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ABSTRACT 

KALYPSO is a novel detector operating at line rates above 10 Mfps. It consists of a detector board connected to FPGA 
based readout card for real time data processing. The detector board holds a Si or InGaAs linear array sensor, with 
spectral sensitivity ranging from 400 nm to 2600 nm, which is connected to a custom made front-end ASIC. A FPGA 
readout framework performs the real time data processing. In this contribution, we present the detector system, the 
readout electronics and the heterogeneous infrastructure for machine learning processing. The detector is currently in use 
at several synchrotron facilities for beam diagnostics as well as for single-pulse laser characterizations. Thanks to the 
shot-to-shot capability over long time scale, new attractive applications are open up for imaging in biological and 
medical research. 

Keywords: line scan detector, micro-strip detector, ultra-fast imaging, high data throughput readout, machine learning 
for photon science, artificial intelligent     
 

1. INTRODUCTION  
Photon science research depends radically on the developments of sensors and readout technologies for fast imaging. 
These technologies enable a wide range of applications in e.g. beam diagnostics, tomography, and spectroscopy. The 
repetition rate of commercially available linear array detectors is a limiting factor for emerging photon science 
applications. To overcome these limitations, KALYPSO (Karlsruhe Linear arraY detector for MHz rePetition rate 
SpectrOscopy), an ultra-fast and a wide-field of view linear array detector operating above 10 Mfps, has been developed. 
A silicon micro-strip sensor is connected to custom, cutting-edge front-end ASICs in order to achieve an unprecedented 
frame rate in continuous readout mode. The system is designed for spectral range of near-infrared, visible and near-
ultraviolet. The detector is connected to a novel readout system based on the ZYNQ Ultrascale+ MPSoC for high-
performance real-time data processing based on artificial intelligence (AI) techniques. The system, operating at mega-
frame rates, is a unique platform combining fast detector electronics and artificial intelligence for photon science 
research. Novel applications of this system include classification of biological cells and tissues in microscopic images 
performed with an unprecedented precision. This paper is organized as follows: the first section presents the KALYPSO 
detector and its sensor as well as the front-end ASICs, the second section describes the high-performance heterogeneous 
FPGA - GPU (Graphics Processing Unit) data acquisition system. The third section discusses the novel Machine 
Learning (ML) architecture embedded within the heterogeneous FPGA-GPU framework. 
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2. KALYPSO 
KALYPSO has originally been developed for the upgrade of the Electro-Optical Spectral Decoding experiments at the 
KIT research synchrotron light source KARA [1]. Later KALYPSO was also used at the European XFEL [2] and 
FLASH [3]. Sensor and front-end electronics are mounted on the detector mezzanine card shown in Figure 1. Two 
versions of semiconductor linear arrays can be employed, depending on the specific application. The first one is a Si 
microstrip sensor developed at KIT; the second one is an InGaAs linear array from Xenics [4]. The original version of 
KALYPSO was based on a slightly modified design of the GOTTHARD front-end ASIC [5] and achieves a maximum 
frame-rate of 2.7 MHz with 256 pixels. In the new version, several improvements have been included: up to eight 
GOTTHARD chips are connected to a wider linear array sensor with up to 1024 pixels at pixel pitch of 25 μm. Two 
multichannel, low-power, high-speed ADCs (Analog-to-Digital Converter) convert the analog samples, with a sampling 
rate up to 100 MS/s and 14-bit resolution, to digital data which are then processed by the FPGA. The detector board is 
connected to an FPGA readout card, based on the recent ZYNQ Ultrascale+ technology, by a FMC (FPGA Mezzanine 
Card) connector. The FPGA readout card is integrated in a custom high-performance and heterogeneous DAQ system 
consisting of FPGAs and GPUs connected via PCI-Express. When connected to the DAQ system KALYPSO sustains 
continuous data taking at the maximum repetition rate. 

 
Figure 1. Picture of the KALYPSO front-end card (left), detail of the Si sensor, the two GOTTHARD ASICs and the high-
density interconnection technology. 

2.1 Sensor technologies 

Three microstrip sensor typologies can be currently be mounted: InGaAs for infrared wavelength with efficiency up to 
2.6 µm, three fine-pitch silicon sensors with special Anti-Reflective Coatings (ARC) optimized for spectrum range from 
near-ultraviolet (300 nm) to near-infrared (up to 1.1 μm), and novel Low-Gain Avalanche Detectors (LGAD) sensor for 
timing and very high-repetition rate applications. The InGaAs linear arrays are available with different number of 
sensitive channels with pitch of 25 or 50 µm which makes KALYPSO a very flexible detection system easily adaptable 
to many experimental conditions. To improve spatial resolution and efficiency at different wavelengths, a custom silicon 
sensor optimized for imaging applications has been designed and fabricated. The new sensor features an optimized 
geometry, with a pixel pitches of 25 μm and 45 µm, a variable number of pixels (from 512 to 2048), and three different 
ARC processes, optimized respectively for visible light, near-ultraviolet (300 nm to 400 nm) and near-infrared (up to 1.1 
μm). The sensor wafer has been produced by Fondazione Bruno Kessler (FBK) in a special silicon bulk wafer using a 
photolithography process dedicated to low-leakage current and low-noise. A wafer produced by FBK and a detail of the 
sensor layout is shown in Figure 2.  
An important limitation in high-speed imaging applications is the response time of the semiconductor detector. With 
traditional silicon sensors, the time required to collect the charge generated by incoming radiation is typically around a 
few tens of ns and therefore limiting the maximum frame rate. When exposed to incoming radiation with higher 
repetition rate, the sensor would quickly saturate. While it is possible to install a gating-intensifier stage in front of the 
detector, as used in intensified CCD (ICCD) cameras, these can degrade the resolution and the uniformity of the detector. 
In high-speed imaging detectors, APDs (Avalanche Photo Diodes) are widely employed. These are typically operated in 
linear mode, meaning that the intensity of the generated signal is proportional to the intensity of the incoming radiation. 
However, several technological challenges hinder the possibility to realize APD linear arrays with a large number of 
pixels. 



 
 

 
 

 
 

 
Figure 2. Picture of the silicon wafer produced by FBK (left), layout of a microstrip sensor with 512 interleaved channels 
with 25 µm pitch. 

Therefore, this makes them unsuitable for many photon science applications including beam diagnostics since they 
demand high spatial resolution and high efficiency. In order to overcome the rate limitation of conventional silicon 
detectors while maintaining high spatial resolution, novel fine pixel segmentation, high gain uniformity and high fill-
factor Low-Gain Avalanche Detectors (LGAD) are considered for photon science applications. LGADs have been 
recently proposed in the literature for 4D tracking applications in high energy physics detectors [6]. With respect to 
conventional APDs, LGADs use a moderate internal gain, and thus enable the fabrication of finely-segmented microstrip 
and pixel detectors, and achieve charge collections times down to 3 ns [7]. This would ensure that the sensor is not 
saturated by the incoming radiation, even if exposed to pulses with repetition rates of a few hundreds of MHz. A novel 
silicon linear array based on the LGAD technology is currently under development for the KALYPSO system to be used 
in photon science application. The bulk thickness of only 50 µm will allow a fast charge collection time suitable for 
high-rate photon science applications. TCAD simulations show a total change collection time less of 2 ns. The first 
LGAD demonstrator will possess a 50 µm channel pitch array where the multiplication layer will be insulated by 
Shallow Trench Insulation (STI) structures. The production of the demonstrator for the KALYPSO detector is scheduled 
for the mid of 2019. 
 

 
Figure 3. TCAD simulation of LGAD device with Junction Terminal Extension (JTE). The sequence of figures show the 
charge collection time at 1, 1.5 and 2 ns after a photon beam was interacting with the sensor. 

2.2 Front-end readout electronics 

An overview of the front-end electronics of the KALYPSO system is shown in Figure 1. The different channels of the 
readout ASIC are connected to a microstrip sensors, which can be tailored according to the experimental needs. To be 
compatible with different types of silicon or InGaAs microstrip sensors, the chip must be able to process signals of both 
polarities with a detector capacitance up to 6 pF. To further increase the frame rate, a dedicated readout application 
specific integrated circuit (ASIC) has been developed in a 110 nm CMOS technology from UMC. The ASIC features 
128 readout chains with a 50 μm pitch to operate with a continuous frame rate of up to 12 MHz at full occupancy. 
Several chips will be connected to a microstrip sensor with up to 2048 channels. Each readout channel consists of a CSA 
(charge-sensitive amplifier), a noise shaping stage and a channel buffer. Multichannel, low-power, high-speed ADCs 
(analog-to-digital converter) digitize the analog samples that are afterwards processed by the FPGA. The FPGA readout 
card also synchronizes the operations between different ASICs and with the external timing system. A readout channel is 
shown in figure 5. The CSA is implemented as a differential folded-cascode amplifier with a variable feedback 
capacitance and a synchronous reset. 



 
 

 
 

 
 

 
Figure 4. Block diagram of the readout ASIC and the KALYPSO front-end electronics. 

The folded architecture has been selected because of its high gain-bandwidth product, stability and output 
swing. 

 
Figure 5. Simplified schematic of one readout channel. 

Despite the higher intrinsic noise of the differential architecture with respect to single-ended amplifiers, the differential 
architecture ensures a better shielding against external noise. This is a critical aspect for this development, because the 
readout ASIC will be closely integrated with noisy components such as the FPGA, PCI-Express data links and the 
accelerator timing distribution system. A test pulse capacitance Cinj has been implemented on-chip to inject a known 
charge at the input of the CSA to evaluate the performance of the readout chain. The shaper performs correlated-double-
sampling (CDS), reducing the low-frequency and kT/C noise introduced by the synchronous reset mechanism [8]. In 
order to achieve high framerates, a sample-and-hold channel buffer is necessary to allow integrate-while-read operation. 
The timing strategy for a frame-rate of 10 MHz is shown in Figure 6.  

 
Figure 6. Simulated response of the CSA (left), the CDS (middle) and the channel buffer (right) to a signal of 5 fC and a 
detector capacitance of 1.3 pF. The different readout phases and their duration are shown for a 10 MHz frame- rate 
operation. Different traces obtained through Monte Carlo transient noise simulations are superimposed on the plot, to 
highlight the "reset noise", i.e. the noise introduced after the RST is released. 



 
 

 
 

 
 

To optimize the bandwidth while ensuring proper performance two-stage architecture with cascode compensation has 
been adopted [9]. To achieve high speed and low distortion with a 100 W load, the output driver has been designed with a 
two-stage class-AB OpAmp with cascode Miller compensation and Monticelli biasing scheme [10]. This last stage drives 
large capacitive off-chip loads, with a settling time of less than 4 ns and a non-linearity error of around 0.5% over a 
dynamic range of ± 900 mV. The layout of high-speed and low-noise readout circuit is the most critical step of the full-
custom ASICs. It requires experience and many interactions steps of post-layout simulations and comparison with the 
expected signals. This is indeed a critical step, as the performance of a circuit can be severely affected by a sub-optimal 
placement and/or routing. Several design rules have been adopted to achieve superior signal-to-noise performance. 
Interdigitated transistor with common centroid and dummy-edge transistors are employed in analog design to improve 
the performance and compensate the gradient effect typical of the sub-micron CMOS technology. Furthermore, because 
of the increasing demand of using KALYPSO in soft X-ray applications, the digital circuits have been designed 
according to radiation hardness layout techniques as shown in figure 7. 

 
Figure 7. Layout of two readout chains (left). Layout of digital circuits by Enclosed Layout Transistor (ELT) and P+ guards 
radiation hardness techniques (right). 

3. HETEROGENEOUS HIGH DATA THROUGPUT FPGA-GPU ARCHITECTURE 
Modern photon science experiments generate very large data volumes. To cope with this so called “big data” challenge, a 
high-performance heterogeneous FPGA-GPU-based computing infrastructure has been developed [11]. This 
infrastructure has been proposed for future generations of real-time data systems in photon sciences and high energy 
physics. General purpose computing on graphics processing units (GPGPU) is an efficient technology that allows 
programmers to leverage the massively parallel computing pipelines on modern graphics cards. To meet real-time 
constraint, the data is directly transferred from the FPGA into the GPU memories bypassing CPU and CPU memory by 
high-performance ad-hoc direct memory access (DMA), as outlined in figure 8. Using DMA it is possible to move data 
from FPGA to GPU memory without any intermediate buffering, off-loading the CPU and avoiding operating system 
jitter effects [11]. Traditionally, the data is first transferred from the FPGA to the main system memory and then sent to 
the GPUs for final data processing (dashed line in figure 8). The main memory is involved in a certain number of 
read/write operations, depending on the specific hardware or software implementation. Using direct FPGA-GPU 
communication (solid line in figure 8), the DMA engine has direct access to the GPU memory, therefore the total latency 
is drastically reduced down to only a few microseconds. 

 
Figure 8. Heterogeneous FPGA-GPU data acquisition system based on direct FPGA↔GPUs data access. 



 
 

 
 

 
 

The FPGA↔GPU-based processing framework enables user-friendly and on-line monitoring of the data produced by the 
detector systems [12]. As demonstrated in [13], our architecture allows scientists to develop high-performance 
processing algorithms without specific knowledge of the underlying hardware architecture. Moreover, the low-latency 
performance of the DAQ system meets the requirements of fast feedback systems. With specific optimization of the data 
processing software components, latency as low as a few microseconds has been achieved [14]. The data throughput 
performance of the heterogeneous system is shown in figure 9 for two different payload block sizes. 

 
Figure 9. Dual core DMA architecture based on PCIe generation 3 using two different payload block sizes: the red curve 
represents 256 Bytes and blue one uses 128 Bytes. 

4. PCIE REDAOUT CARD  
To prepare for the upcoming demand of high data throughput and fast data processing close to data source, a novel 
readout system based on PCIe generation 4 is currently under development. A sketch of the card is shown in the Figure 
10.  
 

 
Figure 10. New PCIe readout card for next generation of heterogeneous FPGA-GPU architecture. In addition to previous 
requirements the system is dedicated to machine learning applications. 

The main processor is based on the ZYNQ UltraScale+ targeting the xcu11eg Xilinx device; it includes a 64-bit quad-
core ARM processor with up to 1.5 GHz and a dual-core ARM with up to 600 MHz for Real-Time Operating System 
(RTOS). A Mali-400 GPU is also available for simple parallel data processing. The ZYNQ is equipped with a large 
FPGA with about 600 k configurable logic blocks (CLB) and several tens of megabytes of RAM and UltraRAM logic 
blocks. The selected FPGA contains more than 2900 DSP slices which are necessary for the synthesis and 
implementation of machine learning on FPGA. Furthermore, the FPGA support high performance interfaces i.e. four 
hardware implemented PCIe IP cores, one 150 G Interlaken, 32 GTH transceivers each one operating with up to 16.3 



 
 

 
 

 
 

Gb/s and 16 GTY transceivers each one operating with up to 32.75 Gb/s. Two different system memories have been 
implemented; a large DDR4 SODIMM memory attached to the processor systems (PS) and a 4 Gb DDR4 memory 
connected to the programmable logic (PL). The connection to the detector board is possible by a high-density and high-
speed VITA 57.4 FMC+ connector. A full-duplex FireFly electrical/optical data link [15] with 12 lanes each one 
operating with up to 28 Gbps has been integrated in order to realize a fast communication between ZYNQ systems. 
Artificial Intelligence (AI) applications implemented on heterogeneous FPGA-GPU system is an emerging field of 
research. The system combines the advantage of both high-end FPGA and GPU technologies. From one side, FPGA are 
a natural choice for implementing neural networks because they can combine computing, logic, and memory resources in 
a single device. The high amount of on-chip cache memory reduces the memory bottlenecks and the data latency when 
compared to external memory access like GPUs. On the other side, GPUs are very efficient for the training of the neural 
network due to the high accuracy of the wide-bit floating point operations. Furthermore, the integration of the described 
system with the novel ZYNQ Multi-Processor System-on-Chip (MPSoC) device offers a user-friendly way to implement 
deep learning inference in the FPGA logic blocks. Recent high-level synthesis tools i.e. Xilinx Deep Neural Network 
[16] engine or reVISION [17] allows implementing popular ML frameworks such as Caffe, MxNet, and TensorFlow into 
FPGA devices. The new PCIe readout card electronics, shown in figure 10 will be available in the beginning of 2019.  

5. MACHINE LEARNIMNG IMPLEMENTATION 
Artificial Intelligence (AI) has been around for 50 years, but only recent technologies have made advances in deep 
learning (DL) techniques possible, led to wide usage in many applications. Deep learning and complex machine learning 
have quickly become one of the most important and computationally intensive applications for a wide range of fields. 
The combination of large data sets, high-performance computational capabilities, and evolving and improving algorithms 
has enabled many successful applications which were previously difficult or impossible to realize. To cope the 
challenges of deep learning training and inference, a heterogeneous system, which combines GPU and FPGA 
technologies in a unified deep learning architecture, is under development. Each of these hardware technologies offers 
unique benefits to the deep learning problem, and a properly designed system can take advantage of this combination. 
The combination can provide unique capabilities that result in higher performance, better efficiency and greater 
flexibility, compared to GPU and FPGA systems designed separately. Deep learning frameworks are sets of software 
libraries that implement the common training and inference operations. Examples of these include Caffe/Caffe-2 
(Facebook), TensorFlow (Google), Torch, PyTorch, etc. All of these are available as open source software. Deep neural 
networks (DNN) training is very computationally intensive and typically makes use of common floating-point 
computation functions, such as basic linear algebra subprograms (BLAS), therefore, in the proposed architecture, it is 
typically done on GPUs. While the inference implementation, which requires large and low-latency on-chip memory and 
flexible arithmetic capabilities, is on FPGAs.  
 

 
Figure 11. Heterogeneous FPGA GPU machine learning architecture. 

Training mainly uses floating-point operations, but for inference operations many network weights can be represented 
with considerably less precision compared to the precision used in the training data. Recent studies show very good 
results at 8 bits of precision, and in some cases even binary networks can obtain the desired accuracy. In cases where 
network weights are zero or near zero, they can be eliminated, or “pruned,” from the graph. Such pruning can 



 
 

 
 

 
 

considerably reduce the computation requirements for inference operations. Once a model for deep learning is trained, 
deploying it for inference in deep learning applications typically has additional requirements. While the computational 
demand for the inference is less in terms of complexity and training data, there are several key requirements for 
inference. In photon science application that requires a “fast decision”, inference requirements fall into two categories: 
low latency and high data throughput. FPGAs take advantage of their flexibility to provide broad performance, latency, 
and power envelopes. Beside the complementary strengths of CPUs, GPUs, and FPGAs for different types of deep 
learning operations, there will be a growing benefit of unified deep learning configurations combining all three types of 
hardware elements into single heterogeneous system. The training and inference are typically thought of as very distinct 
operations, but there are emerging applications that will combine them. Continuous and reinforcement training can be 
used when a deep learning system is deployed in an environment where regular retraining and updating of a DNN is 
required. The proposed architecture that controls a device or analyses datasets in real-time is shown in Figure 11. It is 
based on continuous learning and adapting in according to the results of their previous actions. Similarly, systems that 
interact with humans can use feedback from humans to continuously improve their training. The inference is 
implemented in the FPGA and it is optimized in terms of performance and response latency, whereas the training is 
executed on GPUs. During the data processing by ML on FPGA, two cases are possible: the result of inference is good, 
meaning that the feedback signal to the experimental station has been predicted with high grade, or not so well predicted. 
In this last case, the inference ML in the FPGA will send to the GPU the ML status as well as the prediction of the next 
ML status together with the Action taken for a given dataset (red arrow), the GPU will evaluate the answer by an 
independent and massive floating-point ML network and then re-configure the FPGA in order to improve the prediction 
of the inferred ML network in the FPGA (blue arrow). A unified deep learning platform that simultaneously employs 
GPUs for training updates and FPGAs for inference enables efficient implementation of such continuous training 
systems. 

6. SUMMARY AND CONCLUSIONS 
Modern photon science detectors requires many cutting-edge technologies: custom ASIC and semiconductor design and 
fabrication, low-noise analog circuits, high-density interconnect technologies, high-throughput readout electronics 
combined with advanced real-time data processing based on new generation of artificial intelligence. KALYPSO is the 
result of a close collaboration between engineering and beam line scientists. The collaboration has produced one of a fast 
line-camera available in the scientific communities. To the best of the author’s knowledge, this is the highest frame rate 
achieved by high-resolution imaging detectors with continuous data acquisition. The detector has been installed at the 
EOSD experimental setups at KARA and at the European XFEL. Several technical developments have been started to 
further improve the performance of the detector like the possibility of replacing the CDS noise shaper with a trapezoidal 
time-variant shaper, in order to further optimize the noise performance of the GOTTHARD chip [18]. Furthermore, 
novel LGAD silicon sensor will open new possibility for high resolution and repetition rate applications. The continues 
acquisition for long observation time by high data throughput readout electronics combined with artificial intelligence 
framework will open new scenario for the real-time data processing and fast detection of rare event today considered 
very difficult or almost impossible to observe. 
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