

TESTING OF AEROSOLS FOR LUNG TOXICITY BY IN-VITRO STUDIES AT THE AIR-LIQUID INTERFACE FOR UP TO 24 HOURS

¹S. Mülhopt, ²S. Diabaté, ²M. Dilger, ³C. Schlager, ³M. Berger, ³T. Krebs, ¹H.-R. Paur, ²C. Weiss, ¹D. Stapf

The Karlsruhe Exposure System

Biological Responses

SPP1313

2

Paur, H.-R., Cassee, F.R., Teeguarden, J., Fissan, H., Diabate, S., Aufderheide, M., Kreyling, W.G., Hänninen, O., Kasper, G., Riediker, M., Rothen-Rutishauser, B., Schmid, O. (2011) Journal of Aerosol Science, 42, 10, 668-692

VITROCELL[®] automated *in-vitro* exposure station

A lab scale measurement system for the air-liquid interface exposure of human lung cell cultures towards airborne nanoparticles.

- Direct aerosol sampling
- Online dose measurement
- Electrostatic deposition enhancement
- Flow, temperature, and humidification control system
- Data acquisition
- Internal negative control using humidified synthetic air
- Quality assurance by automatic leak test
- Standard exposure protocol is automatically performed by the programmable controller

Aerosols

Manufactured materials

Metals/metal oxides: Titania

- Aeroxide P25 Silica
- Amorph:
 - Aerosil200
 - Stöber synthesised
- Quartz Cerium oxide Silver Platinum

CNT

4

Combustion derived aerosols

- Ship diesel
 - Diesel fuel
 - Heavy fuel oil
- Wood combustion
 - Log wood stoves
 - Pellet boiler
 - Log wood boiler
- Car emissions
 - Diesel fuel
 - Driving behaviour
- Municipal waste incinerator
- Nanocomposites of polymer and MNM fillers

Institute for Technical Chemistry

30.11.2

Endpoints

Cell systems

Epithelial cells:

- A549 (alveolar)
- BEAS-2B (bronchial)
- 16HBE140 (bronchial)

Macrophages:

- RAW264.7 (mouse)

2D:

 Co-culture with THP-1 macrophages

3D:

- Triple cultures with THP-1 macrophages and HUVEC endothelial cells

Primary cells:

- MucilAir (Epithelix)

Read out

- Oxidative stress:
 - HMOX-1 (WB, RT-qPCR)
 - GSH/GSSG
- Inflammation
 - Cytokines (ELISA, RT-qPCR)
- Cytotoxicity
 - LDH release, metabolic activity (Alamar Blue, MTS)

- Genotoxicity

- DNA strand breaks (alkaline unwinding, γ-H2Ax expression)
- high-throughput RT-qPCR with selected gene sets¹

- Metabolism of foreign substances

- Expression of CYP1A1

- Genome-wide RNA analysis

- RNA-seq (genome-wide analysis)

Dosimetry at the Air-Liquid Interface

Dosimetry methods at the ALI

- spectroscopic measurement of deposited mass
- Quartz crystal microbalance
 - Online measurement of mass dose per area

TEM analysis

Image analysis delivers information about particle shape and homogeneity of distribution

Numerical simulation

Deposition efficiencies in dependence of chosen boundary conditions or geometries

■ c_M [µg/cm²] ■ f(t)

C_N [µg/cm²]
size
Shape

24 h exposure experiments with TiO₂ aerosol

Dosimetry I: Particle number size distribution in the Exposure System determined by SMPS

Calculated using the deposition efficiency from fluorescein sodium dosimetry f = 1.5 %: Mass concentration calculated with effective density ρ = 0.638 g/cm³

Modal value x _M	Standard Deviation s _g	Total number conc. c _N	Estimated diff. dose	Estimated dose rate
[nm]	[-/-]	[1/cm ³]	[µg/cm²]	[µg/(cm²*h)]
190	2.2	6.0E+04	0.235	0.01

Dosimetry II: Image evaluation and QCM

QCM measurement Dose rate = $0.062 \mu g/(cm^{2*}h)$

Cell viability (Alamar Blue assay) and cytotoxicity (LDH assay) of TiO_2 exposed A549 cells

- After 24 hours exposure of A549 towards TiO₂ no viability loss is observed.
- After 24 hours exposure towards TiO₂ no significant cytotoxicity or inflammatory response can be observed.

Experimental set up

Particle number size distribution of CuO in the Exposure System determined by SMPS

TEM images of Cu NP

Effective density according Charvet et al. (2014), J. Nanopart Res: $\rho_{eff} = 15.528 \text{*}d_{P}^{-0.826}$, with $d_{P} = 30 \text{ nm } \rho_{eff} = 0.9354 \text{ g/cm}^{3}$

Copper particle doses: comparison of methods

AlamarBlue assay

Inflammatory response

Institute for Technical Chemistry

Summary

- Long term exposures towards clean air are performed without viability loss or cytotoxic effects.
- After 24 hours exposure of A549 towards TiO₂ no viability loss, significant cytotoxicity or inflammatory response can be observed.
- After 24 hours exposure of A549 towards Cu₂O no viability loss is observed.
- After 24 hours exposure towards Cu₂O no significant cytotoxicity or inflammatory response can be observed.
- Dose rate is a parameter for biological responses.

Thank you!

Questions?