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Abstract 

The current thesis focuses on the study of the ion storage mechanism in V2O5 cathode material. 

In particular, the storage of Mg2+, K+, and Zn2+ is investigated through in operando Synchrotron 

Diffraction and in operando X-ray Absorption Spectroscopy in combination with ex situ Raman 

and X-ray Photoelectron Spectroscopy (XPS) or Transmission Electron Microscopy (TEM). In 

addition, the electrochemical performance of V2O5 as cathode materials in the three different 

systems (rechargeable Mg, K-ion and aqueous Zn batteries) was also investigated. Moreover, 

cation doping in the orthorhombic V2O5 material is investigated and the location of doping cation 

in the interstitial position in M-V2O5 (M=Ni, Mn, and Fe) is determined. All the orthorhombic 

V2O5-based materials were synthesized via a hydrothermal method. The work on the V2O5 is 

organized in four sections as described below: 

(I) V2O5 in rechargeable Mg batteries (MBs). Metallic Mg is incompatible with electrolytes 

containing salts and solvents that are normally used in Li-ion batteries. For this reason, in order to 

investigate the reaction mechanism of V2O5 during Mg-ion insertion/extraction by in operando 

techniques, a special cell configuration based on V2O5 cathode, 1 M Mg(ClO4)2/acetonitrile 

electrolyte and MgxMo6S8 (x~2) anode (schematically: V2O5│Mg(ClO4)2/AN│MgxMo6S8) was 

designed. In this cell configuration, the V2O5 electrode delivers an initial magnesiation/de-

magnesiation capacity of 103 mAh g-1/110 mAh g-1 and the highest magnesiation capacity of 130 

mAh g-1 in the 6th cycle at C/20 rate. In operando synchrotron diffraction and ex situ Raman 

revealed a phase transition into a new Mg-rich phase ε-MgxV2O5, which is forming during Mg 

insertion. Moreover, the recovery of α-V2O5 after Mg extraction has been demonstrated. In 

operando XAS and ex situ XPS confirm the reduction/oxidation of vanadium during the Mg 

insertion/extraction. Therefore, the high reversibility, crystal structure changes, and the evolution 

of the oxidation states of V2O5 during magnesium insertion/extraction are fully clarified. 

(II) V2O5 in rechargeable K-ion batteries (KIBs). Compared with MBs, V2O5 in 1 M KPF6/PC 

electrolyte displays a higher initial insertion capacity of 200 mAh g-1 (corresponding to the 

insertion of 1.36 K+) and a de-insertion capacity of 217 mAh g-1 in the potential range of 1.5 - 4.0 

V vs K+/K. These values have been obtained with the higher rate of C/12, suggesting faster kinetics 

for KIBs with respect to MBs. However, the capacity of V2O5 rapidly fades to 54 mAh g-1 at the 

31st cycle. After that, the capacity slowly increases up to 80 mAh g-1 at the 200th cycle. The storage 
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mechanism upon K ions insertion into V2O5 is studied by in operando synchrotron diffraction and 

in operando XAS, as well as by ex situ Raman and TEM. In operando synchrotron diffraction 

revealed that during the first K ions insertion V2O5 first undergoes a solid solution and then a 

coexistence of solid solution and two-phase reaction. Upon K ions extraction, the coexistence of 

solid solution and the two-phase reaction is identified together with irreversible processes. In 

operando XAS confirmed the reduction/oxidation of vanadium during the K insertion/extraction 

with some irreversibility, in consistency with the other results obtained. 

(III) V2O5 in rechargeable aqueous Zn batteries (ZBs). In 1M ZnSO4/water electrolyte, V2O5 

nanowires deliver much higher initial insertion/de-insertion capacities (277 and 432 mAh g-1 at 50 

mA g-1, close to its theoretical capacity of 294 mAh g-1) compared with those obtained in MBs and 

KIBs. However, in this electrolyte, capacity retention is poor (discharge capacity is only 21 mAh 

g-1 after 100 cycles). The V2O5 nanowires demonstrate much faster kinetics in aqueous ZBs with 

respect to organic MBs and KIBs. We found that V2O5 first undergoes a solid solution and two-

phase reaction along with the formation of two byproducts Zn3(OH)2V2O7·2(H2O) and 

ZnSO4Zn3(OH)6·5H2O. This process is reversible upon Zn ion extraction. However, the formation 

of Zn3(OH)2V2O7·2(H2O) is found to take place during the first discharge only and is not observed 

in the subsequent cycles. In operando XAS confirms the reduction/oxidation of vanadium during 

the Zn insertion/extraction with partial irreversibility. 

(IV) Metal doping in V2O5. The preferred location of the doped cation (substitutional or 

interstitial position) in V2O5 is studied with three different examples (Mn, Ni, and Fe). Single phase 

for pristine and both Mn- and Ni-doped V2O5 is obtained through hydrothermal method (MxV2-

xO5, M= Mn, Ni, x=0, 0.1 and 0.2). Rietveld refinement confirmed that the Mn, Ni, and Fe prefer 

to locate in the interstitial position in the M-doped V2O5 (MxV2-xO5, M= Mn, Ni, x= 0.1 and 0.2). 

However, an impurity phase of Fe2V4O13 is also obtained for FexV2-xO5 (x= 0.1 and 0.2). To gain 

a complete understanding of the cations doping in the V2O5 structure, several techniques are used 

such as chemical analysis, synchrotron diffraction, Pair distribution function (PDF), SEM, Raman, 

XPS, 51V NMR, and XAS (XANES and EXAFS). 

In addition to the study of V2O5, other works performed during my PhD study have been 

briefly summarized in the last part of this thesis, including the international cooperation work with 

Jilin University and TiO2 in MBs and hybrid Li/Mg batteries, as well as results obtained with novel 

Ca-doped Lithium vanadium phosphate (LVP) materials used as anodes for LIBs. 
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Zusammenfassung 

Die vorliegende Arbeit beschäftigt sich mit der Untersuchung des Ionenspeichermechanismus 

in V2O5-Kathodenmaterial. Insbesondere wurde die Speicherung von Mg2+, K+ und Zn2+ mit in 

operando-Synchrotronbeugung und in operando Röntgenabsorptionsspektroskopie in 

Kombination mit ex situ Raman und Röntgenphotoelektronenspektroskopie (XPS) oder 

Transmissionselektronenmikroskopie (TEM) untersucht. Weiterhin wurden die 

elektrochemischen Eigenschaften von V2O5 als Kathodenmaterial in den drei verschiedenen 

Systemen (wiederaufladbaren Mg, K-Ionen and Zn-Batterien) untersucht. Darüber hinaus wurde 

orthorhombisches V2O5 mit verschiedenen Metallkationen (Ni-, Mn- und Fe-Ionen) dotiert und 

deren interstitielle Lage in M-V2O5 (M = Ni, Mn und Fe) bestimmt. Alle V2O5 basierten 

orthorhombischen Materialien wurden über ein Hydrothermalverfahren synthetisiert. Die 

vorliegende Arbeit ist in vier Abschnitte unterteilt, die im Folgenden näher beschrieben werden. 

(I) V2O5 in wiedraufladbaren Mg-Batterien (MBs). Eine spezielle Zellkonfiguration, 

basierend auf einer V2O5-Kathode, 1 M Mg(ClO4)2/Acetonitril-Elektrolyt und einer MgxMo6S8 

(x~2) Anode (schematisch: V2O5│Mg(ClO4)2/AN│MgxMo6S8), wurde entwickelt. Der 

Reaktionsmechanismus von V2O5, während der Mg-Ionen-Interkalation/Deinterkalation wurde 

mit Hilfe von in operando-Techniken untersucht. In dieser Zellkonfiguration liefert die V2O5-

Elektrode eine anfängliche Magnesierungs-/Entmagnesierungskapazität von 103 mAh g-1/110 

mAh g-1 und erreicht die höchste Magnesiumkapazität von 130 mAh g-1 im sechsten Zyklus bei 

einer C/20-Rate. In operando Synchrotronbeugung und ex situ Raman zeigen den Phasenübergang 

in eine neue, Mg-reiche ε-MgxV2O5-Phase, die sich während der Mg-Interkalation bildet. Darüber 

hinaus wurde die Rückumwandlung zu α-V2O5 nach Mg-Deinterkalation nachgewiesen. In 

operando XAS und ex situ XPS bestätigten die Reduktion/Oxidation von Vanadium während der 

Mg-Interkalation/Deinterkalation. Die hohe Reversibilität, die Kristallstrukturänderungen und die 

Entwicklung der Oxidationszustände von V2O5 während der Interkalation/Deinterkalation von 

Magnesium wurde somit vollständig erklärt. 

(II) V2O5 in wiedraufladbaren K-Ionen-Batterien (KIBs). Verglichen mit MBs zeigt V2O5 in 

1 M KPF6/PC-Elektrolyten eine höhere anfängliche Interkalationskapazität von 200 mAh g-1 

(entsprechend der Interkalation von 1,36 K+) und Deinterkalationskapazität von 217 mAh g-1 im 

Potenzialbereich von 1,5 – 4,0 V gegen K+/K. Diese Werte wurden mit der höheren C/12-Rate 
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erhalten, was auf eine schnellere Kinetik in KIBs im Vergleich zu MBs schließen lässt. Die 

Kapazität von V2O5 sinkt jedoch beim 31. Zyklus schnell auf 54 mAh g-1. Danach steigt die 

Kapazität im 200. Zyklus langsam auf bis zu 80 mAh g-1 an. Der Speichermechanismus der 

Interkalation von K-Ionen in V2O5 wurde mittels in operando-Synchrotronbeugung und in 

operando XAS sowie ex situ Raman und TEM untersucht. In operando Synchrotronbeugung 

zeigte, dass V2O5 während der ersten K-Ionen-Interkalation zuerst eine Mischkristallphase bildet 

und dann eine Koexistenz von Mischkristall und Zweiphasengebiet aufweist. Neben der 

Koexistenz der Mischkristallphase und des Zweiphasengebiets wurden auch irreversible Prozesse 

bei der Deinterkalation von K-Ionen bestätigt. Die mit in operando XAS bestätigte 

Reduktion/Oxidation von Vanadium während K-Interkalation/Deinterkalation und die teilweise 

Irreversibilität stehen im Einklang mit den Ergebnissen aus Synchrotronbeugung, Raman und 

TEM. 

(III) V2O5 in wiedraufladbaren wässrigen Zn-Batterien (ZBs). Im 1 M ZnSO4 / Wasser-

Elektrolyten liefern V2O5-Nanodrähte viel höhere anfängliche Interkalations/Deinterkalations-

Kapazitäten (277 und 432 mAh g-1 bei 50 mA g-1, nahe ihrer theoretischen Kapazität von 294 mAh 

g-1) im Vergleich zu MBs und KIBs. In diesem Elektrolyten ist die Zyklenstabilität jedoch schlecht 

(die Entladekapazität beträgt nach 100 Zyklen nur noch 21 mAh g-1). Die V2O5-Nanodrähte zeigen 

eine viel schnellere Kinetik in ZBs als in organischen MBs und KIBs. Wir konnten zeigen, dass 

V2O5 zuerst einen Mischkristall bildet und dann ein Zweiphasengebiet  durchläuft, zusammen mit 

der Bildung der zwei Nebenprodukte Zn3(OH)2V2O7·2(H2O) und ZnSO4Zn3(OH)6·5H2O. Dieser 

Vorgang ist bezüglich der Zn-Ionen-Deinterkalation reversibel. Die Bildung von 

Zn3(OH)2V2O7·2(H2O) findet jedoch nur während der ersten Entladung statt und wird in den 

nachfolgenden Zyklen nicht beobachtet. In operando XAS bestätigt die Reduktion/Oxidation von 

Vanadium während der Zn-Interkalation/Deinterkalation mit teilweiser Irreversibilität. 

(IV) Metalldotierung in V2O5. Die bevorzugte Position des dotierten Kations (Substitutions- 

oder Interstitialposition) in V2O5 wird anhand von drei verschiedenen Beispielen (Mn, Ni und Fe) 

untersucht. Einphasiges Material sowohl für das reine als auch das Mn- und Ni-dotierte V2O5 wird 

durch Hydrothermalsynthese erhalten (MxV2-xO5, M = Mn, Ni, x = 0, 0,1 und 0,2). Die Rietveld-

Verfeinerung zeigte, dass Mn, Ni und Fe bevorzugt in der interstitiellen Position im M-dotierten 

V2O5 (MxV2-xO5, M = Mn, Ni, x = 0,1 und 0,2) vorliegen. Es wird jedoch eine 

Phasenverunreinigung durch Fe2V4O13 in FexV2-xO5 (x = 0,1 und 0,2) erhalten, mit Ausnahme des 
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Fe-haltigen V2O5. Um ein umfassendes Verständnis der Kationen-Dotierung in der V2O5-Struktur 

zu erhalten, werden verschiedene Techniken wie chemische Analyse, Synchrotronbeugung, 

Paarverteilungsfunktion (PDF), SEM, Raman, XPS, 51V-NMR und XAS (XANES und EXAFS) 

verwendet. 

Im Anschluss werden weitere Arbeiten, die während meiner Doktorarbeit durchgeführt 

wurden, kurz zusammengefasst. Dazu gehören die internationale Zusammenarbeit mit der Jilin 

Universität und TiO2 in MBs und Hybrid-Li/Mg-Batterien, sowie Ergebnisse mit Ca-dotierten 

Lithiumvanadiumphosphat (LVP) Materialien, die als Anoden für LIBs verwendet werden. 

. 
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 Introduction 

1.1 Background 

Along with the vigorous expansion of population and the rapid development in modern 

society, the demands for energy increase progressively. In recent years, the high greenhouse gas 

levels, CO2, and pollutant gas emission coming from large consumption of fossil fuels have 

resulted in very serious environmental problems, such as global warming and environmental 

pollution1-5. Consequently, renewable energy sources, such as solar, wind, geothermal power, 

biomass energy, etc. are playing important roles being as power supplies. Particularly, solar and 

wind power are gradually becoming a large part of energy proportion share. They are inherently 

intermittent and generally dispersed, strongly depending on the weather, time, and season, as well 

as location, while the consumption and demands of electric energy are comparatively constant5-7. 

Some unpredictable and serious problems, for instance, safety issue, for power grids may arise 

from the online operation of renewable energy generation systems because of their intermittent 

output. Therefore, rechargeable batteries, being large-scale electric energy storage systems (EESs), 

are necessary and very important to realize the smooth integration of these intermittent energies 

into grids8-10. 

Currently, rechargeable lithium-ion batteries (LIBs) are playing very important roles in 

modern society and our daily life since its commercialization in the 1990s, owing to their superior 

performance, such as high power/energy density, high voltage, and long cycle life11-15. Compared 

with other rechargeable batteries, such as nickel-cadmium (Ni-Cd), lead-acid batteries, and nickel-

metal hydride (Ni-MH) batteries, lightweight, environmental compatibility, and high 

power/energy density make LIBs more competing and widely used in portable electrical devices, 

such as laptops, mobile phones, and digital electronics etc16-18. However, their applications in terms 

of the large-scale energy storage systems are strongly limited by the manufacturing cost and safety 

concerns. There are some very essential criteria required for large-scale EES as reported by Kang 
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et al. and Yang et al.5, 19 including 1) high safety for long-time usage; 2) low cost of manufacture 

and maintenance; 3) long cycle calendar life; 4) nontoxicity and environmental benignity. 

Considering the cost and abundance of elements, the cost of raw materials, Li2CO3, is 

increasing and the relative abundance of lithium in the crust of the Earth is rather low (only 20 

ppm)20. In addition, lithium resources are unevenly distributed (mainly in South America), which 

results in a high risk of unstable supply and the price increase of Li market. Therefore, it is very 

urgent to develop other rechargeable batteries based on rich resources and low cost, for example, 

Mg batteries (MBs)16, K-ion batteries (KIBs)21-22, and aqueous Zn batteries (ZBs). 

Vanadium pentoxide (V2O5) has received great attention as a very promising cathode 

materials for LIBs due to its significant advantages, such as high energy density (theoretical 

capacity of 294 mAh g-1 with 2 Li ions insertion), high working voltage, high cost-efficiency, and 

easy preparation, as well as adequate safety15, 23-25. Because of its layered structure, there are large 

enough interstitial voids in V2O5 to accept various guest species such as Li+, K+, Na+, and Mg2+, 

as well as Zn2+ 26. In the present PhD thesis, V2O5 as cathode materials for MBs, KIBs, and aqueous 

ZBs will be investigated regarding its electrochemical performance and reaction mechanism 

during guest ions insertion and extraction. 

The key components of the Li-ion, Mg, K-ion, and Zn batteries are electrodes. The structure 

of electrode materials undergoes continuous evolution during cycling in the battery. It is very 

important to better understand the correlation between the structure evolution of the materials in 

“real time” and electrochemical performance during cycling, which can be used to improve the 

performance and guide the development and application of new materials with high performance. 

Synchrotron-based techniques, in operando synchrotron powder diffraction and in operando X-

ray absorption spectroscopy (XAS), are very powerful and high-efficiency tools and approaches 

to uncover the evolution of crystal structure and the local structure and oxidation state of the 

materials during the electrochemical reaction27-30. Although the catalysis community has mainly 

agreed on using the expression “operando”, “operando” would be incorrect from a grammar point 

of view. I would favour the correct Latin expression and therefore, use “in operando” version in 

my thesis. 

In operando study of battery materials possesses remarkable advantages by comparison with 

the traditional ex situ methods for the following reasons29, 31-33: (i) it is possible directly to look 

into the reaction arising at the sample, giving higher precision and better reliability for the data 
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collection and analysis; (ii) it continuously monitors the structure changes and electrochemical 

processes (time-resolved) during operation, offering the valuable information under “real-time” 

operation; (iii) it allows the investigation under non-equilibrium process during reactions, where 

the non-equilibrium or intermediate species or states cannot be detected by ex situ measurements; 

(iv) it sensibly reduces the workload of assembling and disassembling cells and eliminate sample 

variance from independent samples; (v) it effectively avoids the unpredictable contamination and 

irreversible changes of highly reactive samples at discharged/charged state during preparation, 

handling and transportation for ex situ measurements. 

1.2 Overview of Li-ion batteries 

1.2.1 Components and working principle of lithium-ion batteries 

In general, a LIB is composed of a negative (Anode) electrode and a positive (Cathode) 

electrode in an electrolyte, separated by a separator. The electrolyte provides the pure ionic 

conductivity, transporting the ions between the two electrodes, while the separator, made of 

microporous membrane, is a physical barrier between the negative and positive to prevent short 

circuit. As shown in Figure 1.1, LiCoO2 cathode and the graphite anode are used as an example12, 

34-35 to illustrate the electrochemical reaction mechanism during cycling. Upon charging, lithium-

ions are reversibly extracted from LiCoO2 cathode material (eq.1.1) and inserted into the 

carbonaceous anode material (eq.1.2) through the electrolyte, while the corresponding electrons 

simultaneously flow from the cathode side to the anode through an external circuit, resulting in the 

reduction of the anode and oxidation of cathode (eq.1.3). Upon discharging, lithium-ions and 

electrons move reversely (eq.1.4-6). Therefore, LIBs are also known as “Rocking-chair” batteries. 

The electrochemical reaction can be described as follows: 

Charge: LiCoO2 → Li1-xCoO2 + xLi+ + xe-                                                                 (1.1) 

       : C + xLi+ + xe- → CLix                                                                                   (1.2) 

       Total reaction: LiCoO2 + C → Li1-xCoO2 + CLix                                            (1.3) 

Discharge: Li1-xCoO2 + xLi+ + xe- → LiCoO2                                                            (1.4) 

           : CLix → C + xLi+ + xe-                                                                               (1.5) 

           Total reaction: Li1-xCoO2 + CLix → LiCoO2 + C                                        (1.6) 
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Figure 1.1 Scheme of the working principles of lithium-ion batteries12. Reprinted with permission from ref 12. 

Copyright 2013, American Chemical Society. 

The battery components and the working principles of Na-ion batteries9, 14, Mg batteries16, 36, 

K-ion batteries37-38, aqueous Zn batteries39 and LIBs are basically the same except for their ion 

carriers. The intercalation chemistry with respect to cathode materials for Mg-ion, K-ion and Zn-

ion, is very similar to that of lithium, makes it possible to apply similar compounds for these 

systems. However, there are some obvious differences between these systems, ions size, solvation 

energy and so on, which affects the phase stability, transport properties, and interphase formation, 

therefore to electrochemical performance. 

1.3 State of the art of V2O5 as cathode material for different electrochemical 

energy storage systems 

1.3.1 Structure, morphology, and synthesis of V2O5 

Orthorhombic V2O5 (α-V2O5 Pmn21) is composed of [VO5] square pyramids layers connected 

by sharing edges and corners and alternating in an up-up-down-down sequence with every third 

row being vacant24, 40 (Figure 1.2). Three different oxygens atoms, O1, O2, and O3, exist in a 

single slab of V2O5 and a weak vanadium-oxygen interaction is responsible to the connection of 
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adjacent V2O5 sheets, where the interlayer space is suitable for the guest ions intercalation. 

However, the orthorhombic structure of V2O5 can be addressed as distorted [VO6] octahedral units 

as well24, 41. 

 

Figure 1.2 Crystal structure of orthorhombic V2O5 with space group Pmn21 

Compared with bulk materials, nanostructured materials can tolerate much higher stresses 

before getting pulverized, which is beneficial to electrochemical performance (rate capability and 

cycling stability). Various kinds of nanostructured V2O5 cathode materials have been developed in 

the past decades, which showed much better performance than micron-sized or larger, and bulk 

V2O5 crystals in LIBs23-24, 42-44. Nanostructured V2O5 cathode materials can be typically classified 

into zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), three-dimensional (3D) 

nanomaterials24, 42, 45, according to their nanoscaled property in different dimensions. 0D and 2D 

V2O5 nanostructure only have nanoparticles and nanosheets, respectively. While 1D V2O5 

nanostructure includes nanorods, nanotubes, nanowires, nanofibers, and nanobelts, 3D V2O5 

nanostructure covers the porous microspheres and microflower, hollow microspheres and 

microflower, as well as yolk-shell. 

Various methods have been used to synthesize different nanostructured V2O5 materials, such 

as hydrothermal46-53, electrospinning54-56, solvothermal57-60, thermal evaporation or pyrolysis61-63, 

template-induced electrodeposition64-65, sol-gel method43, 66-67. Among them, hydrothermal 

method is a very powerful approach to synthesize V2O5 nanowires. The electrospinning is a simple 

and versatile method for synthesizing the V2O5 nanowires. Hydrothermal and solvothermal 

methods have been extensively applied to synthesize V2O5 nanoparticles of 0D. However, some 

major problems, low-yield, safety issues, and expensive autoclaves, hinder the application of 

hydrothermal /solvothermal methods in scalable synthesis45. Thermal pyrolysis, for instance, 
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flame spray pyrolysis, is a highly effective method for the scalable synthesis of V2O5 

nanoparticles63. 

1.3.2 Working mechanism of V2O5 in Li- and Na-ion batteries 

V2O5 is a typical intercalation material because of its layered structure. Being a promising 

cathode material, it has a very high theoretical capacity of 294 mAh g-1 and 442 mAh g-1 upon 2 

and 3 Li+ ions insertion per mole of V2O5, respectively13, 43. The structural evolution of 

orthorhombic V2O5 upon Li-ion intercalation/de-intercalation has been well investigated15, 68-72. 

During the Li-uptake, V2O5 goes through several phase transitions resulting in the formation of α-

, ε-, δ-, γ-, and ω-phase. The α-phase is observed at x < 0.1 in LixV2O5, ε-phase exists in the range 

of 0.35 < x < 0.7, while the δ-phase appears at x = 1 for LixV2O5. An irreversible transformation 

of δ-phase into γ-phase is observed when x is over 1, and the γ-phase can be reversibly cycled in 

the range of 0 ≤ x ≤ 2.0 while maintaining the γ-type structure. The irreversible formation of ω-

phase with a rocksalt-type structure takes place upon the third lithium insertion into the V2O5 

structure. The orthorhombic α-, ε-, and δ-phases are composed of [VO5] square pyramids layers 

with an increased puckering in the layers. The γ-phase also consists of [VO5] square pyramids, but 

highly puckered and irreversible (metastable γ’-phase upon complete de-intercalation), while the 

ω-phase has a tetragonal structure, which is very different from the initial orthorhombic V2O5 

phase. However, some authors suggested the co-existence of LixVO2 and Li3VO4 compounds 

instead of the γ- and ω-phase. 

Upon Na insertion into V2O5 the structure of pristine α-phase is maintained without significant 

changes in lattice parameters at low sodium amount (x ≤ 0.2 in NaxV2O5)73. In the range 0.2 ≤ x ≤ 

1.6, the insertion proceeds via solid solution mechanism with two different amplitudes: strong 

changes of lattice parameters in 0.2 ≤ x ≤ 0.7 and only slight changes in 0.7 ≤ x ≤ 1.6. The 

irreversible NaV2O5 phase is formed during the first Na insertion and the NaV2O5 phase can 

reversibly insert 0.8 sodium ions in the range of 1.4 V-3.0 V vs Na+/Na. However, Ali and co-

workers74 proposed a different reaction mechanism. Two-phase mixture composed of a major 

phase NaV2O5 and a minor phase Na2V2O5 were observed during the discharge process, where 

Na2V2O5 phase exists in the presence of crystalline and amorphous-like phases. Upon charging 
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process, it returns back to its original structure of V2O5 with a minor phase of NaV2O5. The detailed 

reaction mechanism of Na-ion insertion into V2O5 is still not clear so far. 

1.3.3 Review of V2O5 Modification 

Although V2O5 has many advantages of high capacity, abundant sources, low cost, and easy 

synthesis, making it a promising cathode material for next generation LIBs, its practical application 

has been retarded because of its low electronic conductivity (10-2 to 10-3 S cm-1)41, low diffusion 

coefficient (10-12 to 10-13 cm2 s-1)41, 75 and the dissolution of V2O5 into electrolyte76-77, causing poor 

cycling stability of this material. In order to solve these problems and improve the electrochemical 

performance of V2O5, numerous efforts and progress have been accomplished, such as the 

synthesis of nanostructured materials, heterogeneous structures (including surface coating, 

composites), and cation doping. Below, some of these strategies are described. 

a) Nanostructured V2O5. Numerous nanostructured V2O5 materials were synthesized to 

improve the electrochemical performance, including cycling stability and rate capability. The 

nanostructures forms of V2O5 include zero-dimensional (0D) nanoparticles63, 78, one-dimensional 

(1D) nanowires/nanobelts/nanotubes56, 79-89/nanorods65, 90-91, and two-dimensional (2D) 

nanosheets92-96, as well as three-dimensional (3D) hierarchical architectures, such as porous 

microspheres97-100, yolk-shell62, 101-102, and (hollow) microflowers103-104, as well as hollow 

microspheres105-109. It is well known that nano-sized materials provide short diffusion lengths for 

cation insertion and facilitate the transport kinetics of electrons, resulting in higher capacities110-

111. The small particle size and the large specific area increase the contact area between electrode 

and electrolyte, which is beneficial for rate capability110, 112. 

b) Heterogeneous structures. Heterogeneous structured materials consisting of multi-

nanocomponents, surface coated materials and composites, are currently regarded as very 

promising materials for the development of electrochemical energy storage, due to their synergic 

properties, which arise from the integration of multi-nanocomponents, each tailored to satisfy a 

different requirement, such as high conductivity and high energy density, as well as outstanding 

mechanical stability113. The surface structure of electrode materials is known to affect significantly 

the electrochemical performance of LIBs. Surface coating has proven to be a very effective 

approach to improve the cycling stability and rate capability of electrode materials114. Carbon115-



8 

 

117, rGO118 and conducting polymers119-121, as well as inorganic coating of TiO2
122 and SiO2

123, 

have been used to improve the performance of V2O5 materials. Moreover, composite based on 

V2O5 and rGO124-127/CNT128-133 or polymer67, 134-137 can also be used to achieve high rate capability 

and long cycle in LIBs. 

Both surface coating and mixing with carbon nanotubes, rGO or polymers provide several 

benefits to V2O5 electrodes, such as (i) enhancing the electric conductivity and facilitating the 

charge transfer on the surface of V2O5 particles; (ii) suppressing the aggregation and serving as a 

buffer to alleviate the volume changes for active materials. In addition, the surface coating could 

also offer a physical protection barrier and a modification of the surface chemistry that improves 

the chemical stability of the material. Meanwhile, it can also prevent the collapse and crush of the 

V2O5 along with repeated cycling under harsh application condition24. 

c) Cation doping. Structure and electronic state of electrode materials can be greatly 

influenced by the doping. Recently, tremendous work has been focused on the doping of V2O5 

nanostructure with various elements, such as Na138, Mg139, Al140, Fe141-142, Ti143-144, Ni105, Mn145-

146, Cr147-149, Cu150-151, Nb152, Ag153-155, Y156, and Sn157-158, to overcome the capacity fading and 

improve the rate capability. Some very distinct properties can be seen in the doped V2O5 

electrodes: (1) cations doping results in increased electronic conductivity because of the formation 

of lower oxidation state of V (V3+ and V4+); (2) cations doping into the V2O5 layers leads to the 

formation of [MO6] octahedral units that can stabilize the layer structure of V2O5 during cycling; 

(3) cations doping can facilitate the charge transfer; (4) cations doping may reduce the particles 

size and alter the morphology, improving the electrochemical performance of V2O5
24, 159. 

However, the excess of dopant may block the pathway for the inserted ions and inactive dopant 

could reduce the usage of active materials, thus reducing the capacity of the materials. Moreover, 

impurity or second phase might be induced with excess of doping cations as well, which might, in 

turn, have a negative effect on the electrochemical performance of materials. 

Since in case of doping (like especially for semiconductors), the degree of the doping level is 

well below 0.1%. Doping has no significant influence on the (non-local) underlying structure. 

“Doping” is quite common for battery materials research even if the dopants concentrations are 

high and cause structural modifications. One should note the “doping” is not accurate or 

appropriate enough to describe such cases. It is a great challenge concerning the specific 

“wording” like this and “doping” is still used in this thesis. 
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1.3.4 V2O5 as cathode material for Mg, K-ion, and aqueous Zn batteries 

Magnesium batteries (MBs) have been considered as a potential candidate for the large-scale 

EESs, owing to the abundant resources, lower cost, and high theoretical volumetric capacity (3833 

mAh cm-3) of magnesium, as well as higher safety of Mg-metal comparing to Li1, 16, 160-161. Despite 

the recent progress in MBs, there are many challenges to be overcome before their commercial 

application. One of the major issues is the sluggish diffusion of Mg ions in host structure162-164. 

The second major issue is the lacking of appropriate electrolytes and cathode materials165-166. V2O5 

is exceedingly attractive as cathode material for MBs, owing to its proven high theoretical capacity 

and high working voltage in LIBs. However, up to now, only limited capacities have been obtained 

with V2O5 in MBs. For example, Tang et al.26 reported that aero-gel V2O5 cathode delivers a 

discharge capacity of 180 mAh g-1, which is dominated by the surface morphology, such as thin 

and mesoporous solid phase. Yu and Zhang167 reported that in Mg(ClO4)2/propylene carbonate 

(PC) electrolyte, the electrochemical property of V2O5 depends on the H2O level of the electrolyte, 

which exhibited the highest 1st discharge capacity of 158.6 mAh g-1 in 1 M Mg(ClO4)2+1.79 M 

H2O/PC electrolyte. A high initial discharge capacity of 218 mAh g-1 is reported for VOx nanotube 

cathode in Mg(ClO4)2/acetonitrile electrolyte by Kim et al.168. A metastable ζ-V2O5 (space group 

C2/m) cathode was reported by Andrews and co-workers169, delivering a first discharge capacity 

140 mAh g-1 and maintaining a discharge capacity of 90 mAh g-1 up to 100 cycles. The V2O5 

nanoclusters/porous carbon composite was demonstrated to deliver an initial capacity of 300 mAh 

g-1 within working potential of 0.5 - 2.8 V vs. Mg2+/Mg 170. Gershinsky and co-authors171 reported 

a V2O5 thin film that delivered a reversible capacity of ~ 150 mAh g-1 in the potential range of 2.2 

- 3.0 V vs. Mg2+/Mg. In the same work171, ex situ XRD demonstrated that the intensity of 

reflections of V2O5 film material became weak and the main reflection 010 shifted to lower angle. 

However, a detailed investigation of structural changes of V2O5 upon Mg-ion insertion/extraction 

is still missing. 

KIB, which has a similar working principle of “rocking chair” with LIBs, is another promising 

candidate for the large-scale EESs because of the high abundance and low cost of Potassium. K-

ion is larger and heavier that Li+ and Na+, but K+/K couple has a lower standard electrode potential 

(-2.936 V vs. SHE) than that of Na+/Na (-2.714 V vs. SHE)38. Due to the lower desolvation energy 

and the smaller size of the solvated ion than that of Li- and Na-ion, K-ion displays a lower ion-
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solvent interaction, resulting in fast diffusion kinetic and high rate capability of KIBs172. Whereas 

the expensive Cu is usually applied as an anode current collector for Li-ion batteries, more 

affordable Al can be used as current collector in both NIBs and KIBs at low potential, where a Li 

alloy with Al would happen173-174. Although KIBs are very promising for large-scale EESs, KIBs 

are still in their infancy and face large challenges to develop electrode materials for their 

commercial application. Until now, only limited number of the original works on the anode and 

cathode materials for KIBs along with several reviews14, 21-22, 38, 175 have been reported, such as 

carbon-based materials176-183, Titanium-based materials184-187, layered metal oxide188-192, Prussian-

based materials193-198, Olivine199, metal sulfide materials200-202, alloying anode203-205, organic 

compounds206, as well as vanadium-based materials207-214. Among them, vanadium oxides are very 

promising for the cathode materials. Recently, Clites and coworkers212 reported that δ-

KxV2O5·nH2O cathode with interlayer spacing of 9.65 Å in KIBs showed a high electrochemical 

performance with initial discharge capacity of 268 mAh g-1 at C/50 and 226 mAh g-1 at C/15 rate 

in the voltage range of 2.0 - 4.3 V vs. K+/K. Layered K0.5V2O5 investigated by Deng et al.213 

delivered a reversible capacity of 90 mAh g-1 at current density of 10 mA g-1 and a high capacity 

retention of 81% within 250 cycles at 100 mA g-1 in the potential range of 1.5 -3.8 V vs. K+/K. Ex 

situ XRD and XPS demonstrated high reversibility of structural transformation during K-ions 

insertion/extraction. Jin et al.214 reported that a V2O3/carbon composite delivers a capacity of 240 

mAh g-1 at current density of 50 mA g-1 with a high capacity retention of 95.8% after 500 cycles 

0.01 - 3.0 V vs. K+/K. The composite was shown to operate via a pseudocapacitive mechanism 

upon K ion insertion. Moreover, ab initio molecular dynamics and first-principle calculation 

demonstrated that V2O3 structure can only uptake up to 1 mol K-ion to form KV2O3, and the K-

ion lies on the 6e sites in KV2O3 structure. Liu et al.208 reported a layered K0.23V2O5 anode material, 

which delivers a discharge capacity of 121.6 mAh g-1 within 150 cycles at 20 mA g-1. Zhu et al.211 

reported a bilayered δ-K0.51V2O5 cathode, which shows a high capacity of 131 mAh g-1 with 

excellent rate capability and a high average voltage of 3.2 V. A V2O5·0.6H2O xerogel cathode was 

reported by Tian et al.209. This material delivers an initial discharge capacity of 224.4 mAh g-1 at 

50 mA g-1 with a discharge capacity of 103 mAh g-1 after 500 cycles 1.5 - 4.0 V vs. K+/K, while 

crystalline V2O5 only displays a discharge capacity of 44.3 mAh g-1 at 50 mA g-1. Very recently, 

amorphous V2O5 /carbon nanotube sponge was reported by Ye and coauthors210, which exhibited 
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an initial discharge capacity of 206 mAh g-1 at 5 mA g-1. However, a detailed investigation related 

to the structural changes of V2O5 upon K-ion insertion/extraction is still missing. 

The aqueous ZBs have numerous advantages comparing to non-aqueous LIBs, NIBs, MBs 

and KIBs19, 215. The metallic zinc is an attractive anode. Metallic Zn has a high specific capacity 

of 820 mAh g-1 and high volumetric capacity of 5854 mAh cm-3.  The high potential for hydrogen 

evolution of Zn (-0.76 V vs. SHE) makes it stable in water216. The manufacturing costs of ZBs are 

expected to be low since water-based electrolyte are nontoxic, inflammable and do not require 

strict humidity control during cells assembling217-218. Compared with non-aqueous electrolyte 

(about 1-10 mS cm-1), the ionic conductivity of the aqueous electrolyte (up to 1 S cm-1) is much 

higher, resulting in a higher rate capability19. The utilization of aqueous electrolytes can lower the 

activation energy for charge transfer at the electrode/electrolyte interface. To date, several cathode 

materials for aqueous ZBs have been proposed, like the polymorphs of manganese oxide (α-MnO2, 

β-MnO2, γ-MnO2, δ-MnO2, spinel-MnO2 and so on)218-230, Prussian blue analogues (CuHCF and 

ZnHCF)231-234, vanadium-based oxides (Ca0.25V2O5·nH2O, Zn0.25V2O5·nH2O, Na0.33V2O5, 

V2O5·nH2O, LiV3O8, H2V3O8, and so on )215-216, 235-251, and other compounds such as 

Na3V2(PO4)3
121, Na3V2(PO4)2F3

252, VS2
253, Mo6S8

254, ZnMn2O4
255-256, and some organic 

compounds257-258. Among them, vanadium-based oxides with open framework show high 

potential. For example, Zn0.25V2O5·nH2O cathode reported by Kundu et al.216 delivers an initial 

discharge/charge capacity of 282/278 mAh g-1 at C/6 rate with excellent rate capability and the 

high capacity retention of 80% after 1000 cycles at 15 C rate (278 mAh g−1). Xia et al.242 

demonstrated high capacity of 367.1 mA h g−1 at 100 mA g−1for Na0.33V2O5 nanowire cathode. 

This material exhibits good capacity retention of 93% after 1000 cycles and good rate capability. 

H2V3O8/graphene composite was investigated by Pang et al.247, which displays a capacity of 394 

mA h g−1 at C/3 and excellent cycling stability with capacity retention of 87% over 2000 cycles, 

as well as high rate capability. Recently, Zhou and co-authors259 reported that V2O5 cathode shows 

high performance in 3 M ZnSO4 electrolyte compared with different concentration and in other 

types of salts like Zn(NO3)2, Zn(CH3COO)2, and ZnCl2. In 3 M ZnSO4, V2O5 delivers a high 

capacity of 224 mAh g-1 at 100 mA g-1 and good cycling stability at the high current density of 1 

and 2 A g-1, respectively. Ex situ XRD demonstrated the formation of a new phase of ZnxV2O5 

upon Zn insertion into V2O5. Zhang et al.260 also reported V2O5 cathode material with a capacity 

of 470 mAh g-1 at 0.2 A g-1 and high capacity retention of 91.1% after 4000 cycles at 5 A g−1 in 3 
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M Zn(CF3SO3)2 electrolyte. It can also work well in extreme conditions at both high (50 oC) and 

low (-10 oC) temperatures. Hydrated Zn ions co-intercalation into V2O5 crystal structure was 

proposed as well based on the ex situ XRD, XPS, and TEM experiments. However, a detailed 

investigation of the structural changes of V2O5 upon Zn-ion insertion/extraction is still missing. 

1.4 Aim and objectives of the thesis 

The development of “beyond-lithium” rechargeable batteries for the application in large-scale 

EESs is an important topic today. However, all promising candidates mentioned above, MBs, 

KIBs, and aqueous ZBs, for next-generation rechargeable batteries are still in their early stage. 

New electrodes materials with high capacity, high voltage, and long cycle life are required. V2O5 

is a promising cathode for different non-lithium systems. The high performance for such systems 

has been already reported, but the structural aspects of insertion for the cations others than lithium 

are not yet studied. In the present thesis, we concentrate on the study of mechanism reaction, via 

in operando techniques, of V2O5 upon Mg2+, K+, and Zn2+ insertion/extraction in MBs, KIBs, and 

aqueous ZBs, as well as its electrochemical properties in the three different systems, respectively. 

Additionally, M-doped V2O5 (M=Mn, Fe, and Ni) materials were prepared and the substitutional 

or interstitial cation doping in the M-V2O5 materials was investigated through several 

characterization methods. Finally, other related works performed during my PhD study are briefly 

reviewed and summarized. 

The research objectives of the thesis are the following: 

1) to synthesize crystallized orthorhombic nanostructured V2O5 nanowires via a hydrothermal 

method and to investigate the electrochemical performance and the reaction mechanism of V2O5 

cathode upon Mg2+, K+, and Zn2+ insertion/extraction in MBs, KIBs, and aqueous ZBs, 

respectively, through in operando synchrotron diffraction and in operando XAS. In addition, ex 

situ techniques, such as Raman, X-ray photoelectron spectroscopy, and TEM are also used as 

assistant approaches for the storage mechanism study. 

2) to determine the preferred positions where the M doping cation (M= Mn, Fe, and Ni) locates 

in the doped V2O5 samples 
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 Fundamentals of in operando synchrotron diffraction and 

in operando X-ray absorption spectroscopy study for rechargeable 

batteries 

2.1 Introduction 

Recent years, rechargeable batteries with high energy density, greater cycle life and safety 

characteristics are strongly required to realize the usage to electrical vehicles and grid energy 

storage. To meet these demands, great efforts have been done on developing promising new 

materials, materials modification, and new chemistry for the next generation rechargeable 

batteries. Electrode materials such as composition, structure and morphology, etc. are the key of 

rechargeable batteries, which decide the electrochemical performance and cost. The structure of 

electrode materials undergoes continuous evolution during cycling in the battery. It is very 

important to better understand the correlation between the structure evolution of the materials in 

“real time” and electrochemical performance during cycling, which can be used to improve the 

performance and guide the development and application of new materials with high performance30, 

261. 

However, it is difficult to understand the reaction mechanism because of the inherently 

complexity of battery systems. It requires systematic and deep study on many aspects such as 

chemical compositions, physical properties, crystal structures, microstructures, and electron 

structures of battery materials, as well as their evolution during cycling. Synchrotron X-ray 

techniques was started to study of battery materials since about 25 years ago pioneered by Mcbreen 

et al.32, 262-265 and have been widely used to understand the fundamental mechanism of battery 

materials29-30, 33, 261. The merits of synchrotron radiation, such as extremely bright, high flux, and 

high-energy, highly collimated and energy tuneable, allow the applications in battery science and 

technology. The tunability of synchrotron energies makes the conduct of experiments that require 

a continuous beam energy (e.g. XAS). It allows the optimization of the experiments to improve 

the quality of data via optimizing the beam energy, such as eliminating fluorescence artifacts 
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during XRD measurement. It also allows the conduct of high temporal resolution (up to 

milliseconds) studies of the electrochemical/chemical reaction and high spatial resolution 

spectroscopic mapping and imaging of electrodes. Especially, the ultrahigh intense and penetration 

property of synchrotron radiation makes the in operando investigation of battery systems possible 

and easier to realize. Ex situ and in operando techniques have been widely used to elucidate the 

scientific and technological problems of rechargeable batteries. Compared to ex situ 

measurements, in operando techniques can provide direct information on the system in a non-

equilibrium state and “real-time study”-time-dependent reaction, allowing a reliable visualization 

of real-reaction during the electrochemical reduction and oxidation processes, as already described 

in the Introduction of Chapter 1 (1.1 Background). 

Synchrotron-based techniques, in operando synchrotron powder diffraction and in operando 

X-ray absorption spectroscopy (XAS), are very powerful and high-efficiency tools and approaches 

to uncover the evolution of crystal structure and the local structure and oxidation state of the 

materials during the electrochemical cycling. Both in operando techniques will be briefly 

discussed in this chapter, including the synchrotron light source and in operando setup used during 

electrochemical processes. 

2.2 Synchrotron light source 

Synchrotron radiation is based on an important theorem of classical electrodynamics and 

electromagnetic radiation emitted when charged particles are accelerated radially, i.e., when they 

are subject to an acceleration perpendicular to their velocity (a ⊥ v). It is produced, for example, 

in synchrotrons using bending magnets, undulators and/or wigglers. In a synchrotron facility, 

bunches of electrons are filled and accelerated to a final energy of about 1.5−8 GeV, close to the 

speed of light, and maintain at a fixed energy in the storage ring.  

The ALBA-CELLS synchrotron266 is a 3rd generation Synchrotron Light facility located in 

Cerdanyola del Vallès, (Barcelona), being the newest source in the Mediterranean area. Machine 

and beamline commissioning started at the end of 2010 and in mid 2011, respectively. The first 

official users started in May 2012. ALBA currently operates eight beamlines from soft X-ray 

energies to hard X-Ray energies. The machine is composed of a 268 m circumference storage ring 
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with electrons accelerated to 3 GeV and with small emittance (4.8 nm rad). The electron current 

in the ring is now 150 mA.  

The Material Science Powder Diffraction (MSPD)266 beamline has a superconducting wiggler 

as an insertion device and it operates at energies between 8 and 50 keV. The effective X-ray source 

size and flux at the energy of 30 keV are 620 x 85 µm2 and 1 x 1014 ph/s/0.1%bw within a 300 x 

125 μrad2 aperture, respectively. All technical properties of the MSPD beamline are given in Table 

2.1.  

Table 2.1 Technical Specifications of MSPD beamline 

Photon Energy Range  8 – 50 keV 

Flux at sample  ~ 4·1012 ph/s 

Energy resolution  2·10-4 

Beam size at sample  variable: 1.5 x 5 mm2
 to 0.015 x 0.015 mm2 

Photon source size (FWHM)  0.65 x 0.1 mm2 (HxV) 

Photon source div. (FWHM)  1.4 x 0.18 mrad2 (HxV) 

Insertion Device (ID)  Superconducting Wiggler SCW31 

Monochromator  Si(111) Double Crystal with long 2nd crystal 

 

PETRA III267 is a large 3rd generation synchrotron radiation with 2.3 km circumference at 

DESY, Hamburg. It is the worldwide most brilliant storage ring based X-ray sources for high 

energy photons providing a brilliance exceeding 1021 ph/(s mm2 mrad2 0.1% BW). It operates at 6 

GeV particle energy at 100 mA beam current in top-up mode keeping the photon flux stable with 

1%. The beamlines at PETRA III are distributed over three experimental halls, including the 

largest, 300 m long experimental hall ‘Max von Laue’ and the ‘Paul P. Ewald’ and the ‘Ada Yonath’ 

halls. 

P65 is a new X-ray Absorption Fine Structure (XAFS) spectroscopy beamline at the high 

brilliance storage ring PETRA located in experimental hall ‘Paul P. Ewald’, in Hamburg, 

Germany268-269.Table 2.2 gives all the technical properties of the P65 beamline. The P65 beamline 

provides a relatively large beam (0.5x1 mm2) and a moderate photon flux density. The 11 period 

undulator delivers a maximum monochromatic photon flux of 2*1012 s-1 at 9 keV and more than 

1011 s-1 at the higher end of the working range. Two plane mirrors with variable angle of incidence 

and three different surface coatings are installed in front of the water cooled double crystal 

monochromator (DCM). They reduce the power load density on the first DCM crystal and 
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effectively suppress the contamination of the monochromatic X-ray beam with higher harmonics 

radiation. The main factor for the very high stability of the beam position on the sample is the short 

distance of only 5 m between the DCM and the sample position. The beamline design is optimised 

for standard EXAFS measurements with transmission and fluorescence mode under ex situ and in 

operando conditions. 

Table 2.2 Technical Specifications of P65 beamline, PETRA III 

Source  Mini-undulator (11 periods) 

Photon Energy Range  4 – 44 keV 

Accessible Elements  K-edges: Ca – Nd, L-edges: Sb - Uuo 

Beam size at sample  0.5 x 1 mm2
 (vert x hor) 

Photon flux at Sample  > 1011 – 1012 s-1 

Detectors  Energy dispersive 7 pixel HPGe detector, Si-PIPS diodes 

Methods  X-ray absorption spectroscopy in transmission and fluorescence mode 

Monochromator  Crystals: Si(111), Si(311) 

 

2.3 In operando setup used at synchrotron beamline 

2.3.1 In operando coin cell holder 

In operando study of battery electrodes requires cell housings with a well defined electrolyte 

volume, chemically inert materials, air tightness and low background contributions to the scattered 

intensity. For example, dead volume inside the cell should be avoided to prevent migration of the 

electrolyte or other electrochemically formed compounds, which consequently leads to capacity 

losses as well demonstrated for Li–S systems270. 
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Figure 2.1 In operando battery holder for eight coin cells: (1) metallic cap; (2) in situ coin cell with Kapton 

windows; (3) metallic helical spring; (4) nonconductive sample holder, e.g. made of POM; (5) wire to connect 

metallic cap with PCB; (6) PCB; (7) screws to fix PCB to sample holder; (8) 2 x MOLEX eight-pole connector 

(designed holder from our previous work28) 

In operando coin cell holder is used from previous designed work in our group28 and its 

schematic drawing is displayed in Figure 2.1. The holder consists of two main parts, a coin cell 

holder and a printed circuit board (PCB). The coin cell holder is made of an isolating rigid material, 

such as POM (polyoxymethylene). The coin cells are mounted in concentrically arranged slots (Ø 

= 20.6 mm, depth = 5.0 mm). A helical spring (Ø = 9.5 mm) is positioned within a hole to ensure 

the electrical contact of the coin cell with certain positioning. This enables the investigation of 

coin cells with different thicknesses t, such as CR2025 (t = 2.5 mm) or CR2032 (t = 3.2 mm). The 

electrical contact of the active electrodes is realized by the metallic caps, which are connected to 

a rearward mounted PCB by a screw and a wire. Figure 2.2 shows the conducting paths of the 

PCB. 
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Figure 2.2 Detailed view of the PCB – printed circuit board: 1: conducting pads for the helical spring (Figure 2.1, 

item 3); 2: conducting pads for wire from metallic cap (Figure 2.1, item 1 and 5); 3: conducting pads for the 

MOLEX - connector (Figure 2.1, item 8). 

Figure 2.3 presents the detailed schematic drawing of the in operando coin cell and a cross 

section of the coin cell holder28. All 16 poles conduct their electrical signals to the centre. The 

connection to the potentiostat is realized by two MOLEX eight-pole connectors and a flexible 16-

wire cord attached to the centre of the holder. A concentric rotation of the holder is realized by a 

stepper motor. With this design, disturbance of the beam path by the wiring is avoided. 
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Figure 2.3 Schematic cross section of the holder with a detailed view of an in situ coin cell: (1) and (10) stainless 

steel coin cell housing with 4–5 mm hole; (2) and (9) Kapton foil/glass window (Ø: 8 mm); (3) and (4) current 

collector and active electrode (Ø: 12 mm); (5) separator with electrolyte (Ø: 17 mm); (6) Li/Na/K foil (Ø: 16 mm); 

(7) stainless steel spacer with 6 mm hole; (8) stainless steel wave spring; (11) maximum 2θ at 70o (designed coin 

cell from our previous work28) 

2.3.2 Setup at the MSPD beamline at ALBA and P65 beamline at DESY 

 

Figure 2.4 Photographs of the in situ coin cell holder installed at the MSPD beamline of the new synchrotron light 

source CELLS-ALBA for transmission diffraction experiments: (a) overview in downstream direction; (b) detailed 

view in upstream direction; (c) assembly of the coin cells. Marked parts: (1) six-module Mythen detector; (2) 

MAD26 high-resolution detector; (3) Eulerian cradle; (4) PCB; (5) ball bearing with stepper motor; (6) position 

exposed to the synchrotron beam; (7) synchrotron beam pipe; (8) 16-wire cord with MOLEX connector. 

In operando synchrotron diffraction with transmission mode were performed at the MSPD 

beamline of the Spanish synchrotron light source ALBA in Barcelona266. Figure 2.4 displays 

Photographs of the setup adjusted to the beamline. The holder was mounted onto a rotatable frame, 

which was accessed by a stepper motor allowing a sequential positioning and a consecutive 

measurement of each cell. A Mythen 6K detector is used to collect the diffraction data. In order to 

improve the powder averaging (increasing the number of crystallites contribution), the coin cells 

continuously oscillated +/-5 o around the incoming beam direction. Date with exposure times of 
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40 s per pattern can give sufficient statistics in intensity over angular range of 1.8o - 42o in 2theta, 

resulting in a measurement repetition time of about 360 s for each sample position. This time frame 

provides sufficient data points to track all structural changes of the sample when the measurement 

time is carried out with C/5 (meaning 5 h for full charging or discharging) or slower. In the case 

with high current/rate, either the exposure time or the number of samples has to be decreased to 

get enough efficient data points. 

In operando XAS measurements were performed at synchrotron beamline P65 at PETRA III 

(DESY, Hamburg). The galvanostatic charge and discharge cycle was performed at C/14 rate in 

2025-type coin cells with 5mm-diameter Kapton window. XAS spectra of Vanadium were 

recorded in quick-XAS (6 min/spectrum) mode in fluorescence geometry using PIPS (passivated 

implanted planar silicon) diode.  
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 In operando study of orthorhombic V2O5 as cathode 

material for rechargeable Mg batteries 

3.1 Introduction 

Rechargeable magnesium batteries (MBs) have been regarded to be a very promising 

alternative on the application of large-scale EESs1, 16, 160-161, due to their remarkable advantages, 

such as the low cost, and high volumetric capacity (3833 mAh cm-3) of magnesium, as well as high 

safety upon cycling when applying Mg-metal. In the 1980s, Gregory and coauthors271 initiated the 

workable rechargeable battery system with Mg anode and the electrolyte solutions composed of 

Mg-organo-borate moieties and tetrahydrofuran Mg(BBu2Ph2)2/THF. Their work can be regarded 

as the 1st breakthrough in the field of MBs. Although this electrolyte allowed the reversible 

deposition and dissolution of Mg metal, its electrochemical window was too narrow (< 2 V). The 

second breakthrough was done by Aurbach and co-workers162 in 2000, who presented novel 

electrolyte solutions made of the reaction product of R2Mg Lewis base and AlCl3-nRn Lewis acid 

in ethers (Glymes or THF). The prototype reversible rechargeable MB constructed from 

Mg(AlCl2BuEt)2 electrolyte and Chevrel phase Mo6S8 cathode, as well as Mg metal anode, was 

demonstrated. This MB showed high capacity retention, very low self-discharge, and excellent 

cycle life, with more than 3500 cycles, along with a wide temperature operating range. A few years 

later, Aurbach and coauthors272 developed a new advanced electrolyte with a wide electrochemical 

window (>3 V), the all-phenyl-complex (APC) electrolyte. Despite the great progress in MBs, it 

is still big challenging to commercialize them. One of the major issues is the lack of appropriate 

cathode materials and compatible electrolytes for high-voltage cathodes and Mg. In addition, the 

reported Mg-ion electrolytes cause high corrosion of the current collectors and battery casing. For 

example, the known APC electrolyte shows strong corrosion to stainless steel above 2 V vs 

Mg2+/Mg273. The sluggish Mg-ion solid diffusion related to Mg2+ also limited the development of 

cathode materials. The electrochemical performance of Mg-insertion cathodes could be improved 

by using nanomaterials, open tunnel structures or employing layered materials23-24, 43-44, 274. 
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Because of their known high capacity and high working voltage for LIBs, vanadium oxide 

materials (V2O5) are extremely attractive on the application of MBs. However, only limited 

capacities have been obtained so far for V2O5 material in MBs and a detailed study of crystal 

structural evolution upon Mg-ion insertion/extraction into/from V2O5 is still missing. 

As far as we know, in operando techniques, namely, in operando synchrotron diffraction and 

in operando X-ray absorption spectroscopy (XAS), have not yet been employed to probe the 

detailed storage mechanism of V2O5 materials in MBs. In this chapter, two strategies are proposed 

to enhance the electrochemistry of V2O5 cathode and to investigate the reaction mechanism during 

cycling: (i) to synthesize nanostructured V2O5 materials. According to the first-principles 

calculations, the diffusion barrier of Mg2+ in single layered V2O5 is reduced to 0.20 eV 275 

comparing to the hopping barrier of 1.26 eV for Mg2+ in bulk V2O5
276-277, which is about 3 times 

higher than that of Li+ ions (0.35 eV). Moreover, nanostructured materials offer short diffusion 

pathway for guest ions insertion, leading to higher capacity and higher rate capability in 

comparison to analogous bulk materials. In fact, various nanostructured V2O5 cathode materials 

were reported to exhibit a superior electrochemical properties comparing to microsized materials 

thanks to their short Mg-ion pathways and high specific reaction areas160, 168-170, 278; (ii) to design 

a cell-configuration system within a selected "standard" electrolyte. As reported in literature271, 279-

280, a passivation film is formed on the surface of metallic magnesium when using the standard 

combinations of salts and organic solvents, such as Mg(SO3CF3)2 and Mg(ClO4)2, in carbonates 

and nitriles, respectively. The APC electrolyte developed by Aurbach et al.272 has a wide 

electrochemical window ~3.3 V vs. Mg2+/Mg, but it cause corrosion the stainless steel, which 

constitutes the cell casing, above 2.0 V for V2O5. Because of the incompatibility of Mg metal with 

"standard" electrolyte, Mg anode cannot be applied. We constructed a cell configuration with V2O5 

nanowires as cathode in 1 M Mg(ClO4)2 in acetonitrile (AN) electrolyte together with MgxMo6S8 

(x~2) anode. The storage mechanism, including crystal structure changes, oxidation state and local 

structural changes was elucidated by in operando synchrotron diffraction and in operando X-ray 

absorption spectroscopy (XAS). 
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3.2 Experimental 

Synthesis of V2O5 nanowires: The V2O5 nanowires were synthesized via a modified 

hydrothermal method as reported in literature281. Typically, 1.0 ml of 2 M HCl, 0.3 g of ammonium 

metavanadate (NH4VO3), and 0.5 g of surfactant P123 (EO20PO70EO20, where EO and PO 

represent ethylene oxide and propylene oxide, respectively) were mixed into 30 ml of deionized 

water under ultrasonication for 10 mins and stirring for 1 h. After that, the mixed solution was 

transferred to 50ml Teflon-lined autoclave and maintained at 120 oC for 24 h in an oven. The 

resulting precipitates were filtered and washed with water and acetone several times, then dried 

under vacuum at 120 oC for 24 h. The product was annealed at 400 oC for 2 h in air with a heating 

rate of 10 oC/min. 

Synthesis of Mo6S8: Mo6S8 was synthesized according to the reported work282. The Cu2Mo6S8 

was synthesized through a molten salt synthesis using KCl as salt. Typically, CuS (0.398 g), Mo 

(0.602 g), MoS2 (1 g), and KCl (2 g) were ground in the glovebox and annealed in an alumina 

crucible under argon atmosphere. The mixtures were kept at 850 oC for 60h with a heating rate of 

150 oC/h and then the furnace was cooled down to room temperature. The products were washed 

two times with hot distilled water to remove residual salt. Then the washed powder was placed 

into a stirred 6 M HCl solution for 7 h with O2 bubbling for Cu leaching to obtain the Mo6S8 

product. Finally, the remaining powders were washed with water and dried in the oven at 120 oC 

for 2 h. 

Preparation of two electrolytes: The preparation of electrolytes was performed in an argon-

filled glove box with H2O and O2 less than 2 ppm. APC electrolyte was prepared by dissolving the 

corresponding amount 2 M Phenylmagnesium chloride in tetrahydrofuran (PhMgCl)2/THF and 

AlCl3 in tetrahydrofuran (THF) to get 0.4 M (PhMgCl)2-AlCl3. All these chemicals were water 

free grade and purchased from Sigma-Aldrich. 1 M Mg(ClO4)2/AN was prepared by dissolving a 

corresponding amount of anhydrous Mg(ClO4)2 (Fox-Chemicals) in anhydrous acetonitrile (AN, 

Alfa Aesar) with vigorous stirring at room temperature in the Ar-filled glovebox. 

Morphological, Structural and Surface Characterization: The morphology was studied with 

a Zeiss Supra 55 Scanning Electron Microscope (SEM) with primary energy of 15 keV. The 

structural characterizations were done using synchrotron radiation (λ = 0.4132 Å, 30 keV) at the 

Material Science and Powder Diffraction beamline (MSPD) at ALBA synchrotron (Barcelona, 
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Spain)266. The powder diffraction patterns were collected in capillary geometry with powders filled 

in 0.5 mm Ø boro-silicate capillaries. Raman scattering on electrodes was recorded on a 

microscope type HORIBA LabRam Evolution HR with a laser source (λ = 523 nm, 10 mW) from 

100 to 1100 cm-1. The electrodes after discharging and charging were washed with AN and dried 

under vacuum in the glovebox. Before the measurements, the electrodes were sealed in a cell with 

a quartz window inside a glovebox. The window is suitable for ex situ Raman measurement. X-

ray photoelectron spectroscopy (XPS) was performed using a K-Alpha+ XPS spectrometer 

(ThermoFisher Scientific, East Grinstead, UK) with a micro-focused, monochromatized Al Kα X-

ray source. The samples storage and transportation to the spectrometer for XPS characterization 

was done in an airtight transport vessel under Ar. Thermo Avantage software was used to perform 

data acquisition and processing as described elsewhere283. The spectra were fitted with one or more 

Voigt profiles. All spectra were referenced to the C 1s peak of graphite at 284.4 eV binding energy 

controlled by means of the well-known photoelectron peaks of metallic Cu, Ag, and Au, 

respectively. The binding energy uncertainty of intense peaks was around ±0.1 eV and the 

uncertainty of weak peaks was estimated to be ±0.2 eV. The analyzer transmission function, 

Scofield’s sensitivity factors284 and effective attenuation lengths (EALs) for photoelectrons were 

applied for quantification and EALs were calculated using the standard TPP-2M formalism285. 

Electrochemical Characterization: The electrode mixture was prepared by mixing active 

material (V2O5 nanowires or Mo6S8), with Super C65 C (TIMCAL) and polyvinylidene difluoride 

(PVDF) binder in a ratio of 70:20:10 with N-Methyl-2-pyrrolidone solvent. After drying, the 

cathode materials (active V2O5 of 3.71 mg with total average thickness of 126 µm and Mo6S8 of 

11.10 mg with total average thickness of 142 µm) were pressed on a current collector of 12 mm 

stainless steel mesh with a thickness of 60 µm before assembling the 2-electrode Swagelok cells 

(modified cell design from our previous work286, see Figure 3.1). As displayed in Scheme 3.1, 

before assembling the cell V2O5│Mg(ClO4)2/AN│MgxMo6S8 (x ~2), a cell consisting of 

Mo6S8│APC│Mg was made and discharged to obtain the MgxMo6S8 negative electrode. Then, the 

cell was disassembled and the MgxMo6S8 electrode was washed using THF solvent and dried in 

the glovebox. In the rebuild V2O5│Mg(ClO4)2/AN│MgxMo6S8 cells, the mass of MgxMo6S8 was 

intentionally in excess (10-15 % capacity excess of MgxMo6S8 based on 1 mol of Mg2+ per mol 

V2O5). Note that specific capacities in this work were calculated with respect to the weight of the 

V2O5 active cathode material. Galvanostatic cycling and cyclic voltammetry experiments were 
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performed using Bio-Logic VMP multichannel electrochemical workstation (long cycling with a 

rate of C/20; for ex situ Raman and XPS with a rate of C/80). 

 

Figure 3.1 Photograph of the Swagelok cell and cell parts (a) and schematic drawing of the in operando Swagelok 

cell design from our previous work286 (b) 

Ex situ Raman and XPS samples preparation: the rebuild full cells, consisting of V2O5 and 

MgxMo6S8 with Mg(ClO4)2/AN electrolyte, were disassembled and the electrode under 

investigation was washed with AN in Ar-filled glovebox. Two samples were selected: one at 0.01 

V after the first magnesiation (i.e after the first discharge) and the second one at 1.6 V after the 

first de-magnesiation (i.e. after the 1st charge) performed at C/80 rate. (For discharged/charged 

samples, the masses of V2O5 in the electrode were 3.185 mg/2.996 mg with total average thickness 

of ~110 µm and the masses of Mo6S8 were 9.24 mg/8.939 mg with total average thickness of ~135 

µm). 
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Scheme 3.1 The compositions of the half-cell for the electrochemical preparation of the MgxMo6S8 anode (a) and 

V2O5│Mg(ClO4)2/AN│MgxMo6S8 (x ~2) cell configuration (b) 

In operando synchrotron diffraction and in operando X-ray absorption spectroscopy 

(XAS): In operando synchrotron diffraction during cycling was performed with synchrotron 

radiation at Material Science and Powder Diffraction beamline (MSPD) at ALBA synchrotron. 

The in operando cells for XRD were built by using 2025-type coin cells with 5 mm diameter beam 

entrance covered by glass windows. The cathode (V2O5 mixture total mass of 4.4 mg with an 

average thickness of 140 µm) was prepared by pressing the mixture on stainless steel mesh within 

a 5 mm hole in the center, and MgxMo6S8 anode (pure Mo6S8 mass: 9.94 mg with total average 

thickness of 155 µm) was made in the same way, but with a 5 mm hole in the center (Figure 3.2a). 

In this way, only the V2O5 material is detected during the in operando synchrotron measurements. 

More details of this setup can be found in Chapter 228. In operando synchrotron diffraction patterns 

were collected at room temperature and λ= 0.4132 Å wavelength (30 keV), utilizing the position 

sensitive detector MYTHEN. Data were collected with effective exposure time of 60 s in steps of 

0.006o over angular range of 1.8o - 42o in 2theta during the first two cycles with C/25 rate. In order 

to improve the powder averaging (increasing the number of crystallites contribution), the coin cells 

continuously oscillated +/-5 o around the incoming beam direction. 

The diffraction data analysis was carried out by the Rietveld method using the Fullprof 

software package287. For the Rietveld analysis of Mg-poor and Mg-rich phases of V2O5, the same 

structural model with different lattice parameters was used40. For the Rietveld refinement, the 

occupancy of Mg was determined and fixed according to the charge and capacity obtained from 

the electrochemical measurements, where x in MgxV2O5 is recorded by EC lab® software for each 

diffraction pattern. In operando XAS measurements were carried out at the synchrotron at the KIT, 

Karlsruhe. Photographs and schematic drawing of the in operando cell set up, modified from our 

previous work are shown in Figure 3.2b and Figure 3.2c288. In operando XAS measurements 

were carried out during the first discharge - charge with C/25 rate (active V2O5 of 3.493 mg with 

average thickness of 145 µm and pure Mo6S8 mass of 10.15 mg with average total thickness of 

155 µm). XAS spectra of Vanadium were recorded in quick-XAS (6 min/spectrum) mode in 

fluorescence geometry using a germanium detector, since the penetration depth is several µm thick 

(bulk method), and the chances of a fluorescence photon to reach the detector are excellent. The 

V K-edge for V2O5 was measured during the electrochemical cycling and the energy was calibrated 
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using a vanadium foil as it is commonly employed in XAS experiments. V2O3, VO2, and V2O5 

were used as standard materials. All the data were collected at room temperature with a Si (111) 

double crystal monochromator and all the XAS spectra were processed using the DEMETER 

software package289. 

 

Figure 3.2 Electrode preparation used for in operando cell (a), photographs and schematic diagram of the in 

operando cell design (b, c): (1) and (6) 125 µm Kapton windows, (2) contact spring (Stainless steel), (3) Plastic 

sealing ring, (4) insulating PTFE ring, (5) and (7) current collector and current collector of stainless steel mesh with 

9 mm hole in the center, (8) working electrode (WE), (9) Whatmann separator, and (10) counter electrode (CE) 

(Modified cell design from our previous work288). 

3.3 Results and discussion 

3.3.1 Structural and morphological characterization 

The synchrotron diffraction pattern of pristine V2O5 nanowires powder is displayed in Figure 

3.3, indicating a high crystallinity of the material. All reflections can be indexed as the 

orthorhombic α-V2O5 structure model with space group Pmn21. The lattice parameters are 

a=11.511 Å, b=4.373 Å, and c=3.565 Å, in good agreement with a previous report40. It is quite 

different from the bilayered V2O5·nH2O290 that only has few reflections due to its low crystallinity, 

suggesting the water-free crystalline V2O5 in the present work. Scanning electron microscopy 

(SEM) (see the inset in Figure 3.3) shows that the V2O5 consists of nanowires. The prepared Mo6S8 



28 

 

has hexagonal structure with space group R -3 (see Figure 3.4) and lattice parameters a=b=9.195 

Å, c=10.884 Å (Bragg R-factor=3.74, Rf-factor=1.81). Two small reflections at 13.34o and 16.99o 

imply a very small amount of impurity as pointed out by pink arrows in Figure 3.4. 

 

Figure 3.3 Rietveld refinement from synchrotron diffraction data of V2O5 nanowires (inset: SEM image) 

 

Figure 3.4 Rietveld refinement from diffraction data of Mo6S8 (Mo radiation, λ= 0.70932 Å) 

3.3.2 Electrochemical properties 

 Figure 3.5 shows the voltage-capacity curve related to the magnesiation of the Mo6S8 

electrode in APC electrolyte at C/50. During the 1st discharge, Mo6S8 exhibits one plateau at around 
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0.9 V with an initial discharge capacity of 125 mAh g-1 (theoretical capacity of 128 mAh g-1), 

which is in good agreement with previous works162, 272. 

 

Figure 3.5 The voltage-capacity curve for magnesiation of Mo6S8 electrode in APC electrolyte at C/50 rate 

Figure 3.6 displays the cycling behavior of V2O5 electrode in a cell configuration with 

Mg(ClO4)2/AN electrolyte at C/20. During the 1st discharge, a short plateau at around 0.9 V and a 

long plateau at around 0.4 V are observed. In contrast, only one flat plateau appears at about 1.1 

V for the 1st charge process. V2O5 delivers an initial magnesiation/de-magnesiation capacity of 

103 mAh g-1 (0.35 Mg2+)/110 mAh g-1 and the highest discharge capacity of 130 mAh g-1 in the 6th 

cycle. The cell exhibits a discharge capacity of 102 mAh g-1 in the second cycle with a lower 

plateau compared with that of the 1st discharge. The capacity or the amount of Mg-ion insertion 

not only depends on the plateau but also depends on the working voltage range. The cell shows a 

capacity increase in the following few cycles performed at C/20. After 100 cycles, the cell still 

delivers a capacity of 36 mAh g-1 as shown in Figure 3.6b. The possible reason of capacity decay 

could be ascribed to the unwanted side reaction291, for example, the dissolution of V2O5 active 

material from the electrode 274, 292 or irreversible structural changes for V2O5. The “capacity match” 

between cathode and anode materials might also play an important role in an “unideal state”291. 

However, understanding the cause of capacity fading along cycling is rather complicated for 

current operating cell configurations and requires further investigations. The origin of the capacity 

fading along cycling was not studied in this work. Since MgxMo6S8 was taken in 10-15 % excess 

capacity (based on 1 Mg-ion insertion per V2O5) and this anode material has good rate capability, 

it can provide enough Mg-ions for the intercalation into the V2O5 host structure160, 162. The voltage 



30 

 

profiles of the cell are determined by the curves of V2O5 and MgxMo6S8 in half-cells. As the state 

of charge x in the MgxMo6S8 anode is different for the investigated cell configurations, different 

voltage profiles are observed in spite of the same initial V2O5 electrodes. This difference could 

result from the different practical “capacity match” between cathode and anode materials as well 

as the different polarizations resulting from different C rates applied. However, the 

electrochemical mechanism of V2O5 is expected to be the same, despite the observation of different 

voltage profiles in the cell configuration when similar amount of Mg-ions are intercalated into the 

same V2O5. Note that the plateaus cannot be easily distinguished and assigned in the cell 

configuration system since both V2O5 and MgxMo6S8 electrodes have their specific 

electrochemistry characteristics. In the specific case, the sluggish Mg-ion solid diffusion cannot 

be completely avoided in spite of nanostructured V2O5, but the electrochemical performance can 

be promoted owing to the high reaction areas and short Mg-ion migration pathways of V2O5 

nanowires. A serious capacity degradation of the cell is supposed at higher C rates because of the 

sluggish Mg-ion solid diffusion. Although it is not realistic using such slow charge/discharge rate 

of C/20 for the practical application, this work demonstrates that this cell configuration works and, 

consequently, can be used for investigating V2O5 through in operando techniques. 

 

Figure 3.6 Discharge-charge profiles (a) and cycling performance (b) of V2O5│Mg(ClO4)2/AN│MgxMo6S8 (x ~2) 

full cell (C/20) in the voltage range of 1.6 - 0.01 V. 
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3.3.3 Electrochemical mechanism 

 

Figure 3.7 Contour maps of in operando synchrotron diffraction of V2O5 collected during the first two cycles and 

the corresponding discharge-charge profiles at a current rate of C/25 in cell voltage range between 0.01 - 1.6 V 

In order to clarify the electrochemical mechanism during the Mg insertion and extraction in 

V2O5, in operando synchrotron diffraction was conducted. Contour maps in the selected ranges 

during the first two cycles are displayed in Figure 3.7. At the initial stage of discharge, all the 

reflections could be indexed based on an orthorhombic α-V2O5 phase with space group Pmn21 (see 

the Rietveld refinement of pristine V2O5 in Figure 3.8a). In the beginning of the 1st discharge (Mg 

insertion), most reflections of V2O5 gradually shift to lower angles, indicating a solid solution 

process with an expansion of the unit cell (Region I). The Mg content of the Mg-poor phase at the 

end of the solid solution regime was estimated as Mg0.14V2O5 with lattice parameters of a=11.616 

Å, b=4.369 Å, and c=3.591 Å, according to the diffraction patterns and the corresponding 

electrochemical profile (see the Rietveld refinement of Mg0.14V2O5 in Figure 3.8b, pattern 21st). 

Some new reflections appear at 3.8o, 5.7o, 7.0o, 7.6o, 8.84o, 11.4o, 11.65o, 13.5o, 14.94o, and 15.99o 

when the composition is Mg0.143V2O5, with a capacity of 42 mAh g-1. The intensities of these new 

reflections increase, while those from the Mg0.14V2O5 phase decrease and do not disappear 

completely at the end of discharge (See Figure 3.9). Therefore, in the composition range of 

Mg0.143V2O5 to Mg0.49V2O5 (Mg in total 0.49 at 0.01V), a two-phase transition between Mg0.14V2O5 

and a new phase with higher Mg-content occurs (Region II). The appearing phase also has an 

orthorhombic structure with a space group Pmn21 as the pristine V2O5, but with different lattice 
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parameters. For the Mg-rich phase (MgxV2O5), x was estimated as 0.6 with lattice parameters of 

a=12.503 Å, b=4.181 Å, and c=3.523 Å, according to the Rietveld refinement and the 

corresponding electrochemical profile (see the Rietveld refinement based on pattern 70th in Figure 

3.8c). In the very beginning of the 1st charge process, the intensities of the reflections from the 

Mg-rich MgxV2O5 phase slightly increase, which might be a delay of the structural response, 

because of the slow Mg2+ diffusion inside the electrode materials. Then, the intensities of the Mg-

rich MgxV2O5 phase gradually decrease, while those intensities of the phase with lower Mg content 

grow up. The positions of the reflections remain at slightly lower 2theta values than that for the 

initial state. This small unit cell expansion indicates either some residual Mg in the host structure 

or an irreversible transformation, for example, due to a minor oxygen loss. However, the 

reflections from the Mg-rich MgxV2O5 phase still exist at the end of the 1st charge (see Figure 

3.8d), which might be correlated to the small irreversible capacity. For the second discharge, the 

evolution of the reflections is very resembling to what observed for the first discharge. However, 

the reflections return back to the initial positions of pristine V2O5 and a single phase is obtained at 

the end of the 2nd charged state at 1.4 V (not reach 1.6 V due to the limited beamtime), indicating 

the high reversibility of the V2O5 material during Mg insertion/extraction (see Figure 3.8e). Note 

that the ratio of V and O is constantly 2:5 in the chemical formula, MgxV2O5, despite the existence 

of minor V3+, residual from the surfactant P123 (confirmed by XPS), and the possible dissolution 

of V ions into the solvent or decomposition of V2O5. 
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Figure 3.8 Rietveld refinement of the pristine V2O5 (a), Mg-poor phase Mg0.14V2O5 in the solid solution region 

(pattern 21st, corresponding to the last pattern in solid solution region) (b), the V2O5 electrode at 1st discharged state 

of 0.01 V (c), the V2O5 electrode at 1st charged state of 1.6 V (d), and the V2O5 electrode at 2nd charged state of 1.6 

V (e) 
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Figure 3.9 In operando synchrotron diffraction patterns 

The structural parameters and phases ratios are shown in Figure 3.10. During the beginning 

of the discharge, the phase V2O5 accommodates Mg-ions via a solid solution mechanism up to a 

limiting stoichiometry of Mg0.14V2O5 accompanied with an increase of a and c and a decrease of 

b lattice parameters. After that, magnesium uptake goes through a two-phase region with the 

decrease of the Mg0.14V2O5 amount and an increase of Mg-rich Mg0.6V2O5 phase with constant cell 

parameters for both phases. The phase ratio of Mg0.14V2O5:Mg0.6V2O5 is 13:87 at the end of 1st 

discharge. During the 1st charge process, the material exhibits first a two-phase transition and then 

a solid solution together with a two-phase transition (the decrease of a and c, the increase of b). In 

the second cycle, the material shows the same behavior as observed in the first discharge-charge 

process, except for the slightly different phase contribution of both phases at the end of 2nd 

discharge (Mg0.14V2O5:Mg0.6V2O5 = 15:85) and a very short region close to the end of the 2nd 

charge. The V2O5 material returns back to its original structure at the end of the 2nd charge. 

The MgxV2O5 phase appearing during the electrochemical insertion of magnesium into V2O5 

differs from MgV2O5 and Mg0.2V2O5 reported in the literature293-294. MgV2O5 crystallizes in 

orthorhombic structure with a space group of Cmcm and Mg0.2V2O5 has the same structure as the 

parent V2O5 with similar lattice parameters293-294. In addition, first-principles calculations, in 

which a δ-phase (space group: Cmcm) presuppose a better mobility for Mg diffusion295, are not 

supported by our experimental results either. Meanwhile, first-principles calculations also 

illustrate that an ε-phase295, with a specific ordering of Mg-ions at half magnesiated α-V2O5 host, 

is the most stable configuration in the α host and is somehow in agreement with our result, like Li-

ordering is observed in Li-V2O5 system68, 295 and has Li-ions at alternate sites along with the a-

axis296. Recently, Xiao et al.297 reported that V2O5 undergoes a phase-transition from α-phase to ε-

phase and δ-phase in turn upon Mg insertion (0→0.5→1), using first-principles calculations. In 

the Li-V2O5 system, it is well known that a topotactic reaction is observed during lithium insertion 

into V2O5 (0 < x < 1)298, where ‘‘topotactic‘‘ is used to describe that the basic structure of the 

positive electrode material is maintained during the reaction. The structure of ε-Li0.46V2O5 

(a=11.417 Å, b= 3.565 Å, and c=4.508 Å) has been identified and is very close to that of α-V2O5
296. 

The newly observed Mg0.6V2O5 phase (a=12.503 Å, b=4.181 Å, and c=3.523 Å) can also be called 

ε-Mg0.6V2O5 phase since the basic structure of the pristine V2O5 material is maintained, although 

the differences in the lattice parameters are more pronounced. However, an increase of the 
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interplanar distance and a decrease of lattice parameter a were observed during the lithiation of α-

V2O5
296, which is different from a decrease of the interplanar distance and an increase of lattice 

parameter a, as obtained during magnesiation of α-V2O5 (Region I in Figure 3.7). This is attributed 

to the larger charge and smaller radii of Mg2+ in the host structure V2O5, compressing the layer 

and extending the a direction. 

 

Figure 3.10 The structural parameters and phases ratios from selected diffraction patterns with Rietveld refinement 

during the first two cycles for V2O5 

In order to probe the electronic and structural environments of V-ions during the 

electrochemical process, in operando X-ray absorption spectroscopy was performed on the V2O5 

cathode material in an in operando coin cell. For the V K-edge, XAS spectra of V2O5, VO2, and 
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V2O3, where the V-ions exist in +5, +4, and +3 oxidation states, respectively, are used as standard 

materials. The edge position of V K-edge spectra, collected at different voltages, is compared with 

reference spectra. The amount of magnesium inserted into the cathode was determined from the 

charge passed through the cell recorded by EC lab® software for each spectrum. As demonstrated 

in Figure 3.11, in terms of V K-edge, the edge position of the XAS spectrum, corresponding to 

the initial state, is slightly lower than that of the reference V2O5 spectrum. Therefore, it can be 

confirmed that the oxidation state of V is mainly +5 in the initial state, which is in agreement with 

the XPS result for pristine V2O5 (Figure 3.15). In addition, an intense pre-edge peak on XANES 

data for the V K-edge of pristine V2O5 is observed, which is attributed to the transitions between 

the 1s and bound p-hybridized d-states299-300 when the centro-symmetric character of V site is lost. 

This is because the crystal structure of V2O5 is orthorhombic, consisting of layers of [VO5] square 

pyramids sharing edges and corners, and the V-ions are five-fold coordinated by oxygens in a 

distorted tetragonal pyramid as shown in Figure 1.2. 

 

Figure 3.11 In operando X-ray absorption near edge structure (XANES) for V K-edge during the first discharge-

charge process; the isosbestic points are indicated by red arrows. 

During the discharging process, the edge position of the V K-edge continuously shifts to lower 

energy, indicating a reduction of vanadium ions, which is correlated to the increase of inserted Mg 

ions into V2O5. This is consistent with the electrochemical data (see Figure 3.12) and XPS result 

in Figure 3.15. The edge position of the V K-edge for the electrode discharged to 0.01V (0.51 

magnesium per mol V2O5 inserted) is almost in the middle between that of standard V2O3, and 
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V2O5, where a similar result was observed for bilayered V2O5 after Mg-ion insertion278. The pre-

edge peak (A in Figure 3.11) also gradually shifts to lower energy and becomes broad, while the 

pre-edge peak intensity progressively reduces, suggesting the vanadium ions reduction and the 

deformation of the local V environments during Mg2+ insertion. The broadness of the pre-edge 

peak is attributed to co-existence of distorted tetragonal pyramid and centrosymmetric VO6 

octahedral. The edge resonance (B and B' in Figure 3.11) displays significant changes in both 

intensity and shape, which is related to the energy absorption by core electrons300-301. During the 

discharge process, the shape changes from two broad peaks to a single broad peak (peak B in 

Figure 3.11) and the intensity of one peak at around 5486 eV slightly increases while the other 

one at around 5493 eV slightly decreases. Moreover, two distinct isosbestic points302 (red arrows 

in Figure 3.11) are detected at both high and low energy for discharge and charge processes, 

indicating the two-phase along with the Mg ions insertion into and extraction from V2O5. For the 

charging process, the edge position of V K-edge shows a reversible behavior with a shift to higher 

energy, indicating the oxidation of V in the material. The pre-edge peak and edge resonance (A' 

and B' in Figure 3.11) also display reversible behavior compared with that of the discharging 

process. However, unfortunately, the recording of the charging process is not complete due to a 

beam loss during the experiment at the beamline. 

 

Figure 3.12 Discharge-charge profiles of V2O5│Mg(ClO4)2/AN│MgxMo6S8 (x ~2) full cell for in operando XAS 

(C/25) 
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To study the local structure of the samples, Raman scattering was carried out as shown in 

Figure 3.13. As known in the pristine orthorhombic V2O5, oxygen atoms occupy four types of 

sites in a [VO5] slab, denoted as O(1)–O(4). The stretching mode of the V–O(1) bond is located at 

993 cm-1 while its bending vibrations are located at 404 and 283 cm-1. Raman peaks at 484 cm-1 

and 700 cm−1 are attributed to the bending vibration of the V–O(2) and the stretching vibration of 

the V–O(3), respectively. The peaks at 528 and 304 cm-1 are assigned to the stretching and bending 

vibrations, respectively, of the V–O(4) bond. The peaks at lower wavenumbers, 143 and 197 cm−1 

are due to a weak van der Waals interaction between adjacent [VO5] slabs. These results are in 

good agreement with previous work171, 303. After Mg2+ is inserted, significant changes can be 

obtained and some peaks from V2O5 become weak such as 993 and 143 cm-1, while those at 700, 

528, 304, and 283 cm-1 completely disappear. Meanwhile, some broad new peaks appear at 159, 

246, 360, 460, 509, 751, 896, and 945 cm-1. Similarly, significant changes via in operando Raman 

study are also obtained for V2O5 during Li-insertion in the range of 0<x<1.0 (LixV2O5)303. 

Therefore, these new peaks might be attributed to the new phase of ε-Mg0.6V2O5, where the broad 

peaks are probably ascribed to the disordered local structure in the ε-Mg0.6V2O5 phase. A broad 

peak centered at 900 cm-1 is also obtained for Mg0.5V2O5 in Gershinsky’s work171. It can be 

deduced that Mg ions are inserted into the interlayer of V2O5 crystals and bonded with oxygen 

atoms ([MgO6] octahedra) in the V2O5 structure to form the Mg-rich MgxV2O5 phase. After 

charging, new peaks observed in the discharged state disappear and those peaks from V2O5 return 

back to the initial state.  
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Figure 3.13 Raman spectrum of pristine V2O5, 1st discharged V2O5, and 1st charged V2O5 

X-ray photoelectron spectroscopy (XPS) was used to look into the surface chemistry and 

surface elemental composition of pristine V2O5, 1st discharged V2O5, and 1st charged V2O5 (XPS 

survey spectra of three materials see Figure 3.14). 

 

Figure 3.14 XPS survey spectra of pristine V2O5, 1st discharged V2O5, and 1st charged V2O5 

According to Figure 3.15, the V 2p spectrum of pristine V2O5 can be fitted with two doublets: 

a main one with V 2p3/2 at 517.2 eV and a second one with weak intensity at 515.7 eV304, which 

indicates that V exists mainly in the oxidation state +5 with a minor contribution of vanadium in 
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+3. It can be seen that the O 1s spectrum of pristine V2O5 can be fitted with 3 peaks at 533.6 eV, 

532.0 eV, and 530.1 eV, which are corresponding to the O-C, O=C, and V-O groups305-307. O-C, 

O=C could be attributed to the residual surfactant symmetric triblock copolymer P123 during 

synthesis while the minor V(III) could be assigned to the reduction of residual surfactant P123 

during the annealing at 400 oC. The V 2p spectrum in the discharged state could be fitted with 3.6 

at% V(IV) at 516.7 eV, 2.6 at% V(V) at 517.3 eV, and 0.7 at% V(III) at 515.7 eV , while the V 2p 

spectrum in the charged state displays two V 2p3/2 components at 517.3 eV and 515.7 eV, returning 

back to the spectrum of pristine V2O5, with 5.9 at% V(V) and 0.6 at% V(III). Therefore, ~60 % of 

V was reduced to V(IV) during the electrochemical discharge and then again fully oxidized upon 

electrochemical charging, which is consistent with the electrochemical data (x=0.62 in MgxV2O5). 

 

Figure 3.15 V 2p and O1s X-ray photoelectron spectra of pristine V2O5, 1st discharged V2O5, and 1st charged V2O5 
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3.4 Conclusion 

In conclusion, orthorhombic V2O5 nanowires were successfully synthesized via a hydrothermal 

method. In the V2O5│Mg(ClO4)2/AN│MgxMo6S8 full cell, the V2O5 nanowires deliver an initial 

discharge/charge capacity of 103 mAh g-1/110 mAh g-1 and the highest discharge capacity of 130 

mAh g-1 in the 6th cycle at a C/20 rate. The reversibility of the magnesium insertion/extraction in 

the V2O5 is clarified through in operando synchrotron diffraction and in operando XAS together 

with ex situ Raman and XPS. In operando synchrotron diffraction and ex situ Raman revealed the 

formation of a new phase of Mg-rich MgxV2O5 during Mg insertion and the recovery of V2O5 

during Mg extraction. In operando XAS and ex situ XPS confirmed the reduction/oxidation of 

vanadium during the Mg insertion/extraction. It is the first time that the structural evolution and 

charge compensation mechanisms of Mg insertion into V2O5 in an electrochemical full cell are 

elucidated through in operando synchrotron diffraction and in operando XAS. This will pave the 

way to study the mechanism of electrode materials not only in the Mg-based batteries, but also in 

other various different challenging systems. 

 

Detailed information can be found: J. Am. Chem. Soc. 2019, 141, 2305−2315 

https://pubs.acs.org/doi/10.1021/jacs.8b08998 
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 In operando study of orthorhombic V2O5 as cathode 

material for rechargeable K-ion batteries 

4.1 Introduction 

Since the first rechargeable potassium battery was designed by Eftekhari308-309 in 2004, 

employing Prussian blue (PB) as cathode, KIBs are becoming another promising candidate to 

replace LIBs for the large-scale EESs. KIBs are similar to LIBs in terms of working principle 

(“rocking chair”), but the advantages of KIBs are potassium abundance and low cost. Despite the 

fact that K-ion is larger and heavier than Li+, Na+, and Mg2+, the K+/K couple has a lower standard 

electrode potential (-2.936 V vs. SHE) than that of Na+/Na (-2.714 V vs. SHE) and Mg2+/Mg (-

2.37 V vs. SHE)38, 309-311. At the same, the usage of heavier alkali element (Na, Mg, and K) does 

not significantly influence the total weight of batteries. Concerning the capacity, it is unfair to 

compare the atomic weight of metal for gravimetric capacity, instead one should compare the 

formula weight of cathode electrode materials as stated by Komaba et al.312-313. For example, the 

mass ratio of (P2-type K2/3CoO2):(O3-LiCoO2) is 1.19, giving a 19% increase of mass from 

cathode material for the whole KIB despite the presence of heavier K atom (MK:MLi=39/6.9=5.7). 

In addition, K-ion displays a lower ion-solvent interaction comparing to Li- and Na-ions. The 

lower desolvation energy and smaller size of solvated K+ result in fast diffusion kinetic and high 

rate capability of KIBs172. Moreover, Al foil can be used as current collector in both NIBs and 

KIBs at low potential. On the contrary, undesirable Li alloy is forming with Al173-174, which obliges 

the use of the more expensive and heavy Cu foil instead of Al in LIBs. Compared with MBs, higher 

rate capability is expected for KIBs due to faster solid state diffusion of potassium. Similar to MBs, 

KIBs are still in their infancy and face large challenges to develop electrode materials for their 

commercial application. To date, only limited cathode and anode material have been reported as 

described in Chapter 1 (1.3.4). Orthorhombic layered V2O5 materials are very promising for the 

application in KIBs, due to their high capacity and working voltage in LIBs. So far, few works 

focus on the study of layered V2O5 materials. Tian et al.209 reported about a crystalline V2O5 and 
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V2O5·0.6H2O xerogel cathode, where V2O5 has a discharge capacity of only 44.3 mAh g-1 at 50 

mA g-1. Very recently, amorphous V2O5/carbon nanotube sponge was reported by Ye and 

coauthors210, which exhibited an initial discharge capacity of 206 mAh g-1 at 5 mA g-1. However, 

only limited capacities have been obtained for V2O5 material in KIBs and a detailed storage 

mechanism of V2O5 upon K-ion insertion/extraction is still missing. 

As far as we know, in operando techniques, namely, in operando synchrotron diffraction and 

in operando X-ray Absorption Spectroscopy (XAS), have not yet been employed to look into the 

detailed storage mechanism of V2O5 materials in KIBs. As demonstrated by first-principles 

calculations, the migration barrier of K+ in monolayer V2O5 is reduced to 0.39 eV, that is much 

lower than in bulk V2O5 (1.66 eV)277, 314. Nanostructured V2O5 materials are prepared to enhance 

the electrochemistry of V2O5 cathode and to investigate the reaction mechanism during cycling. In 

this chapter, we investigated the electrochemical property of V2O5 nanoparticles in 1M KPF6/PC 

and its storage mechanism by in operando synchrotron diffraction and in operando X-ray 

absorption spectroscopy (XAS). 

4.2 Experimental 

Synthesis of V2O5 nanoparticles: The V2O5 nanoparticles were synthesized with the same 

method as described in the experimental part in Chapter 3 (3.2) except for an intermittent stirring 

step. Typically, 1.0 ml of 2 M HCl, 0.3 g of ammonium metavanadate (NH4VO3), and 0.5 g of 

surfactant P123 (EO20PO70EO20, where EO and PO represent ethylene oxide and propylene oxide, 

respectively) were mixed into 30 ml of deionized water under ultrasonication for 10 minutes and 

stirring for 1 h. After that, the mixed solution was transferred to a 50 ml Teflon-lined autoclaves 

and maintained at 120 oC for 24 h with intermittent stirring in an oven. The resulting precipitates 

were filtered and washed with water and acetone several times, then dried under vacuum at 120 

oC for 24 h. The product was annealed at 400 oC for 2 h in air with a heating rate of 10 oC/min. 

Preparation of electrolyte: The preparation of electrolyte was carried out in glovebox under 

Ar atmosphere with very low H2O and O2 content (<2 ppm). 1 M KPF6/Propylene carbonate (PC) 

electrolyte was prepared by dissolving a corresponding amount of KPF6 powder in Propylene 

carbonate with vigorous stirring at room temperature in the glovebox. All these chemicals were 

water free grade and purchased from Sigma-Aldrich. 
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Morphological and Structural Study: The morphology was studied with a Zeiss Supra 55 

Scanning Electron Microscope (SEM) with primary energy of 15 keV. The structural 

characterization was done using synchrotron radiation (λ = 0.4131 Å, 30 keV) at the Material 

Science and Powder Diffraction beamline (MSPD) at ALBA synchrotron (Barcelona, Spain)266. 

The powder diffraction patterns were measured in capillary geometry with powders filled in 0.5 

mm Ø boro-silicate capillary. A LabRam Evolution HR FROM Horiba equipped with Nd: YAG 

laser (633 nm, 100 mW) and a CCD detector (Horiba) was used to collect the Raman scattering of 

the samples. Meanwhile, a 600 grating was used to split the measurement signal with a ×100 

objective (NA 0.95) for all the pristine and cycled samples. Each Raman spectrum was collected 

for 30 seconds with laser source of 10 mW. In addition, the discharged and charged electrodes 

were sealed in an in situ Raman cell with a quartz window inside a glovebox for Raman 

measurement. For transmission electron microscopy (TEM) measurements, all samples were 

prepared under an argon atmosphere inside a glovebox. The samples dispersed onto a carbon-

coated grid by dry powder deposition were transferred to the TEM by using a Gatan TEM vacuum 

transfer holder. The TEM samples were examined using a Titan 80–300 electron microscope (FEI), 

equipped with a CEOS image spherical aberration corrector, high angle annular dark field 

(HAADF) scanning transmission electron microscopy (STEM) detector and a Tridiem Gatan 

image filter (GIF). The microscope was operated at an accelerating voltage of 300 kV. 

Electrochemical Characterization: The electrode slurry/mixture was prepared by mixing the 

active material based on V2O5 nanoparticles, with Super C65 C (TIMCAL) and polyvinylidene 

difluoride (PVDF) binder in a ratio of 70:20:10 with N-Methyl-2-pyrrolidone solvent. The slurry 

was coated on Al foil of 15µm and dried at 70 oC overnight. The electrodes were cut into 12 mm 

diameter and were dried in the vacuum oven at 110 °C for 12h. The electrochemical performance 

was studied in 2032-type coin cell using potassium anode and V2O5 cathode with Whatman 

separator in 1 M KPF6/PC electrolyte in glovebox filled with Ar. Galvanostatic cycling 

experiments were conducted with a rate of C/12 on a multichannel electrochemical workstation 

(Bio-Logic VMP) the (theoretical capacity is calculated based on the insertion of 2 mol K+ per 

V2O5). For ex situ Raman and XPS, the cells were disassembled after cycling and the electrodes 

were washed with PC in Ar-filled glovebox. Specifically, two samples were prepared: at 1.5 V 

after the 1st discharge (K-insertion) and at 4.0 V after the 1st charge (after K-deinsertion). 
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In operando synchrotron diffraction and in operando X-ray absorption spectroscopy: In 

operando synchrotron diffraction was performed at Material Science and Powder Diffraction 

beamline (MSPD) at ALBA synchrotron. The in operando cells were built using 2025-type coin 

cells with glass windows of 5 mm diameter beam entrance. The cathode was prepared by pressing 

the electrode mixture on Al mesh having a 5 mm hole in the center. In the same way, the anode 

was prepared by sticking a metallic K on Al mesh with a 5 mm hole in the center. More details of 

this setup can be found in Chapter 228. In operando synchrotron diffraction data were collected at 

room temperature with radiation λ= 0.4131 Å wavelength (30keV) and position sensitive detector 

MYTHEN. Data were collected with effective exposure time of 60 s in steps of 0.006o over angular 

range of 1.8o - 42o in 2theta during the first cycles with C/15 rate. The coin cells were continuously 

oscillated +/-5o around the incoming beam direction to improve the powder averaging (increasing 

the number of crystallites contribution). The diffraction data analysis was carried out by the 

Rietveld method using the Fullprof software package287. 

In operando XAS measurements were performed at synchrotron beamline P65 at PETRA III 

(DESY, Hamburg). The galvanostatic charge and discharge cycle was performed at C/14 rate in 

2025-type coin cells with 5mm-diameter Kapton window. XAS spectra of vanadium were recorded 

in quick-XAS (6 min/spectrum) mode in fluorescence geometry using PIPS (passivated implanted 

planar silicon) diode. The V K-edge for V2O5 was measured during the 1st cycle. The energy was 

calibrated utilizing a vanadium foil as commonly applied in XAS experiments. V2O3, VO2, and 

V2O5 were used as standard materials. All the data were collected at room temperature with a 

Si(111) double crystal monochromator (DCM) and all the XAS spectra were processed using the 

DEMETER software package289. 

4.3 Results and discussion 

4.3.1 Structural and morphological characterization 

Figure 4.1 displays the synchrotron diffraction pattern of pristine V2O5 nanoparticles, 

suggesting the high crystallinity of V2O5 nanoparticles. All reflections can be indexed in the 

orthorhombic α-V2O5 with space group Pmn21, and the lattice parameters are a=11.509 Å, b=4.374 
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Å, and c=3.564 Å, in consistecy with a previously reported work40. Scanning electron microscopy 

(SEM), inset image in Figure 4.1, confirms that the V2O5 is consisting of nanoparticles. 

 

Figure 4.1 Rietveld refinement from synchrotron diffraction data of V2O5 nanoparticles (inset: SEM image) 

4.3.2 Electrochemical properties 

Figure 4.2a displays the voltage-capacity curves of the V2O5 nanoparticles based electrode in 

1 M KPF6/PC electrolyte with a rate of C/12 in the potential range of 1.5 - 4.0 V vs K+/K. During 

the first discharge, a short slope is observed until around 1.8 V, followed by a long plateau at about 

1.7 V. In contrast, only one slope can be observed up to 4.0 V during the first charge process. 

During the second cycle, only sloped curves can be observed, while a pair plateau of 2.6 V/2.85 V 

can be seen in the 5th cycle for the discharge and charge process, respectively. Although the 

discharge-charge capacities in the first cycle are high (200 mAh g-1, corresponding to the insertion 

of 1.36 K+)/217 mAh g-1, the cell shows a continuous capacity loss delivering a discharge capacity 

of 94 mAh g-1 for the 5th cycle. The discharge capacity reaches the minimum value of 54 mAh g-1 

at the 31st cycle. After that, it slowly increases up to 80 mAh g-1 at the 200th cycle, as shown in 

Figure 4.2b. 
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Figure 4.2 Discharge-charge profiles (a) and cycling property (b) of V2O5 nanoparticles in 1 M KPF6/PC (C/12) 

4.3.3 Electrochemical mechanism 

 

Figure 4.3 In operando synchrotron diffraction of V2O5 during the first cycle and the corresponding voltage profile 

at a rate C/15 

In order to elaborate the electrochemical storage mechanism upon K ions insertion and extraction 

in V2O5, in operando synchrotron diffraction was collected during the first discharge-charge 

processes as shown in Figure 4.3. At the initial stage of discharge (before starting the 

electrochemistry), all reflections except those marked with Asterisk from Al could be indexed on 

an orthorhombic α-V2O5 phase crystallized in space group Pmn21 (see in Figure 4.4a for the 
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Rietveld refinement of pristine V2O5). In the beginning of the 1st discharge (K insertion, Region I 

with a capacity up to 89 mAh g-1), some reflections of V2O5, such as 5.41o, 6.96o, 8.58o, 9.07o, 

13.30o, 13.94o, 14.37o, 15.66o, and 15.90o, gradually shift to lower angles, indicating a solid 

solution process with an expansion of the unit cell till the stoichiometry K0.6V2O5. In contrast, 

other reflections such as 4.11o, 5.79o, 6.80o, 8.24o, 8.82o, 9.86o, 10.85o, 11.04o, 12.37o, and 13.51o, 

keep in the same position and their intensities also slowly reduce. Along with further K ions 

insertion (1.65V, Region II), the reflections continuously shift to lower angles or keep in the same 

positions, while three new broad reflections, 6.78o, 7.75o, and 12.86o (pointed out by green arrows), 

appear. The intensities of the new reflections slowly increase until the end of first discharge at the 

lower limit potential cut-off of 1.5 V, indicating a coexistence of two-phase transition and solid 

solution mechanisms of insertion. Among all reflections, the one at 7.75o emerges at the potential 

of 1.65 V when 0.6 mol of K+ per mol V2O5 (89 mAh g-1) is inserted. At the end of discharge at 

1.5 V (189 mAh g-1), most of the reflections related to the initial V2O5 disappear and only some 

broad reflections related to the KxV2O5 phase (x=1.28) can be observed (see the diffraction at 

discharged state of 1.5 V in Figure 4.4b, pattern 69th), which might be attributed to the dissolution 

of V2O5 into the electrolyte or the formation of a KxV2O5 compound with low crystallinity. The 

crystal structure of the new phase has not yet been clarified. Unfortunately, the diffraction data are 

not good enough to perform Rietveld refinement and to determine the new phase formed at the 

end of discharge. 

During the 1st charge, two broad new reflections at 4.13o and 6.11o emerge (pointed out by black 

arrows in Figure 4.3) and their intensities increase. At the same time some reflections, such as 

6.79o, 6.90o, 7.73o, 8.04o, 9.03o, 12.85o, 13.56o, and 15.01o, shift to higher angles and slightly grow 

up. The other small broad peaks keep unchanged. The reflections cannot recover to its initial 

positions of pristine V2O5, suggesting irreversibility of the V2O5 material during K ions 

insertion/extraction (see Figure 4.4b). Obviously, the K insertion/extraction into V2O5 occurs via 

different reaction mechanism comparing to Li ions insertion in LIBs, where α-, ε-, δ-, γ-, and ω-

phase can be observed depending on the amount of inserted Li-ions (x)15, 70-72. Particularly, in 

LIBs, the α-phase (x<0.1) and ε-phase (0.35<x<0.7) are fully reversible and the δ-phase is 

observed when x is 1 for LixV2O5. An irreversible transformation of δ-phase into γ-phase is 
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observed when x is over 1, and the γ-phase can be reversibly cycled in the range of 0≤x≤2.0, while 

maintaining the γ-type structure. 
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Figure 4.4 Rietveld refinement of the pristine V2O5 (a), the comparison of discharged at 1.5 V and charged at 4.0 V 

with pristine V2O5 (b), 

In operando XAS was performed on the V2O5 cathode material to probe the electronic and 

structural environments of V-ions during the electrochemical process. As displayed in Figure 4.6, 

the edge position of V K-edge spectrum of the material at the initial state (i.e. OCV) is slightly 

lower than that of reference V2O5 spectrum, where V2O5, VO2, and V2O3 are referred as standard 

materials with +5, +4, and +3 oxidation states, respectively. Hence, it can be confirmed that the 

oxidation state of V is mainly +5 in the initial state. Moreover, an intense pre-edge peak on XANES 

data is observed for the V K-edge of pristine V2O5, which is due to the transitions from 1s to bound 

p-hybridized d-states299-300, with the loss of the centrosymmetric nature of V site. The 

orthorhombic crystal structure V2O5 is composed of square pyramids [VO5] layers by sharing 

corners and edges. The V-ions are five-fold coordinated by oxygens in a distorted tetragonal 

pyramid as shown in Figure 1.2. 

During the first discharge, the edge position of V K-edge continuously shifts to lower energy, 

suggesting the reduction of vanadium ions due to the insertion of K ions into the V2O5 structure. 

The edge position of the V K-edge related to the electrode discharged to 1.5V (x=0.91 in KxV2O5) 

is almost in the middle between that of standard VO2 and V2O5, which is in good agreement with 

the electrochemical data (Figure 4.5). Meanwhile, the pre-edge peak (A in Figure 4.6a) slowly 
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shifts to lower energy and its intensity gradually decreases, implying the reduction of the vanadium 

and the changes of the local V environments during K+ insertion, owing to the co-existence of 

distorted tetragonal pyramid and centrosymmetric VO6 octahedral. The edge resonance (B and B' 

in Figure 4.6) related to the energy absorption by core electrons300-301 does not show remarkable 

changes in both shape and intensity. This result is quite different from that obtained with V2O5 in 

MBs (Chapter 3). Furthermore, only one distinct isosbestic point302 (red arrows in Figure 4.6a) is 

obtained at ~ 5474 eV energy for the discharge process, implying the two-phase reaction upon K 

ions insertion into the V2O5, in agreement with the result obtained from the in operando 

synchrotron diffraction. 

 

Figure 4.5 Discharge-charge profiles of V2O5 in 1 M KPF6 electrolyte for in operando XAS (C/14) 

During the first charge (K de-insertion), both the edge position of V K-edge and pre-edge peak 

(A' in Figure 4.6b) exhibit a reversible behavior and shift to higher energy, indicating the oxidation 

of V in the material. The intensity of pre-edge peak continuously increases during the K ions 

extraction from the materials, indicating the reduction of the symmetry of the V ions. Moreover, 

one distinct isosbestic point (red arrows in Figure 4.6b) is also obtained at ~ 5474 eV energy in 

the charge process, indicating a two-phase reaction upon K ions extraction from the structure. 

However, the edge position of V K-edge and pre-edge peak at the charged state of 4.0V do not 

return to their initial positions and are slightly lower than that related to the pristine V2O5, which 

is consistent with the in operando synchrotron result and suggests an irreversible process. 
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Figure 4.6 In operando V K-edge XANES spectra during the 1st cycle in 1 M KPF6; the isosbestic points are 

indicated by red arrows. 

To further study the local structure of the material upon K ions insertion/extraction, Raman 

spectra were collected on pristine, potassiated and depotassiated V2O5 electrodes, as shown in 

Figure 4.7 As known in the pristine orthorhombic V2O5, oxygen atoms occupy four types of sites 

in a [VO5] slab, denoted as O(1)–O(4). The detailed Raman peaks are clearly described in Chapter 

3 (3.3.3) and these results are consistent with previous works171, 303. After K ions insertion (1st 

discharge), significant changes can be observed and some peaks related to V2O5 at 994, 528, and 

284 cm-1 become weak and broad, while those at 701, 304, and 284 cm-1 completely disappear. 

Meanwhile, some broad and distinct new peaks appear at 226, 340, 455, 763, 880, and 931 cm-1. 

Similarly, these significant changes in the Raman spectra are also obtained on V2O5 after Mg ions 

insertion, as reported in Chapter 3 (3.3.3). Hence, these new peaks might be ascribed to the new 

phase of KxV2O5, where the broad peaks are probably attributed to the disordered local structure 

in the KxV2O5 phase. It can be deduced that K ions are inserted into the interlayer of V2O5 crystals 

and bonded with oxygen atoms ([KO6] octahedra) in the V2O5 structure to form the K-rich KxV2O5 

phase. On the charged sample, after (partial) K ions extraction (Kx-yV2O5), some new peaks 

observed at 763, 880, and 931 cm-1 still remain in the same positions and several additional broad 

peaks can be observed between 200 to 700 cm-1, suggesting the similar structure of KxV2O5 and 

Kx-yV2O5 and the existence of a second phase in the charged sample. The appearance of peaks at 

163 and 996 cm-1 indicates the existence of layered structure similar to that of pristine V2O5, but 

the material could not return back to the initial state of V2O5 after K ions extraction These results 
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confirm that the K ions insertion leads to the formation of KxV2O5 phase and partial irreversibility 

occurs during the first cycle as identified by in operando synchrotron diffraction and XAS. 

 

Figure 4.7 Raman spectrum of pristine V2O5, 1st discharged V2O5, and 1st charged V2O5 

The microstructural and chemical properties of V2O5 before and after discharge/charge were 

studied by Transmission electron microscopy (TEM). Figure 4.8a and b display the STEM-

HAADF and high resolution TEM images of the pristine V2O5, respectively, demonstrating the 

nanoparticles of V2O5. The lattice fringes with a distance of 0.44 nm correspond to the (010) planes 

of V2O5, in good agreement with the result confirmed by Rietveld refinement. Figure 4.8c 

provides the mapping of C, O, K and V, confirming the uniform distribution of K element after 

insertion into the V2O5 crystal structure. Figure 4.8d and e demonstrate the non-uniform 

distribution of K element in the V2O5 electrode between the surface area and central area after K 

ions extraction. This result implies that part of K ions still remain in the structure after charging 

and further confirms the irreversibility of V2O5 during cycling. 
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Figure 4.8 STEM-HAADF and high resolution TEM images of the pristine V2O5 (a and b), Mapping of the 1st 

discharged V2O5 (c), and STEM-HAADF and EELS of the 1st charged V2O5 (d and e, inset: EDS)  
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4.4 Conclusion 

In conclusion, pure orthorhombic V2O5 nanoparticles with high crystallinity were successfully 

prepared via a hydrothermal approach. In the 1 M KPF6/PC electrolyte, V2O5 nanoparticles deliver 

an initial discharge/charge capacity of 200 mAh g-1 (1.36 K+)/217 mAh g-1 in the potential range 

of 1.5 - 4.0 V at a rate of C/12. The electrode shows a rapid capacity loss, which drops to 54 mAh 

g-1 after 31 cycles. After that, the discharge capacity slowly increases up to the value of 80 mAh 

g-1 at the 200th cycle. The storage mechanism upon K ions insertion into V2O5 is studied by in 

operando synchrotron diffraction and in operando XAS. At the beginning, the K insertion goes 

via solid solution mechanism until 1.65 V. At higher degree of insertion, by further decreasing the 

potential, it is recognised that a solid solution mechanism and two-phase transition coexist. The 

analysis of the charge process (K extraction) identifies irreversible processes. In operando XAS 

confirms the reduction/oxidation of vanadium during the K insertion/extraction with part of 

irreversibility. It is important to notice that V2O5 in KIBs displays a completely different 

electrochemical mechanism from that observed in MBs, which might be attributed to the large size 

of K ions. The irreversibility of V2O5 upon K ions insertion/extraction in KIBs is well identified 

by in operando synchrotron diffraction and in operando XAS and ex situ Raman and TEM.  
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 In operando study of orthorhombic V2O5 as cathode 

material for rechargeable aqueous Zn batteries 

5.1 Introduction 

In comparison to the previous discussed technologies, rechargeable aqueous ZBs are much 

more promising candidates for large-scale EESs due to their high safety, abundant resources, and 

low cost19, 215. Additionally, the nontoxic, inflammable, and water-based electrolyte and low 

humidity demand during assembly process reduce the manufacturing cost as well217-218. Compared 

with non-aqueous electrolyte (about 1-10 mS cm-1), the ionic conductivity of the aqueous electrolyte 

(up to 1 S cm-1) is much higher19. Meanwhile, aqueous electrolytes can lower the activation energy 

for charge transfer at the electrode/electrolyte interface. The high overpotential for hydrogen 

evolution on Zn (-0.76 V vs. SHE) makes it stable in water216. Meanwhile, the utilization of 

metallic Zn results in specific capacity of 820 mAh g-1 and a volumetric capacity of 5854 mAh 

cm-3, providing high energy density. To date, many alternative cathode materials for aqueous ZBs 

have reported as described in the introduction part of the first Chapter (1.3.4). 

Among them, vanadium-based oxides with open framework show high potential as the 

cathode materials for aqueous ZBs. As discussed in the introduction part of the first Chapter 

(1.3.4), several vanadium-based oxides are studied as cathode materials. V2O5 as a typical layered 

material is also investigated in aqueous ZBs. For example,  Zhou and co-authors259 recently 

reported that V2O5 shows high performance in 3 M ZnSO4 electrolyte compared within different 

concentration and in different types of salts like Zn(NO3)2, Zn(CH3COO)2, and ZnCl2. It delivers 

a high capacity of 224 mAh g-1 at 100 mA g-1 and good cycling stability at high current density of 

1 and 2 A g-1 in 3 M ZnSO4 electrolyte. Moreover, ex situ XRD demonstrated that a new phase of 

ZnxV2O5 is formed upon Zn-ions insertion into V2O5. Besides, Zhang et al.260 reported the study 

of V2O5 as cathode material in aqueous ZBs employing 3 M Zn(CF3SO3)2 as electrolyte. In this 

electrolyte, V2O5 exhibits a capacity of 470 mAh g-1 at 0.2 A g-1 and high capacity retention of 

91.1% up to 4000 cycles at 5 A g−1. Moreover, it displays good performance also in rough 
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conditions at both high (50 oC) and low (-10 oC) temperatures. The co-intercalation of hydrated 

Zn ions into V2O5 crystal structure was proposed as well, confirming by ex situ XRD, XPS, and 

TEM. However, a detailed investigation of structural changes of V2O5 upon Zn-ion 

insertion/extraction is still missing and is, therefore, the aim of this work. 

5.2 Experimental 

Synthesis of V2O5 nanowires: V2O5 nanowires were prepared via a modified hydrothermal 

method followed by heat treatment53, 88. Briefly, 0.18 g of commercial V2O5 powder (Alfa Aesar, 

99.99%) was added to 30 ml of deionized water under mechanical stirring for few minutes to form 

a light orange suspension. Then, 2.5 ml 30 % hydrogen peroxide (H2O2) was dropwise added to 

the above suspension and kept stirring for 30 mins to get a transparent orange solution. The 

obtained solution was transferred to a 50 ml Teflon-lined stainless-steel autoclave and kept at 190 

°C for 4 days. The precipitates were collected and washed with deionized H2O several times and 

dried at 80 °C for 12 h. Finally, the product was annealed at 400 °C for 2 h with a heating rate of 

5 °C min-1 in air atmosphere. 

Preparation of electrolyte: The 1 M ZnSO4 electrolyte was prepared by dissolving a 

corresponding amount of ZnSO4·7H2O powder in distilled H2O with vigorous stirring at room 

temperature. 

Morphological and Structural Study: The morphology was studied with a Zeiss Supra 55 

Scanning Electron Microscope (SEM) with primary energy of 15 keV. The structural 

characterization was performed using synchrotron radiation (λ = 0.4132 Å, 30 keV) at the Material 

Science and Powder Diffraction beamline (MSPD) at ALBA synchrotron (Barcelona, Spain)266. 

The powder was filled in 0.5 mm Ø boro-silicate capillary and diffraction pattern was collected in 

capillary geometry. 

Electrochemical Characterization: The electrode was prepared by mixing active material 

V2O5 nanowires with Super C65 C (TIMCAL) and polyvinylidene difluoride (PVDF) binder in a 

ratio of 70:20:10 with N-Methyl-2-pyrrolidone solvent. The dried electrode mixture was pressed 

on stainless steel mesh of 12 mm and dried at 120 oC overnight under vacuum. CR2032-type coin 

cells for electrochemical measurements were assembled in air at room temperature. The cells were 

built with V2O5 cathode, Zn foil as anode, 1 M ZnSO4 as electrolyte, and a piece of glass microfiber 
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(Whatman) as separator. The GCPL and CV measurements were performed between 0.3 and 1.6 

V (vs. Zn2+/Zn) on a VMP3 potentiostat (BioLogic) at 25 °C. GCPL were performed at different 

current densities from 50 to 1600 mA g-1 to determine the rate capability of the battery, CV 

measurements were performed at 0.1 mV/s. 

In operando synchrotron diffraction and in operando X-ray absorption spectroscopy 

(XAS): In operando synchrotron diffraction was performed at Material Science and Powder 

Diffraction beamline (MSPD) at ALBA synchrotron. Electrochemistry was performed in 2025-

type coin cell with glass windows of 5 mm diameter beam entrance. The cathode was prepared by 

pressing the electrode mixture (as described above) on stainless steel mesh within a 5 mm hole in 

the center, a Zn foil with a 5 mm hole in the center was used as anode. In operando synchrotron 

diffraction was conducted with radiation λ= 0.4132 Å wavelength (30keV) and position sensitive 

detector MYTHEN. Data were gathered with effective exposure time of 60s in steps of 0.006o over 

angular range of 1.8o - 42o in 2theta during the first cycles with current density of 50 mA g-1. The 

coin cell was continuously oscillated +/-5o around the incoming beam direction to improve the 

powder averaging (i.e. increasing the number of crystallites contribution). The diffraction data 

analysis was carried out by the Rietveld method using the Fullprof software package287. In 

operando XAS measurements were performed at synchrotron beamline P65 at PETRA III (DESY, 

Hamburg). Electrochemistry was conducted in 2025-type coin cell with 5mm-diameter Kapton 

window for the first discharge-charge processes at current density of 50 mA g-1. XAS spectra of 

Vanadium were recorded in quick-XAS (6 min/spectrum) mode in fluorescence geometry using 

PIPS (passivated implanted planar silicon) diode. The V K-edge for V2O5 was measured during 

the 1st cycle and the energy was calibrated utilizing a vanadium foil as commonly applied in XAS 

experiments. V2O3, VO2, and V2O5 were used as standard materials. All the data were collected at 

room temperature with a Si(111) double crystal monochromator and all the XAS spectra were 

processed using the DEMETER software package289. 
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5.3 Results and discussion 

5.3.1 Structural and morphological characterization 

The crystal structure of the prepared V2O5 nanowires was investigated by synchrotron 

diffraction, as displayed in Figure 5.1. All reflections could be indexed to the orthorhombic α-

V2O5 with space group Pmn21, and the lattice parameters are a = 11.5143 Å, b = 4.3734 Å, c = 

3.5653 Å, which are in good agreement with previous work40. The strong intensities of the 

reflections confirm the high crystallinity of the obtained V2O5 nanowires material. The SEM image 

(inset in Figure 5.1) demonstrates that V2O5 material is composed of nanowire-like nanostructure 

with length up to several micrometers. 

 

Figure 5.1 Rietveld refinement from synchrotron diffraction data of V2O5 nanowires (inset: SEM image) 

5.3.2 Electrochemical properties 

As displayed in Figure 5.2a, the prepared V2O5 nanowires were electrochemically evaluated 

by galvanostatic cycling at a current density of 50 mA g-1 and 200 mA g-1 in the potential range of 

0.30 - 1.60 V vs Zn2+/Zn. The open-circuit voltage (OCV) of the cell is 1.23 V. During the 1st 

discharge (Zn ions insertion), V2O5 nanowires electrode displays a flat discharge plateau at around 
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1.00 V, followed by a sloping-like plateau at about 0.50 V. During the 1st charge process (Zn ions 

de-insertion), a sloping-like plateau at 1.0 V and a flat plateau at 1.20 V together with a slope up 

to 1.6 V can be observed. Compared with the 1st discharge, the 2nd discharge profile shows a shorter 

plateau at around 1.00 V and similar sloping-like plateau at 0.50 V. In the 2nd charge process, a 

sloping-like plateau at 1.0 V similar as for the 1st charge is observed, but no clear plateau at 1.20 

V can be seen. During cycling, the voltage profiles significantly change, the plateau at 1.20 V 

disappears and only one slope and a sloping-like plateau at 0.50 V can be observed (see the 5th 

discharge profile). On the 5th charge profile, two sloping-like plateau at 0.70 V and 1.0 V are 

observed. The V2O5 nanowires electrode delivers an initial discharge and charge capacity of 277 

and 432 mAh g-1, respectively, at a current density of 50 mA g-1. It almost reaches its theoretical 

capacity of V2O5 based on the insertion of 1 mol of Zn2+ (294 mAh g-1), suggesting the good 

electrochemical activity in the aqueous Zn battery system. The electrode delivers a discharge 

capacity of 302 mAh g-1 at the 2nd cycle, a value higher than that for the first cycle, which might 

be due to an activation of the active material, as also reported by other previous studies219, 255. The 

V2O5 cathode exhibits a dramatic decrease of capacity during the following 20 cycles at 50 mA g-

1 (94 mAh g-1 for 22nd) and only delivers a discharge capacity of 21 mAh g-1 after 100 cycles. 

Moreover, the cycling stability of V2O5 cathode was studied at a higher current density of 200 mA 

g-1, as presented in Figure 5.2b. An initial discharge capacity of 278 mAh g-1 is obtained, followed 

with a sudden capacity decline down to 180 mAh g-1 at the 2nd cycle. In the following four cycles, 

the behavior differs from the electrode cycled at 50 mA g-1: it displays a capacity increase, 

indicating a long activation process of the active material, which is often observed in cathode 

materials for aqueous ZBs219, 255. However, this activation phenomenon takes more cycles under 

high current density, demonstrating its possible correlation with the involved chemical ion kinetics 

during cycling235. 
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Figure 5.2 Discharge-charge profiles (a) and cycling performance (b) of V2O5 nanowires in 1 M ZnSO4 

5.3.3 Electrochemical mechanism 

In order to clarify the Zn-ion storage mechanism in the V2O5 material, CV was performed at 

a scan rate of 0.1 mV s-1 in the voltage range of 0.30 - 1.60 V (vs. Zn2+/Zn). Figure 5.3 displays 

two peaks centered at 0.92 and 0.50 V for the 1st reduction process and a broad peak at 1.20 V with 

a shoulder at 1.05 V for the 1st oxidation process. In the following scans, three features are observed 

for both reduction and oxidation processes, respectively. The reduction peak at 0.92 V gradually 

shifts to higher potential, becomes weaker and finally disappears. A new reduction peak at 0.88 V 

emerges and grows up. The reduction peak at 0.50 V gradually shifts to 0.57 V. A new oxidation 

peak appears at 0.74 V. The oxidation peak at 1.05 V shifts to 1.00 V after first cycle and increases 

upon cycling. The oxidation peak at 1.20 V shifts to 1.12 V in the 3rd cycle, this shift is 

accompanied by decreasing its intensity. 
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Figure 5.3 CV curves of V2O5 nanowires at a scan rate of 0.1 mV s-1 in 1 M ZnSO4 

To further investigate the structural evolution of V2O5 upon Zn-ion insertion/extraction, in 

operando synchrotron diffraction was performed during the initial 1.5 cycles. The selected 

diffraction patterns and corresponding voltage-time profile are provided in Figure 5.4. 

 

Figure 5.4 In operando synchrotron diffraction of V2O5 during the first one and half cycles and the corresponding 

voltage profile at a current density of 50 mA g-1 

0.4 0.6 0.8 1.0 1.2 1.4 1.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

C
u

rr
e

n
t 

/ 
m

A

Potential / V vs Zn
2+

/Zn

 1st

 2nd

 3rd

 4th

 5th

0.57 V

1.05 V

0.92 V

1.20 V

0.50 V

0.74 V

0.88 V

1.00 V 1.12 V

5 10 15 20 25

In
te

n
s
it

y
 /
 a

.u
.

2 Theta / degree

V2O5 in 1M ZnSO4

1.5 1.0 0.5




 











Voltage / V

 0

5

10

15

20

25
T

im
e
 /
 h



62 

 

At the initial stage of discharge, all reflections of the parent material can be indexed on the 

orthorhombic V2O5 in the space group Pmn21 (see Figure 5.5a for the Rietveld refinement of 

pristine V2O5). In the beginning of the 1st discharge (Region I), most of the characteristic 

reflections of V2O5, such as ones at 4.12o, 6.96o, 8.24o, 8.58o, 9.08o, 11.90o, 12.37o, 13.31o, 14.38o, 

15.67o, and 15.91o, continuously shift towards lower 2θ accompanied by a slight reduce of their 

intensity. Therefore, a solid solution reaction upon Zn ions insertion into the V2O5 structure can 

be proposed up to the stoichiometry Zn0.13V2O5. While few reflections at 5.42o, 10.85o, and 11.04o 

slightly shift to high angles, few other reflections at 5.80o, 12.49o, 12.73o, and 16.46o keep in the 

same positions. Upon discharge capacity of 47 mAh g-1 (Region II, Zn0.16V2O5), two small 

reflections at 3.29o and 7.98o emerge, which belong to a new phase of zinc pyrovanadate, 

Zn3(OH)2V2O7·2(H2O) (see Figure 5.5b for the Rietveld refinement of 11st pattern at discharged 

V2O5). Other reflections from this phase become visible at 4.49°, 7.78°, 7.99°, 8.46°, 9.57°, 10.20°, 

11.16°, 15.97° and 17.54°. At the same time other reflections at 2.16o, 3.82o, 5.67°, 7.01°, 7.61°, 

11.39°, and 11.66° appear and grow. These reflections except ones at 3.82o and 7.01° are attributed 

to the formation of byproduct of ZnSO4Zn3(OH)6·5H2O. In addition, the Zn0.22V2O5 is obtained 

from the formed phase Zn0.13V2O5, which was present in Region I via a fast solid solution reaction 

occurring in Region II until a discharge capacity of 65 mAh g-1 is reached. On the other hand, two 

reflections at 3.82o and 7.01° may belong to the new phase Zn-rich ZnxV2O5 transformed from 

Zn0.22V2O5 through two-phase reaction. Meanwhile, the reflections of new phase Zn-rich ZnxV2O5 

remain their positions unchanged together with the decrease of their intensities of Zn0.22V2O5. At 

the end of the Region II, most of the reflections from the parent V2O5 phase disappear and the 

new phase grows up. It implies the coexistence of solid solution and two-phase transition during 

the Zn ions insertions in Region II. Therefore, the Zn-rich ZnxV2O5 is determined as Zn0.38V2O5 

obtained after the two-phase reaction (capacity of 120 mAh g-1) accompanied with the formation 

of two byproducts Zn3(OH)2V2O7·2(H2O) and ZnSO4Zn3(OH)6·5H2O. It is worthy to note that the 

x value is determined without the consideration of the consumption of V2O5 to form the byproduct 

Zn3(OH)2V2O7·2(H2O) and the possible dissolution of V2O5. Upon further Zn ions insertion, most 

of the reflections maintain their positions along with the increase of their intensities (Region III), 

while only two reflections of Zn0.38V2O5 at 3.81o and 7.01o shifts to high angles with the increase 

of intensity and low angle with the decrease of intensity, respectively. It indicates that a solid 

solution process happens in Region III to form a final phase Zn0.94V2O5 together with the above 
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mentioned two byproducts with a total discharge capacity of 277 mAh g-1 (see Figure 5.5c for the 

Rietveld refinement of 36th pattern at first fully discharged V2O5). During the 1st charge, the 

reflections undergo in a reverse way except the appearance and disappearance of a small reflection 

at 7.17o. The reflections return back to their original positions as the pristine V2O5 but with much 

less intensities (see Figure 5.5d for the Rietveld refinement of 69th pattern at fully charged V2O5). 

This is possibly caused by the amorphization of the crystalline active material or by the vanadium 

dissolution in the electrolyte245, 249. Interestingly, both byproducts disappear along with the 1st 

charging process. The evolution of the reflections in the 2nd discharge is analogous to that during 

the 1st cycle. Briefly, in Region I, the reflections show the same behavior as those for the first 

discharge process, suggesting a solid solution reaction. In Region II and III, the electrode 

undergoes the same process (a two-phase transition and solid solution, respectively) as that 

observed in the first discharge, but without the appearing of the reflections related to the byproduct 

Zn3(OH)2V2O7·2(H2O) (see Figure 5.5e for the Rietveld refinement of 97th pattern at the 2nd fully 

discharged V2O5). Moreover, the other byproduct is also observed as can be seen in the first 

discharge process. Indeed, the Zn3(OH)2V2O7·2(H2O) has an open layered structure and has been 

used as cathode materials in aqueous ZBs with a high capacity of 213 mAh g-1 at 50 mA g-1 

reported by Alshareef et al.239, who shows a shift of the reflection 001 during Zn ions insertion and 

extraction239. This means that the presence of Zn3(OH)2V2O7·2(H2O) can be beneficial for the 

material capacity. However, in our case, the shift of the 001 reflection is not observed and the 

reason is still unknown yet. The new phase Zn3(OH)2V2O7·2(H2O) was also found in a recent work 

related to an aqueous Zn-V2O5 battery315. The phase Zn3(OH)2V2O7·2(H2O) is formed because of 

the two-phase transition and then being as host structure for Zn ions storage, also with a shift of 

reflection 001 during Zn ions insertion. Furthermore, it has been reported that complex byproducts, 

like ZnSO4Zn3(OH)6·xH2O237, 248, 251 were produced and decomposed during discharge-charge 

cycling when applying a ZnSO4 based aqueous electrolyte. 
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Figure 5.5 Rietveld refinement of the pristine V2O5 (a), discharged state in the beginning of Region II with capacity 

of 47 mAh (11st pattern) (b), first fully discharged V2O5 electrode at 0.3 V(36th pattern) (c), fully charged at 1.6 

V(69th pattern) (d), and 2nd fully discharged V2O5 electrode at 0.3 V(97th pattern) (e) 

In order to investigate variation of the oxidation state and the local electron environment of 

vanadium during the discharge/charge (i.e. Zn insertion/extraction) process, in operando XAS was 

performed on the V2O5 nanowires cathode within an in operando coin cell. Figure 5.6 shows the 

5 10 15 20 25
2 Theta / degree

In
te

n
s
it

y
 /

 a
.u

.
Pristine V2O5 nanowires

 Yobs

 Ycalc

 Difference

 Bragg

(a)

5 10 15 20 25

In
te

n
s
it

y
 /

 a
.u

.

2 Theta / degree

 Yobs

 Ycalc

 Difference

 Bragg

11st pattern of discharged V2O5 (b)

5 10 15 20

 Yobs

 Ycalc

 Difference

 Bragg

36th pattern, fully discharged V2O5 (c)

In
te

n
s
it

y
 /
 a

.u
.

2 Theta / degree
5 10 15 20

2 Theta / degree

In
te

n
s
it

y
 /
 a

.u
.

69th pattern, fully charged V2O5 

 Yobs

 Ycalc

 Difference

 Bragg

(d)

5 10 15 20

In
te

n
s
it

y
 /

 a
.u

.

2 Theta / degree

97th pattern, 2nd fully discharged V2O5 

 Yobs

 Ycalc

 Difference

 Bragg

(e)



65 

 

normalized V K-edge XANES spectra collected during the initial discharging and charging 

processes with those references spectra of standard vanadium oxides, where V2O5, VO2 and V2O3 

have oxidation state of +5, +4, and +3, respectively. The edge position of V K-edge in the pristine 

V2O5 cathode overlaps with that of standard V2O5 reference, indicating that the oxidation state of 

V in V2O5 is +5. Moreover, an intense pre-edge peak for the V K-edge of pristine V2O5 is observed, 

which is ascribed to the transitions between the 1s and bound p-hybridized d-states299-300. Along 

with progressive discharging, the main absorption edge shifts towards lower binding energies, 

confirming the reduction of the oxidation state of vanadium upon the Zn-ion intercalation. 

Meanwhile, the pre-peak (A in Figure 5.6a) also shifts gradually to lower binding energy with the 

simultaneous decrease of intensity, confirming the reduction of V and the deformation of the local 

V environments during Zn ions insertion. This is due to the co-existence of distorted tetragonal 

pyramid and centrosymmetric VO6 octahedral. The edge resonance (B in Figure 5.6a) displays 

distinct changes in both intensity and shape, which is caused by the energy absorption of core 

electrons300-301. During the discharge process, two broad peaks centered at 5494 eV and 5507 eV 

shift to lower energy with the decrease of their intensities and change into a very broad peak 

centered at 5500 eV from initial stage to 0.99V (peak B in Figure 5.6a). After that, the formed 

broad peak centered at 5500 eV with the peak at 5486.5 eV continuously shift to lower energy 

accompanying with the increases of both intensities (from 0.99V to 0.3V). Moreover, two distinct 

isosbestic points302 at ~ 5474 eV and ~5502 eV (red arrows in Figure 5.6a and b) are obtained 

during both discharge (from 0.99 V to 0.3 V) and charge (from 0.3 V to 1.32 V) processes. This 

suggests the two-phase transition upon the Zn ions insertion/extraction into/from V2O5 structure, 

which corresponds to the two-phase region as proved through in operando synchrotron diffraction. 

At the fully discharged state of 0.30 V, the edge position of V K-edge lies almost in the middle of 

the spectra of standard V2O5 and VO2, suggesting that the oxidation state of V is very close to V4+, 

in good agreement with the electrochemistry data (see Figure 5.7). However, its edge position 

does not completely overlap with the spectrum of VO2, that could be mainly due to the different 

symmetry/structure between the discharged sample (x=1.00 in ZnxV2O5) and the selected standard. 

During the charge process (Zn-ion extraction), a completely reversible behavior can be observed. 

Pre-peak and edge resonance (A' and B' in Figure 5.6a and b) also show a reversible process. At 

the fully charged state of ~1.6V, the V spectrum returns back to its initial state, indicating that the 

V ions are fully oxidized to its oxidation state of +5. The evolution of V K-edge spectra reveals 
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that the V ions are reduced and reversibly oxidized during the Zn-ion intercalation and extraction, 

respectively, accompanied by the local structure changes of V ion, as fully proved by in operando 

synchrotron diffraction. 

 

Figure 5.6 In operando V K-edge XANES spectra during the 1st cycle in 1 M ZnSO4; the isosbestic points are 

pointed out by red arrows. 

 

Figure 5.7 Discharge-charge profiles of V2O5 in 1 M ZnSO4 electrolyte for in operando XAS (50 mA g-1) 

5.4 Conclusion 

In summary, orthorhombic V2O5 nanowires were easily prepared via a hydrothermal 

approach. In the 1 M ZnSO4 electrolyte, V2O5 nanowires deliver an initial discharge/charge 
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capacity up to 277 and 432 mAh g-1, respectively, at a current density of 50 mA g-1, which almost 

reaches the theoretical capacity based on 1 mol of Zn2+ insertion per V2O5 (294 mAh g-1). The 

V2O5 cathode exhibits a dramatic decrease of capacity during the following 20 cycles at 50 mA g-

1 (94 mAh g-1 for 22nd) and delivers a very low discharge capacity of 21 mAh g-1 after 100 cycles. 

Moreover, it delivers an initial discharge capacity of 278 mAh g-1 at 200 mA g-1, followed by an 

activation process of the active material. CV displays, in the first scan, two reduction peaks 

centered at 0.92 and 0.50 V and a broad oxidation peak at 1.20 V with a shoulder at 1.05 V. In the 

following scans, the CV curves reveal significant changes in both reduction and oxidation peaks, 

respectively. Briefly, the reduction peak at 0.92 V disappears and a new reduction peak at 0.88 V 

grows up while the reduction peak at 0.50 V gradually shifts to 0.57 V. On the other hand, the 

oxidation peaks at 0.74 V and 1.05 V rises up, while, especially the oxidation peak at 1.20 V 

becomes a small shoulder of the peak at 1.00 V, with a notable current peak decrease. In operando 

synchrotron diffraction reveals that V2O5 first undergoes a solid solution and then a coexistence of 

solid solution and two-phase reaction upon Zn ions insertion. Meanwhile it also confirms the 

formation of two byproducts Zn3(OH)2V2O7·2(H2O) and ZnSO4Zn3(OH)6·5H2O during the Zn 

ions insertion. The electrode undergoes a reversible progress upon Zn ions extraction with the 

decomposition of both byproducts. The V2O5 electrode, in the 2nd discharge process, goes through 

the same two-phase reaction as that in the 1st discharge without the formation of the byproduct 

Zn3(OH)2V2O7·2(H2O). In operando XAS confirms the reduction/oxidation of vanadium during 

the Zn insertion/extraction with part of irreversibility. It is, as far as we know, the first time that 

the structural evolution and charge compensation mechanisms of Zn ions insertion into V2O5 in an 

electrochemical cell are elucidated through in operando synchrotron diffraction and in operando 

XAS. 
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 Determination of the preferred location of cation doping 

in the orthorhombic M-doped V2O5 (M=Mn, Ni, Fe) materials 

6.1 Introduction 

Cation doping is an effective method to modify the structure and electronic state of electrode 

materials. In the past decades, a lot of work has been focused on the doping of V2O5 nanostructure 

with various elements to overcome the capacity fading and improve the rate capability. The doping 

can increase electronic conductivity, stabilize the crystal structure of V2O5 during cycling and 

facilitate the charge transfer. Moreover, it can alter the morphology, leading to an enhanced 

electrochemical performance of V2O5 24, 159. However, an excess of dopant may block the pathway 

where the ions should insert and electrochemically inactive dopant could reduce the usage of active 

materials, thus affecting the capacity. Moreover, impurity or second phase might be induced with 

an excess of doping cations, which might, in turn, have a negative effect on the electrochemical 

performance of materials. Although the cation doping was proven to have positive impact on the 

electrochemical performance for LIBs has been proved, a fundamental study of the location of 

doped cation (substitutional or interstitial position) in V2O5 is rarely reported. Here, substitutional 

and interstitial doping mean that the doped element M replaces the V ions and resides between the 

V2O5 layers, respectively. 

So far, it is unknown whether the preferred site depends on the synthesis route or is associated 

with the nature of doped cation or maybe both. As demonstrated in previous works, the dopant 

cations, for example, Zn2+ 316-317 and Cu2+ 316-317 in V2O5 aerogel/xerogel, Cr3+ 148 and Fe3+ 142 in 

crystalline V2O5, prefer to locate in the interlayer spacing/residing between the V2O5 layers. In 

above work, a pre-prepared V2O5 hydrogel (V2O5·nH2O) was used as starting material to obtain 

the above doped material by mixing with stoichiometric amount of Zn or Cu powder or Cr(NO3)3 

or FeCl3 solution, without or with a following heat treatment. Consequently, it is not appropriate 

to study the preferred location associated to the nature of doped cation by starting with a formed 

layered structure material of V2O5·nH2O. In order to properly study the preferred locations, a 
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uniform solution should be prepared during the synthesis of M doped V2O5. In this purpose, M-

doped V2O5 (M= Mn, Ni, and Fe; x=0, 0.1 and 0.2) materials are designed and synthesized through 

hydrothermal method. In this way, all the starting materials are dissolved into the aqueous solution 

and the V and M ions can uniformly distribute in the precursor material to obtain a homogenous 

target material after heat treating the precursor. 

To gain a complete understanding of the cations doping in the V2O5 structure, several 

techniques are used such as chemical analysis, synchrotron diffraction, Pair distribution function 

(PDF), SEM, Raman, XPS, 51V NMR, and XAS (XANES and EXAFS). 

6.2 Experimental 

Synthesis of M dope V2O5 materials: The doped V2O5 materials are designed as MxV2-xO5 

(M= Mn, Ni, and Fe; x=0, 0.1 and 0.2). MnCl2, NiCl2, and Fe(NO3)3 are used as starting materials 

to provide corresponding amount of Mn, Ni, and Fe, respectively. The V2O5-based materials were 

synthesized with the hydrothermal method as described in Chapter 3 (Experimental part 3.2) 

except an additional stirring step applied. 1.0 ml of 2 M HCl, ammonium metavanadate (NH4VO3, 

0.3 g for x=0) with a molar ratio of (M:V=x:2-x), and 0.5 g of surfactant P123 (EO20PO70EO20, 

where EO and PO represent ethylene oxide and propylene oxide, respectively) were mixed into 30 

ml of deionized water under ultrasonication for 10 mins and a consequent stirring for 1 h. After 

that, the mixed solution was transferred to 50 ml Teflon-lined autoclaves and maintained at 120 

oC for 24 h with intermittent stirring in an oven. The resulting precipitates were filtered and washed 

with water and acetone several times, then dried under vacuum at 120 oC for 24 h. The products 

were annealed at 400 oC for 2 h in air with a heating rate of 10 oC/min. 

Morphological, Structural and Surface Characterization: The morphology was studied with 

a Zeiss Supra 55 Scanning Electron Microscope (SEM) with primary energy of 15 keV. The 

structural characterization was performed using synchrotron radiation (λ = 0.4132 Å, 30 keV) at 

the Material Science and Powder Diffraction beamline (MSPD) at ALBA synchrotron (Barcelona, 

Spain)266. The diffraction pattern was collected in capillary by powder filled in 0.7 mm Ø boro-

silicate capillary. The synchrotron diffraction data were analyzed by the Rietveld method using 

the Fullprof software package287. The crystallographic model was chosen from Shklover and 

Haibach40’s work for the Rietveld refinement of doped samples. 
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Pair distribution function (PDF) X-ray total scattering data, suitable for PDF analysis, were 

performed using synchrotron radiation (λ = 0.2072 Å, 60 keV) at beamline P02.1, PETRAIII, 

DESY, Hamburg. The powder material was filled in 0.7 mm Ø boro-silicate capillary for PDF 

measurements and an empty capillary of borosilicate type was tested for background corrections. 

A LaB6 standard material (NIST SRM 660b) was measured at similar conditions to get the 

instrumental resolution. The measurements were carried out with a fast area detector from Perkin 

Elmer to collect 2D diffraction images and then the data were converted into one dimensional X-

ray powder diffraction data with the FIT2D software318. The data were corrected for background 

scattering, Compton scattering, and detector effects. Data was Fourier transformed to Qmax = 23 

Å−1 to obtain the PDF G(r) within PDFgetX2319. Structure models were refined against the PDF 

data within PDFgui320. 

X-ray photoelectron spectroscopy (XPS) was performed using a Thermo Fisher K-Alpha+ 

XPS spectrometer with a micro-focused, monochromatized Al Kα X-ray source for all samples, 

detailed description can be found in Chapter 3 (3.2 Experimental).  

Raman measurements were carried out with a LabRam Evolution HR FROM Horiba 

equipped with Nd: YAG laser (633 nm, 100 mW) and a CCD detector (Horiba). To collect the 

Raman spectra of all samples, a 600 grating was used to split the measurement signal with a ×100 

objective (NA 0.95) and the data collection was conducted for 30 seconds with laser source of 1 

mW. 

51V magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy was 

performed with a Bruker Avance 200 MHz spectrometer at a magnetic field of 4.7 T, 

corresponding to a Larmor frequency of 52.6 MHz. Spinning was performed with 1.3 mm zirconia 

MAS rotors at 55 kHz. The spectra were acquired with a Hahn-echo pulse sequence, a /2 pulse 

length of 1.5 s, and a recycle delay of 5 s. The chemical shift of 51V was referenced to VOCl3. 

Ex situ XAS measurements were performed at synchrotron beamlines P64 and P65 at PETRA 

III (DESY), Hamburg. XAS spectra of Vanadium were recorded in quick-XAS (6 min/spectrum) 

mode in fluorescence geometry using a PIPS (passivated implanted planar silicon) diode. The V, 

Mn, Ni, and Fe K-edge for doped V2O5 were measured and the energy was calibrated utilizing a 

corresponding foil V, Mn, Ni, and Fe as commonly applied in XAS experiments. V2O3, VO2, and 

V2O5 MnO, Mn2O3, MnO2, NiO, FeO, Fe3O4, and Fe2O3 were used as standard materials, 

respectively. All the data were collected at room temperature with a Si(111) double crystal 
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monochromator and all the XAS spectra were processed using the DEMETER software 

package289. 

6.3 Results and discussion 

6.3.1 Chemical analysis 

The doped samples were analyzed by using the inductively coupled plasma optical emission 

spectroscopy (ICP-OES)321 to check the content of doped element M in the MxV2-xO5 materials. 

Table 6.1 provides the desired and determined V/M molar ratio and estimated stoichiometry for 

Mx doped V2O5 (M= Mn, Ni, and Fe; x= 0.1 and 0.2) samples. The ICP result demonstrates the 

molar ratio of V/M is 208.7, 119.6, 164.3, 88.2, 18.3, and 8.3 for Mn0.1, Mn0.2, Ni0.1, Ni0.2, Fe0.1, 

and Fe0.2 doped samples. However, the atomic ratio of V/M for Mn and Ni is far away from the 

designed value (V/M ratio is 19 and 9 for x=0.1 and 0.2, respectively). This could be due to the 

loss during the hydrothermal synthesis, where only a small amount of Ni and Mn can dope inside 

the structure and most of it remains in the solution and is washed away. Meanwhile, the atomic 

ratio of Fe-doped samples is close to the theoretical molar ratio. Therefore, the chemical formula 

for doped samples are estimated as Mn0.01V2O5, Mn0.016V2O5, Ni0.012V2O5, Ni0.023V2O5, Fe0.11V2O5 

and Fe0.24V2O5. In order to easy describe and discuss, Mx doped V2O5 (M= Mn, Ni, and Fe; x=0, 

0.1 and 0.2) are used for each doped sample in the whole work. 

Table 6.1 The desired and determined V/M molar ratio and estimated stoichiometry for Mx doped V2O5 (M= Mn, 

Ni, and Fe; x=0.1 and 0.2) samples 

 V/M molar ratio desired V/M molar ratio determined Stoichiometry 

Mn, x=0.1 19 208.7 Mn0.01V2O5 

Mn, x=0.2 9 119.6 Mn0.016V2O5 

Ni, x=0.1 19 164.3 Ni0.012V2O5 

Ni, x=0.2 9 88.2 Ni0.023V2O5 

Fe, x=0.1 19 18.3 Fe0.11V2O5 

Fe, x=0.2 9 8.3 Fe0.24V2O5 
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6.3.2 Morphological and structural characterization 

The crystal structure of the Mx doped V2O5 (M= Mn, Ni, and Fe; x=0, 0.1 and 0.2) was 

investigated by synchrotron diffraction as shown in Figure 6.1. The strong intensities of reflections 

reveal the high crystallinity of the obtained Mx doped V2O5 materials. For the pristine, Mn-doped 

and Ni-doped V2O5 (Figure 6.1a-e), all reflections could be indexed to the orthorhombic α-V2O5 

with space group Pmn21, while some additional reflections are obtained for Fe-doped V2O5. The 

reflections were found to belong to Fe2V4O13 phase with a space group of P121/c1. Table 6.2 

displays the atomic coordinates of the structural model (MxV2O5)40 for Rietveld refinement. M1 

and M2 represent the substitution of V sites and the interstitial position between the layers for 

doped element M, respectively. The lattice parameters are listed in Table 6.3 after Rietveld 

refinement. The pristine V2O5 has a = 11.5084 Å, b = 4.3739 Å, c = 3.5640 Å, which are in good 

agreement with previous work40. The lattice parameter c remains almost unaffected by the doping. 

The lattice parameter a shows a slight decrease for both Mn-doped samples while a shows a slight 

increase for Ni-doped samples compared with pristine one. The lattice parameter b for all Mn- and 

Ni-doped samples first slight decrease and then increase along with the content increase of doping 

cation, compared with that of pristine. For Fe-doped samples, the lattice parameter a and b show 

a larger changes with the continuous increase of a and decrease of b. The negative values of occupy 

of M1 are observed for all doped samples during the Rietveld refinement. Afterward, occupy of 

M1 was fixed to be 0. Rietveld refinement confirmed that occupy of M2 is positive for M-doped 

V2O5 and all of them have the same occupy of V. This might suggest that the interstitial position 

is the preferred location in all doped cases though the amount could not match well with the ICP 

result. 

Table 6.2 Atomic coordinates of the structural model (MxV2O5) for Rietveld refinement 

 x y z 

V1 0.14878 0.3913 0 

M1 0.14878 0.3913 0 

M2 0.5 0.077 -0.001 

O1 0.1461 0.0324 -0.0009 

O2 0.3193 0.5056 -0.0032 

O3 0 0.5017 -0.0033 
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The SEM image demonstrates that the two Ni doped samples are composed of both nanowires 

and nanoparticles, while all the other samples are consisting of nanoparticles. 
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Figure 6.1 Rietveld refinement from synchrotron diffraction data of Mx doped V2O5 (M= Mn, Ni, and Fe; x=0, 0.1 

and 0.2) (insets: SEM images) 

Table 6.3 Lattice parameters and occupy of M for doped materials MxV2-xO5 (M= Mn, Ni, and Fe; x=0, 0.1 and 0.2) 

Sample a b c Occupancy of V Occupancy of M1 Occupancy of M2 

Pristine V2O5 11.5084(1) 4.3739(1) 3.5640(1) 0.957(4) -- -- 

Mn0.1 doped V2O5 11.5077(1) 4.3727(1) 3.5644(1) 0.949(4) - 0.004(1) 

Mn0.2 doped V2O5 11.5074(1) 4.3743(1) 3.5642(1) 0.953(4) - 0.004(1) 

Ni0.1 doped V2O5 11.5097(1) 4.3727(1) 3.5642(1) 0.950(4) - 0.004(1) 

Ni0.2 doped V2O5 11.5098(1) 4.3738(1) 3.5638(1) 0.958(5) - 0.004(1) 

Fe0.1 doped V2O5 11.5374(2) 4.3554(1) 3.5637(1) 0.947(7) - 0.009(1) 

Fe0.2 doped V2O5 11.5393(2) 4.3531(1) 3.5649(1) 0.941(6) - 0.003(1) 

 

In order to further study the effect of cations doping on the local structure of V2O5, Raman spectra 

were collected for pristine and doped MxV2-xO5 materials as shown in Figure 6.2. Compared with 

the pristine V2O5 (corresponding peaks are clearly described in Chapter 3, 3.3.3) the Raman spectra 

of all doped materials do not show a significant shift on the main peak of V2O5. Two additional 

peaks at 651 and 867 cm-1 can be observed and they increase along with the increase of doped Mn 

amount. Several additional peaks between 750 and 1200 cm-1 are also obtained for Fe doped 

samples, some of them might be attributed to the impurity Fe2V4O13. Interestingly, no clear 

difference can be observed for two Ni-doped sample. 
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Figure 6.2 Raman spectra of all materials Mx doped V2O5 (M= Mn, Ni, and Fe; x=0, 0.1 and 0.2) 

X-ray photoelectron spectroscopy (XPS) was used to look into the surface chemistry and 

surface elemental composition of pristine V2O5, and Mx doped V2O5 materials (M= Mn, Ni, and 

Fe; x=0, 0.1 and 0.2). According to Figure 6.3a, the C 1s spectrum of all samples can be fitted 

with 3 peaks at 285.0 eV, 286.7 eV, and 289.0 eV, which are ascribed to the C-C/C-H, C-O-C, and 

O-C=O group. O-C, O=C could be attributed to the residual surfactant symmetric triblock 

copolymer P123 which was present during synthesis. The V 2p spectrum of all samples (Figure 

6.3b) can be fitted with two doublets: a main one with V 2p3/2 at 517.9 eV and a second one with 

weak intensity at 516.7 eV304, which indicates that V exists mainly in the oxidation state +5 with 

a minor contribution of vanadium in +4 with very similar ratios of V5+/(V4+ + V5+) (93.4%, 93.8%, 

93.1%, 93.6%, 94.9%, 94%, and 93.1% according to the order from top to bottom in Figure 6.3b). 
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The minor V(IV) could be assigned to the reduction of residual surfactant P123 during the 

annealing at 400 oC. It implies that the oxidation state of V is slightly influenced by the cations 

doping. It can be seen that the O 1s spectrum of pristine V2O5 can be fitted with 3 peaks at 533.1 

eV, 531.8 eV, and 530.7 eV, which are corresponding to the O-C, O=C, and V-O groups305-307, 

respectively. However, it is really difficult to get a clear analysis of the Mn 2p spectrum for Mn-

doped samples due to its overlapping with V 2s. Meanwhile, due to the low intensity of Ni 2p and 

Fe 2p, it is also very difficult to get clear oxidation state of the metal M. 

 

Figure 6.3 O 1s and C 1s (a), V 2p (b), and M 2p (c) X-ray photoelectron spectra of all materials Mx doped V2O5 

(M= Mn, Ni, and Fe; x=0, 0.1 and 0.2) 

Figure 6.4 displays the 51V MAS NMR spectra of all the samples MxV2-xO5. The spectrum of 

pristine V2O5 exhibits an isotropic shift of -609 ppm which is attributed to the characteristic of 

V2O5
322. Furthermore, this spectrum shows a broad pattern of spinning sidebands reflecting the 

large nuclear quadrupolar moment of the 51V nucleus323 and the asymmetric environment around 

V in the crystal structure of V2O5. In this sample, V should be exclusively in the diamagnetic state 

V5+ (3d0). For the samples doped with Mn, Ni, and Fe, the intensity of the spectra is significantly 
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reduced. This is probably caused by partial reduction of V5+ resulting in paramagnetic V states, in 

good agreement with XPS results, where only V5+ cannot be detected by NMR. Furthermore, the 

Fe doped samples show a weak signal at -268 ppm. This reveals that the dopands cations for Mn, 

Ni, and Fe, have been incorporated into the crystal structure of V2O5. 

  

Figure 6.4 51V MAS NMR spectra of all the Mx doped V2O5 (M= Mn, Ni, and Fe; x=0, 0.1 and 0.2) samples 

The atomic pair distribution functions (PDF) analysis is sensitive to local atomic ordering and 

is applied to investigate the influence of doping on the structure. As shown in Figure 6.5, the peaks 

of Ni doped V2O5 in the G(r) curves located at 1.55 Å, 2.23 Å, 4.94 Å, and 7.09 Å gradually 

increase with increasing concentration of the dopant cation. However, the G(r) curves of Mn and 

Fe doped V2O5 are similar to the pure V2O5. Therefore, the PDF analysis confirms the 

incorporation of Ni atom into V2O5. 
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Figure 6.5 PDF data for all the Mx doped V2O5 (M= Mn, Ni, and Fe; x=0, 0.1 and 0.2) samples derived from X-ray 

total scattering data 

In order to investigate the oxidation states and local electron environment of vanadium and 

dopants, ex situ XAS was collected on the MxV2-xO5 samples. The edge position of V K-edge in 

the pure V2O5 material slightly lower than that of standard V2O5 reference (Figure 6.6a), indicating 

that the oxidation state of V in V2O5 is mainly +5 and in good agreement with XPS result. 

Moreover, an intense pre-edge peak for the V K-edge of pure V2O5 is observed for all samples. 

Interestingly, the edge position of V K-edge in the all doped V2O5 samples is slightly lower than 
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that of pure V2O5 (Figure 6.6a), demonstrating the average oxidation state of V in doped samples 

is slightly lower and the part of reduction of V compared with pure V2O5 sample. The edge position 

of Ni K-edge for both Ni doped V2O5 materials overlaps with each other (Figure 6.6b and c). 

Figure 6.6b and Figure 6.7b suggest that the oxidation state of Ni is +2 in both Ni doped materials. 

Figure 6.6c shows that the oxidation state of Fe is +3 for both Fe doped samples. The two 

composition with Ni and Fe doping have slightly reduced oxidation state of Vanadium. 

 

 

Figure 6.6 V, Ni, and Fe K-edge XANES spectra for Mx doped V2O5 (M= Mn, Ni, and Fe; x=0, 0.1 and 0.2) 

Fourier transforms (FT) of vanadium K-edge EXAFS spectra for all doped compounds present 

2 V-O distances in the first shell (see Figure 6.7a). Two V-O split peaks of the first coordination 

indicate a strongly distorted [VO6] octahedron in the orthorhombic V2O5
324. The less amplitude 

we have, the more distorted octahedron is. The insertion of M ions can change the valence of the 
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vanadium ions (that visible in Fe0.1 doped and Fe0.2 doped V2O5 samples) and lattice structural 

distortion, which is evident in the local symmetry of the VO6 octahedra324. 

 

 

Figure 6.7 Fourier transforms (FT) of selected V K-edge (a), Ni K-edge (b), and Fe K-edge (c) EXAFS (k3-

weighted) for Mx doped V2O5 (M= Mn, Ni, and Fe; x=0, 0.1 and 0.2) 

Fourier transforms (FT) of M (M= Ni and Fe) K-edge EXAFS spectra for all doped 

compounds show strong interaction in the Me-O shell, and low amplitude for the M-M shell316. As 

in the case of the Fe and Ni-doped samples, the first shell represents the main signal, and the Ni-

Ni and Fe-Fe contribution is negligible. That is, the contribution of a two body M-M interaction is 

not significant in these samples, which can be due to the doping in the host V2O5 structure. 

However, a high quality of Mn K-edge spectrum for both Mn doped samples is not available 

probably because of the very low concentration in the doped samples. 
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6.4 Conclusion 

All the Mx doped V2O5 materials (M= Mn, Ni, x=0, 0.1 and 0.2) were synthesized through a 

hydrothermal method. The chemical formula for the doped samples are estimated as Mn0.01V2O5, 

Mn0.016V2O5, Ni0.012V2O5, Ni0.023V2O5, Fe0.11V2O5 and Fe0.24V2O5 by ICP-OES. Synchrotron 

diffraction demonstrates that a single phase for pristine and both Mn- and Ni-doped V2O5 is 

obtained (MxV2-xO5, M= Mn, Ni, x=0, 0.1 and 0.2). A phase impurity of Fe2V4O13 is obtained for 

FexV2-xO5 (x= 0.1 and 0.2) except for the orthorhombic Fe containing V2O5 phase. The preferred 

location of doped cation (substitutional or interstitial position) in V2O5 is studied with three 

different examples (Mn, Ni, and Fe). Rietveld refinement confirmed that the Mn and Ni would 

prefer locate the interstitial position for Mn-, Ni-, and Fe-doped. The cation doping in the materials 

is also confirmed by Raman, 51V NMR and XAS. 
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 Other related work during my PhD study 

In addtion to the study of V2O5 based materials for energy storage systems, other work has 

also been done during my PhD study, including the international cooperation work with Jilin 

University and TiO2 in MBs and hybrid Li/Mg batteries, as well as Ca-doped LVP materials for 

LIBs. 

7.1 NASICON-Type Mg0.5Ti2(PO4)3 Negative Electrode Material Exhibits 

Different Electrochemical Energy Storage Mechanisms in Na-Ion and Li-Ion 

Batteries 

Carbon-coated Mg0.5Ti2(PO4)3 was prepared through sol-gel method. Rietveld refinement of 

X-ray diffraction data shows the pristine material has a main phase of Mg0.5Ti2(PO4)3 with space 

group R-3c and TiP2O7 impurity of 15 wt. %. In this work, the carbon-coated Mg0.5Ti2(PO4)3 was 

used as the anode material for LIBs and NIBs. It exhibits specific capacity of 268.6 mAh g-1 for in 

the potential range of 0.01-3.0 V and excellent rate capability of 94.4 mAh g-1 at 5000 mA g-1 and 

good cycle stability with capacity retention of 99.1 % after 300 cycles for NIBs. Upon cycling, the 

structure of Mg0.5Ti2(PO4)3 is maintained and the only Ti ions take part in the electrochemical 

redox reaction in NIBs confirmed by CV, EIS, ex situ XRD, XPS, TEM, and HRTEM. In 

comparison, Mg0.5Ti2(PO4)3 delivers capacity of 629 mAh g-1 for LIBs in the potential window of 

0.01-3.0 V, which is mainly due to the interfacial Li+ storage and formation/decomposition of the 

SEI film. It is likely that Mg0.5Ti2(PO4)3 in LIBs undergoes a different storage mechanism rather 

than only Li+ intercalation reaction. It delivers a large reversible capacity of 578 mAh g-1 at 100 

mA g-1 and 399 mAh g-1 at 1A g-1, with capacity retention of only 45.2 % after 300 cycles. The 

decomposition reaction of pristine Mg0.5Ti2(PO4)3 into metallic Ti and Mg nanocrystallites after 

the first discharge was further clarified by ex situ XRD together with XPS, TEM, and HRTEM, 

which shows a fully different storage mechanism during the cycling. 
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Detailed information can be found: ACS Appl. Mater. Interfaces, 2017, 9 (5), pp 4709–4718 

https://pubs.acs.org/doi/abs/10.1021/acsami.6b14196 

 

7.2 Long cycle-life and high safety Na+/Mg2+ hybrid-ion battery built by a TiS2 

derived titanium sulfide cathode 

Recently, a new Daniell-type battery, Li+/Mg2+ hybrid-ion battery (LMIB) has attracted 

particular attention for use in electrochemical energy storage. This kind of battery is composed of 

Mg anode, a Li+ host material cathode, and a Li+/Mg2+ hybrid electrolyte. During electrochemical 

reaction, only Mg deposition/dissolution takes place on the anode while the cathode side is 

dominated by Li+ intercalation/de-intercalation. The use of Mg anode avoid the risk of internal 

short-circuit caused by dendrites. On the other hand, there are many options for the usage of 

cathode due to the larger family of Li+ host materials. In this way, some intrinsic shortcomings of 

MBs such as large electrode polarization and poor cycle stability, as well as limited rate capability 

can be effectively overcome. Thanks to the abundance of Na and Mg in the earth crust, a Na+/Mg2+ 

hybrid-ion battery (NMIB) could be a alternate for the application of large-scale energy storage. 

The first proof-of-concept NMIB has been reported by Walter et al. using FeS2 cathode. But the 

sluggish conversion reaction of FeS2 with Na+ limits the rate capability of this NMIB cell. 

In this work, a novel NMIB cell is designed using metallic Mg anode, commercial layered 

TiS2 cathode, together with 1.0M NaBH4+0.1M Mg(BH4)2/DGM hybrid electrolyte. The 

commercial TiS2 powder has well-defined hexagonal structure with the space group P-3m1 with 

high crystallinity. Rietveld refinement shows the lattice parameters of the material are a = b = 

3.4087 Å and c = 5.7000 Å. This new NMIB cell significantly avoids the serious problems of 

dendrite formation of LIBs and NIBs and sluggish Mg2+ migration of MBs. This NMIB cell 

displays excellent electrochemical performance in terms of large reversible capacity of 200 mAh 

g-1 at 1C rate, excellent rate capability (75 mAh g-1 at 20C rate), ultra-long cycle life (90 % capacity 

retention after 3,000 cycles at 10C rate) and high safety properties. The cell exhibits a maximum 

discharge capacity of 105 mAh g-1 at 10C rate and still delivers capacity of 94 mAh g-1 after 3000 

cycles with capacity retention of 90%. In particular, the NMIB cell demonstrates even better 

cycling stability with a narrow potential window of 0.4 - 1.8 V. It shows a discharge capacity of 

https://pubs.acs.org/doi/abs/10.1021/acsami.6b14196
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58 mAh g-1 at 20C rate and keeps excellent capacity retention of ~100 % after 20000 cycles. In 

order to investigate the effects of electrolyte on the electrochemical properties in NMIB, controlled 

experiments were conducted with the TiS2‖xNaBH4+yMg(BH4)2/DGM‖Mg cell at the 200 mA g-1 

The results demonstrate that TiS2 in 1.0M NaBH4+0.1M Mg(BH4)2/DGM electrolyte shows a best 

electrochemical performance of NMIB cell. 

After the cell preparation, the TiS2 electrode reacted with the Na+/Mg2+ hybrid electrolyte, 

resulting in a new phase due to the organic species intercalation into the TiS2 interlayers, which 

probably has a layered structure similar as that of TiS2 and is highly efficient and reversible for 

Na+/Mg2+ co-intercalation as proved through in operando synchrotron diffraction and ex situ 

XRD performed on TiS2 samples aged in different solutions. However, determination of the 

crystal structure and chemical composition of the new phase is challenging to elucidate the reaction 

between TiS2 and the hybrid electrolyte. Furthermore, the co-insertion of Na+ and Mg2+ is 

confirmed through ex situ TEM, EDX, and 23Na MAS NMR. DSC demonstrates the electrode at 

the fully charged cathode mixed with hybrid electrolyte does not exhibit any exothermic reaction 

in the temperature range of 50-450 oC. The endothermic peaks at 160 oC and 200 oC are coming 

from the Na+/Mg2+ hybrid electrolyte, corresponding to decomposition of the electrolyte. Both the 

dendrite-free deposition and the high thermal stability of the cathode exhibit the excellent safety 

properties of the NMIB cell. Their outstanding performances suggest that this NMIB system could 

be used in large-scale applications such as grid-level stationary energy storage. Furthermore, the 

use of Mg anode in applicable NMIBs could reduce electrode processing procedures and provide 

a large volumetric energy density. This makes NMIBs competitive against traditional LIBs, due to 

their low cost, long cycle life, and high safety. 

 

Detailed information can be found: J. Mater. Chem. A, 2017, 5, 600-608 

https://pubs.rsc.org/en/content/articlelanding/2017/ta/c6ta08505a#!divAbstract 

 

https://pubs.rsc.org/en/content/articlelanding/2017/ta/c6ta08505a#!divAbstract
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7.3 Electrochemical and structural investigations of different polymorphs of 

TiO2 in magnesium and hybrid lithium/magnesium batteries 

Synchrotron diffraction patterns demonstrate that commercial TiO2-anatase and self-prepared 

TiO2(B) via hydrothermal method are pure phase and can be indexed on the space group I 41/amd 

and C 2/m, respectively  and lattice parameters are a=3.7873(1) Å, c=9.5129(2) Å for TiO2 anatase, 

and a=12.2572(22) Å, b=3.7772(3) Å, c=6.5271(4) Å, β=107.63o(2) for TiO2(B). SEM displays 

that the TiO2 anatase and TiO2(B) are composed of nanoparticles (˂25 nm) and nanowires, 

respectively. 

Both commercial TiO2 anatase and self-synthesized TiO2(B) exhibit highly reversible capacity 

in the APC/LiCl hybrid electrolyte. TiO2 anatase displays a discharge/charge capacity of 225 mAh 

g-1/ 204 mAh g-1 with one flat plateau at ~0.9 V and following a slope-like region in APC/LiCl 

hybrid electrolyte, while the TiO2(B) delivers high initial discharge capacity of 260 mAh g-1 with 

S-shaped discharge-charge curves in the same electrolyte. Both TiO2 forms in pure APC 

electrolyte show significantly different behaviors from that in the hybrid electrolyte and only 

deliver discharge capacity of 53 mAh g-1 and 57 mAh g-1 with strong polarization. TiO2 anatase in 

APC electrolyte with a C/70 rate exhibit a slight changes of lattice parameters identified by in situ 

synchrotron diffraction, suggesting the slow diffusion of Mg ion inside the TiO2 anatase structure. 

Meanwhile TiO2(B) shows a double layer capacitance behavior in pure APC electrolyte as proved 

in situ synchrotron diffraction thanks to the large diffusion barrier and the difficulty of Mg2+ 

desolvation. In situ synchrotron diffraction reveals that TiO2 anatase undergoes as a solid solution 

reaction at the beginning of discharge and following a two-phase transition in the hybrid electrolyte 

(new phase Li0.5TiO2 with a space groups Pmn21) and TiO2(B) goes through a solid solution 

mechanism. We believe, in our case, it is the coexistence of solid solution reaction and interfaces 

charge storage in the entire range of lithium uptake due to the nanostructured TiO2(B) material and 

the a slow C rate of C/19 for in situ synchrotron diffraction. XPS analysis confirmed that surface 

charge storage phenomena happen along with the structural changes of the bulk electrodes. The 

high Mg/Ti ratio and Li/Ti ratio at discharged state indicate that both Li and Mg contribute to the 

charge storage mechanism, although the lithium insertion dominates reaction process in the bulk 

of cathode. Moreover, chemical insertion experiments were carried out through storing both TiO2 

into Di-n-butylmagnesium ([CH3(CH2)3]2Mg)/heptane solution to probe the possibility of Mg-
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insertion. Ex situ synchrotron diffraction and XPS reveal the possibility of the chemical 

magnesiation with n-Bu2Mg for both TiO2 forms but with quite low the efficiency. 

 

Detailed information can be found: Electrochimica Acta, 2018, 277, 20-29 

https://www.sciencedirect.com/science/article/pii/S001346861830985X 

 

7.4 Sodium vanadium titanium phosphate electrode for symmetric sodium-ion 

batteries with high power and long lifespan 

Because of the cost advantages and abundance, Na-ion batteries are very promising for use in 

large scale energy storage. However, it is very challenging to have suitable electrode materials 

with long cycle life and high- rate capability. In present work, NASICON-structured electrode, 

Na2VTi(PO4)3 is designed optimizing different transition metal ions and prepared by a sol-gel 

method. Synchrotron diffraction reveals the crystal structure of Na2VTi(PO4)3 is a rhombohedral 

structure in the space group R-3c and lattice parameters are a = 8.5992(1) Å and c = 21.8181(4) Å 

with a small amount of unknown impurity. Transmission electron microscopy reveals that the well-

crystallized Na2VTi(PO4)3 is composed of nanoparticles about 200 nm and dispersed within the 

amorphous carbon matrix. The amorphous carbon layer of 6 nm is coated on the surface of 

Na2VTi(PO4)3 particles with carbon content of  ~4.2 wt%. 

The electrochemical performance of Na2VTi(PO4)3@C was examined between 1.5 and 4.5 V 

at 0.1 C rate (1 C is defined as 125 mA g-1). In the first charge, a flat plateau at ~3.4 V vs. Na+/Na 

is observed, while three flat plateaus at 3.4, 2.1 and 1.6 V are obtained resulting from the stepwise 

reduction of V4+→V3+, Ti4+→Ti3+, and V3+→V2+, respectively. It delivers an initial charge 

capacity of 59 mA h g-1 (extraction of 0.95 mol Na+ per Na2VTi(PO4)3) and discharge capacity of 

147 mA h g-1 discharged to 1.5 V. It exhibits excellent rate capability with reversible capacities of 

140, 120, 107, 100, 90, 77, and 50 mA h g-1, respectively, from 0.1, 0.5, 1, 2, 5, 10 to 20 C rates. 

In addition, it shows a very high stability with the capacity retention of 77% after 500 cycles and 

the coulombic efficiency of nearly 100%. 

https://www.sciencedirect.com/science/article/pii/S001346861830985X
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A symmetric full cell is designed as Na2VTi(PO4)3@C║1M NaClO4 in/EC:PC║ 

Na2VTi(PO4)3@C configuration and at 1 C (the battery is anode limited), it exhibits two pair of 

plateaus at 1.7 and 1.2 V with an initial discharge/charge capacity of 78/72 mA h g −1, respectively. 

Surprisingly, it exhibits a good rate capability with a specific capacity of 49 mA h g-1 at 20 C and 

ultralong cycle life over 10,000 cycles with capacity retention of 74% at 10 C.  

In addition, in operando synchrotron diffraction and XAS measurements are carried out to 

reveal the structural changes and charge compensation mechanism. In operando synchrotron 

diffraction reveals Na2VTi(PO4)3 goes through a two-phase transition process during the 1st charge 

and undergoes two two-phase transition and solid solution processes during 1st discharge (all the 

phases have the same space group). The step oxidation and reduction of V3+→V4+, V4+→V3+, Ti4+

→ Ti3+, and V3+→ V2+ are clearly demonstrated through in operando X-ray absorption 

spectroscopy. Na2VTi(PO4)3 exhibits a highly reversible behavior in terms of charge transfer 

during the charge and discharge process. Our work highlights the prospect of NASICON-

structured materials for the application in high-power and long-lived NIBs. 

 

Detailed information can be found: Nature communications 2017, 8. 

https://www.nature.com/articles/ncomms15888 

 

7.5 Co9S8@carbon yolk-shell nanocages as a high-performance direct 

conversion anode material for sodium-ion batteries 

Due to their appropriate working voltage and high practical capacities, Cobalt sulfides are 

considered as promising anode materials for sodium-ion batteries. But the severe volume change 

and structure transformation make their cycle stability and rate capability unsatisfactory. In this 

study, metal-organic framework derived Co9S8@carbon yolk-shell nanocages (Co9S8@CYSNs) 

was prepared by simply vulcanizing the ZIF-67 precursor and the following annealing process. 

SEM confirms that Co9S8@CYSNs is composed of uniform polyhedral particles with particle size 

of ~ 500 nm. TEM clearly shows Co9S8@CYSNs has a yolk-shell structure with a thick carbon 

shell of ~ 20 nm and a porous core of ~ 200 nm. High-resolution TEM (HRTEM) shows that the 

https://www.nature.com/articles/ncomms15888
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inner core of Co9S8@CYSNs is made of numerous 10 ~ 20 nm particles embedded in amorphous 

carbon matrix. N2 adsorption-desorption isotherms exhibit of BET surface area of Co9S8@CYSNs 

is 112 m2 g-1 with a pore size ~ 4 nm. In addition, TG analysis determines the carbon content of 27 

wt.% in Co9S8@CYSNs. Co9S8@CYSNs delivers a first discharge capacity of 631.9 mAh g-1 and 

the charge capacity of 549.4 mAh g-1 in the potential range of 2.5 -0.2 V at 100 mA g-1, resulting 

in an initial coulombic efficiency of 87.0 %. Co9S8@CYSNs exhibits good cycling stability with 

capacity retention of 91.8% after 50 cycles while bulk Co9S8 only has the capacity retention of 

67.0% due to its poor kinetic properties and huge volume change. Co9S8@CYSNs material has 

high rate capability along with progressively increased current densities 0.2, 0.5, 1.0, 2.0, 4.0, 8.0, 

and 10.0 A g-1, respectively, with reversible capacities of 547.0, 470.3, 426.9, 342.5, 244.8, 167.8, 

and 100.5 mA h g-1. Impressively, it exhibits superior cycling performance with a capacity of 

84.5% after 800 cycles at 10.0 A g-1 and the excellent performance of the Co9S8@CYSNs anode 

is a very attractive candidate for the application in NIBs. 

A direct conversion mechanism and a “shrinking core” reaction model are identified and 

demonstrated, for the first time, by in operando XRD, in operando XAS and ex situ XPS, TEM 

techniques together with first-principles calculations. The poor conductivity of Na2S makes the 

conversion reaction difficult to spread into the bulk and severe volume change results in bad 

cycling performance. In present work, Co9S8@CYSNs could effectively accelerate the conversion 

reaction, because of uniform nanoparticles and yolk-shell structure which can reduce the short 

diffusion distance and increase high conductivity. Moreover, the rigid carbon shell can buffer the 

volume variation of Co9S8 during cycling. As a result, it displays superior electrochemical 

performance with high reversible capacity, excellent high rate capability, and long cycling 

stability. 

 

Detailed information can be found: Energy Storage Materials, 2018  

https://www.sciencedirect.com/science/article/pii/S2405829718307712 

 

https://www.sciencedirect.com/science/article/pii/S2405829718307712
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7.6 Electrochemical and structural investigation of calcium-substituted 

monoclinic Li3V2(PO4)3 anode materials for Li-ion batteries 

In this work, the effect of Li+ substitution in Li3V2(PO4)3 with a large divalent ion (Ca2+) 

toward lithium insertion is designed and studied. A series of materials, with formula Li3-

2xCaxV2(PO4)3/C (x=0, 0.5, 1, and 1.5), were synthesized by the carbon-thermal method and 

studied in the potential region of 3 - 0.01 V vs. Li+/Li. The crystal structure, morphology, and 

components were studied by synchrotron diffraction, SEM, Raman, and TG. The carbon content 

in Li3-2xCaxV2(PO4)3/C materials is estimated to be 8.06 wt%, 5.47 wt%, 6.03 wt%, and 3.89 wt%, 

respectively, via thermogravimetric analysis (TGA). The BET surface area of LVP/C is 54.3 m2/g, 

while the BET surface area of Ca1.5VP/C is only 24.8 m2/g. Two intermediate compositions 

Li2Ca0.5V2(PO4)3/C and LiCaV2(PO4)3/C have BET surface area 32.6 and 39.8 m2/g, respectively. 

The pore-size distribution curve exhibits the pore size for all samples both in micro- and mesopore-

range. These micro- and mesopores contribute about 90% of the total pore volume for sample 

LVP/C while the other three samples have the same value of about 60%. Moreover, Raman spectra 

confirmed the existence of amorphous carbon with disordered structures in the Li3-

2xCaxV2(PO4)3/C. Synchrotron diffraction demonstrates that LVP/C has a monoclinic structure 

with the space group of P21/n while Ca1.5V2(PO4)3/C possesses a rhombohedral structure with a 

space group of R-3c. The intermediates compounds, Li2Ca0.5V2(PO4)3/C and LiCaV2(PO4)3/C are 

composed of two main phases, including monoclinic Li3V2(PO4)3/C and rhombohedral 

Ca1.5V2(PO4)3/C.  

Impressively, here is the first time that five reduction and oxidation peaks (instead of four) are 

observed in the cyclic voltammetry of LVP/C and Li2Ca0.5V2(PO4)3/C. On the other hand, 

LiCaV2(PO4)3/C and Ca1.5V2(PO4)3/C have no obvious oxidation and reduction peaks and their 

CV profile resemble a capacitive-like behavior. Indeed, by kinetic analysis, these two materials 

display a capacitive-like mechanism, which involves fast electron transfer at the surface of the 

electrode. Li3-2xCaxV2(PO4)3/C compounds deliver specific capacities of 389.7, 273.6, 392.7, and 

492.9 mAh g-1 at 1 C for x =0, 0.5, 1 and 1.5, respectively. These values are much higher than the 

theoretical ones. The excess of capacity might be attributed to the adsorption of ions on the 

amorphous carbon and on the micro-sized active materials synthesized by the carbon thermal 

reaction method. In operando synchrotron diffraction demonstrates that LVP/C undergoes two 
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solid-solution and a short two-phase reaction during lithiation and delithiation processes, 

demonstrating a very good reversible structural change during the cycling and Ca1.5V2(PO4)3/C 

only goes through capacitive-like mechanism, showing a zero-strain material feature. In operando 

XAS confirms that the V is reduced during the first 3 Li ions insertion for both LVP/C and 

Ca1.5V2(PO4)3/C. The XAS results clearly show that V could not be reduced to a lower oxidation 

state after the insertion of 3 Li+ ions, suggesting that at low potential the capacity is not due to the 

Li+ insertion into the host materials, but has to be related to another mechanism like ion adsorption 

with a double layer formation, insertion into amorphous carbon with disordered structure and the 

SEI contribution. Among the different compositions, Ca1.5V2(PO4)3/C displays the highest 

discharge capacity until 40 C. At 200 C (an extreme high C-rate for battery materials), the cell 

polarization sensibly increases, but the electrodes are still able to deliver specific capacities higher 

than 50 mAh g-1. 

 

Detailed information can be found: First draft of Manuscript 
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 Conclusion and outlook 

8.1 Conclusion 

In the present thesis, I mainly focus on the study of the correlation between structural changes 

of V2O5 cathode materials and cations insertion/extraction with three examples Mg2+, K+, and Zn2+ 

for rechargeable Mg batteries, K-ion batteries, and aqueous Zn batteries. It is investigated through 

in operando synchrotron diffraction and in operando X-ray absorption spectroscopy together with 

ex situ Raman and X-ray photoelectron spectroscopy. Meanwhile, the electrochemical 

performance of V2O5 as cathode materials in three different systems were also investigated. 

Moreover, cation doping in the orthorhombic V2O5 material was studied to determine the location 

of doped cation in the substitutional or interstitial position with three different elements Ni, Mn, 

and Fe (MxV2O5, M=Ni, Mn, and Fe). 

All the orthorhombic V2O5 materials were successfully synthesized via a hydrothermal 

method. V2O5 nanowires in the cell configuration V2O5│Mg(ClO4)2/AN│MgxMo6S8 deliver an 

initial discharge/charge capacity of 103 mAh g-1/110 mAh g-1 and reach the highest discharge 

capacity of 130 mAh g-1 in the 6th cycle at a C/20 rate. The reversibility of the magnesium 

insertion/extraction in the V2O5 is clarified through in operando synchrotron diffraction and in 

operando XAS together with ex situ Raman and XPS. In operando synchrotron diffraction and ex 

situ Raman revealed the formation of a new phase of Mg-rich MgxV2O5 during Mg insertion and 

the recovery of V2O5 during Mg extraction. In operando XAS and ex situ XPS confirmed the 

reduction/oxidation of vanadium during the Mg insertion/extraction.  

In comparison, V2O5 nanoparticles in 1 M KPF6/PC electrolyte display an initial 

discharge/charge capacity up to 200 mAh g-1 (1.36 K+ insertion)/217 mAh g-1 in the potential range 

of 1.5 - 4.0 V with a rate of C/12, which is much higher capacity and fast kinetics than that in MBs. 

However, V2O5 exhibits a rapid capacity loss and decreases to 54 mAh g-1 at the 31st cycle and 

then slowly increases up to 80 mAh g-1 after 200 cycles. In operando synchrotron diffraction 

revealed that V2O5 first undergoes a solid solution and then a coexistence of solid solution and 
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two-phase reaction upon K ions insertion and a coexistence of solid solution and two-phase 

reaction is identified as well with irreversible process upon K ions extraction. In operando XAS 

confirmed the reduction/oxidation of vanadium during the K insertion/extraction with part of 

irreversibility, in consistence with the other results from synchrotron diffraction, Raman and TEM. 

In the aqueous 1 M ZnSO4 electrolyte, V2O5 nanowires deliver a much higher initial 

discharge/charge capacity of 277 and 432 mAh g-1 at a 50 mA g-1 (close to its theoretical capacity 

294 mAh g-1) compared with those in MBs and KIBs. However, it exhibits a much worse cycling 

stability with dramatic capacity decrease to 94 mAh g-1 for the 22nd cycle and very low discharge 

capacity of 21 mAh g-1 after 100 cycles. Moreover, the V2O5 nanowires undergo an activation 

process at high current density and delivers an initial discharge capacity of 278 mAh g-1 at 200 

mA g-1, demonstrating a much faster kinetics in aqueous ZBs than those in MBs and KIBs. The 

significant structure changes for both reduction and oxidation peaks were observed during CV 

scans of V2O5 electrode. In operando synchrotron diffraction revealed that V2O5 first undergoes a 

solid solution and two-phase reaction upon Zn ions insertion along with the formation of two 

byproducts Zn3(OH)2V2O7·2(H2O) and ZnSO4Zn3(OH)6·5H2O. This process is reversible upon Zn 

ions extraction with the decomposition of both byproducts, and the V2O5 electrode in the 2nd 

discharge process goes through the same two-phase reaction as that in the 1st discharge without 

the formation of by product Zn3(OH)2V2O7·2(H2O). In operando XAS confirmed the 

reduction/oxidation of vanadium during the Zn insertion/extraction with part of irreversibility. 

Finally, the preferred location of doped cation (substitutional or interstitial position) in V2O5 

is investigated with three different elements (Mn, Ni, and Fe). Single phase for pristine and both 

Mn- and Ni-doped V2O5 is obtained (MxV2-xO5, M= Mn, Ni, x=0, 0.1 and 0.2) through 

hydrothermal method. Rietveld refinement confirmed that the Mn, Ni, and Fe would prefer locate 

the interstitial position (between the layers) for M-doped V2O5 (MxV2-xO5, M= Mn, Ni, x= 0.1 and 

0.2). However, a phase impurity of Fe2V4O13 is obtained for FexV2-xO5 (x= 0.1 and 0.2) except the 

orthorhombic Fe contained V2O5 phase. Cation doping leads to slight change of the environments 

of V in the V2O5 structure confirmed by synchrotron diffraction, Pair distribution function (PDF), 

Raman, XPS, 51V NMR, and XAS (XANES and EXAFS). 
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8.2 Outlook 

The reaction mechanisms of V2O5 cathode materials in rechargeable Mg batteries, K-ion 

batteries, and aqueous Zn batteries have been investigated by in operando synchrotron diffraction 

and in operando X-ray absorption spectroscopy as well as by ex situ techniques. The 

electrochemical performances of the V2O5 cathode materials in each individual system can be, 

however, further improved. For example, V2O5 materials show very low reversible capacity in 

both MBs (~130 mAh g-1) and KIBs (~120 mAh g-1), which is much lower than its theoretical 

capacity of 294 mAh g-1. In aqueous ZBs, V2O5 shows a very high initial capacity of ~277 mAh 

g-1, which then rapidly decays. In this work, I focused on the mechanism occurring in the really 

first cycle, while the reason behind the strong capacity fading for these three systems are still not 

fully understood. To improve the performances of V2O5 in these three systems, the main points 

are addressed as below: (I) To study the dissolution of the electrode material in the electrolyte with 

different concentration after cycling, for example the chemical analysis of the electrolyte after 

cycling; (II) To investigate the structural stability of the electrode materials after cycling in 

different conditions with XRD, XPS, Raman, and TEM; (III) To look into the effect of the negative 

electrode material. For example, K metal as negative electrode could make the cell unstable 

because of its high reductive property; and (1) Heterogeneous structured materials such as carbon 

or rGO coating materials should be prepared to prevent the possible dissolution of the active 

materials and increase its conductivity as well, therefore improving the cycling stability and 

diffusion kinetics for fast rate capability; (2) Bifunctional cation doping and surface coating 

materials should be synthesized to enhance both electronic and ion conductivity and to stabilize 

the structure of the materials, therefore to improve their performances; (3) Other suitable 

electrolytes with wide electrochemical window and high performance should be developed by 

adjusting solvent, salt specimen, and concentration of the solution, even by adding additives; (4) 

The electrode preparation such as thickness and binder, and working voltage range should be 

optimized in order to obtain excellent electrochemical property. In addition, an appropriate anode 

should be explored to replace the current MgxMo6S8 and therefore to improve the capacity and 

energy density for MBs in the “chosen standard electrolyte”. 

For the work of doped V2O5 samples, further analysis for PDF and EXAFS fitting is needed 

to clearly demonstrate the coordination of V and M. 
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