
ADA-FS
Advanced Data Placement via Ad-hoc File Systems

Towards High-Performing On-Demand File Systems at Extreme Scales

8 16 32 64 128 256
0

20

40

60

80

100

120

140

2,79
6,74

10,83

28,37

54,06

129,65

Benchmark with BeeGFS on FORHLR II

Number of nodes

T
h

ro
u

g
h

p
u

t
(G

iB
/s

e
co

n
d

)

 Initial benchmarks on ForHLR II (Cluster at KIT) with the IOzone benchmark tool.
● Using node-local storage
● Fat Tree Topology (approximately 50 Gbit per node)
● Compute nodes with local SSD (R/W 600/400 MB/s)
● Measured write performance with one process per node

 Today, large parallel file systems are shared between many concurrently running applications
which suffer from I/O bottlenecks and unreliable IOPS on HPC systems.

 As a result, emerging storage technologies (e.g., SSD, NVRAM, HBM, …) cannot be fully
utilized by applications.

 Further, cluster topologies are becoming increasingly more complex within HPC systems.

2. Motivation

Low latency High latency

3. Ad-hoc file system

4. Data aware scheduling and data management

5. Application monitoring & Resource discovery

6. Status

 Interaction with the existing batch environment - no replacement of existing components
 A central I/O planner coordinates which data is staged to which nodes.
 Improving batch system node allocation with machine learning for better wall-clock prediction.
 A distributed file system is deployed on the local storage of allocated compure nodes.
 Detailed knowledge about the cluster topology and task placement improves initial data

placement within the distributed file system.
 A new data management concept is introduced to handle data staging within complex

environments, offering a global identifier for data regardless of its physical location.
 Pre-staging data using RDMA (NVMe).

 I/O monitoring of applications and analyzing the usage of the private file system provides
hints for better data staging.

 I/O tracking of applications would also provide information for consecutive runs, since most
applications show similar I/O behavior during their runs.

 Complex memory hierachies make performance a matter of locality.
 Information about node-local resources (e.g., available local storage) and topology

information are mandatory for a central I/O planer.
 Bandwidth within a set of nodes vs. bandwidth to the PFS helps to choose the right caching

places (e.g., neighbor nodes).

1. Project overview

Mehmet Soysal1, Marc-André Vef2, Sebastian Oeste3, Achim Streit1, André Brinkmann2, Michael Kluge3

1) Karlsruhe Institut of Technology / Steinbuch Centre for Computing
2) Johannes Gutenberg-Universität Mainz / Zentrum für Datenverarbeitung
3) Technische Universität Dresden / Zentrum für Informationsdienste und Hochleistungsrechnen

 Based on the Fuse library.
 The cluster‘s batch system deploys the file system on a number of nodes that are allocated

for a job with a single namespace.
 Relaxed POSIX I/O Semantics.

● Ignore Metadata fields, such as mtime, atime, filesize
● Simplify file system protocols
● Avoid locking whenever possible

 Scalable metadata approach.
● Use Key-Value store
● No rigid data structures (e.g. directory blocks)
● Last writer wins

 Distribute data across disks (taking locality into account).
 The file system uses, among others, the cluster topology to decide where to place the data

(i.e., which node and storage device).

ada-fs.github.io

 New project in the second period of
The Priority Programme „Software for Exascale Computing“ (SPPEXA)

 Funded trough the „Deutsche Forschungsgesellschaft“ (DFG)

 Started 02/2016 till 02/2019

ADA-FS

Ad-hoc file system
Data aware
scheduling

Application
monitoring

 Ad-Hoc file system with relaxed POSIX semantics is under development.
● Basic design choices already finished
● Using BeeGFS as On-Demand filesystem as a prototype

 Requesting on-demand private PFS and data staging available @ForHLR2.
● Prototype with moab‘s job-chaining functional

 Prototype tools for topology discovery under testing.
 Tools for application monitoring are in progress.
 Testing with BeeGFS until ad-hoc file is available.
 Benchmarks with BeeGFS (full POSIX) are promising.

● Low impact on job – No impact on global PFS during job
● Speed of SSDs are limiting factor

7. Future work

8. Initial benchmarks

 Develop novel distributed ad-hoc filesystem
 Test application behavior with relaxed POSIX semantics
 Develop tools for ADA-FS deployment with support for other batch systems
 Test tools for topology and resource discovery on heterogeneous systems
 Track I/O behavior of different applications and create fingerprint
 Use information of I/O behavior for optimized data placement
 Evaluate impact on application with optimized data placement
 Develop prototype of a new data management concept with “workpools”
 Evaluate impact on running jobs during data pre-staging

	Slide 1

