Evidence for the decay $B^0 \rightarrow p\bar{p}\pi^0$
29 INFN—Sezione di Torino, 10125 Torino, Italy
30 Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195, Japan
31 J. Stefan Institute, 1000 Ljubljana, Slovenia
32 Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe, Germany
33 Kennesaw State University, Kennesaw, Georgia 30144, USA
34 King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
35 Korea Institute of Science and Technology Information, Daejeon 305-806, South Korea
36 Korea University, Seoul 136-713, South Korea
37 Kyungpook National University, Daegu 703-701, South Korea
38 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
39 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
40 P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119333, Russia
41 Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
42 Ludwig Maximilians University, 80333 Munich, Germany
43 Luther College, Decorah, Iowa 52101, USA
44 University of Malaya, 50603 Kuala Lumpur, Malaysia
45 University of Maribor, 2000 Maribor, Slovenia
46 Max-Planck-Institut für Physik, 80805 München, Germany
47 School of Physics, University of Melbourne, Victoria 3010, Australia
48 University of Mississippi, University, Mississippi 38677, USA
49 University of Miyazaki, Miyazaki 889-2192, Japan
50 Moscow Physical Engineering Institute, Moscow 115409, Russia
51 Moscow Institute of Physics and Technology, Moscow Region 141700, Russia
52 Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
53 Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602, Japan
54 Università di Napoli Federico II, 80055 Napoli, Italy
55 Nara Women’s University, Nara 630-8506, Japan
56 National Central University, Chung-li 32054, Taiwan
57 National United University, Miaoli 36003, China
58 Department of Physics, National Taiwan University, Taipei 10617, Taiwan
59 H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342, Poland
60 Nippon Dental University, Niigata 951-8580, Japan
61 Niigata University, Niigata 950-2181, Japan
62 Novosibirsk State University, Novosibirsk 630090, Russia
63 Pacific Northwest National Laboratory, Richland, Washington 99352, USA
64 Panjab University, Chandigarh 160014, India
65 Peking University, Beijing 100871, China
66 University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
67 Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198, Japan
68 University of Science and Technology of China, Hefei 230026, China
69 Seoul National University, Seoul 151-742, South Korea
70 Showa Pharmaceutical University, Tokyo 194-8543, Japan
71 Soongsil University, Seoul 156-743, South Korea
72 University of South Carolina, Columbia, South Carolina 29208, USA
73 Stefan Meyer Institute for Subatomic Physics, Vienna 1090, Austria
74 Sungkyunkwan University, Suwon 440-746, South Korea
75 School of Physics, University of Sydney, New South Wales 2006, Australia
76 Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451, Saudi Arabia
77 Tata Institute of Fundamental Research, Mumbai 400005, India
78 Department of Physics, Technische Universität München, 85748 Garching, Germany
79 Toho University, Funabashi 274-8510, Japan
80 Department of Physics, Tohoku University, Sendai 980-8578, Japan
81 Earthquake Research Institute, University of Tokyo, Tokyo 113-0032, Japan
82 Department of Physics, University of Tokyo, Tokyo 113-0033, Japan
83 Tokyo Institute of Technology, Tokyo 152-8550, Japan
84 Tokyo Metropolitan University, Tokyo 192-0397, Japan
85 Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
86 Wayne State University, Detroit, Michigan 48202, USA
87 Yamagata University, Yamagata 990-8560, Japan
We report a search for the charmless baryonic decay $B^0 \rightarrow p\bar{p}e^0$ with a data sample corresponding to an integrated luminosity of 711 fb$^{-1}$ containing $(772 \pm 10) \times 10^6$ $B\bar{B}$ pairs. The data were collected by the Belle experiment running on the $\Upsilon(4S)$ resonance at the KEKB e^+e^- collider. We measure a branching fraction $B(B^0 \rightarrow p\bar{p}e^0) = (5.0 \pm 1.8 \pm 0.6) \times 10^{-7}$, where the first uncertainty is statistical and the second is systematic. The signal has a significance of 3.1 standard deviations and constitutes the first evidence for this decay mode. We also search for the intermediate two-body decays $B^0 \rightarrow \Delta^+\bar{p}$ and $B^0 \rightarrow \Delta^-p$, and set an upper limit on the branching fraction, $B(B^0 \rightarrow \Delta^+\bar{p}) + B(B^0 \rightarrow \Delta^-p) < 1.6 \times 10^{-6}$ at 90% confidence level.

DOI: 10.1103/PhysRevD.99.091104

The first observed charmless baryonic B decay was $B^+ \rightarrow p\bar{p}K^+$ [1]. Following this first observation, many other charmless baryonic B decays have been found [2]. Except for $B^+ \rightarrow p\Lambda\bar{p}^0$ and $p\Lambda\gamma$ decays, all the channels reported to date are entirely reconstructed from charged particles in the final state. A noticeable hierarchy is also observed in the branching fractions of these decays: three-body decays are usually more frequent than their two-body counterparts but less frequent than four-body decays [3,4]. This phenomenon can be understood in terms of the so-called “threshold effect,” which refers to the fact that the B meson prefers to decay into a dibaryon pair with low invariant mass accompanied by a fast recoil meson [3,5,6]. This peaking behavior was unexpected, and has led to various speculations about possible mechanisms [7–9]. Studying additional three-body baryonic decays might provide a better understanding of the dynamics of B decays and the aforementioned threshold effect. These decays are also useful for CP violation studies [10].

This paper reports a search for a three-body charmless baryonic B^0 decays to the $p\bar{p}e^0$ final state [11] using a data set corresponding to an integrated luminosity of 711 fb$^{-1}$ collected with the Belle detector [12] at the $\Upsilon(4S)$ resonance at the KEKB asymmetric-energy e^+e^- (3.5 on 8.0 GeV) collider [13]. So far, the decay $B^0 \rightarrow p\bar{p}e^0$ has not been studied by any experiment. No theoretical prediction for the branching fraction of this process is yet available. A glance at the known branching fractions for B decays [2] shows the three-body charmless baryonic decays to occur in the several times 10^{-6} range, indicating that the discovery of the mode $B^0 \rightarrow p\bar{p}e^0$ might be possible with the currently available data set.

The Belle detector is a large-solid-angle magnetic spectrometer consisting of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter (ECL) comprising CsI(Tl) crystals. These detector components are located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return located outside the coil is instrumented to detect K^*_L mesons and to identify muons. Two inner detector configurations were used: a 2.0 cm radius beampipe and a three-layer SVD were used for the first 152×10^6 BB pairs of data, while a 1.5 cm radius beampipe, a four-layer SVD, and a small-cell inner drift chamber were used for the remaining 620×10^6 BB pairs of data. The detector is described in detail in Ref. [12]. Event selection requirements are optimized using Monte Carlo (MC) simulations. MC events are generated using EvtGen [14], and the detector response is modeled using Geant3 [15]. Final-state radiation is taken into account using the PHOTOS package [16].

The reconstruction of $B^0 \rightarrow p\bar{p}e^0$ proceeds by first reconstructing $e^0 \rightarrow \gamma\gamma$ candidates. An ECL cluster not matched to any track in the CDC is identified as a photon candidate. Such candidates are required to have an energy greater than 50 MeV in the barrel region and greater than 100 MeV in the end-cap regions, where the barrel region covers the polar angle $32^\circ < \theta < 130^\circ$ and the end-cap regions cover the ranges $12^\circ < \theta < 32^\circ$ and $130^\circ < \theta < 157^\circ$. To reject showers produced by neutral hadrons, the energy deposited in the 5×3 array of ECL crystals centered on the crystal with the highest energy must exceed 80% of the energy deposited in the corresponding 5×5 array of crystals. We require that the $\gamma\gamma$ invariant mass be within 20 MeV/c^2 (about 3.5σ in resolution) of the e^0 mass [2]. To improve the e^0 momentum resolution, we perform a mass-constrained fit and require that the resulting χ^2 be less than 30. This requirement is relatively loose, retaining more than 99% of candidates.

We subsequently combine e^0 candidates with two oppositely charged tracks, identified as a proton-antiproton

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
pair. Such tracks are identified using requirements on the distance of closest approach with respect to the interaction point along the z axis (antiparallel to the $e^+\bar{p}$ beam) of $|dz| < 3.0$ cm, and in the transverse plane of $dr < 0.3$ cm. In addition, charged tracks are required to have a minimum number of SVD hits (>2 along the z axis and >1 in the transverse direction). Particle identification is achieved using information from the CDC, the TOF, and the ACC subdetectors. This information is combined to form a hadron likelihood L_h; a charged track with likelihood ratios of $L_p/(L_p + L_h) > 0.9$ and $L_p/(L_p + L_x) > 0.9$ is regarded as a proton or antiproton. Furthermore, we reject tracks consistent with either the electron or muon hypothesis. The proton identification efficiency is 75% and the probability for a kaon (pion) to be misidentified as a proton is 6% (2%).

Candidate B^0 mesons are identified using the beam-energy-constrained mass, $M_{bc} = \sqrt{E_{beam}^2 - |\vec{p}_B|^2/c^2}$, and the energy difference $\Delta E = E_B - E_{beam}$, where E_{beam} is the beam energy, and E_B and \vec{p}_B are the reconstructed energy and momentum, respectively, of the B^0 candidate. All quantities are evaluated in the center-of-mass (CM) frame. To improve the M_{bc} resolution, the momentum $\vec{p}_B = \vec{p}_p + \vec{p}_h$ is calculated as $\vec{p}_B = \vec{p}_p + \vec{p}_h + (E_{beam} - E_p - E_h)^2/c^2 - m_{h^0}^2c^2$ where m_{h^0} is the nominal π^0 mass [2]; E_h and \vec{p}_h are the energy and momentum of the hadron h ($h = p, \bar{p}, \pi^0$). In addition, a vertex fit is performed to the charged tracks to form a B^0 vertex. We require that the χ^2 from the fit be less than 200. Events with $M_{bc} > 5.25$ GeV/c2 and -0.20 GeV < $\Delta E < 0.15$ GeV are retained for further analysis. The signal yield is calculated in a smaller region $M_{bc} \in (5.272, 5.286)$ GeV/c2 and $\Delta E \in (-0.12, 0.06)$ GeV. In order to reject contributions from charmonium states [e.g., η_c, J/ψ, $\psi(2S)$, χ_c, χ_{c1}, and χ_{c2}], we apply a “charmonium veto” and exclude the regions of 2.850 GeV/c2 < $m(p\bar{p}) < 3.128$ GeV/c2 and 3.315 GeV/c2 < $m(p\bar{p}) < 3.735$ GeV/c2 from the event sample.

Charmless hadronic decays suffer from a large amount of continuum background, arising from light quark production ($e^+e^\to g\bar{q}q$, $q = u, d, s, c$). To suppress this background, we use a multivariate analyzer based on a neural network (NN) [17] that distinguishes jetlike continuum events from more spherical $B\bar{B}$ events. The NN uses the following input variables: the cosine of the angle between the thrust axis [18] of the B^0 candidate and the thrust axis of the rest of the event; the cosine of the angle between the B^0 thrust axis and the $+z$ axis; the cosine of the angle between the $+z$ axis and the B^0 candidate flight direction; a set of 18 modified Fox-Wolfram moments [19]; the ratio of the second to zeroth (unmodified) Fox-Wolfram moments; the separation along the z axis between the two B vertices; and the B-flavor tagging information [20]. All but for the last two quantities are evaluated in the CM frame. The NN is trained using MC simulated signal events and $q\bar{q}$ background events. The NN generates a single output variable (C_{NN}) that ranges from -1 for backgroundlike events to $+1$ for signal-like events. We require $C_{NN} > -0.5$, which rejects approximately 86% of the $q\bar{q}$ background while retaining 94% of the signal. We then translate C_{NN} to a new variable

$$C_{NN} = \ln\left(\frac{C_{NN} - C_{NN}^{\min}}{C_{NN} - C_{NN}^{\max}}\right),$$

(1)

where $C_{NN}^{\min} = -0.5$ and $C_{NN}^{\max} = 1.0$. This translation is advantageous as the C_{NN} distribution for both signal and background is well described by a sum of Gaussian functions.

After applying all selection criteria, approximately 7% of the events have multiple B^0 candidates. For these events, we retain the candidate having the smallest sum of χ^2 values obtained from the $\pi^0 \to \gamma\gamma$ mass-constrained fit and the B^0 vertex-constrained fit. According to MC simulation, this criterion selects the correct B^0 candidate in 83% of multiple-candidate events.

We measure the signal yield by performing an unbinned extended maximum likelihood fit to the variables M_{bc}, ΔE, and C_{NN}. The likelihood function is defined as

$$L = e^{-\sum_i Y_i} \prod_i \left(\sum_j Y_j \mathcal{P}_j(M_{bc}, \Delta E^i, C_{NN}^i)\right),$$

(2)

where Y_j is the yield of component j, $\mathcal{P}_j(M_{bc}, \Delta E^i, C_{NN}^i)$ is the probability density function (PDF) of component j for event i, j runs over all signal and background components, and i runs over all events in the sample (N). The background components consist of continuum events, $b \to c$ (generic B) processes, and rare charmless processes. The latter two backgrounds are small compared to the continuum events and are studied using MC simulations. The rare charmless background shows a peaking structure in the M_{bc} distribution, most of which arises from $B^+ \to p\bar{p}p^+$ decays. As correlations among the variables M_{bc}, ΔE, and C_{NN} are found to be small, the three-dimensional PDFs $\mathcal{P}_j(M_{bc}, \Delta E^i, C_{NN}^i)$ are factorized into the product of separate one-dimensional PDFs.

The PDF of signal events consists of two parts: one for candidates that are correctly reconstructed, and one for those incorrectly reconstructed, i.e., at least one daughter originates from the other (tag side) B. For the former case, the M_{bc} and ΔE distributions are modeled with Gaussian and crystal ball [21] functions, respectively, while the C_{NN} distribution is modeled with a sum of Gaussian and bifurcated Gaussian functions having a common mean. The peak positions and resolutions of the M_{bc}, ΔE, and C_{NN} PDFs are adjusted to account for data-MC differences observed in a high-statistics control
sample of $B^0 \to \bar{D}^0(\to K^+\pi^-)\pi^0$ decays. For the latter case, the correlated two-dimensional $M_{bc} - \Delta E$ distribution is modeled with a nonparametric PDF \cite{22}, and the C_{NN} component is modeled with a Gaussian function. The fraction of incorrectly reconstructed decays ($\sim 4\%$ in the signal region) is taken from MC simulation. For the rare charmless background, the C_{NN} component is modeled with a bifurcated Gaussian function. The M_{bc} and ΔE components are modeled by a joint two-dimensional nonparametric PDF. We model the M_{bc}, ΔE, and C_{NN} distributions of continuum background with an ARGUS \cite{23} function having its end point fixed to 5.29 GeV/c2, a first-order polynomial, and a sum of two Gaussians having a common mean, respectively. For the generic B background, we use a bifurcated Gaussian function to model the C_{NN} shape, while the similar shapes as of continuum background are used to model the M_{bc} and ΔE distributions. In addition to the fitted yields Y_j, all shape parameters for continuum background are also floated. All other parameters are fixed to the corresponding MC values.

The projections of the fit are shown in Fig. 1. From the fit, we extract 40.5 ± 14.2 signal events, 1490.3 ± 34.5 continuum, 100.6 ± 35.0 generic B, and 6.5 ± 10.1 rare charmless background events in the $M_{bc} - \Delta E$ signal region. The resulting branching fraction is calculated as

$$B(B^0 \to p\bar{p}\pi^0) = \frac{Y_{\text{sig}}}{N_{B\bar{B}} \times \varepsilon},$$

(3)

where Y_{sig} represents the extracted signal yield, $N_{B\bar{B}} = (772 \pm 11) \times 10^6$ is the total number of $B\bar{B}$ events, $\varepsilon = (10.53 \pm 0.04)\%$ is the reconstruction efficiency. The efficiency is corrected to account for possible differences in particle identification and π^0 detection efficiencies between data and simulations. In Eq. (3) we assume equal production of $B^0\bar{B}^0$ and $B^+\bar{B}^-$ pairs at the $\Upsilon(4S)$ resonance. The result is

$$B(B^0 \to p\bar{p}\pi^0) = (5.0 \pm 1.8 \pm 0.6) \times 10^{-7},$$

where the first uncertainty is statistical and the second is systematic. This is the first measurement of this branching fraction.

The signal significance is calculated as $\sqrt{-2\ln(L_0/L_{\text{max}})}$, where L_0 is the likelihood value when the signal yield is fixed to 0, and L_{max} is the likelihood value of the nominal fit. To include systematic uncertainties in the significance, we convolve the likelihood distribution with a Gaussian function whose width is set to the total systematic uncertainty that affects the signal yield. The resulting significance is 3.1 standard deviations. Thus, our measurement constitutes the first evidence for this decay mode.

The systematic uncertainty in $B(B^0 \to p\bar{p}\pi^0)$ arises from several sources, as listed in Table I. The uncertainty due to the fixed parameters in the PDF is estimated by varying them individually according to their statistical uncertainties.
TABLE I. Systematic uncertainties in \(\mathcal{B}(B^0 \rightarrow p \bar{p} \pi^0) \). Those listed in the upper section are associated with fitting for the signal yields and are included in the signal significance.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDF parametrization</td>
<td>(+2.9)</td>
</tr>
<tr>
<td>Calibration factor</td>
<td>(-3.2)</td>
</tr>
<tr>
<td>Fit bias</td>
<td>(+1.9)</td>
</tr>
<tr>
<td>(\pi^0) reconstruction</td>
<td>1.5</td>
</tr>
<tr>
<td>Tracking</td>
<td>0.7</td>
</tr>
<tr>
<td>Particle identification</td>
<td>0.6</td>
</tr>
<tr>
<td>Choice of (C_{NN})</td>
<td>(+2.0)</td>
</tr>
<tr>
<td>Incorrectly reconstructed signal events</td>
<td>(+1.0)</td>
</tr>
<tr>
<td>Number of (B \bar{B}) pairs</td>
<td>1.4</td>
</tr>
<tr>
<td>MC statistics</td>
<td>0.4</td>
</tr>
<tr>
<td>Total</td>
<td>(+12.8) - (-12.6)</td>
</tr>
</tbody>
</table>

For each variation, the branching fraction is recalculated, and the difference with the nominal value is taken as the systematic uncertainty associated with that parameter. The smoothing parameters of the nonparametric functions are also varied. The differences in the fit results are included as systematic uncertainties. We add all uncertainties in quadrature to obtain the overall uncertainty due to PDF parametrization. The uncertainties due to errors in the calibration factors used to account for data-MC differences in the signal PDF are evaluated separately but in a similar manner. To test the stability of our fitting procedure, we generate and fit a large ensemble of pseudoexperiments. We find a potential fit bias of \(+2.1\%). We attribute this bias to neglecting small correlations among the fitted observables. We assign a 1.5% systematic uncertainty due to \(\pi^0 \) reconstruction; this is determined from a study of \(\tau^- \rightarrow \pi^- \pi^0 \nu_\tau \) decays [24].

The systematic uncertainty due to the track reconstruction efficiency is 0.35% per track, as determined from a study of partially reconstructed \(D^{*+} \rightarrow D^0 \pi^+ \), \(D^0 \rightarrow K^0_s \pi^+ \pi^- \) decays. A 0.6% systematic uncertainty is assigned due to the particle identification efficiency of the proton-antiproton pair; this is determined from a study of \(\Lambda \rightarrow p \pi^- \) decays. We determine the systematic uncertainty due to the \(C_{NN} \) selection by applying different \(C_{NN} \) criteria and comparing the results with that of the nominal selection. The uncertainty due to the estimated fraction of incorrectly reconstructed signal events is obtained by varying this fraction by \(\pm 50\% \). The systematic uncertainty due to the counting of the total number of \(B \bar{B} \) pairs is 1.4%, and the uncertainty due to the finite statistics of the simulated signal sample used to evaluate the reconstructed efficiency is 0.4%. The total systematic uncertainty is obtained by adding each source in quadrature, as they are assumed to be uncorrelated.

Figure 2 shows the background-subtracted and efficiency-corrected distribution of \(m(p \bar{p}) \), where the charmonium veto is removed. For the background subtraction, we use the \(sPlot \) technique [25], with \(M_{bc} \), \(\Delta E \), and \(C_{NN} \) as the discriminating variables. As expected, an enhancement near threshold is visible. The background-subtracted distributions of \(m(p \pi^0) \) and \(m(\bar{p} \pi^0) \) are shown in Fig. 3. No obvious structure is seen in these distributions.

For each variation, the branching fraction is recalculated, and the difference with the nominal value is taken as the systematic uncertainty associated with that parameter. The smoothing parameters of the nonparametric functions are also varied. The differences in the fit results are included as systematic uncertainties. We add all uncertainties in quadrature to obtain the overall uncertainty due to PDF parametrization. The uncertainties due to errors in the calibration factors used to account for data-MC differences in the signal PDF are evaluated separately but in a similar manner. To test the stability of our fitting procedure, we generate and fit a large ensemble of pseudoexperiments. We find a potential fit bias of \(+2.1\%). We attribute this bias to neglecting small correlations among the fitted observables. We assign a 1.5% systematic uncertainty due to \(\pi^0 \) reconstruction; this is determined from a study of \(\tau^- \rightarrow \pi^- \pi^0 \nu_\tau \) decays [24].

The systematic uncertainty due to the track reconstruction efficiency is 0.35% per track, as determined from a study of partially reconstructed \(D^{*+} \rightarrow D^0 \pi^+ \), \(D^0 \rightarrow K^0_s \pi^+ \pi^- \) decays. A 0.6% systematic uncertainty is assigned due to the particle identification efficiency of the proton-antiproton pair; this is determined from a study of \(\Lambda \rightarrow p \pi^- \) decays. We determine the systematic uncertainty due to the \(C_{NN} \) selection by applying different \(C_{NN} \) criteria and comparing the results with that of the nominal selection. The uncertainty due to the estimated fraction of incorrectly reconstructed signal events is obtained by varying this fraction by \(\pm 50\% \). The systematic uncertainty due to the counting of the total number of \(B \bar{B} \) pairs is 1.4%, and the uncertainty due to the finite statistics of the simulated signal sample used to evaluate the reconstructed efficiency is 0.4%. The total systematic uncertainty is obtained by adding each source in quadrature, as they are assumed to be uncorrelated.
meson at decay, we express our result as a sum of final states containing either a Δ^+ or a Δ^-. The result is

$$B(B^0 \to \Delta^+ \bar{p}) + B(B^0 \to \Delta^- p) < 1.6 \times 10^{-6}.$$

This is the first such limit and is in agreement with the theoretical predictions [3,26].

In summary, using the full set of Belle data, we report a measurement of the branching fraction for $B^0 \to p\bar{p}\pi^0$ decays. We obtain $B(B^0 \to p\bar{p}\pi^0) = (5.0 \pm 1.8 \pm 0.6) \times 10^{-7}$, where the first uncertainty is statistical and the second is systematic. The significance of this result is 3.1 standard deviations, and thus this measurement constitutes the first evidence for this decay. We also search for the intermediate two-body decays $B^0 \to \Delta^+ \bar{p}$ and $B^0 \to \Delta^- p$, and set an upper limit on the branching fraction, $B(B^0 \to \Delta^+ \bar{p}) + B(B^0 \to \Delta^- p) < 1.6 \times 10^{-6}$ at 90% C.L.

ACKNOWLEDGMENTS

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group for strong computing support; and the Environmental Molecular Sciences Laboratory (EMSL) and the Pacific Northwest National Laboratory (PNNL) operation of the solenoid; and the KEK computer group, the KEK particle physics theory group, the National Institute of Standards and Technology (NIST) for valuable network support. We also acknowledge support from the Ministry of Internal Affairs and Communications of Japan, the Japan Society for the Promotion of Science, the Ministry of Education and the Culture, Sports, Science, and Technology (MEXT) of Japan, the Ministry of Education, Culture, Sports, Science, and Technology of Taiwan; and the Academy of Sciences of the Czech Republic under Contract No. LTT17020; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grants No. 2015H1A2A1033649, No. 2016R1D1A1B01010135, No. 2016K1A3A7A09005 603, No. 2016R1D1A1B0212900, No. 2018R1A2B3003 643, No. 2018R1A6A1A06024970, No. 2018R1D1 A1B07047294; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Grant of the Russian Federation Government, Grant No. 14.W03.31.0026; the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation.

[9] V. Laporta, Final state interaction enhancement effect on the near threshold $p\bar{p}$ system in $B^+ \to p\bar{p}\pi^+$ decay, Int. J. Mod. Phys. A 22, 5401 (2007).
499, 1 (2003), and other papers included in this Volume; T. Abe et al., Achievements of KEKB, Prog. Theor. Exp. Phys. 2013, 03A011 (2013) and references therein.

[19] G. C. Fox and S. Wolfram, Observables for the Analysis of Event Shapes in \(e^+ e^- \) Annihilation and Other Processes, Phys. Rev. Lett. 41, 1581 (1978); The modified moments used in this Letter are described in S. H. Lee et al. (Belle Collaboration), Evidence for \(B^0 \to \pi^0 \pi^0 \), Phys. Rev. Lett. 91, 261801 (2003).

[24] S. Ryu et al. (Belle Collaboration), Measurements of branching fractions of \(\tau \) lepton decays with one or more \(K_S^0 \), Phys. Rev. D 89, 072009 (2014).
