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Simulation and Analysis of Protein-Fluorophore Systems
for Comparison with Fluorescence Spectroscopy Data

Abstract

Biomolecules and in particular proteins are essential for life at the molecular
level and facilitate various biological functions such as molecular transport, cell
motion, or catalysis of chemical reactions. One example is the protein hemoglobin
in the red blood cells, which transports oxygen in the human body. Malfunction of
proteins can cause severe degenerative diseases such as Parkinson’s disease, Hunt-
ington’s disease, Alzheimer’s disease, or variants of amyotrophic lateral sclerosis
(ALS). Thus, understanding of biomolecular function is of fundamental impor-
tance for the fields of biology, pharmacology, and medical sciences and requires
detailed insights into protein structures and dynamics. As proteins are too small
to be directly observed with an optical microscope, indirect techniques have to be
used.

One approach is the use of Förster resonance energy transfer (FRET), where
fluorophores are utilized to study protein dynamics and to observe molecular pro-
cesses in vitro and in vivo. Similarly, fluorophores can be employed in biosensors
to measure concentrations of small biomolecules such as glucose, having many ap-
plications in medical sciences and microbiology. All of these protein-fluorophore
systems are governed by the underlying physical processes such as molecular dy-
namics and photophysics. The fundamental mechanisms in these systems can not
be observed directly and are therefore not fully understood.

A technique complementing experimental measurements are molecular simu-
lations. They facilitate a detailed insight into the molecular systems and their
microscopic function. The current methods to model protein-fluorophore systems
are mostly approximations applicable for specific cases or computationally too
demanding to model all relevant motions. This work introduces a new method
for simulating dynamics of protein-fluorophore systems with a computationally
efficient model based on coarse-grained molecular dynamics simulations. While
requiring only few parameters it yields a realistic description of the system in
quantitative agreement with experiments. As the presented computational method
can directly be compared to experimental data, it facilitates improving planning
and microscopic interpretation of experiments. It also yields information about the
underlying dynamics by enabling to trace the motions of biomolecules in atomic
detail. This work establishes a systematic simulation protocol to study protein-
fluorophore systems in silico that can easily be applied to study a large range
of biologically relevant applications. It shows that experiments and simulations
complement each other leading to new insights into biomolecular dynamics and
function.
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Simulation und Analyse von Protein-Fluorophor-Systemen
für den Vergleich mit Fluoreszenzspektroskopie-Daten

Zusammenfassung

Proteine sind die Grundbausteine des Lebens auf molekularer Ebene und wichtig
für viele biologische Funktionen wie den Transport von Molekülen, Zellbewegun-
gen oder die Katalyse von chemischen Reaktionen. So transportiert das Protein
Hämoglobin beispielsweise den Sauerstoff im menschlichen Blut. Störungen der
Proteinfunktionen können schwere degenerative Krankheiten wie zum Beispiel die
Parkinson-, Huntington- oder Alzheimer-Krankheit verursachen. Das Verständ-
nis von Proteinfunktionen, ihrer Struktur und Dynamik ist daher ein wichtiges
Forschungsgebiet in Biologie, Pharmakologie und Medizin. Da Proteine aufgrund
ihrer geringen Größe nicht mit Lichtmikroskopie beobachtet werden können, ver-
wendet man stattdessen indirekte Methoden.

Eine dieser Methoden macht sich den Förster-Resonanzenergietransfer (FRET)
zunutze, um damit Proteindynamik und andere molekulare Prozesse in vitro und
in vivo zu untersuchen. Die Methode wird außerdem auch in Biosensoren zur
Messung der Konzentrationen von kleinen Biomolekülen wie zum Beispiel Glu-
kose eingesetzt. Die dabei verwendeten Systeme aus Proteinen und Fluorophoren
unterliegen physikalischen Prozessen wie Molekulardynamik und Photophysik. Da
man diese Mechanismen nicht direkt beobachten kann, ist die Funktionsweise vie-
ler Systeme noch nicht vollständig verstanden.

Molekulare Simulationen können diese experimentellen Messungen ergänzen.
Sie ermöglichen einen Einblick in molekulare Systeme und ihre Funktion auf
atomarer Ebene. Die bisherigen Modellierungsmethoden für Protein-Fluorophor-
Systeme sind größtenteils Näherungen, die nur für spezielle Anwendungen ver-
wendbar sind oder zu rechenaufwändig um alle relevanten Bewegungen zu model-
lieren. Diese Arbeit stellt eine neue Methode für die Simulation der Dynamik in
Protein-Fluorophor-Systemen vor. Sie basiert auf recheneffizienten vereinfachten
Molekulardynamiksimulationen. Mit nur wenigen Parametern bietet die Metho-
de eine realistische Beschreibung des Systems, die quantitativ mit Experimenten
übereinstimmt. Sie ermöglicht den direkten Vergleich von Simulationen mit expe-
rimentellen Daten und somit eine bessere Planung und Interpretation von Experi-
menten. Gleichzeitig liefert sie Informationen über die zugrundeliegende Dynamik
der Systeme. Diese Arbeit präsentiert ein systematisches Simulationsprotokoll für
die Modellierung von Protein-Fluorophor-Systemen in silico, welches für die Er-
forschung von vielen biologisch relevanten Anwendungen verwendet werden kann.
Sie zeigt wie Experimente und Simulationen einander ergänzen, um neue Einblicke
in Dynamik und Funktion von Biomolekülen zu erhalten.

iv



Contents

1 Introduction 1

2 Theoretical Background 7
2.1 Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Protein Structure . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Energy Landscape Theory . . . . . . . . . . . . . . . . . . 9

2.2 Förster Resonance Energy Transfer . . . . . . . . . . . . . . . . . 10
2.2.1 FRET Efficiency . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 FRET Fluorophores . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Two-Color FRET Experiments . . . . . . . . . . . . . . . 15
2.2.4 Three-Color FRET Experiments . . . . . . . . . . . . . . . 15

2.3 Fluorescence Anisotropy . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Small-Angle X-Ray Scattering . . . . . . . . . . . . . . . . . . . . 19
2.6 Polymer Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Computational Methods 25
3.1 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Langevin Dynamics . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Force Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Native Structure-Based Models . . . . . . . . . . . . . . . . . . . 29
3.2.1 Structure-Based Potential . . . . . . . . . . . . . . . . . . 30
3.2.2 Determination of Contacts . . . . . . . . . . . . . . . . . . 32
3.2.3 Units in Structure-Based Models . . . . . . . . . . . . . . 32

3.3 Monte Carlo Photon Generation . . . . . . . . . . . . . . . . . . . 33
3.3.1 Photon Simulation for Three-Color FRET . . . . . . . . . 35

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Method Development 39
4.1 Dye Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Dye Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Protein Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Merging of Dyes and Protein . . . . . . . . . . . . . . . . . . . . . 43
4.5 Simulation Protocol for Protein-Dye Systems . . . . . . . . . . . . 44

v



4.5.1 Simulation Protocol for Three-Color FRET . . . . . . . . . 46
4.6 Biosensors with Fluorescent Proteins . . . . . . . . . . . . . . . . 48

4.6.1 Sensor Structures . . . . . . . . . . . . . . . . . . . . . . . 49
4.6.2 Protein Structures . . . . . . . . . . . . . . . . . . . . . . 50
4.6.3 Protein Parameters . . . . . . . . . . . . . . . . . . . . . . 52
4.6.4 Linker Structures . . . . . . . . . . . . . . . . . . . . . . . 53
4.6.5 Linker Parameters . . . . . . . . . . . . . . . . . . . . . . 54
4.6.6 Merging of Sensing Protein and Fluorescent Proteins . . . 55
4.6.7 Simulation Protocol for Fluorescent Proteins . . . . . . . . 58
4.6.8 Dimerization of Fluorescent Proteins . . . . . . . . . . . . 59

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Simulation Results 63
5.1 Test Simulations with CI-2 . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Effects of the Sampling Length . . . . . . . . . . . . . . . . . . . 64
5.3 CspTm with Different Dye Positions . . . . . . . . . . . . . . . . 66
5.4 Comparison of Simulation and Experiment . . . . . . . . . . . . . 69
5.5 Interpretation of FRET Measurements of ClyA . . . . . . . . . . 71

5.5.1 ClyA in Two-Color FRET Experiments . . . . . . . . . . . 73
5.5.2 Dye Flexibility in Different ClyA Conformations . . . . . . 77
5.5.3 Sampling of Unfolded ClyA Conformations . . . . . . . . . 78
5.5.4 ClyA in Three-Color FRET Simulations . . . . . . . . . . 79

5.6 Comparison to Simple Models for Data Analysis . . . . . . . . . . 79
5.7 Combination of FRET and SAXS . . . . . . . . . . . . . . . . . . 83

5.7.1 Influence of FRET Dyes on SAXS Measurements . . . . . 84
5.7.2 Determination of the Radius of Gyration . . . . . . . . . . 86

5.8 Diffusion Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.9 Modeling of a Glucose Sensor . . . . . . . . . . . . . . . . . . . . 95

5.9.1 Starting Structures and Simulations . . . . . . . . . . . . . 95
5.9.2 Distances, Orientations, and FRET Efficiencies . . . . . . 99
5.9.3 Convergence of Simulations . . . . . . . . . . . . . . . . . 102
5.9.4 Flexibility of Fluorescent Proteins . . . . . . . . . . . . . . 103
5.9.5 Including Dimerized Conformations . . . . . . . . . . . . . 104

5.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Conclusion 111
6.1 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

vi



Appendices 117
A Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
B Analysis of Simulations . . . . . . . . . . . . . . . . . . . . . . . . 118
C Generation of Fluorophore Topology . . . . . . . . . . . . . . . . 119
D Temperature Comparison . . . . . . . . . . . . . . . . . . . . . . . 121
E Merging of Structures . . . . . . . . . . . . . . . . . . . . . . . . . 124
F Sequences of Glucose Sensor Variants . . . . . . . . . . . . . . . . 126
G Simulation of Glc-BP with and without Glucose . . . . . . . . . . 128
H Residue Numbering Scheme for CspTm . . . . . . . . . . . . . . . 130
I Additional Formulas for FRET Efficiency and Anisotropy . . . . . 131
J Starting Structures for Sensor 1 and Sensor 4 . . . . . . . . . . . 132

Bibliography 135

List of Publications 153

vii



viii



1
Introduction

Proteins are large macromolecules and fundamental building blocks of life on the
molecular level. They are the functional components of cells and essential for var-
ious biological functions such as molecular transport, cell motion, and catalysis.
Examples are e. g. the protein hemoglobin, transporting oxygen in the human
body or collagen, a structural protein and one of the main components of con-
nective tissue. Protein malfunction can cause severe degenerative diseases such
as Parkinson’s disease, Huntington’s disease, Alzheimer’s disease, or variants of
amyotrophic lateral sclerosis (ALS). Thus, understanding of protein function is
essential for the fundamental research in biology and biophysics, as well as for
applications in pharmacology and medical sciences. The strong interrelation be-
tween protein structure, dynamics, and function is one of the main paradigms in
biophysics. Studying protein structure and dynamics is therefore crucial to under-
stand proteins and their function.

With their sizes in the nanometer range, proteins are too small to be directly
observed with an optical microscope. Hence, to access information about proteins
on a molecular scale, development of imaging methods capable of capturing their
dynamics is essential. Techniques such as nuclear magnetic resonance (NMR) spec-
troscopy and X-ray crystallography are limited in their application. Where X-ray
requires elaborately crystallized proteins to measure protein structure, NMR is
limited by system size. One approach to access dynamic structural information
about proteins is fluorescence spectroscopy. Fluorophores are utilized to study
protein dynamics, to elucidate biomolecular function, and to observe molecular
processes in vitro and in vivo. Similarly, specific biosensors can quantitatively mea-
sure the concentration of small molecules that interact with proteins by change in
their spectroscopic properties. In both applications, only specific properties of the
fluorophores can be directly measured and need to be carefully interpreted. This
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Chapter 1. Introduction

interpretation can be complemented by molecular simulations of the underlying
dynamics of the protein-fluorophore systems. I introduce both approaches in the
following.

A particularly powerful technique in fluorescence spectroscopy is Förster res-
onance energy transfer (FRET). Here, fluorophores, often small organic dyes or
fluorescent proteins, are attached to a protein via flexible linkers. Acting as a
“spectroscopic ruler” in the nanometer range [1], FRET gives information about
inter- and intramolecular distances by measuring the distance dependent transfer
efficiency between these fluorophores. Furthermore, FRET can be used to obtain
time-resolved information about e. g. unfolded or intrinsically disordered proteins
(IDPs) [2–4], protein-folding dynamics [5], folding intermediates [6, 7], or confor-
mational transitions [8]. FRET does not directly provide distance information but
rather the transfer efficiency. The efficiency depends on several parameters such as
the spectroscopic properties of the fluorophores, the distance between them, their
mutual orientation, and therefore also their shapes and dynamic behavior. These
dependencies complicate planning and interpretation of FRET measurements, es-
pecially when the motions of the fluorophores are anisotropic, conformationally
restricted, or slow. In these cases, simplifying assumptions such as neglectable
relative orientations of the fluorophores are not valid.

Similar to studying proteins in FRET experiments, FRET-based biosensors uti-
lize fluorescent proteins for measuring the concentration of small biomolecules that
can bind to a protein [9–12]. The conformational change of such a sensing protein
upon binding to this molecule yields an associated change in the FRET signal.
FRET-based biosensors can thus be used for in vitro and in vivo measurement and
visualization of small molecules such as glucose [13], with many applications in
medical sciences and microbiology. Mechanisms involved in the change of FRET
efficiency are reorientation of the fluorophores, changes of their rotational flexibil-
ity, or changes in the inter-fluorophore distances. These nanoscale processes are
often not fully understood and the sensors are typically engineered by a cost and
time extensive experimental trial and error optimization process [13, 14].

As the quality of measured FRET efficiencies is crucial for experiments, signif-
icant scientific effort is spend to reduce experimental artifacts, enhance spectro-
scopic fluorophore properties, and improve methods to interpret the underlying
mechanisms and molecular motions. A technique complementing experimental
FRET measurements are simulations of biomolecules with submolecular or atom-
istic resolution. Computational modeling and simulation of protein-fluorophore
systems can yield additional information about the underlying dynamics of the
FRET process. Thereby, they can resolve the challenges in interpretation of FRET
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measurements and elucidate the microscopic processes involved in FRET-based
biosensors.

To date, there are several simulation approaches to improve understanding of
FRET measurements as well as engineering biosensors. One approach to model
small organic dyes attached to proteins is to calculate the accessible volume of
these FRET dyes [15–19]. From the accessible volume, inter-dye distance dis-
tributions can be derived and used to plan experiments. This method does not
account for dye dynamics, in particular it neglects the relative orientation of the
dyes, as well as photon statistics. The model is thus not transferable to other fluo-
rophores with a different chemical structure such as fluorescent proteins. Another
model describes fluorescent proteins by sampling their conformational space using
rigid body modeling. The sampling yields knowledge about the system’s struc-
tural ensemble [20]. Still, this model does not include the influence of the system’s
dynamics, linker rigidity, photon statistics, or the weak dimerization tendency of
some fluorescent proteins on the FRET efficiency. A third approach, analytical
polymer models, can be used to analyze and interpret FRET data of dyes at-
tached to unfolded and intrinsically disordered proteins [21]. Because this model
is only valid for flexible (and thus unfolded) polymer chains, it can not be used
for folded protein ensembles.

An approach which, in principle, can resolve all of the aforementioned chal-
lenges are molecular dynamics (MD) simulations. They provide insight into dy-
namics and function of molecular systems on an atomistic level. Aiming at an
accurate model of the system’s dynamics, MD simulations are computationally
considerably more demanding than the other approaches. Previous work has ap-
plied MD simulations to study protein-dye systems, where biomolecular force
fields have been parametrized to describe specific dye molecules [22, 23]. The
simulation results have been compared to experimental observations such as flu-
orescence anisotropy [22] or mean FRET efficiency [23]. These MD simulations
have revealed that dye and linker fluctuations [24] as well as shape and mutual
orientation [25] play an important role in FRET studies. They furthermore allow
to test the widely used assumption of a constant and isotropic orientation factor
of κ2 = 2/3, which has been questioned in several studies [26, 27], in particular
for low linker flexibility [28]. Nevertheless, the prohibitive computational costs of
MD simulations to reach sufficiently long simulation times limit their application
to comparably small system sizes. MD simulations are infeasible for simulating
e. g. slow or large-scale motions, structurally diverse ensembles such as unfolded
proteins, or large systems, in particular systems comprising multiple fluorescent
proteins.
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Chapter 1. Introduction

In this work, I introduce a new method for simulating dynamics of protein-
fluorophore systems. It enables simulation of proteins with small organic dye
molecules as well as fluorescent proteins to gain insight into the underlying dy-
namics and structural ensembles. To achieve sufficiently long simulated times cor-
responding to a biologically relevant physical time scale, I use a coarse-grained
description level of the molecular systems [29], which was originally developed
to study protein folding. The model maintains full flexibility of the system and
includes all heavy atoms of proteins and fluorophores. The formulation of this
native structure-based model (SBM) is based on energy landscape theory and the
principle of minimal frustration [30–33]. SBMs can sample large conformational
ensembles with considerably lower computational costs than needed for regular
MD simulations. The simulations yield a realistic description of the system with
only few parameters in contrast to the complex force fields used in regular MD
simulations.

The presented simulation method provides direct access to full atomic informa-
tion of the entire system, including derived properties such as distance and orienta-
tion distributions of FRET fluorophores. It facilitates planning and interpretation
of experimental FRET measurements and can be utilized to derive experimentally
inaccessible properties from simulations. In contrast to the existing techniques the
method presented here is particularly useful for systems with a restricted confor-
mational space of the fluorophore or very slow fluorophore dynamics. Additionally,
it allows for description of protein-dye systems both in their folded and unfolded
states within a single model. As a computational model directly comparable to
experimental FRET and small-angle X-ray scattering (SAXS) data, it furthermore
improves our understanding of structural ensembles and microscopic function of
biosensors.

The goal of this work is to establish a systematic simulation protocol to study
protein-fluorophore systems computationally, which can easily be employed to
study a large range of biological relevant applications.

Chapter 2 presents the theoretical background of this work. It gives an intro-
duction to proteins, along with energy landscape theory. The latter is required
to derive native structure-based models, the simulation method used throughout
this work, which will be discussed in Chapter 3. Chapter 2 furthermore describes
the theory of Förster resonance energy transfer (FRET) with particular focus
on determination of FRET efficiencies in experiments and simulations. Moreover,
the principles of fluorescence anisotropy used for an adjustment of the simulation
time scale are discussed. Small-angle X-ray scattering (SAXS) measurements can
be used to coarsely derive the shape of molecules. I use data from this technique as
input for the biosensor simulations and investigate the interplay between FRET
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and SAXS in Chapter 5. Finally, an analytical polymer model to enable compar-
ing the presented simulations to other analysis methods is introduced.

Chapter 3 describes computational methods, starting with the fundamental
ideas of molecular dynamics (MD). Due to the prohibitive computational costs of
MD to simulate large conformational ensembles or systems with slow dynamics,
I use the computationally more efficient native structure-based models (SBMs).
Moreover, a Monte Carlo method to compute photon statistics from simulations
is described. It yields FRET efficiency histograms which can be used for direct
comparison of experimental and simulated data.

Chapter 4 presents the method I have developed to simulate protein-fluorophore
systems. I describe a systematic way to incorporate FRET fluorophores into
SBM simulations and obtain structures and parameters for modeling of the whole
protein-fluorophore systems.

Sections 4.1 to 4.5 explain the implementation of small organic dyes and proteins
in SBMs for simulation of folded and unfolded ensembles. Additionally, I present
an extension of the simulation protocol to obtain two-color and three-color FRET
data.

In Section 4.6, I describe the incorporation of fluorescent proteins in SBM sim-
ulations with particular focus on a FRET-based glucose sensor. This sensor com-
prises two fluorescent proteins connected by linkers to a glucose sensing protein.
Structures and parametrization of proteins and linkers in the model are derived.
Then, I describe a procedure to merge the protein and linker structures and se-
lect starting conformations using experimental SAXS data. Finally, a simulation
protocol for the sensor is given.

Chapter 5 presents the results for simulations of different dye-labeled pro-
teins and the glucose sensor. Using test simulations, I demonstrate how they can
yield new insights into the systems’ dynamics by distance and orientation dis-
tributions. The influence of different dye pairs and labeling positions is analyzed
and the simulation method is validated through direct quantitative comparison to
experimental data. I demonstrate how simulations improve the interpretation of
experimental data of the protein ClyA, including both two-color and three-color
FRET measurements. Chapter 5 also compares the presented simulation method
with descriptions of FRET by the accessible volume approach and analytical poly-
mer models, being consistent with both in their respective area of applicability.
Additional investigations consider the interplay of FRET and SAXS, in partic-
ular how FRET dyes affect SAXS measurements and whether both techniques
measure the same quantities with respect to the radius of gyration of the studied
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Chapter 1. Introduction

protein. I also show that the simulation method is suitable to obtain quantitative
parameters inaccessible in experiments such as diffusion parameters of dyes or ro-
tational correlation times of restricted fluorescent proteins. Finally, I investigate
differences between glucose sensor variants to study the underlying mechanisms
contributing to the function of a highly sensitive sensor.

Chapter 6 discusses and summarizes the obtained results. An outlook on fur-
ther studies and applications of this method is given.
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2
Theoretical Background

This chapter introduces the theoretical background underlying this work. As this
work studies proteins and their dynamics, at first Sec. 2.1 gives a short introduc-
tion to proteins. It discusses protein structures, essential to their function, and
energy landscape theory, as one of the basic theories of protein folding. The latter
is employed in the formulation of structure-based models used for the simulations
in this work (see also Sec. 3.2). I study systems used for Förster resonance energy
transfer (FRET) measurements, which are introduced in Sec. 2.2. Two measures
to characterize the motions in the simulated systems are fluorescence anisotropy
and diffusion. Both serve as tools to analyze the dynamics in the simulations and
are described in Secs. 2.3 and 2.4, respectively. Sec. 2.5 describes small-angle X-
ray scattering (SAXS) measurements which can be used to coarsely derive the
shape of molecules. I use data from this technique as input for the biosensor sim-
ulations and investigate the interplay between FRET and SAXS in Chapter 5.
Finally, to compare the developed approach to other analysis methods, Sec. 2.6
introduces the analytical polymer model which is applied to investigate unfolded
and intrinsically disordered proteins.

2.1 Proteins

Proteins are large macromolecules and fundamental building blocks of life. They
are essential for various biological functions as, e. g., DNA replication, molecular
transport (e. g. hemoglobin which transports oxygen in the human body), cell
motion, catalysis, and sensing of semiochemicals. Each protein consists of a specific
sequence of amino acids, which determines its three-dimensional structure and
thus function.
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Figure 2.1: Two amino acids with Cα-atoms, carboxyl groups (red), amino groups (blue) and
side chains R1 and R2 (green). The carboxyl group of the first amino acid reacts with the amino
group of the second amino acid and forms a peptide bond (orange) with expulsion of a water
molecule.

(a) All-atom representation. (b) Cα representation. (c) Cartoon representation.

Figure 2.2: The protein CI-2 (chymotrypsin inhibitor 2 [34]) in different representations. The
sequences are color-coded from N-terminus (green) over blue and red to C-terminus (yellow).
The all-atom representation includes all non-hydrogen atoms and the Cα representation only
the Cα-atom of each residue. The cartoon representation depicts the secondary structure motifs
of CI-2, i. e. an α-helix and the β-sheets.

2.1.1 Protein Structure

Proteins consist out of one or more chains of amino acids, each linked to one
another by peptide bonds shown in Fig. 2.1. Each amino acid comprises a Cα-
atom, a carboxyl group, an amino group, and a side chain, which is specific for
each amino acid and determines its characteristics (see Fig. 2.1). In the genetic
code, twenty different amino acids are encoded. The sequence of amino acids of a
protein is referred to as primary structure, forming a polypeptide backbone with
different side chains. The local structural motifs formed by this chain are referred
to as secondary structure. Common motifs of secondary structure are the α-helix
and the β-sheet, which are shown in the cartoon representation in Fig. 2.2c. The
tertiary structure refers to the overall fold of a protein. If a protein contains several
individual chains, their mutual arrangement is named quaternary structure.

A fundamental principle in biophysics is the paradigm of structure and func-
tion, stating that the three-dimensional native structure of a protein determines
its function. Accordingly, determination of this native protein structure and un-
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2.1. Proteins

derstanding the process of protein folding from a disordered random coil to a
functional biomolecule are of major interest in this research field.

Anfinsen’s dogma postulates that protein structure is, at least for small glob-
ular proteins, exclusively dependent on the protein’s sequence [35]. It also states
that the native structure represents the free energy minimum and is unique, stable
and kinetically accessible during folding. Irrespective of the loss of entropy, the
native structure is stabilized by a shielding of hydrophobic amino acids from the
surrounding solvent, additional salt bridges, hydrogen bonds, and disulfide bonds
between cysteine residues, an amino acid containing sulfur. However, the confor-
mational space for a protein chain is considerable. Levinthal’s paradox states that
the time needed for a protein to sequentially sample every possible conformation
up to finding the minimum energy in the native state would be longer than the
age of the universe [36]. Albeit, proteins are known to fold on the time scales of
milliseconds to seconds [5, 37, 38]. This yields the question how proteins are able
to “find” their native state so fast.

One approach to resolve this paradox is the theory of folding pathways with
well-defined intermediate states between folded and unfolded conformations [39].
A different theory, named energy landscape theory [30, 33, 40], takes into account
multiple folding routes and the ensemble character of conformations. It is the
foundation for the computational model I use in this work.

2.1.2 Energy Landscape Theory

The free energy of a structural conformation as a function of its degrees of freedom
is named energy landscape [30, 33, 40]. Every conformation corresponds to one
point in this high-dimensional space. Randomly chosen amino acid sequences are
likely to have competing energy contributions and therefore frustrated interac-
tions. The frustration can lead to kinetic traps which prohibit proper folding [33].
According to the paradigm of structure and function, incorrect folding leads to
malfunction. Consequently, a random amino acid sequence would be strongly dis-
favored by natural selection. The principle of minimal frustration states that evo-
lution favors proteins with robust folding and thus minimized the frustration of
interactions [30–33]. This can be described quantitatively using spin glass the-
ory [30, 32] and leads to a “funneled” energy landscape, which is biased towards
the native structure and enables fast folding (see Fig. 2.3). In this depiction, en-
ergy gains cause loss in conformational entropy as, e. g., stabilizing bonds narrow
the conformational options.

A perfectly smooth unfrustrated funneled energy landscape would only include
interactions stabilizing the native structure [33]. Consequently, a fully unfrustrated
protein can be described only by its interactions in the native state [41]. This idea
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Figure 2.3: Scheme of a funneled energy landscape. The y-axis shows the energy and the width
of the funnel represents the conformational entropy. Unfolded proteins have high energies and
a large conformational space, whereas the native ground state occupies the energetic minimum
with low conformational entropy.

is employed in the formulation of native structure-based or Gō-type models which
are described in more detail in Sec. 3.2.

2.2 Förster Resonance Energy Transfer

Measuring Förster resonance energy transfer (FRET) [43] is a powerful experimen-
tal tool to get insight into dynamics and function of biomolecules. FRET refers to
a non-radiative energy transfer between a donor and an acceptor fluorophore (see
Fig. 2.4a). Due to its strong distance dependency in the nanometer range it is often
utilized as “spectroscopic ruler” [1]. It is used in experiments to observe different
protein conformations, conformational changes, or interactions between different
molecules. For example, two residues of a protein are labeled with donor and ac-
ceptor fluorophores and folding transitions are observed directly through distance
changes between donor and acceptor. Popular FRET applications are the obser-
vation of folding intermediates [6, 7], structure determination of biomolecules [42,
44, 45], and investigation of unfolded or intrinsically disordered proteins [2–4, 46].

Förster’s theory [43] considers the “weak coupling regime” of the fluorophores,
which neglects perturbation on the energy levels due to non-coulombic interac-
tions. The energy transfer is described as dipole-dipole coupling between the tran-
sition dipole moments of donor and acceptor. The different energy levels are shown

10
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FRETDonor Acceptor

(a) FRET principle

SD
1

SD
0 SA

0

SA
1

kD
kA

kFRET

Donor Acceptor
(b) Jablonski diagram

Figure 2.4: (a) Principle of FRET with donor (blue) excitation and energy transfer to the
acceptor (red). The blue and red wavy arrows depict the incident and emitted photons. (b) Sim-
plified Jablonski diagram with electronic states for a donor and an acceptor fluorophore. SD

0

and SA
0 denote the ground singlet states, SD

1 and SA
1 the lowest excited singlet states of donor

and acceptor, respectively. In the left, donor excitation (black arrow), de-excitation in absence
of an acceptor (blue arrow) with rate kD, and de-excitation via FRET (blue dashed arrows)
with rate kFRET are shown. In the right, acceptor excitation via FRET (red dashed arrows) and
de-excitation (red arrow) with rate kA are shown. Vibrational relaxations are shown as wavy
black arrows. A similar depiction can be found in [42].

in a Jablonski diagram in Fig. 2.4b. The donor is excited by absorption of incident
monochromatic light into its singlet state SD

1 and relaxes into the vibronic ground
state. In absence of the acceptor the donor de-excites with a rate of kD to its
ground singlet state SD

0 . In presence of an acceptor it can also de-excite via FRET
and transfer its energy to the acceptor with a rate of kFRET. The acceptor then also
de-excites with a rate of kA. The given de-excitation rates for donor and acceptor
include fluorescence decay via photon emission, and thermal de-excitation, where
energy is dissipated as heat to the solvent. De-excitation to the ground state often
occurs to a vibrationally excited substate of the ground state and then reaches
thermal equilibrium [47].

At small donor acceptor distances (< 2 nm), the competing Dexter energy trans-
fer, namely an electron exchange between donor and acceptor, comes into play.
As the inter-fluorophore distances in the studied systems are typically larger, the
Dexter energy transfer is neglected in the following.

2.2.1 FRET Efficiency

FRET experiments do not provide direct access to the distances between the
fluorophores. Instead, the FRET efficiency E is measured, which is defined by [42]:

E =
kFRET

kD + kFRET
. (2.1)
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(a) Dependency of FRET efficiency E on
donor acceptor distance RDA. The Förster ra-
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ing to an efficiency of 50%. The highest sen-
sitivity of FRET is in the range close to R0.
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(b) Dependency of FRET efficiency E on
donor acceptor distance RDA for different
mutual orientations represented by the orien-
tation factor κ2. A value of κ2 = 2/3 (green)
corresponds to an isotropic average and is
used to calculate R0.

Figure 2.5: (a) Distance and (b) orientation dependency of FRET efficiency.

From this, the distance dependency of the efficiency can be derived [42]:

E =
1

1 +
(
RDA
R0

)6 , (2.2)

where RDA is the distance between donor and acceptor and R0 is the Förster
radius. In Fig. 2.5a the strong distance dependency of the FRET efficiency is
displayed. The Förster radius R0 is defined as the distance corresponding to an
efficiency of 50%, i. e. de-excitation via FRET and de-excitation via other paths
are equally probable. FRET efficiency reaches its highest sensitivity to the inter-
fluorophore distance in proximity to R0. The Förster radius mainly depends on the
spectroscopic properties of the fluorophore pair used and the relative orientation
of their transition dipole moments. It is given by [42]:

R6
0 =

9(ln 10)κ2QDJ(λ)

128π5n4NA
, (2.3)

where QD is the fluorescence quantum yield of the donor in absence of the accep-
tor, J(λ) the spectral overlap integral of donor emission and acceptor absorption
spectrum, n the refractive index of the medium, and NA the Avogadro constant.
The orientation factor κ2 describes the relative orientation of the transition dipole
moments for emission of donor (µD) and for absorption of acceptor (µA) (see
Fig. 2.6) and is given by [42]:

κ2 = (sin θD sin θA cosφ− 2 cos θD cos θA)2 . (2.4)
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θD

θA

φ

µA

µD

RDA

Figure 2.6: Parameters for the definition of the orientation factor κ2. The centers of donor
and acceptor (black dots) are connected by the vector RDA (black arrow). The transition dipole
moment of donor (blue arrow) and acceptor (red arrow) are given by µD and µA, respectively.
The angle between RDA and µD (µA) is referred to as θD (θA) and the angle between the two
planes spanned by µD and RDA (µA and RDA) is denoted φ. For the definition of centers and
transition dipole moments of the fluorophores in this work, see Sec. 3.3.

Here, θD and θA are the angles between µD and µA, and the vector RDA between
the two centers of the fluorophores, respectively. The angle between the planes
spanned by µA, RDA and µD, RDA, respectively, is denoted as φ (see Fig. 2.6).
The dependency of the FRET efficiency on κ2 is shown in Fig. 2.5b.

Presuming fast rotational diffusion and isotropic orientation of the fluorophores
during the excited state lifetime of the donor, most studies assume a constant
value of κ2 = 2/3, which results from averaging over all possible rotations. It is
referred to as the “isotropic dynamic averaging regime” [42]. This assumption has
been questioned in several studies [19, 26–28]. Molecular dynamics simulations
have found average κ2 values differing significantly from the isotropic value of
κ2 = 2/3 and also correlations between κ and RDA despite the assumed indepen-
dence [28]. The assumption of the “isotropic dynamic averaging regime” can be
tested experimentally, e. g. by measuring time-dependent fluorescence anisotropy
decays [23]. However, in the interpretation of FRET measurements it is difficult
to account for sterically hindered or slow rotation as in studies with, for example,
fluorescent proteins. The simulation method presented in this work directly pro-
vides the orientations of the fluorophores and allows to easily test the assumption
for various systems.

Detailed derivations of the presented formula can be found in [43, 48].

2.2.2 FRET Fluorophores

Different kinds of fluorophore pairs are utilized for FRET measurements. Ideally,
fluorophores for FRET should be bright (i. e. have high extinction coefficients
and quantum yields), photostable, small, and water soluble [49]. Additionally, the
donor and acceptor emission spectra should be well separated.

For these reasons small organic dye molecules as, e. g., the Alexa Fluor dyes [50]
are often used in FRET studies. They are named roughly according to their ex-
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(a) Alexa Fluor 546 dye [50]. (b) Green fluorescent protein (PDB:
1GFL [51]). The fluorophore inside the
β-barrel (gray) is shown in green.

Figure 2.7: Different fluorophores used for FRET measurements. Examples for a small organic
dye (left) and for a fluorescent protein (right) are shown.

citation maxima. As an example, the Alexa Fluor 546 dye is shown in Fig. 2.7a.
Dyes are used with different linker lengths and are often bound via a maleimide
to a protein residue mutated to cysteine (see also Fig. 4.1). As dyes are small
and flexible, they have negligible influence on the dynamics of the molecule they
are attached to and their rotational diffusion is usually fast enough to justify the
isotropic averaging regime.

Despite having a lower photostability [49] and being of larger size than dyes,
fluorescent proteins are also utilized for many FRET applications. They have the
advantage that they can be genetically encoded and thus directly fused to the in-
vestigated protein. The primary fluorescent protein, the green fluorescent protein
(GFP [52]), was discovered in the 1960s. In recent years, GFP was engineered
to produce various mutants with different color spectra. It consists of a β-barrel
comprising eleven β-strands with an α-helix containing the covalently bound flu-
orophore in the center (see Fig. 2.7b) [51]. When the protein is folded completely,
induced specific cyclization reactions form the fluorophore from the tripeptide
Ser65-Tyr66-Gly67. By altering the sequence of this tripeptide and the proximate
amino acids in the β-barrel, color, intensity, and photostability of the fluorescent
protein can be varied.

Another possible choice for FRET donors are semiconductor quantum dots, but
due to their large size (> 20 nm) their use is limited [49].
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2.2. Förster Resonance Energy Transfer

2.2.3 Two-Color FRET Experiments

In two-color FRET experiments, a donor and an acceptor fluorophore are at-
tached to specific residues of biomolecules such as proteins. The FRET donor is
excited by laser pulses and the resulting emitted photons are split by dichroic mir-
rors and detected by separate detection channels for donor and acceptor photons,
respectively. In ensemble FRET measurements the observed FRET efficiency is
averaged over an entire ensemble of structures and conformations. To access in-
dividual molecular states or time-resolved evolution of systems, single-molecule
FRET (smFRET) is becoming more and more popular [42]. It can be performed
with molecules immobilized on a surface or freely diffusing in buffer solution. In
the latter case the molecules are observed by a confocal microscope during their
diffusion time through the confocal volume, which is about ∆t ≈ 1ms [5]. The
detected photons are collected in individual bursts, which are discarded when con-
taining less than a specified minimal number of photons to reduce the influence of
shot noise. After correcting the photon counts for crosstalk and background the
FRET efficiency is calculated by [49]:

E =
1

1 + γ ID
IA

. (2.5)

ID and IA are the corrected intensities of donor and acceptor, respectively. The
correction factor γ accounts for the different quantum yields and detection effi-
ciencies for donor and acceptor. From this efficiency, the inter-fluorophore distance
can only be calculated approximately due to uncertainties in κ2 and instrumental
corrections [49]. Therefore, for comparison of experimental and simulated data the
measured FRET efficiency is preferable compared to the derived inter-fluorophore
distance.

FRET-based biosensors are one application of fluorescent proteins, where a
sensing protein changes its conformation and the conformational change is trans-
lated to a change in the FRET signal. To quantify the quality of FRET sensors,
experiments rather measure the FRET intensity ratio

R =
IA
ID

(2.6)

instead of the FRET efficiency for different conformations of the sensor. The
change between minimal and maximal ratio, ∆R, gives a characteristic parameter
for the sensitivity of a sensor.

2.2.4 Three-Color FRET Experiments

An extension of regular smFRET with two fluorophores are FRET measurements
using three or more fluorophores. Three-color FRET measurements [53, 54] en-
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Figure 2.8: Schematic depiction of three-color FRET, represented by a blue (B), a green
(G), and a red (R) fluorophore. Upon excitation the blue donor fluorophore (left) de-excites or
transfers energy via FRET to one of the acceptors (black arrows). The green fluorophore then
de-excites or transfers the energy to the red fluorophore. The red fluorophore then de-excites. A
similar scheme for direct excitation of the green fluorophore (middle) and of the red fluorophore
(right) are shown alongside. In addition, the photon counts NMN with M denoting the directly
excited fluorophore and N referring to the fluorophore whose photons are counted are depicted.

able observing changes in more than one distance simultaneously, e. g. to show
correlated movements [55], and provide a more detailed picture of the dynamics
in complex systems. Three-color FRET is widely used [56, 57], e. g. for studying
intrinsically disordered proteins [58] or by employing a FRET cascade to extend
the range of FRET [59]. Also some attempts on four-color FRET have been made
which could be described by an analog procedure [60].

Interpretation of these measurements is more complex than two-color smFRET.
Several more paths have to be considered as illustrated in Fig. 2.8. Due to many
unknown rates, these experiments need additional information. Therefore, the
experiments with three small dyes considered here use three successive laser pulses
to directly excite the donor, the first, and the second acceptor. Here they are
exemplary referred to as blue (B), green (G), and red (R) fluorophore, respectively.
The resulting photons are counted after each excitation, yielding photon counts
NMN with M being the directly excited fluorophore and N being the fluorophore
corresponding to the photons counted. Instead of a single efficiency, the quantities
analyzed are the photon count rates FMN:

FBB =
NBB

NBB +NBG +NBR
, (2.7)

FBG =
NBG

NBB +NBG +NBR
, (2.8)

FBR =
NBR

NBB +NBG +NBR
, and (2.9)

FGR =
NGR

NGG +NGR
. (2.10)
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In experiments, the photon counts NMN are already corrected for crosstalk, detec-
tion efficiencies, quantum yields, and background. The photon count after excita-
tion of the red fluorophore NRR is used in experiments to ensure selection of only
bursts from those systems where all fluorophores are present.

2.3 Fluorescence Anisotropy

When illuminating a sample of randomly oriented fluorophores with polarized
light, the fluorophores with transition dipole moment parallel to the electric field
of the incident light are preferentially excited. Consequentially, the excited-state
population is partially oriented. Due to rotational diffusion the sample depolarizes
over time with a certain time constant. This time-dependent fluorescent anisotropy
r(t) can be measured experimentally and is defined as [47]:

r(t) =
I‖(t)− I⊥(t)

I‖(t) + 2I⊥(t)
. (2.11)

I‖(t) and I⊥(t) denote the time-dependent fluorescence intensity parallel and per-
pendicular to the polarization of the incident light, respectively. The fluorescence
decay is characterized by the rotational correlation time τrot, giving a measure of
flexibility and rotational speed of the fluorophores.

The measured fluorescence anisotropy decay can be compared to the calculation
of the time-dependent anisotropy from atomic coordinates in simulations by using
the normalized absorption and emission dipole vectors µ̂a and µ̂e. Here, I assume
the absorption and emission dipole moment vectors of a fluorophore to be collinear
(µ̂a = µ̂e = µ̂). The fluorescence anisotropy is then calculated as [61]:

r(t) = r0 〈P2 [µ̂(s) · µ̂(s+ t)]〉s , (2.12)

where r0 is the fundamental anisotropy and P2 the second-order Legendre poly-
nomial given by P2(x) = 1

2
(3x2 − 1). With the assumption of collinear transition

dipole moments, the fundamental anisotropy is given by r0 = 0.4, close to the
experimentally measured value [62].

As the rotational diffusion of both fluorophores and proteins contribute, the
anisotropy decay is generally described as a double-exponential function [23, 61,
63]. In the systems with small dyes in this work, the proteins are significantly larger
than the dye molecules. As a result, the expected rotational correlation times of
the proteins are one order of magnitude larger than the rotational correlation times
of the dyes. Thus, for the experimentally measured rotational correlation times
the protein motions can be neglected. At the same time this prevents measuring
rotational correlation times of freely diffusing systems with fluorescent proteins.
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Chapter 2. Theoretical Background

In the analyses of the simulations of the systems with small dyes as well as
the systems with fluorescent proteins, I focus on the rotational motion of the
fluorophores in the inertial system of the protein. Hence, I find using only one
exponential function sufficient and fit with the relation [47]

r(t) = r0 exp

[
− t

τrot

]
. (2.13)

In case of a spatially restricted rotation of the fluorophore, e. g. when using flu-
orescent proteins, the “wobbling-in-a-cone” model can be applied [64]. It assumes
that the transition dipole moments of the fluorophore moves freely in a cone. Then
the anisotropy decay can be described with

r(t) = r0

[
(1− A) exp

[
− t

τrot

]
+ A

]
, (2.14)

where A defines a measure of the rotational restriction and is related to the angle
of the cone.

The fluorescence anisotropy r(t) allows a direct comparison of experimental
observations with simulations. It will serve as a conversion factor between the
time scale in simulations in this work to the physical time scale (see Sec. 4.5).

2.4 Diffusion

Besides the rotational correlation time, the dynamic behavior of fluorophores can
also be described by diffusion in the accessible volume. The diffusion constant
is usually not directly accessible in experiments, but there are several methods
to calculate it from simulations given velocities and positions of the respective
molecule are known.

One way to calculate the diffusion constant D of a molecule in three dimensions
is via the velocity autocorrelation function

Cv(τ) = 〈vi(τ) · vi(0)〉i , (2.15)

where vi is the velocity and i refers to the averaging over the ensemble which is
here taken as different starting times in the simulation. The diffusion constant is
then given by the Green-Kubo relation [65]:

D =
1

3

∫ ∞
0

Cv(t) dt. (2.16)
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2.5. Small-Angle X-Ray Scattering

A second approach uses the mean square displacement of positions ri(t) and
the Einstein relation for three dimensions [65]:

lim
t→∞

〈
‖ri(t)− ri(0)‖2

〉
i

= 6Dt . (2.17)

For small time scales the diffusion coefficient for fluorophores can be calculated
with Eq. (2.17). For larger times the diffusion is confined by the accessible volume
of the fluorophore due to the restriction of the linker bound to the protein. This
confined diffusion is described by [66, 67]:

〈
r2(t)

〉
= 〈rc〉2 ·

[
1− A1 · exp

(
−A2 ·

6Dt

〈rc〉2

)]
, , (2.18)

where 〈rc〉2 represents the size of the accessible volume and A1 and A2 are fit
parameters.

The diffusion constant D and the value of 〈rc〉2 derived from simulations can
then be employed in further calculations.

2.5 Small-Angle X-Ray Scattering

Small-angle X-ray scattering (SAXS) is an experimental method to measure the
sizes and shapes of molecules and is widely used for studying proteins in solu-
tion [68, 69]. In contrast to nuclear magnetic resonance (NMR), SAXS is not
limited by protein size and is experimentally less extensive than structure deter-
mination via X-ray crystallography as it does not need laborious crystallization of
the molecule. Moreover, it is used to study the behavior of unfolded or intrinsically
disordered proteins [70].

In SAXS, samples of molecules in solution are exposed to X-rays and the scat-
tered light is recorded by a detector. The scattering intensity I is measured as
a function of the scattering angle θ and the momentum transfer q = 4π sin θ/λ,
respectively, where λ is the wavelength of the incident light. SAXS measures the
averaged scattering intensity over the entire ensemble and all orientations of the
molecules. The scattering intensity curve of the pure solvent is then subtracted
from the curve of the molecules in solution.

In SAXS theory, the spherically averaged intensity is described as a sum of
elementary scatterers, e. g. atoms or amino acids. It is calculated with the Debye
formula [71]:

I(q) =
∑
i

∑
j

fi(q)fj(q)
sin(qrij)

qrij
, (2.19)
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Figure 2.9: SAXS scattering curves for different proteins (see Sec. 4.3). The SAXS intensity
curves are characteristic for specific sizes and shapes. The different ranges of the scattering
vector q give access to different structural features. Small q values reflect the overall shape of a
structure, whereas medium q values yield information on the level of tertiary structure. High q
values in principle provide access to atomic structures.
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Figure 2.10: Guinier plot (left) and dimensionless Kratky plot (right) for CI-2 in folded and
unfolded states. From the Guinier plot in the region of small q the radius of gyration Rg can
be approximated. The dimensionless Kratky plot gives information about the configuration of
the protein. For example, the rise to a plateau indicates a random coil (unfolded CI-2, orange),
whereas a distinct peak indicates a globular structure (folded CI-2, blue).

where rij is the distance between two scattering particles and fi is the form factor
of the scattering particle i.

The different parts of the resulting one-dimensional SAXS intensity curve give
information about different structural features, as can be seen in Fig. 2.9 for dif-
ferent proteins. In the range of small q values the intensity I(q) can be described
by the Guinier approximation [72]:

I(q) = I(0) exp

[
−
q2R2

g

3

]
, (2.20)

with the radius of gyration Rg, a measure of the protein’s size (see also Sec. B).
With this relation, the radius of gyration can be extracted as the slope of the
curve in a Guinier plot (see Fig. 2.10). The Guinier approximation is only valid
in a range of qRg < 1.3 for globular proteins [69] and in an even smaller range for
elongated structures.

The intensities at higher q values yield information about the molecule’s shape
and are referred to as the “power-law regime”, where the scattering can be de-
scribed as:

I(q) ∝ q−df , (2.21)

where df denotes the fractal dimension. For folded macromolecules Eq. (2.21) re-
sults in Porod’s law [73], where df = 4. For other structures as, e. g., unfolded
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polymers, df can adopt a wide range of values. The approximation of Eq. (2.21)
only holds in a part of the scattering curve as it breaks down at higher q values,
where information about atomic resolution becomes significant [69].

The Kratky plot (q2I(q) as function of q) provides an excellent tool to analyze
the folding of molecules [69]. It is shown in its dimensionless form in Fig. 2.10. A
rise to a plateau indicates a random coil, while a globular structure results in a
distinct peak.

For comparison of theoretically calculated and experimentally measured SAXS
profiles, the degree of agreement is commonly given by the value of χ2 after fitting.
Here, I use the fitting method implemented in CRYSOL [74], where χ2 is defined as:

χ2 =
1

Nq

Nq∑
i=1

[
Iexp(qi)− c · I(qi)

σ(qi)

]2

, (2.22)

and the constant c is given by:

c =

[
Nq∑
i=1

Iexp(qi) · I(qi)

σ(qi)2

][
Nq∑
i=1

I(qi)
2

σ(qi)2

]−1

. (2.23)

Nq denotes the number of experimental points qi, Iexp(qi) the experimental scatter-
ing intensities, σ(qi) the experimental errors, and I(qi) the theoretical intensities.
The absolute value of χ2 is difficult to interpret, but different profiles can be com-
pared by their χ2 values to a reference profile to, e. g., find the theoretical profile
best fitting to experimental measurements.

2.6 Polymer Model

Proteins in the unfolded states and intrinsically disordered proteins are often
approximated as polymer chains. At high temperatures the model I use describes
an excluded volume polymer chain [75], which follows

〈r2
ij〉1/2 = C ·Nν

ij . (2.24)

Here, apart from the constant C, rij is the spatial distance and Nij the sequence
distance between two chain elements i and j, respectively. The length scaling expo-
nent ν is characteristic for different polymer models and expected to be ν = 3/5
for excluded volume polymer chains [75]. It is related to the fractal dimension
described in Sec. 2.5 via ν = 1/df [76].

Polymer models are further employed to describe unfolded proteins with dyes
attached and interpret the corresponding FRET experiments [77, 78]. It is often
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Figure 2.11: Schematic depiction of an unfolded protein (black line) with donor (blue) and
acceptor (red) attached. The sequence distance Nij = |i − j| between donor and acceptor,
attached to residues i and j is shown in green. The spatial distances between donor and acceptor
centers, RDA, and between the respective Cα-atoms (black circles), (RCα

)ij , are shown. The
resulting effective distance Neff is depicted in orange (dashed line).

assumed that FRET experiments measure the distance between the Cα-atoms
of the labeled residues (in the following referred to as Cα distance), neglecting
the contributions of the dyes’ linkers. However, in careful analyses, the linker of
donor and acceptor can be described as extension of the chain with a certain
additional length L. This results in an effective sequence distance Neff = Nij + L
(see Fig. 2.11). Then, a correction factorm can be calculated to relate the distance
of the dyes’ centers RDA to the distance of the corresponding Cα-atoms (RCα)ij,
where i, j are the residue indices:

m =

(
Nij + L

Nij

)ν
, for Nij > 0. (2.25)

For a theoretical sequence separation of Nij = 0, the correction factor is not de-
fined. The respective quantities are illustrated in Fig. 2.11.

2.7 Summary

This chapter showed how proteins and their dynamics can be described by energy
landscape theory. The latter is employed in the formulation of structure-based
models, which in turn are used for the simulations in this work. Furthermore, it
presented the experimental technique utilizing FRET as a “spectroscopic ruler” to
study structures and dynamics of proteins. FRET is highly dependent on distances
and mutual orientations between two fluorophores which are not directly accessible
in experiments. Simulations provide a more detailed insight in biomolecular sys-
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tems labeled with FRET fluorophores, as a) single molecule two- and three-color
FRET with small organic dyes, and b) systems with fluorescent proteins.

In addition, I introduced SAXS as an experimental technique to get further
information about the shapes of systems. The interplay of FRET and SAXS will
be studied in Sec. 5.7 and SAXS data will be utilized to select suitable structures
for simulation of a glucose sensor in Sec. 5.9.1.
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3
Computational Methods

This chapter introduces the basics of the computational methods used in this
work. The simulations I perform are based on the principles of molecular dynam-
ics (MD), which are introduced in Sec. 3.1. MD simulations model a system’s dy-
namics with Newton’s equations of motion and a given force field. Here, I simulate
proteins in solution, so a treatment of the interaction between protein and solution
is necessary. This interaction is employed via Langevin dynamics, which implic-
itly accounts for solvent friction and random collisions with solvent molecules, as
described in Sec. 3.1.1. The typical composition of an MD force field is described
in more detail in Sec. 3.1.2.

For the study of large conformational transitions as, e. g., in unfolded protein
ensembles, or large systems, regular MD simulations are infeasible due to pro-
hibitive computational costs. Therefore I use the computationally more efficient
native structure-based models (SBMs) presented in Sec. 3.2 throughout this work.
In the SBM potential (see Sec. 3.2.1) native contacts play a crucial role, so they
are discussed further in Sec. 3.2.2. Also, time and temperature units in SBMs,
which due to their accelerated dynamics do not directly relate to physical units,
are discussed in Sec. 3.2.3. Finally, Sec. 3.3 presents the Monte Carlo method to
calculate photon statistics from simulated trajectories, necessary for comparison
of the simulations to two-color and three-color FRET experiments.

3.1 Molecular Dynamics

Molecular dynamics (MD) is a simulation method to investigate systems on the
atomic and molecular scale. It is based on classical mechanics, as quantum me-
chanical methods can not be feasibly utilized for molecules of larger size. The
atomic coordinates of the simulated system are calculated in successive time steps
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in the order of magnitude of 1 fs. Dynamic properties can then be calculated by in-
tegration over time. The simulation is based on classical force fields represented by
high-dimensional potentials V (x1, x2, ..., xN). For every simulation step the force
is calculated by:

F = −∇V (x1, x2, ..., xN) . (3.1)

The resulting system of Newton’s equation of motion is solved for every atom, and
the positions and velocities are updated in every time step. The coordinates of all
atoms in the system are stored in trajectories, consisting of individual frames at
discrete points in time, which can then be analyzed.

MD simulations are used for many applications in material science, chemical
physics, and for simulation of biomolecules such as proteins. Recent applications
of MD simulations are, e. g., the investigation of protein folding [79], refinement of
experimental measurements [80], and the study of enzymatics of kinases involved
in muscle function [81]. MD simulations have also been employed to investigate
fluorescence anisotropy decay (see Sec. 2.3) [82, 83]. However, the simulations have
been adjusted as the original parametrization had yielded a rotational correlation
time deviating about a factor of three from experimental values [82]. This result
shows that even extensively developed force fields have to be adjusted for specific
applications.

Still, MD simulations face several limitations [84]. The classical force fields
do not account for quantum mechanical behavior and electronic motions are ne-
glected. All electrons are considered to be in their ground state. Also, the force
field parameters may be ambiguous. They are derived by quantum mechanical
calculations and adjusted to empirical data, but there are several different force
fields available which are adapted for different applications. Due to computational
limitations, the coulombic interactions are cut off at a certain range and periodic
boundary conditions have to be used. Both assumptions can lead to unphysical
behavior.

One implementation of molecular dynamics is the GROMACS package [84], which
is used for the simulations in this work.

3.1.1 Langevin Dynamics

Langevin dynamics [84] or stochastic dynamics refers to Newton’s equation of
motion with additional terms for friction and a random force. It allows for implicit
modeling of solvent friction and of the random perturbations of the system by
occasional collisions with solvent molecules. The Langevin equation is given by:

mi
d2ri(t)

dt2
= F i(ri(t))− γimi

dri(t)

dt
+Ri(t) , (3.2)

26



3.1. Molecular Dynamics
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(a) Bond between two atoms with distance
r0 in the ground state.
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(b) Angle between three atoms with angle
θ0 in the ground state.
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(c) Proper dihedral angle with angle φ0 in
the ground state. It is defined as the angle
between the planes formed by the atoms
i, j, k (yellow) and j, k, l (blue).

i

j k

l

χ0

i

j k

l

χ0

(d) Two types of improper dihedral an-
gles with angle χ0 in the ground state. The
angle is defined as the angle between the
planes formed by atoms i, j, k (yellow) and
j, k, l (blue).

Figure 3.1: Four types of bonded interactions between atoms (black circles).

where mi is the mass of the particle, and ri(t) are the three-dimensional coor-
dinates of the particle over time t. As no explicit solvent is present in this type
of simulation, the friction constant γi implicitly models the solvent friction. The
random force Ri(t) is a stationary Gaussian process, satisfying

〈Ri(0)Rj(t)〉 = 2miγikBTδijδ(t) . (3.3)

Here, kB is the Boltzmann constant, T the temperature, δij the Kronecker delta,
and δ(t) the Dirac delta. MD simulations directly provide the NV E ensemble,
i. e., a constant number of particles, constant volume, and constant energy. As
the calculation of quantities within the canonical ensemble (NV T ) is required,
the temperature has to be held constant. The temperature can be handled by
explicit temperature coupling or, in Langevin dynamics, by implicit control of the
temperature via the random force term in Eq. (3.3). To numerically integrate the
differential equations in Eq. (3.2), GROMACS uses a third-order leap-frog integra-
tor [85].

3.1.2 Force Fields

An essential part of an MD simulation is the underlying force field. A force field
is a set of parameters for all bonded and non-bonded interactions present in the
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simulated system. The bonded interactions include all interactions between di-
rectly connected atoms, namely bonds, angles, and proper and improper dihedral
angles. The different types of bonded interactions are shown in Fig. 3.1.

In the potential, the bonded interactions are represented by harmonic oscillators
centered around the respective ground state. The potential terms are given by:

Vb = Kb(r − r0)2 , (3.4)
Va = Ka(θ − θ0)2 , (3.5)

Vd =
∑
n

Kd(1− cos(nφ− φ0)) , and (3.6)

Vi = Ki(χ− χ0)2 , (3.7)

for bonds with bond length r, angles θ, proper dihedral angles φ, and improper
dihedral angles χ. r0, θ0, φ0, and χ0 are the respective values for the ground state.
The periodic dihedral potential with multiplicity n allows for isomeric confor-
mations. The corresponding force constants are Kb, Ka, Kd, and Ki. Improper
dihedral angles are added to keep the involved atoms in a plane (e. g. in ring
structures) and to prevent transition to unphysical isomers.

Non-bonded interactions are typically electrostatic interactions and Lennard-
Jones interactions. The respective potentials are given by the following terms:

VLJ = KLJ

[(
σ0
ij

rij

)12

− 2 ·
(
σ0
ij

rij

)6
]

(3.8)

VCoulomb(rij) =
qiqj

4πε0εrrij
(3.9)

Here, σ0
ij is the radius for the excluded volume, and rij is the distance between two

atoms i and j with charges qi and qj. ε0 and εr are the electric constant and the
dielectric constant, respectively. KLJ denotes the force constant for the Lennard-
Jones potential. All force constants are given by the chosen force field and can be
different for different types of bonds, angles, and dihedral angles, as well as de-
pendent on the atom types involved. Common force fields are, e. g., the AMBER
(Assisted Model Building and Energy Refinement) [86, 87] or CHARMM (Chem-
istry at HARvard Macromolecular Mechanics) [88, 89] force fields implemented in
GROMACS.

Reaching biologically relevant time scales in regular MD simulations involves
huge computational costs, especially considering large systems. A simulation of a
protein with explicit solvent requires a sufficiently large box of water molecules
and simulation steps taking place on the femtosecond time scale. However, the
interesting time scales for, e. g., protein folding are in the scale of micro- to mil-
liseconds. On this account, regular MD simulations themselves are impractical for
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many applications. Therefore, there are many efforts to accelerate MD simula-
tions by reducing the degrees of freedom of the systems in question. One possible
attempt are coarse-grained models [90], which treat groups of atoms as single
element or use simplified potentials.

3.2 Native Structure-Based Models

For my simulations I use the framework of native structure-based models (SBMs),
also known as Gō-type models [91]. They are based on the principle of minimally
frustrated energy landscapes for proteins (see also Sec. 2.1.2) [30–33]. SBMs in-
clude several simplifications in contrast to regular MD force fields. The main dif-
ference is that they only represent heavy atoms, therefore neglecting all hydrogen
atoms. By using Langevin dynamics (see Sec. 3.1.1) the protein-solvent interaction
is treated implicitly. Furthermore, they do not distinguish between different atom
types and do not explicitly take electrostatic interactions into account. These sim-
plifications drastically reduce the needed computational resources. SBMs are of
course limited to unfrustrated systems with negligible non-native interactions [30–
33, 91].

Despite these simplifications, SBM simulations show good agreement with ex-
perimental results. For example, they are able to reproduce transition state ensem-
bles and “en-route” intermediates [92], while also yielding folding rates compara-
ble to experimental measurements [93]. Due to their high computational efficiency
they are applied to study a wide range of phenomena [94]. These are ranging from
protein structure prediction [95], protein folding [93, 96], misfolding [97, 98], and
conformational dynamics [99, 100] to large biomolecules as the ribosome [101] or
RNA [102].

With their high computational efficiency, SBMs allow for simulations of several
folding and unfolding transitions on regular desktop computers and still offer full
flexibility for all parts of the system.
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3.2.1 Structure-Based Potential

I use an SBM including all heavy atoms [29] as implemented in eSBMTools [103].
The simplified SBM potential has the following form [104]:

VSBM =
∑
bonds

Kb(r − r0)2 +
∑
angles

Ka(θ − θ0)2 +
∑

improper
dihedrals

Ki(χ− χ0)2

+
∑
proper

dihedrals

Kd

[
[1− cos(φ− φ0)] +

1

2
[1− cos(3(φ− φ0))]

]
+
∑

contacts

KcCG(rij, r
ij
0 )

+
∑

non-native
contacts

Knc

(
σ̃

rij

)12

. (3.10)

As the MD potential (see Eqs. (3.4)-(3.7)), the SBM potential includes harmonic
potentials for bonds, angles, and improper dihedral angles. The potential for
proper dihedral angles allows for isomeric conformations. The native structure is
employed as the ground state with native bond lengths r0, native angles θ0, native
improper dihedral angles χ0, and native proper dihedral angles φ0. The native
structure is mainly stabilized by the contact potential CG(rij, r

ij
0 ), which intro-

duces attractive interactions for atom pairs forming contacts in the native state.
Additionally, a repulsive term is added for all possible atom pairs to account for
the excluded volume. Here, rij0 and rij denote the native and the actual distance
of the atom pair (i, j). σ̃ represents the excluded volume for Pauli repulsion with
σ̃ = 0.25 nm. The force constants are set to Kb = 20000 ε/nm2, Ka = 40 ε/deg,
Ki = 40 ε/deg, and Knc = 0.01 ε, where deg refers to degree and ε is the reduced
energy unit used in these types of models [105].

The stabilizing energy is comprised of the terms for the contact potential and
dihedral angles. To achieve a consistent energy scale between different systems,
the total stabilizing energy Es is set to the total number of atoms Natoms [105]:

Es =
∑

Ec +
∑

Ed = Natoms , (3.11)

where Ec is the contact energy and Ed is the dihedral energy. Furthermore, the
relation between contact energy and dihedral energy is set to [105]:

Rc/d =

∑
Ec∑
Ed

= 2 . (3.12)

To account for multiple counting of dihedral angles, proper dihedral angles with
mutual middle bond are grouped and reweighted with the number of dihedral
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Figure 3.2: Lennard-Jones (blue) and Gaussian (orange) contact potentials for different native
contact distances rij0 . The potentials are almost equal for rij0 = 0.25 nm, but for larger ground
state distances, the repulsive part of the Lennard-Jones potential shifts to higher rij whereas
the repulsive part of the Gauss potential stays the same.

angles in the group Ndihedrals. The force constants for the contact potential Kc and
for the proper dihedral angle potential Kd are chosen in a way that Eqs. (3.11)
and (3.12) are fulfilled, namely:

Kd =
Natoms

1 +Rc/d
· 1

Ndihedrals
and (3.13)

Kc =
Natoms

Ncontacts
·

Rc/d

1 +Rc/d
, (3.14)

where Ncontacts is the number of contacts.
The contact potential for an SBM can be chosen as a Lennard-Jones like po-

tential, including attractive and repulsive part. An alternative is the Gaussian
contact potential, which is given by [104, 106]:

CG(rij, r
ij
0 ) =

(
1 +

(
σ̃

rij

)12
)

×

(
1− exp

[
−(rij − rij0 )2

2σ2

])
− 1 , (3.15)

with σ2 = (rij0 )2/(50 ln 2) for each native contact pair (i, j). Lennard-Jones and
Gaussian contact potentials are depicted in Fig. 3.2. The Gaussian potential mim-
ics the depth and the increasing width of the Lennard-Jones potential, but does
not change in the repulsive part, which yields a fixed excluded volume indepen-
dent of the contact distance. A further advantage of the Gaussian potential is
the possibility to include multiple minima. This allows to model systems with
multiple stable conformations and it can be used to investigate conformational
transitions [8, 99, 100, 107].
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Figure 3.3: Shadow map algorithm. Atoms A, B, and C (orange circles) are considered. A
cutoff radius rcutoff and a screening radius s are applied to determine the atoms in contact. If
an atom is seen by a third atom within the cutoff radius and not screened by another atom in
between, the atom pair is counted as a contact. In this example atom A would be in contact
with atom B, but not with atom C, as B is screening atom C from atom A. A similar depiction
can be found in [104].

3.2.2 Determination of Contacts

In this work I determine contacts by the shadow map algorithm [104] illustrated
in Fig. 3.3. To determine the atoms in contact with an atom A, all atoms within
a cutoff radius rAB < rcutoff having a sequence distance of at least four residues
are considered. Each atom not screened by another atom forms a contact with
atom A (with the screening radii sneighbor for directly bonded atoms and s for all
other atoms). This criterion has to be satisfied in both directions. In addition to
close range contacts, this algorithm accounts for e. g. salt-bridges with separations
up to 0.55 nm and interactions mediated through water molecules, which can
occur in distances up to 0.7 nm. Here, I use rcutoff = 0.6 nm, s = 0.1 nm and
sneighbor = 0.05 nm [104].

3.2.3 Units in Structure-Based Models

In SBMs, all atoms are handled equally with identical parameters for excluded
volume and a unit mass of m = 1.0.

As the energies are scaled to the system size (see Eq. (3.11)), SBMs do not have
an inherent temperature scale directly comparable to physical temperature. The
energy scaling leads to a folding temperature which is about 1.0 in reduced units
and corresponds to approximately T = 120 in GROMACS units [105]. In this work I
consistently report SBM temperatures in GROMACS units.

Furthermore, the dynamics in SBMs is accelerated due to the smoothened en-
ergy landscape, which results in an unphysical time scale. Depending on the ap-
plication, the time scale has to be adjusted. This adjustment can be done by
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(a) Alexa Fluor 546 dye [50].
(b) Fluorophores of the fluorescent proteins, SWG (cyan,
left) and CR2 (yellow, right).

Figure 3.4: Fluorophore structures with assumed transition dipole moments (dashed arrows)
and centers (black dots). For the Alexa dyes (with Alexa Fluor 546 shown as an example) all
atoms of the dye’s connected ring system are used for the calculations. For the fluorophore of
the cyan fluorescent protein, SWG, the imidazole ring and the pyrrole side of the indole ring are
used, and for the fluorophore of the yellow fluorescent protein, CR2, the imidazole ring and the
phenol ring are chosen in accordance with the calculations in [111].

comparing folding rates [108], rotational correlation times, or other experimen-
tally accessible time constants. The times in SBM simulations are marked with
an SBM subscript in the following (e. g. tSBM) in contrast to physical times.

3.3 Monte Carlo Photon Generation

This section describes the generation of FRET efficiency histograms via Monte
Carlo photon simulations. Monte Carlo photon simulations have been successfully
applied for analysis of MD simulations of FRET dyes in several studies [15, 109,
110].

As the inter-fluorophore distance is not directly accessible in experiments, I
compare the FRET efficiency histograms from experiments to the simulation re-
sults. The simulations provide the coordinates of the fluorophores over time.

For the small organic dyes I assume the active part of the dye in the energy
transfer to be the ring system. Every part of the structure with at least two
connected rings is denoted a “ring system”. The distance between dyes is calculated
as the distance between the geometric centers of these ring systems (see Fig. 3.4a
for an example). The transition dipole moment is assumed to be in the plane of this
ring system and chosen to be the axis belonging to its smallest principal moment
of inertia (see Fig. 3.4a). Subsequently, the time-dependent inter-dye distances
RDA(t) and the orientation factors κ2(t) are calculated.

The characteristic photophysics of the fluorophores in the fluorescent proteins
are influenced by the side chains of the surrounding amino acids. The two fluo-
rophores used here are depicted in Fig. 3.4b. Derived from the calculations made
in [111], I assume the active part of SWG in the energy transfer to be the atoms
in the imidazole ring and the pyrrole side of the indole ring. For CR2 I choose
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Figure 3.5: Scheme of two-color FRET with the different system states and rates of the oc-
curring processes. The excited donor (D, blue) de-excites with rate kD via internal conversion
or fluorescence decay accompanied by the emission of a photon, or transfers the energy to the
acceptor (A, red) via FRET with rate kFRET(t). The acceptor de-excites with rate kA (also ei-
ther via internal conversion or fluorescence decay). The respective excited fluorophore is marked
with an asterisk (*).

the imidazole ring and the phenol ring (see Fig. 3.4b). The centers and dipole
moments are calculated from the respective part as described above.

To obtain a FRET efficiency histogram, I perform Monte Carlo photon simu-
lations, similar to the protocol implemented in md2fret [110], using RDA(t) and
κ2(t) as input.

The processes in two-color FRET depicted in Fig. 3.5 can be described by the
time-independent de-excitation rates of donor kD and acceptor kA, which relate to
the lifetimes of donor (in absence of an acceptor) τD and acceptor τA via kD = 1/τD
and kA = 1/τA. Donor and acceptor quantum yields QD and QA then give the
probability for photon emission (fluorescence decay) or internal energy conversion
with probability (1−Q).

The FRET rate kFRET(t) depends on distance and mutual orientation of the
fluorophores and is therefore time-dependent. It can be calculated for every time
step as [109]:

kFRET(t) = kD

(
R0

RDA(t)

)6

· κ
2(t)

2/3
, (3.16)

where R0 denotes the Förster radius for assumed κ2 = 2/3.
The total de-excitation rates then result in:

kD,tot(t) = kD + kFRET(t) , and (3.17)
kA,tot = kA . (3.18)
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The probabilities for the different changes of state in each time step ∆t are given
by:

pD*A→DA(t) =
(
1− e−kD,tot(t)∆t

)
· kD/kD,tot(t) , (3.19)

pD*A→DA*(t) =
(
1− e−kD,tot(t)∆t

)
· kFRET(t)/kD,tot(t) , and (3.20)

pDA*→DA =
(
1− e−kA,tot∆t

)
. (3.21)

For the generation of each photon, a random starting point in the trajectory is
chosen as excitation of the donor. Then the system is propagated in discrete time
steps, where in each time step a random number is generated which determines
the change of the system’s state according to the probabilities p. This propagation
is done up to the system’s de-excitation. In case of de-excitation to the ground
state, according to the quantum yield Q of the respective fluorophore it is ran-
domly determined whether a photon is emitted. The resulting donor and acceptor
photons are collected until a specified burst size is reached. The time between
excitation and de-excitation can be tracked to evaluate the change in the donor’s
lifetime in presence of the acceptor.

To determine the burst sizes, the exponential distribution e−λ is used which
gives a good approximation for the burst size distributions in experiments. The
exponent is set to λ = 2.3 [110] and a lower cutoff of nmin is applied in accord with
the minimal burst size used in the experiments.

For each burst, one single efficiency is calculated by:

E =

nA
QA

nA
QA

+ nD
QD

, (3.22)

where nD and nA are the number of donor and acceptor photons collected after
donor excitation, respectively. This efficiency value is already corrected for differ-
ent quantum yields as done in experiments and therefore reflects the statistical
influence of this correction. However, the algorithm does not account for crosstalk,
direct acceptor excitation, and background [109]. Experimental histograms are
typically already corrected for these effects.

3.3.1 Photon Simulation for Three-Color FRET

The Monte Carlo photon simulation for three-color FRET involves three dyes
(here exemplary referred to as blue (B), green (G) and red (R)) and their mutual
distances and orientations. For all three dyes, the centers and transition dipole
moments are extracted from the trajectory and the mutual distances and orien-
tation factors between them are calculated, respectively, as described above. For
each pair (M, N) of dyes I use RMN(t) := RDA, MN(t) and κ2

MN(t) as input.
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Figure 3.6: Schematic depiction of three-color FRET. The three fluorophores are represented
by a blue (B), a green (G) and a red (R) fluorophore. Upon excitation (marked by an asterisk *)
of the blue donor fluorophore with rate kexB, it can de-excite with a rate kB or transfer energy
via FRET to one of the acceptors with rates kBG and kBR. The green fluorophore then can
de-excite with a rate kG or transfer the energy to the red fluorophore via FRET with rate kGR.
The red fluorophore then de-excites with the rate kR. A similar scheme for direct excitation of
the green fluorophore with rate kexG and the red fluorophore with rate kexR are shown alongside.
A similar depiction can be found in [112].

The processes in three-color FRET along with the different rates are depicted
in Fig. 3.6. For each pair the FRET rate kMN(t) is calculated as:

kMN(t) = kM

(
R0,MN

RMN(t)

)6

· κ
2
MN(t)

2/3
, (3.23)

where R0,MN denotes the Förster radius of the pair (M, N) with assumed κ2 = 2/3
and kM is the de-excitation rate of dye M in absence of an acceptor. The total
de-excitation rates kM,tot are then calculated by:

kB,tot(t) = kB + kBG(t) + kBR(t) , (3.24)
kG,tot(t) = kG + kGR(t) , and (3.25)
kR,tot = kR . (3.26)

The transition probabilities between the different states depicted in Fig. 3.6 for a
time step with duration ∆t result in [group of B. Schuler, private communication]:

pB*GR→BGR(t) =
(
1− e−kB,tot(t)∆t

)
· kB/kB,tot(t) , (3.27)

pB*GR→BG*R(t) =
(
1− e−kB,tot(t)∆t

)
· kBG(t)/kB,tot(t) , (3.28)

pB*GR→BGR*(t) =
(
1− e−kB,tot(t)∆t

)
· kBR(t)/kB,tot(t) , (3.29)

pBG*R→BGR(t) =
(
1− e−kG,tot(t)∆t

)
· kG/kG,tot(t) , (3.30)
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pBG*R→BGR*(t) =
(
1− e−kG,tot(t)∆t

)
· kGR(t)/kG,tot(t) , and (3.31)

pBGR*→BGR =
(
1− e−kR,tot∆t

)
, (3.32)

where the asterisk denotes the excited state. The probabilities are calculated for
every time step.

For each cycle, a random starting point t0 in the trajectory is chosen for exci-
tation of the donor (B). The system is propagated in discrete time steps as done
for two-color FRET up to the system’s de-excitation.

In the experiment the sample is excited by alternating laser pulses of three
different colors with a frequency of 20MHz, exciting B, G, and R every 50 ns,
respectively. Consequently, for the consecutive excitation of G and R, times close
to the time points t1 = t0 + 1

3
· 50 ns and t2 = t0 + 2

3
· 50 ns are chosen. The system

is then propagated as before. The photons are collected and new starting points
generated until a specified burst size (here the number of photons collected after
donor excitation) is reached. The photon counts of fluorophore N after excitation
of fluorophore M, nMN, are then corrected by the quantum yield of fluorophore N:

NMN =
nMN

QN
. (3.33)

For each burst, photon rates, as described in Sec. 2.2.4, are calculated. The burst
sizes are determined as described above.

3.4 Summary

This chapter provided an overview over the molecular dynamics technique SBMs
are based on. As simulation technique, I introduced Langevin dynamics, which
models a system’s dynamics with Newton’s equations of motion while implicitly
accounting for friction and random collisions with solvent molecules. The simplistic
SBM potential employs the protein’s native state as its ground state. It allows
for simulation of large conformational ensembles with reasonable computational
costs. SBMs do not have an explicit inherent time or temperature scale directly
comparable to physical units, but physical scales can be introduced by comparison
to experimental values.

Finally, Monte Carlo photon simulations that generate photon statistics which
can directly be compared to experimentally measured two-color and three-color
FRET data were presented.
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4
Method Development

In this work I want to model the entire FRET process in simulations, including
the system dynamics and photon statistics. As first requirement structures and
parametrization of the systems with attached fluorophores are needed.

The first part of this chapter presents how small organic dyes are modeled. The
dyes’ structures, obtained by quantum-chemical geometry optimizations, and pa-
rameters are introduced in Secs. 4.1 and 4.2, respectively. Subsequently, Secs. 4.3
and 4.4 describe protein parameters for the simulation of folded and unfolded
ensembles and the generation of the whole system, respectively. Sec. 4.5 presents
the simulation protocol for protein-dye systems. All descriptions up to this point
are based on my publication (see [113]). In addition to that, the modifications
necessary in the simulation protocol for simulating three-color FRET systems are
provided.

The second part of this chapter in Sec. 4.6 presents how fluorescent proteins
are implemented in SBM simulations. In this work, I focus on a FRET-based
glucose sensor comprising a sensing protein and two fluorescent proteins con-
nected to the sensing protein by linkers, as described in Sec. 4.6.1. The structure
and parametrization of the proteins (see Secs. 4.6.2 and 4.6.3) and of the linkers
(see Secs. 4.6.4 and 4.6.5) are discussed in the subsequent subsections. Sec. 4.6.6
presents the generation and selection of a starting structure for simulations of the
whole sensor. Finally, the simulation protocol for the glucose sensor is given in
Sec. 4.6.7.

4.1 Dye Structure

For the simulation of the small organic dyes I want to find a minimal and robust
set of parameters which sufficiently replicates and predicts experimental data. At
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the same time, the parameters should be systematized to be easily transferable
to other dye molecules. In this work, I only consider the widely used Alexa Fluor
dyes [50] and the Biotium dye CF680R (B680) [114]. Nonetheless, the method is
applicable to all other small organic dyes as well.

SBM simulations require an initial structure of the system. For many dyes,
only chemical structures are available. Therefore, I start by performing quantum-
chemical geometry optimizations in collaboration with the group of C. Jacob to
obtain three-dimensional structures of the dyes. For the Alexa Fluor dyes, the
initial structures are constructed based on the chemical structures. The neu-
tral forms of carboxyl, amide, and sulfite groups are used in all cases. These
initial structures are optimized using density functional theory (DFT) as imple-
mented in TURBOMOLE 6.5 [115, 116]. In the DFT calculations, the BP86 exchange-
correlation functional [117, 118] and the def2-TZVP basis set [119] are used. The
optimized three-dimensional structures of several Alexa Fluor dyes can be found
in [113].

Subsequently, I add the linker and maleimide structure to the dye structure.
Maleimide groups are often used to bind the dyes to specific protein residues
mutated to cysteines beforehand. In this work I use two pairs of Alexa Fluor dyes
- the Alexa Fluor 488 dye with C5-linker (AF488) and Alexa Fluor 594 dye with
C5-linker (AF594), and the Alexa Fluor 546 dye with C5-linker (AF546) and Alexa
Fluor 647 dye with C2-linker (AF647).

For the three-color FRET measurements, the group of B. Schuler uses AF488,
AF594, and Biotium dye CF680R (B680). The two Alexa Fluor dyes can be site-
specifically labeled to cysteine residues [112]. To label B680 in a site specific man-
ner as well, oxime ligation to the non-natural amino acid p-acetyl phenylalanine
is used. In order to mimic this in the structure, I use a mutation to phenylalanine
at the labeling site and include the missing atoms into the structure of B680.
The three-dimensional structure of B680 is then determined by DFT calculations
[data from P. Friederich, private communication]. In these calculations the B3-LYP
functional [120] and the def2-SV(P) basis-set [121] are used.

As an example, Fig. 4.1 shows the preparation of the structure for Alexa Fluor
546.

4.2 Dye Parameters

For the initial dye parametrization in the SBM I choose the same parameters as
for the proteins (see Sec. 3.2.1). To generate the dye topology, the information
about bonds, angles, and dihedral angles present in the structure is needed. The
bond information is already given in the chemical structure, meaning angles and
dihedral angles can be determined automatically from the bond information (see
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Figure 4.1: Generation of the structure for the Alexa Fluor 546 dye with C5-linker and
maleimide. A quantum-chemical geometry optimization of the two-dimensional chemical struc-
ture (left) [50] generates a three-dimensional structure of the dye (middle). Subsequently, a
C5-linker (blue dashed ellipse) and a maleimide (orange dotted ellipse) are added to the struc-
ture. The resulting structure is shown on the right.

Sec. C for details). Both dye-dye and dye-protein interactions are limited to a
repulsive excluded volume term. Additional interactions can easily be employed
as needed.

Dye Temperature

As mentioned in Sec. 3.2.3, SBMs do not have an inherent temperature scale. To
adjust the dye parameters independently of the protein in a consistent way with a
minimal number of free parameters, I use a separate temperature Tdye for the dyes.
This is done by assigning protein and dyes to different groups in the simulation and
coupling them to separate temperature baths. The separation of the temperatures
uncouples the behavior of dye and protein, so I can use the same dye temperature
regardless of the state of the protein investigated. In this way, dyes attached to a
folded or unfolded protein, which are realized by different protein temperatures,
can be treated equally. The effect of the dye temperature on the protein dynamics
through possible energy transfer between the two temperature regions was tested
[data not shown]. I found only a slight increase in the fluctuations of the residues
the dyes are attached to, whereas the influence on the dynamics of the adjacent
residues is negligible.

The dyes are highly flexible and their motions fast compared to the protein mo-
tions (see also Fig. 4.4b), therefore I use high temperatures for the dyes. Above
temperatures of T = 250 in the SBM, numerical instabilities [122] arise in the
GROMACS version used∗. To further account for the high dye flexibility and accel-
erate the dye motion, I change the mass of the dye’s atoms from the SBM unit
atom mass of 1.0 to 0.2.

∗GROMACS v4.5.4 [84] with the extension for Gaussian contact potentials [104]
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4.3 Protein Parameters

SBM simulations require a native starting structure and a topology of the system.
The protein structures I use for the simulations are taken from the Protein Data
Bank (PDB) [123], a collection of experimentally measured three-dimensional
structures of proteins and nucleic acids.

The first protein is the chymotrypsin inhibitor 2 (CI-2, PDB: 2CI2 [34]), which
I use as a test system as it is a widely studied and well understood protein. The
second and third object of study are systems investigated by the groups of my
collaborators, G.U. Nienhaus and B. Schuler, namely, the tenth type III module
of fibronectin (10FNIII, PDB: 1TTG [124]) and the cold-shock protein from the
hyperthermophilic bacterium Thermotoga maritima (CspTm, PDB: 1G6P [125]).

Moreover, the pore-forming toxin cytolysin A (ClyA), equally studied by the
group of B. Schuler in two-color as well as in three-color FRET experiments,
is investigated in line with this work. This protein exists as a monomer (ClyA
monomer, PDB: 1QOY [126]) and undergoes a conformational change to the pro-
tomer before assembling to the dodecameric pore complex [127] (ClyA dodecamer,
PDB: 2WCD [128]). ClyA protomer and ClyA trimer conformations are taken as
a single chain and three chains from the dodecamer structure, respectively. Of the
whole 303 residue amino acid sequence, only residues 1 to 298 and 8 to 292 are
experimentally resolved for monomer and protomer, respectively. To enable simu-
lating the dye labeling at residues 2 and 303, I generate homology models for the
structures of monomer and protomer [129]. They are used for all further studies
of these two conformations. ClyA trimer and ClyA dodecamer are simulated with
only residues 8 to 292. As the labeling sites are at residue 56 and 252 I do not
expect any influence of the missing residues.

The topologies for all proteins are generated with the SBM implementation in
eSBMTools [103] developed in our group (see also Sec. 3.2).

Protein Temperature

Another parameter which has to be determined in the SBM is the temperature
of the protein in the folded state. As the folding temperature in SBMs is around
T = 120 for all proteins [105], a temperature of T = 50 is reasonable to describe
a protein in its folded state. I use this temperature for the test system CI-2. In
the cases of CspTm, 10FNIII, and ClyA I want to achieve a quantitative com-
parison against experimental measurements. To identify the SBM temperature
corresponding to the experimental setup, I initially perform regular all-atom MD
simulations of CspTm, 10FNIII, and ClyA (in monomeric and protomeric form)
using the AMBER99 force field [87] at the physiological temperatures from the
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Figure 4.2: Structure of CI-2 (left), AF546 (blue) and AF647 (red) dyes [50] (middle). The
dyes are attached with the respective linkers via a maleimide bound to residues 20 and 78 of
CI-2, respectively. The merged structure is shown on the right.

experiments, i.e. T = 296/295/295K for 10FNIII, CspTm, and ClyA, respectively.
I then compare the root mean square fluctuations (see Sec. B) of the Cα-atoms in
these simulations with the corresponding values in SBM simulations of different
temperatures. I choose the SBM temperature resulting in the least deviation from
the AMBER99 simulation, as done in [108]. An example and a detailed description
can be found in Sec. D. For the resulting protein temperatures, see Tab. 4.1.

For simulations of the unfolded state, I use a temperature well above the folding
temperature ensuring that the protein is unfolded throughout the simulation.
In particular, I found the influence of different temperatures above the folding
temperature on the results to be negligible [data not shown].

4.4 Merging of Dyes and Protein

For the simulation of the whole protein-dye system, structures of dyes and protein
have to be merged. The Alexa Fluor dyes are typically attached via a maleimide
group to residues of proteins mutated to cysteine. In the protein structures I use,
the respective residue is mutated accordingly to a cysteine and the dye structure
(already containing linker and maleimide) is attached to the sulfur atom of the
cysteine. The dye structure is preferably placed orthogonally to the protein surface
while respecting steric restrictions and preventing clashes between atoms. As an
example, Fig. 4.2 shows CI-2 with AF546 and AF647 dyes attached to residues
20 and 78, respectively. A detailed description of the merging procedure can be
found in Sec. E.

A similar procedure is conducted for B680, except that the respective residue is
mutated to a phenylalanine. Then, the structure generated as described in Sec. 4.1
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Table 4.1: Simulation parameters for different systems. The proteins, their temperatures for
simulation of folded (TF) and unfolded (TU) states, and the dye pairs (donor/acceptor) are given.
Labeled residues (with donor/acceptor position) and dye temperature(s) (for donor/acceptor)
are shown.

Protein TF TU Dye pair Labeled residues Tdye
D/A D/A D/A

CI-2 50 170 AF546/AF647 20/78 250
CI-2 50 170 AF488/AF594 20/78 190/250
CspTm 90 150 AF488/AF594 2/68, 68/2, 11/68, 190/250

68/11, 23/68
10FNIII 60 200 AF546/AF647 11/86 250
ClyA monomer 70 200 AF488/AF594 56/252, 2/303 165/250
ClyA protomer 80 200 AF488/AF594 56/252, 2/303 165/250
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Figure 4.3: Exemplary fits of the fluorescence anisotropy r(∆t) as a function of time ∆tSBM
for AF488 (left) and AF594 (right) attached to CI-2. In addition, the calculated rotational
correlation time τrot, SBM is given in units of the SBM time scale.

including the additional carbon and oxygen atoms of p-acetyl phenylalanine is
attached to the respective carbon atom of the phenylalanine ring.

4.5 Simulation Protocol for Protein-Dye
Systems

For the simulations I use GROMACS v4.5.4 [84] with the extension for Gaussian
contact potentials [104], an SBM potential as given in Eq. (3.10), and Langevin
dynamics (see Sec. 3.1.1). The protein temperatures used can be found in Tabs. 4.1
and 4.5.
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Table 4.2: Time step ∆tSBM and total simulation times for simulation of folded state ttot, F, SBM
and unfolded state ttot, U, SBM for the different systems in units of the SBM time scale.

Protein ∆tSBM ttot, F, SBM ttot, U, SBM

CI-2 0.2 fs 500 ns 500 ns
CspTm 0.2 fs 500 ns 1000 ns
10FNIII 0.5 fs 500 ns 500 ns
ClyA 0.5 fs 500 ns 2000 ns

To balance the dye motions against each other, I determine appropriate dye
temperatures. I perform simulations with varying dye temperatures and calculate
the respective rotational correlation times by using Eqs. (2.12) and (2.13). Ex-
emplary fits are shown in Fig. 4.3 for AF488 and AF594 attached to CI-2. The
rotational correlation time τrot is a measure of the dye flexibility and highly de-
pendent on the temperature. Higher temperatures yield smaller τrot. To get a high
dye flexibility, I choose a value of Tdye = 250† for the faster dye. The temperature
of the slower dye is adjusted in such a way that the relation of both rotational
correlation times from experiments is matched (see Tab. 4.3).

As I do not have experimental values for τrot of AF647 and of B680, I use a
temperature of Tdye = 250 in these cases. Varying this temperature slightly does
not alter the final results.

The final simulations are performed with the time steps and total simulation
times given in Tab. 4.2. Due to its much larger conformational space, the unfolded
state has to be sampled for a longer time than the folded state. The different total
times needed result from the different system sizes. The temperature coupling
constant is always set to τT = 0.1 ps.

For the subsequent Monte Carlo photon simulations, the inter-dye distance
RDA(t) and the transition dipole moments of donor µD(t) and acceptor µA(t) (see
Fig. 4.4a) are extracted from the simulations as described in Sec. 3.3. An example
for the high dye flexibility and the variety of possible dye conformations during
the simulations is shown in Fig. 4.4b.

As mentioned in Sec. 3.2.3 SBMs do not have an inherent time scale directly
comparable to the physical time scale, due to their accelerated dynamics. Nonethe-
less, evaluation of the simulations and generation of FRET histograms compara-
ble to experimental measurements requires a time scale. In analogy to previous
work [108], I introduce a time scale based on comparison of experimental and
theoretical time-dependent values. In this work, I use the rotational correlation
times τrot of the dyes. I calculate the fluorescence anisotropy decay r(t) in the

†Higher temperatures quickly become instable in simulations, see also Sec. 4.2.
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µA

µD

RDA

(a) Dipole moments and distance. (b) Dye positions over simulation.

Figure 4.4: CI-2 (gray) with AF546 (blue) and AF647 (red) dyes attached to residues 20 and
78, respectively. (a) The transition dipole moments of donor µD and acceptor µA (black arrows)
and the distance between the dyes’ centers RDA are shown. (b) The dyes’ structures for different
time points during the simulation show the high dye flexibility and the variety of possible dye
conformations.

simulations by using Eq. (2.12). The fit with Eq. (2.13) yields a rotational corre-
lation time for the simulation. Comparison with the experimental value provides
a conversion factor to adjust the simulation time scale.

Using this converted time scale, I gain photon statistics from Monte Carlo
photon simulations as described in Sec. 3.3, which fully account for shot noise.

Simulation parameters for photon simulations of different dye pairs are given in
Tabs. 4.3 and 4.4. For FRET with two dyes I generate donor and acceptor photons
for the whole simulation as described in Sec. 3.3. This corresponds to around 100 µs
on the physical dye time scale (for ClyA in the folded state around 280 µs and in
the unfolded state around 1ms). Photons are generated until a specified number
of photons, the burst size, is collected. I use each burst to calculate a single FRET
efficiency value. For each FRET efficiency histogram I generate 2 · 104 bursts with
a minimum number of photons of nmin = 50.

I perform simulations with two dyes for four different proteins (CspTm, CI-2,
10FNIII, and ClyA) with two different dye pairs (AF488 and AF594, AF546 and
AF647). The Förster radius R0 depends on the refractive index of the medium,
therefore it changes slightly with higher denaturant concentrations in the experi-
ments. Hence, I choose a modified Förster radius for the evaluation of the unfolded
two dye systems (see Tab. 4.4).

4.5.1 Simulation Protocol for Three-Color FRET

The simulations with three dyes are conducted accordingly. The protein and dye
parameters used can be found in Tabs. 4.5 and 4.3. The total simulation times of
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Table 4.3: Parameters for the different dyes used in the Monte Carlo photon simulations.
Lifetimes τ , quantum yields Q, and experimentally measured rotational correlation times τrot
are listed. 1The lifetime of Biotium CF680R was not available and therefore was estimated [group
of B. Schuler, private communication]. The reported rotational correlation times for Alexa Fluor
488 and Alexa Fluor 594 attached to CspTm (2[23]) differ from measured rotational correlation
times of the same dyes attached to ClyA (3[group of B. Schuler, private communication]). The
particular systems where the parameters are used are given in parentheses.

Dye τ Q τrot

Alexa Fluor 488 4.1 ns 0.92 240 ps2 (CI-2, CspTm)
660 ps3 (ClyA)

Alexa Fluor 594 3.9 ns 0.66 460 ps2 (CI-2, CspTm)
1100 ps3 (ClyA)

Alexa Fluor 546 4.1 ns 0.79 301 ps (CI-2, 10FNIII)
Alexa Fluor 647 1.0 ns 0.33 – (CI-2, 10FNIII)
Biotium CF680R ∼3.0 ns1 0.34 – (ClyA)

Table 4.4: Förster radii for proteins in water R0,F and in 7.0M GdmCl (1[130]) and
4.63M GdmCl (2[26]) R0,U, respectively, are listed. 3For the three-color FRET simulations of
ClyA (ClyA3C) the values are taken from [112] and the same values are used for folded and
unfolded state. The particular systems where the parameters are used are given in parentheses.

Donor Acceptor R0,F R0,U

AF488 AF594 5.4 nm1 5.1 nm (CI-2, CspTm, ClyA)
AF546 AF647 6.6 nm2 6.3 nm2 (CI-2, 10FNIII)

AF488 AF594 5.8 nm3 (ClyA3C)
AF488 B680 4.7 nm3 (ClyA3C)
AF594 B680 6.8 nm3 (ClyA3C)

Table 4.5: Simulation parameters for simulating ClyA with three dyes. The protein configura-
tion, the protein temperature for simulation of folded (TF) and unfolded (TU) states, and the
used dyes (donor/acceptor 1/acceptor 2) are given. The labeled residues (with donor/acceptor
1/acceptor 2 position) and the dye temperature(s) (for donor/acceptor 1/acceptor 2) are shown.

Protein TF TU Dyes Labeled residues Tdye
D/A1/A2 D/A1/A2 D/A1/A2

Monomer 70 200 AF488/AF594/B680 252/56/8 165/250/250Protomer 80 200
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the final simulations are the same as above (see Tab. 4.2). The inter-dye distances
RDA, MN(t) of each dye pair (M,N) and their mutual orientations κ2

MN(t) are ex-
tracted from the simulations as described in Sec. 3.3. I gain photon statistics as
described in Sec. 3.3.1. The simulation parameters for the photon simulations of
the different dyes are given in Tabs. 4.3 and 4.4. I generate photons for the whole
simulation as described in Sec. 3.3.1, which corresponds to around 280 µs and 1ms
on the physical dye time scale for folded and unfolded states, respectively. Here,
the burst size refers to the number of photons collected after donor excitation. I
use each burst to calculate a single set of photon rates (see Sec. 2.2.4) and generate
2 · 104 bursts for each histogram with a minimum number of photons of nmin = 30.
The Förster radii are taken from [112] and used for all simulations (see Tab. 4.4).

4.6 Biosensors with Fluorescent Proteins

An application where orientation of the fluorophores plays an important role is the
use of fluorescent proteins instead of small dyes. Due to their size, the movement
of the fluorescent proteins can be restricted and is also on a time scale orders
of magnitude larger than their lifetimes (see also Sec. 5.9.4). In particular, I will
discuss genetically encoded FRET-based biosensors [9, 14]. As they are typically
experimentally engineered by trial and error, the mechanisms involved in their
function are not always fully understood. Here, simulations can help with testing
different hypotheses.

FRET-based biosensors are used for quantification of a small ligand, as they
change their conformation and associated FRET signal according to binding to
this ligand. This mechanism enables measurement of the concentration of a ligand
in vitro and in vivo without interfering with the system, which has many applica-
tions in medical sciences and microbiology. Designing these sensors is challenging,
as they are required to be as sensitive as possible, and includes an extensive op-
timization process [13]. A genetically encoded biosensor typically consists of a
sensing protein fused to two fluorescent proteins via linkers [13].

The aim of a good sensor is to transfer small conformational changes in the
sensing protein into large changes in the associated FRET signal. A good sensor
makes use of reorientation or change of rotational flexibility, resulting in a changed
κ2, and/or change in distance of the fluorescent proteins, resulting in a changed
RDA, to maximize the difference in FRET intensity ratio ∆R (see Eq. (2.6)) upon
ligand binding.

Which specific effects contribute to the change in intensity ratio is often un-
known, but would help to better understand and fundamentally improve the sensor
design. There have been attempts to construct biosensors and sample conforma-
tions through rigid body modeling [20] to obtain a better understanding of the
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(a) Sensor 1. (b) Sensor 2. (c) Sensor 4.

Figure 4.5: Schematic depictions of sensor variants, comprising of Glc-BP (green), CFP (cyan),
and YFP (yellow). Sensor 1 does not contain linkers, sensor 2 has a flexible linker at CFP, and
sensor 4 has a flexible linker at YFP. The flexible linker is depicted as purple helix. A similar
depiction can be found in [132]. The numbering refers to the notation in [132].

structural ensembles. The mentioned method, however, does not include influences
of the system’s dynamics, linker rigidity, photon statistics, or the weak dimeriza-
tion tendency of some fluorescent proteins. With the approach I present in this
work it is possible to include all these features.

In this work I focus on a glucose sensor [13], which is well studied and its design
improved by several groups. It consists of the glucose binding protein (Glc-BP, see
also Fig. 4.8) with inserted mTurquoise2 (donor, here referred to as CFP (cyan
fluorescent protein), see also Fig. 4.7) and Venus (acceptor, here referred to as
YFP (yellow fluorescent protein), see also Fig. 4.7). Steffen et al. have developed a
toolbox of different linkers between fluorescent proteins and a sensing protein [131],
which Höfig et al. have applied to this glucose sensor [132].

I consider three of these sensors, referred to as sensor 1 without linker, sensor 2
with a flexible linker at CFP, and sensor 4 with a flexible linker at YFP. All sensors
behave differently in FRET experiments [132] and yield distinct FRET ratios,
which rises the question why the position of the flexible linker is so important. A
schematic depiction of the three sensors is shown in Fig. 4.5.

4.6.1 Sensor Structures

The sensors are constructed by genetically encoding the different proteins in an
amino acid sequence. A description can be found in e. g. [131]. A schematic of the
different sensor sequences is depicted in Fig. 4.6. Instead of attaching the CFP
to the N-terminus of Glc-BP, it was found to be beneficial to insert it into the
sequence of Glc-BP [13]. Residues 1 to 11 of Glc-BP are at the beginning of the
sequence and three alanine residues are inserted as a restriction site to enable
proper folding of the proteins. CFP is then attached to residue 12 of Glc-BP via
either a restriction site with the sequence GSDLV or a flexible (GGS)4-linker and
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mTurqoise2 VenusGlc-BPGGS

AAA EFVDGG

mTurqoise2 VenusGlc-BP

AAA EFVDGGGSDLV

mTurqoise2 VenusGlc-BP GGS

AAA GSDLV

Sensor 1

Sensor 2

Sensor 4

Figure 4.6: Schematic of the three sensor sequences. Glc-BP, CFP, and YFP are shown in
green, cyan, and yellow, respectively. The flexible linker is colored in purple and restriction sites
are shown in gray with their sequences depicted. CFP is inserted into Glc-BP, so the first 11
residues of Glc-BP are in the beginning of the sequence and the main part in the middle.

two restriction sites, each consisting of two amino acids (GS(GGS)4PG). YFP is
attached to the C-terminus of Glc-BP via a restriction site with sequence EFVDGG
or a flexible (GGS)4-linker and two restriction sites (EF(GGS)4VDGG). The complete
sequences used for generation of the sensors in experiments and simulations are
given in Sec. F. In the simulations, parts of the N- and C-termini are omitted as
no resolved structures are available. However, they should not have considerable
effects on the results.

4.6.2 Protein Structures

PDB structures are available for both fluorescent proteins. The structures of
mTurquoise2 (CFP, PDB: 3ZTF [133]) and Venus (YFP, PDB: 1MYW [134])
along with the two fluorophores are shown in Fig. 4.7. The fluorophores result from
the autocatalytic cyclization of residues Ser65-Trp66-Gly67 (CFP) and residues
Gly65-Tyr66-Gly67 (YFP), respectively.

For Glc-BP two structures are available, i.e. the structure with glucose bound
(Glc-BP+G, PDB: 2FVY [135]) and the apo open form without glucose (Glc-BP-G,
PDB: 2FW0 [135]). In both structures, the first and the last three residues are
not resolved. Whereas the first residue is omitted in the simulations, the last three
residues are included in the subsequent linker structures or structures of restric-
tion sites, respectively (see Sec. 4.6.4). According to the sequence used for the
glucose sensor, residues 12 and 13 are deleted in the structures (see also Sec. F).
Both structures are shown in Fig. 4.8. Their mutual root mean square deviations
(RMSD, see Sec. B) is only 0.37 nm and the respective shift between the Cα-atoms
of the fluorescent protein attachment positions at residues 14 and 303 (shown as
cyan and yellow spheres) is very small. The Cα distance between residues 11 and
303 changes from 2.53 nm in Glc-BP+G to 2.62 nm in Glc-BP-G. The Cα distance
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SWG

CR2

mTurquoise2 Venus

Figure 4.7: The two fluorescent proteins mTurquoise2 and Venus along with their respective
fluorophores SWG (cyan) and CR2 (yellow).

11
14

303

Figure 4.8: Glucose binding protein Glc-BP in the glucose free form (gray) and the glucose
bound form (green), aligned to the first 100 residues. The Cα-atoms of residues 11 and 14 (the
site of the CFP insertion) are depicted as cyan spheres for both structures. Their respective
position is almost identical for both structures. The last structurally resolved residues of both
structures (residue 303, the YFP attachment position) are depicted as yellow spheres. Due to the
conformational change in Glc-BP upon glucose binding the position of this site changes slightly
with respect to the CFP attachment position.
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between residues 14 and 303 changes from 2.10 nm in Glc-BP+G to 2.16 nm in
Glc-BP-G. From these observations, only a slight distance increase between the
fluorescent proteins when going from Glc-BP+G to Glc-BP-G is expected. Sim-
ilar to the negligible shift of the Cα-atoms of residues 11 and 14, the shift of
the Cα-atom of residue 303 is also only 0.27 nm and thus surprisingly small to
result in the large change of FRET ratios upon glucose binding observed in the
FRET experiments. This hints to an unknown mechanism amplifying the change
in FRET.

4.6.3 Protein Parameters

As done in Sec. 3.2, the topologies for all proteins are generated with eSBMTools.
For the fluorophores in the fluorescent proteins I generate topologies in the same
way as for the dyes (see Sec. 4.2). Then, I include the fluorophores into the topol-
ogy generation in eSBMTools and treat them as regular amino acids to maintain
proper connections between the chain elements. As for the dyes, mutual interac-
tions between the three proteins are limited to a repulsive excluded volume term
for now (see also Sec. 4.6.8).

The atom masses for both fluorescent proteins are set tomFP = 0.2 to accelerate
the dynamics in the simulations, as was done for the dyes before. I determine the
temperature for CFP and YFP by comparison of regular MD simulations with
SBM simulations in the same way as described in Sec. 4.3 (for parameters and a
detailed description see also Sec. D). The fluorophores are omitted in the regular
MD simulations as there are no standardized AMBER99 parameters available
for these structures, but should not influence the overall RMSF. The resulting
temperatures are T = 70 for both CFP and YFP.

For Glc-BP, temperature comparison simulations are not reasonable as the lig-
and is not straightforward to parametrize and include into the AMBER99 sim-
ulations. Therefore, I use the same temperature as for the fluorescent proteins.
Given that all determined temperatures for the proteins are in this range and
small changes do not affect the result, this seems to be a valid assumption (see
also Sec. D).

I further analyze the difference of both structures Glc-BP+G and Glc-BP-G in
SBM simulations to test if the model is too coarse to model both structures as dif-
ferent states. I simulate both structures at different temperatures and calculate the
RMSD to both starting structures, respectively. For small temperatures (T = 30)
the structures are well separated for both simulations [data not shown], meaning
the RMSD to the starting structure is always much lower than the RMSD to the
other structure. This is still valid at T = 70 for Glc-BP+G, as the closed conforma-
tion is stabilized by contacts (see Sec. G). For Glc-BP-G, the RMSD fluctuations
are larger and the structure comes closer to the structure of Glc-BP+G than vice
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Table 4.6: Sequences modeled for the linkers and restriction sites of the sensor variants. The
last three residues of Glc-BP (green) are included in the sequences as they are not resolved
in the structure. The flexible (GGS)4-linker and the restriction sites are colored in purple and
black, respectively.

Name Sequence Sensors

Nrs GSDLV Sensor 1 (CFP), Sensor 4 (CFP)
Nflex GS(GGS)4PG Sensor 2 (CFP)
Crs SKKEFVDCC Sensor 1 (YFP), Sensor 2 (YFP)
Cflex SKKEF(GGS)4VDGG Sensor 4 (YFP)

versa. This is expected, as the conformational freedom compared to Glc-BP+G is
increased and probably resembles the physical behavior appropriately.

4.6.4 Linker Structures

The linker structures are a particular challenge, as there are no three-dimensional
structures and little information about their behavior available. Still, the linkers
are one of the crucial parts for the systems’ dynamics. Furthermore, the struc-
tures of the restriction sites are not known and the three C-terminal residues in
Glc-BP not resolved. To incorporate these regions into the simulations, I generate
structures of the sequences shown in Tab. 4.6 in the following way.

First, I build the respective sequence in pymol [136] as extended amino acid
chain without any secondary structure. To relax each structure, I simulate it in
an all-atom AMBER99 force field with explicit water for 100 ns. To check the
convergence of the simulation, I calculate the RMSD with reference to the last
structure in the simulation for each system. For Nflex, Crs, and Cflex, the RMSD
value decreases rapidly at the beginning of the simulation and remains constant,
indicating convergence to a final structure [data not shown]. In the case of Nrs, the
convergence is not that obvious. This is expected as it is a rather short sequence.
However with an overall low RMSD value it is valid to use this structure, as some
flexibility is still allowed in the subsequent simulations.

As I want to attach the N- and C-termini of the linkers to the protein struc-
tures, the respective atoms need to be accessible. While this is the case for the
structures of Nrs and Crs, the relaxed structures of Nflex and Cflex are too compact
to merge with the protein structures. They both contain the (GGS)4-linker which
is known to have a random coil like structure and being flexible [137]. To obtain
a good starting point for the generation of the merged structures later, I perform
AMBER99 simulations with a pulling force for both structures. I pull at N- and
C-terminus with a small force to make the termini accessible. In the merged sys-
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tem the proteins are attached to the termini and also apply a force on the linkers,
so this seems to be a valid procedure. For Nflex and Cflex I extract four different
structures from different points in the simulations, respectively, and use them for
the next step.

4.6.5 Linker Parameters

The linker behavior is not well known but still a crucial factor for the dynamics
of the system and therefore the resulting FRET intensity ratios. Hence, to obtain
a reference for the linker flexibility, I perform further simulations, starting from
the last structures of the AMBER99 relaxation runs. I simulate all systems for
500 ns in an AMBER99 force field with explicit water. Additionally, I simulate
the same structures (and the structures from the simulation with a pulling force
if present) in an SBM with temperatures ranging from T = 40 to T = 150. Ap-
plying the temperature comparison procedure (see Sec. D) almost the entire SBM
temperature range shows to have equal agreement with the AMBER99 simulation
[data not shown]. As the fitting allows for a lot of freedom for small structures
like the linkers, this method does not seem to give sufficient information to select
a temperature for the linkers.

An important characteristic of a linker in this system is its end-to-end distance,
as it plays a huge role in the distance between the two fluorophores. So I compare
the means and standard deviations of the end-to-end distances from AMBER99
and SBM simulations for all structures.

Nrs and Crs are rather rigid, as they only consist of restriction sites. I check if a
choice of T = 70 as determined for the proteins is valid. For both there is no big
change in the mean or standard deviation of the end-to-end distance as a function
of T and both are close to the values from the AMBER99 simulation. Given
the little information available about these structures, assuming a temperature of
T = 70 seems to be an adequate starting point allowing for reasonable flexibility.

For Nflex, attaching the completely relaxed structure to the proteins is not pos-
sible due to inwardly rotated termini. Simulations of the strongly extended struc-
tures show an immoderately high mean distance over all temperatures. In this
case I choose an only slightly elongated structure, where the termini are accessi-
ble, and which has the best agreement in terms of end-to-end distance at around
T = 140. As Nflex contains the flexible linker region (GGS)4, I choose a tempera-
ture of T = 140 for the (GGS)4-linker and the protein temperature of T = 70 for
the restriction site residues in all further simulations.

Although the relaxed structure of Cflex can be attached, the attachment does
not have a lot of conformational freedom. Thus, the result might not resemble the
physical structure. On these accounts, I choose two more elongated structures,
CflexB and CflexC, besides the relaxed structure CflexA and use all of them in further
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Table 4.7: Parameters for construction of the different sensors. N- and C-terminal linkers are
given (see also Tab. 4.6). The cutoff RMSD for the selection of structures after attaching the
fluorescent proteins and the number of resulting structures are shown.

Sensor N-terminal C-terminal RMSDcutoff, FP # structures

Sensor 1 Nrs Crs 1.2 nm 109
Sensor 2 Nflex Crs 1.2 nm 127
Sensor 4A Nrs CflexA 1.0 nm 29
Sensor 4B Nrs CflexB 1.5 nm 56
Sensor 4C Nrs CflexC 1.5 nm 93

simulations. Still, the mean end-to-end distances are much higher for the elongated
structures than in the reference simulation.

4.6.6 Merging of Sensing Protein and Fluorescent
Proteins

Merging the structures of CFP, YFP, and Glc-BP is not as straightforward as
for dyes (see Secs. 4.4 and E), as CFP has to be inserted into Glc-BP. It is not
known, but assumed for now, that still all residues, including residues 1 to 11, fold
into the given Glc-BP structure (see also Sec. 5.9.1).

To merge the structures, I start with the sensing protein Glc-BP. I use the
structure of the glucose bound state, as the transition from the closed to the open
conformation with attached fluorescent proteins is easier than vice versa. I remove
residues 12 and 13 as done in experiments and attach N-terminal and C-terminal
linkers with the algorithm described in Sec. E. The C-terminus of the N-terminal
linker is attached to residue 14 and the N-terminus of the C-terminal linker to the
last structurally resolved residue (residue 303) of Glc-BP. Here, I test all possible
orientations using a set of angles α, θ, φ in discrete steps of α, φ ∈ [0◦, 20◦, ..., 340◦],
θ ∈ [0◦, 10◦, ..., 90◦] (see also Sec. E) and check for steric clashes. I save all sterically
possible conformations.

However, pre-selections are necessary to reduce computational costs later, so
I filter for similar structures which could be easily reached mutually within sim-
ulations. I start at the first found set of angles for each linker (which is a con-
formation preferably orthogonal to the surface of Glc-BP) and discard every set
which differs less than ∆α+ ∆θ+ ∆φ < 60◦ from one of the already selected sets.
In a second cycle I calculate the mutual RMSD between all constructed struc-
tures with both linkers and again discard every structure, which differs less than
RMSDcutoff = 0.1 nm from any of the already chosen structures.
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With the remaining structures I proceed by attaching CFP and YFP in the same
way. The C-terminus of CFP is attached to the N-terminus of the N-terminal linker
and the N-terminus of YFP to the C-terminus of the C-terminal linker. Again, I
filter the resulting structures with ∆α+∆θ+∆φ < 60◦ and use different values for
RMSDcutoff as the structures are considerably larger now. I choose RMSDcutoff, FP

slightly different for the different sensors, to end up with around 100 different
structures each. The values together with the number of resulting structures are
shown in Tab. 4.7. For sensor 4A the linker structure is rather compact as men-
tioned above and allows for only few conformations of the merged structure.

In a next step, I attach the three missing alanine residues at residue 11 of Glc-BP
(see Fig. 4.6) using pymol [136]. I subsequently perform an energy minimization
for 5000 steps to get rid of possible clashes caused by the insertion of the alanine
residues.

The last step consists of two short simulations to connect the alanine residues
with the N-terminus of CFP. To enable inclusion of a regular bond poten-
tial in the final structure, the target distance for the respective atoms is set
to dtarget = 0.14 nm. In these simulations the temperature of the three alanine
residues and the N-terminal linker is set to T = 140 to allow them to flexibly
adjust to the rest of the structure. Also, no contacts between the different parts
shown in Fig. 4.6 are included, except the contacts between the first eleven residues
and the rest of Glc-BP.

As the two atoms to connect might be distant, I pull them together in two
consecutive steps to avoid large forces. I introduce a soft contact potential between
the N-terminus of CFP and the carbon atom of the third alanine with a minimum
at the target distance, an extra broad width of σ = 2nm, and a force constant
of Kc = 40 ε and simulate for 1000 ps in the SBM. I confirm that Glc-BP stays
completely folded in the simulation by checking the RMSD of Glc-BP. Then, the
distance of the respective atoms is calculated over time and the structure with
the distance closest to the target distance is extracted.

With this structure I proceed by introducing a weak bond potential instead of
the contact potential with a minimum at the target distance and a force constant
of Kb = 80 ε/nm2. I perform this simulation in the same way as before for a
total time of 500 ps in the SBM. For the rare case the distance does not reach
d < 0.3 nm, the desired bond might be sterically inhibited and the structure is
discarded. Otherwise, the structure with the distance closest to the target distance
is extracted and used for further simulations.

This procedure results in a wide ensemble of possible structures for each sensor.
To narrow the conformational space, I fit the resulting structures to experimental
SAXS data [group of A. Stadler, private communication] of the respective sensor
in the glucose bound state using CRYSOL [74]. Then I sort the structures according
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Figure 4.9: Schematic sequence and exemplary resulting structure for sensor 2. Glc-BP is
shown in green, CFP in cyan, and YFP in yellow. The flexible (GGS)4-linker is depicted in
purple. The experimental SAXS intensity curve (blue) and a fit of the theoretical curve of the
shown structure to the experimental data (orange) are shown in an inset along with the χ2

value.

57



Chapter 4. Method Development

Table 4.8: Parameters of the fluorophores SWG and CR2. Lifetimes τ (1[134], 2[138]), quan-
tum yields Q (3[132]), rotational correlation times τrot (4[H. Höfig, private communication]),
and Förster radius R0 (5[139]) are given for the fluorophore in CFP (SWG) and YFP (CR2),
respectively.

Donor Acceptor τ Q τrot R0

SWG 4.0 ns1 0.903 20.85 ns4

4.9 nm
5

CR2 3.0 ns2 0.593 ∼ 20 ns

to their χ2 value (see Sec. 2.5) and choose the best fitting structures to perform
the final simulations. As an example, the best fitting structure with χ2 = 3.00 for
sensor 2 is shown in Fig. 4.9 along with the schematic sequence and the SAXS fit.

4.6.7 Simulation Protocol for Fluorescent Proteins

All simulations of the glucose sensors are performed with GROMACS v4.5.4 [84]
with the extension for Gaussian contact potentials [104], an SBM potential as given
in Eq. (3.10), and Langevin dynamics (see Sec. 3.1.1). The time step and the tem-
perature coupling constant are set to ∆tSBM = 0.5 fs and τT = 0.1 ps, respectively.
A total time of ttot, SBM = 1000 ns is simulated. The system is separated into dif-
ferent temperature groups, where only the temperature of the (GGS)4-linker is set
to T = 140, while the rest of the system (proteins and restriction sites) is coupled
to a temperature of T = 70.

The time scale can not be adjusted as done for the systems with small dyes
(see also Sec. 4.5) because the rotational correlation times τrot of the fluorescent
proteins are on a similar time scale as the rotational motion of Glc-BP. Therefore,
the rotations of the fluorescent proteins are superposed by the rotational motion
of Glc-BP in experiments and can not be measured in single molecule experiments
in buffer solution. However, values for τrot of the free fluorescent proteins are avail-
able. The rotational correlation time of GFP is often estimated with τrot ∼ 20 ns.
For free CFP it was measured as τrot = 20.85 ns [H. Höfig, private communica-
tion]. The rotational correlation time in free solution is mainly dependent on the
friction with the solvent, so a comparison of SBM simulations of a freely diffus-
ing fluorescent protein with the experimentally measured values should yield a
friction which mimics the physical behavior. To find a reference time scale for
these systems, I perform simulations for ttot, SBM = 50 ns with free CFP and YFP
including the fluorophores. Then I calculate the free rotational correlation times
using Eqs. (2.12) and (2.13) and use the ratio between experimental and simu-
lated values as conversion factor to adjust the simulation time scale. With this
time scale I perform Monte Carlo photon simulations as described in Sec. 3.3 with
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Figure 4.10: Exemplary RMSD values from simulation of sensor 2 with Glc-BP in its glucose
bound state. The RMSD values of Glc-BP with reference to Glc-BP+G (blue) and Glc-BP-G

(orange) are shown for the start of the simulation (left) and as distributions for the entire
simulation (right). The conformation is stable over the entire simulation.

the parameters given in Tab. 4.8. I use the whole simulations, which correspond
to around 100 µs on the physical fluorophore time scale.

Now I compare the results of Glc-BP+G with respective results of Glc-BP-G with
the same configuration of fluorescent proteins. For the simulation of Glc-BP-G, I
use the same starting structure, but replace the parts of the force field (bond,
angle, dihedral angle, and contact parameters) belonging to Glc-BP+G with the
respective values of Glc-BP-G. To test if the conformation changes accordingly, I
analyze the RMSD of the Glc-BP part with respect to both conformations for the
simulation of Glc-BP+G and Glc-BP-G (see Figs. 4.10 and 4.11). The conformation
of Glc-BP+G stays stable during the simulation (see Fig. 4.10). For the simulation
of Glc-BP-G, Fig. 4.11 shows that the transition to the target state occurs in the
beginning of the simulation and also stays stable, although the distributions are
broader. Comparing these results to the fluctuations in the ground state discussed
in Sec. 4.6.3, the procedure seems reasonable.

4.6.8 Dimerization of Fluorescent Proteins

GFP in its wild type has a tendency to form dimers which can be observed in
the crystal structure [51, 133] (see Fig. 4.12). A mutation of residue 206 from
the hydrophobic alanine to the charged lysine (A206K) is known to suppress this
weak dimerization [140]. In attempts to optimize a CFP-YFP FRET pair, fur-
ther mutations of residues 208 (from the hydrophilic serine to the hydrophobic
phenylalanine, S208F) and 224 (from valine to leucine, V244L) have shown im-
provement in the FRET signal changes [141]. Although the authors of this work
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Figure 4.11: Exemplary RMSD values from simulation of sensor 2 with Glc-BP in its glucose
free state. The RMSD values of Glc-BP with reference to Glc-BP+G (blue) and Glc-BP-G (or-
ange) are shown for the start of the simulation (left) and as distributions for the entire simulation
(right). A transition from the starting structure (Glc-BP+G) to the target structure (Glc-BP-G)
occurs directly at the beginning of the simulation.

Figure 4.12: GFP in its dimer conformation as observed in the crystal structure (green, PDB:
1GFL [51]). The N-termini and C-termini are depicted in orange and yellow, respectively, to
show the antiparallel configuration of the two GFP monomers. The 50 Cα-contacts included in
the simulation are illustrated by blue lines. The residues of the A206K mutation are depicted
in red, the residues of the S208F and the V224L mutations are depicted in purple and cyan,
respectively.
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have excluded dimerization of the two fluorescent proteins as a mechanism [141],
later work has found evidence for the formation of an intramolecular complex
caused by the two mutations S208F and V224L [46, 142]. They have seen a sig-
nal increase due to enhanced dimerization [46] and a successive decrease in the
signal when monomerizing one or both fluorescent proteins with the A206K muta-
tion. These findings have lead to new design approaches for FRET sensors based
on mutually exclusive domain interactions, where dimerization is possible in one
state while prohibited in the other state [143]. Furthermore, it has been found
that reversible intramolecular interactions as this heterodimerization are impor-
tant for creation of FRET sensors with a large dynamic range [144, 145]. The
dimerization, however, has to be critically balanced as overdimerization as well as
overmonomerization can restrict the FRET range [144].

Now the question arises, what role dimerization plays in the glucose sensor stud-
ied here. Of the fluorescent proteins used in this work, CFP contains the A206K
mutation which should prevent dimerization, whereas YFP lacks this mutation. It
is not known whether the CFP-YFP pair can form a heterodimer in the studied
glucose sensor. I want to investigate the effects of a possible temporary dimer-
ization on the results, so I implement dimer contacts into the simulations in the
following way.

I determine all atom-atom contacts in the dimer structure of GFP between the
two monomers according to the description in Sec. 3.2.2. The contacts are almost
symmetrical between the two structures as their interface consists of the same
residues in both structures. To generalize these contacts, I translate them into
residue-residue contacts and choose the mutual ones determined in both directions.
I implement these contacts between the Cα-atoms of the respective residues with a
distance in the ground state corresponding to the mean distance of both Cα-atom
pairs in the GFP dimer structure. For a depiction of the included 50 contacts see
Fig. 4.12. Depth and width of the contact potential then can be varied to analyze
the effects on the simulated structures. It should be noted that some of the contacts
in the dimer crystal structure are caused by the crystallization and are probably
not present in solution. This is neglected here, but could be considered in future
work.

4.7 Summary

This chapter described the implementation of the whole FRET process in sim-
ulations. I discussed a systematic way to obtain structures and parametrization
with a minimal amount of parameters for small organic dyes and proteins. The
simulation temperatures turn out to be essential for adjusting the respective dy-
namics to be comparable to experimental data. The chapter showed how to merge
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dyes or fluorescent proteins with the proteins under study and generate start-
ing structures of the whole systems for the simulations. For the glucose sensor, I
used additional experimental SAXS data to select the most suitable structures.
In addition, I described an approach to enable dimerization of the two fluorescent
proteins in simulations to study its effects.

Finally, I presented detailed simulation protocols for two-color and three-color
FRET with small dyes as well as with fluorescent proteins. Parametrization pro-
cedures and simulation protocols are in principle applicable to arbitrary systems
involving dyes or fluorescent proteins.
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5
Simulation Results

This chapter presents the results for the simulations of different dye-labeled pro-
teins and the glucose sensor. I start with test simulations of CI-2 in Sec. 5.1 to
demonstrate how the simulation method can provide new insights into the system
by yielding distance and orientation distributions. Furthermore, in Sec. 5.2 the
effects of (in-)sufficient sampling are discussed.

In Sec. 5.3, CspTm is studied as an example of an experimentally investigated
system with different labeling positions. Subsequently, experimental results are
compared to simulated data in Sec. 5.4, showing the high agreement with experi-
ments and the validity of the presented approach. All these results are published
in my publication [113].

An application to the system of ClyA, including two- and three-color FRET, as
well as new observations regarding differences observed in experiments between
distinct conformations of this system are presented in Sec. 5.5. The presented
method enables to study the underlying dynamics of this system and helps in the
interpretation of the experimental measurements of labeled ClyA.

Sec. 5.6 compares the presented approach to simple models of data analysis, the
accessible volume approach for folded proteins and a polymer model for unfolded
proteins. The developed model is consistent with both, leading to a single model
suitable for investigating both folded and unfolded proteins.

As the interplay of FRET and SAXS measurements is a highly discussed topic, I
show the influence of FRET dyes on SAXS intensity profiles and compare different
methods of calculating the radius of gyration in Sec. 5.7.

Sec. 5.8 shows for different systems how simulations can be employed to obtain
quantitative parameters, using the example of the diffusion constant.

Finally, I present the simulation results for studying different variants of a
glucose sensor in Sec. 5.9. I want to obtain insight in the underlying mechanisms
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responsible for certain configurations showing higher FRET efficiency ratios than
others. This insight facilitates better understanding and improving the function
of this sensor in the future.

5.1 Test Simulations with CI-2

As an example test system, I simulate the protein CI-2 with two different dye
pairs, AF488 and AF594, and AF546 and AF647, attached to residues 20 and 78,
respectively (published in [113]). The results are shown in Fig. 5.1.

Figs. 5.1a,d show the distributions of inter-dye distances RDA and Cα distances
for folded and unfolded CI-2. As expected, the unfolded protein has much broader
distance distributions than the folded protein. Also the Cα distance distributions
for the folded states clearly differ from the RDA distributions. This result shows
that the distribution of RDA for the folded states is dominated by dye dynamics.
The inter-dye distance distributions for both dye pairs are similar, but the dye
pairs differ in Förster radius. As the ideal Förster radius to obtain best-separated
states should be between distances of folded and unfolded states, the distribu-
tions and mean distances imply that the pair AF488/AF594 is more suitable for
studying CI-2 experimentally.

The distributions of the orientation factors κ2 for folded and unfolded confor-
mations are shown in Figs. 5.1b,e. They are all similar and the mean values for
unfolded proteins κ2

U are in good agreement with the approximation of freely
rotating dyes with no steric restrictions (κ2 = 2/3). For the mean values in the
folded state κ2

F, however, I observe slight deviations of 2-5%. These deviations
probably are due to steric restrictions imposed by the protein.

Figs. 5.1c,f show the resulting FRET efficiency histograms. They are fitted with
a Gaussian curve and the mean efficiency values for folded states 〈E〉F and un-
folded states 〈E〉U are given. Using log-normal distributions for the fits or the
median instead of the mean efficiency has only negligible effects on the quan-
titative results. The presented method further allows to easily test for different
hypothetical Förster radii.

5.2 Effects of the Sampling Length

To ensure sufficient convergence of the simulations, I carefully investigate the effect
of the sampled simulation length [113]. Here, I exemplarily look at the FRET
efficiency and the distance distributions for different lengths of the simulation of
CI-2 with the dye pair AF488/AF594. The total simulation length is denoted by
ttot. Fig. 5.2a shows the mean inter-dye distances RDA and the peak positions of
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Figure 5.1: Simulation results for CI-2 labeled with AF546 and AF647 (top) and AF488 and
AF594 (bottom) [113]. Donor and acceptor dye are attached to residues 20 and 78, respectively.
The results for folded and unfolded states are depicted in orange and blue, respectively. (a) and
(d) show the distributions of the inter-dye distances along with distributions of the respective
Cα distances for folded (red) and unfolded states (green). The Förster radii R0 are shown as
dashed black lines. The mean distances for folded state (RF) and unfolded state (RU) are given.
(b) and (e) show the distributions of the orientation factor κ2 and the mean values for folded
(κ2F) and unfolded states (κ2U). (c) and (f) show the resulting FRET efficiency histograms
with Gaussian fits (black lines) and the peak positions of the fits for folded (〈E〉F) and unfolded
(〈E〉U) states.
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Figure 5.2: Mean inter-dye distances RDA (blue) and peak positions of the Gaussian fit for the
FRET efficiencies 〈E〉 (orange). The values are given for the parts of the simulation used in the
calculation. The time t is given with respect to the total simulated time ttot for simulations of
the folded protein (left) and simulations of the unfolded protein (right).

the Gaussian fits for the FRET efficiency 〈E〉 over time for CI-2 in the folded
conformations. The values for both quantities already stabilize in the first 10% of
the simulation. For the simulation of unfolded CI-2, where chain dynamics plays
a crucial role, the respective values stabilize much later after about half of the
considered simulation (shown in Fig. 5.2b).

As the mean values do not contain all information about the underlying dis-
tributions, the distance distributions for the folded state are given in Fig. 5.3 for
different lengths of the simulation, ranging from ttot/128 to the whole simulation
ttot. Even though the mean distance stabilizes early, the distribution still varies
slightly between ttot/32 and ttot/8. The variation in the FRET distributions for
the folded state is negligible [data not shown]. Clearly, the folded state is rather
uncomplicated regarding sampling issues. Nevertheless, mean values should be
handled with care as the distributions might still vary.

In Figs. 5.4 and 5.5, distance distributions and efficiency histograms are shown
for the unfolded state, respectively. Here, the distributions still vary a lot. CI-2 is
a small system and seems to be sufficiently sampled. For larger systems, especially
in the unfolded state, the simulation length has to be adjusted.

5.3 CspTm with Different Dye Positions

The next system I investigate to test the influence of different labeling positions
is CspTm [113]. I perform simulations of CspTm with AF488 and AF594 at dif-
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Figure 5.3: Inter-dye distance distributions of folded states for different fractions of the total
length of the simulation ttot. Additionally, the respective mean inter-dye distances are given.
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Figure 5.5: FRET efficiency distributions of unfolded states with respective peak positions 〈E〉
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with total length ttot.
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Figure 5.6: FRET efficiency distributions for CspTm labeled with AF488 (donor) and AF594
(acceptor) at different labeling sites [113]. Donor (D) and acceptor (A) positions are color coded
in (a), (b), (c), (d), and (e). The colors refer to different residues, namely residue 2 (red), 11
(green), 23 (blue), and 68 (yellow). The positions are shown in (f). Residue numbering within
the protein is given in Sec. H. The efficiency distributions are shown with the peak values of the
Gaussian fits (black lines) for folded states (orange, 〈E〉F) and unfolded states (blue, 〈E〉U).
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ferent labeling sites, which are also used in experiments [146, 147]. The posi-
tions are the residue pairs C2/C68, C68/C2, C11/C68, C68/C11 and C23/C68
for donor/acceptor (for the residue numbering scheme, see Sec. H), illustrated in
Fig. 5.6f. Figs. 5.6a-e show the resulting FRET efficiency histograms. Unsurpris-
ingly, the peaks for the unfolded states shift to higher efficiencies with shorter
sequence separation of the labeled residues, while the dye permutations with re-
spect to the attachment point have no effect.

The results presented in Secs. 5.1 and 5.3 prove the strength of the presented
simulation method. It establishes a way of directly relating FRET efficiency dis-
tributions to distance distributions. Further, it allows to vary and test different
parameters as dye pair, Förster radius, linker length, or labeling sites, which fa-
cilitates improvement in planning, interpretation, and validation of experimental
results.

5.4 Comparison of Simulation and Experiment

For a validation of the model, I compare the resulting FRET efficiency histograms
directly against experimental data for four different systems [113]. Fig. 5.7a shows
results for 10FNIII with the dye pair AF546 and AF647. Figs. 5.7b-d show results
for CspTm with AF488 and AF594 at different labeling positions. The experi-
mental data was measured for the protein in 0.0M GdmCl (folded) and in 4.63M
and 7.0M GdmCl (unfolded) for 10FNIII [113] and CspTm [147], respectively. The
experimental efficiency histograms are already corrected for background, different
quantum yields of donor and acceptor, different detection efficiencies, crosstalk,
and direct acceptor excitation. Only different quantum yields are reflected in my
simulation protocol and also corrected for in the simulated efficiency histograms.

Simulated and experimental data are in high agreement except for the system
CspTm C11/C68 shown in Fig. 5.7c. The transfer efficiency of the folded state
in the simulation of CspTm C11/C68 is shifted to lower values compared to the
experimental measurements. In this system the dyes are attached on opposite
sides of the protein, which explains a lower FRET efficiency compared to the
simulations of the other two labeling schemes. This deviation could be explained
by residual attractive interactions between dyes and protein surface, which are not
reflected by the simulations. This aspect can be tested by detailed time-resolved
fluorescence anisotropy measurements and comparison of the different systems.

In Tab. 5.1 means and standard deviations of the Gaussian fits of the efficiency
distributions from Fig. 5.7 are summarized. In the simulations, the widths of the
efficiency distributions are dominated by shot noise caused by the limited number
of photons collected for each burst.
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Figure 5.7: Comparison of FRET efficiency histograms from simulations and experiments [113].
(a) Results for 10FNIII with AF546 and AF647 attached to residues 11 and 86. (b), (c), (d) Re-
sults for CspTm with AF488 and AF594 attached to (b) residues 68 and 2, (c) residues 11 and
68, (d) residues 23 and 68, respectively [147]. Distributions are given for folded (orange) and
unfolded states (blue) and fitted with Gaussian curves (black lines). The peak positions (dashed
lines) for folded (〈E〉F) and unfolded (〈E〉U) states are shown for simulations and experiments.
The respective standard deviations can be found in Tab. 5.1. Experimental efficiency values
below 0.0 and above 1.0 are not shown.
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Table 5.1: Results of the Gaussian fits for the FRET efficiency distributions from simulations
(sim) and experiments (exp) [113]. Peak positions (〈E〉F, 〈E〉U) and respective standard devia-
tions (σF, σU) are given for folded and unfolded states. (a) 10FNIII with AF546 and AF647 at-
tached to residues 11 and 86. (b), (c), (d) CspTm with AF488 and AF594 attached to (b) residues
68 and 2, (c) residues 11 and 68, (d) residues 23 and 68, respectively.

System Folded Unfolded
〈E〉F σF 〈E〉U σU

(a) 10FNIII exp 0.84 0.07 0.45 0.12
sim 0.90 0.03 0.41 0.06

(b) CspTm C68/C2 exp 0.95 0.04 0.36 0.08
sim 0.93 0.03 0.34 0.06

(c) CspTm C11/C68 exp 0.95 0.06 0.37 0.08
sim 0.81 0.04 0.40 0.06

(d) CspTm C23/C68 exp 0.94 0.06 0.45 0.07
sim 0.90 0.03 0.46 0.06

Deviations between experiments and simulations can result from the aspect
that experiments are additionally influenced by the dye photophysics, e. g. donor
and acceptor quenching or blinking. Furthermore, they may deviate due to the
necessity to correct for background, crosstalk, and detection efficiencies. The lack
of site-specific labeling or other chemical heterogeneity and further experimental
artifacts can lead to additional broadening of the FRET efficiency distribution [42,
148]. In experiments, incomplete labeling or photobleaching can lead to a donor-
only peak near zero FRET efficiency which is also not present in the simulations.

For CspTm the experimental distribution widths are only slightly larger than
the ones from the simulation (see Figs. 5.7b-d). This indicates that the width in
the experimental histograms is already close to the shot noise limit.

To conclude, this section demonstrates the validity of the presented simulation
approach as it is in excellent agreement with experimental data.

5.5 Interpretation of FRET Measurements of
ClyA

The next system I consider is ClyA, where a single chain can adopt a monomer or
a protomer conformation with twelve protomers forming a pore. With my simula-
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(a) Dye positions: 56/252 (b) Dye positions: 2/303

Monomer Protomer

(e) Dye positions: 252/56/8

Monomer Protomer

(c) Dodecamer (d)

Figure 5.8: Structures of different ClyA conformations with different labeling sites. (a),
(b) Monomer and protomer conformations are shown with AF488 (blue) and AF594 (orange)
attached to residues 56 and 252, and 2 and 303, respectively. (c) Top view of the dodecamer
structure with AF488 and AF594 attached to residues 56 and 252, respectively. (d) Side view
of the dodecamer structure. (e) Monomer and protomer structures with the three dyes AF488
(blue), AF594 (orange), and B680 (red) attached to residue 252, 56, and 8, respectively.
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tion protocol I can investigate differences in dye behavior for all of these conforma-
tions. In experiments, ClyA is studied with the dye pair AF488/AF594 at different
positions (residues 56/252 and residues 2/303) for monomer and protomer con-
formations as shown in Figs. 5.8a,b. In Figs. 5.8c,d the dodecamer conformation
with dyes attached to residues 56 and 252 is shown as seen from top and from
side without dyes, respectively. In analogy to the experiments [112], additional
three-color FRET simulations are conducted with the three dyes AF488, AF594,
and B680 at positions 252, 56, and 8, respectively, depicted in Fig. 5.8e.

5.5.1 ClyA in Two-Color FRET Experiments

The FRET efficiency histograms for simulations of ClyA with AF488 and AF594
attached to residues 56 and 252, respectively, are shown in Fig. 5.9. The sim-
ulations are performed for monomer and protomer (see also Fig. 5.8a), trimer,
dodecamer (see also Figs. 5.8c,d), and unfolded conformations of ClyA.

All histograms from simulations are in high agreement with the experimental
measurements. The peak positions for monomer, protomer, and dodecamer in the
simulations deviate from the experimental data. However, these efficiencies are in
the most sensitive range of FRET. That means small deviations in distance can
cause large deviations in efficiencies (see also below). The order of the considered
systems in terms of peak efficiencies is identical for simulations and experiments.

Trimer and dodecamer, where for both the labeled protomer is clamped between
two other protomers, unsurprisingly result in similar efficiencies. However, they
are clearly shifted with respect to the efficiencies of the protomer conformation.
This shift is probably caused by steric restrictions due to the adjacent protomer
structures in trimer and dodecamer. The steric dye distribution over a simulation
for dodecamer and protomer is shown in Fig. 5.10. In the protomer conformation
the dyes can obviously adopt many more configurations and are able to move
closer to each other than in the dodecamer conformation.

In Fig. 5.11, corresponding Cα and inter-dye distance distributions are shown
for the different ClyA conformations. The Cα distance distributions of trimer and
dodecamer are almost identical, whereas the distribution of the protomer is slightly
different. This difference is likely to be caused by the flexibility of the protomer,
as the positions of the Cα-atoms in trimer and dodecamer are more stable. The
inter-dye distances of protomer, trimer, and dodecamer are still similar and only
slightly shifted. As these distance distributions are close to the Förster radius
of R0 = 5.4 nm, this slight shift in distances causes a clearly visible shift in the
efficiencies depicted in Fig. 5.9.

Tab. 5.2 shows the mean Cα and inter-dye distances of all simulated conforma-
tions of ClyA along with the respective standard deviations. For the protomer,
the width of the Cα distance distribution is already slightly higher than for trimer
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Figure 5.9: FRET efficiency histograms for ClyA with dyes AF488 and AF594 attached
to residues 56 and 252, respectively. Shown are the histograms from experimental measure-
ments ∗[127] (top) and from simulations (bottom) along with the mean values of the Gaussian
fits 〈E〉. Simulations are conducted for monomer (blue), protomer (red), trimer (brown), dode-
camer (purple), and unfolded conformation (green). For the experiments, a histogram for the
intermediate conformation occurring in the transition from monomer to protomer conforma-
tion [127] is shown additionally (orange).
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(a) Dodecamer. (b) Protomer.

Figure 5.10: Dodecamer and protomer conformations of ClyA (gray). The dyes AF488 (blue)
and AF594 (orange) are shown for multiple time points spread over the simulation.
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Table 5.2: Cα distances and inter-dye distances for different conformations of ClyA. The re-
spective mean Cα distances (RCα

) and standard deviations (σCα
), as well as mean inter-dye

distances (RDA) and standard deviations (σDA) for monomer, protomer, trimer, and dodecamer
in different conformations with different labeling sites for donor and acceptor (D/A), are given
in nm.

System D/A Cα distance Inter-dye distance
RCα σCα RDA σDA

Monomer folded 56/252 5.38 0.11 6.28 1.02
Protomer folded 56/252 4.29 0.10 5.35 0.91
Trimer 56/252 4.35 0.07 5.50 0.85
Dodecamer 56/252 4.35 0.07 5.58 0.87

Monomer folded 2/303 3.98 0.58 5.09 1.24
Protomer folded 2/303 9.97 1.80 10.28 2.34

Monomer unfolded 56/252 11.93 3.99 12.15 4.17
Protomer unfolded 56/252 10.57 3.41 10.85 3.62

Monomer unfolded 2/303 13.10 5.20 13.40 5.35
Protomer unfolded 2/303 14.24 5.01 14.49 5.17
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Table 5.3: Parameters for different conformations of ClyA with the same labeling scheme
(AF488 and AF594 at residues 56/252). The mean κ2 value along with rotational correlation
times of donor τrot, D and acceptor τrot, A are given. The donor lifetime in absence of an acceptor
is set to τD = 4.1ns. The donor lifetime in presence of the acceptor τDA is calculated from fits to
simulated data and given in the table. Furthermore, efficiencies calculated from donor lifetimes
E(τDA) and efficiency histograms 〈E〉 as well as anisotropy values for donor in absence rD and
presence of an acceptor rDA are listed. The value of τrot, D for the monomer (highlighted) is
taken from experimental measurements and used for the adjustment of the time scale required
for calculation of all remaining values.

Conformation κ2 τrot, D τrot, A τDA E(τDA) 〈E〉 rD rDA
in ns in ns in ns

Monomer 0.665 0.666 1.16 2.81 0.32 0.33 0.06 0.08
Protomer 0.662 0.68 1.28 2.14 0.48 0.50 0.06 0.10
Trimer 0.636 0.69 1.25 2.28 0.44 0.46 0.06 0.09
Dodecamer 0.629 0.66 1.17 2.36 0.43 0.44 0.06 0.09

and dodecamer, supporting the earlier statements. In comparison with the dode-
camer, the protomer mean inter-dye distance is lower, while the corresponding
fluctuations are higher.

5.5.2 Dye Flexibility in Different ClyA Conformations

In the experiments, the shift from protomer to dodecamer is assumed to mainly be
caused by acceptor quenching [127], as the efficiency calculated via donor lifetimes
yields a better, however not full, agreement between protomer and dodecamer
measurements. Tab. 5.3 summarizes additional derived parameters for monomer,
protomer, trimer, and dodecamer conformations of ClyA. Once more Tab. 5.3
shows the steric restriction in the dodecamer by a changed κ2 and additionally
differences in the rotational dynamics of the acceptor (τrot, A). Although being
similar, peak efficiencies determined by donor lifetime E(τDA) (see Eq. (I.1)) are
systematically smaller than those from efficiency histograms 〈E〉. The anisotropy
r calculated by the Perrin equation (see Eq. (I.2)) in absence and presence of an
acceptor is considerably lower than the experimentally measured values with a
range of r = 0.16...0.21 [127], which hints to additional effects as e. g. sticking
of the dyes to the surface. These effects are not accounted for in the present
simulation, but could be included by additional attractive interactions.

The results show that the remaining difference in transfer efficiency between
protomer and dodecamer could also be caused by the respective steric restrictions
of the different conformations.
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Figure 5.12: Mean inter-dye distances RDA over different parts of the simulations of unfolded
ClyA monomer and protomer. The x-axis gives the time t as fraction of the total simulated time
ttot. The results are shown for monomer (blue) and protomer (orange) with dyes attached to
residues 56 and 252, respectively, and monomer (green) and protomer (red) with dyes attached
to residues 2 and 303, respectively.

In Tab. 5.2, furthermore the results for monomer and protomer with dyes at-
tached to residues 2 and 303 are given. Missing parts of the structures were comple-
mented using homology modeling and are rather flexible. This flexibility manifests
in the large width of the Cα distances and the even larger width of the inter-dye
distances, which has to be considered when using these labeling positions in ex-
periments.

For all simulations of folded systems, the mean inter-dye distances are clearly
larger and the distributions broader than the distributions of the Cα distances,
which is in accordance with my expectations. Furthermore, the fluctuations are
varying, depending on the labeling positions and the surrounding environment,
e. g. when directly comparing protomer and dodecamer.

The results presented for ClyA indicate that the introduced method can give
valuable new insights into the underlying dynamics of labeled proteins, helping to
understand experimental measurements.

5.5.3 Sampling of Unfolded ClyA Conformations

Simulations of unfolded monomer and protomer conformations only differ in the
starting structures and in the native contacts included in the potential, which
should play a negligible role in the unfolded states. If these simulations sample
the conformational space exhaustively, the mean Cα and inter-dye distances are
expected to converge to similar values. However, they evidently differ in Tab. 5.2,
which is why I test the convergence of the simulation. In Fig. 5.12, the mean
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distances over parts of the simulation of unfolded monomer and protomer with
two different labeling schemes are shown, respectively. In the beginning, protomer
and monomer apparently differ strongly and start to converge later on, but still
do not fully converge by the end of the simulation. This could be caused either
by residual contacts differing in the two structures or insufficient sampling. For a
system this large, the conformational space of the unfolded states might not be
sampled sufficiently, despite the much longer simulation time as for CI-2 (see also
Sec. 5.2).

5.5.4 ClyA in Three-Color FRET Simulations

Finally, the results for three-color FRET for ClyA with dyes AF488, AF594, and
B680 attached to residues 252, 56, and 8, respectively (see Fig. 5.8e), are shown in
Fig. 5.13. Simulations of monomer, protomer, and unfolded conformations yield
clearly different photon rate contributions.

For three-color FRET, different labeling positions, the effect of labeling isomers,
and hypotheses regarding the underlying protein dynamics can now be tested. This
may improve planning and interpretation of experiments studying these even more
complex systems.

5.6 Comparison to Simple Models for Data
Analysis

To test the presented simulation method against established methods, I compare
the simulation results with different models for data analysis [113]. Fig. 5.14 shows
the inter-dye distance distributions for the folded states as well as its relation to
the Cα distances in the unfolded states for three different protein-dye systems.

For the folded states, means and standard deviations of the distance distribu-
tions from simulations are shown (black crosses and error bars). In addition, the
respective values of an accessible volume calculation [18, 19] are shown in blue. The
accessible volume approach is based on dye parameters, such as three-dimensional
dye extension and linker length, and calculates all sterically possible dye positions
within this linkage length at a given labeling position. All dye positions are con-
sidered equally probable and the mean distance of the dyes RDA is computed from
this distribution. Figs. 5.14a,c,e show that both methods are in good agreement.
The simulations have a lower standard deviation, originating from the dynamics
in the simulation. In contrast to the accessible volume method assuming all states
to be equally probable, the dynamic simulations entropically disfavor dye states
close to the protein surface.
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Figure 5.13: Results for three-color FRET simulations of ClyA. In the simulations, the dyes
AF488, AF594, and B680 are attached to residues 252, 56, and 8, respectively (see also Fig. 5.8e).
The two-dimensional histograms of the photon rates (see Sec. 2.2.4) are shown for monomer
(blue), protomer (red), and unfolded conformations (green). Each histogram is scaled to its
maximal value. For better visibility of overlapping distributions, values below a small threshold
are discarded.
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Figure 5.14: Distributions of inter-dye distances RDA and Cα distances of the respective
residues [113]. Results are shown for (a), (b) CspTm with AF488 and AF594 at residues 2
and 68, (c), (d) 10FNIII with AF546 and AF647 at residues 11 and 86, and (e), (f) CI-2 with
AF546 and AF647 at residues 20 and 78. (a), (c), and (e) show distance distributions (red),
mean distances (crosses), and standard deviations (error bars) from simulations (black) and ac-
cessible volume calculations (blue) for the folded states. (b), (d), and (f) show two-dimensional
histograms of the inter-dye distances and corresponding Cα distances for the unfolded states.
The dotted lines show the expected dependency for equality of both values. Expectations cor-
rected by an effective segment length of the chain accounting for the linkers are depicted as
white crosses. Each histogram count is scaled individually according to its maximal value.
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Figure 5.15: Exemplary calculation of effective segment length Neff for CI-2 with AF546 and
AF647 at residues 20 and 78, respectively, (left) and depiction of the system (right). The averaged
squared Cα distance between residues i and j 〈(RCα

)2ij〉1/2 is shown as a function of sequence
separation Nij = |i−j|. The data from the simulations is shown in blue and fitted with Eq. (2.24)
(orange). Fit parameters for the constant C and the scaling exponent ν are given. The effective
values for the protein-dye system (〈R2

DA〉1/2 and Neff) are indicated by gray dashed lines. On
the right, CI-2 is shown in gray along with AF546 (blue) and AF647 (red) and the respective
Cα-atoms (blue and red spheres).

In the unfolded state, the accessible volume approach faces the challenge of
properly treating the whole unfolded ensemble, as it consists of diverse protein
conformations with different possible dye distributions. In contrast, my model
can directly simulate the unfolded ensemble for the whole system with dyes.

To properly compare the inter-dye distances with the Cα distances, I use the
model of unfolded proteins as polymer chains (see Sec. 2.6). At high simulation
temperatures in the unfolded state, where the contact potential plays a negligible
role, the SBM describes an excluded volume polymer chain [75]. To show this, I
consider the dependency of the mean Cα distance 〈(RCα)2

ij〉1/2 between residues
i and j on the sequence separation Nij = |i− j|. This dependency is expected to
behave like

〈(RCα)2
ij〉1/2 = C ·N ν

ij , (5.1)

where 〈(RCα)2
ij〉1/2 is averaged over the simulation (see also Eq. (2.24)). Fig. 5.15

shows this dependency exemplarily for CI-2 with AF546 and AF647.
The resulting scaling exponent ν from a fit corresponds well with the expected

value for an excluded volume chain of ν = 3/5 [75]. The resulting values of ν
for the different protein-dye systems are given in Tab. 5.4. From this fit, I de-
termine an effective segment length Neff = Nij + L, accounting for the dye pair
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Table 5.4: Sequence separation Nij and fitted scaling exponent ν for different protein-dye
systems [113]. The correction factors m for the three systems shown in Fig. 5.14 are given.

Protein Dye pair Nij ν m

CspTm C2/C68 AF488/AF594 66 0.613 1.10
CspTm C68/C2 AF488/AF594 66 0.602
CspTm C11/C68 AF488/AF594 57 0.580
CspTm C68/C11 AF488/AF594 57 0.597
CspTm C23/C68 AF488/AF594 45 0.597
10FNIII AF546/AF647 75 0.598 1.11
CI-2 AF488/AF594 58 0.595
CI-2 AF546/AF647 58 0.611 1.14

with an additional length L. From the dyes’ mean squared separation 〈R2
DA〉1/2,

I assign a length Neff from the respective fit. It turns out that the length for
the AF488/AF594 dye pair is about L = 11.3± 1.3 residues, which is in the
same range as found experimentally in [78]. For the AF546/AF647 dye pair, L is
14.15± 0.65 residues.

The effective length can be used to calculate a correction factor m for the
relation between 〈R2

DA〉1/2 and the distance of the respective Cα-atoms 〈R2
Cα〉

1/2

(see Eq. (2.25)). The resulting correction factors for the systems shown in Fig. 5.14
are given in Tab. 5.4.

The histograms relating the inter-dye distance to the corresponding Cα distance
for the unfolded states are shown in Figs. 5.14b,d,f. Clearly, the values are not
identical (equality is indicated by the dotted lines). Taking into consideration
the relation between RDA and the Cα distance for the corrected chain length, I
expect a different relation as indicated by the white crosses. It provides a good
approximation of the dependency observed in the simulations.

To summarize, I achieve to capture both folded and unfolded states within
the same simulation method. This enables to simulate e. g. complex large-scale
conformational transitions between multiple states in the future.

5.7 Combination of FRET and SAXS

Currently, there is an ongoing discussion on how to interpret SAXS measure-
ments in comparison to FRET measurements, especially regarding intrinsically
disordered and unfolded proteins. Questions are whether the FRET dyes influ-
ence the SAXS profile and how to assess derived values for the radius of gyration
obtained by the two different methods.
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Several studies report that FRET measures compaction of intrinsically disor-
dered proteins in water in comparison to high denaturant concentrations, whereas
SAXS experiments have not observed this compaction [149, 150]. These diverging
results have been explained by decoupling of size and shape fluctuations, mak-
ing FRET and SAXS complementary methods [151]. Fuertes et al. assume that
proteins undergo a sequence-specific decoupling of end-to-end distance Re mea-
sured by FRET and radius of gyration Rg measured by SAXS. As proteins are not
homopolymers, they may have different Rg-Re relationships [152]. Other studies
claim that the main reason for the found discrepancies lies in the analysis meth-
ods [153]. Borgia et al. have performed combined FRET and SAXS measurements
of unfolded and intrinsically disordered proteins. They state that while SAXS
measurements are principally model free, interpretation of FRET measurements
always depends on the underlying model relating Rg and Re [154]. Possible models
are e. g. a Gaussian chain or an excluded volume chain. As one possible approach
to overcome the differences, they propose reweighting of structural ensembles.
Furthermore, regular MD simulations with explicit solvent of one intrinsically
disordered protein comprising 79 residues conducted by Zheng et al. [155] have
resolved possible discrepancies between measurement methods for this specific
protein.

Still, the questions reside, if FRET dyes have an effect on SAXS measurements
and how the different calculation methods for Rg in general affect the results.
With the framework introduce here, I can tackle these questions. Simulations can
be used to analyze the influence of FRET dyes on SAXS profiles in the shown
examples and also provide values for the radius of gyration calculated from SAXS
data and other methods.

5.7.1 Influence of FRET Dyes on SAXS Measurements

First, I consider the direct influence of FRET dyes on SAXS measurements and
derived values. As SAXS experiments measure and average over structural ensem-
bles, I calculate the mean intensity curves of the folded and unfolded ensembles
by taking structures distributed over the entire simulation in time intervals of
δtSBM = 100 ps. For each structure, I determine a SAXS intensity profile with
CRYSOL [74]. Subsequently, I calculate average and standard deviation of the re-
sulting intensities to get an impression of how broad the distributions resulting
from the different conformations are. This is done for the simulations of the sys-
tems both with and without dyes.

The resulting SAXS intensity curves for 10FNIII in Fig. 5.16 show that the
curves with and without dyes differ considerably for the folded conformations.
This is to be expected as the dyes change the size and shape of the system. In the
unfolded conformations, there still is a visible difference, as the size of the chain
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Figure 5.16: SAXS intensities without and with dyes for 10FNIII. The mean SAXS intensities
(solid lines) are shown along with the distributions’ standard deviations (shaded area) as func-
tions of the scattering vector q. Curves are depicted for 10FNIII in the folded states without
(blue) and with dyes (orange) and 10FNIII in the unfolded states without (green) and with dyes
(red).

is different with and without dyes. However, it is rather small and the shapes of
the curves are alike. Consequently, the influence of the dyes in the unfolded states
is small, but present.

In addition to this rather small system consisting of 94 residues, Fig. 5.17 shows
the respective curves for the larger system of ClyA monomer consisting of 303
residues. There, the visible differences are considerably smaller, according to my
expectations.

The derived plots for 10FNIII are depicted in Fig. 5.18. The Guinier plot (see
also Sec. 2.5) shows that the Guinier approximation (Eq. (2.20)) holds in a certain
region and ln(I(q)/I(0)) as a function of q2 can be fitted linearly. The slope of
the curve, representing the radius of gyration, certainly is different for folded and
unfolded states and there is also a visible difference between the calculation with
and without dyes, respectively. The Kratky plot in Fig. 5.18 (see also Sec. 2.5),
illustrates the specific features of a distinct peak for the folded states and a plateau
for the unfolded states. The broadening of the peak width for the folded states
including dyes points to a less compact structure.

In Fig. 5.19, the Porod plot of the SAXS intensity (see also Sec. 2.5) is shown
for 10FNIII. The so-called “power-law regime” refers to the region where the in-
tensity can be described with an exponential (see Eq. (2.21)). The derived scaling
exponent ν is similar for both simulations with and without dyes and agrees well
with the parameter determined in Sec. 5.6.
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Figure 5.17: SAXS intensities without and with dyes at positions 56 and 252 for the ClyA
monomer. The mean SAXS intensities (solid lines) with the distributions’ standard deviations
(shaded area) as functions of the scattering vector q are depicted. Curves are shown for the
folded ClyA monomer without (blue) and with dyes (orange) and the unfolded ClyA monomer
without (green) and with dyes (red).

5.7.2 Determination of the Radius of Gyration

To investigate the different methods to determine the radius of gyration Rg, I first
calculate its value from the molecular model of the protein without dyes using
GROMACS, here denoted as Rg, gmx (see Eq. (B.3)) as a “true” reference value. The
second value considered is the value from the molecular model with dyes, R+dyes

g, gmx.
Analysis of the Guinier region in the SAXS measurements yields two additional

values Rg, saxs and R+dyes
g, saxs (as described in Sec. 2.5). These can contain errors

due to the narrow Guinier region, where only few data points remain for the fit,
especially for large systems as the unfolded states of ClyA monomer and protomer.

Furthermore, I calculate Rg for the unfolded proteins as done in experimen-
tal work [154]. I assume the proteins to behave like excluded volume chains (for
validation, see Sec. 5.6), but only consider atoms from residues between the dye
positions, neglecting the remaining residues in all calculations to mimic dyes at-
tached to the termini∗. From this data, I extract the end-to-end Cα distances Re

and calculate the apparent Rg, which is given by:

Rapp
g, Cα

=
√
〈R2

e〉/
√

6.26 (5.2)

∗The influence of the remaining chain has to be neglected here, but could be tested with
additional simulations.
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Figure 5.18: Guinier plot and dimensionless Kratky plot for 10FNIII. The Guinier plot (top)
shows the behavior of the SAXS profile in the Guinier region (crosses) along with linear fits
(solid lines). The dimensionless Kratky plot (bottom) gives information about the protein con-
formations. Both plots are shown for 10FNIII in folded states (blue, orange) and unfolded states
(green, red) without and with dyes, respectively.
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Figure 5.19: Porod plot of SAXS intensity curve for 10FNIII. The “power-law regime” is the
region of the linear fit (solid lines) shown here along with the data from simulation (crosses) for
10FNIII without (green) and with dyes (red) for the unfolded conformations. From the fits, the
fractal dimensions df and the corresponding scaling exponents ν are calculated.

for excluded volume chains [154]. As a second approach [154], I use the inter-dye
distance RDA and rescale it to an end-to-end distance via the factor

f =

(
Nend-to-end

Nend-to-end + L

)ν
(5.3)

with scaling exponent ν and additional sequence length L for the dye pairs from
Sec. 5.6. With this factor, I obtain

Rapp
g, RDA

=
√
〈R2

DA〉 · f/
√

6.26 . (5.4)

All calculated values reflect an average Rg over the simulated ensemble. I com-
pare all of these values of Rg for the different simulated systems in Figs. 5.20,
5.21, and 5.22.

Fig. 5.20 shows the results for the folded proteins in relation to Rg, gmx, which
is given in the bottom. As expected, Rg, gmx is only dependent on the protein.
Including the dyes, R+dyes

g, gmx is apparently higher, and the effect is more pronounced
in the smaller systems. The only case where R+dyes

g, gmx is actually lower than Rg, gmx

is the ClyA protomer with dyes at positions 56/252, as the dyes probably shift the
center of mass in favor of a smaller Rg (see also Fig. 5.8a). The dye position seems
to have a small effect (as can be seen for CspTm, ClyA monomer and protomer),
whereas the choice of dyes has a larger effect (see CI-2).
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Figure 5.20: Rg values for different folded systems with respect to Rg, gmx (blue line), which
is given at the bottom in Å. The systems studied are 10FNIII, CI-2 with two different dye pairs,
CspTm with AF488/AF594 at three different labeling positions, and ClyA monomer, protomer,
trimer, and dodecamer with AF488/AF594/(B680) at different labeling sites. Shown are the
values for Rg calculated from the atomic structure with dyes (R+dyes

g, gmx, orange) and the values
for Rg derived from SAXS curves without (Rg, saxs, green) and with dyes (R+dyes

g, saxs, red).
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Figure 5.21: Rg values for different systems in the unfolded states with respect to Rg, gmx
(blue line), which is given at the bottom in Å. The systems studied are 10FNIII, CI-2 with two
different dye pairs, CspTm with AF488/AF594 at three different labeling positions, and ClyA
monomer and protomer with AF488/AF594/(B680) at different labeling sites. Shown are the
values for Rg calculated from the atomic structure with dyes (R+dyes

g, gmx, orange) and the values
for Rg derived from SAXS curves without (Rg, saxs, green) and with dyes (R+dyes

g, saxs, red).

The analysis of the SAXS curves appears to overestimate Rg for small systems,
while slightly underestimating Rg for larger systems. The overestimation could be
caused by the calculation method of CRYSOL, which includes a hydration shell, and
the neglect of hydrogen atoms in the molecular model. As the ClyA conformations
are rather elongated than globular, the deviation in these systems could arise from
the narrow Guinier region. R+dyes

g, saxs shows the same shift to higher values as for
R+dyes

g, gmx.
The results for the unfolded proteins are shown in Fig. 5.21. Here, Rg, gmx is

not independent of the dye pair and position (see CI-2, CspTm), indicating that
there is a however small influence of the dyes on the chain dynamics. The same
effect occurs for ClyA monomer and protomer, although this could also arise
from insufficient sampling (see also Sec. 5.5). As for the folded proteins, R+dyes

g, gmx
is always shifted to higher values. Here, the effect is correlated with the sequence
distance of the dyes. The larger their separation, the larger the shift, as the dyes
have more influence on the occupied volume at the termini than in the middle of
the sequence (see CspTm, ClyA monomer and protomer). For the small systems
of CI-2, CspTm, and 10FNIII, Rg, saxs and R+dyes

g, saxs show the same effect for the
unfolded states as for the folded proteins. For ClyA, the values of R+dyes

g, gmx are
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Figure 5.22: Rg values for different truncated systems in the unfolded states with respect to
Rg, gmx (blue line), which is given at the bottom in Å. The systems studied are 10FNIII, CI-2
with two different dye pairs, CspTm with AF488/AF594 at three different labeling positions,
and ClyA monomer and protomer with AF488/AF594 at different labeling sites. Shown are the
values for Rg calculated from the atomic structure with dyes (R+dyes

g, gmx, orange), the values for
Rg derived from SAXS curves without (Rg, saxs, green) and with dyes (R+dyes

g, saxs, red), and the
apparent values of Rg calculated from Cα end-to-end distance (Rapp

g, Cα
, purple) and inter-dye

distance (Rapp
g, RDA

, brown).

higher than the values of R+dyes
g, saxs, which could originate from the smaller Guinier

region, causing a larger error in the calculation. Furthermore, the simulation of
unfolded ClyA might not have converged (see also Sec. 5.5), as also the scaling
exponent (see Sec. 5.6) differs strongly between monomer and protomer with the
different dye positions [data not shown].

Finally, I investigate the Rg values obtained from end-to-end distances shown in
Fig. 5.22. Here, R+dyes

g, gmx and R+dyes
g, saxs are similar, but both shifted to higher values

with respect to Rg, gmx as before. Rg, saxs, Rapp
g, Cα

, and Rapp
g, RDA

are all close to Rg, gmx.
However, Rapp

g, RDA
is always higher than Rg, saxs, suggesting that there is a small

systematic difference in the quantity that FRET and SAXS experiments measure.
A study of intrinsically disordered proteins in different denaturant concentra-

tions as done in experimental studies [154] and regular MD simulations with ex-
plicit solvent [155] is currently not possible with the presented simulation method.
So far, the model only resembles the unfolded protein in its excluded volume poly-
mer state. Different denaturant concentrations could be included in future work
by e. g. introducing a varying overall attractive potential.
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To conclude, FRET dyes have a considerable effect on measured SAXS curves,
especially in small systems. The measured Rg differs considering the system with
and without dyes and also depends on the choice of dyes. The dyes might further
have a slight influence on the chain dynamics. For the unfolded simulations with
larger dye separation in the chain, the influence on the measured Rg becomes more
pronounced. Finally, Rg values measured by FRET and SAXS deviate systemati-
cally, which hints to another possible mechanism leading to diverging results for
the two experimental methods. However, when including the known corrections,
all values are in good agreement.

5.8 Diffusion Parameters

The diffusional behavior of the dyes attached to a protein as quantified by e. g. the
diffusion constant D is not known a priori. D is correlated to the rotational cor-
relation time, but also dependent on size and shape of the occupied volume. For
some calculations [156], approximated diffusion constants have been used. Here, I
show how the performed simulations can be used to obtain quantitative values for
the diffusion constant D and the confining volume 〈rc〉, which can be employed
in further calculations.

As described in Sec. 2.4, the diffusion constant can be calculated from velocities
vi via the velocity autocorrelation function (here denoted as Dv, see Eqs. (2.15)
and (2.16)) and from positions xi via the the mean square displacement (here
denoted as Dx, see Eq. (2.17)). Having adjusted the time scale to the system
specific rotational correlation time, I apply both methods on dye diffusion in each
system considered.

For each calculation, I use a simulation of in total ttot, SBM = 250 ps and a time
step for the evaluation of ∆tSBM = 0.2 fs (∆tSBM = 0.5 fs for ClyA/ ∆tSBM = 5 fs
for determination of Dx for ClyA dodecamer). The integration for Dv is done in
the interval τSBM ∈ [0, 1] ps.

For the calculation of the parameter 〈rc〉 characterizing the confining volume, I
use the full simulations of ttot, SBM = 500 ns with ∆tSBM = 0.2ps (∆tSBM = 0.5 ps
for ClyA) and fit the trajectory to the protein to remove the overall protein motion.
Then I fit with Eq. (2.18), where A1 is set to 1.0.

As Fig. 5.23 shows, the mean square displacement can indeed be fitted with
a linear function for small times τSBM ∈ [0, 2] ps and a diffusion constant can
be calculated. For larger τSBM, the confinement of the movement emerges. The
ambiguity in Eq. (2.18) does not allow to calculate a diffusion constant here, but
〈rc〉 can be determined.
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Figure 5.23: Mean square displacement as a function of time delay τSBM for AF546 attached
to CI-2 in different regimes. For small τSBM (left), the mean square displacement (blue) is linear
and the diffusion constant Dx,phys can be calculated from a fit (orange). The diffusion constant
is given in converted physical units. For larger τSBM (right), the curve reaches a plateau due to
the restricted dye motion. The value corresponding to the occupied volume of the dye 〈rc〉 is
calculated from a fit with Eq. (2.18).
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Figure 5.24: Velocity autocorrelation function Cv(τ) as a function of τSBM for AF546 attached
to CI-2. The data (blue) can be fitted with an exponential function (orange). The integral over
Cv(τ) (see Eq. (2.15)) yields a value for the diffusion constant via the Green-Kubo relation (see
Eq. (2.16)). The resulting diffusion constant is given in converted physical units.
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Table 5.5: Diffusion parameters calculated from simulations. The diffusion constants are given
for the different dyes, attached to the different proteins, calculated from the velocity autocor-
relation function (Dv) and from the mean square displacement (Dx), respectively. With 〈rc〉,
a measure for the occupied volume of the dyes is listed, comparable to the extend of the dye
ldye, the distance between the assumed center of the dye and the carbon atom of the maleimide
which is attached to the protein (see Secs. 3.3 and E). All values are given in physical units.

Dye Protein Dv in Å2/ns Dx in Å2/ns 〈rc〉 in nm ldye in nm

AF488 CI-2 8.20 8.23 2.05

1.69CspTm 7.25 8.04 1.80
ClyA prot. 2.20 2.68 2.05
ClyA dod. 3.17 2.87 1.50

AF546 CI-2 9.25 9.76 2.57 2.6910FNIII 11.15 11.51 2.26

AF594 CI-2 7.98 8.38 1.64

1.66CspTm 7.96 8.28 2.04
ClyA prot. 3.51 3.38 1.77
ClyA dod. 1.90 3.19 1.43

AF647 CI-2 7.91 8.40 1.47 1.7010FNIII 9.51 9.76 1.63

For calculation of Dv, the main contributions to the integral come from small
times as evident in Fig. 5.24. However, it has to be noted that the time range used
for the calculation affects the results and is not unambiguous.

The values determined for the different dyes in several systems are given in
Tab. 5.5. The two methods of determining D yield results in good agreement.
Deviations likely arise from the time step (Dv might yield better estimations with
an even smaller time step), the choice of time frame used in the integration for
Dv, and the fact that, due to the confinement, the mean square displacement can
not be calculated up to infinity as required. On these accounts, the range used for
the linear fit is an additional ambiguous parameter. Still, the values for AF488
and AF594 agree well with the assumed diffusion constants of previous work [156].

As the rotational correlation times already differ between CspTm and ClyA,
it is to be expected that the diffusion parameters differ as well. Despite having
similar rotational correlation times in different systems, the values for AF546 or
AF647 differ with respect to the system. This result shows the influence of the
surrounding protein on behavior and occupied volume of the dye.
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For comparison, also values of ldye, the distance between the assumed dye center
and the carbon atom of the maleimide attached to the protein (see also Secs. 3.3
and E), are given. These values serve as a reference for the dyes’ linker length.
〈rc〉 clearly correlates with ldye, but diverges for the different systems.

Comparing values for ClyA protomer and ClyA dodecamer, it is not surprising
that the volume occupied by the dyes is larger for the protomer (see also Sec. 5.5).
Due to the smaller volume and the repulsion by adjacent protein chains, also the
diffusion of AF488 is faster in the dodecamer.

This section showed the ability of the presented simulation method to determine
approximations for experimentally inaccessible parameters, which can be used for
further calculations and analyses.

5.9 Modeling of a Glucose Sensor

The different variants of a the glucose sensor introduced in Sec. 4.6 have shown
different behavior in FRET experiments [132]. They yield different changes in
FRET ratio (see Eq. (2.6)) upon glucose binding and have therefore considerably
different sensitivities. With the simulation-based approach presented in this work I
want to identify the effects contributing to this distinct behavior, which facilitates
better understanding and improving the function of this sensor in the future.

The glucose sensor variants I study here (see Sec. 4.6) have been produced by
J. Otten of the group of M. Pohl and investigated by several experimental groups.
H. Höfig from the group of J. Fitter has performed FRET measurements, leading
to the result that sensor 2 yields a significantly larger FRET ratio than sensor 1
and sensor 4 [132]. The underlying mechanism is not fully understood, as the only
difference between sensor 2 and sensor 4 is the position of the flexible linker. To
get a better insight into the systems, M. Sarter from the group of A. Stadler has
conducted SAXS measurements of the different variants [unpublished data]. In
the following, I use the experimental results measured by both groups.

In the next subsections, I start with an overview of the simulations, followed
by analysis of the resulting distance, orientation, and efficiency distributions. Fur-
thermore, I consider the convergence of the simulations and the flexibility of the
fluorescent proteins. Finally, I present the how including dimerized conformations
affects the results.

5.9.1 Starting Structures and Simulations

I perform SBM simulations of the glucose sensor variants with several start-
ing structures (see Sec. 4.6.6). The different sensor models are denoted with
sensor 2-1, sensor 2-2, etc. according to sensor variant (1, 2 or 4) and rank of their
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Figure 5.25: Starting structures for the simulation of sensor 2 with Glc-BP in the glucose bound
state. All structures are aligned to Glc-BP (gray). The different pairs of fluorescent proteins are
depicted in blue (sensor 2-1), orange (sensor 2-2), green (sensor 2-3), and red (sensor 2-4). The
fluorescent protein on the left is CFP, the fluorescent protein on the right YFP, respectively.

starting structure in the fitting to the experimental SAXS data (see Sec. 4.6.6).
The best fitting sensor model is denoted sensor X-1, the second best sensor X-2,
etc. Using the example of sensor 2, the four starting structures with the lowest
χ2 values with respect to the experimental SAXS data [M. Sarter, private com-
munication] are depicted in Fig. 5.25. The span of conformations in agreement
with experimental data is large. Starting structures for simulation of sensor 1 and
sensor 4 are given in Sec. J.

Still, considering only these single structures and assuming they are stiff, the
inter-fluorophore distance and orientation of each structure would yield small
FRET efficiencies in contrast to the experimental measurements [132]. In regard
of this aspect and the diversity of starting structures, it is suggested that a dy-
namic structural ensemble is required instead of a single structure to explain the
behavior of the glucose sensor.

To obtain a larger structural ensemble and investigate the dynamics of the
sensor variants, I perform simulations with different starting structures for each
sensor with Glc-BP in the glucose bound state and in the glucose free state, respec-
tively. The simulations cover ttot, SBM = 1000 ns (see Sec. 4.6.7), which represents
approximately 100 µs on the physical time scale. Comparison of the respective
RMSD values with respect to Glc-BP+G and Glc-BP-G shows that all structures
stay stable in their respective Glc-BP state [data not shown].

For glucose bound sensor 2-1 I exemplarily present a detailed picture of the
results. I generate SAXS intensity profiles of structures distributed evenly over
the entire simulation and average the intensities (see also Sec. 5.7.1). Fig. 5.26
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Figure 5.26: SAXS intensity curves for sensor 2-1 with Glc-BP in the glucose bound state.
The experimental SAXS data (*[M. Sarter, private communication]) is shown in blue, the fit of
the starting structure in orange, and the mean intensity in green, respectively. The width of the
intensity distribution in the simulation is depicted as shaded area. Furthermore, the respective
χ2 values for starting structure and mean intensity are given. The inset shows the χ2 distribution
of individual structures over the simulation.
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Figure 5.27: Change in χ2 from starting structure to mean intensity of the simulation with
respect to the experimental data, respectively. The arrows start at the χ2 value of the starting
structure and end at the χ2 value of the mean intensity. For the different sensors, the respective
values are depicted for Glc-BP+G (orange) and Glc-BP-G (blue) states. The endpoints of the
two arrows exceeding the figure are denoted alongside. For sensors 2-0, 4B-1, 4B-2, 4B-3, 4B-4,
and 4C-2, no simulations of the glucose free state are performed.

depicts the SAXS intensity curves for the starting structure of sensor 2-1 along
with the mean intensity curve over the simulation. The inset in Fig. 5.26 displays
large χ2 fluctuations over the simulation, which average out when calculating
the mean intensity. This shows the suitability of a structural ensemble instead
of a single structure to explain the experimental data. The χ2 value of the mean
intensity curve in comparison to that of the starting structure, however, shows a
divergence of the simulation from the SAXS data.

Fig. 5.27 depicts the change in χ2 from starting structure to mean intensity
curve of the simulation for all sensor models. For almost all sensors the simulations
diverge from the experimental data, regardless of the Glc-BP state.

To test different hypotheses in addition to the sensor variants described in
Sec. 4.6, I simulate three variants of sensor 2. They are denoted as sensor 2-1F,
sensor 2-1L, and sensor 2-0. The two former sensors both use the same starting
structure as sensor 2-1, but differ in contacts and flexibility. In sensor 2-1F, beside
the flexible (GGS)4-linker, all restriction sites are kept flexible. As the restriction
sites are added artificially to the structure and their structures are not known,
this could be a valid model. However, the high χ2 values in the simulation of
sensor 2-1F indicate that its agreement with experimental data is worse than
for the other models of sensor 2. The original parametrization chosen for the
restriction sites seems to be preferable.

To test if Glc-BP refolds completely including residues 1 to 11 with CFP inserted
(see also Sec. 4.6.6), I simulate sensor 2-1L with no contacts between residues 1 to
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Figure 5.28: Inter-fluorophore distance distributions from simulations of different starting
structures for sensor 2 with glucose (+G, top) and without glucose (-G, bottom).

11 and the remaining part of Glc-BP. In the simulation, the N-terminal residues
can loosen itself from the rest of the structure accordingly. Sensor 2-1L clearly
shows larger divergence from the SAXS data than sensor 2-1, making this scenario
unlikely.

Sensor 2-0 referred to in Fig. 5.27 and the following figures denotes a structure
constructed by taking the first possible rotations in the merging process of sensor 2
(see Sec. 4.6.6), regardless of the agreement with the SAXS data. The parameters
are taken as for the other sensor 2 variants. It also yields low χ2 values which even
decrease for the simulation (see Fig. 5.27).

5.9.2 Distances, Orientations, and FRET Efficiencies

The simulations provide direct access to the dynamics and structural ensembles
of the different sensor models. To determine their differences, I compare distances
and orientation factors between the distinct models with and without glucose.
Fig. 5.28 exemplarily shows the distance distributions for sensor 2. The distribu-
tions of the different starting structures vary considerably. Although expected to
be larger in the Glc-BP-G state (see Sec. 4.6.2), the mean distances decrease and
the distributions become broader in comparison to the Glc-BP+G state. A possible
reason for the discrepancy of the different models is that the conformational space
is not sufficiently sampled (see also Sec. 5.9.3). It should further be noted that
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Figure 5.29: Distance distributions for the different sensors. The mean distances RDA (crosses)
and the standard deviations σDA of the distribution (error bars) are depicted for simulations
with glucose (+G, orange) and without glucose (-G, blue). The values of the respective starting
structures R0

DA are shown as black crosses. The Förster radius of the fluorophore pair is illus-
trated by a green dashed line. For sensors 2-0, 4B-1, 4B-2, 4B-3, 4B-4, and 4C-2, no simulations
without glucose are performed.

as it represents the energetic minimum the influence of the starting structure in
SBMs is not negligible.

In Figs. 5.29, 5.30, and 5.31, distance distributions, mean κ2 values, and result-
ing peak FRET efficiencies are depicted, respectively.

As evident from Fig. 5.29, the distance distributions of the simulations without
glucose are always broader than that of the simulations with glucose. The fluo-
rescent proteins are more flexible in this glucose free state (see also Sec. 5.9.4).
For all sensors, the distributions vary noticeably. Even in the models with small
inter-fluorophore distance in the starting structure, the distances tend to increase
during the simulation so that most distances are well above the Förster radius of
the fluorophore pair R0 = 4.9 nm. This includes most of the starting structures,
which are in good agreement with the SAXS data, and also sensor 2-0 with a low
χ2 in the simulation. This is surprising, considering the experimentally measured
FRET efficiencies ranging from about 0.1 to 0.8. The distance distributions alone
seem to contradict the measured FRET data. Furthermore, the distance distri-
butions show large differences for the different sensors, depending on the starting
structures. This may hint to a not fully converged ensemble and could be ap-
proached in future work by either extending the simulations or by e. g. averaging
over the different simulations for each sensor variant.

The mean κ2 values in Fig. 5.30 are diverse and clearly deviate from the isotropic
value of κ2 = 2/3. This deviation could be caused by the steric restrictions of
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Figure 5.31: FRET efficiencies for the different sensors. The peak efficiencies 〈E〉 are given
for simulations with glucose (+G, orange crosses) and without glucose (-G, blue crosses). The
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glucose are performed.
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Figure 5.32: Inter-fluorophore distances as a function of time for the entire simulation of
sensor 2-1 with glucose (blue). The mean value is depicted in orange. The fluctuations are large
and occur on a long time scale compared to the simulation time.

the fluorescent proteins imposed by the linkers, their slow motions or insufficient
sampling (see also Sec. 5.9.3). There is however no apparent systematic difference
between the states with and without glucose. Still, the different orientations have
an impact on the results and should not be neglected.

Finally, the peak efficiencies resulting from Monte Carlo photon simulations of
the systems are overall too low compared to the experimental measurements (see
Fig. 5.31) [132]. All results indicate additional effects that are not accounted for
in the simulations so far, such as additional attractive interactions between the
fluorescent proteins or between the fluorescent proteins and Glc-BP, respectively.

5.9.3 Convergence of Simulations

I investigate the extend of interconversion between distinct starting structures in
the simulations and test if the systems converge within the simulated time.

Comparing the structures against each other, they seem to be able to mutually
reach each other. Sensor 1 is rather stiff, but all three simulations are adopting
structures close (with an RMSD below 1 nm) to the sensor 1-2 starting structure.
The structures of sensors 2-2, 2-3, and 2-4 are mutually reachable, however, sen-
sor 2-1 is further apart. This deviation is reflected in the distributions in Fig. 5.28.
When looking at the rather similar starting structures of sensors 2-2, 2-3, and 2-4
in contrast to sensor 2-1, this is to be expected. All structures of sensor 4 are
mutually linked but rather far apart and get only rarely close to one another.
This probably arises from the long and flexible linker, which yields a large space
of possible conformations for YFP.
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Figure 5.33: Mean inter-fluorophore distances RDA (blue) and mean orientation factors κ2
(orange) for sensor 2-1. The values are given over the parts of the simulation used for the
calculation. The time t is given with respect to the total simulated time ttot.

Considering a single simulation, Fig. 5.32 shows the time-dependent inter-
fluorophore distance for sensor 2-1 exemplarily. The distance fluctuations are large
and occur on a time scale rather large in comparison to the total simulation time.

The mean inter-fluorophore distances and orientation factors over time for sen-
sor 2-1 are shown exemplarily in Fig. 5.33. Both values still vary up to the end of
the simulation and are probably not fully converged. Concerning the times needed
for the systems to change distances significantly, it should be considered to extend
the simulations of the systems.

5.9.4 Flexibility of Fluorescent Proteins

To compare the flexibility of both fluorophores in the different sensors, I calculate
the fluorescence anisotropy and the rotational correlation times of the fluorophores
bound to Glc-BP. By fitting the simulated trajectory to Glc-BP, I can observe
the fluorophore motion independently of the overall rotation of the system. Two
exemplary fits are shown in Fig. 5.34. Due to the restriction of the motions, the
“wobbling-in-a-cone” model (see Eq. (2.14)) is more appropriate here than a simple
exponential fit. Considering the parameter A representing the spatial restriction,
it turns out that CR2 is rather free in every sensor with values of A = 0.01− 0.05
for sensor 2, A = 0.02 − 0.06 for sensor 1, and A = 0.00 − 0.03 for sensor 4.
SWG is hindered to different extents in the distinct sensors, revealing one of the
most significant differences between the three sensor variants. The values for SWG
are in the ranges of A = 0.07 − 0.17 for sensor 2, A = 0.21 − 0.42 for sensor 1,
and A = 0.18 − 0.56 for sensor 4. Furthermore, SWG always gains flexibility,
i.e. A decreases, in the structures without glucose, whereas the change for CR2
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Figure 5.34: Exemplary fits of the fluorescence anisotropy r(∆t) as a function of time ∆tSBM
for the two fluorophores SWG and CR2 in the simulation of sensor 2-1. The calculated rota-
tional correlation times τrot, SBM and the fit parameters A are given. The respective rotational
correlation times on a physical time scale are τrot, SWG = 223ns and τrot, CR2 = 287ns.

is negligible. It should be noted that SWG is mainly hindered in its rotation
about the cylinder axis of the β-barrel, resulting from its two attachment points
to Glc-BP.

This type of simulation is suited to determine approximations of rotational cor-
relation times of the fluorescent proteins in the sensor, which are not directly acces-
sible in the conducted experiments. The derived values for rotational correlation
times of SWG and CR2 in sensor 2-1 are τrot, SWG = 223 ns and τrot, CR2 = 287 ns,
respectively. Compared to the much shorter lifetimes of both fluorophores (see
Tab. 4.8), the reorientation and dynamics of the fluorophores can not be neglected
here as is done in the systems with small dyes.

5.9.5 Including Dimerized Conformations

The results so far yield good agreement with experimental SAXS data, but could
not explain the experimentally observed high FRET efficiencies. However, the
original fluorescent protein GFP is known to have a tendency to form dimers (see
Sec. 4.6.8). I test if the missing mechanism might be due to CFP and YFP tem-
porarily forming a heterodimer. This temporary dimerization could be simulated
explicitly in future work. Here, I test how combination of dimerized structures
with “free” simulations affects the results.

I simulate different sensor structures with strong dimer contacts (see Sec. 4.6.8)
to obtain an ensemble of structures comprising a heterodimer between CFP and
YFP. The dimer formation shows to be sterically possible for each sensor model.
From these simulations, I take an ensemble of dimer structures of the respective
sensor. For the dimer simulations by themselves, comparison with the experi-
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Figure 5.35: Combination of free and dimer simulations.

mental data yields χ2 values of around 130 to 270. However, combination of the
dimerized ensemble with the free simulations in different fractions results in the be-
havior shown exemplarily in Fig. 5.35a for sensor 2-1. A combination of the dimer
intensity curve Idimer(q) with the intensity curve of the free simulation Ifree(q) is
calculated as:

Imixed(q) = p · Idimer(q) + (1− p)Ifree(q) (5.5)

with the fraction of dimerized structures p. Fig. 5.35a shows a clear minimum,
meaning that combination of 18% dimer simulation and 82% free simulation im-
proves the congruence with the experimental data significantly. An example of the
dimerized structure of sensor 2-1 is shown in Fig. 5.35b.

Interestingly, Fig. 5.36 shows that dimerization improves the fitting to exper-
imental data for all sensors. Temporary dimerization of the fluorescent proteins
could compensate the large distances and thus explain the FRET data with high
efficiencies. In Fig. 5.36, also differences between the sensors become visible. In
contrast to sensor 1 and sensor 4, sensor 2 reveals to have a huge difference in the
fraction of dimer structures that can improve the fitting to the SAXS data in the
glucose bound state versus the glucose free state. In the glucose bound state, it
seems to form a dimer in fractions of 11 to 21%, whereas almost no dimerization
occurs in the glucose free state (0-7%). For the sensor 2 models without glucose,
also the FRET efficiencies are already in good agreement with the experimental
data (see Fig. 5.31).
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Figure 5.36: Change of χ2 values upon adding dimerized structures to the free simulation. The
arrows start at χ2 of the intensity of the free simulation and end at χ2 of the mixed intensity with
respect to the experimental data, respectively. The numbers at the bottom denote the fraction
of dimer structures p that yield the minimal χ2 in percent. Orange refers to the simulations with
glucose (+G) and blue to those without glucose (-G). Beside the arrow not completely depicted
in the figure its start point is denoted. The dots indicate no or negligible change in χ2.

The dimerization in the glucose bound state in contrast to almost no dimer-
ization in the glucose free state can possibly explain the large FRET ratio for
sensor 2 in comparison to sensor 1 and sensor 4. Furthermore, it is in accordance
with the experimental observation that sensor 2 shows a compaction upon adding
glucose while the other sensors show only slight differences [M. Sarter, private
communication].

Finally, Fig. 5.37 shows the SAXS intensity curves and the Kratky plot (see
also Sec. 2.5) for sensor 2-1 with glucose for the free simulation, the dimer sim-
ulation, and the mixed intensity curve. The latter is in high agreement with the
experimental SAXS data. Also the radius of gyration determined from the mixed
curve fits better with the experimental measurement than the value of the free
simulation. It should be noted here that for most sensors the Rg values do not
agree as well with the experimentally derived value as for sensor 2-1 [data not
shown]. A systematic difference in the calculation methods for experiments and
simulations can not be excluded and is subject to further investigation.

A possibly important difference between sensor 2 and the other sensors could
lie in its by comparison only moderately flexible linkers. They allow for a lot
of conformations, while still often residing in the distance range necessary for
dimerization. Sensor 1, however, is rather stiff and thus can not explore this wide
range. Sensor 4 with one very rigid and one very flexible linker (see also Sec. 5.9.4)
in principle shows an even wider conformational range than sensor 2. The results
suggest that it adopts the dimerized state more frequently than sensor 2. This
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5.9. Modeling of a Glucose Sensor
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Figure 5.37: SAXS intensity curves for sensor 2-1. The curves for free (orange) and dimer
simulation (green) are shown along with the mixed intensity curve (red) and the experimental
data (blue). The SAXS intensities (top) and a Kratky plot (bottom) are depicted, together with
the respective radii of gyration derived from the SAXS curves. The Rg value for the experimental
data (*) has been calculated by M. Sarter.
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Chapter 5. Simulation Results

behavior of sensor 4 can not directly be explained by the results so far. As only
sensor 4A is simulated with and without glucose, the bias due to the few merging
possibilities (see also Sec. 4.6.6) might affect the results. However, further studies
are necessary to investigate this behavior.

Besides the possible formation of a heterodimer, other mechanisms can not be
excluded. A different compacted structure, e. g. sticking of a fluorescent protein
to Glc-BP, or weak attractive interactions between the fluorescent proteins and
Glc-BP might also explain the data.

To summarize, the presented method achieves a considerable improvement in
modeling the glucose sensor. It yields different structural ensembles which can
already partly explain the experimental data. The overall flexibility turns out to
be higher for all sensors in the glucose free state in comparison to the glucose
bound state. Also, the results indicate that the flexibility of CFP marks a param-
eter significantly distinguishing the three sensor variants. Considering temporary
dimerization of the two fluorescent proteins improves the agreement with experi-
mental measurements. However, the different starting structures yield significantly
different distance distributions. Thus, the conformational space still is consider-
ably large and too heterogeneous to answer all questions with the simulations so
far.

In future work, the simulations could be further evaluated by e. g. applying
ensemble optimization methods [157] to the obtained ensemble. Another approach
would be using the structures from simulations with minimal χ2 values as new
starting structures for additional simulations. The dimerization parameters can
be adjusted for simulation of a system which only temporarily dimerizes and
dissociates again. With simulations including both, dimerized and free structures,
FRET efficiencies for the system can be calculated. It then can be tested in what
respect the different sensors behave differently and how this affects the FRET
efficiencies. FRET efficiency histograms can be considered further and used as
additional information to choose the model which best explains the experimental
results. A slightly higher flexibility in the restriction sites could overcome possible
biases by the choice of their starting structures.

5.10 Summary

In this chapter, I showed results for simulations of different dye-labeled proteins
and a glucose sensor. I demonstrated that the presented simulation method gives
new insights into the systems’ dynamics by yielding e. g. distance and orientation
distributions between FRET fluorophores, which can directly be related to FRET
efficiency distributions. This facilitates testing of different experimental settings,
improving planning, interpretation, and validation of experimental measurements.
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5.10. Summary

For example, different dye pairs, Förster radii, linker lengths, labeling sites, or the
effects of three-color FRET can be tested.

The direct comparison of experimental with simulated data yielded high agree-
ment with experiments and validated the presented approach. Investigation of
different conformations of ClyA provided new insights regarding the differences
observed in experiments and the underlying dynamics. The method achieves to
capture both folded and unfolded states in the same simulation method, and still
is in agreement with the accessible volume approach for folded proteins and the
polymer model for unfolded proteins. I also elucidated the non-negligible effect of
FRET dyes on SAXS measurements and determination of Rg, especially in small
systems.

I furthermore employed the simulations to determine approximations for exper-
imentally inaccessible quantities such as diffusion constants or rotational correla-
tion times for fluorescent proteins, which can be used for further calculations and
analyses.

Finally, the simulation method can be applied to study FRET-based biosensors
comprising fluorescent proteins and obtain information about their dynamics in
atomic detail. I achieved a considerable improvement in modeling the glucose
sensor, yielding structural ensembles and information about the flexibility of the
fluorescent proteins in these systems. By including the effects of a temporary
dimerization of the two fluorescent proteins, I found possible explanations for the
experimental data.
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6
Conclusion

6.1 Summary and Discussion

In this work, I introduced a new method for simulating protein-fluorophore sys-
tems with a reduced set of parameters compared to regular MD force fields. A
systematic way to generate structures and parameters for modeling small dyes at-
tached to proteins was described. Furthermore, I established a detailed simulation
protocol to obtain FRET efficiency histograms for two-color FRET and photon
count rates for three-color FRET directly comparable to experimental measure-
ments.

The treatment of fluorescent proteins attached to proteins via different linkers
was discussed with the example of a FRET-based glucose sensor. I included addi-
tional SAXS data to determine a structural ensemble for the glucose sensor and
established a protocol which enables the study of the formation of a heterodimer
of the fluorescent proteins in silico.

The introduced parametrization procedures and simulation protocols are in
principle applicable to arbitrary systems that involve dyes or fluorescent proteins.

The simulations provided new insights into the systems’ dynamics by yielding
relative distance and orientation distributions of FRET dyes. This was shown by
testing different experimental settings such as different dye pairs, labeling sites, or
the effects of three-color FRET. The Cα distance turned out to be an inappropriate
measure for the inter-dye distance, as the protein restricts the dyes’ motions. Per-
mutation of the dyes with respect to labeling positions showed no altered results
for CspTm, but it can be of importance in other systems. For example, in simula-
tions of ClyA, the dyes were attached in different regions (inside and outside the
pore), which resulted in different dynamics. Testing of different simulation lengths
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Chapter 6. Conclusion

proved the suitability of the simulation method for sampling even conformation-
ally diverse ensembles such as unfolded proteins. Simulations of three-color FRET
facilitate the interpretation of various experiments, e. g., test different hypotheses
of protein dynamics, labeling positions, or the effect of labeling isomers.

The presented model can improve planning experimental measurements as it
allows to test different parameters such as dye pair, Förster radius, linker length,
and labeling sites in silico. This simplifies selection of settings to e. g. best distin-
guish conformational states of interest.

As shown by direct comparison and quantitative agreement of FRET efficiency
histograms from simulations with experimental data, the approach is able to
achieve a realistic description of the systems. This directly complements experi-
mental FRET efficiency distributions with atomically resolved structural ensem-
bles from simulations. Hence, the simulation method provides novel and detailed
insights into biomolecular processes. For example, simulations of ClyA revealed
that steric limitations can explain the experimentally observed differences between
protomer and dodecamer conformations.

Moreover, I probed the estimations of dye distance distributions based on sim-
ple models for data analysis. The presented method is in good agreement with
both the accessible volume approach for folded proteins and the polymer model
for unfolded proteins. In contrast to the accessible volume approach, it further
includes orientational dynamics and is also applicable to unfolded structural en-
sembles or fluorescent proteins. Compared to the theory of unfolded proteins as
polymer chains, it can be used to calculate effective lengths for the dye pairs to
correct the relation between Cα and inter-dye distances.

The investigation of the interplay between FRET and SAXS measurements re-
vealed an influence of the FRET dyes on SAXS intensity profiles, especially for
small systems. The derived value of the radius of gyration Rg depends on the
choice of dyes and labeling sites. Rg as calculated from simulations equivalent
to the different experimental methods FRET and SAXS deviates systematically,
which gave another possible reason for the diverging results seen in the two ex-
periments. After inclusion of the known corrections, all derived Rg values are in
good agreement.

Beyond that, the simulations can produce approximations for experimentally
inaccessible quantities such as diffusion constants or rotational correlation times
for conformationally restricted fluorescent proteins.

By studying a FRET-based glucose sensor comprising two fluorescent proteins,
I demonstrated the suitability to use simulations to complement experimental
measurements. I achieved a considerable improvement in modeling the glucose
sensor, yielding structural ensembles and identifying possible effects contributing
to the resulting experimental FRET data.
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6.2. Outlook

Furthermore, the approximation of κ2 = 2/3 could be tested for the investi-
gated systems. Considering the typical systems with small dyes, the assumption
turned out to be mostly appropriate, whereas the orientation factor deviates for
fluorescent proteins.

Due to its computational efficiency, the model is able to sufficiently sample
even complex scenarios involving large structural ensembles such as intrinsically
disordered or unfolded proteins, conformational transitions, folding intermediates,
or large systems such as the presented biosensors with modest computational
resources. In particular, it is most useful in the absence of non-native interactions
as implemented in the framework of structure-based models. As the example of the
glucose sensor has shown, it nevertheless is easily extendable to these interactions.

6.2 Outlook

The introduced simulation method enables various follow-up applications. To test
different hypotheses for the underlying protein dynamics, two-, three-, or four-
color FRET systems can be simulated and compared to experimental data to find
the most probable scenarios. Properties determined by these simulations such as
diffusion constants, residual anisotropy, or effective lengths for dye pairs in the
simulation of unfolded proteins can be used for further calculations. Especially
systems with restricted or slow dye motions and short or inflexible linkers can be
tested with respect to their effect on κ2 and FRET efficiencies. Knowing these pre-
viously inaccessible quantities enables the utilization of dyes with such restrictions
for quantitative measurements.

To study different scenarios, additional interactions can be included, for example
temporary sticking of the dyes to the protein surface. With complete atomically
resolved trajectories including orientations and distances, this approach can be
used to investigate the effects of fluorophore quenching as done in [156]. Through
the inclusion of different van der Waals interactions between dyes and surface
and comparison to residual anisotropies from experiments, the currently hardly
understood dye-protein interactions can be investigated.

The low computational costs of the simulation method in comparison to regular
MD simulations also make new scenarios accessible for simulation. Intrinsically
disordered proteins (IDPs) have become of great interest in recent years, as they
are a large and functionally important class of proteins. They do not adopt a
single structure, but rather a structural ensemble, where structural dynamics plays
an important role for their function. Modeling IDPs is a big challenge for the
conventional methods [158]. The presented method now also provides a tool to
model FRET studies of IDPs. It allows to adjust for studying them in different
denaturant concentrations, e. g. by introduction of an overall attractive potential.
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Chapter 6. Conclusion

Furthermore, FRET studies of protein folding, large systems, or large structural
ensembles as e. g. unfolded proteins can be simulated. Even complex large-scale
conformational transitions between multiple states [159] can now be modeled with
FRET fluorophores to study their dynamics.

As both SBM simulations and FRET measurements are further used to study
ribonucleic acids (RNA), the model could be extended to describe these systems
easily.

Finally, the glucose sensor can be further investigated by testing different in-
teractions between fluorescent proteins and sensing protein or dimerization inter-
actions at different rates. Comparison of the resulting FRET data to experiments
can identify valid scenarios. The same simulation method can also be applied to
other FRET-based biosensors to study and subsequently improve their function.
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A
Abbreviations

AMBER Assisted Model Building with Energy Refinement
CI-2 Chymotrypsin Inhibitor 2
CHARMM Chemistry at HARvard Macromolecular Mechanics
CFP Cyan Fluorescent Protein (here: mTurquoise2)
ClyA Cytolysin A
CspTm Cold-shock protein from the hyperthermophilic bac-

terium Thermotoga maritima
DFT Density Functional Theory
10FNIII Tenth type III domain of FibroNectin
FRET Förster Resonance Energy Transfer
Glc-BP Glucose-Binding Protein
GROMACS GROningen MAchine for Chemical Simulation
IDP Intrinsically Disordered Protein
MD Molecular Dynamics
MSD Mean Square Deviation
PDB Protein Data Bank
RMSD Root Mean Square Deviation
RMSF Root Mean Square Fluctuation
RNA RiboNucleic Acid
SAXS Small Angle X-ray Scattering
SBM Structure-Based Model
smFRET single molecule Förster Resonance Energy Transfer
YFP Yellow Fluorescent Protein (here: Venus)
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B
Analysis of Simulations

One important quantity to analyze simulated trajectories is the root mean square
deviation (RMSD) between two structures. After a least square fitting to the
reference structure, it is defined by:

RMSD(t) =

√√√√ 1

Natoms

Natoms∑
i=1

|ri(t)− ri,0|2 , (B.1)

where ri(t) is the position of atom i at time t and ri,0 is the position of atom i in
the reference structure.

A measure for flexibility of a structure over sequence is given by the root mean
square fluctuations (RMSF) which are calculated by:

RMSF(i) =

√√√√ 1

ttot

ttot∑
tj=1

|ri(tj)− ri|2 . (B.2)

After a least mean square fit of the structure to a reference structure, the RMSF
values give the time averaged spatial fluctuations of atoms or residues i around
their time averaged position ri.

A measure for the extent of a molecule is the radius of gyration Rg. GROMACS
determines it as [84]:

Rg =

√∑
i r

2
imi∑
imi

, (B.3)

where ri is the distance of atom i to the center of mass of the molecule and mi

is the atom’s mass, which is selected from a GROMACS parameter file according to
the respective atom name.
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C
Generation of Fluorophore Topology

For generation of the SBM force field parameters I need a topology for each
fluorophore, i.e., the included atoms for all bonds, angles, proper and improper
dihedral angles. This is done in a systematic way as follows (see also [113], SI).

I extract the bond information from the chemical structure. Then I assign an
angle for every two bonds sharing a common atom (shown in Fig. C.1a). A proper
dihedral angle is assigned to every two angles sharing a bond and not the middle
atom (see Fig. C.1b). If two or more atoms of this dihedral angle are part of a
ring (see Fig. C.1d), I change the dihedral angle into an improper dihedral angle
to stabilize the rings. Similar to the implementation of amino acids in eSBMTools
(see Sec. 3.2.1) I group and count all proper dihedral angles with mutual middle
bond. In the parameter generation the respective force constants are divided by
the number of group members to avoid overcounting.

O

NH2

SH

OH

(a) Angle.

O

NH2

SH

OH

(b) Proper dihedral
angle.

O

NH2

SH

OH

(c) Improper
dihedral angle.

O

NH2

OH

(d) Dihedral angles
in ring.

Figure C.1: Determination of angles and dihedral angles from bond information. (a) An angle
is added for every two bonds (blue) sharing an atom (red). (b) A proper dihedral angle is added
for every two angles (red and blue) sharing a bond. (c) An improper dihedral angle is added for
three atoms bound to the same middle atom (red). (d) The proper dihedral angles involved in
a ring (blue) are converted to improper dihedral angles. Improper dihedral angles with three or
more atoms involved in a ring (red) are removed.
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Also, I include an improper dihedral angle for each three atoms that are bound
to the same forth atom (see Fig. C.1c). As the rings are already stabilized by
improper dihedral angles, I remove the improper dihedral angles with three or
more atoms in a ring (see Fig. C.1d).

The ordering scheme for the atoms of the improper dihedral angles follows the
conventions for the CHARMM force field [160]. In the case of a single atom bound
to four other atoms, all four improper dihedral angles are assigned to maintain
symmetry, and the respective force constants are divided by four.
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D
Temperature Comparison

The temperature comparison is performed adhering to the description in [108]
by comparing a regular MD simulation with SBM simulations. To determine a
reasonable temperature for the SBM simulations I perform initial all-atom sim-
ulations of CspTm, 10FNIII, ClyA monomer and protomer, and the fluorescent
proteins CFP and YFP in the AMBER99 force field [87] with explicit water. The
simulations are performed at the physiological temperatures used in the experi-
ments. The time steps ∆t and total simulation times ttot for the simulations are
shown in Tab. D.1. The first part of each simulation is discarded to prevent from
equilibration artifacts (see the values for the time span used tused in Tab. D.1).

The SBM simulations are performed over a wide temperature range, which
along with the used time step ∆tSBM and the total simulation time ttot, SBM can
be found in Tab. D.1.

Table D.1: Parameters used for the temperature comparison simulations. For each protein,
physiological temperature T , time step ∆t, total simulation time ttot, and simulation time used
for the temperature comparison tused are given for the AMBER99 simulation. Furthermore,
temperature range TSBM, time step ∆tSBM, and total simulation time ttot, SBM for the simulations
in the structure-based model are listed.

Protein T ∆t ttot tused TSBM ∆tSBM ttot, SBM
10FNIII 296K 1.5 fs 300 ns 20-300 ns 10-225 1.5 fs 30 ns
CspTm 295K 2.0 fs 500 ns 100-500 ns 10-120 2.0 fs 200 ns
ClyA 295K 2.0 fs 500 ns 100-500 ns 40-150 0.5 fs 2.5 ns
CFP 295K 2.0 fs 500 ns 100-500 ns 30-100 0.5 fs 50 ns
YFP 295K 2.0 fs 500 ns 100-500 ns 30-100 0.5 fs 50 ns
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Figure D.1: RMSF values over residue index for 10FNIII. The RMSF values are shown for the
reference AMBER99 simulation (red) and SBM simulations for three different temperatures.

As an example, I show the results for 10FNIII. In Fig. D.1 the root mean square
fluctuations (RMSF) (see Sec. B) of the Cα-atoms in the AMBER99 simulation
and in the SBM simulations with three different temperatures are shown. The
SBM RMSF curves all reflect the same overall behavior as the RMSF values of
the AMBER99 simulation. The different SBM curves do not differ in shape, higher
temperatures result in overall higher RMSF values.

I want to find the SBM temperature which gives the best approximation of the
behavior in the AMBER99 force field, so I calculate the mean square deviation
(MSD) of the RMSF curves with respect to the corresponding curve of the AM-
BER99 simulation. The results for 10FNIII are shown in Fig. D.2 for a range of
SBM temperatures. As expected, a large rise of the MSD values can be observed
around the expected folding temperature of about T = 120. Furthermore, a clear
minimum can be seen at a temperature of T = 60, which I choose as the temper-
ature for 10FNIII in the subsequent simulations. However, the variation of MSD
around this temperature is small, so small changes in temperature are expected
to make a negligible difference in the results of the simulations. This also justifies
the temperature choice for CI-2 (see Sec. 4.3).
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Figure D.2: Mean square deviations of the RMSF curves of 10FNIII for different SBM tem-
peratures in reference to the AMBER99 simulation. The lowest value occurs at T = 60 (red).
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E
Merging of Structures

To merge two structures, e. g. the structure of a dye or a linker to a protein or
a fluorescent protein to the respective linker, I use the following algorithm (see
also [113], SI). As example, the case of attaching the structure of AF546 to CI-2
is shown in Fig. E.1a.

In the first step I determine the connection point C (blue sphere in Fig. E.1a)
as the position for the dye atom that is bound to the sulfur atom S of the cysteine
residue (yellow sphere in Fig. E.1a). It is chosen to be ideally pointing orthogonally
away from the protein surface in a distance of 0.14 nm to the sulfur atom while
avoiding steric clashes with other atoms.

The vector connecting S and C serves as a starting orientation for the “dye
vector” (orange arrow in Fig. E.1a). The dye vector connects the dye’s center of
mass (CMS, red sphere in Fig. E.1a) with C. Then I adjust the orientation of
the dye vector by gradually rotating the dye in a cone around the starting vector
while checking for clashes. The angles used for this are depicted in Fig. E.1b,
where θ ∈ [0, 90◦], and φ, α ∈ [0, 360◦[.
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(a) CI-2 (gray spheres) and AF546 (blue).
The connection point C is shown as blue
sphere, the sulfur atom S of the cysteine
residue the dye is attached to is depicted in
yellow. The dyes’ center of mass (CMS, red
sphere) and the dye vector (orange arrow) are
shown.

α

φ

θ

(b) Definition of the different angles for ro-
tation. The starting dye vector (orange), the
resulting vector (blue) and the angles θ (be-
tween starting and resulting vector), φ and
the angle α as the rotation around the dye
axis itself are shown.

Figure E.1: Example of merging two structures and definition of rotation angles.
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F
Sequences of Glucose Sensor Variants

The sequences of the glucose sensor variants used in the SAXS experiments. The
underlined parts are omitted in the simulations but should not have a considerable
effect on the results. The amino acids are colored according to the protein they
belong to in green (Glc-BP), cyan (CFP), and yellow (YFP). The flexible (GGS)4-
linker is colored in purple and the restriction sites and His-tags are shown in black.

The mutation of residue 206 of CFP (alanine) into a lysine done in the experi-
ments is neglected here.

The sequences used for the experimental FRET measurements [132] deviate
slightly, as sensor 2 and sensor 4 have an N-terminal His-tag instead of a C-
terminal His-tag. As no considerable effect is expected this was neglected for
the simulations. The sequences used for the FRET measurements can be found
in [132].

Sensor 1

MRGSHHHHHHGMASMTGGQQMGRDLYDDDDKEPGRADTRIGVTIYKAAAMVSKGEELFTGVVPI
LVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSWGVQCFARYPDHM
KQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLE
YNYFSDNVYITADKQKNGIKANFKIRHNIEDGGVQLADHYQQNTPIGDGPVLLPDNHYLSTQSK
LSKDPNEKRDHMVLLEFVTAAGITLGMDELYGSDLVDNFMSVVRKAIEQDAKAAPDVQLLMNDS
QNDQSKQNDQIDVLLAKGVKALAINLVDPAAAGTVIEKARGQNVPVVFFNKEPSRKALDSYDKA
YYVGTDSKESGIIQGDLIAKHWAANQGWDLNKDGQIQFVLLKGEPGHPDAEARTTYVIKELNDK
GIKTEQLQLDTAMWDTAQAKDKMDAWLSGPNANKIEVVIANNDAMAMGAVEALKAHNKSSIPVF
GVDALPEALALVKSGALAGTVLNDANNQAKATFDLAKNLADGKGAADGTNWKIDNKVVRVPYVG
VDKDNLAEFSKKEFVDGGMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK
LICTTGKLPVPWPTLVTTLGYGLQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTR
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AEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYITADKQKNGIKANFKIRHNIED
GGVQLADHYQQNTPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELY
K

Sensor 2

MADTRIGVTIYKAAAMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFIC
TTGKLPVPWPTLVTTLSWGVQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEV
KFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYFSDNVYITADKQKNGIKANFKIRHNIEDGGV
QLADHYQQNTPIGDGPVLLPDNHYLSTQSKLSKDPNEKRDHMVLLEFVTAAGITLGMDELYGSG
GSGGSGGSGGSPGDNFMSVVRKAIEQDAKAAPDVQLLMNDSQNDQSKQNDQIDVLLAKGVKALA
INLVDPAAAGTVIEKARGQNVPVVFFNKEPSRKALDSYDKAYYVGTDSKESGIIQGDLIAKHWA
ANQGWDLNKDGQIQFVLLKGEPGHPDAEARTTYVIKELNDKGIKTEQLQLDTAMWDTAQAKDKM
DAWLSGPNANKIEVVIANNDAMAMGAVEALKAHNKSSIPVFGVDALPEALALVKSGALAGTVLN
DANNQAKATFDLAKNLADGKGAADGTNWKIDNKVVRVPYVGVDKDNLAEFSKKEFVDGGMVSKG
EELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKLICTTGKLPVPWPTLVTTLGYGL
QCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKE
DGNILGHKLEYNYNSHNVYITADKQKNGIKANFKIRHNIEDGGVQLADHYQQNTPIGDGPVLLP
DNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYKHHHHHH

Sensor 4

MADTRIGVTIYKAAAMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFIC
TTGKLPVPWPTLVTTLSWGVQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEV
KFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYFSDNVYITADKQKNGIKANFKIRHNIEDGGV
QLADHYQQNTPIGDGPVLLPDNHYLSTQSKLSKDPNEKRDHMVLLEFVTAAGITLGMDELYGSD
LVDNFMSVVRKAIEQDAKAAPDVQLLMNDSQNDQSKQNDQIDVLLAKGVKALAINLVDPAAAGT
VIEKARGQNVPVVFFNKEPSRKALDSYDKAYYVGTDSKESGIIQGDLIAKHWAANQGWDLNKDG
QIQFVLLKGEPGHPDAEARTTYVIKELNDKGIKTEQLQLDTAMWDTAQAKDKMDAWLSGPNANK
IEVVIANNDAMAMGAVEALKAHNKSSIPVFGVDALPEALALVKSGALAGTVLNDANNQAKATFD
LAKNLADGKGAADGTNWKIDNKVVRVPYVGVDKDNLAEFSKKEFGGSGGSGGSGGSVDGGMVSK
GEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKLICTTGKLPVPWPTLVTTLGYG
LQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFK
EDGNILGHKLEYNYNSHNVYITADKQKNGIKANFKIRHNIEDGGVQLADHYQQNTPIGDGPVLL
PDNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYKHHHHHH
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G
Simulation of Glc-BP with and without

Glucose

I perform SBM simulations of both Glc-BP+G and Glc-BP-G at T = 70 for
tSBM = 50 ns to check whether the two structures are well distinguishable in the
simulations, even without explicit simulation of the glucose molecule. Fig. G.1
shows that for the simulation of Glc-BP+G, the RMSD to the starting structure
is overall lower than the RMSD to the glucose free structure. In the simulation of
Glc-BP-G the RMSD values come closer, which is mostly explained by the higher
flexibility of the glucose free structure. The two parts of Glc-BP are further apart
so there are less contacts to stabilize their respective position. It is not surprising
that the structure also occupies conformations close to the structure of Glc-BP+G.
Still, the overall RMSD shows that the structures are distinguishable in simula-
tions.
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Figure G.1: SBM simulations of Glc-BP+G and Glc-BP-G at T = 70. The distributions of
RMSD values during the simulation with respect to the starting structure (blue) and the re-
spective other structure (orange) are shown.
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H
Residue Numbering Scheme for CspTm

Table H.1: Variants of CspTm for different labeling schemes. The amino acid sequences of
the CspTm variants used in the simulations and the experiments are shown, along with the
numbering scheme of the residues. The cysteine residue inserted for the C2/C68 variant is
shown in red and the residues mutated to cysteine in the respective variants are shown in green.

C2/C68 M C R G K V K F F D S K K G Y G F
C11/C68 M - R G K V K F F D C K K G Y G F
C23/C68 M - R G K V K F F D S K K G Y G F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

I T K D E G G D V F V H F S A I E
I T K D E G G D V F V H F S A I E
I T K D E C G D V F V H F S A I E
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

M E G F K T L K E G Q V V E F E I
M E G F K T L K E G Q V V E F E I
M E G F K T L K E G Q V V E F E I
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Q E G K K G G Q A A H V K V V E C
Q E G K K G G Q A A H V K V V E C
Q E G K K G G Q A A H V K V V E C
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
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I
Additional Formulas for FRET Efficiency

and Anisotropy

As an alternative to the commonly used FRET efficiency histogram described in
Sec. 2.2.1, the FRET efficiency can be calculated via the donor lifetime in absence
of the acceptor (τD) and in presence of the acceptor (τDA), by:

E = 1− τDA
τD

. (I.1)

The fluorescence r in experiments denotes the integrated fluorescence anisotropy
decay. In simulations, assuming a single exponential decay of fluorescence, the
anisotropy can be calculated via the Perrin equation [47]:

r =
r0

1 + τ/τrot
, (I.2)

where r0 is the fundamental anisotropy, τ is the fluorophore lifetime, and τrot the
rotational correlation time of the fluorophore.
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J
Starting Structures for Sensor 1 and

Sensor 4

The structures resulting for sensor 1 and sensor 4 with the lowest χ2 values in
comparison to the respective experimental SAXS data are depicted in Figs. J.1
and J.2, respectively. Apparently, a variety of structures fits the experimental
SAXS curves.
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Figure J.1: Starting structures for sensor 1. Glc-BP is depicted in gray, the different pairs of
fluorescent proteins are depicted in blue (sensor 1-1), orange (sensor 1-2), and green (sensor 1-3).
The fluorescent protein on the left is CFP, the fluorescent protein on the right YFP, respectively.

Figure J.2: Starting structures for sensor 4. Glc-BP is depicted in gray, the different pairs
of fluorescent proteins are depicted in blue (sensor 4A-1), orange (sensor 4A-2), green (sensor
4B-1), red (sensor 4B-2), purple (sensor 4B-3), brown (sensor 4B-4), and pink (sensor 4C-2).
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