aspect
ratio of the plates, since the curvature di�erence between the capped and faceted structures
in the initial stages of the cylinderization is identical, a similarity in the enhanced kinetics is
intuitively expected. To examine the curvature-driven acceleration of the transformation rate,
the enhanced kinetics (ten:c) is numerically estimated for the precipitates of di�erent aspect
ratios. Fig. 12.9 shows the in�uence on the ribbon size (aspect ratio) on the acceleration of the
morphological transformation. Consistent with the analytical claim, expect for the smaller
ribbons of aspect ratio 3 and 4, the acceleration in the evolution rate (ten:c) is independent
of the initial aspect-ratios of the precipitate. Furthermore, Fig. 12.9 indicates that the sharp



96 8.5

Figure 8.10: Distribution of the chemical potential and the resulting morphological changes exhibited by
the capped ribbons during cylinderization.

edges reduces the time taken for the transfer of the required mass by 25% when compared to
the curved terminations of the capped ribbons. The non-compliance exhibited by the smaller
structures of aspect ratio 3 and 4 can be attributed to the comparable magnitude of the cap-
volume and required mass transfer for transformation (δVc).

8.5 Absence of ‘Contra-di�usion ’

Extending the present numerical analysis to the structures of larger aspect ratio indicates that
the transformation mechanism remains unchanged and the kinetics adheres to the relations
expressed in Eqns. 8.22 or 8.23, depending on the termination morphology of the precipitate.
However, theoretical treatment of the surface-di�usion governed morphological evolution of
the capped �nite-structure predict that, beyond a critical aspect-ratio, a substantial change is
observed in the transformation mechanism [5]. Particularly, the larger ribbons are expected
to disintegrate, through the process of ‘ovulation’ , to smaller ribbons before cylinderising. In
order to investigate the invariance of the transformation mechanism, in the volume-di�usion
governed transformation, on the aspect ratio of the plates, the morphological transformation
of the capped precipitate accompanying the cylinderization is re-examined.

The formation of neck in the central region of the precipitate is identi�ed as the precursor
for the shift in the transformation mechanism [5]. The necking process, which involves de-
crease in the thickness of the precipitate, demands mass transfer from the central �at-region
to the receding ends of the precipitate. In other words, as opposed to the conventional mass
transfer from the terminations to the adjacent region (Fig. 8.2), the ‘contra-di�usion ’ , which
results in necking, is established by the central region becoming the source of the mass trans-
fer. Correspondingly, the contra-di�usion is actuated only when the potential in the central
region of the precipitate is higher than its surrounding. Fig. 12.8 illustrates the distribution
of the chemical potential, especially the region of the high and low potential, induced during
the volume-di�usion governed cylinderization of the capped plates. Evidently, all through the
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morphological evolution, the central region of the �nite structure remains the region of low
potential, thus preventing the introduction of contra-di�usion and consequently, averting the
shift in the transformation mechanism.

It is conceivable that during cylinderization, wherein the termination ridges stably grow
in size with time, an appropriate curvature-di�erence can be established between the central
region and perturbations which turns the �at region into the source of mass transfer. How-
ever, in volume-di�usion governed evolution, introduction of such curvature-di�erence is
precluded by the change in the distribution of the low potential region. As shown in Fig. 12.8,
the pro�le of the low potential region progressively changes with the increase in the size of the
termination ridges, while remaining con�ned to the central region. This change in distribution
of the low potential region directs the mass transfer accordingly and prevents the central re-
gion from turning into a source for mass transfer. In other words, unlike the surface-di�usion
governed evolution, the contra-di�usion, which induces a change in the transformation mech-
anism, is averted in the volume-di�usion governed cylinderization by the progressive change
in the pro�le of the low potential region and restricting it to the central region (Fig. 12.8).

8.6 Conclusion

The dimensions of the precipitate emerging from the co-operative growth of phases, a promi-
nent phase transformation which yields lamellar microstructure, often appear relatively in�-
nite in the growth direction while remaining �nite in the other orthogonal directions [177].
The curvature-induced transformation of such precipitates involves progressive morphologi-
cal change in the cross-section. The shape-change induced in the cross-section of the precipi-
tate, owing to the inherent di�erence in the curvature, is referred to as cylinderization. In this
chapter, the volume-di�usion governed cylinderization is numerically investigated through
phase-�eld simulations.

Owing to the lack of in-situ information, the morphology of the precipitate at the mid-
point of the cylinderization is assumed for the analytical treatment [8]. This assumption is
relaxed by tracking the morphological changes and the existing theoretical approach is revis-
ited. Considerable agreement is noticed between the revisited semi-analytical treatment and
the outcomes of the phase-�eld simulations. Furthermore, the mechanism of the cylinderiza-
tion has been shown to be consistent with the existing studies [8].

For the elegant treatment of the driving force (curvature di�erence), a hemispherical cap
is augmented on the either ends (terminations) of the cross-section. Since such smooth caps
are rarely observed in a microstructure, the numerical investigation is extended to faceted
precipitates with sharp edges. Analytical treatment of the sharp edges are cumbersome as the
principal curvature is zero at the termination. However, as elucidated in Sec. 8.3, the present
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phase-�eld approach convincingly handles the curvature di�erence associated with the sharp
terminations.

The role of the termination morphology in governing the kinetics of the cylinderization
is distinguished. It is realised that, when compared to the capped ribbons, the shape edges
of the faceted precipitate reduces the cylinderization time by 25%, approximately. Moreover,
it is identi�ed that, irrespective of the size of the precipitate, the transformation mechanism
remains unchanged for the volume-di�usion governed cylinderization.



Chapter 9

Spheroidization of �nite
three-dimensional rods

The onset of the shape-instability in a semi-in�nite structure like ribbons is predominantly
con�ned to the cross-section. Therefore, the numerical treatments which analyse the mor-
phological evolution of the ribbon-like precipitate, which is referred to cylinderization, is
con�ned to two-dimension, as elucidated in the previous chapter. Despite the transformation
of the semi-in�nite ribbon to cylindrical structure, the precipitate is hardly stable towards the
curvature-induced driving forces [178].

In addition to the cylindrical structures that are formed during the morphological evolu-
tion of other structures, in certain alloy system phase transformation yields rod-like precip-
itates [179]. Moreover, in composite materials, relatively high-strength precipitate rods are
embedded onto the ductile matrix to the enhance the mechanical properties [180, 181]. Owing
to the wide applicability of these materials, and since the mechanical properties are signi�-
cantly in�uenced by the shape adopted by the phases, comprehensive investigations are made
to understand the morphological stability of the precipitates [182, 183].

Considering the signi�cance of the curvature-driven transformation on the applicabil-
ity of the huge spectrum of materials, in this chapter the stability of the rod-like precipi-
tates are extensively analysed. Unlike the ribbon-like precipitates, the entire morphology
of the rods changes in response to the shape-instability. Therefore, the present phase-�eld
study is extended to three-dimension. Often, the curvature-driven evolution of the rods are
analysed by considering in�nitely-long cylindrical structures [184, 185]. However, it has
been experimentally identi�ed that, owing to the intricacies of the microstructure, the seem-
ingly in�nite cylindrical precipitate are predominantly disintegrated into �nite rods, through
di�erent processes like boundary splitting, at the very outset of the morphological evolu-
tion [186, 187, 188]. Therefore, in present chapter, the temporal change in the morphology of
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the �nite three-dimensional rods are exclusively investigated. In ribbon-like precipitate, the
cylinderization is governed by the curvature di�erence established across the cross-section.
In contrast, the morphological transformation of the �nite rods are in�uenced by the cur-
vature di�erence established across the entire precipitate. Since the resulting shape-change
transforms the precipitate in spheroidal structure, this form of shape-instability is referred to
as spheroidization [189, 190].

9.1 Domain setup

Fig. 12.2 shows the simulation domain considered for the analysis of spheroidization of �nite
three-dimensional rods. By incorporating CALPHAD data, the chemical equilibrium between
the precipitate-θ and the matrix-α is established by assigning appropriate composition to the
phases. Moreover, for the elegant delineation of the curvature di�erence in the initial stages
of the transformation, hemispherical caps are augmented in the either longitudinal ends of the
rod. The diameter of the ‘capped’ rod is �xed at lr = 0.012µm, while the length wr is varied
to accommodate the aspect ratio, wr

lr
. Owing to the de�nitive nature of the cross-section,

the radius of the termination caps are a�xed at lr/2. The simulation domain is chosen to
avoid any in�uence of the boundary condition on the morphological evolution, while being
computationally e�cient. Furthermore, the domain setup is consistently varied to encompass
the rods of di�erent aspect ratio.

9.2 Edge recession-assisted spheroidization

9.2.1 Spheroidization of the capped rods

9.2.1.1 Mechanism

The morphological transformation of the capped rod of aspect ratio 5, governed by the in-
herent curvature-di�erence of its shape, is illustrated in Fig. 12.3. When compared to the
cylinderization, signi�cant resemblance in the mechanism of the evolution is evident. The
geometrically well-de�ned terminations of the capped rod introduce a di�erence in the cur-
vature, particularly in relation to the abutting cylindrical structures. The curvature di�erence
induces a gradient in the chemical potential, which actuates the mass �ow, ultimately, result-
ing the morphological transformation of the precipitate.

In the initial stage of the spheroidization the capped terminations act as the source of the
mass transfer while the adjacent cylindrical body of the rod becomes sink. The deposition
of the mass in the adjoining regions of the termination caps results in the formation of the
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(a) Three-dimensional domain setup adopted for analysing of
spheroidization of rods.

(b) Temporal evolution of the capped rod of aspect ratio 5 leading to the
spheroidization of the precipitate, where t is dimensionless time.

longitudinal ridges, as shown in Fig. 12.3 at t = 32.59. Since the source of the mass trans-
fer, which facilitates the formation of the ridges, is the longitudinal terminations, the growth
of the ridges is accompanied by the recession of the edges. With the progressive migration
of the mass from the terminations, the longitudinal perturbations continue to grow. The re-
cession of the edges and the corresponding growth of the perturbations disturbs the initial
morphology of the rod. While edge-recession appears to shrink the precipitate, the pertur-
bations disturbs the cylindrical nature of the rod. This scheme of evolution, particularly in
the initial stages, indicates that the spheroidization mechanism of the rods are identical irre-
spective of the dominant mode of mass transfer, surface or volume di�usion [5]. Furthermore,
the theoretical treatment which assumes that the rods retains morphological con�guration all
through the transformation is shown to be inaccurate [191].

Akin to cylinderization, the longitudinal ridges continue to grow by consuming the adja-
cent cylindrical body and ultimately, coalesce. The coalescence of the receding perturbation
transforms the precipitate into capsule-like structure, Fig. 12.3 at t = 78.38. Owing to the
shape of the precipitate following the coalescence of the ridges, the mass transferred from
the edges gets deposited in the central region of the capsule. Through the accumulation of
mass in the central region, the precipitate assumes a three-dimensional ellipsoidal shape. The
subsequent evolution, which spheroidises the precipitate, is driven by the inherent curvature-
di�erence induced by the ellipsoidal shape. Since the entire spheroidization is predominantly
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governed by the recession of the terminations, which is caused by the mass transfer from the
longitudinal edges, the transformation mechanism is referred to as termination migration- or
edge recession-assisted spheroidization.

9.2.1.2 Kinetics

Recently, Park et al extended the analytical treatment of cylinderization to investigate the
spheroidization kinetics of the capped rods [192]. However, adopting the derivation to cal-
culate the driving force at the initial and midpoint of the transformation, Eqns.9a and 13 in
Ref. [192], it is realised that the driving force at the midpoint of the evolution is slightly higher
than the initial driving-force. Therefore, the theoretical treatment of the cylinderization is ini-
tially extended to three-dimensional �nite rods and subsequently revisited with the aid of the
phase-�eld simulation.

9.2.1.2.1 Adopting the cylinderization approach: As introduced in the previous chap-
ter, the analytical approach to delineate the kinetics of the evolution begins with the identi�-
cation of the three distinct stages of the transformation, which are referred to as initial (t0:sc),
midpoint (t 1

2
:sc) and �nal (t1:sc). The transformation rate is subsequently ascertained by

t1:sc =
δVsc

Γ̄sc
, (9.1)

where δVsc is the amount of mass transferred to transform the precipitate completely. This
required mass-transfer is dictated by the initial morphology of the precipitate [8, 9]. Further-
more, in Eqn. 11.26, Γ̄sc is the overall driving-force which is estimated as

Γ̄sc =
1

3

∑
i∈{0, 1

2
,1}

Γi:sc, (9.2)

where Γi:sc is the instantaneous driving-force considered at initial, midpoint and end of the
evolution. However, since the transform halts with the exhaustion of the driving force, Γ1:sc =

0.

The shape of the precipitate at the three distinct stages which are considered for the an-
alytical treatment is shown in Fig. 12.1. The required mass-transfer is calculated by elimi-
nating the volume shared by the rod and resulting spheroid from the overall volume of the
precipitate. The cross-section of the shared region is included in Fig. 12.1. To determine
the volume of the shared precipitate, a parameter hr is introduced which holds the relation

hr =

√(
r2

sc −
(
lr/2
)2
)

. Fig. 12.1 indicates that the volume of the overlapping region, is the

sum of the cylinder with height hr and two spherical caps. The volume of the spherical cap
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Figure 9.2: The morphology of the precipitate of aspect ratio 5 at the initial, midpoint and �nal state of the
spheroidization.

in the shared region can be expressed

Vcap =
1

3
π

(
rsc −

hr

2

)2(
2rsc +

hr

2

)
. (9.3)

Correspondingly, the required mass-transfer for the spheroidization of the capped rod is de-
termined by

δVsc =
4

3
πr3

sc −

π
(
lr
2

)2

hr + 2

[
1

3
π

(
rsc −

hr

2

)2(
2rsc +

hr

2

)] . (9.4)

The above expression can be simpli�ed and the mass transfer required for the spheroidization
can be written as

δVsc = πr2
schr −

π

4
hr

(
l2r +

h2
r

3

)
. (9.5)

Since the volume of the evolving phase-θ is preserved during the spheroidization, owing to
the chemical equilibrium, a relation between the radius of the spheroid and initial dimension
of the rod is derived, which is expressed as

rsc =

[(
lr
4

)2

(3wr + 2lr)

] 1
3

. (9.6)
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The two transitory parameters governing the driving force are the area available for the
di�usion and the concentration (potential) gradient induced by the curvature. As elucidated in
Sec. 9.2.1.1, during the termination migration-assisted spheroidization of the rods, the mass
is transferred predominantly from the termination. Therefore, since at the initial stage of
the spheroidization, hemispherical caps are the exclusive source for mass transfer, the area
available for di�usion is A0:sc = πl2r . The di�erence in the equilibrium concentration, which
is introduced by the shape, is proportional to the curvature di�erence and is written as

δc0:sc ∝

[(
2

lr
+

2

lr

)
︸ ︷︷ ︸

source

−
(

1

∞
+

2

lr

)
︸ ︷︷ ︸

sink

]
. (9.7)

Furthermore, the di�usion distance associated with the concentration gradient at the outset
of the spheroidization is analytically estimated as

δx0:sc =
π

4
lr +

wr

2
− rsc. (9.8)

By considering the aforementioned factors, the driving force at the beginning of the spheroidiza-
tion can be expressed as

Γ0:sc

(
A0:sc,

(
δc

δx

)
0:sc

)
∝ 2πlr

(
π
lr
4

+
wr

2
− rsc

)−1

. (9.9)

Although the above Eqn. 9.9 adopts a simpli�ed form of the concentration gradient, since
no nonphysical approximation is made, the same relation is involved while revisiting the
approach.

The di�usion area at the midpoint is approximated to be the average of the di�usion area
at the initial and �nal state of the transformation. In the existing theoretical study [192],
the di�usion area at the �nal stage is assumed to the entire surface area of the precipitate.
However, it vital to note that the di�usion area is the region actively involved in the mass
transfer, and predominantly associated with the source. Therefore, the consideration that the
surface area of the precipitate is the di�usion area at the �nal state, entails an implausible
con�guration with a lack of sink. Moreover, such assumption can also be viewed as potential
reason for the misappropriation of the midpoint driving-force, particularly, since the di�usion
area signi�cantly in�uences to the driving force. Thus, in the present derivation, the di�usion
area at the end of the transformation is considered to be a quadrant of the surface, which
avoids a repetitive inclusion of the di�usion area. Correspondingly, the di�usion area at the
midpoint of spheroidization is expressed as

A 1
2

:sc =
1

2
π
(
l2r + r2

sc
)
. (9.10)
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The principal radii of curvature at the midpoint is similarly ascertained as the average of
the initial and �nal state. Accordingly, the principal radii at the source and sink are approxi-
mated

R1 =
1

2

(
lr
2

+ rsc

)
R2 =

1

2

(
lr
2

+ rsc

)
(9.11)

and

R3 =
1

2

(
lr
2

+ rsc

)
R4 =

1

2
(∞+ rsc) , (9.12)

respectively. By substituting these principal radii of curvature, the in�uence of curvature
di�erence on the equilibrium concentration can be related as

δc 1
2

:sc ∝ 2

(
lr
2

+ rsc

)−1

. (9.13)

Including distance which quanti�es the migration of di�using atoms at midpoint, based on
initial and �nal di�usion-distance, the midpoint driving force is expressed as
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:sc
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1
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π

2
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:=δx 1

2
:sc

(9.14)

The driving force ascertained from Eqns. 9.9 and 9.15 along with Eqn. 9.5 can be employed
to determine the rate of spheroidization. However, before presenting the outcomes of the
aforementioned derivation, the approximation involving the average of the initial and �nal
condition is relaxed and the treatment is revisited.

9.2.1.2.2 Revisiting the cylinderization approach: As mentioned earlier, the major as-
pect of the present treatment is to reformulate the driving force of the spheroidization at the
midpoint. As shown in Fig. 12.1, the precipitate assumes a three-dimensional ellipsoidal shape
at the midpoint. Although an attempt was made to incorporate the curvature di�erence per-
taining to the characteristic shape, Eqn.12a of Ref. [192], the description was con�ned to two-
dimension. Therefore, in this section three-dimensional extension is rendered while relaxing
the geometric approximations.

Formulating the surface area of the three-dimensional structures is intrinsically not straight-
forward. Therefore, a reasonable consideration employed in the existing analyses is adopted
to describe the di�usion area at the midpoint. Correspondingly, it is assumed that the precip-
itate along the major-axis of the ellipsoid exclusive acts as the source. Although a rigorous
treatment is rendered in Refs. [193] and [194], the di�usion area of the ellipsoidal precipitate
is described in a simplistic way.
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Figure 9.3: The parameter p = rsc
(a/b)r

is seemingly independent of the initial size of the three-dimensional

rod.

As shown in Fig. 12.1, the ellipsoid formed at the midpoint of the evolution is characterised
ar > br = cr, where ar, br and cr are semi-axes lengths along the orthogonal co-ordinates. Such
structures are referred to as ‘prolate spheroids’ . In the present analysis, the overall surface-
area of the midpoint precipitate is formulated through Knud Thomsen approximation [195,
196]. Correspondingly, the surface area of the prolate spheroid is expressed as

Spr = 4π

[
2(arbr)

P + b2P
r

3

] 1
P

, (9.15)

where the constant P ≈ 1.6. To estimate the di�usion area at the midpoint which is con�ned
to the major axis, the area of the segment pertaining to the minor axes is removed from the
overall area of the prolate spheroid. Correspondingly, the midpoint di�usion-area is written
as

A 1
2

:sc = Spr − 4π(arb
5
r )

1
3 . (9.16)

Although the above formulation assumes the spherical segment along the minor axes, when
compared to the Eqn. 9.10, a relatively accurate approximation is rendered by Eqn. 9.16 for
midpoint di�usion area. Moreover, owing to the volume preservation, the radius of the ulti-
mate spheroidal structure is related to the geometrical parameters of the midpoint ellipsoid
as rsc = (arb

2
r )

1
3 .

The in�uence of the curvature di�erence, which is inherent to the prolate spheroid, on the
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Figure 9.4: The transitory driving at the speci�c stages of the spheroidization which are calculated based
on the existing work [192], present adoption and the simulation-aided treatment. The in�uence of the
di�usion area on the kinetics for the cylinderization approach is included.

equilibrium concentration can be expressed as

δc 1
2

:sc ∝ [Hsink −Hsource] , (9.17)

where Hsink and Hsource are the mean curvatures associated with the sink and source, respec-
tively. Reason for replacing the principal radii with the mean curvature is elucidated else-
where (Appendix B). The mean curvature for the ellipsoidal structure is de�ned based on the
co-e�cients of �rst and second fundamental forms as derived in the Appendix B.2. Corre-
spondingly, for the present prolate spheroid wherein b = c, the co-e�cients of �rst funda-
mental form reads

Er = a2
r sin2 θ + b2

r cos2 θ (9.18)

Fr = 0

Gr = b2
r sin2 θ.

Furthermore, for the prolate spheroid, the co-e�cients characterising the second fundamental
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form is expressed as

Ẽr =
arb

2
r

(b4
r cos2 θ + a2

r b
2
r sin2 θ)

1
2

(9.19)

F̃r = 0

G̃r =
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2
r sin2 θ

(b4
r cos2 θ + a2

r b
2
r sin2 θ)

1
2

.

Based on the above co-e�cients, the mean curvature at a point on a prolate spheroid reads

H =
ar(b

2
r + a2

r sin2 θ + b2
r cos2 θ)

2(a2
r sin2 θ + b2

r cos2 θ)(b4
r cos2 θ + a2

r b
2 sin2 θ)

1
2

. (9.20)

From Eqns. 9.18, 9.19 and 9.20, the di�erence in the equilibrium concentration induced by the
morphology of the precipitate at the midpoint can be written as

δc 1
2

:sc ∝

(
ar

b2
r
− a2

r + b2
r

2a2
r br

)
. (9.21)

The di�usion-length associated with curvature induced concentration-gradient, at the mid-
point, is de�ned as

δx 1
2

:sc =
π

4

[
4(2a2

r + 2b2
r )

1
2 − (arb

2
r )

1
3

]
. (9.22)

In order to quantify the fundamental geometric parameters ar and br, a variable pr which
is de�ned as pr = rsc

ar/br
is introduced. The nature of this variable pr is determined by moni-

toring the morphological evolution of the precipitate. In�uence of the initial aspect-ratio on
the parameter pr, which encompasses the dimensions of the midpoint ellipsoid, is plotted in
Fig 12.4. This illustration unravels the relation that pr

lr
= 0.523, irrespective of the initial size

of the �nite rod. Correspondingly, the fundamental parameters of the prolate spheroid can be
related as

ar = 1.95br. (9.23)

Using the above relation, the driving force at the midpoint of the spheroidization can be cal-
culated from Eqns. 9.16, 9.21 and 9.22.

The driving forces governing the spheroidization of the capped rod of aspect ratio 5 is
calculated at the three speci�c points of the evolution. These driving forces estimated by
the existing prediction [192], extension of the cylinderization treatment which is derived in
Sec. 9.2.1.2.1 and the semi-analytical treatment involving in-situ observation are compared in
Fig. 12.5. Owing to some misappropriations, the existing studies render a driving force which
is greater than the initial. Earlier, it has been identi�ed that the one factor contributing to



Chapter 9. 109

Figure 9.5: Time taken for the spheroidization of capped rods of di�erent aspect ratio is compared with the
predictions of the revisited analytical treatment.

this nonphysical representation of the driving force is the assumption that the di�usion area
at the end of the transformation is the entire surface-area of the spheroid. Therefore, the
cylinderization approach is extended by relaxing this assumption. As shown in Fig. 12.5, the
existing delineation with the appropriate formulation of the midpoint di�usion-area renders
relatively consistent evolution of the driving force. Furthermore, the di�usion area at the
end of the evolution is progressively reduced, to unravel its in�uence on the driving force.
Evidently, with the decrease in the midpoint di�usion-area, the driving force correspondingly
decreases and appears more thermodynamically consistent. In Fig. 12.5, the di�erent points
in the cylinderization approach respectively consider Srq, Srq

4
, Srq

2
and 3Srq

4
as the di�usion area

at the end of the transformation, where Srq surface area of a quadrant of the resulting sphere.

The driving force ascertained through the revisited approach, which is enhanced by the
simulation results, is included in Fig. 12.5. The revisited derivation, in Sec. 9.2.1.2.2, yields
seemingly appropriate depiction of the temporal change in the driving force. Based on the
simulation-assisted formulation, the time taken for the transformation of the capped rods of
di�erent aspect-ratio is determined. The kinetics predicted by this theoretical treatment is
compared with the simulation result in Fig 12.6. The time taken for the spheroidization of
the smaller capped rods, below aspect ratio 5, reasonably agrees with the postulated semi-
analytical prediction. However, despite the extensive geometrical treatment which augments
in-situ information, noticeable disparity is introduced between the theoretical relation and
simulation results. It is interesting to note that the outcomes of the simulation progressively
deviate from the analytical prediction with increase in aspect ratio. Moreover, this signi�-
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Figure 9.6: Temporal evolution of the curvature (potential) di�erence, ∆µ(x, t) = µ(x)|+t −µ(x)|−t , which
dictate the morphological transformation of the capped rods of aspect ratio 5 and 8. The change in the
driving force with time during the cylinderization of the two-dimensional ribbons of corresponding size is
included for comparison.

cant di�erence between the analytical and simulation solutions contradicts the appreciable
consistency observed in the cylinderization.

In order to recognise the factor(s) responsible for the observed di�erence between the
analytical and numerical results, the temporal evolution of the driving force is examined.
Akin to the cylinderization, the driving force is estimated by considering the di�erence in the
chemical potential, ∆µ(x, t) = µ(x)|+t −µ(x)|−t , where µ+(x)t and µ−(x)t are time-dependent
maximum and minimum chemical potential in the domain, respectively. The temporal change
in the potential di�erence which governs the spheroidization of the capped rod of aspect ratio
5 is shown in Fig 12.7. For comparison, the evolution of the driving force accompanying the
cylinderization of two-dimensional plate-like structures of the corresponding aspect ratio (5)
is included.

Analytical treatment of the curvature-driven transformation, inherently assumes that the
potential di�erence decreases smoothly and monotonically with time. As shown in Fig 12.7,
the driving force during the cylinderization of the two-dimensional plate of aspect ratio 5 de-
creases in the expected pattern. Whereas, the potential di�erence accompanying the spheroidiza-
tion of the three-dimensional capped rods, experiences a period of stagnation, which disrupts
the smooth-monotonic decrease in the driving force. The sluggish change in the curvature
(potential) di�erence, which is highlighted in Fig 12.7, prolongs the time taken for spheroidiza-
tion. Since the present theoretical formulation does not include the complete evolution the
driving force, the characteristic temporal behaviour of the driving force predominantly con-
tributes to the disparity observed in Fig 12.6.

To explicate the progressive widening of the disparity between analytical and simulation
results in Fig. 12.6, the analysis of the potential di�erence is extended to larger rod of aspect
ratio 8. As shown in Fig 12.7, the sluggish change in the curvature di�erence, observed in the
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rod of aspect ratio 5, is replaced by a de�nite period of increase and, subsequent, decrease
in the driving force in larger structure. This characteristic temporal evolution of the poten-
tial di�erence introduces a ‘hump’ , which contradicts the hitherto held assumption that the
driving force decreases monotonically with time in shape-instabilities induced transforma-
tion. The change in the transitional behaviour of the curvature di�erence, from a de�nite
stagnation to a non-monotonic hump, with increase in aspect ratio prolongs the time taken
for the spheroidization. Therefore, the in�uence of the size-dependent evolution of the driv-
ing force on the transformation rate is primarily responsible for the progressive disparity
noticed in Fig 12.6. In other words, since the temporal change in the curvature di�erence
during the spheroidization of the smaller rods, below aspect ratio 5, is smooth and mono-
tonic, considerable agreement is seen between the analytical and numerical solutions. How-
ever, with increase in the aspect ratio, the driving force characteristically evolve, in contra-
diction to the critical assumption of the analytical treatment, which introduces a signi�cant
di�erence in the outcomes of the simulation. From Fig 12.7 it is evident that, although the
smooth-monotonic decrease in curvature di�erence is a reasonable assumption for the evo-
lution of two-dimensional structures, this consideration cannot be directly adopted for three-
dimensional shapes. Moreover, as expounded earlier, the temporal evolution of the driving
force varies with the size, for a given morphology.

9.2.1.3 Onset of ‘Contra-di�usion’

Analysing the temporal change in the driving force associated with the cylinderization of
the two-dimensional ribbons, in relation to the morphological evolution, indicates that the
smooth-monotonic decrease in the curvature di�erence corresponds to the transformation
mechanism wherein the longitudinal ridges grow stably before the coalescence. However,
the morphological behaviour pertaining to the stagnant or non-monotonic evolution of the
potential di�erence is not entirely explicit. Therefore, in order to realise the shape-change
accompanying the characteristic evolution of the driving force, the spheroidization mecha-
nism of capped rod of aspect ratio 8 is investigated. The morphological changes leading to
the spheroidization of the rod of aspect ratio 8 is shown in Fig. 12.8. No signi�cant di�erence
is evident in the transformation mechanism of the rod in Fig. 12.8 when compared to the re-
spective smaller structures of aspect ratio 5. Outwardly, the spheroidization is predominantly
governed by the recession of the edges, through the stable growth of the longitudinal pertur-
bations. However, a closer examination of the change in the chemical-potential distribution
unravels the morphological evolution governed by the characteristic evolution of the driving
force. A three-dimensional illustration of the chemical-potential distribution is included in
Fig. 12.8.

In the initial stages of the spheroidization, high potential is established around the termi-
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Figure 9.7: The transformation mechanism underpinning the spheroidization of the capped rod of aspect
ratio 8. Three-dimensional depiction of the chemical-potential distribution which govern the shape change
is included.

nations of the rod, while the regions adjacent to the edges assume low potential. This potential
distribution leads to mass transfer from the high-potential source to low-potential sink, which
result in the formation of the longitudinal ridges. Conventionally, as observed in the cylinder-
ization, the chemical potential in the precipitate, but for the termination, continues to remain
at low all through the morphological evolution. However, during the spheroidization of the
capped rod of aspect ratio 8, the potential in the central region of the rod increases, as shown
in Fig. 12.8 at t = 71.4. Accordingly, the potential at the central region is relatively higher than
the potential at the foot of the longitudinal ridges (sinks). The raise in the chemical potential
at the midri� is attributed to the curvature di�erence established between the growing edge
perturbations and the central region of the rod. The relatively higher potential at the midri�
of the precipitate transforms it into a source, which loses it mass to the surrounding sinks.
The unconventional transfer of mass from the central region to the receding ridges is referred
to as Contra-di�usion. The mass �ow characterising the contra-di�usion is shown in Fig. 12.8.
The contra-di�usion reduces the cross-sectional area of the rod in the central region, leading
to the formation of necks. However, since the evolving ridges progressively recede, the sinks
get closer and the potential at the midri� continually decreases. The continual decrease in
the midri�-potential, which induces the the contra-di�usion, reduces the magnitude of mass
transferred from the central region. With time, as shown in Fig. 12.8 at t = 126, the high po-
tential in the central region completely disappears and transform it to sink. Correspondingly,
the resulting potential distribution, resumes the conventional mass �ow from the ridges to the
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Figure 9.8: The geometrical description of the uncapped and faceted rods. The longitudinal and radial view
of the cross-section is included.

body of the precipitate. By relating the spheroidization mechanism with Fig. 12.7, it is evident
that the non-monotonic evolution of the driving force pertains to the onset and subsequent
disappearance of the contra-di�usion.

The present study unravels that the critical assumption in the existing theoretical treat-
ment of the curvature-driven transformation, which is the smooth-monotonic decrease in the
driving force, is due to the disjunction in the analysis of the kinetics and mechanism. In other
words, smooth and monotonic decrease in the curvature di�erence is assumed because the
mechanism and the kinetics of the evolution are analysed separately. Such separate consider-
ation inherently overlooks the in�uence of mechanism on the kinetics. However, the current
investigation shows that the transformation mechanism, particularly in three-dimensional
structures, signi�cantly in�uences the kinetics of evolution. By quantifying the amount of
mass transferred due to the contra-di�usion, the analytical treatment can be extended. Ac-
cordingly, as opposed to Eqn. 11.26, the time taken for the spheroidization is expressed as

t1:sc =
δVsc + 2(δVcon)

Γ̄
, (9.24)

where Vcon is the mass transferred through the contra-di�usion and pre-factor 2 accounts
for the characteristic non-monotonic hump. Despite the theoretical framework, an extensive
derivation is not pursued, since it is conceivable that the onset of contra-di�usion would
introduce a change in the transformation mechanism in the larger rods.

9.2.2 Spheroidization of the uncapped and faceted rods

Hemispherical segments which characterises the capped rods are included to elegantly de-
�ne the curvature di�erence at the initial stages of the spheroidization. However, such mor-
phologies are hardly observed in a microstructure. Therefore, in this section, the spheroidiza-
tion mechanism and the kinetics of the rods which are devoid of the hemispherical caps,



114 9.2

henceforth referred to as uncapped rods, are analysed. Lack of the termination caps, intro-
duces a sharp edges on either longitudinal ends of the plate. However, since it has already
been shown in the previous chapter that the present model convincingly handles extreme
curvature-di�erence, no geometrical manipulations are made to the circumvent the sharp
edges. Moreover, in certain material system, owing to the speci�c orientation relation be-
tween the phases, the precipitate assume a faceted morphology [197, 198]. In an otherwise
rod-like structure, the orientation relation introduces sharp edges and orthogonal corners
which extend all through the length of the precipitate. Similar to the uncapped rods, since the
curvature of the faceted structures are analytical ill-de�ned, the theoretical study on the evo-
lution of the faceted rods are limited. Accordingly, the present numerical approach is adopted
to understand the spheroidization of the faceted rods.

The morphological con�guration of the uncapped and the faceted rods are shown in
Fig. 12.9. The cross-section of the rods, both longitudinal and radial, are included in this
illustration. Similar to the capped rods, the aspect ratio of these rods is considered to be the
ratio of the length (wr) and diameter (or width, lr). For a given aspect ratio, although the lon-
gitudinal cross-sections of these rods are identical, the orthogonal corners that characterises
the faceted rods establishes a signi�cant change in the radial cross-section.

9.2.2.1 Mechanism

The morphological di�erence in the uncapped and faceted rods, when compared to the capped
rods, is likely to introduce a di�erence in the mechanism of the transformation. From the
outset of the spheroidization, these rods induce a unique driving force consistent with the
characteristic morphology of the precipitate. Therefore, to understand the in�uence of the
shape, the initial stage of the spheroidization is extensively analysed. Fig. 12.10 shows the
morphological evolution of the uncapped and faceted rods of aspect ratio 8, along with the
underpinning distribution of the chemical potential, in the initial stages of the transformation.
The initially identical longitudinal cross-section of the rods are considered to understand the
morphological changes, comparatively.

Typifying the �nitude of the precipitate, high potential is established around the termina-
tions of the rods, irrespective of its geometrical con�guration. Although the high potential at
the longitudinal ends of these rod are similar to the capped structures, the distribution of these
high potential are visibly di�erent. In capped rods, as shown in Fig. 12.8, the high potential at
the edges are con�ned and are represented by a single peak. However, in both uncapped and
faceted rods, the distribution of the high potential comprises of two distinct peaks, as shown
in Fig. 12.10 at t = 0.2. While these high-potential peaks are visible in the uncapped rods,
they are de�nitively resolved in the faceted rods. Furthermore, while the potential around
the remnant body of the uncapped rod is relatively uniform, the orthogonal corners which
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Figure 9.9: The continual change in the distribution of the chemical potential and respective change in the
morphology of the capped and faceted rods of aspect ratio 8 in the initial stages of the spheroidization. The
longitudinal cross-section of the rods are considered to illustrate the shape change.

extend across the length of the rod induces a signi�cant di�erence in the potential distribu-
tion in the respective region of the faceted rod. Therefore, prior to the mass transfer which is
directed by the overall distribution of the chemical potential, the disparity within the high or
low potential regions, seen as the peaks in Fig. 12.10, actuates a responsive �ux.

In the uncapped rod, the potential distribution is characterised by the peaks at the lon-
gitudinal ends and uniform low potential along the remnant precipitate. Consequently, the
mass from the sharp termination-corners gets deposited in the region corresponding to the
valley of the high-potential peaks. The mass transferred from the sharp corners, as shown in
Fig. 12.10 at t = 0.6, transforms the longitudinal cross-section from a orthogonal shape to a
smooth rectangle with curved ends. The progressive migration of �ux from the termination
corners to the region between the high-potential peaks increasingly smoothens the edges of
the rod. The mass transfer within longitudinal termination, governed by the high-potential
distribution, proceeds at the expense of the sharp corners. Therefore, at t = 0.85, when the
disparity within the high potential vanishes, the rod assumes a shape of a capped rod with
potential at the longitudinal ends represented by a single peak. Owing to the resemblance
in the distribution of the chemical potential, the subsequent morphological transformation of
the rod follows the evolution of the capped structure, as shown in Fig. 12.10 at t = 3.2.

Unlike the uncapped rods, in the faceted structures, the disparity within a speci�c potential
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(global maxima or minima) is not con�ned to terminations. The orthogonal corners, which is a
distinctive feature of the faceted rod, induce di�erence in the potential distribution all through
the length of the precipitate. In other words, the potential distribution in the central region
of the precipitate, which is generally smooth and low, are signi�cantly inhomogeneous in the
faceted rod, owing to the presence of the de�nite corners that characterises the radial cross-
section. Therefore, in the initial stages of the spheroidization, the mass transfer is primarily
governed by these internal disparities. In the termination, the mass from the sharp corners
migrate to the relatively low potential region within the termination. This di�using �ux,
similar to the uncapped rods, smoothens the longitudinal ends of the faceted precipitate by
transforming it to a curved structure. Similarly in the central region of the faceted rod, the
corners act as the source for the mass transfer to the abutting �at surfaces. The mass transfers
in the early stages of the transformation, as shown in Fig. 12.10 at t = 0.6 and t = 0.85,
collectively reduces the internal disparity in the potential distribution. Consequently, the
sharp termination and radial corners vanish with time, as the high-potential peaks coalesce.
At the end of this initial stage, as shown in Fig. 12.10 at t = 3.2, the faceted rod loses it
characteristic sharp corners, both in the termination and the remnant body, and transforms
to a smooth structure, which resembles a capped rod.

The present study on the spheroidization mechanism of the three-dimensional structure
accommodating sharp edges and corners indicate that, owing to the characteristic morphol-
ogy of the precipitate, a inhomogeneity is introduced within the high- and low-potential
distribution. The initial stage of the transformation is primarily governed by these inter-
nal disparity of the potential distribution. The mass transfer induced by the internal disparity
smoothens the sharp corners and edges by directing the �ux to the adjacent low-potential
region (relatively). Therefore, at the end of the initial stage, the sharp terminations which
characterise the morphology of the precipitate completely disappears. Interestingly, in the
spheroidization of the uncapped and faceted rods, the initial shape-change transform the rods
to a familiar capped structure, which is expected to evolve in a manner discussed in the pre-
vious sections.

9.2.2.2 Kinetics

In addition to in�uencing the initial stages of the spheroidization, owing to the unique cur-
vature di�erence introduced by the sharp edges and corners, the transformation kinetics is
signi�cantly e�ected by the characteristic morphology of the uncapped and the faceted rods.
Since the curvature along the orthogonal edges and corners of the uncapped and faceted rods
are analytically ill-de�ned, the theoretical approach adopted for the predicting the transfor-
mation kinetics. Moreover, an alternate numerical approach has been employed to the un-
derstand the spheroidization kinetics and the mechanism of structures which accommodate
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Figure 9.10: The in�uence of the aspect ratio on time taken for the spheroidization of the faceted and un-
capped rods. The transformation kinetics of the capped rods are included for comparison. The spheroidiza-
tion time of capped, uncapped and faceted rods are represented by t1:sc, t1:su and t1:sf, respectively.

analytically ill-de�ned junctions [199]. However, the consideration of surface di�usion as the
only mode of di�usion, limits the applicability of this treatment. Therefore, in the present
analysis, the transformation kinetics is elucidated entirely based on the outcomes of the sim-
ulation.

Fig. 12.11 shows the time taken for the spheroidization of uncapped and faceted rods of dif-
ferent aspect ratio. For comparison, the spheroidization rate exhibited by the capped rods are
included. Fig. 12.11 unravels that, irrespective of the aspect ratio, the time taken for the trans-
formation of the uncapped rod is visibly lower than the corresponding capped and faceted
precipitates. Two factors contribute to the increased rate of the evolution in the uncapped
structures. One, for a given aspect ratio, the amount of required mass-transfer for spheroidiza-
tion (δV ) is minimal for the uncapped rod, when compared to the other rods. In the capped
precipitates, the mass associated with the hemispherical inclusions, which are augmented in
the longitudinal ends, increases the amount of mass transfer required to spheroidise the struc-
ture. Moreover, owing to the geometrical con�guration of the faceted precipitate, the required
mass-transfer is inherently higher in these rods. These morphological factors are responsi-
ble for the relatively low amount of required mass-transfer in uncapped structures. The other
factor contributing to the enhanced spheroidization rate is the curvature di�erence at the lon-
gitudinal ends of the uncapped rod. The removal of the hemispherical caps introduces sharp
edges in the terminations of the uncapped precipitates. The sharp edges relatively increases
the driving force in the early stages of the spheroidization, thereby reducing the time taken
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for the transformation of the uncapped precipitate.

For a given aspect ratio, the volume of the faceted rod is signi�cantly higher than the
corresponding capped and uncapped rods due to its geometrical consideration, as shown in
Fig. 12.9. Consequently, an increased amount of mass transfer is required to spheroidise the
faceted precipitate. However, unlike the uncapped rods wherein the sharp edges are con�ned
to the terminations, the faceted structures includes orthogonal corners that extend along the
entire length of the rods. The sharp corners, along with the orthogonal edges, enhance the
driving force for the spheroidization. Interplay of these factors, increased mass transfer and
enhanced driving-force, dictate the time taken for the spheroidization of the faceted rods. The
in�uence of the aspect ratio on the spheroidization rate of the faceted precipitate is included
in Fig. 12.11. Similar to the other rods, the time taken for the transformation progressively
increases with the aspect ratio of the faceted rod.

In Fig. 12.11, it is observed that the time taken for the spheroidization of the capped rod of
aspect ratio 8 is higher than its corresponding faceted rod. Despite the low amount of required
volume-transfer, the transformation rate is evidently lower in the capped rod. Two factors are
responsible for this unlikely dependency of the spheroidization kinetics. One is the in�uence
of the contra-di�usion. As elucidated in Sec. 9.2.1.3, during spheroidization, the capped rod of
aspect ratio 8 experiences a signi�cant amount of contra-di�usion, due to the inherent trans-
formation mechanism. The contra-di�usion prolongs the time taken for the spheroidization.
The other factor is the characteristic morphology of the faceted rod. The curvature di�erence
introduced by the orthogonal corners and edges enhances the spheroidization kinetics of the
faceted rod, which proportionately reduces the time taken for spheroidization. These factors
collectively yield the spheroidization kinetics associated with the faceted and capped rod of
aspect ratio 8.

9.3 Ovulation-assisted spheroidization

It has been shown that, unlike the two-dimensional structures, during the morphological
transformation of the three-dimensional precipitate the curvature di�erence does not exhibit a
smooth-monotonic decrease with time. Since the curvature di�erence predominantly governs
the morphological changes of the precipitate, the transformation mechanism is subsequently
in�uenced by this characteristic change in the driving force. During the spheroidization of
the capped rods, it has been identi�ed that the temporal decrease in the driving force expe-
riences a de�nite period of the stagnation, which is replaced by the non-monotonic hump in
larger rods. The sluggish, or non-monotonic, evolution of the curvature di�erence indicates
the necking of the rod through the mass transfer from the central region of the precipitate
to the receding perturbations. However, with time the contra-di�usion is reversed and no
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Figure 9.11: The temporal evolution of the capped rod of aspect ratio 9. The spheroidization mechanism is
predominantly governed by the ovulation of the precipitate.

substantial change is observed in the transformation mechanism. Despite the lack of any con-
siderable change in the transformation mechanism, it has been realised that the magnitude of
contra-di�usion increases with the aspect ratio of the rods. In order to extend the current un-
derstanding on the role of contra-di�usion in the volume-di�usion governed spheroidization,
the present numerical investigation is extended to larger rods.

9.3.1 Mechanism

Fig. 12.12 illustrates the morphological evolution of the capped rod of aspect ratio 9. As
opposed to the other smaller rods, a signi�cant di�erence is evident in the spheroidization
mechanism. The morphological evolution encompasses breaking-up of single capped rod into
two individual precipitates. The fragmentation of a single structure into two (or many) sub-
structures is referred to as ‘ovulation’ [5, 191], and correspondingly, the transformation is
categorised as ovulation-assisted spheroidization.

The capped rod of aspect ratio 9, owing to its geometrical con�guration, begins to evolve
like the smaller precipitate, governed by the high potential established around the longitudi-
nal ends of the plate. The potential di�erence induces mass transfer from the terminations
of the plate to the adjacent �at surface which result in the formation of the longitudinal per-
turbations. Driven by the distribution of the chemical potential, the ridges grow at the ex-
pense of the remnant region of the precipitate. During the growth of the perturbations, in
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three-dimensional rods, appropriate curvature-di�erence is established between the termina-
tion ridges and the remnant region, which increase the potential in the midri� of the rod, as
shown in Fig. 12.12 at t = 71.45. Consequently, the central region becomes the source of
the mass transfer, referred to as contra-di�usion, to the receding edges. In the smaller rods,
the sink, which is generally con�ned to the foot of the receding ridges, coalesce at the central
region of the rod, primarily due to the size. This coalescence of the low-potential region at the
midri� of the rod, impedes the mass �ow pertaining to the contra-di�usion, and transforms
it to sink. However, as shown in Fig. 12.12 at t = 117.20, interplay of the particle size and the
migration rate prevents the low-potential sinks from the reaching the central region of the
rod of aspect ratio 9. Consequently, the contra-di�usion continually transfers mass from the
midri� to the adjacent sink, Fig. 12.12 at t = 125.9, governed by the progressively increasing
the di�erence in the chemical potential. Ultimately, the unhindered contra-di�usion from the
central region of the rod results in the fragmentation, or ovulation, of the precipitate. The
pear-shaped precipitate emerging from the ovulation, governed by the inherent di�erence in
the curvature, transforms independently into spheroid, as shown in Fig. 12.12 at t = 182.55.

The aspect ratio above which the ovulation occurs is referred to as critical aspect-ratio [5].
Experimental observations indicate that, for volume-di�usion governed spheroidization, the
capped rod with aspect ratio greater than 8 fragments during the morphological evolution [191].
Consistent with the experimental observation, the present numerical studies show that the
spheroidization is governed by the termination migration below the critical aspect-ratio of 8,
while ovulation is induced in the capped rod of aspect ratio 9.

9.3.2 Kinetics

To realise the impact of ovulation of the spheroidization kinetics, the plot in Fig. 12.11 is ex-
tended to encompass the rods which ovulate during the transformation. For the comparative
analysis, the transformation rates exhibited by the uncapped and faceted rods are included. In
the uncapped rods, as shown in Fig. 12.11, the time taken for the spheroidization drastically
decreases due to the fragmentation of the precipitate. Moreover, similar behaviour is observed
in all the rods. However, the critical aspect-ratio are di�erent for the capped, uncapped and
faceted rods. While the capped rod of aspect ratio 9 spheroidises through ovulation, the crit-
ical aspect-ratios of uncapped and faceted rods are 9 and 10, respectively.

As discussed in the previous section, two factors dictate the onset of ovulation; the size of
the receding perturbation and the transformation rate. The introduction appropriate curvature-
di�erence, which induces contra-di�usion, primarily depends on the size of the migrating ter-
mination. Moreover, the contra-di�usion is sustained by the transformation rate. Although
the contra-di�usion is induced, the receding terminations prevent the mass transfer by facil-
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Figure 9.12: Drastic change in the spheroidization rate due to the shift in the transformation mechanism
of the capped, uncapped and faceted rods.

itating the coalescence of sink in the central region, when the transformation rate is higher.
The interplay of these factors are responsible for the non-conformity in the critical aspect-
ratio between the di�erence rods in Fig. 12.11.

For a given aspect ratio, due to the lack of hemispherical caps, the volume of the uncapped
rod is comparatively low. Therefore, in relation to the capped precipitate, the appropriate
ridges which favour the contra-di�usion are formed in the uncapped rod of higher aspect
ratio. Consequently, a corresponding shift in the critical aspect-ratio is observed in Fig. 12.11.
In contrast to the uncapped rod, the volume of the faceted rod is greater than the other rods
of similar aspect ratio. Despite this size-advantage, the critical aspect-ratio of the faceted
rod is higher (10) than the capped structure (8). This shift in the critical aspect-ratio can be
attributed to the increased rate of the transformation exhibited by the faceted rod. Owing to
the morphology of the faceted precipitate, particularly, the sharp corners that extend along
the length of the rod, the spheroidization rate is enhanced in the faceted rod. The enhanced
transformation rate hinders the contra-di�usion which consequently prevents the ovulation.
Since the spheroidization rate decreases with size, ovulation is introduced in the faceted rod
of aspect ratio 11, as indicated in Fig. 12.11.

9.3.3 Formation of ‘satellite’ particle

The aspect ratio, particularly the length, of the �nite rod in a material depends predominantly
on the process chain [200]. In the termination migration-assisted spheroidization, the rod size
renders a direct in�uence on the kinetics by proportionately de�ning the amount of required
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Figure 9.13: The spheroidization mechanism exhibited by the capped rod of aspect ratio 12, which yields a
smaller ‘satellite’ particle during the morphological evolution.

mass-transfer for spheroidization. The indirect e�ect on the transformation rate is due to
the in�uence aspect ratio on the spheroidization mechanism. A substantial change in the
mechanism is observed in rods larger than the critical aspect-ratio, wherein spheroidization
is characterised by the onset of ovulation. To delineate the in�uence of the aspect ratio on
the ovulation-assisted spheroidization, the numerical investigation is extended to the rods of
higher aspect ratio (wr

lr
> 9).

Capped rods of aspect ratio upto 11 adhere to the mode of spheroidization exhibited by
the rod of aspect ratio 9, Fig. 12.12. However, a substantial deviation in the transformation
mechanism is observed during the evolution of the precipitate of aspect ratio 12. The mor-
phological transformation leading to the spheroidization of the capped rod of aspect ratio 12
is illustrated in Fig. 9.13. Although the mechanism is assisted by the fragmentation of the
precipitate, the ovulation site is shifted from the midri� of the rod. This change in the region
of break-o� yields three distinct entities at the end of the ovulation. While two of the three
entities are identical, the third one is considerably small, and is referred to as satellite particle.
This variation in the ovulation-assisted spheroidization of the capped rod of aspect ratio 12,
Fig. 9.13, is due to the size of the precipitate.

The volume of the precipitate invariably increases with aspect ratio of the rods. There-
fore, the receding termination ridges of the capped rod of aspect ratio 12 assume a size, which
establishes an appropriate curvature di�erence with the remnant body of the precipitate, that
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favour contra-di�usion much earlier than the smaller rods. In the capped rod of aspect ratio 9,
the remnant body is restricted to the midri� of the precipitate, when the curvature di�erence
favouring the contra-di�usion is established. Subsequently, the unhindered mass transfer,
turns the source (midri�) into ovulation site. However, in the rod of the aspect ratio 12, owing
to the increased size, the source for the contra-di�usion is proportionately large and extends
beyond the midri� of the precipitate, as shown in Fig. 9.13 at t = 120. Since the di�usion fol-
lows the least mean-free path, the speci�c regions of the extended source which are adjacent
to the foot of the longitudinal ridges lose mass to these low-potential sink. Correspondingly,
as shown in Fig. 9.13 at t = 148.56, the thickness of the regions close to the sinks begins to
decrease. The high potential established in these regions, due to the increasing di�erence in
the curvature, progressively favours the mass �ow to the longitudinal ridges. Furthermore,
as illustrated in Fig. 9.13, governed by the distribution of the chemical potential, during this
stage of the transformation, the longitudinal migration of the ridges become dormant while
the mass gets transferred predominantly by contra-di�usion. This unhindered �ux of mass
from the source to the corresponding sink in the ridges, ultimately, results in the ovulation as
shown in Fig. 9.13 at t = 153.

Owing to the shift in the source of contra-di�usion from the midri� to the region adja-
cent to the foot of the ridges, the ovulation site correspondingly changes. Furthermore, the
extended source renders individual site for each longitudinal perturbation thereby increasing
the number of ovulation events. Although the number of ovulation events increases to two,
when compared to the single event in spheroidization of the smaller rods, the fragmentation
occurs simultaneously. The simultaneous breaking-up of rods in two distinct sites yields three
individual entities as shown in Fig. 9.13 at t = 261. While the identical sub-structures corre-
spond to the longitudinal ridges, the smaller satellite particle pertains to the extended source.
The signi�cant disparity in the size of the precipitate fragments induces coarsening through
Ostwald ripening. Consequently, the identical precipitates grow at the expense of the satellite
particle, which ultimately disappears.

The in�uence of size on the ovulation-assisted spheroidization can be understood by con-
sidering the corresponding change in the size of the source. When the source is con�ned to
the midri�, as in the rod of aspect ratio 9, the ovulation occurs in the central region which
splits the precipitate into two identical pear-shaped structures. However, with increase in
the aspect ratio, the remnant region correspondingly widens and a disparity in the chemical
potential is established within the extended source. Subsequently, the speci�c sites of the
remnant body which are adjacent to the foot of the termination ridges become the source for
the contra-di�usion and eventually, transforms into ovulation site. The shift in the ovulation
site from the midri� results in the formation of the satellite particle. Since the size of the
satellite particle, in this spheroidization mechanism, corresponds to the size of the remnant
body, the size of the smaller entity proportionately increases with the aspect ratio of the rod.
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Figure 9.14: The coarsening rate of the identical entities at the expense of the satellite particle during the
transformation of the capped of aspect ratio 16 is compared to the conventional power law.

9.3.3.1 Ostwald ripening

The simultaneous ovulation during the transformation of the rod of aspect ratio 12, owing
to the dissimilarity in the sizes of the emerging particle, introduces an additional curvature-
driven transformation. Unlike spheroidization which involves the morphological evolution
of the individual structure, the coarsening is introduced in a ‘multiphase’ system where the
larger particles grow at the expense of the smaller ones. The ovulation of the rod of aspect
ratio 12, as shown in Fig. 9.13, results in a distribution appropriate for the onset of Ostwald
ripening. Subsequently, owing to the signi�cant disparity in the sizes, which introduces a
di�erence in curvature, the identical sub-structures grow by consuming the satellite particle.
Since the size-di�erence between the satellite particle and the primary spheroids is large,
the rate of coarsening is considerably high. Therefore, the Ostwald ripening associated with
the spheroidization of the rod of aspect ratio 12 is not considered for the present analysis.
However, since it has been realized that with increase in the initial size of the precipitate, the
size of the satellite particle correspondingly increases, the investigation is extended to larger
in order to understand the coarsening kinetics.

The capped rods of aspect ratio upto 20 adopt the transformation mechanism illustrated
in Fig. 9.13. However, it is observed that with increase in the size of the rod, the satellite
particle becomes larger and more stable to coarsening. Particularly, the satellite particle which
result during the spheroidization of the capped rod of aspect ratio 20 is almost identical to the
primary entities. Since the Ostwald ripening is prolonged with the increase in the size of the
satellite particle, evolution of the rod of aspect ratio 16 is considered for understanding the
coarsening.
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Figure 9.15: The distance between the primary spheroids which result from the spheroidization of the
capped rods of di�erent aspect ratio, involving the ovulation and subsequent coarsening.

Unlike the conventional coarsening, the Ostwald ripening which is considered in the
present analysis occurs as an integral part of the another curvature-driven transformation,
spheroidization. Therefore, the Ostwald ripening is independently studied to identify any in-
�uence of the prior morphological evolution on the coarsening kinetics. To that end, spheroidiza-
tion of the capped rod of aspect ratio 16 is monitored. The particles emerging from the simul-
taneous ovulation are allowed to spheroidise. After the entities assume the spherical shape,
the respective radii are measured, and the precipitates are allowed to evolve. The conven-
tional coarsening of the three-dimensional structures adhere to the cubic power law [201]. In
order to verify the consistency of the present evolution, the temporal change in the di�erence
of the cubic radius, r3

s̃c − r3
sat, where rs̃c and rsat are the respective radius of the primary and

satellite spheroid, is analysed and plotted in Fig. 9.14. Evidently, the coarsening of the primary
spheroids at the expense of the satellite particle adhere to the cubic power law.

9.3.3.2 Interparticle distance

In addition to the morphology, the properties of a material is governed by the distribution
of the precipitates [202, 203]. One factor characterising the distribution of the precipitate,
in a microstructure, is the distance separating them. Since the onset of ovulation in the
spheroidization mechanism yields more than one spheroid, the in�uence of the aspect ratio
on the distance separating the precipitate is analysed in this section.

Contra-di�usion is induced by the appropriate curvature-di�erence established between
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the receding termination ridges and the remnant body of the rod. With the onset of the
contra-di�usion, the recession of longitudinal perturbation becomes dormant. Therefore, the
position of the ridges, which correspond to the position of the resulting primary precipitate,
changes minimally following the introduction of the contra-di�usion. In other words, the po-
sition of the source of contra-di�usion primarily governs the distance separating the primary
spheroids.

In relatively smaller rods, the migrating termination ridges con�ne the remnant body of
the precipitate to the midri�. Therefore, the central region of the rod becomes the source of
the contra-di�usion, which ultimately becomes the ovulation site. However, with increase
in the aspect ratio, the spheroidization mechanism shifts from the midri�-fragmentation to
the simultaneous ovulation away from the central region. This shift in the transformation
mechanism is due to the widening of the remnant body with increase in the aspect ratio of
the rod. The widening of the remnant body moves the source of contra-di�usion from the
midri� to the region adjacent to the foot of the termination ridges. Correspondingly, larger
the size of the remnant body, farther apart are the source of the contra-di�usion. This increase
in the size of the remnant body, and respective change in the position of the contra-di�usion
source, in�uences the distribution of the primary particles. Accordingly, the distance between
the primary spheroids proportionately increases with increase in the aspect ratio of the rods.

In order to ascertain the in�uence of the aspect ratio on the interparticle distance, the
position of the primary spheroids following the ovulation and subsequent, coarsening, is de-
termined from the simulation and plotted in Fig. 9.15. The present analysis yields a relation

dr = 0.0143w1.71
r , (9.25)

where wr and dr are the initial length of the rod and interparticle distance, respectively. Al-
though it is the contra-di�usion source which primarily dictates the position of the spheroids,
it should be noted that these sources transform to ovulation sites during the spheroidization.
Therefore, the formation satellite particle prevents the any migration of the primary sub-
structures, which eventually spheroidise.

9.3.3.3 Ovulation criterion

The proportionate increase in the size of the satellite particle with the aspect ratio of the
capped rod indicates the shift in the ovulation site. The shift in the ovulation in-turn signify
that a de�nite criterion governs the fragmentation of the precipitate. Although the ovulation
criterion can be related to the curvature di�erence established between the receding edges and
remnant which induces the contra-di�usion, the reversal of the mass transfer in the smaller
rods disproves such direct comparisons. Therefore, to identify the ovulation criterion in the
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Figure 9.16: The aspect ratio of the pear-shaped sub-structure at the moment of ovulation during the
spheroidization of larger capped rods of aspect ratio beyond 9.

volume-di�usion governed spheroidization of �nite rods, the transformation mechanism of
the larger rods (wr

lr
> 9) are analysed.

In the morphological evolution of the in�nite rods, the ovulation criterion is de�ned based
on the parameters which characterise the introduced perturbations [44, 47]. Since, in the
�nite structure, the evolution is governed by the curvature di�erence which is inherent to
the morphology of the precipitate, the ovulation criterion is determined by estimating the
aspect ratio of the pear-shaped sub-structure at the point of fragmentation. Fig. 9.16 shows
the aspect ratio of the pear-shaped precipitates which result during the spheroidization of the
capped rods of di�erent aspect ratios. For this illustration, the aspect ratio is measured at the
ovulation point.

Fig. 9.16 unravels that, expect for the rods of aspect ratio 10 and 11, the aspect ratio of
the pear-shaped precipitates are equal for the all the other rods. Furthermore, it is evident
that the aspect ratio of the precipitate at the point of fragmentation is equal to, wr:s

lr:s
= 1.9.

The independent nature of the wr:s
lr:s

substantiates the choice of this parameter for de�ning the
ovulation criterion. The deviations in Fig. 9.16 pertaining to the rods of aspect ratio 10 and
11 can be elucidated by their spheroidization mechanism. The rods of the aspect ratio 10
and 11 are sandwiched between the structures which exhibit two di�erent transformation
mechanism. While the rod of aspect ratio 9 experiences midri� fragmentation, due to the
restricted remnant region, a shift in the ovulation site is observed the larger rod of aspect
ratio 12, owing to the larger size remnant region. The remnant region of the rods of aspect
ratio 10 and 11 is relatively extended when compared to the corresponding region of smaller
rod aspect ratio 9. However, despite this extension, the remnant region in the rods of aspect
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ratio 10 and 11 are not large enough to shift the ovulation site away form the midri�. The
lack of adequate remnant region is responsible for the deviations in Fig. 9.16.

9.3.3.4 Ovulation time

The present numerical study is systematically extended to seemingly in�nite capped rods of
aspect ratio upto 70, in order to identify any other variant of the ovulation-assisted spheroidiza-
tion. Outwardly, no signi�cant deviation is observed in the spheroidization mechanism of the
larger rods. However, number of ovulation events, which are not simultaneous, increase with
the size of the rods. Furthermore, the non-simultaneous fragmentation correspondingly in-
creased the resulting number of spheroids. This intense ovulation-assisted spheroidization
can be concisely described by considering the evolution of the rod of aspect ratio 30. Similar
to the spheroidization of the smaller rods, the evolution of the rod of aspect ratio 30 encapsu-
lates an ovulation event wherein the primary pear-shaped sub-structures are formed leaving
behind a precipitate fragment. Since the fragment resulting from the initial ovulation is larger
than the primary substructure, it cannot be referred to as satellite particle in this rod. Owing to
the size and morphology, the fragment precipitate continues to the transform and eventually
ovulate which lead to the formation of two more pear shaped entities (secondary). Therefore,
the two non-simultaneous ovulation events in the spheroidization of the capped rod of aspect
ratio 30, ultimately, yields four spheroids. With increase in the size of the rods, the number of
progressive ovulation increase which results in increased number of the spheroids. The num-
ber of the precipitates emerging from the spheroidization of the rods of di�erent aspect-ratio
is shown in Fig. 9.17.

Theoretical treatment of the surface-di�usion governed spheroidization of �nite rods pre-
dicts that the �rst (primary) ovulation in the large rods occurs at the same time [44]. This
claim is yet to be veri�ed for volume-di�usion governed spheroidization. Therefore, the pri-
mary ovulation time of the rod considered in the present study is determined and plotted in
Fig. 9.17. Evidently, above the aspect ratio 12, the no visible change is observed in the time
taken for the primary ovulation. Furthermore, Fig. 9.17, con�rms that although the speci�c
criticality vary with the dominant mode of mass transfer, volume or surface di�usion, the
overall scheme of evolution remains unchanged.

9.4 Conclusion

Unlike surface-di�usion governed transformations, the theoretical investigation of the volume-
di�usion governed evolution demands the consideration of entire system. Therefore, the stud-
ies reporting on the volume-di�usion governed transformations are limited. The theoretical
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Figure 9.17: The time taken for the primary ovulation during the transformation of the rods with di�erent
aspect ratio.

treatment get furthermore complicated when the evolution of three-dimensional structures
are analysed. Since the phase-�eld approach, while encompassing the entire domain, ele-
gantly handles the curvature di�erence, the spheroidization of the �nite three-dimensional
rods are numerically investigated in this chapter.

The present analysis unravels that, the hitherto assumed smooth-monotonic temporal
evolution of the curvature di�erence [8, 192, 9, 10], is not an appropriate description of the
transformation of three-dimensional structures. During the spheroidization of the three-
dimensional capped rods, depending on the aspect ratio, the smooth-monotonic decrease in
the driving force is disrupted by a de�nite period of stagnation or non-monotonic hump.
The deviation from the expected monotonic decrease in driving force is due to the introduc-
tion of an appropriate curvature-di�erence between the receding perturbation and remnant
body which induces contra-di�usion. Although in the smaller rods the contra-di�usion is re-
versed, in rods larger than the critical aspect-ratio, the progressive contra-di�usion leads to
the fragmentation of the precipitate. This substantial shift in the transformation mechanism
is observed in the capped rod of aspect ratio 9. The change in the spheroidization mechanism
from termination migration-assisted to ovulation-assisted substantially in�uence the kinetics.

Increase in the size of the capped rod yields a di�erent variant of the ovulation-assisted
spheroidization. In this transformation mechanism, owing to the increased size of the rod,
the size of the remnant body involved in the contra-di�usion proportionately increases. The
widening of the region between the termination ridges shifts the source from the midri� to
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the foot of the perturbation. Therefore, the initial ovulation leads to the formation of primary
sub-structure and precipitate fragment. Depending on the initial aspect ratio, the fragments
(satellite particle) either disappears through Ostwald ripening or spheroidises independently.

In the present study, since a phase-�eld model which convincingly handles analytically
ill-de�ned curvatures is employed, morphological evolution of the uncapped and faceted rods
are analysed. Furthermore, by exploiting the ability of the adopted approach to render consis-
tent evolution of the singularity events like fragmentation, a ovulation-criterion for volume-
di�usion governed spheroidization is identi�ed.





Part IV
Stability of three-dimensional plates





Chapter 10

Globularisation of
unidirectionally-equiaxed
‘pancake’ structure

The compositional make-up of a system critically governs the morphology of the accommo-
dating phases in the microstructure. Correspondingly, in certain alloy systems, the lamellar
arrangement of the phases comprises of shapes which are signi�cantly di�erent from the
conventional ribbon- or rod-like structures [204, 205]. The morphology of the precipitate,
when compared between two di�erent materials, is predominantly governed by the speci�c
crystallographic relation between the alternating phases [206, 207]. However, it has been ob-
served that, within a alloy system, the shape of the phases noticeably vary with the change
in the chemical composition [208, 209, 210]. The in�uence of the alloying elements on the
morphology of the precipitate is attributed to the mismatch in the lattice parameter which
contributes to the coherency strain [177, 211]. Furthermore, the parameters involved in the
process chain, particularly the thermal cycle, additionally e�ect the precipitate shape in a mi-
crostructure [212, 213]. Considering the spectrum of possible structures in a lamellar arrange-
ment of the phases, the investigation of the shape-instability is extended to unconventional
morphologies.

Analysing the morphological evolution of three-dimensional structure, which are exclu-
sively governed by surface di�usion, is relatively straightforward, since the mass transfer is re-
stricted to the two-dimensional surface [4]. But in volume-di�usion governed transformation,
the atomic �uxes which drift through the matrix and precipitate dictate the evolution [44].
Therefore, the migration of atoms in the entire domain is examined to understand the mi-
crostructural changes governed by the volume-di�usion. Owing to this numerical intricacies,
the theoretical treatment of volume-di�usion governed evolution are limited [162, 65, 163].

133
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Moreover, the existing works are primarily con�ned to two-dimension or conventional struc-
tures like rods [44]. Despite the lack of complete understanding, the volume-di�usion gov-
erned shape-instability exhibited by the unconventional structures is employed to enhance
the mechanical properties of highly applicable materials [214, 53, 215].

A prime example of a material wherein the precipitate hardly assumes a regular rod-like
structure is the two-phase titanium alloy which includes alloying elements like aluminium
and vanadium [216]. Like any another alloy systems, the morphology of the phases (α and
β) in the two-phase titanium alloy is governed by the manufacturing process. However, the
general processing-route which involves a series of hot working and heat treatment yields a
lamellar microstructure of alternating α and β phases [217]. The mechanical properties of
the two-phase titanium alloy is further improved by an isothermal annealing treatment, re-
ferred to as static globularisation [218, 219]. The thermal cycle of the static globularisation
is primarily devised to avert any phase-transformation, while facilitating an accelerated mor-
phological evolution. In the early stages of the annealing, owing to the prior hot working, the
α-colonies of the two-phase lamellar arrangement disintegrate [63, 220]. The breaking-up of
the α-precipitate through the splitting of the sub-boundaries disrupts lamellar arrangement
and the results in a microstructure which comprises unconventionally-shaped α-precipitate
distributed in the β-matrix. The morphological evolution of the unconventional structures is
the dominant transformation which accompanies the static globularisation. The shape of the
α-precipitate and the dominant mode of di�usion, volume di�usion, have hitherto restricted
the theoretical investigation of the static globularisation. Since it has already been shown
that the present numerical approach elegantly handles the curvature-driven transformation
and yields thermodynamically-consistent outcomes, this technique is adopted to analyse the
morphological evolution of the re�ned three-dimensional structures.

10.1 Domain setup

The splitting of the continuous precipitates at the sub-boundaries, which are introduced dur-
ing the process chain, yields a wide range of individual structures. Experimental observation
have identi�ed that the considerable fraction of α-precipitate, subsequently after the initial
fragmentation, appears equiaxed along a particular direction [221, 222]. Therefore, the the-
oretical treatment which attempts to predict the kinetics of the globularisation assumes a
‘pancake’ structure which seemingly corroborates the observed microstructure [9]. Despite
considering a simpli�ed variant of the precipitate shape, in the existing work, hemispheri-
cal caps are augmented for de�ning the curvature di�erence at the termination. Given that
the pancake structure seemingly resembles the morphology of the observed precipitate, the
hemispherical inclusion hampers this corroboration. Therefore, by formulating an appro-
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Figure 10.1: Top- and side-view of the unidirectionally-equiaxed ‘pancake’ structure of diameter wp and
thickness lp.

priate geometrical con�gurations, the edges of the precipitate are smoothened without any
inclusions.

The precipitate morphology adopted for the present analysis is shown in Fig. 10.1. The
diameter of the pancake shape is represented by wp while lp is the thickness of the structure.
The aspect ratio is de�ned as the ratio of the diameter and thickness (wp

lp
). The thickness of

the precipitate is �xed at lp = 0.01 × 10−6m, and the diameter is varied in relation to the
required aspect ratio. Appropriate concentration is assigned to the phases to establish chem-
ical equilibrium, and the domain is su�ciently large to avoid the in�uence of the boundary
conditions.

10.2 Transformation kinetics

Generally, the pancake morphology is considered as a three-dimensional cylinder of very low
height, with the hemispherical cap encapsulating the otherwise sharp edges of the precipi-
tate [9]. In order to obviate the geometrical inclusions, which are virtually non-physical and
distort the resemblance of the structure to the microscopically observed precipitate, the uni-
directionally equiaxed pancake shape is con�gured di�erently. For the present theoretical
approach, the pancake morphology is assumed to be a segment, with height lp, of a larger
solid sphere of diameter wp. The pancake shape, de�ned as a part of a larger spheroid, retains
smooth termination which consequently averts the need for hemispherical caps.
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Figure 10.2: A cross-sectional view of the geometrical consideration adopted to de�ne the precipitate struc-
ture.

10.2.1 Geometrical treatment

A schematic representation of the precipitate cross-section, which depicts its overall mor-
phological con�guration, is shown in Fig. 12.2. Owing to the unique description of the pan-
cake structure, in the present analysis, the existing geometrical treatment, Ref. [9], cannot
be directly adopted. Therefore, in this section, the parameters required for estimating the
globularisation kinetics is ascertained for the considered morphology.

Fig. 12.2 indicates that the precipitate, which is considered for this investigation, is a cen-
tral segment of a solid sphere. Correspondingly, as opposed to the shapes hitherto analysed,
the pancake morphology comprises of �at surfaces which are circular in the respective normal
direction. When normal to the �at surfaces is along the y-axis, the volume of the precipitate
is calculated by

Vp =

∫ wp
2

+
lp
2

wp
2
− lp

2

πr̃2dy, (10.1)

where r̃ is the radius of the equiaxed �at surface associated with the pancake morphology.
Owing to the geometrical nature of the precipitate, the radius of the circular surface is related
to the diameter and thickness as r̃2 =

(wp
2

)2 −
(
lp
2

)2

. Substituting this relation in Eqn. 10.1,
and subsequently integrating it, yields

Vp = π

[(
wp

2

)2

−
(
lp
2

)2
]

[y]
wp
2

+
lp
2

wp
2
− lp

2

. (10.2)
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From the above Eqn. 10.2, the entire volume of the precipitate reads

Vp = πlp

[(
wp

2

)2

−
(
lp
2

)2
]
. (10.3)

A critical parameter which dictates the transformation kinetics is the amount of mass
transfer required to globularise the precipitate, δVgp. The required mass-transfer is calculated
by the eliminating the volume shared by the initial and �nal morphology of the precipitate.
Since the region shared by the initial structure and globularised precipitate is the central seg-
ment of the ultimate spheroid, the geometrical approach used for calculating the precipitate
volume can be adopted. Correspondingly, the volume of the overlapping region can be ex-
pressed as

Vp:sh =

∫ rgp+
lp
2

rgp−
lp
2

π

[
r2

gp −
(
lp
2

)2
]

dy (10.4)

= πlp

[
r2

gp −
(
lp
2

)2
]
,

where rgp is the radius of the globularised precipitate.

From Eqns. 10.3 and 10.4, the amount of mass transfer required for the globularisation of
the pancake structure can be written as

δVgp = Vp − Vp:sh = πlp

[(
wp

2

)2

− r2
gp

]
. (10.5)

Owing to the chemical equilibrium established between the phases, the volume of the precipi-
tate is conserved all through the evolution. Therefore, the radius of the globularised structure,
can be related to the geometrical parameters pertaining to the initial morphology by

rgp =

3

4
lp

[(
wp

2

)2

−
(
lp
2

)2
]

1/3

. (10.6)

In the present analysis, two di�erent approaches are employed to ascertain the globu-
larisation kinetics of the pancake structures. Since both these techniques share the existing
theoretical framework [8, 192, 9, 10], the analytical treatment begins by identifying three dis-
tinct stages of the transformation which are referred to initial (t0:gp), midpoint (t1/2:gp) and
�nal (t1:gp). First of the two approaches, referred to as cylinderization approach, directly ex-
tends the conventional analytical treatment[8] to the re-de�ned pancake structure, while the
second involves the in-situ data from the phase-�eld simulations. Despite the di�erences, the
delineation of the driving force in the initial stage of the globularisation is identical in both
the formulations.
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The driving force at the beginning of the evolution (t0:gp) is ascertained by

Γ0:gp ∝ A0:gp

(
δc

δx

)
0:gp

, (10.7)

where A0:gp is the area available for the migration of the atomic �ux and
(
δc
δx

)
0:gp

is the con-
centration gradient introduced by the inherent curvature-di�erence which is primarily dic-
tated by the precipitate shape. In the initial stages of the transformation, the di�usion area
A0:gp corresponds to the surface area of the curved termination associated with the pancake
structure. The area of the curved termination can be determined by treating it as a surface of
revolution (zone) along the y-axis. Accordingly, the area available for di�usion is expressed
as

A0:gp = 2π

∫ wp
2

+
lp
2

wp
2
− lp

2

f(x)
√

1 + |f ′(x)|2dy, (10.8)

where f(x) is the function involving the rotating curve. Since, in the present case, the rotating
curve is a sphere, the respective function reads

f(x) =

√(
wp

2

)2

− y2, (10.9)

and correspondingly,

|f ′(x)|2 =
y2(wp

2

)2 − y2
. (10.10)

By substituting Eqns. 10.9 and 10.10 in Eqn. 10.8, the di�usion area is written as

A0:gp = 2π

∫ wp
2

+
lp
2

wp
2
− lp

2


[(

wp

2

)2

− y2

]1 +
y2(wp

2

)2 − y2


1/2

dy. (10.11)

Solving the above Eqn. 10.11 yields

A0:gp = πwplp. (10.12)

The concentration gradient is analytically solved by separately treating δc0:gp, the dif-
ference from the equilibrium concentration introduced by the curvature, and the distance
associated with the resulting mass transfer, δx0:gp. Before describing the components of the
concentration gradient, the length of the curved termination associated with the cross-section
of the precipitate, shown in Fig. 12.2, is determined. The arc-length in the curved edges of the
precipitate is calculated by Stip =

wp
2
θ, where θ = 2 sin−1

(
lp
wp

)
. Correspondingly, the length

of the curved termination is written as

Stip = wp sin−1

(
lp
wp

)
. (10.13)
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Figure 10.3: Morphology of the precipitate at the initial (t0:gp), midpoint (t1/2:gp) and �nal stage (t1:gp) of
the globularisation.

The di�erence in the equilibrium concentration which induced due to the morphology of
the precipitate is related to the curvature by

δc0:gp ∝
[( 1

R1

+
1

R2

)
sources

−
( 1

R3

+
1

R4

)
sinks

]
, (10.14)

where R1 and R2 are the principal radii of curvature at the source, while the respective radii
at sink is R3 and R4. Since the sinks are �at surfaces of the pancake structure, the respective
terms in Eqn. 10.14 become zero. Subsequently, by appropriately formulating the principal
radii of curvature at the smooth edges of the precipitate, the in�uence of curvature on the
equilibrium concentration can written as

δc0:gp ∝

 2

wp
+

π

wp sin−1
(
lp
wp

)
 . (10.15)

Furthermore, the di�usion length, which the �ux covers to compensate for the concentration
gradient, in the initial stage is expressed as

δx0:gp ∝

wp

2
+

π

2wp sin−1
(
lp
wp

) − rgp

 . (10.16)

The driving force at the beginning of the globularisation can be estimated by substituting
Eqns. 10.12, 10.15 and 10.16 in Eqn. 10.7. Since the description of the driving force at the
initial stage remains unaltered irrespective of the theoretical approach, this delineation will
be adopted to ascertain the transformation kinetics in the forthcoming treatments.

10.2.2 Cylinderization approach

Owing to the lack of in-situ report on the globularisation of the pancake structure, two as-
sumptions are made to formulate the driving force at the midpoint of the transformation. The
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�rst assumption pertains to the morphology of the precipitate at the midpoint. In the con-
ventional treatment, Ref. [9], the precipitate is treated as an ellipsoid to estimate the midpoint
driving force. The shapes of the precipitate at the three distinct stages of the globularisation,
simulated using the phase-�eld approach, are shown in Fig. 12.1. This illustration apparently
supports the theoretical consideration that precipitate exhibits ellipsoidal shape at the mid-
point of the evolution. Secondly, since the geometrical nature of the midpoint ellipsoid is
unknown, the parameters, the di�usion area and the concentration gradient, which dictate
the driving force at the midpoint of the globularisation is approximated as

A 1
2

:gp =
A0:gp + A1:gp

2
(10.17)

and

(
δc

δx

)
1
2

:gp
=

(
δc
δx

)
0:gp

+
(
δc
δx

)
1:gp

2
, (10.18)

respectively, where A1:gp and
(
δc
δx

)
1:gp

correspond to the di�usion area and concentration
gradient at the end of the transformation.

Earlier, it has been elucidated that treating the entire surface area as the di�usion area in
the �nal state (A1:gp) entails an unphysical condition wherein an appropriate sink cannot be
accommodated. Therefore, like the previous analysis, surface area pertaining to a segment
of the spheroid is considered as �nal di�usion area. Consequently, the di�usion area at the
midpoint, which is assumed to be the mean of the respective area in the initial and �nal state
is expressed as

A 1
2

:gp =
π

2
(wplp + r2

gp). (10.19)

Furthermore, the in�uence of the curvature on the equilibrium concentration is considered
as the half of the summation of its e�ect at the beginning and the ends of the globularisation.
Correspondingly, the principal radii of the curvature are averaged between the initial and �nal
state. Based on the resulting curvature di�erence, the deviation introduced in the equilibrium
concentration is quanti�ed as

δc 1
2

:gp ∝


(

4

wp + 2rgp

)
+

 2π

wp sin−1
(
lp
wp

)
+ πrgp


 . (10.20)

In the similar way, the distance associated with the concentration gradient is formulated, and
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Figure 10.4: Aspect ratio of the ellipsoid, or speci�cally ‘oblate spheroid’ , which are formed at the midpoint
of the globularisation of pancake precipitates with various aspect ratio.

the driving force at the midpoint of the globularisation is written as

Γ 1
2

:gp ∝ A 1
2

:gpδc 1
2

:gp

1

4

wp + rgp(π − 2) +
π

2wp sin−1
(
lp
wp

)


−1

︸ ︷︷ ︸
:=

(
δx 1

2
:gp

)−1

. (10.21)

The morphological evolution halts with the precipitate assuming a shape of negligible
curvature di�erence. Accordingly, the driving force at the end of the transformation is in-
�nitesimal and almost inoperative. By relating the transitory driving forces with the required
mass-transfer, the time taken for the globularisation of the pancake precipitate is determined
by

t1:gp ∝ 3
δVgp

Γ0:gp + Γ 1
2

:gp
. (10.22)

The pre-factor 3 in the above Eqn. 10.22 indicates the consideration that the overall driving
force of the transformation is the average of the instantaneous driving-forces.

10.2.3 Semi-analytical treatment

The revisited semi-analytical treatment, which is elucidated in this section, follows the similar
framework of the cylinderization approach. Therefore, three speci�c stages of the transforma-
tion are identi�ed, the driving force at these states are estimated based on the instantaneous
curvature-di�erence and the kinetics is determined by relating the average of the transitory
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driving-forces with required mass-transfer (Eqn. 10.22). However, in contrast to the cylinder-
ization approach wherein the dimensions of the midpoint ellipsoids are approximated from
the initial and �nal con�guration, in this analysis, the respective geometrical parameters are
directly ascertained by tracking the morphological evolution.

The phase-�eld simulations unravel that the precipitate assumes an ellipsoidal structure
at the midpoint of the transformation. Moreover, as opposed to the conventional ellipsoid,
which is characterized by a 6= b 6= c, the precipitate exhibits an unique morphology called
oblate spheroid (ap = cp > bp) at the midpoint, irrespective of the initial aspect ratio of the
pancake structure. The parameters ap, bp and cp are length of the ellipsoid along the major-
and minor-axes. The aspect ratio of the midpoint ellipsoid, which are formed during the glob-
ularisation of the precipitates of di�erent initial sizes, are plotted in Fig. 12.3. This illustration
shows that, the aspect ratio of the midpoint ellipsoid is independent of the initial size of the
pancake structure, and more importantly, the corresponding geometric parameters are re-
lated by ap = cp = 1.26bp. The geometric relation between the dimensions of the midpoint
structure is employed in this analytical approach to estimate the driving force. Therefore, the
resulting formulation of the globularisation kinetics encompasses the in-situ information of
the morphological transformation.

Since the chemical equilibrium between the constituent phases preserves the volume of
the precipitate during the evolution, the geometrical parameters of the midpoint ellipsoid can
be related to the radius of the globularised precipitate as (abc)p = r3

gp. By substituting the
observed geometric relation in Fig. 12.3, the length along the minor axis is calculated by

bp =

(
r3

gp

1.6

) 1
3

. (10.23)

Therefore, from Eqns. 10.6 and 10.23, through the observed relation ap = cp = 1.26bp, the di-
mensions of the midpoint ellipsoid can be determined from initial aspect-ratio of the pancake

In this analysis, the driving force at the midpoint of the morphological evolution is ex-
pressed as

Γ 1
2

:gp(ap, bp) ∝ A 1
2

:gp(ap, bp)
δc 1

2
:gp(ap, bp)

δx 1
2

:gp(ap, bp)
. (10.24)

In order to calculate the area associated with the atomic �uxes at the midpoint of the evolu-
tion A 1

2
:gp(ap, bp), it is assumed that the sources are con�ned to the major axes of the oblate

spheroid. Accordingly, the midpoint di�usion-area is calculated by eliminating the surface
area of the segment along the minor axis from the overall surface area of the oblate spheroid.
Using Knud-Thomsen approximation, the surface area of the oblate spheroid is expressed as

Sobs = 4π

[
2(apbp)P + a2P

p

3

] 1
P

, (10.25)
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where the constant P = 1.6. The area of the segment along the minor axis is determined
by Sseg = 4πrgpbp. Therefore, the area involved in the mass transfer at the midpoint of the
globularisation is estimated as

A 1
2

:gp(ap, bp) = Sobs − Sseg. (10.26)

The principal radii of curvature of the midpoint precipitate is determined by delineating
the respective fundamental forms of the surface. The co-coe�cients of the �rst fundamental
form, for a regular three-dimensional ellipsoid, is derived in the appendix. Since the pancake
precipitate assumes a oblate spheroid structure in the midpoint of the globularisation, substi-
tuting the characteristic condition (ap = cp > bp), the co-e�cients of the �rst fundamental
form is expressed as

Ep = b2
p +

(
a2

p − b2
p

) (
sin2 θ + sin2 Θ cos2 θ

)
(10.27)

Fp =
(
a2

p − b2
p

)
sin θ cos θ sin Θ cos Θ

Gp = b2
p sin2 θ +

(
a2

p − b2
p

)
sin2 θ cos2 Θ.

Similarly, the second fundamental-form co-e�cients reads

Ẽp = a2
pb

[
(apbp)2 + a2

p

(
a2

p − b2
p

)
sin2 θ cos2 Θ

]− 1
2

(10.28)

F̃p = 0

G̃p = a2
pbp sin2 θ

[
(apbp)2 + a2

p

(
a2

p − b2
p

)
sin2 θ cos2 Θ

]− 1
2

.

It has been shown that the in�uence of curvature di�erence on the equilibrium concentration
can be expressed as

δc 1
2

:gp ∝ [Hsink −Hsource] , (10.29)

whereH is the mean curvature. Based on the co-e�cients of the fundamental form, the mean
curvature is calculated by

H =
1

2

[
ẼpGp + F̃pEp − 2G̃pFp

EpGp − F 2
p

]
. (10.30)

By adopting the appropriate angular variables, θ and Θ, the change in the equilibrium con-
centration induced by the inherent curvature-di�erence, which is associated with the oblate
spheroid, is written as

δc 1
2

:gp ∝

(
bp

2a2
p

)
. (10.31)
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Figure 10.5: The transitory driving-force at the initial, midpoint and �nal stage of the globularisation
calculated using the cylinderization and semi-analytical approach. The disparity in the cylinderization-
based midpoint driving-forces is introduced by the di�erent �nal di�usion-area considered.

The distance over which the concentration gradient extends is estimated by considering the
cross-section of the midpoint ellipsoid. Since the di�usion length can be related to the perime-
ter of the cross-sectional ellipse, δx 1

2
:gp(bp, rgp) is expressed as

δx 1
2

:gp ∝
π

2

(
1.14bp − rgp

)
. (10.32)

Substituting Eqns. 10.26, 10.31 and 10.32 in Eqn. 10.24, the instantaneous driving-force at the
point of the globularisation can be approximated. Subsequently, the transformation kinetics
is estimated by relating the amount of required mass-transfer with the initial and midpoint
driving force.

10.2.4 Comparative analysis

The driving force at the speci�c states of the transformation estimated using the cylinder-
ization approach, wherein the governing parameters at the midpoint are approximated as
the average of the initial and �nal stages, is graphically compared with the outcomes of the
semi-analytical treatment in Fig. 12.4. The driving forces are normalised for the purpose of
comparison and correspondingly, the curvature di�erence at the end of the transformation
is assumed to zero. As shown in Fig. 12.4, for the conventional treatment in Sec. 11.2.2, sev-
eral variants of the midpoint driving-force can be de�ned by appropriately considering the
di�usion area at the end of the transformation. Assuming that the a quadrant of the �nal
spheroidal area participates in the di�usion yields a midpoint driving force which is greater
than the average of the initial and �nal potential di�erence. However, as shown in Fig. 12.4,
by progressively reducing the �nal di�usion area, the driving force at the midpoint is corre-
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Figure 10.6: The time taken for the globularisation of the pancake precipitates of di�erent aspect ratio in
the phase-�eld simulations is compared to the predictions of the semi-analytical.

spondingly decreased. Although the area associated with the �nal stage of the di�usion is
varied, since the midpoint di�usion-area is assumed to the mean of the respective initial and
�nal state, ultimately, the midpoint parameters are in�uenced.

The driving forces, as shown in Fig. 12.4, increasing become closer to the semi-analytical
prediction with decrease in the midpoint di�usion-area. In this illustration, it is important
to note that the instantaneous driving-forces are numerically �tted, assuming that the curva-
ture di�erence exhibits a smooth monotonic decrease during the evolution. In other words,
both the cylinderization and semi-analytical treatments yields driving forces exclusively at the
speci�c stages of the evolution. Therefore, in order to ascertain the transformation kinetics,
it is inherently assumed that the driving force decreases smoothly and monotonically dur-
ing the globularisation. This assumption, although implicit, undergirds the entire analytical
treatment. Consequently, as observed during the morphological transformation of the three-
dimensional rods, any deviation in the evolution scheme of the driving force, owing to the
transformation mechanism, would result in a disparity between the analytical and simulation
results.

10.3 Transformation mechanism

Framework of the theoretical approaches, irrespective of the inclusion of the in-situ infor-
mation, entails the assumption that the morphological evolution of the pancake structure is
analogous to the cylinderization of the ribbon-like precipitate. Accordingly, the transitory
driving-forces at the initial, midpoint and �nal stages of the evolution are �tted by smooth
monotonic curve. However, it has been shown that the temporal change in the curvature dif-
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ference is characteristically governed by the transformation mechanism and varies with the
initial morphology of the precipitate. Therefore, to realise the in�uence of the transformation
mechanism on the globularisation kinetics, the predictions of the semi-analytical approach
for the pancake structures of various aspect ratio is plotted along with the outcomes of the
phase-�eld simulation in Fig. 12.5.

Both the numerical simulation and the analytical treatment, in Fig. 12.5, show that with
increase in the aspect ratio of the pancake structure the time taken for the globularisation pro-
portionately increases. Although such trend is expected in the analytical treatment, wherein
the evolution of the driving force is assumed, the analogous outcomes of the phase-�eld simu-
lation which unravels a monotonic decrease in the transformation rate with increase in aspect
ratio indicates that the transformation mechanism remains unaltered for the all plates, irre-
spective of its size. Despite predicting similar in�uence of size on the globularisation kinetics,
de�nite non-conformity between the analytical and simulation results is visible Fig. 12.5. Fur-
thermore, similar to the spheroidization kinetics of the rods, the disparity increases with the
initial size of the precipitate.

The analytical approach, which includes the in-situ information about the geometry of the
precipitate at the midpoint of the evolution, relates the aspect ratio of the pancake structure
with the time taken for the transformation as

t1:gp ∝

(
wp

lp

)1.95

. (10.33)

Whereas, the in�uence of the precipitate size on the globularisation kinetics, based on the
phase-�eld simulations, can be expressed as

t1:gp ∝

(
wp

lp

)2.32

. (10.34)

The gradual increase in the globularisation time with the aspect ratio of the precipitate is
primarily due to the proportional increase in the amount of required mass-transfer. How-
ever, the consistent under-estimation of the transformation rate by the analytical treatment
indicates that the characteristic mechanism governing the evolution of the pancake structure
prolongs to the time taken for the globularisation of the precipitate. In order to identify the
transformation mechanism and its in�uence on the kinetics, the morphological evolution of
the pancake structure is comprehensively analysed.

10.3.1 Modi�ed perturbation theory

In comparison to the conventional rod-like morphology, one characteristic feature which dis-
tinguishes the pancake structure is the signi�cant amount of �at surfaces. Owing to the
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Figure 10.7: A schematic representation of the temporal change in the shape of the pancake structure as
proposed by the ‘modi�ed perturbation theory’ .

�at surfaces, the inherent curvature-di�erence becomes ill-suited for the analytical treatment
which aims to delineate the transformation mechanism. Therefore, based on the theoretical
investigation of the stability of the in�nitely long rod to the imposed perturbations, a globu-
larisation mechanism for the evolution of the pancake structure has been proposed [44]. The
morphological transformation of the pancake shape which accompanies the globularisation,
according to the ‘modi�ed perturbation theory’ , is schematically represented in Fig. 12.7.
Since this theory considers the pancake morphology as the series of rod-like structures of
varying aspect ratio welded together, it elucidates the temporal change in the shape corre-
spondingly. Therefore, as shown in Fig. 12.7, the modi�ed perturbation theory suggests that
the globularisation of the pancake precipitate begins the stable growth of termination ridges,
similar to the three-dimensional rods. The mass transfer from the curve edges to the adja-
cent �at surface, owing to the inherent di�erence in the curvature, governs the growth of
the perturbation. With the progressive growth of the ridges, it is postulated that an appro-
priate curvature-di�erence is established between the receding perturbation and the pancake
�at-surfaces which induces contra-di�usion and ultimately, leads to the fragmentation of the
precipitate. Despite the seemingly reasonable view of the morphological evolution of the
pancake shape, this theory is rarely accepted and often argued for its implicit inconsistencies.

The modi�ed perturbation theory, as shown in Fig. 12.7, postulates that the morphological
evolution of the pancake structure involves fragmentation of the precipitate into central island
and numerous surrounding bean-shaped entities. It is conceivable that, with the stable growth
of the termination ridges, a fragmentation analogous to the ovulation in rods can be induced,
which results in the formation central island and a ring-like network. However, the driving
force for the breaking-o� of the ring-like network into individual bean-like precipitates is
unclear. Additionally, it is well-established that the stability of the �at surface is unaltered by
any de�nite perturbation [43]. In other words, when a perturbation, either external or induced
by the mass transferred from the edges, is introduced onto a �at surface, owing to the extensive
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Figure 10.8: The change in the potential di�erence, induced by the inherent disparity in the curvature, with
time during the morphological evolution of the pancake precipitate of aspect ratio 4 and 6.

disparity in the curvature, the perturbation is expected to decay. Moreover, recognising this
stability to the �at surface to the perturbation, theoretical investigations analyse the stability
of the thin �lms by introducing discontinuities or holes, which are assumed as a form of the
large perturbations [34, 223]. Therefore, the entire morphological evolution of the pancake
structure governed by the stable growth of the termination ridges, particularly the growth
of the perturbations at the expense of the �at surface is viewed skeptically. In spite of these
plausible inconsistencies in the modi�ed perturbation theory, an alternate theory describing
the morphological evolution of the pancake structure has not been reported.

10.3.2 Flattening ridge theory

Previous investigations on the morphological evolution of the three-dimensional rods have
shown that the temporal change in the instantaneous chemical-potential di�erence, ∆µ(x, t) =

µ(x)|+t −µ(x)|−t where µ(x)|+t and µ(x)|−t are highest and lowest potential at time t, is a rea-
sonable indicator of the in�uence of transformation mechanism on the kinetics. Therefore,
the progressive decrease in the driving force (∆µ(x, t)) which accompanies the curvature-
governed transformation of the pancake shape of aspect ratio 4 and 6 are monitored and
plotted in Fig. 12.6. As opposed to the analytical assumption, the temporal evolution of the
potential di�erence is characterized by a series of non-monotonic sharp peaks. Although these
peaks are signi�cant in the larger precipitate of aspect ratio 6, it is not completely absent in
the smaller structure.

Fig. 12.6 includes a resolved sub-plot of the change in the curvature di�erence at the ini-
tial stages of the globularisation of the precipitate of aspect ratio 4. This illustration unravels
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Figure 10.9: The morphological transformation of the pancake structure of aspect ratio 6 during the stage-I
of the globularisation.

that the non-monotonic peaks, although for a shorter duration, are induced during the mor-
phological transformation of the smaller structure (wp

lp
= 4). Therefore, in contradiction to

the spheroidization of the three-dimensional rods wherein the deviation from the smooth-
monotonic decrease in the driving force is evident only in the larger structures of aspect ratio
greater than 5, the series of sharp peaks are noticeable in small pancake structure as well. In
addition to disrupting the monotonic decrease in the curvature di�erence, the series of peaks
which characterise in the temporal evolution pancake shape, prolong the time taken for the
globularisation. Correspondingly, the disparity between the analytical and the simulation re-
sults, which were con�ned to the larger rods, are visible in smaller pancake precipitates, as
shown in Fig. 12.5.

For all the pancake structures, the series of peaks which are associated with the progressive
change in the driving force are con�ned to the initial stage of the transformation, as shown in
Fig. 12.6. With time, the intensity of these peaks continually decreases and the driving force
begins to evolve smoothly. To elucidate the transformation mechanism, this characteristic
behaviour of the driving force is exploited and the entire evolution of the pancake structure
is distinguished as stage-I and stage-II. In the stage-I of the globularisation the morphological
changes in the pancake structures are governed by the non-monotonic peaks and the corre-
sponding evolution of the driving force, whereas the transformation in stage-II is dictated by
the smooth-monotonic decrease in the curvature di�erence. A schematic distinction of the
stages based on the temporal evolution of the driving force is shown in Fig. 12.6.
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10.3.2.1 Stage - I

The temporal evolution of the driving force in the stage-I of the globularisation of the pancake
precipitates are characterised by a series of non-monotonic peaks with progressively decreas-
ing intensity. Since the morphological changes in the globularisation are governed entirely
by the potential di�erence, a corresponding characteristic evolution is exhibited by the pan-
cake shape. Fig. 12.8 shows the change in the morphology of the precipitate during the stage-I
of the globularisation. It is important to note that this illustration does not encompass the
entire stage-I but shows the morphological evolution associated with a non-monotonic peak.
Owing to the restricted focus on a single peak in the evolution of the potential di�erence, the
duration considered in Fig. 12.8 is relatively small.

Irrespective of the morphology, for a �nite structure, high potential is established along
the termination of the precipitate. Accordingly, for the pancake structure, the potential in
the curved edges of the precipitate are substantially higher than the central �at surfaces. The
disparity in the potential di�erence, induced by the inherent di�erence in the curvature, even-
tuates a mass transfer from the curved edges to the adjacent �at surfaces. This mass trans-
fer from the termination to the immediate �at surface introduces a perturbation as shown
in Fig. 12.8 at t = 0.36. The transformation mechanism which results in the perturbation
along the curved edges of the pancake precipitate is similar to the formation of the longi-
tudinal ridges in initial stages of the spheroidization of rods. Therefore, the introduction of
the circular perturbation in the �at surface corresponds to the smooth-monotonic decrease in
the potential di�erence. The morphological change associated with the raise in the driving
force which disrupts the monotonic decrease and initiates the characteristic peak is shown in
Fig. 12.8 at t = 0.58.

Unlike the cylindrical structures wherein the longitudinal perturbation are allowed to
grow at the expense of the remnant body, the stable growth of the perturbations are not
favoured in the �at surfaces of the pancake structures, owing to the extensive di�erence in
the curvature. Therefore, instead of a stable thickening (growth) of the termination ridges,
the perturbation decays by spreading over the surface, as shown in Fig. 12.8 at t = 0.58.
The driving force for the lateral expansion of the ridges is rendered by the increase in the
potential di�erence. The three-dimensional representation of the chemical-potential distri-
bution in Fig. 12.8 shows that, the increase in the potential di�erence, which introduces the
peak, is established by deepening of the restricted low-potential region at t = 0.58. The in-
creased potential-di�erence in the central region of the precipitate facilitates the growth of
the perturbation along �at surface, as opposed to its thickening (stable growth). With time,
the laterally expanding ridges coalesce, and the �at surface of the pancake precipitate is re-
sumed. Although the overall morphology of the precipitate is preserved by the coalescence of
the perturbation, the area of the �at surface after the coalescence of the ridges is signi�cantly
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lower than its initial state.

In other words, the morphological evolution of the pancake structure during the stage-I of
the globularisation can be described by considering the evolution of the termination ridges.
The perturbation introduced in the �at surface, owing to the mass transfer from the termi-
nation, instead of exhibiting a stable growth by thickening, decays by expanding along the
surface of the precipitate. The mass transfer from the termination, which facilitates the lat-
eral expansion of the ridges, is governed by a unique change in the low potential distribution
which initiates the characteristic non-monotonic peak seen in Fig. 12.6. As the perturbation
expands and coalesces, the �at surface and overall morphology of the precipitate is resumed,
while the aspect ratio is considerably reduced. The formation of the subsequent perturbation
is governed by the mass transfer from the termination to the neighbouring �at surface which,
through the consequent decrease in the curvature di�erence, completes the peak. Therefore,
while the lateral expansion of the existing ridge is driven the ascending section of the peak,
the formation of the subsequent perturbation is governed by the descending segment.

The gradual decrease in the aspect ratio of the pancake structure, while the overall shape is
preserved through the unique temporal evolution of the driving force, characterises the stage-
I of the globularisation. When compared to the spheroidization of the conventional rod-like
structures, two pivotal di�erences are observed during the stage-I evolution of the pancake
structure. One, instead of the thickening or the stable growth of the ridges along the direction
normal to the remnant body, the perturbation expands over the �at surface of the pancake
precipitate. Two, owing to the lateral growth of the termination ridges the overall shape of
the precipitate is preserved, whereas in the rods, the longitudinal perturbation disrupts the
morphology.

10.3.2.2 Stage - II

At the end of the stage-I globularisation, which is characterised by the progressive disap-
pearance of the non-monotonic peaks, the precipitate assumes a button-like morphology, a
pancake structure with low aspect ratio. Correspondingly, as shown in Fig. 12.9 at t = 7.125,
the precipitate accommodates �at surfaces along with thick curved edges. However, owing
to the continual formation and coalescence of the termination ridges in stage-I, the amount
of �at surface is considerably reduced. The morphological transformation which globularises
the button-like precipitate is shown in Fig. 12.9.

The reduction in the �at surface of the precipitate, owing to the characteristic peaks in the
stage-I, con�nes the low-potential region. As shown in the Fig. 12.6, the curvature di�erence
in the stage-II of the globularisation exhibits a smooth and monotonic decrease. Therefore,
the evolution following the stage-I, is governed by the mass transfer from the termination to
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Figure 10.10: The subsequent transformation following the stage-I evolution which results in the globular-
isation of the pancake structure .

the central low-potential region of the structure. The mass from the thick curved-edges of
the button-like precipitate which gets deposited in the con�ned central-region of the precip-
itate, leads to the formation a circular perturbation, as shown in Fig. 12.9 at t = 7.375. As
opposed to the termination ridges in the stage-I which grow inwardly, the central perturba-
tion in stage-II expands outwardly along the �at surface, Fig. 12.9 at t = 7.625. The central
perturbations in stage-II transforms the button-like precipitate to ellipsoidal structure. There-
fore, at the midpoint the globularisation the precipitate assumes ellipsoidal, more speci�cally
oblate spheroidal shape as shown in Fig. 12.1. The subsequent morphological changes which
transform the precipitate are conventional and governed by smooth-monotonic decrease in
the driving force.

The present theory, referred to the ‘�attening ridge theory’ renders an alternate under-
standing to the modi�ed perturbation theory on the globularisation of the pancake structures.
Accordingly to this theory, the uniqueness in the transformation mechanism which is intro-
duced by the �at surfaces is progressively reduced in the stage-I of the globularisation by the
characteristic peaks in the temporal evolution of the driving force. Consistent with the well-
established understanding of the stability of the �at surface to the induced perturbation, it is
shown that the termination ridges expand laterally as opposed to the stable growth. The pro-
gressive expansion and coalescence of the perturbation substantially decreases the amount of
�at surface and leads to the stage-II of the globularisation shown in Fig. 12.9. In stage-II, the
mass transfer from the curved edges to the central region of the reduced �at-surface trans-
forms the button-like precipitate into ellipsoid structure, which subsequently evolves into
a globular shape governed by the edge-recession. According to the �attening ridge theory,
since the considerable amount �at surface in the initial stage of the transformation prevents
the stable growth of perturbation, no signi�cant change in the transformation mechanism is
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expected with increase in the aspect ratio of the pancake structure.

10.4 Conclusion

One of the non-conventional shape that is prevalent in the microstructure of the highly ap-
plicable alloys, and is often introduced during the process chain, is analysed to understand its
morphological stability. The unidirectionally-equiaxed pancake structure, owing to its inher-
ent curvature di�erence, transforms to a globular shape under appropriate thermodynamical
conditions. Since such morphological evolution, which are governed entirely by the curvature
di�erence, enhance the mechanical properties of the materials like two-phase titanium alloys,
heat treatment techniques are adopted to facilitate the globularisation. The globularisation ki-
netics of the pancake precipitate have hitherto been analysed by considering a morphology
which includes well-de�ned hemispherical caps. These inclusions, though facilitate an ap-
propriate description of the curvature di�erence in the initial stages of the evolution, distorts
the resemblance of the morphology to the physically observed structures. Therefore, in this
analysis, a di�erent geometrical approach is adopted to de�ne the pancake structure which,
while inherently introducing curved edges, obviate the need for the hemispherical caps.

For the uniquely de�ned pancake structure, the kinetics of the globularisation is inves-
tigated by extending the existing approach, where the parameters which govern the driving
force at the midpoint of the evolution is assumed to the average of the corresponding initial
and �nal condition. Furthermore, this treatment is revisited and semi-analytical approach
which includes in-situ information from the simulation is derived. The outcomes of the two
analytical treatments are compared and it is shown that the existing delineation can be made
close to the revisited treatment by appropriately considering the parameters. Despite the in-
troduction of the in-situ data, it is observed that the analytical and the simulation results, on
the globularisation kinetics, are not entirely compatible. Recognising the assumptions in the
analytical treatments, which pertain to the temporal evolution of the driving force, the change
in the curvature di�erence accompanying the morphological transformation is analysed from
the numerical simulations.

Interestingly, as opposed to the assumed smooth-monotonic decrease in the driving force,
it is identi�ed the decrease in the potential di�erence is interrupted by series non-monotonic
peaks, during the evolution of pancake structures of all aspect ratio. Since the temporal change
in the potential di�erence re�ects the mechanism of the evolution, the transformation of the
pancake structure leading to the globularisation is extensively analysed.

The investigation of the morphological transformation of the pancake structures unrav-
els a unique evolution mechanism much di�erent from the one postulated by the modi�ed
perturbation theory. According to the present �attening ridge theory, the globularisation
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mechanism is elucidated by distinguishing the transformation into two distinct stages. In
stage-I of the evolution, the �at surfaces associated with the pancake morphology are pro-
gressively reduced by successive lateral growth and coalescence of a series of perturbations.
The formation, expansion and coalescence of the termination ridges correspond to the peaks
observed in the temporal evolution of the driving force. The decay of the perturbations by
expanding along the �at surface is consistent with the well-established understanding on the
stability of the �at surface to the induced perturbations. stage-I which transforms the pancake
precipitate into button-like structure of analogous morphology, leads to the stage-II transfor-
mation wherein the button-like shape transforms to an ellipsoid by the formation of central
perturbation through edge recession. Morphological evolution which transforms the ellip-
soid, or more speci�cally the oblate spheroid, is similar to the evolution of the conventional
structures, and is characterised by smooth-monotonic decrease in the driving force. In other
words, the postulated �attening ridge theory renders an alternate transformation mechanism
for the globularisation of the pancake structure, much di�erent from the modi�ed perturba-
tion theory which is based on the inconsistent stable-growth of ridges. Since the stable growth
of perturbations are not favoured in the �at surfaces, a signi�cant change in the mechanism
is not expected with increase in the aspect ratio of the pancake structure.
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Morphological stability of �nite
elliptical-plate

The manufacturing techniques involved in the production of highly applicable materials in-
clude mechanical processing, in addition to the heat treatment [224]. The mechanical treat-
ments adopted in the process chain, although depend on the material and its application, con-
ventionally encompass hot or cold rolling and forging. These processing techniques, through
enormous loads, considerably deform the external shape of the material. Apart from the de-
formation, signi�cant amount of stress is introduced into the material during the mechanical
treatment which consequently alters the microstructure. One of the prominent changes in the
polycrystalline material is the decrease in the average grain size [225, 226]. Along with the
grain re�nement, sub-boundaries are introduced are within the constituent phases during the
mechanical treatment [227]. These sub-boundaries, which are induced in the precipitate of the
lamellar microstructure, in�uence the morphological evolution associated with the annealing
technique [228, 54].

The sub-boundaries in the precipitate breaks-up the seemingly in�nite structure, which
extends across the grain, into �nite shape [172, 186]. The morphological evolution which
achieves the fragmentation of the semi-in�nite precipitate is illustrated in Fig. 12.1. At higher
temperature, the enhanced di�usivity, accelerates the migration of atoms. Therefore, depend-
ing on the interfacial energy between the region separating the phases and the sub-boundary,
a groove is introduced at the triple junction, in accordance with the Young’s law [82]. The ther-
mal grooving along the sub-boundary of the precipitate is accompanied by the mass transfer
to the adjacent �at surfaces. The accumulation of the mass in the neighbouring �at surfaces
renders a characteristic pro�le to the triple junction [73].

It is well-established that any disturbance to the �at surface, in the form of external or in-
duced perturbation, eventually decays owing to the substantial disparity in the curvature [43].

155
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Figure 11.1: The boundary-splitting which, through the fragmentation of the continuous precipitate along
the sub-boundaries, results in the formation of �nite elliptical plates.

Accordingly, the characteristic pro�le, which is induced in the triple junction due to the ther-
mal grooving, gets disrupted. Particularly, the mass accumulated on the regions adjacent to
the grooving gets dispersed, governed by the curvature di�erence, and turns �at with time.
In order to the re-establish the characteristic morphology at the triple junction, the mass is
transferred from the sinks around the groove to the neighbouring regions. The mass transfer,
while creating an appropriate pro�le, increases the depth of the groove.

A considerable fraction of the sub-boundaries, which are induced during the mechanical
treatment, extend all-through the thickness of the precipitate [229]. The mass transfer that fa-
cilitates the penetration of the groove occurs on both sides of the semi-in�nite structure along
the through-thickness sub-boundaries, as shown in Fig. 12.1. The continual �attening of the
source and subsequent, mass transfer to establish the characteristic pro�le at the triple junc-
tion, progressively increases the depth of the groove. With time, the incrementally deepening
grooves lead to the fragmentation of the seemingly in�nite precipitate. The morphological
evolution wherein the breaking-up of the continuous precipitate into �nite structures is aided
by the through-thickness sub-boundaries is referred to as boundary-splitting [36]. In other
words, the thermal grooving of the through-thickness sub-boundaries leads to the fragmen-
tation of the precipitates by boundary-splitting.

The morphology of the �nite structure which result from boundary-splitting depend on
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the initial con�guration of the continuous precipitate and the distance separating the through-
thickness sub-boundaries. During the processing of two-phase titanium alloys, a signi�cant
fraction of the precipitate assume a uni-directionally equi-axed pancake morphology subse-
quently after the boundary-splitting [230, 231]. The morphological evolution of the pancake
structure which accompanies the static annealing treatment has been analysed in the previous
chapter. However, recent experimental observations reveal that, in addition to the pancake
shape, the fragmentation of the continuous structure through boundary-splitting yields �nite
precipitate of elliptical plate morphology [232, 10], as shown in Fig. 12.1. Therefore, in this
chapter, the transformation kinetics and mechanism of the globularisation of the elliptical
plate is investigated.

11.1 Domain setup

A chemically stable three-dimensional domain consisting of two distinct phases, α and θ,
is con�gured for the present investigation. The composition of the constituent phases cor-
roborate the CALPHAD-informed equilibrium concentration, which consequently establishes
chemical equilibrium between the phases. Furthermore, the phases are distributed in such a
way that the matrix-α completely encapsulates the precipitate-θ.

The initial morphology of the precipitate-θ, which is analysed in upcoming sections, is
illustrated in Fig. 12.2. From the top, the geometrical con�guration of the plate is de�ned by
parameters we

2
and be, which represent the respective length along the semi-major and -minor

axes of the ellipse. The parameter le is the thickness of the precipitate. The aspect ratio of
the elliptical structure is described as the ratio of the major-axes length and the thickness of
the plate, we

le
. Correspondingly, the thickness of the plate is a�xed at le = 0.001 × 10−6m,

while we is varied in relation to the required aspect ratio. The ratio between the major- and
minor-axes length of the elliptical plate is set as a constant, independent of the aspect ratio,
we
be

= 4.

A su�ciently large simulation domain is considered to avoid any in�uence of the bound-
ary on the morphological transformation. Moreover, the domain size is proportionately varied
in relation to the initial aspect-ratio of the elliptical plate.

11.2 Transformation kinetics

During static annealing, immediately following the boundary-splitting and fragmentation of
the continuous precipitate, the �nite structure evolves morphologically. The morphological
transformation is governed by the inherent curvature-di�erence in the shape assumed by
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Figure 11.2: The morphological con�guration of a three-dimensional elliptical plate of the thickness le =

0.001× 10−6m and aspect ratio (we
le

=) 6.

the fragmented �nite structure. Analytical treatments which attempt to predict the kinet-
ics of the curvature-driven shape-change adhere to a relatively straightforward framework,
wherein a smooth temporal evolution of the driving force is assumed [8, 192, 9, 10]. For
a shape-instability induced transformation, apart from the thermodynamical constants, the
driving force is primarily dictated by the inherent di�erence in the curvature. Therefore, the
theoretical approaches consider suitable shapes which facilitate an elegant description of the
curvature di�erence. Often, such considerations result in the introduction of the termina-
tion caps which are hemispherical in shape and the diameter identical to the thickness of the
plate. Although the hemispherical inclusions mitigate the complexity in the formulation of
the curvature di�erence, the resemblance of the �nite precipitate to the microscopically ob-
served structure is noticeably compromised. Moreover, these termination caps additionally
in�uence the predictions of the existing treatments.

For investigating the globularisation kinetics of the pancake structure, in the previous
chapter, a di�erent approach is adopted to geometrically de�ne the morphology which ob-
viates the need for the spherical inclusions and retains a well-de�ned termination. Similar
consideration is extended to delineate the elliptical plate.

11.2.1 Geometrical treatment

A prolate spheroid, which is a three-dimensional ellipsoid characterised by the relation aE >

bE = cE, where aE, bE and cE correspond to the lengths along major and minor axes, is treated
as the geometrical-parent of the elliptical precipitate. The cross-section of the parent ellip-
soid is shown in Fig. 12.3. For the present geometrical treatment, the length along the major
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Figure 11.3: The cross-section of the parent three-dimensional ellipsoid of major-axes length aE = we
2 and

identical minor axis length, bE = cE = be. The central segment of the prolate spheroid which is treated as
the elliptical plate of thickness le is distinguished.

axis of the prolate spheroid is considered as aE = we
2

and the equivalent lengths along the
minor axes are bE = cE = be. A central segment of the parent structure with thickness le, as
shown in Fig. 12.3, yields an elliptical plate with morphology relatable to the experimental ob-
servations. Furthermore, the terminations of the emerging elliptical structure are inherently
curved, which precludes any need for the additional inclusions. Therefore, the precipitates
of di�erent aspect ratios, that are analysed in this study, are the central segment of prolate
spheroid with various major-axis length.

As elucidated in the previous chapters, the two theoretical approaches which are employed
to investigate the transformation kinetics identify three speci�c stages of the globularisation.
The driving forces at these three particular stages, initial (t0:ge), midpoint (t1/2:ge) and �nal
(t1:ge), are estimated from the curvature di�erence established by the instantaneous morphol-
ogy of the plate. The shape of the precipitate at these three distinct stages of the globularisa-
tion are illustrated in Fig. 12.4. Since the transformation ends with the precipitate assuming a
shape which is characterised by the negligible di�erence in the curvature, in both analytical
treatments, the driving force at the �nal stage of the evolution is considered as in�nitesimal.

For a given morphology of the precipitate, irrespective of the approach, the formulation of
the intial driving-force (Γ0:ge) is identical. The disparity between the treatments is introduced
in the estimation of the midpoint driving-force (Γ1/2:ge), wherein one delineation includes
in-situ information from the simulation. Since the thermodynamical description at the begin-
ning of the evolution is independent of the treatment, the initial driving-force is ascertained
separately based on the inherent curvature-di�erence.

In addition to the driving force, the time taken for the globularisation of the precipitate
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Figure 11.4: The temporal change in the shape of the elliptical plate of aspect ratio 6 at the three speci�c
stages, initial (t0:ge), midpoint (t1/2:ge) and �nal (t1:ge), of the globularisation.

is governed by another factor which referred to as the required mass-transfer (δVge). The
morphological evolution of the precipitate is established by the migration of the atoms. The
amount of the mass-di�usion which is required to the complete the transformation is the
required mass-transfer (δVge). For the elliptical plate, the required mass-transfer is determined
by

δVge = Ve:pt − Ve:sh, (11.1)

where Ve:pt is volume of the precipitate and Ve:sh is the volume shared by the initial and �-
nal structure. Since Ve:sh does not necessitate any migration during the globularisation, in
Eqn. 11.1, it is eliminated from the overall volume to determine the required mass transfer
δVge.

For the present geometrical consideration, wherein the precipitate is the segment of a
larger prolate spheroid, the volume of the precipitate is calculated by Ve:pt = VE − 2VE:cap,
where VE and VE:cap are the volume of the parent ellipsoid and the cap above (and below) the
central segment, as shown in Fig. 12.3. Although the volume of the precipitate is estimated
directly during the analysis of the pancake structure, the inherent geometrical complexities
associated with the ellipsoidal structure necessitates an indirect approach [193, 233].

From Fig. 12.3, assuming that the �at surface of the elliptical plate extends along the xz-
plane, the equation of the parent ellipsoid can be expressed as

x2(
we/2

)2 +
y2

b2
e

+
z2

b2
e

= 1. (11.2)

The volume of this prolate spheroid is calculated by VE = 2
3
πweb

2
e . The ellipsoidal cap in

Fig. 12.3 extends from �at surface of the precipitate to the end of the parent structure along a
minor axis. Given that the minor-axis, which is normal to the �at surface, is along the y-axis,
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the volume of the cap can be estimated by

VE:cap =

∫ be

be− le2

π(xz)dy. (11.3)

Based on Eqn. 11.2, the equation of the larger ellipsoid along the x- and z- can be written as

x =
we

2

[
1−

(
y

be

)2
] 1

2

and z = be

[
1−

(
y

be

)2
] 1

2

, (11.4)

respectively. By substituting Eqn. 11.4 in Eqn. 11.3, the volume of cap is expressed as

VE:cap =

∫ be

be− le2

π
we

2
be

(
1− y2

b2
e

)
dy. (11.5)

Solving the above Eqn. 11.5 yields the relation

VE:cap =
π

2
webe

2be

3
− le

2
+

(
le/2

)3

3b2
e

 , (11.6)

which can be used to calculate the volume of the ellipsoidal cap from the known geometrical
parameters, we, le and be. By eliminating the volume of the caps, which are above and below
the central segment, from the overall volume of the parent ellipsoid, the precipitate volume
can be determined. Correspondingly, the volume of the elliptical precipitate reads

Ve:pt = πwebe

 le
2
−
(
le/2

)3

3b2
e

 . (11.7)

In order to determine the required mass-transfer (δVge), as given the Eqn. 11.1, the volume
shared by the initial and �nal morphology of the precipitate should be estimated. While the
initial shape of the precipitate is de�ned by the parameters we, le and be, the �nal morphology
is characterised by the radius of the ultimate spheroid, rge. Therefore, the radius of the �nal
spheroid should be known for calculating the shared volume, Ve:sh. Since the volume of the
precipitate is conserved during the morphological evolution, owing to the chemical equilib-
rium established between the phases, the relation between the geometrical parameters can be
ascertained by equating the initial and �nal volume of the precipitate. Correspondingly, the
radius of the �nal spheroid is calculated from the initial geometrical parameters by

rge =

3

4
webe

 le
2
−
(
le/2

)3

3b2
e


1
3

. (11.8)

The region, which is shared by the initial and �nal shape of the precipitate, and is hardly
involved in the morphological transformation is a central segment of the �nal spheroid of
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thickness le. Accordingly, the shared volume which do not contribute to the required mass-
transfer is expressed as

Ve:sh = πle

[
r2

ge −
(
le
2

)2
]
. (11.9)

By substituting Eqns. 11.7 and 11.9 in Eqn. 11.1, the mass transfer required to complete the
globularisation (δVge) can be determined from the initial geometrical con�guration of the el-
liptical plate.

The driving force at the initial stages of the evolution is dictated by two factors. One is the
concentration gradient introduced by the inherent curvature-di�erence in the morphology
of the precipitate, while the other is area available for the migration of the atoms. In the
presence of the hemispherical caps, the area available for the di�usion is determined from
the geometry of the inclusions. Since in the present study the inclusions are averted by an
appropriate geometrical description of the precipitate, a di�erent approach is employed to
ascertain the di�usion area A0:ge.

A characteristic feature which di�erentiates the elliptical plate, considered in the present
study, from a regular elliptical cylinder, of thickness le, is the curved termination. Owing to
the �nite nature of the precipitate, these curved terminations act as the source of the mass
transfer at the initial stages of the globularisation. Therefore, the surface area of the curved
edges is the area available for di�usion at the beginning of the evolution (A0:ge). The area
along the termination is determined by quantifying the volume of the curved region (Vcur).
The volume of the curved edges can be approximated as

Vcur = Ve:pt − Ve:cy, (11.10)

where Ve:cy is the volume of a hypothetical cylinder with its radial cross-section identical to
the surface of the precipitate and thickness le. Considering that the thickness is much smaller
than the major- and minor-axis lengths of the precipitate, the volume of the elliptical cylinder
is written as

Ve:cy = πle

[(
we

2

)2

−
(
le
2

)2
] 1

2
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2
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] 1

2

. (11.11)

Substituting Eqns. 11.7 and 11.11 in Eqn. 11.10, the volume of the curved edges of the pre-
cipitate is quanti�ed separately. Based on the geometric con�guration of the elliptical plate,
shown in Fig. 12.3, the smooth termination can be treated as a longitudinal segment of a
cylinder of radius rcur. Correspondingly, from Eqns. 11.10 and 11.11, the termination radius
is ascertained by

rcur =
V

1
2

cur

π

1

2
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we

2
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+ b2
e +

l2e
2

]
− 1

4

(11.12)
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The geometrical nature of the curved-termination can now be described by the radius rcur,
which is encompassed in the major-axis length we of the elliptical precipitate.

For the hypothetical elliptical-structure of thickness le, which considered in Eqn. 11.11,
the di�usion area at the initial stages of the transformation is its surface area. Therefore, for
this sharp-edged precipitate, the initial di�usion-area is expressed as

Se:cy = 2π

1

2

[(
we

2

)2

+ b2
e +

l2e
2

]
1
2
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:=Pel

le, (11.13)

where Pel is the perimeter of the elliptical cross-section of the hypothetical sharp-cylinder.
Since the terminations of the precipitate are curved, the initial di�usion-area is relatively
larger than the surface area of the sharp elliptical-cylinder, Sel:cy.

By projecting the curved-edges of the precipitate along the thickness of the elliptical struc-
ture, and based on Eqn. 11.12, the di�usion area A0:ge is approximated as

A0:ge = 4π
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The di�usion area determined from the above Eqn. 11.14 is greater than Sel:cy and more im-
portantly, includes the geometrical nature of the curved terminations of the precipitate.

In the analytical approach [8], the gradient in the concentration which is introduced by
the inherent curvature-di�erence in the shape of the precipitate, is solved by separating the
concentration and associated spatial term. In other words, at a given stage of the evolution,
the curvature-induced di�erence in the equilibrium concentration (δci:ge) and distance across
which the disparity is established (δxi:ge) are treated independently.

The di�erence in the equilibrium concentration, at the beginning of the globularisation,
is dictated by the curvature di�erence associated with the morphological con�guration of the
elliptical plate. The disparity in the equilibrium concentration actuates mass transfer from
the source to sink. The source, which is curved terminations of the precipitate, is an integral
part of the parent ellipsoid illustrated in Fig. 12.3, whereas the sinks are the �at surfaces of
the elliptical structure. The in�uence of the curvature on the equilibrium concentration is
formulated based on the principal radii of curvature at the source and sink. Correspondingly,
the curvature-induced disparity in the equilibrium concentration is expressed as

δci:ge ∝
we

2b2
e

+
we

2 + 4b2
e

2w2
ebe

. (11.15)

Since the sink of the mass transfer is the �at surface of the elliptical plate, it does not in�u-
ence the equilibrium concentration. Furthermore, the principal radii of the source, which are
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adopted in Eqn. 11.15, are determined by considering the large prolate spheroid with param-
eters we

2
and be.

The spatial term associated with the concentration gradient is determined by identifying
the primary di�usion-path(s) and estimating the e�ective migration distance [8, 10]. In the
pancake structure of circular cross-section, the realisation of the di�usion path, and the cal-
culation of the corresponding distance, is straightforward, whereas in the elliptical plate, the
migration distance vary centro-symmetrically. Therefore, by considering the two extreme
migration paths, which correspond to the major- and minor-axes of the elliptical plate, the
di�usion distance at the initial stages of the globularisation is expressed as
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The initial di�usion-distance, formulated in the above Eqn. 11.16, includes the geometrical
parameters of the curved termination, in addition to the elliptical sections of the precipitate.
From Eqns. 11.14, 11.15 and 11.16, the curvature-induced driving force at the beginning of
the morphological evolution can be determined by Γ0:ge ∝ A0:ge

(
δc
δx

)
0:ge

.

11.2.2 Cylinderization approach

In the analytical treatment of the transformation kinetics, referred to as the cylinderization
approach [8], the temporal change in the morphology of the precipitate during the globulari-
sation is assumed. The lack of in-situ information, experimental or theoretical, on the shape-
changes accompanying the volume-di�usion governed curvature-induced transformation is
responsible for such consideration. Correspondingly, the geometrical parameters which dic-
tate morphological con�guration of the precipitate at the midpoint of the evolution is treated
as the average of the respective parameters at the initial and �nal stages.

The area available for the di�usion in the beginning of the globularisation is expressed
in Eqn. 11.14. The corresponding terms which de�ne the midpoint di�usion-area (A 1

2
:ge) is

ascertained from the surface area of the ultimate globular shape of the precipitate. In any
given stage of the transformation, the di�usion area is predominantly associated with the
source of the mass transfer. Therefore, assuming the entire surface area of the �nal spheroid
as the di�usion area entails an unphysical con�guration which lacks sink. Considering that
only a fraction of the precipitate acts as the source of mass transfer, the �nal di�usion-area
can be formulated exclusively based on the segment of the globular morphology, rather than
the entire surface area. In the early chapters, it has been shown that the driving force at the
midpoint can be convincingly calculated by assuming the quadrant of the ultimate spheroid as
the source. Accordingly, for the globularisation of the elliptical plate, the midpoint di�usion-
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area is expressed as
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Similar to the di�usion area, the in�uence of the curvature on the equilibrium concen-
tration at the midpoint of the globularisation is formulated by considering the mean of the
appropriate parameters at the initial and �nal stages. These parameters include the principal
radii at the source and sink. The morphological changes in the precipitate is achieved by the
progressive mass transfer from the source to sink. Therefore, it is reasonable to assume that
moments prior to the complete globularisation of the elliptical plate, the relatively �at-regions
are present in the structure which act as sinks. Correspondingly, the change in equilibrium
concentration, owing to the inherent curvature-di�erence in the midpoint-morphology of the
precipitate, is written as
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While the above Eqn. 11.18 quanti�es the disparity introduced in the equilibrium concentra-
tion, the spatial term associated with the gradient is ascertained separately. The mean of the
di�usion length at the initial and �nal stages of the shape-change yields
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Based on the aforementioned analytical delineations and through Eqn. 11.17, 11.18 and 11.19,
the instantaneous driving-force at the midpoint of the globularisation is determined.

11.2.3 Semi-analytical treatment

As opposed to the cylinderization approach, the semi-analytical treatment considers the tran-
sitory morphology of the precipitate by encompassing the in-situ data. The geometric con�g-
uration of the precipitate, particularly at the midpoint, is ascertained by tracking the phase-
�eld simulation. As shown in Fig. 12.4, the morphology of the precipitate at the midpoint
is considerably closer to the �nal structure than the initial elliptical plate. Accordingly, the
cylinderization approach, wherein the morphological parameters at the midpoint are esti-
mated from the mean of the respective terms at the initial and �nal stages, appears to deviate
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Figure 11.5: The aspect ratio of the prolate ellipsoid formed at the midpoint of the transformation during
the globularisation of elliptical plates of di�erent aspect ratios.

from the observed shape-change. Therefore, the geometrical con�guration of the precipitate
at the midpoint is analysed and employed in the semi-analytical formulation.

It is identi�ed that, similar to the other �nite structures, the precipitate assumes ellipsoidal
shape at the midpoint of the globularisation. However, in contrast to the pancake structure,
the midpoint ellipsoid exhibits a di�erent geometric relation which is associated with the pro-
late spheroid, apr > bpr = cpr, where apr, bpr and cpr are semi-major and minor axes lengths,
respectively. In other words, irrespective of the initial aspect ratio, the pancake structure
transforms into a oblate spheroid (apr < bpr = cpr), while the elliptical plate assumes pro-
late spheroid morphology at the midpoint. The aspect ratio of the midpoint prolate-spheroid
(apr
bpr

), which is formed during the transformation of the elliptical plates of various sizes, is as-
certained and plotted in Fig. 12.5. It is evident that, irrespective of the initial aspect-ratio of
the plate, a de�nite relation is established between the semi-major and -minor lengths of the
midpoint ellipsoid, apr = 1.34bpr. In the present approach, the midpoint driving-force is for-
mulated based this characteristic aspect-ratio (apr

bpr
= 1.34) exhibited by the prolate spheroid.

Since the midpoint ellipsoid which is formed during the globularisation of the elliptical
plate exhibits a characteristic relation apr > bpr = cpr, it is assumed that the source is con�ned
to the major-axis. Therefore, the di�usion area at the midpoint is determined by eliminating
the area along the minor axes from the entire surface area of the prolate spheroid. Corre-
spondingly, the midpoint di�usion-area reads
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Figure 11.6: The instantaneous driving-force at the initial, midpoint and �nal stage of the globularisation
of the elliptical plate of aspect ratio 6. The predictions of the existing approach is included for comparison.

whereP is a constant and is equal to 1.6. In Eqn. 11.20, the surface area of the prolate spheroid
is calculated based on Knud Thomsen approximation. Furthermore, in the formulation of the
midpoint di�usion-area, the relation between the radius of the ultimate globular-precipitate
and prolate ellipsoid parameters, rge = (aprb

2
pr)

1
3 which is derived by equating the volume, is

implicitly employed.

Unlike the two-dimensional structures, the in�uence of the inherent curvature-di�erence
of a three-dimensional shape on the equilibrium concentration is elegantly described by the
mean curvature. Therefore, the mean curvature of the midpoint ellipsoid formed during the
globularisation of the elliptical precipitate is de�ned appropriately. For the delineation of the
mean curvature of the prolate spheroid, the fundamental forms of the respective surfaces, as
elucidated in the preceding chapters, are realised. The co-e�cients of the �rst fundamental
form of the ellipsoidal surface, which is characterised by geometric relation apr > bpr = cpr,
is expressed as

Ee = a2
pr sin2 θ + b2

pr cos2 θ (11.21)

Fe = 0

Ge = b2
pr sin2 θ.

Furthermore, the second fundamental form of the midpoint prolate-ellipsoid is de�ned by the
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co-e�cients
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In Eqns. 11.21 and 11.22, the angular variable which de�nes the curvature in a distinct orthog-
onal co-ordinate system is represented by θ. Based on the co-e�cients of the �rst and second
fundamental forms, the mean radius at a given point on the surface of the prolate ellipsoid
reads
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Upon comparing the mean-curvature formulation for the midpoint ellipsoid of pancake and
elliptical plate, it is evident that H is governed by both angular variables in the former, while
in the latter, it is exclusively dictated by θ. With Hsink and Hsource representing the mean
curvature at the sink and source of the prolate spheroid, its in�uence on the equilibrium
concentration is written as
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Moreover, the spatial component of the concentration gradient which is induced at the mid-
point of the morphological evolution is described based on the geometric variable of the pro-
late spheroid. Correspondingly, the midpoint di�usion-length is expressed as
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By combining the di�usion area and the concentration gradient at the midpoint, the respective
driving force is estimated by Γ 1

2
:ge ∝ A 1
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.

11.2.4 Comparative analysis

By adopting the formulation of the cylinderization approach and the semi-analytical treat-
ment, the driving force at three speci�c stages, initial (t0:ge), midpoint (t1/2:ge) and �nal (t1:ge),
of the globularisation is calculated. The respective driving forces are normalised and plotted
in Fig. 12.6. The outcomes of the recent analytical treatment [10], wherein the precipitate
morphology is assumed to include termination caps, is also presented in Fig. 12.6. Despite
the deviations introduced by the inclusion of the hemispherical caps in the formulation of the
driving force, the results are normalised proportionately to render a comparative discussion.
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Figure 11.7: The time taken for the globularisation of the elliptical plates of di�erent aspect ratio in the
phase-�eld simulation is compared with the prediction of the semi-analytical treatment which is formu-
lated in Sec. 11.2.3.

Fig. 12.6 shows that, when compared to the estimations of the present analysis, the re-
cent report on the globularisation kinetics predicts a higher driving-force at the midpoint,
approximately 40% of the initial driving-force Γ0:ge. Since the morphology of the precipitate
at the midpoint is closer to its �nal shape, the corresponding curvature-di�erence (driving
force) is expected to be noticeably lower than the prediction of Ref. [10]. The over-estimation
of the driving force by this approach can be attributed to two factors. One is the inclusion
of the hemispherical termination-caps. As opposed to the edges which are the integral part
of the precipitate morphology, the caps are augmented inclusions which preserve the initial
curvature-di�erence independent of the plate size (aspect ratio). The other factor contributing
to the excess driving-force is the unphysical consideration that the entire surface of the globu-
larised precipitate is actively involved in the di�usion at the �nal stages of the transformation.
A reasonable treatment of the �nal di�usion-area (A1:ge) yields a convincing driving-force
through the present cylinderization approach, as shown in Fig. 12.6.

The cylinderization approach, which is elucidated in Sec. 11.2.2, ascertains the midpoint
driving-force similar to Ref. [10], wherein the governing parameters at the midpoint is treated
as the average of the respective initial and �nal variables. However, by the restricting the
�nal di�usion-area to a quadrant of the globularised precipitate, the relatively lower driving-
force is predicted. Furthermore, the unique geometrical consideration of the initial morphol-
ogy, which renders implicit curved edges without any inclusions (Sec. 11.2.1), additionally
enhances the cylinderization approach.

A driving force apparently consistent with the midpoint morphology of the precipitate
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is predicted by the semi-analytical treatment, as shown in Fig. 12.6. The relation between
the geometric parameters of the midpoint structure, which is ascertained from the phase-
�eld simulation, provides the in-situ information hitherto absent in the reported studies [8,
192, 9, 10]. In the semi-analytical treatment discussed in Sec. 11.2.3, the geometric relation of
the prolate spheroid is incorporated in the formulation, which ultimately yields a convincing
midpoint driving-force as illustrated in Fig. 12.6.

The time taken for the globularisation of elliptical plate is calculated by

t1:ge =
3δVge

Γ0:ge + Γ 1
2

:ge
, (11.26)

where Γ0:ge and Γ 1
2

:ge are the driving force at the initial and midpoint of the evolution which
is determined by the semi-analytical approach, and δVge is the size-dependent required mass-
transfer for the globularisation. Owing to the geometrically coherent and in-situ informed
delineation of the transitory driving-force, of the di�erent formulations, the prediction of
the semi-analytical treatments is compared to the outcomes of the phase-�eld simulation in
Fig. 12.7. Both the simulation and analytical study show a monotonic increase in the time
taken for the globularisation with increase in the aspect ratio. The decrease in the overall
transformation rate with increase in the precipitate size is primarily due to the proportionate
increase in the required mass-transfer (δVge). However, while the semi-analytical treatment
predicts the in�uence of the aspect ratio on the globularisation time as

t1:ge ∝
(
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le

)1.89

, (11.27)

the phase-�eld simulation of the elliptical plate with the geometric relation we
be

= 4 yields the
relation

t1:ge ∝
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le

)2.4

. (11.28)

Despite being a simpli�ed representation of the e�ect of precipitate size on the transformation
kinetics, Eqns. 11.27 and 11.28 capture the disparity between these theoretical analysis.

Non-conformity between the semi-analytical predictions and the phase-�eld simulation is
expected, since the analytical treatment assumes an ideally decreasing driving force. However,
in relation to the comparative studies extended in the previous chapters, di�erence between
the simulation results and the analytical predictions is relatively larger in the elliptical plates.
The primary factor contributing to the noticeable disparity between the semi-analytical and
the simulation studies is the intricacy in the morphology of the precipitate. Unlike the con-
ventional shapes like rods, the delineation of the geometrical parameters which govern the
transformation kinetics of three-dimensional elliptical and ellipsoidal structure is inherently
complex [193, 233]. Although ellipsoidal shapes are formed during the morphological evo-
lution of the rod and pancake structures, they are predominantly con�ned to the midpoint
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Figure 11.8: The temporal evolution of the potential di�erence which govern the shape-changes exhibited
by the elliptical plates of aspect ratios 6 and 8.

of the globularisation. However, in the present study, the intricate geometrical formulation
associated with the elliptical and ellipsoidal structure in�uences both initial and midpoint
driving-force. The deviations introduced in the driving forces by the inherent geometrical
intricacies result in the visible di�erence between the theoretical studies in Fig. 12.7.

11.3 Transformation mechanism

To investigate the progressive increase in the disparity between the simulation and analytical
results, as shown in Fig. 12.7, the transformation mechanism, which is largely assumed in the
analytical treatment, is examined. Since the morphological evolutions like globularisation are
governed by the inherent curvature-di�erence, that consequently introduce a inhomogeneity
in the chemical potential, the transformation mechanism is primarily guided by the incremen-
tal change in the potential di�erence. Therefore, similar to the previous studies, the temporal
decrease in the driving force is analysed by considering the change in the curvature induced
potential-di�erence with time. Fig. 12.8 illustrates the gradual change in the driving force
which undergird the globularisation of the elliptical plates of aspect ratio 6 and 8.

A geometric feature which relates the pancake shape, studied in the previous chapter, to
the elliptical plate is the presence of a signi�cant amount of �at surfaces. Correspondingly,
as observed in the pancake structure, Fig. 12.8 unravels that the globularisation of the ellip-
tical plate is not established by the smooth monotonic decrease in the curvature di�erence.
However, while the progressive decrease in the driving force is interrupted by a series of non-
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Figure 11.9: The shape change exhibited by the elliptical plate of aspect ratio 6 in the stage-I of globulari-
sation.

monotonic peaks in the globularisation of the pancake shapes, a unique step-wise evolution
is exhibited by the elliptical plates. Despite these di�erence in the trend, the characteristic
temporal evolution of the potential di�erence in both pancake and elliptical plates is con�ned
to the early stages of the transformation. In other words, analogous to the pancake-shaped
precipitate, the morphological evolution of the elliptical plate can be distinguished into two
stages based on the change in the driving force with time. The stage-I of the shape-change is
dictated by the characteristic temporal evolution of the potential di�erence, while the driving
force decreases smoothly and monotonically in the second stage.

The framework of the analytical treatments, including the revisited formulation wherein
the in-situ information are adopted to describe the driving force, do not comprehensively en-
compass the temporal change in the driving force. Therefore, the characteristic evolution of
the potential di�erence which is substantially di�erent from the monotonic decrease, in the
early stages of the globularisation, introduces the disparity between the analytical and the
simulation results. Furthermore, with increase in the aspect ratio of the elliptical structure,
the step-wise evolution of the driving force gets more resolved as shown in Fig. 12.8. Conse-
quently, the outcomes of the simulation progressively deviate from the analytical prediction.

11.3.1 Stage - I

Analogous to other structures, the characteristic evolution of the curvature (potential) di�er-
ence results in a unique transformation mechanism which is pertinent to both geometrical
con�guration and aspect ratio of the precipitate. In Fig. 12.9, the stage-I of the morphological
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changes, which are governed by the step-wise decrease in the driving force, accompanying the
globularisation of the elliptical structure of aspect ratio 6 is illustrated. Moreover, a three di-
mensional representation of the distribution of the chemical potential that re�ect the inherent
curvature-di�erence is included.

The curvature-driven shape change in the elliptical plate, similar to all the �nite struc-
tures, begins with the onset of high potential along the terminations of the precipitate. Cor-
respondingly, the remnant region which, in the elliptical plate, predominantly comprises of
�at surfaces assume low potential. However, owing to the geometrical nature of the precipi-
tate, and in contrast to the pancake structure, the high potential established along the curved
edges is not uniform. Particularly, in the edges along the major axis, the potential is notice-
ably higher than the minor-axis terminations. This disparity within the distribution of high
potential along the termination, consequently yields a di�erent degree of mass transfer. Ac-
cordingly, in the initial stages of the transformation, the mass transfer from the termination
to the adjacent �at surface is primarily con�ned to the major axis. The predominant migra-
tion of the mass along the major axis results in unique termination ridges which, unlike the
pancake perturbation, are restricted to certain regions as shown in Fig. 12.9 at t = 0.6.

In the conventional structures like rods, the formation of termination ridges is followed
by its stable growth. However, in the elliptical plate, the morphological evolution succeed-
ing the formation of major-axis perturbation is similar to the transformation of the pancake
structure. The substantial curvature-di�erence between the termination ridges and �at sur-
face, prevents the stable growth along the direction normal to the elliptical surface. Therefore,
the perturbation expands across the �at region governed by the characteristic change in the
potential distribution as shown in Fig. 12.9 at t = 0.7. The lateral growth of the ridges, as op-
posed to the thickening, is consistent with the stability of the �at surface to any morphological
disturbances [43]. With time, t = 0.7 in Fig. 12.9, the expanding major-axis perturbations co-
alesce and re-establish the �at surface. However, as observed during the globularisation of
the pancake precipitate, the �at surface which result from the coalescence of the perturbation
a signi�cantly smaller that its initial distribution.

A single step, in the characteristic step-wise evolution of the potential di�erence, com-
prises of a drastic change in the driving force followed by a relatively unchanged curvature-
di�erence. Analysing the morphological transformation, in relation to the temporal evolu-
tion of the potential di�erence, unravels that the drastic change dictates the formation of the
major-axis ridges while the constant driving force governs its expansion along the �at surface.
Therefore, the stage-I of the globularisation, which is characterised by the series of steps, cor-
responds to the successive formation, growth and coalescence of numerous major-axis ridges
that ultimately reduce the �at region, and alter the morphology of the precipitate.
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Figure 11.10: The transformation mechanism following the stage-I globularisation of the elliptical plate of
aspect ratio 6.

11.3.2 Stage - II

With the considerable decrease in the amount of �at surfaces, through the repetitive forma-
tion and the lateral expansion of numerous perturbations, the elliptical plate transforms to a
capsule-like structure at the end of stage-I of the globularisation. As shown in Fig. 12.8, in
the subsequent stage of the evolution, the driving force decreases ideally. The transforma-
tion mechanism corresponding this smooth-monotonic evolution of the curvature di�erence
is illustrated in Fig. 12.10.

During the spheroidization of the smaller three-dimensional rods, the undisturbed mono-
tonic decrease in the driving force results in a transformation mechanism governed by the
stable growth of the perturbations, which are introduced in the longitudinal ends. However,
since the stage-I of the globularisation of the elliptical plate yields capsule-like structure, the
low potential is con�ned to the midri� of the precipitate. Therefore, in contrast to the rods, in
stage-II, the perturbation is induced in the central region of the precipitate directed by the in-
herent curvature-di�erence, as shown in Fig. 12.10 at t = 3.6. The central ridge grows stably
through the mass transfer from the high-potential termination to the widening low-potential
region. The outward growth of the perturbation transforms the capsule-like precipitate to
ellipsoid structure, and more speci�cally to prolate spheroid, at t = 3.7 in Fig. 12.10. The
continued mass transfer, dictated by the potential distribution, and the consequent growth of
the perturbations lead to the formation of the globular precipitate.
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11.4 Conclusion

Generally, the manufacturing techniques which are devised to achieve required properties,
encompass both mechanical and thermal treatment. One noticeable in�uence of the mechan-
ical processing, which often involves deformation of the material through excessive stress,
on the microstructure is the introduction of the sub-boundaries. During annealing, the sub-
boundaries contribute to the evolution of the phases. Particularly, the through-thickness
sub-boundaries leads to the fragmentation of the seemingly continuous structure, through
an unique phenomenon known as boundary-splitting (Fig. 12.1). The geometrical con�gu-
ration of the phase (precipitate) emerging from the boundary-splitting is �nite and often,
unconventional. In the present chapter, the shape-instability of one such unconventional
three-dimensional structure is analysed.

Experimental observations indicate that, in the two-phase titanium alloy, the precipitates
assume elliptical plate shape, owing to the previous mechanical treatment, in addition to the
other shapes. The kinetics of the morphological evolution exhibited by the elliptical plates
during static annealing is theoretically investigated. The existing analytical approach de-
lineates the driving force which governs this curvature-driven shape-change by assuming
hemispherical caps at the terminations [8, 192, 9, 10]. Although the hemispherical inclusions
facilitate an elegant description of the curvature di�erence, these caps, despite being unphys-
ical, in�uence the outcomes of the analytical treatment. Furthermore, owing to the lack of
a comprehensive understanding on the morphological evolution of the plates, the existing
study assumes the governing parameters at the midpoint of the globularisation is the average
of the its initial and �nal condition [10].

In order to address the aforementioned limitations, in this analysis, the theoretical treat-
ment is revisited. By adopting a di�erent geometrical consideration, the need of the inclusions
is obviated while retaining curved terminations. Additionally, the in-situ information on the
geometrical parameters of the precipitate which dictate the driving force at midpoint is recov-
ered from the phase-�eld simulation and incorporated in the formulation. When compared to
the existing work, the current formulations yield relatively consistent midpoint driving-force.

Despite the incorporation of the in-situ data in the delineation, it is identi�ed that the no-
ticeable disparity exists between the analytical predictions and the simulation. Since the in-
�uence of the transformation mechanism is not convincingly included in the analytical treat-
ment, the morphological evolution accompanying the globularisation of the elliptical plate
is examined. In contrast to the current understanding of the curvature-driven shape-change
being governed by smooth-monotonic decrease in the driving force, it is realised that the
globularisation of the elliptical plate is associated with step-wise decrease in the potential
di�erence. Correspondingly, as opposed to the stable growth of perturbations, the elliptical
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structure evolves by successive formation, expansion and coalescence of numerous major-
axis ridges. The characteristic morphological evolution of the elliptical plate, which is con-
sistent well-established insight on the stability of the �at surface [43], while accounting for
the disparity between the outcomes of simulation and analytical treatment, unravels a unique
transformation mechanism.



Chapter 12

Pearlite spheroidization: Stability of
three-dimensional faceted plates

Owing to the signi�cant in�uence of the microstructure on the properties of the material, the
shape-instabilities are induced to achieve desired properties. In addition to the titanium alloys,
the practice of invoking morphological changes to enhance the properties is employed to the
most-widely used alloy, steel. A stable phase transformation in steel, which is generally de-
�ned as an alloy of iron and carbon, invariably yields a combination of ferrite and cementite,
with decrease in temperature. Often these phases form a interpenetrating bicrystals called
pearlite [234]. Pearlite, which results from the eutectoid decomposition of austenite, is an
integral part of the plain carbon steel, and microscopically, appears as an alternating layer
of ferrite and cementite. The characteristic morphology of the self-accommodating phases
in pearlite renders high strength and wear resistance to the material [235]. Therefore, steels
with extensive lamellar microstructure, referred to as the pearlitic steels, are preferred for en-
gineering components which include cords and tee rails. However, the microstructure which
is responsible for these mechanical properties, also limits its applicability.

Despite the strength and wear resistance, the workability of steels with lamellar microstruc-
ture is inadequate. Correspondingly, apart from the elementary components, which do not
demand forming or other pervasive mechanical treatment during manufacturing, intricate
shapes are rarely produced from these steels. However, a balance in the mechanical prop-
erties, which improves the workability is achieved by disrupting the microstructure of the
pearlitic steel [74, 236]. Speci�cally, it has been identi�ed that breaking down the lamellar ar-
rangement of the phases improves the toughness, ductility and fatigue-life of steel [237, 238].
Moreover, the change in the morphology of the constituent phases expands the applicability
to pearlitic steel to bearings, bolts and nuts.

Several thermal and thermo-mechanical techniques have been adopted, in large-scale, to
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disrupt the lamellar microstructure and achieve the required properties. The most commonly
employed heat-treatment techniques include sub-critical, inter-critical and cyclic annealing.
While the morphological changes in the constituent phases are established through phase
transformation in inter-critical and cyclic annealing [22, 238], the lamellar arrangement de-
teriorates without any transformation in sub-critical annealing [239]. The applicability of
the inter-critical and cyclic annealing is restricted, since phase transformation aides the mi-
crostructural evolution in these techniques. Moreover, the inter-critical and cyclic anneal-
ing are adopted exclusively to soften the hyper-eutectoid steels. On the other hand, the mi-
crostructural changes during sub-critical annealing occurs in a chemical equilibrium. There-
fore, irrespective of the chemical composition of the material, this technique operates e�ec-
tively.

Despite its advantages, one factor which hampers the applicability of the sub-critical an-
nealing is the lack of comprehensive understanding on the microstructural transformations
ensuing the treatment. The absence of a de�nite knowledge on the kinetics and the mech-
anism of the morphological changes, often leads to an inaccurate formulation of the heat
treatment cycle, which consequently portrays sub-critical annealing as relatively uneconom-
ical treatment. Understanding the microstructural transformations, henceforth referred to
as spheroidization, through experimental observations is an arduous task, as it requires both
three-dimensional representation of the precipitate (cementite) structure and an in-situ obser-
vation of its temporal evolution. Therefore, theoretical treatments are cooperatively adopted
to o�er substantial insights on the kinetics and the mechanism of the spheroidization.

The morphological evolution of the cementite, during sub-critical annealing, is governed
by the stability of its shape. Furthermore, by estimating the activation energy, analytical
investigations indicate that the transformation of cementite, i.e pearlite spheroidization, is
governed by volume di�usion [240, 163, 146]. As elucidated earlier, the theoretical treat-
ment of the shape-changes governed by this speci�c mode of mass transfer demands three-
dimensional consideration. Therefore, only few attempts have hitherto been made. To that
end, the phase-�eld approach which has already been employed, in the preceding chapters, to
investigate the volume-di�usion governed curvature-driven transformations in three-dimensional
rods and other unconventional structures is extended to analyse the pearlite spheroidization.

12.1 Domain set-up

Three-dimensional microscopic observations of pearlite reveal that the cementite plates are
inherently associated with discontinuities [146, 241]. The size and distribution of the discon-
tinuities are varied and often, treated as an anomaly in the co-operative growth of ferrite
and cementite. In the absence of these anomalies, the cementite phase in the pearlite resem-



Chapter 12. 179

Figure 12.1: The morphological con�guration of the cementite plate embedded in the ferrite matrix, with
length (or width) and length represented by wf and lf, respectively.

ble a solid square-plate with faceted terminations that extends across the grain. Therefore,
in the present analysis, the domain shown in Fig. 12.1 is considered, wherein the faceted
three-dimensional cementite structure is encapsulated by ferrite. Analogous to pearlite, these
phases ferrite and cementite are in chemical equilibrium.

The geometrical parameters which dictate the dimensions of the precipitate are included
in Fig. 12.1. The length (or width) of the structure is represented by wf, while lf denotes its
thickness. The aspect ratio of the plate, which characterises the size of the structure, is the
ratio of its length and thickness (wf

lf
). Since the aspect ratio of the cementite in the microstruc-

ture varies with the composition and heat treatment, the evolution of plates with di�erent
aspect ratio is investigated. To achieve the desired aspect ratio, the length of the structure is
varied while its thickness remains unchanged. Moreover, consistent with the experimental
reports on �ne pearlite structures [81], the thickness of the plate is set at lf = 0.01µm. The
size of the simulation domain is changed proportionately with the aspect ratio of the plate.
Furthermore, for a given size, the in�uence of the boundary on the transformation is averted
by considering an optimum domain size.

12.2 Termination-migration assisted spheroidization

Experimental studies on sub-critical annealing indicate that the distortion of the lamellar ar-
rangement begins with the breaking-down of continuous structure into �nite isolate precip-
itates [240]. This break-down of the seemingly in�nite structures is achieved either by ovu-
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Figure 12.2: The shape of the faceted precipitate of aspect ratio 15 at the initial (t0:sf), midpoint (t1/2:sf)
and �nal stage (t1:sf) of the spheroidization.

lation near the grain boundaries [81] or thermal grooving [73]. Although the spheroidization
initiates with the disintegration of the continuous structures, the morphological transforma-
tion of the isolated plate predominantly dictates the kinetics and distribution of the cementite
particles.

12.2.1 Transformation kinetics

Owing to two factors, theoretical analysis on the pearlite spheroidization have hitherto been
limited. One, the faceted morphology of the precipitate, which makes the curvature di�er-
ence analytically ill-de�ned. Two, the dominant mode of mass-transfer that demands three
dimensional consideration. However, since the phase-�eld approach elegantly handles these
limiting factors, the present study renders a critical insight on the morphological evolution of
cementite during pearlite spheroidization.

The temporal change in the shape, which accompany the spheroidization of the cementite
plate of aspect ratio 15 is shown in Fig. 12.2. In view of the existing framework of the analytical
treatment, the morphology assumed by the precipitate at the initial (t0:sf), midpoint (t1/2:sf) and
�nal stages (t1:sf) of the spheroidization is chosen to represent the morphological evolution in
Fig. 12.2. It is evident that, similar to the pancake morphology, the faceted plate transforms
to a button-like structure at the midpoint. Furthermore, Fig. 12.2 unravels that, although the
cementite plate assumes an the ellipsoidal shape at the midpoint of the spheroidization, it
holds a unique geometrical relation associated with the oblate spheroid, af = bf > cf, where
af, bf and cf are semi-major and -minor axes lengths, respectively.

Previous theoretical analyses of curvature-driven transformations in two- and three-dimensional
shapes suggest that, for a given structure, the aspect ratio of the precipitate at the midpoint
of the evolution is independent of its initial aspect ratio. Often, this characteristic behaviour
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Figure 12.3: The aspect ratio of the prolate spheroid, which is formed at the midpoint of the spheroidization
of di�erent faceted plates.

of the shape-instability is exploited to analytically ascertain the kinetics of evolution. How-
ever, faceted morphology of the cementite in pearlite prevents such analytical delineation of
the kinetics. Although hemispherical caps can be augmented along the edges and corners
of the plates [8, 162, 192], these inclusions disrupt the physical resemblance of the struc-
ture and in�uence the analytical treatment. Therefore, the transformation kinetics governing
the volume-di�usion governed pearlite spheroidization is ascertained exclusively through the
phase-�eld simulation.

Despite the preclusion of the analytical treatment, in order realise the geometrical con�g-
uration of the precipitate at the midpoint of spheroidization, the aspect ratio of the midpoint
oblate-spheroid is ascertained from the phase-�eld simulations. The in�uence of the initial
size of the cementite structure on the aspect ratio of the midpoint ellipsoid is illustrated in
Fig. 12.3. Analogous to the previous observations, the curvature-driven transformation yields
a midpoint morphology which is independent of its initial aspect ratio. Furthermore, it is
identi�ed that the aspect ratio of the midpoint oblate-spheroids is af

cf
≈ 1.3.

A cementite precipitate is considered spheroidised when its aspect ratio is equal to 1.
Fig. 12.3 indicates that, at the midpoint of the transformation, the precipitate is much closer
to its �nal stage than its initial con�guration. Therefore, by estimating the in�uence of oblate
spheroids on the mechanical properties, which is intuitively expected to be similar to the
spheroidal structures, the thermal cycle for the sub-critical annealing can be formulated cor-
respondingly. Furthermore, the relation af

cf
≈ 1.3 can be employed to the evaluate the degree

of spheroidization.
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The other factor which facilitate the calculation of the spheroidization rate is the amount
of atomic migration required to the completely spheroidise the structure, referred to as the
required mass transfer (δVsf) [8]. Analytically, the required mass-transfer is approximated by
eliminating the volume shared by initial and �nal con�guration of the precipitate from the
overall volume of the structure. The characteristic feature of the curvature-driven transfor-
mation, wherein the volume of the phases are preserved owing to the chemical equilibrium,
facilitates the calculation of the required mass-transfer. However, with increase in the as-
pect ratio of the plate the cementite volume increases, and correspondingly, the amount of
mass transfer which is required to establish the spherical shape increases [8]. Therefore, the
transformation kinetics is determined by monitoring the time taken for the spheroidization
of plates with di�erent initial aspect-ratio.

Based on the outcomes of the phase-�eld simulations, the time taken for the spheroidiza-
tion of cementite plates of various aspect-ratio is plotted in Fig. 12.4. Owing to the increase
in the required mass-transfer with the aspect ratio, the transformation time monotonically
increases with size. By �tting the data points, the in�uence of size on the spheroidization rate
can be expressed as

t1:sf ∝
(
wf

lf

)2.39

, (12.1)

where t1:sf is the dimensionless-time taken for the spheroidization of the cementite and wf
lf

is
the initial aspect ratio of the cementite plate. It is vital to note that the relation in Eqn. 12.1
encompasses the e�ect of the transformation mechanism, unlike the analytical treatment
wherein the temporal evolution of the curvature di�erence is assumed. Furthermore, de-
crease in the spheroidization rate with precipitate size, as shown in Fig. 12.4, indicates that
the mechanism governing evolution is identical in the plates considered. However, the sub-
stantial understanding on the spheroidization mechanism cannot be gained from the kinetics
plot alone. Therefore, the morphological evolution of the cementite plate is extensively stud-
ied to recognize the transformation mechanism.

12.2.2 Spheroidization mechanism

Fig. 12.5 illustrates the progressive change in the shape of the precipitate of aspect ratio 15,
with time, during spheroidization. A similarity in morphology of the faceted plate, when
compared to the pancake and elliptical structure, is the predominant presence amount of �at
surfaces. However, despite the presence of the signi�cant amount of �at surfaces, the trans-
formation mechanism of the cementite plate is substantially di�erent from other unconven-
tional three-dimension structures studied in the preceding chapters. While the pancake and
elliptical plates evolved through the �attening of the numerous termination ridges, Fig. 12.5
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Figure 12.4: The monotonic increase in the time taken for the spheroidization of the cementite plate with
increasing aspect ratio.

indicates that the faceted plates transforms through the stable growth of the perturbation. The
morphological aspect which facilitates the stable growth of the ridges in the faceted plates is
the presence of the sharp corners.

For an exhaustive elucidation of the spheroidization mechanism, the distribution of the
chemical potential, which directs the morphological changes, is included Fig. 12.5. From the
outset, owing to the curvature di�erence, the �at surfaces assume low potential while the
high potential is established along the termination of the plate. The termination which as-
sumes relatively high-potential includes faceted edges and sharp corners, wherein the edges
abut. Since the morphological con�guration of the edges are signi�cantly di�erent from the
sharp corners, a non-uniformity is established in the distribution of the high potential. This
inhomogeneity in the high-potential distribution, which re�ects the disparity of the curva-
ture within the termination, is graphical represented in Fig. 12.5 at t = 0. Irrespective of the
di�erence in the high-potential region, the overall potential-gradient induces mass transfer
from the termination to the near-by �at faces. This mass transfer results in the recession of
the edges and corners, which consequently leads to the formations of thick ridges around the
�at surfaces of the plate. The unique morphology of the precipitate at t = 30 in Fig. 12.5,
particularly the the di�erence in the size of the edge and corner perturbations vindicates the
non-uniformity in the high-potential distribution.

With time, as the transformation proceeds, this disparity in the terminations continues to
decrease through the migration of the termination towards the center of the plate. At t = 73,
the variation in the perturbation size along the termination is visibly subsided. Any minimal
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Figure 12.5: The termination-migration assisted spheroidization of cementite plate of aspect ratio 15. The
potential distribution in the internal �at-region of the plate and the faceted termination is shown by con-
sidering a quadrant. The distinct changes in the distribution is included.

di�erence between the edges and corners completely vanishes as the precipitate assumes an
ellipsoidal shape at t = 150. In other words, the high and non-uniform potential established
initially around the plate (t = 0) becomes uniform as the precipitate transforms to an ellip-
soidal shape (t = 150). Despite becoming uniform, the potential surrounding the precipitate
remains high when compared to the central region of the plate. This di�erence between the
uniform potentials, ultimately spheroidises the cementite structure. Since the morphological
evolution primarily results from the recession of the corners and edges, the transformation
mechanism is referred to as termination-migration assisted spheroidization.

The spheroidization of the faceted plates is dictated by the stable growth of the termination
ridges. Therefore, the transformation cannot be distinguished into stages based on the mor-
phological evolution, as in the globularisation of pancake and elliptical structures. However,
a similar distinction can be made based on the temporal change in the potential distribution.

The entire mechanism of termination-migration assisted spheroidization can be summarised
in two steps as illustrated by the three-dimensional representation of potential distribution
in Fig. 12.5. In the early stages of the evolution, the potential around the plate is high and
varying (non-uniform) due to the inhomogeneous curvature di�erence between the edges
and corners (t = 30). Although the variation in the potential introduces a considerable dif-
ference in the mass transfer, as the precipitate evolves, the disparity is progressively reduced.
Accordingly, the �rst step of the spheroidization is characterised by the complete neutralisa-
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Figure 12.6: The transformation of a relatively-large faceted cementite plate of aspect ratio 35 at the
beginning of the spheroidization. The increase in potential at the speci�c spots (O) of the �at surface leads
to the formation circular discontinuities called ‘holes’ .

tion of the curvature di�erence within the termination. At the end of this step, as the high
and varying potential becomes high and uniform potential, the precipitate transforms to an
ellipsoidal shape (t = 150). The subsequent step is driven by the di�erence in the uniform
high- and low-potential established along the termination and central region of the precipi-
tate, respectively. As the curvature di�erence completely vanishes, the precipitate becomes
spheroidal.

12.3 Discontinuities assisted spheroidization

Experimental observations indicate the a wide range of isolated plate with di�erent aspect
ratios are formed in the initial stages of the static (or sub-critical) annealing [242]. Therefore,
the simulation study is extended to the plates with relatively large aspect-ratio to examine a
plausible change in the transformation mechanism.

12.3.1 Onset of the holes

Fig. 12.6 shows the initial stages of the spheroidization of the plate with aspect ratio 35. As
discussed in the previous section, the morphological evolution begins with the termination
migration, which consequently leads to the formation of ridges around the �at faces of cemen-
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Figure 12.7: The temporal evolution of the circular discontinuities accompanying the morphological trans-
formation of cementite plate of aspect ratio 35. The potential distribution is overlayed on the plate (quad-
rant) to unravel the di�usion associated with the growth of the holes.

tite plate (t = 12). Owing to the disparity in the curvature within the termination, thicker
perturbations are introduced at the corners, analogous to the smaller plates. However, in
contrast to the smaller precipitates, wherein the non-uniformity in the termination ridges
vanishes with time, in the plate of aspect ratio 35, the thicker corner-perturbation continues
remain stable, as shown Fig. 12.6 at t = 15. Moreover, directed by the curvature di�erence
established between the thick corner-ridges and adjoining regions, the potential at the spe-
ci�c symmetric-spots of the �at surfaces, which invariably assume low potential in the smaller
plates, increases. The three-dimensional representation of the potential distribution along the
appropriate section of the plate, which is included in Fig. 12.6, illustrates the raise in chemical
potential.

The increase in the potential at speci�c spots adjacent to the corner perturbations, induces
mass transfer identical to the ‘contra-di�usion’ observed during the curvature-driven trans-
formation of the �nite rods [5]. This contra-di�usion in cementite facilitates the mass from the
�at-surface spots to the receding corner perturbations. Consequently, as shown in Fig. 12.6 at
t = 15, the thickness of the plate at these spots are visibly decreases. The unhindered mass
transfer from the spots, governed by the contra-di�usion, ultimately results in the formation
of circular discontinuities called ‘holes’ , at t = 18 in Fig. 12.6. Although several postula-
tions have been made for the formation of discontinuities in cementite during the pearlite
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growth, [164, 243], a clear understanding on the onset of the holes during spheroidization,
though experimentally observed, has not been convincingly reported. Based on the phase-
�eld simulations, this study renders the �rst theoretical description for the formation of the
holes during morphological evolution associated with the sub-critical annealing.

12.3.2 Growth of the holes

The shape-change exhibited by the cementite plate, subsequently following the onset of dis-
continuities, is presented in Fig. 12.7. Additionally, the distribution of the chemical potential is
overlayed on a quadrant of the precipitate, and included in Fig. 12.7, to explicate the di�usion
paths that aide the growth of the discontinuities. It is evident from the illustration that, with
time, the holes begin to grow by transferring mass from the inner rim of the discontinuities,
high-potential region, to the adjacent �at surface, which act as the low-potential sink. Despite
the growth, the morphology of the discontinuities remains circular.

The deposition of mass, which is transferred from the inner rim of the discontinuities,
to the adjacent �at region results in the formation of thick ‘bank’ around the circular holes.
Although the banks introduce a curvature di�erence in the �at region which favours its �at-
tening, since the rate of the mass transferred from the discontinuities is greater, the banks
surrounding the holes remain stable. These ridges around the holes grow proportionately
with the expansion of the discontinuities and become noticeably thick at t = 27 in Fig. 12.7.
As the transformation proceeds, with the growth of discontinuities, the banks converge at the
region separating the holes. Consequently, as shown in Fig. 12.7 at t = 36.8, the precipitate
sandwiched between the holes assume an unique morphology.

12.3.3 Coalescence of the discontinuities

The morphology of the region separating the discontinuities is shown in Fig. 12.8 by consider-
ing its cross-section. At t = 46.44, the corresponding section of the plate which is between the
holes, appears to have been disrupted by de�nite perturbations. As elucidated in the previous
section, this characteristic morphology is due to the convergence of the discontinuity-banks
at the regions separating the holes. Although in the subsequent transformation, the size of
the holes appears to remain unchanged, the precipitate extending across the holes exhibit
shape-change.

As shown in Fig. at t = 52.44, the apparent perturbations in the cross-section of the plate
begin grow, not governed by the expansion of the discontinuities, but similar to the Rayleigh-
instabilities. The growth of the ridges in the bridging-region, which separates the holes,
subsequently changes the morphology of the discontinuities. Analogous to the Rayleigh-
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Figure 12.8: The fragmentation of the region separating the discontinuities in the cementite plate of aspect
ratio 35, resulting in the coalescence of holes.

instabilities, wherein the continuous rod fragments in response to the externally introduced
perturbation, the bridging-section of the precipitate breaks-o� governed by the perturbation
induced by the converging discontinuity-banks. The disintegration of the region separating
the holes, as shown in Fig. 12.8 at t = 65.63, results in the coalescence of the discontinuities.

The coalescence of the holes splits a single precipitate into two distinct entities, at t =

65.63, a cementite island and surrounding network. The subsequent shape-change in the
spheroidization is governed by the combinatory curvature-driven transformation of the is-
land and network. Furthermore, it is evident from Figs. 12.6, 12.7 and 12.8 that during the
onset, growth and coalescence of the holes, the size of the precipitate does not vary signi�-
cantly. In other words, although the initial stages leading-up to the onset of holes is governed
by the termination migration, the subsequent morphological evolution of the precipitate is
predominantly dictated by the discontinuities. Therefore, this mode of transformation is re-
ferred to as discontinuities-assisted spheroidization.

12.3.4 Thermodynamical consistency of the growth and coalescence
of the holes

Conventionally, since the three-dimensional plates are stable to any perturbations, its mor-
phological stability is ascertained by introducing discontinuities. In order to investigate the
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Figure 12.9: The temporal change in the geometric parameter k and n which monitor the growth of the
circular discontinuities in the cementite plates of aspect ratio 35 (curve 1) and 40 (curve 2) is plotted along
with thermodynamic criterion which ensures the decrease in the interfacial energy of the system [244, 241].

evolution of the pre-existing circular discontinuities in an in�nitely large plate of thickness l,
two geometrical parameters k and n are de�ned [244, 241]. For a given morphological con-
�guration, the parameters k and n are determined by

k =
â

l
(12.2)

and

n =
â

R̂
, (12.3)

where R̂ and 2â correspond to the radius of the circular discontinuity and distance between
them from the center. In the absence of the phase transformations i.e, when the volume of
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the constituent phases are preserved, it has analytically been shown that the discontinuities
grow only under a speci�c geometric-condition, which is expressed as

4n3 − 8kn2 + πn+ 2πk ≤ 0. (12.4)

The criterion in the above Eqn. 12.4 ensures that the growth of the discontinuities is consistent
with the reduction of the overall interfacial area per unit volume.

As opposed to the holes which are introduced apriori in the analytical treatments [244,
241], the discontinuities in the cementite plates are inherently formed during the morpholog-
ical evolution. Despite this di�erence, since the evolution of the holes in both these cases is
expected to be governed by the same thermodynamical driving-force, which decreases interfa-
cial energy of the system, the evolution of the discontinuities accompanying the spheroidiza-
tion of the cementite plate is analysed in relation to the criterion in Eqn. 12.4.

In Fig. 12.9, the geometrical criterion for the growth of the discontinuities is graphically
represented by solid-continuous brown line. The parameters k and n are measured for the
circular discontinuities induced during the spheroidization of plates of aspect ratio 35 and
40. The temporal changes in these parameters k and n are plotted in Fig. 12.9 as curve 1

and 2, representing the plates of aspect ratio 35 and 40, respectively. The visible di�erence
in the initial position of the curves in Fig. 12.9 is due to the di�erence in the transformation
rate between the plates. As shown Fig. 12.9, all-through the evolution, the parameters k and n
pertaining to both the plates are con�ned to the the region de�ned by the criterion in Eqn. 12.4.
This characteristic evolution of the parameters k and n indicates that the growth of the holes,
accompanying spheroidization, is thermodynamically consistent and is driven towards the
decrease in the interfacial energy of the system.

In Fig. 12.9, the tail-end of the temporal change in the geometric parameters k and n is
zoomed-in and included as a subset. This graphical representation unravels that towards the
end of the discontinuities-growth, the parameters k and n cross over a curve de�ned as n =

2k
2k−1

. The onset of Rayleigh-like instabilities is analytically described by this curve. There-
fore, the migration of the geometric parameters across the Rayleigh curve (solid-continuous
black line) suggest that the coalescence of the holes occurs by the growth of perturbations.
Although, in the previous section, the disintegration of the region separating the discontinu-
ities is elucidated based on the shape-change exhibited by its cross-section, Fig. 12.9 reveals
that the coalescence is established by the Rayleigh-instabilities.

12.3.5 Fragmentation of the cementite network

The coalescence of the discontinuities results in the formation of individual island and sur-
rounding cementite. The morphological changes ensuing the merging of the holes is shown in
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Figure 12.10: The formation of the separate cementite entities through the breaking-up of the cementite
network. A three-dimensional representation of the chemical-potential distribution which direct the mass
transfer is included.

Fig. 12.10. Furthermore, three-dimensional representation of the transitory potential-distribution
which underpin the transformation in included in Fig. 12.10. The regions of low potential are
highlighted to show the mass-transfer sinks in the precipitate.

Moments before the coalescence of the holes, the perturbations formed by the coalescence
of banks introduces potential gradient in the bridging section of the precipitate. Correspond-
ingly, while speci�c sections of the region separating the holes assume high-potential, as
shown in Fig. 12.10 at t = 46, the central region becomes a dominant sink to the mass trans-
fer. Moreover, it is evident from the potential-distribution plot that, in addition to the central
region, low potential is established in the inner corners of the precipitate. Governed by the po-
tential di�erence, the mass gets transferred towards the low-potential sinks which ultimately
disintegrates the precipitate into two distinct entities, Fig. 12.10 at t = 89. The formation of
the island and surrounding network has been observed in the theoretical studies involving
pre-existing discontinuities [34, 223].

As shown in Fig. 12.10 at t = 89, the residual section of the precipitate which bridged
the holes introduces inhomogeneity in the inner surface of the cementite network. This in-
homogeneity in the inner section of the network, consequently induces potential gradient
wherein the protrusions become the source of mass transfer. Moreover, since the volume of
the island is substantially lower than the network, the potential in the correspondingly re-
gion increases in relation to its surroundings. Dictated by the potential-distribution, and the
resulting mass transfer to the adjacent sink, the protrusion in the inner section of the cemen-
tite network abates, . Similarly, due to Ostwald ripening, the island begins to shrink with the
mass predominantly transferred to the inner corners of the precipitate At t = 123, as shown
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in Fig. 12.10, the precipitate island and the inhomogeneity in the network disappears due to
the progressive mass transfer to the sink.

The accumulation of the mass in the inner corners of the network, renders an appropriate
morphology, which reduces the chemical-potential in that the region. This decrease in poten-
tial at the corners induces a potential distribution, as shown in Fig. 12.10 at t = 123, which
favours mass transfer from the edges of the network to the sink. The continued migration
of the mass to the low-potential corner, intensi�es the distribution and raises the potential
at the midri� of the edges. Consequently, as shown in Fig. at t = 202, the precipitate net-
work fragments and ultimately, yields four independent entities each pertaining to a corner of
the network. These entities, governed by the inherent di�erence in the curvature, transform
independently into individual spheroids.

In the termination-migration assisted spheroidization, the sharp corners of the faceted
plates enables the stable growth of the perturbation. Additionally, in the discontinuities as-
sisted spheroidization, these corners introduce an appropriate potential-distribution which
facilitates the fragmentation of the cementite structure. While the pinching-o� of the net-
work in the pancake structure is not consistently elucidated in the modi�ed perturbation
theory [44], the orthogonal corners in the cementite structure govern the network break-o�
during the spheroidization.

12.3.6 Variations in discontinuities assisted spheroidization

Experimental observations suggest that the aspect ratio of the cementite plate involved in the
pearlite spheroidization extend upto 70 [242]. Therefore, the present numerical analysis is
extended to plates of aspect ratio greater than 40 to explicate any deviation in the previously
discussed transformation mechanism. The shape-change associated with the spheroidization
of the faceted plate of aspect ratio 50 is shown in Fig. 12.11.

Irrespective of the size, owing to the �nitude of the precipitate, the morphological trans-
formation begins introduction of high potential along the edges and corners, which conse-
quently leads to the formation of termination ridges. However, with increase in the aspect
ratio, the size of the ridges proportionately increases. Correspondingly, the larger pertur-
bations induced in the plate of aspect ratio 50 introduce an appropriate curvature-di�erence,
which initiates contra-di�usion, along both edges and corners of precipitate. In smaller plates,
as shown in Fig. 12.7, such curvature-di�erences are con�ned to the corners. As a result, the
potential in the regions adjacent to the edges and corners increases, actuating a reverse mass-
transfer towards the termination. The continued contra-di�usion, as shown in Fig. 12.11 at
t = 24, nucleates discontinuities that extend along the edges of the plate, in addition to the
holes that are close to the corners. In other words, with the increase in the aspect ratio, the
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Figure 12.11: The morphological evolution associated with the spheroidization of the cementite plate of
aspect ratio 50.

morphology and the size of the discontinuities which are induced by the contra-di�usion
consistently vary.

In addition to the corners, since the discontinuities in the larger plates extend along the
edges, the coalescence occurs at a relatively-shorter duration. Fig. 12.11 shows the formation
of cementite island and network by the merging of the discontinuities at t = 46. The evolu-
tion of the island and cementite network are analogous to its evolution in the smaller plate
(Fig. 12.10). The inhomogeneity introduced in the network by the coalescence of the discon-
tinuities abates through the mass transfer to the sinks. However, owing to the increased size,
the island independently spheroidises, instead of shrinking. At t = 123, while the inner mor-
phology of the network becomes visibly uniform, whereas a central hole in induced in the
island.

The network, similar to the smaller plates, governed by the accumulation of the mass
in the sinks, and the resulting potential distribution, disintegrates into individual entities as
shown in Fig. at t = 238. However, much di�erent from the plate of aspect ratio 35, the
fragmentation of network yields satellite particles along with the independent corner entities
in the larger structures. Furthermore, the island which vanished due to the coarsening in the
smaller precipitate, remains stable throughout the morphological evolution.

It is evident in Fig. 12.11 that there exists a signi�cant di�erence in the size of the indi-
vidual precipitates at t = 238. Particularly, the satellite particles are much smaller than the
neighbouring corner entities and central island. Therefore, owing to this disparity in size, the
Ostwald ripening would set-in with time, which ultimately reduces the number of indepen-
dent spheroids emerging from the morphological transformation.

12.4 Cut-o� aspect ratio

In large-scale sub-critical annealing, the precipitates are rarely allow to transform till the as-
pect ratio becomes 1. However, in order to distinguish the spheroidised precipitate from the
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Figure 12.12: The cut-o� criterion, which is adopted in the industrial heat-treatment techniques to distin-
guish spheroidised precipitate in a given microstructure, is ascertained from the evolution of the cementite
and plotted along with the existing criteria.

rest, a cut-o� criterion is de�ned, based on the size of the individual cementite structure. Con-
ventionally, the cut-o� is the maximum aspect-ratio, which renders a single particle without
exhibiting any more fragmentations. Therefore, the cut-o� is always greater than 1, and when
the size of the evolving structure gets smaller than this criterion, it is deemed as a spheroid.

Owing to the lack of in-situ observation, a complete consent in the cut-o� criterion has
not been achieved yet. The existing criteria include the early suggestion of Chojnowski and
Tegart of 5 : 1 [245], which was increased to 8 : 1 (or 6 : 1) by Chattopadhyay and Sell-
ars [242], and recently, reduced again to 3 : 1 by O’Brein and Hosford [239]. The present
theoretical investigation of the morphological evolution of the faceted plates unravels that
the disintegration of the network is the �nal fragmentation of the spheroidization. Therefore,
the aspect ratio of the structure immediately following the pinch-o� of the network is plotted
along with the existing criteria in Fig. 12.12. This illustration suggests that the cut-o� aspect
ratio of 3 : 1 is the most appropriate criterion for de�ning the spheroidization in large-scale
industrial heat treatments.

12.5 Conclusion

By employing phase-�eld approach, which is recovers the sharp-interface laws, the morpho-
logical evolution associated with the pearlite spheroidization is analysed. It is identi�ed that
the spheroidization of the plates of aspect ratio 27 and below, is entirely governed by the
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recession of the edges. This mechanism, wherein the plate appears to be shrinking towards
its center by the migration of the boundaries, is referred to as termination-migration assisted
spheroidization. Since the given plate transforms into a single spheroid, the position of the
precipitate is a�xed to its center.

In case of the larger plates, aspect ratio 28 and above, the transformation mechanism is
signi�cantly altered by the introduction of discontinuities. Although the spheroidization is
initiated by the termination-migration, in these plate, the transformation is predominantly
governed by the growth and coalescence of the discontinuities. Therefore, these morpho-
logical evolutions are called as discontinuities assisted spheroidization. In contrast to the
termination-migration assisted transformation, in this mechanism a single plate transforms
into multiple spheroids. The size and distribution of the spheroids, as shown in Figs. 12.10
and 12.11, depend on the morphology of the discontinuities which is dictated by the initial
aspect-ratio of the plate.





Part V
Conclusion





Chapter 13

Conclusion

13.1 Summary

Understanding shape-instability induced morphological transformations which are governed
by the volume-di�usion requires consideration of the entire system. In conventional ap-
proaches, encapsulating the temporal changes in the dynamic variables across the entire
domain is strenuous task. However, in the present work, the volume-di�usion governed
curvature-driven evolutions are e�ciently analysed by adopting phase-�eld technique. The
morphological changes in the sharp-interface treatment are monitored by tracking the in-
terface. For complex two- and three-dimensional evolutions the interface tracking becomes
numerically convoluted. This intricacy is implicitly averted by the introduction of the scale
variable, phase �eld. Furthermore, in the curvature-induced transformation, the volume frac-
tion of the phases remains unchanged, despite the temporal change in the shape. Often, in
the phase-�eld framework, the volume fraction is conserved by solving the Cahn-Hilliard type
equation which is relatively more expensive than the time-dependent Ginzburg-Landau equa-
tion. As discussed in Chapter 5 , this thermodynamical condition is quantitatively achieved
by establishing chemical equilibrium between the phases through the incorporation of the
CALPHAD data.

The analysis of the shape-instability, through the present numerical approach, signi�-
cantly deepens the current understanding, while being consistent with the existing studies.
The investigation on the temporal evolution of the lamellar arrangement, by unravelling the
diminishing in�uence of the neighbours with the spacing, renders a convincing support for
analysing the stability of the isolated structures. Subsequent analyses on the morphologi-
cal transformation of the isolated �nite-structures, in two and three dimension, o�er critical
insights on the mechanism and the kinetics of the evolution in relation to the initial con�gu-
ration of the precipitate. While the transformation of the two-dimensional rod-like structure
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is independent of the initial size, a signi�cant change in the mechanism is observed in the
three-dimensional rods, beyond a critical aspect-ratio, through the introduction of ovulation.
Furthermore, a unique evolution scheme, which is consistent with the well-established ana-
lytical prediction, is exhibited during the transformation of the circular and elliptical plates.
While the mechanism is independent of the size in pancake and elliptical structures, the mor-
phological evolution of the larger faceted plate are directed by the onset and growth of discon-
tinuities. The e�ect of these mechanism on the kinetics and the distribution of the resulting
structures have been extensively analysed in the present work.

13.2 Outlook

Despite the extensive study on the volume-di�usion governed shape-instability in the isolated
structures, several other microstructural transformations which can adequately be examined
through the present approach are not included in this work. Therefore, the established appli-
cability of the phase-�eld approach, elucidated in Chapters 4 and 6, is concisely discussed in
this section to explicate its potential.

13.2.1 In�uence of neighbouring structures

As described in Chapter 7, the morphological stability of the precipitate is considerably in�u-
enced by the surrounding structures. Since this in�uence depends on the spacing between the
phases, the subsequent studies assumed coarse-microstructural condition wherein the role of
the neighbours are minimal. However, preliminary work has shown that the present phase-
�eld approach can be employed to analyse the in�uence of the surroundings on the curvature-
driven evolutions [246]. Particularly, the e�ect of interlamellar spacing on the stability of the
lamellar microstructure. It has been identi�ed that the neighbouring precipitates in�uence
both the kinetics and the mechanism of the morphological evolution. Therefore, the phase-
�eld technique can be adopted to extensively examine the role of neighbouring structures, of
identical and (or) di�erent shape, on the transformation. Such investigations would signi�-
cantly expand the current understanding on the stability of the microstructure, and possibly,
the realisation of an ‘acceleration �eld’ [247].

13.2.2 Volume and surface di�usion

Theoretical analyses of the shape-instability are largely con�ned to one mode of mass trans-
fer, either volume or surface di�usion [248, 249, 5, 4]. Both these modes are rarely considered
in a single framework. Physically, microstructural transformations, though governed by one
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Figure 13.1: The outcomes of the preliminary analysis on the co-operative growth of the mutually-
accommodating plates and ovulation at the grain boundary.

of these modes of mass transfer, include the other mode as well. Therefore, a quantitative
analysis should accommodate both volume and surface di�usion. In the phase-�eld frame-
work, the di�erent modes of mass transfer have been incorporated and employed to study
the curvature-driven transformations [7, 250, 251, 252]. However, an exhaustive study en-
capsulating the prevalent duality in the mass transfer and its in�uence on the morphological
evolution is yet to be reported. To that end, the present numerical approach can be extended
to consistently analyse the de�nitive role of the surface and volume di�usion in a given trans-
formation.

13.2.3 Crystallographic orientation

Depending on the chemical make-up of the system, a speci�c crystallographic relation exists
between the phases in a microstructure. The crystallographic relation introduces anisotropy
to the interfacial energy, which consequently dictates the resulting morphology of the phases
during the transformation. In the phase-�eld modelling, the anisotropy is introduced by ap-
propriately formulating the contribution of the interfacial energy in the functional [253].
Moreover, it has recently been reported that the model described in Chapter 6 can be adopted
to incorporate the anisotropy through inelastic strains [160]. As shown in Fig. 13.1, this
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multiphase-�eld model simulates the growth of the mutually-accommodating plate while re-
covering the sharp-interface law at the triple junctions. Therefore, the present work, which
assumes isotropic interfacial energy, can be extended to included the e�ect of the crystallo-
graphic orientation on the shape-instability induced transformation.

13.2.4 Polycrystalline system

On a mesoscopic scale, conventionally, the microstructure includes numerous grains. The
evolution of the grains, during the static annealing, is entirely governed by the curvature dif-
ference. Since the phase-�eld approach inherently recovers the Gibbs-Thomson relation, the
grain growth has extensively been analysed in resent framework [254, 255]. As introduced
in Chapter 2, one substantial role of the grain boundary in the morphological transformation
of the lamellar structure is the fragmentation of the seemingly continuous structure. Pre-
liminary analysis of this grain-boundary ovulation unravels that the present model renders
a physically-consistent morphological transformation, as shown in Fig. 13.1. Therefore, the
postulated multiphase-approach can be adopted to polycrystalline setup to understand the
stability of the microstructure on a mesoscopic scale.
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Appendix A

Curvilinear co-ordinate system

Cartesian co-ordinate system is conventionally adopted for the theoretical treatment of the
problem. Often, these axes are transformed to other co-ordinate systems like spherical for
the ease of handling the variables. Since the curvature, which plays a critical role in the
Gibbs-Thomson relation, is elegantly de�ned in a curvilinear co-ordinate system, this sys-
tem is adopted for the present analysis. Furthermore, the following asymptotic treatment is
con�ned to two-dimension, as the role of the curvature is non-trivial in both two- and three-
dimensional setup.

To brie�y understand the transformation of the co-ordinate systems, a curved interface
(solid black line) and a point Q(x, y), as illustrated in Fig. A.1, is considered in a Cartesian
system. From a reference point O on the interface, a point P can be ascertained which is at
a distance of arclength S. Point Q lies along the normal to the interface at point P (u). Cor-
respondingly, a local curvilinear co-ordinate system (u, s) can be established by including s,
which is the tangent to the interface at P. The unit normal and tangential vector are repre-
sented by %̃ and %̄, respectively. The location of P from the origin is given by the position
vector ~R. Furthermore, the angle subscribed between the tangent and the axis parallel to the
x-axis is de�ned as θ. It is evident from Fig. A.1 that all the fundamental parameters %̃, %̄, ~R
and θ are in�uenced by arclength S.

The transformation from the Cartesian to the curvilinear co-ordinate system can be made
by


∂φ
∂s

∂φ
∂u

 = J−1


∂φ
∂x

∂φ
∂y

 (A.1)
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Figure A.1: Transformation of the 2-dimensional Cartesian co-ordinate system to the curvilinear system.

where J−1 inverse of the Jacobian matrix J which can be expressed as

J =


∂s
∂x

∂u
∂x

∂s
∂y

∂u
∂x

 .
In order to ascertain the matrix entities, a relation between the Cartesian and curvilinear
system is established. The Cartesian axes x and y are related to the unit base vectors %̃ and %̄
through

x = %̃xu+ %̄xs (A.2)

and

y = %̃yu+ %̄ys, (A.3)

respectively. These base vectors can be written in terms angle θ as %̃ → (sinθ,−cosθ) and
%̄ → (−cosθ, sinθ), since %̄ ∼ −∂%̃

∂θ
. Substituting the θ based description of the unit vectors

in Eqn. A.2 and A.3, the matrix entries pertaining to the X-axis are expressed as

∂x

∂u
= sinθ (A.4)

and
∂x

∂s
=

sin(θ(s))

∂s
+ %̄x = %̄x − ukcosθ. (A.5)
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It is vital to note that, in Eqn. A.5 the term k which represents the curvature is introduced
because dθ

ds
= −k. Extending similar treatment to the terms pertaining the Y-axis, the corre-

sponding matrix entities read

∂y

∂u
= −cosθ

∂y

∂s
= %̄y − uksinθ. (A.6)

By substituting Eqns. A.4, A.5 and A.6 in Eqn. A.1 the co-ordinate system can be transformed.
From the transformed Eqn. A.1, the corresponding expression for the gradient and the lapla-
cian in the curvilinear co-ordinate is deduced and written as

∇ → %̃
∂

∂u
+
( 1

1 + uk

)
%̄
∂

∂s
(A.7)

and

∇2 → ∂2

∂u2
+

(
1

1 + uk

)
k
∂

∂u
+

(
1

1 + uk

)2
∂2

∂s2
−

(
1

1 + uk

)3

u
∂k

∂s

∂

∂s
, (A.8)

respectively [88].



Appendix B

Geometrical treatment of
three-dimensional ellipsoid

Extending the analytical investigation to three-dimension correspondingly increases the com-
plexity of formulating the curvatures. Particularly, at the midpoint of the spheroidization
wherein the precipitate assumes an ellipsoidal structure, an appropriate description of the
curvature at the sources and sinks is required for the formulation of the free-energy. The
geometrical treatment employed to describe the curvature of the three-dimensional ellipsoid
is presented here.

B.1 Generalised approach

Principal curvatures at the point on a surface can be derived by de�ning a position vectorR.
In the framework of an orthogonal coordinate system, the point can be expressed as

R = (x, y, z) (B.1)

Considering that the each coordinate is function of two additional parameters, the position
vector reads

R = (x(u, v), y(u, v), z(u, v)). (B.2)

Based on these variables, a surface can be expressed as R = R(u, v). Following the existing
geometrical treatment [233], the curvature is derived by formulating the ‘fundamental forms
of the surface’ which involves derivatives of the position vector with respect to the funda-
mental variable u and v.

A curve on the surface, using the position vector R = R(u, v), can be de�ned by �xing
the parameter v at v0. Accordingly, the curve which is similar to latitude in sphere is written
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as

R = R(u, v0). (B.3)

A curve referred to as v-curve, can be de�ned similar to the u-curve in Eqn. B.3, by �xing u
at u0 which is expressed asR = R(u0, v). The point wherein the u-and v-curves intersect is
represented by the position vector asR(u0, v0). The tangent vectors to the u-and v-curves at
the point of intersection is written as

∂R

∂u
=
∂R

∂u
(u0, v0) and

∂R

∂v
=
∂R

∂v
(u0, v0), (B.4)

respectively. The second derivatives are correspondingly expressed at the intersection point,
P.

In order to describe the fundamental forms of the surface, a point Q is chosen of the surface
which is adjacent to the intersection point of the u-and v-curves. Therefore, the position
vector of the point Q reads R(u0 + du, v0 + dv), where du and dv are close to zero but not
equal to 0. The di�erential vector between the points is written as

dR = R(u0 + du, v0 + dv)−R(u0, v0). (B.5)

Through linear expansion, the di�erential vector between points P and Q can be simpli�ed as

dR =
∂R

∂u
du+

∂R

∂v
dv. (B.6)

The ‘�rst fundamental form’ of the surface at the point of intersection between the u-and
v-curves (P) is described by the dot product of the di�erential vector, dR. Correspondingly,
from Eqn. B.6, the �rst fundamental form at point P is expressed as

dR · dR =

[
∂R

∂u
· ∂R
∂u

]
︸ ︷︷ ︸

:=E

du2 + 2

[
∂R

∂u

∂R

∂v

]
︸ ︷︷ ︸

:=F

dudv +

[
∂R

∂v
· ∂R
∂v

]
︸ ︷︷ ︸

:=G

dv2, (B.7)

where, E, F and G �rst fundamental co-e�cients. By adopting these co-e�cients, the �rst
fundamental form is simpli�ed as Edu2 + 2Fdudv +Gdv2.

For the formulation of the second fundamental form, the cross product of the tangent
vectors in Eqn. B.4 is considered. This normal vector at point P is written as

n =
∂R

∂u
× ∂R

∂v
. (B.8)

The unit normal at point P on the surface, based on Eqn. B.8, is ascertained by

n̂ =
n

n
, (B.9)
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where the scalar length n is expressed as

n =

∣∣∣∣∂R∂u × ∂R

∂v

∣∣∣∣ . (B.10)

By using unit normal n̂, the ‘second fundamental form’ of the surface is written as[
∂2R

∂u2
· n̂
]

︸ ︷︷ ︸
:=Ẽ

du2 + 2

[
∂2R

∂u∂v
· n̂
]

︸ ︷︷ ︸
:=F̃

dudv +

[
∂2R

∂v2
· n̂
]

︸ ︷︷ ︸
:=G̃

dv2. (B.11)

The second fundamental form of the surface can be simpli�ed using the co-e�cients as Ẽdu2+

2F̃ dudv + G̃dv2.

According to Ref. [256], from Eqns. B.7 and B.11, the curvature at the point P can be
described as

k =
Ẽdu2 + 2F̃ dudv + G̃dv2

Edu2 + 2Fdudv +Gdv2
. (B.12)

The above Eqn. B.12, expressed as the ratio of the second and �rst fundamental form, describes
the curvature at P along the direction PQ. Therefore, by appropriate consideration of the
orthogonal system and the fundamental variables (u and v), the principal curvatures at point
for a given three-dimension structure can be estimated.

B.2 Principal curvatures of ellipsoidal structures

The equation of a three-dimensional ellipsoid reads

x2

a2
+
y2

b2
+
z2

c2
= 1. (B.13)

When the angular variables, like eccentric anomalies, are considered as the fundamental pa-
rameters (u and v), the variables pertaining to the orthogonal coordinate system are expressed
as

x(θ) = a cos θ, (B.14)

y(θ,Θ) = b sin θ cos Θ,

z(θ,Θ) = c sin θ sin Θ.

Correspondingly, based on the angular parameters θ and Θ, the position vector dR = dR(θ,Θ)

describes a point on the ellipsoidal surface.
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By adopting the aforementioned generalised geometrical treatment to the present ellip-
soidal system, the co-e�cients of the �rst fundamental form of the surface is written as

E = a2 sin2 θ + cos2 θ(b2 cos2 Θ + c2 sin2 Θ), (B.15)

F = (c2 − b2) sin θ cos θ sin Θ cos Θ,

G = sin2 θ(b2 sin2 Θ + c2 cos2 Θ).

Furthermore, the second fundamental co-e�cients for the present ellipsoidal surface reads

Ẽ = abc
(
b2c2 cos2 θ + a2c2 sin2 θ cos2 Θ + a2b2 sin2 θ sin2 Θ

)− 1
2 , (B.16)

F̃ = 0,

G̃ = abc sin2 θ
(
b2c2 cos2 θ + a2c2 sin2 θ cos2 Θ + a2b2 sin2 θ sin2 Θ

)− 1
2 .

Although by involving Eqns. B.15 and B.16, the curvature at a point on the ellipsoidal sur-
face can be determined from the ratio of the �rst and second fundamental forms (Eqn. B.12), a
simpler approach is employed to directly calculate the radius of curvature [256]. The principal
radii of the curvature, which is the reciprocal of the principal curvature, is expressed as

R1 =
1

H−
√
H2 −K

(B.17)

R2 =
1

H +
√
H2 −K

,

where H and K represent the mean and Gaussian curvature. The mean and Gaussian curva-
ture, based on the �rst and second fundamental co-e�cients of the ellipsoidal, are ascertained
by

H = 1/2

[
ẼG+ F̃E − 2G̃F

EG− F 2

]
(B.18)

K =
ẼF̃ − G̃2

EG− F 2
,

respectively.
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