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Abstract Periodic domain patterns in tetragonal ferroelectrics are explored using a phasefieldmodel calibrated
for barium titanate. In this context, we discuss the standard periodic boundary condition and introduce the
concept of reverse periodic boundary conditions. Both concepts allow the assembly of cubic cells in accordance
with mechanical and electrical conditions. However, application of the reverse periodic boundary condition is
due to an increased size of the RVE and enforces more complex structures compared to the standard condition.
This may be of particular interest for other multiphysics simulations. Additionally, we formulate mechanical
side conditions with minimal spherical (hydrostatic) stress, or conditions with controlled average strain. It is
found that in sufficiently small periodic cells, only a uniform single domain, or the simplest stripe domains
constitute equilibrium states. However, once the periodic cells are of order 20 domain wall widths in size, more
complex, 3-dimensional patterns emerge. Some of these patterns are known from prior studies, but we also
identify other domain patterns with long, ribbon-like domains threaded through them and some vortex-like
structures.

Keywords Periodic boundary conditions ·RVE simulation ·Tetragonal ferroelectrics · Polarization patterns ·
Polarization vortex · Multiphysics simulations

1 Introduction

Tetragonal ferroelectrics such as barium titanate, BaTiO3, are characterized by a spontaneous electric polariza-
tion lying parallel to the pseudo-cubic axes of the crystal. On cooling BaTiO3 through the Curie temperature,
Tc ∼= 120 ◦C, the material gains a spontaneous polarization and transforms its crystal structure from the
cubic, paraelectric to the tetragonal, ferroelectric state. This phase transformation induces lattice strains and,
depending on the surrounding constraints, it causes deformation or internal mechanical stress [1,2]. During the
phase transformation, regions with uniform electric polarization group together, forming domains separated
by narrow domain walls.
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According to Maxwell’s equations, domains usually arrange with electrically compatible ‘head-to-tail’
polarization, which minimizes energy due to charged domain walls or strong compensating electric fields
[3,4]. Similarly, domain patterns minimize internal mechanical stress through compatible arrangements of
spontaneous strain [5]. This results in the well-known 90◦ and 180◦ domain walls in tetragonal ferroelectrics.

Energy minimization provides a powerful method for understanding how domain patterns form. Since the
domainwalls are typically less than a fewnm in thickness, a sharp interface approximation is attractive [6]. From
this approach and fromobservation ofmicro- or nano-structure,manydomain patterns have been identified [3,5,
7–10]. The simplest known arrangements are bundles of 90◦ and 180◦ domains forming laminates of alternating
stripes. In thin films or lamellae, the domain bundles are commonly polarized in-plane [11]. However, thicker
plates or bulkmaterials can form energyminimizing patternswith domains polarized in all three axial directions
[3,12]. The formation of periodic or nearly periodic patterns of domains is commonly observed; the effect
of specimen size and mechanical strain on the formation of such periodic domain patterns has also been
widely reported [4,12–15]. The spatial distribution of domains affects ferroelectric properties at both fine
scale and macroscale [8,11,16–21]. Rödel [21] discussed the dependence of piezoelectric coefficients on the
volume fractions of domains, while Weng and Wong [22] showed that the macroscale ferroelectric behaviour
is enhanced in certain laminated domain patterns. There is great interest in the domain patterns because of
the potential to exploit engineered configurations of domains for energy harvesting, actuation, sensing, and
memory devices [23–27].

Significant progress in understanding domains has been made with relatively simple models. However,
results based on a sharp interface approach neglect the details of domain walls and their interactions, which
become important when the size of domains is comparable to the domain wall width. In such cases, the
formation of domain patterns and their stability has not been fully explored. Phase field models, with an order
parameter that varies across the domain walls, offer an opportunity to study nanoscale domain patterns with
a physically realistic representation of domain wall energy, bulk electromechanical energy, and the effects of
external electromechanical loading. The use of phase field models for ferroelectric domains is well-established
[28–33]. Several studies explore the evolution of polarized domains in thin films [34–37], under the effect of
electromechanical loads. These studies explore the local effects of substrate strain on domain shapes [36],
domain wall movement [34] and the coercive field [37]. In ferroelectric-bulk, the 3-dimensional effect of the
electromechanical boundary conditions influences the formation of equilibrium domain patterns. 3D periodic
laminates with microstructural features such as curved domain walls [5,15] and ribbon-shaped domains [9]
have been experimentally observed. These 3Dmicrostructural features evolve under external electromechanical
loads and influence the nanoscale behaviour of ferroelectrics [9]. Exploring the spatiotemporal evolution of
periodic polarization patterns in a theoretical framework would indicate the complexities in pattern formation
and provide initial steps towards nanoscale experimentation. Recently, we used the same phase field model
as in this work to explore nanoscale domain patterns [14]. Starting from the patterns predicted by energy
minimization with sharp interfaces [5], it was found that several of the patterns dissolve into simpler, more
stable arrangements such as single domains or alternating stripes. For computational speed, the calculations
were mainly carried out using 2D models that limit the freedom of the system to relax into fully 3D domain
patterns. Extending the study to consider periodic volumes large enough to support domain patterns makes
heavy demands on computation, and the calculations reported in the present work typically took days to weeks
each, running as parallelized code using 32 cores on an Intel Xeon CPU at 3.2GHz.

The goal of this work is to establish and explore two kinds of periodic boundary conditions for scalar
and vectorial fields at the bound of representative volume elements (RVE). This is motivated by the fact that
periodic boundary conditions generally restrict the solution space. Thus, any RVE simulation may benefit from
this discussion since our model demonstrates that differing periodic boundary conditions naturally lead to an
enriched variety of periodic domain patterns. The principle of the reverse periodic boundary condition is an
enhanced assembly rule, where we superpose translation and rotation.

We study a range of periodic cell sizes and then focus on a size just sufficient to allow complex domain
patterns to form. Such complex patterns could be useful in memory applications where arrays of writable
domains and skyrmion-like topologies [38] are of current interest. Periodic patternsmay be artificially enforced
by imposing a template or may arise naturally through minimization of energy. Nature, of course, has available
any periodic cell size or none. The exact reason why nearly periodic patterns of domains commonly form is
not known. It may be that similar conditions of stress or cooling rate during the phase transition favour the
nucleation of particular domains that then adjust into a nearly periodic form to minimize energy. More likely,
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a small region of pattern first forms and then becomes the template for surrounding regions which copy the
pattern. We show that cell sizes of at least tens of domain wall widths are necessary in order to support domain
patterns other than simple stripes or single domains.

Further, we explore the effect of strained states on the formation of domain patterns. The study is motivated
by a classification of low-energy periodic domain patterns given by Tsou et al. [5] in which several families
of periodic domain patterns were identified. We employ a 3-D phase field model [39,40], which is calibrated
for barium titanate and reproduces the transition from an initial paraelectric state to the tetragonal ferroelectric
state at the Curie point, whereupon domain patterns evolve to minimize internal energy. We do not force any
particular pattern by imposing a template or by initial conditions: instead, the simulations take a randomly
perturbed initial state and relax this towards equilibrium. Since it is impractical to simulate 3-dimensional
regions much larger than a few tens of nm in size, we make use of periodic boundary conditions, which allow
the assembly of simulated volumes into larger periodic cells. Additionally, the simulations are carried out with
controls on the average strain, introduced as various side conditions. This allows for the effect of a remanent
ferroelastic strain, appearing at the phase transition from the paraelectric to the ferroelectric state.

The paper is organized as follows: the underlying model is given in Sect. 2, followed by a discussion of
periodic boundary conditions in Sect. 3. The results of our simulations are presented and discussed in Sect. 4,
followed by conclusions in Sect. 5.

2 The material model

The model follows the Landau–Devonshire theory of ferroelectrics [41], the work of Fried and Gurtin [42,43],
and the subsequent work of Landis [39,40]. Fuller details concerning the normalization of physical fields,
phase field modelling, and finite element technique are given in [25,44,45]. The evolution of domain patterns
follows the time dependent Ginzburg–Landau equation [39], with polarization P as the order parameter:

Div

(
∂�

∂Grad[P]
)

− ∂�

∂P
= β Ṗ, β ≥ 0, (1)

where � is the Helmholtz free energy of the system and β is a polarization viscosity introduced to represent
the dissipation associated with domain wall motion. Domains of homogeneous electric polarization evolve
during the simulations, and the polarization rate on the right hand side of Eq. (1) vanishes in the final state of
equilibrium.

The Helmholtz free energy includes contributions due to mechanical strain ε, electric polarization P, and
electric field E:

� = �mech(ε , P) + �well(P) + �grad(Grad[P]) + �elec(P , E). (2)

The free energy function used includes six energy wells corresponding to the six polar variants of the tetragonal
ferroelectric. The curvature of the wells is calibrated to reproduce the elastic, piezoelectric, and dielectric
behaviour of the individual domains, and the gradient term reproduces 90◦ and 180◦ domain walls with widths
and energies consistent with other studies [39,46,47]. The model does not explicitly include flexoelectric
effects, though gradients in strain are indirectly coupled to polarization through the gradient terms in themodel.
Simulations are initiated with P ≈ 0, ε ≡ 0 and E ≡ 0 throughout the simulated region. Strain controls, where
used, are switched on after the first iteration of the Newton–Raphson solution scheme. The overall internal
energy � = ∫

Bc
� dV reduces as the simulation proceeds, eventually stabilizing at an equilibrium value.

Since the initial energy �0 = ∫
Bc

�0 dV is zero, the internal energy of the model becomes negative during
the phase transition. This follows Devonshire’s approach [1,2] wherein the free energy � of BaTiO3 is zero
in the cubic state.

The minimum possible value for� is given for the tetragonal crystal structure with homogeneous polariza-
tion P0 in a state free of stress or electric field. Then, the model yields�0 = −0.5345 E0 P0, where P0 = 0.26
Cm−2, is the remanent polarization of the relaxed domain and E0 = 2.182×107 Vm−1 is the coercive electric
field of the single domain (which is much greater than the coercive field of polydomain material). The results
given in Sect. 4 are normalized using �0, E0 and P0.

The model simulates a region of material Bc within which electric displacement D is defined by

D = P + κ0 E inBc, (3)
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where κ0 = 8.854 × 10−12 VmC−1 is the permittivity of free space, and electric field E is derived from a
scalar electric potential φ as

E = −Grad[φ]. (4)

The model fulfils Maxwell’s electrostatic equations

Curl[E] = 0 inBc, (5)

Div[D] = ρ inBc, (6)

where ρ is the free charge density. Since the material is a ceramic insulator, we assume ρ = 0. This, in
combination with Eqs. 3 and 6, penalizes divergent polarization fields, such as ‘head-to-head’ or ‘tail-to-tail’
domains. At surfaces with outward normal direction n and surface charge density q , the electric displacement
satisfies

D · n = q on ∂Bc. (7)

Equation (5) is automatically satisfied since Curl[Grad[φ]] = 0. Meanwhile, the mechanical part of the model
assumes linear kinematics with displacements u and strain

ε = symGrad[u]. (8)

Since we are not concerned with extrinsic forces, the balance of momentum reduces to

Div[σ ] = 0 inBc, (9)

while at surfaces with traction t,

t = σ · n on ∂Bc. (10)

Periodic boundary conditions on the pseudo-surface, ∂Bc, of unit cells will be defined in Sect. 3, regulating
the values of P, φ and u on ∂Bc.

The majority of simulations represent cubic volumes of material, modelled with up to 203 = 8000 tri-
quadratic finite elements of approximately 2nmelement size. This yields of the order of 106 degrees of freedom.
Extra degrees of freedom are introduced at domain walls, as they form, by enriching elements with quartic
shape functions wherever the gradients of P exceed a critical magnitude; details of the enrichment method
have been given by Muench and Krauß [44,45]. At the initial stage of the simulation, random values of P of
magnitude 0.01P0 are imposed on the system. This gives a perturbed near-zero polarization field corresponding
to a state close to the maximum potential energy, representing the cubic state of the crystal. The subsequent
evolution of domain patterns is due to the transformation from paraelectric to ferroelectric material at room
temperature. Unless otherwise specified, the results show equilibrium states with Ṗ = 0. Equilibrium was
checked at the end of each simulation by increasing the time increment 	t of the implicit time integration
scheme by a factor of 106 relative to the time steps used during the simulation, and checking for any change
in polarization.

3 Periodic boundary conditions

Let us consider a nanoscale cubic unit cell Bc taken from the interior of a bulk single crystal with periodic
domain pattern. Cartesian coordinates xi with orthogonal basis vectors ei aligned to the edges of Bc are used.
The origin x0 lies at the centre of Bc, as shown in Fig. 1. Dimensions are given by Lc such that coordinates
xi ∈ [−Lc/2 , Lc/2] , i = 1..3 and the volume Vc = L3

c .
The surface ∂Bc of the unit cell has six faces with surface normal vectors

nI = ei on B I
c , I = i, nJ = −ei on B J

c , J = i + 3, i = 1..3. (11)

The centres of the faces ∂B I
c , I = 1 . . . 6, of Bc are defined by oI = nI Lc/2. Position vectors on the faces

∂B I
c are specified by x = oI + rI where

r1 = r4 =
⎛
⎝ 0
x2
x3

⎞
⎠ , r2 = r5 =

⎛
⎝ x1

0
x3

⎞
⎠ , r3 = r6 =

⎛
⎝ x1
x2
0

⎞
⎠ . (12)

Each vector rI inherits the parameters of the face ∂B I
c as cartesian coordinates and is perpendicular to nI as

shown in Fig. 1b.
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Fig. 1 a Cubic simulation volume Bc with cartesian coordinate system ei , centre x0, dimension Lc, and normal vectors nI on
faces ∂B I

c . b Tangential vectors rI are shown on each surface ∂B I
c

3.1 Standard periodic boundary condition

A simple packing of unit cells is obtained by duplication and translation along ei via cell length Lc. Using
superscripts I and I +3, the periodic boundary conditions on opposite faces ∂B I

c and ∂B I+3
c are then given by

P(oI + rI ) = P(oI+3 + rI+3), I = 1..3, (13)

φ(oI + rI ) = φ(oI+3 + rI+3), I = 1..3, (14)

u(oI + rI ) = u(oI+3 + rI+3), I = 1..3. (15)

These periodic boundary conditions enforce zero average strain and electric field within the cell. In Sect. 3.3,
we will introduce a side condition to allow for nonzero average strain. By then, Eq. (15) ensures that unit cells
are geometrically compatible. Equation (13) also yields solenoidal polarization when averaged over Bc:∫

Bc

Div[P] dV =
∫

∂Bc

P · n dA

=
3∑

I=1

∫
∂B I

c

P(oI + rI ) · nI + P(oI+3 + rI+3) · nI+3 dA = 0. (16)

Nevertheless, Eq. (16) does not imply that the polarization is locally divergence-free within Bc.

3.2 Reverse periodic boundary condition

We next consider an assembly of cubes Bc to form an extended unit cell with internal symmetry. This can be
achieved by translation along ei combined with a 180◦ rotationR I about ei . The periodic conditions then read

P(oI + rI ) = R I P(oI+3 + R I rI+3), (17)

φ(oI + rI ) = φ(oI+3 + R I rI+3), (18)

u(oI + rI ) = R I u(oI+3 + R I rI+3). (19)

The 180◦ rotation tensors R I are defined by

R I = −11 + 2 nI ⊗ nI , R I ∈ SO(3) ∧ Sym(3), (20)

where 11 is the identity tensor and ⊗ yields the dyadic tensor product. With the restriction in Eq. (20), the
electric polarization satisfies q ≡ 0 on ∂Bc when cubes Bc are assembled after duplication, translation along
ei via cell length Lc, and rotation by R I . This reverse periodic boundary condition can be applied to one, two,
or three faces simultaneously. In the present work, the reverse condition is applied on a single pair of opposite
faces, with standard periodic boundary conditions employed on the other faces.

Aswith the standard periodic boundary condition, the reverse periodic boundary condition yields solenoidal
polarization averaged over Bc. Similarly, this boundary condition implies that the mean strain and electric field
vanish over the extended unit cell. Thus, the assembly of cells Bc with reverse periodic boundary condition
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(a) (b)

e1

e2
e3

e1

e2
e3

Fig. 2 Translation of cubes Bc in the e1-direction; polarization is indicated by arrows. a An assembly of two cubes using the
standard periodic boundary condition to yield a rank-1 laminate. bAn assembly of two cubes using the reverse boundary condition
with rotation around e1 and translation; this produces a rank-2 laminate with a 180◦ domain wall, highlighted in red . (Color
figure online)

does not require any macroscopic electric field to stabilize it. Figure 2 illustrates the effect of the standard and
reverse boundary conditions. The reverse periodic boundary condition encourages the formation of additional
180◦ domain walls and hence more complex domain patterns.

In summary, the reverse periodic boundary condition is applied to accelerate the search for complex domain
patterns at smaller RVE’s. It enforces a double cell symmetry condition, without increasing the computational
volume. This boundary condition encourages periodic patterns with oppositely polarized domains to form, in
order to maintain an overall electric field neutrality.

3.3 Side conditions for strained states

Next, we introduce mechanical side conditions to apply four different representative strained states. We use
these representative strained states to explore the general trends in temporal evolution of polarization patterns
and to explore the complexities of 3D-domain arrangements.

When BaTiO3 transforms freely from the cubic phase to the tetragonal phase, the transformation results
in a remanent strain εr , which is non-isochoric. Three variants of εr are observed, with the tetragonal c axis
aligned to e1, e2 and e3, respectively. The cubic lattice constant acub is replaced by tetragonal lattice constants
ctet and atet , respectively, giving remanent strain components

εc = ctet − acub
acub

> 0, εa = atet − acub
acub

< 0. (21)

Thus, the three strain variants are

ε01 =
⎛
⎝ εc 0 0

0 εa 0
0 0 εa

⎞
⎠ , ε02 =

⎛
⎝ εa 0 0

0 εc 0
0 0 εa

⎞
⎠ , ε03 =

⎛
⎝ εa 0 0

0 εa 0
0 0 εc

⎞
⎠ . (22)

In each case, the c axis aligns with the polarization P in the minimum energy state. For BaTiO3, set acub =
4.000Å, ctet = 4, 0328Å, and atet = 3.9892Å, based on experimental data and theoretical results presented
in [48]. Then, εc = 0.0082 and εa = −0.0027 giving 2 εa + εc = 0.0028, which indicates that the unit cell
undergoes a non-isochoric process if unconstrained. Thus, it is desirable for the simulations to allow an overall
straining of Bc, corresponding to displacement of the boundaries ∂Bc.

The strain-free boundary conditions of Eqs. (15) and (19) would suppress an average remanent strain,
resulting in a stressed state. To enable a state closer to stress-free conditions, we introduce scalar parameters
λi , i=1..3, tracking approximate volume fractions of each of the three strain variants, as indicated by the local
polarization direction:

λi := 1

Vc

∫
Bc

|P · ei |
P0

dV, i = 1..3. (23)

Using the volume fractions λi and the remanent strain variants from Eq. (22), define an overall remanent strain

ε̄r := 1

Vc

∫
Bc

3∑
i=1

|Pi |
P0

ε0i dV =
3∑

i=1

ε0i
1

Vc

∫
Bc

|P · ei |
P0

dV =
3∑

i=1

λi ε
0
i , ε̄r ∈ Diag. (24)



Periodic boundary conditions for the simulation of 3D domain 961

Note that ε̄r is not the actual strain or strain average of the simulation, but instead is a notional remanent strain
that is consistent with the current polarization state of the simulation. Since it results from an average over Bc,
ε̄r is not a function of position. The overall volume change due to average remanent strain ε̄r is

	V = Vc tr[ε̄r ] = Vc (λ1 + λ2 + λ3) (2 εa + εc). (25)

Now consider imposing some state of average strain of the form ε̄ ∈ Diag. This could be achieved by replacing
the displacement boundary conditions, Eqs. (15) and (19), with

u(oI + rI ) = u(oI+3 + rI+3) + ε̄ · nI Lc , I = 1..3, (26)

for the standard periodic boundary condition, and

u(oI + rI ) = R I u(oI+3 + R I rI+3) + ε̄ · nI Lc , I = 1..3. (27)

for the reverse periodic boundary condition. Equivalently, we may keep Eqs. (15) and (19), and replace (8) by
the side condition

ε = symGrad[u] + ε̄, (28)

taking care to adjust the definition of Helmholtz free energy in Eq. (2) accordingly. This latter approach is
used in the present work. In order to control the average strain during transformation from cubic to tetragonal
in differing ways, the three diagonal elements of ε̄ can be defined using parameters f1, f2, and f3 by analogy
with Eq. (24), such that

ε̄ =
3∑

i=1

fi ε
0
i , ε̄ ∈ Diag. (29)

The parametrizationwith fi aids the formulation of different types of constraints or strain controls. For example,
setting f1 = 1 and f2 = f3 = 0 recovers the strain state of a stress-free single domain with c axis aligned to
e1. By contrast, setting all fi = 0, i = 1 . . . 3, produces a state free of average strain, while setting all fi = 1/3
produces an equiaxed volume dilation that matches the dilation of the cubic–tetragonal phase transformation.

Simulations were conducted with four specific side conditions, as follows: First, the average strain-free
case, where

f1 = f2 = f3 = 0, (30)

is denoted Isochoric Ferroelectric Phase Transition (IFPT). Thus, the volume of Bc is held constant during the
simulation. A negative spherical stress is likely to arise to restrain ε̄r if the material evolves polarized domains
such that volume fractions λi > 0.

By contrast, a low stress phase transition may be promoted by

fi = λi , i = 1..3. (31)

Here, ε̄ adapts continuously to match ε̄r ; this condition will be denoted Adaptive Spherical Stress Free
(ASSF). Note that ASSF may generally yield unequal strains along the three axes, but tracks any volume
dilation accompanying the transformation, so that typically tr[ε̄] = (2 εa + εc) = 0.0028 at equilibrium.

A third condition enforces equal average straining along each axis while matching the expected volume
dilation due to transformation:

f1 = f2 = f3 = 1/3. (32)

This will be denoted as the Isotropic Spherical Stress Free (ISSF) case. This side condition tends to eliminate
any average spherical stress.

Finally, a common arrangement for materials bound by a substrate, or subjected to a uniaxial mechanical
loading, is that the strain state retains two equal principal strains. Combining this with the restriction to match
the volumetric dilation due to the phase transformation gives:

f1 = a , f2 = f3 = b , a + 2b = 1, a 
= 1/3. (33)
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(a) (b)

(g)(c) (d)

(e) (f)

Fig. 3 3D simulation results for a cubic region,with the reverse periodic boundary condition applied in e3 direction. a–f Successive
stages in the simulation before equilibrium are reached. g Equilibrium state, showing polarization directions with arrows

The particular case when b = 1/2 we denote Transversely Isotropic Deformation (TID). Note that all four
cases allow for locally inhomogeneous strain within Bc. Further, the volume fractions λi need not generally
coincide with imposed strain parameters fi , except for the case of ASSF, where there is continuous tracking
to match these parameters.

The strained states might bear similarities to experimentally imposed mechanical strains. However, the
spirit of the current work is to indicate the general trends for complexity and types of patterns that form in
bulk ferroelectrics.

4 Results and discussion

Domain topologies resulting from the use of periodic boundary conditions in 3-dimensions, combined with
each of the four strain conditions (IFPT, ASSF, ISSF, TID), are presented in this section. It is instructive first
to consider the evolution of domains within a single simulation, then to explore the effect of the periodic cell
size in the range 9-41nm on the topologies that may form. Finally, a cell size large enough to generate complex
domain patterns (41nm) is selected and the domain topologies resulting from each set of boundary conditions
are described.

4.1 Evolution of a 2-dimensional domain topology

In this example, a cube Bc of size Lc = 33nm is simulated using 16 × 16 × 16 elements. Standard periodic
boundary conditions are used on the opposite face pairs (∂B1

c , ∂B4
c ) and (∂B2

c , ∂B5
c ). Meanwhile, the reverse

periodic boundary condition is applied to the face pair (∂B3
c ,∂B6

c ). The adaptive spherical stress-free condition
(ASSF) on average strain is applied.

Figure 3 shows a series of states of the simulation as it evolves towards equilibrium; each image shows
four copies of the simulated volume Bc to illustrate the periodic continuation in the e1 and e3 directions. The
reverse periodic boundary condition encourages (but does not enforce) the formation of a 180◦ domain wall
normal to the e3 direction.

In the early stages of the simulation, the local values of |P| are much less than P0, but the energetic driving
force for the formation of polarized regions rapidly produces domains. These initially nucleate in a random,
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high energy pattern, and gradually resolve sharply defined 90◦ and 180◦ domain walls. As can be seen from
Fig. 3c–e, the domain pattern is complex as it evolves towards equilibrium, but eventually reaches a simpler,
lower energy state.

The final equilibrium state shows a herringbone-type pattern that was also identified by Tsou et al. [5],
using a sharp interface model, as a member of the family {1314} of compatible rank-2 domain patterns. In this
case, the final pattern is essentially 2-dimensional, with the polarization vector always lying in the e1 − e3
plane; this was not forced, but rather was a natural outcome of the relaxation towards a minimum energy state.
The same pattern was noted in earlier work using a phase field model, but in a 2-dimensional simulation with a
40nm periodic cell size [14]. However, in that study a fixed average strain was imposed to stabilize the pattern.
Here, the adaptive strain condition allows the topology to form and adopt an average strain state that minimizes
energy.

4.2 Cell size variation with standard periodic boundary conditions

In this section, the effect of periodic cell size by varying the cell size Lc from 9 to 41nm is under investigation.
Below about 9nm size, the cell is too small to support multiple domains (domain wall widths in the model are
in the region of 2–3nm. Beyond 41nm the computation becomes excessively cumbersome due to the scaling
of the number of degrees of freedom in the problem. From our previous work on scale effects in polarization
patterns [13], we expect that increasing the cell size will enable polarization patterns with multiple domain
walls to form. However, in the current work we stop at 41nm cell size because it is sufficient for complex
domain patterns to form within practical computation time.

For the smaller cell sizes (9–25nm), elements of size 1nm were employed. Cell sizes of 33 and 41nm
were simulated with 163 and 203 elements, respectively. The standard periodic boundary condition is used as
a representative boundary condition to explore the effect of cell size variation. We expect a similar trend in the
results with reverse periodic boundary conditions. Several runs of the model were performed with different
random initial polarization perturbations; these runs can reach different equilibrium states. The results in Fig. 4
show the final domain topologies with lowest overall Helmholtz free energy. Additionally, the side condition
defining the average strain was varied to explore each of the four cases defined in Sect. 3.3.

As shown in Fig. 4, simple 90◦ domain stripes arise in most of the simulations. However, the TID con-
straint, which imposes a strain condition close to the free strain of the single domain, strongly encourages a
monodomain to form. Generally, smaller cell sizes result in simpler domain patterns. Only the 41nm cell is
large enough that more complex domain patterns can form if this reduces the energy. Thus, for the subsequent
study of domain topologies, the 41nm cell size is employed.

Next, let us define volume fractions αi , βi , i = 1, 2, 3, to assist in identifying the presence of 90◦ and 180◦
domains:

αi =
∣∣∣∣
∫
Vc

Pi
P0

dV

Vp

∣∣∣∣ , βi =
∫
Vc

|Pi |
P0

dV

Vp
, Vp =

3∑
i=1

∫
Vc

|Pi |
P0

dV . (34)

where the integrals are defined over the entire periodic cell volume Vc (note that this may contain multiple,
transformed copies of cube Bc). In Eq. (34), Vp gives the volume fraction of the periodic cell that is polarized
into domains. At equilibrium this is normally close to 100%. The values of αi and βi give, respectively, the
fractional net polarization along each axis and the fraction of domains aligned with each axis, normalized in
each case by the total volume fraction of domains. For convenience, we sort these volume fractions such that
αI ≥ αI I ≥ αI I I and βI ≥ βI I ≥ βI I I , expressing each value as a percentage.

Tounderstand themeaningofα andβ in termsof domain topologies, note that for a simplemonodomainα =
β = [100, 0, 0]. Alternating 180◦ domains with equal volume fractions give α = [0, 0, 0], β = [100, 0, 0],
while alternating 90◦ domains with equal volume fractions give α = [50, 50, 0], β = [50, 50, 0]. Differences
between α and β indicate the formation of oppositely polarized regions. Values in α close to zero indicate that
there are directions with little or no net polarization while a value in β close to zero would indicate the presence
of an axis to which few or no domains have their c axis aligned. Both measures are invariant to rotations or
reflections of the periodic unit cell in the symmetry group of the cube. Table 1 shows the normalized Helmholtz
free energy along with α and β as percentage values for the equilibrium states, computed with 41nm cubes.

The normalized overall free Helmholtz energy � = ∫
Bc

�/L3
c dV is always negative, as the zero datum is

the high energy, cubic, state. However, the ratio�/�0, where�0 = −0.5345 E0 P0 corresponds to the energy
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Fig. 4 Equilibrium domain topologies with standard periodic boundary conditions, with varying strain conditions and cell dimen-
sions in the range from 9–41nm

of a stress-free single domain, is a positive number less than 1, see Table 1. Imposing a strained state (IFPT,
ISSF, TID) often does not lead to the single domain solution as can be seen from the α, β values; even when
a monodomain does result, the energy is higher than that of the stress-free state. Allowing the periodic cell
to adapt its strain as domains develop (ASSF) results in the lowest energy solutions, which may be a simple
monodomain, but can develop a domain pattern if the random starting conditions nucleate one. The isochoric
conditions (IFPT) result in the highest vales of free energy, as the periodic cell is rigidly constrained to match
that of the cubic state.

4.3 Domain patterns simulated with standard periodic boundary conditions

From now on, we only consider results from simulations of 41nm cells. Figure 5 shows the domain pattern
for the isochoric ferroelectric phase transition (IFPT) and using the standard periodic boundary conditions.
Since these conditions strongly constrain the formation of domains aligned with any one preferred direction,
it is expected that a fully 3-dimensional pattern of domains with some regions polarized parallel to each of the
three directions nI (I = 1 . . . 3) is likely to form. Tsou et al. [5] classified the simplest compatible laminate
of domains that has all three tetragonal strain variants present as a rank-2 laminate in a family {1325} that has
a mixture of 90◦ and 180◦ domains. This pattern is also the outcome of the phase field simulation: Fig. 5b-d
shows cross sections of the pattern that identify the polarized directions of the domains.

Close examination reveals that the laminate does not have perfectly planar interfaces between domains, but
instead the intersections of domains form complicated angular shapes that result in vortex-like regions at the
triple junctions where domains polarized along the± e3 and− e2 directions meet. There has been great interest
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Table 1 Helmholtz free energy and volume fractions (α, β) for standard and reverse periodic boundary conditions (PBC) and
strain controls in the Lc = 41nm cubes. The parameters fi define the imposed strain controls and λi tracks volume fractions of
domains in the evolving simulation for the adapted spherical stress-free case (ASSF)

Standard PBC Reverse PBC

IFPT �/�0 0.520 0.472
fi = 0 α 39, 30, 14 36, 0, 0

β 42, 31, 27 39, 33, 28
ISSF �/�0 0.642 0.588
fi = 1/3 α 40, 39, 11 37, 0, 0

β 44, 40, 16 40, 31, 29
TID �/�0 0.602 0.565
f1 = 1/2 α 100, 0, 0 0, 0, 0
f2 = f3 = 1/4 β 100, 0, 0 100, 0, 0

ASSF �/�0 0.870 0.752
fi = λi α 48, 48, 0 59, 0, 0

β 50, 50, 0 59, 39, 2

(a) (b)

(c) (d)

Fig. 5 Equilibrium domain pattern computed using standard periodic boundary conditions and the isochoric mechanical side
condition (IFPT) a 3D assembly of cells. b–d Cross sections through the pattern. Sequences of 180◦ domain walls are highlighted
by yellow arrows. (Color figure online)

in such vortex centres [11,38,49] because of their potential use in applications such as memory storage, and
their interesting topological properties as skyrmions. The simulations here suggest that it may be possible to
generate arrays of vortices by suitably constraining crystals during the cubic–tetragonal phase transition.

Changing the mechanical side condition to the isotropic spherical stress-free case (ISSF) keeps the average
strain spherical (equal in all directions) but reduces the energy by allowing volumetric expansion to match
the phase transformation, see Table 1. The result shown in Fig. 6 is once again a rank-2 domain pattern that
was identified in the study of Tsou et al. [5]. In contrast to the IFPT solution in Fig. 5, it does not contain
180◦ domain walls. However, this pattern, in the family named {1315}, contains an electrically incompatible
boundary where domains polarized in the − e1 direction meet domains polarized in the − e2 direction. As can
be seen in Fig. 6, this frustrated boundary adopts a curved shape to reduce energy. Thus, the equilibrium state
is once again an imperfect laminate that would not be expected from consideration of the constrained, sharp
interface theory alone. We note that domain arrangements observed on the cross sections of the multi-cell
assembly in Figs. 5 and 6, bear resemblances to polarization patterns in thin films, simulated using phase
field methods [51]. For example, the vortex-like regions at triple junctions and the curved domain walls are
predicted to form on the free surface of a ferroelectric thin-film geometry.
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(a) (b)

(c) (d)

Fig. 6 Equilibrium domain pattern computed using standard periodic boundary conditions and the isotropic spherical stress-free
constraint (ISSF). a 3D assembly of cells. b–d Cross sections through the pattern. No sequences of 180◦ domain walls can be
found

(a) (b)

Fig. 7 Equilibrium domain pattern computed using standard periodic boundary conditions and the adapted spherical stress-free
strain condition (ASSF). a Polarization in the simulation volume. b An assembly of periodic cells

The transversely isotropic deformation condition (TID) enforces a strain close to that of the unstressed
single domain, and the simulation then produces a monodomain equilibrium state as shown in Fig. 4. However,
the adapted spherical stress-free strain condition (ASSF), which continuously adapts the strain to be consistent
with the average polarization, allows other patterns to form. The monodomain is a possible solution, but in
our simulations the ASSF condition more commonly resulted in periodic 90◦ domains, as shown in Fig. 7.
The TID and ISSF cases have lower energy than that of IFPT, but the adaptive case (ASSF) gives the lowest
energy of all, since it relaxes the average strained state as far as possible while retaining periodicity.

In summary, themodel tends to formmore complex domain patterns, including some of the vortex structures
and ribbon-like domains shown inFigs. 5 and6, if themechanical side conditionof periodic boundary conditions
constrains the ferroelectric phase transition. The reason for this is that the constraint forces the material to
produce a mixture of domains to match the imposed strain. In experimental work, the constraint can be
imposed by the use of epitaxial growth with lattice mismatch. This method has been used in strontium titanate,
for example, to provide biaxial tensile stresses that induce incipient ferroelectricity [52]. By contrast, our
work suggests that lattice mismatch or stress gradients in the sample could be used in thin films of ordinary
ferroelectrics to promote complex domain structures, or to encourage specific patterning of domains [53].
For example, a stress gradient generated by an atomic force microscopy tip was used to mechanically write
polarization patterns on a barium titanate thin film [54].



Periodic boundary conditions for the simulation of 3D domain 967

(a) (b)

Fig. 8 Equilibrium domain pattern computedwith the reverse periodic boundary condition along the e3 direction and the isochoric
side condition (IFPT). a Showing the deformation exaggerated, and the method of assembly of simulated volumes Bc to produce
the double volume periodic cell. b An assembly of periodic cells

(a) (b) (c) (d)

Fig. 9 Cross sections through the multi-cell assembly for IFPT and reverse periodic boundary condition along the e3 direction.
a Showing the locations of the slices. b–d Cross sections normal to: b the e3 direction, c the e2 direction, d the e1 direction

4.4 Domain patterns simulated with the reverse periodic boundary condition

We observe two consequences of the reverse periodic boundary condition along the e3 axis: it doubles the
periodic cell size and enforces symmetry such that the average polarization in perpendicular directions (here
it is e1 and e2) is zero. Both effects have their origin in the enhanced continuation rule, where translation
and rotation by 180◦ along the e3 axis is superimposed. This encourages the formation of 180◦ domain walls
normal to the e3 direction within the RVE, as already shown in Fig. 3 for the 33 nm cell. Now, we present
results for 41 nm sized cells and start with the isochoric side condition (IFPT) in Figs. 8, 9. The solution is a
complex domain pattern containing 90◦ and 180◦ domain walls, some of which are curved, and including five
of the six possible polarization variants (only the − e3 direction has no domains).

We show exaggerated deformations in Fig. 8a to illustrate that, although the volumetric strain is held at
zero, there is nevertheless local straining of the periodic cell. The pattern has roughly equal volumes of domains
with their c axis aligned parallel to the e1, e2 and e3 directions, as indicated by β = [39, 33, 28]. Vortex centres
are evident at the junctions of the e3 and ± e2 domains in Fig. 9d.
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(a) (b) (c) (d)

Fig. 10 Cross sections through the multi-cell assembly for ISSF and reverse periodic boundary condition along the e3 direction.
a Showing the locations of the slices. b–d Cross sections normal to: b the e3 direction, c the e2 direction, d the e1 direction

Further simulations using the isotropic spherical stress-free side condition (ISSF) yield similarly complex
patterns, see Fig. 10. These domain patterns have many 180◦ domain walls, along with ribbon-like domains
[50] that thread through the structure. In both cases, five of the six polarization variants are present, which can
be understood as follows: the strain condition enforces the presence of some domains with c axis aligned to
each of the three coordinate axes. However, polarization must balance in both the ± e1 and ± e2 directions due
to the rotation of the cube during assembly, so all four variants polarized in the (x1, x2) plane must be present.
Meanwhile, since some domains with c axis aligned to the e3 are expected at least five variants are likely to
be present overall. From the methods employed by Tsou et al. [5,6], it is immediately evident that the pattern
formed cannot be any laminate of rank less than 3. The patterns shown appear similar to rank-3 laminates, but
with imperfect alignment of domains and curved domain walls. The equilibrium domain patterns in Figs. 9 and
10 both exhibit centres of vorticity and ribbon-like domains, with five of the six polarization variants present.
Close inspection reveals that they are related variants. This is reflected in their similar α and β values (see
Table 1).

The result of applying the adapted spherical stress-free case (ASSF) and reverse boundary condition on the
41 nm cube is the same as that shown in Fig. 3g for the 33 nm cube. Thus, there is no need for an additional
figure.

Finally, the result of applying the transversely isotropic deformation case (TID), along with the reverse
periodic boundary condition, is shown in Fig. 11. As expected, the formation of a 180◦ domainwall is enforced.
However, the result is as simple as possible: we observe alternating 180◦ domain stripes, a well-known domain
pattern in barium titanate. While the TID constraint with reverse periodic boundary condition also admits
a single domain equilibrium state, it appears that the alternating stripes is a more likely end state because
of the high probability that, during the phase transition, different regions in the periodic cell may nucleate
domains aligned in different directions. As the simulation proceeds towards equilibrium, these regions grow
and stabilize. There is then an energy barrier to be overcome if one region is to be eliminated to allow the
pattern to become a monodomain. As with the standard periodic boundary condition, the equilibrium states
computed with the reverse periodic boundary condition show a progression in free energy values, reducing
in the order IFPT→TID→ISSF→ASSF, consistent with the gradual reduction of constraint from the most
restrictive (ε = 0) to the least restrictive, adaptive condition.

4.5 Impact of an outer electric field

Finally, we demonstrate the effect of an outer electric field on the stability of a 3D ribbon-like periodic
domain pattern solution. As representative example, let us choose the polarization pattern modelled with
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(a) (b)

Fig. 11 Equilibrium domain pattern computed with the reverse periodic boundary condition along the e3 direction and the TID
constraint. a The simulated volume. b An assembly of periodic cells

Fig. 12 Effect of the electric field along + e3-axis on the domain pattern modelled with isochoric constraint (IFPT) and standard
periodic boundary conditions. The volume fractions of the six polarization variants are represented by equally coloured lines in
the diagram. The black line represents the total amount of polarization in the RVE. Inset figures illustrate the evolving polarization
pattern under the applied electric field. (Color figure online)

isochoric constraint (IFPT) and standard periodic boundary condition. The electric field is applied along the
+ e3 direction. In Fig. 12, the volume fractions of the six polarization variants in theRVE are plotted as coloured
lines. The corresponding arrangements of the domains are shown as subset images at significant stages.

In the initial stages, up to E = 0.08E0 the smaller domains with polarization in the − e3 direction shrink
in size and disappear. However, the domains with polarization in e1 and − e2 direction remain such that the
ribbon-like domain pattern is stable up to E = 0.64E0, beyond which a striped domain pattern with e1 and e3
domains forms. On increasing the electric field up to E = E0, the domains with polarization along e1 direction
remain in the polarization pattern.We interpret this polarization pattern as arising from the competing isochoric
mechanical side condition (IFPT) and the applied electric field. At E = E0, the IFPT constraint stabilizes the
e1-domain in the presence of opposing external field.
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However, at E = 1.21E0, the stripe pattern dissolves to form a monodomain with net polarization along
e3-axis. The net polarization in the domain pattern decreases during the transition from the stripe pattern
to a monodomain. We associate this decrease in net polarization to result from the strong IFPT mechanical
constraint. The mechanical strains modelled in the transverse direction to the applied electric field, force the
monodomain away from its relaxed domain state.

5 Conclusions

In this work, we have applied multiple periodic boundary conditions for the simulation of ferroelectric domain
patterns on the nanoscale. For the well-known standard conditions, our solutions tend to evolve patterns with
90◦ domain walls only, if the RVE is allowed to adopt the inherent volumetric growth resulting from the
materials phase transition from the cubic to the tetragonal crystal state. This result has been observed for
three important variants (ASSF, ISSF, TID) of many more possible mechanical side conditions. However, we
have also found a mechanical side condition enforcing 180◦ domain walls. It restricts the RVE concerning its
isochoric deformation, which we have denoted the isochoric ferroelectric phase transition (IFPT).

Since many experimental works do not restrict the isochoric deformation of the crystal during its ferro-
electric phase transition, and since they have found ferroelectric patterns with 180◦ domain walls, we have
proposed the reverse periodic boundary condition, which naturally enforces 180◦ domain walls within the RVE
by an enhanced continuation rule of the cells. This extends the capabilities of our simulations and reproduces
some domain patterns that are well known from prior theoretical studies and from observations of BaTiO3.

The reverse periodic boundary condition might be of interest for similar simulations in multiphysics;
we just discuss one specific application here. But even for pure mechanical problems it widens the solution
space of the displacement field. We refer to Fig. 8a, where the exaggerated deformation of the equilibrium
state is deliberately shown. Obviously, displacement fields exist such that the assembly of cells requires the
superposition of translation and rotation. To the best knowledge of the authors, the reverse periodic boundary
condition is novel in the context of RVE and ferroelectric simulation models.

For both kinds of periodic boundary conditions, the simulations also exhibited interesting features such as
frustrated domain walls, curved ribbon-like domains, and centres of vorticity. Some of these features can be of
use in ferroelectric devices, and the simulations suggest that, by controlling strain during the cubic-ferroelectric
transition, it may be possible to generate arrays of domains with these exotic features.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

References

1. Devonshire, A.F.: Theory of barium titanate—Part I. Philos. Mag. Ser. 7 40(309), 1040–1063 (1949)
2. Devonshire, A.F.: Theory of barium titanate—Part II. Philos. Mag. J. Sci. 42(333), 1065–1079 (1951)
3. Cheng, S.Y., Ho, N.J., Lu, H.Y.: Transformation-induced twinning: the 90◦ and 180◦ ferroelectric domains in tetragonal

barium titanate. J. Am. Ceram. Soc. 89(7), 2177–2187 (2006)
4. Hu, Y.H., Chan, H.M., Wen, Z.X., Harmer, M.P.: Scanning electron microscopy and transmission electron microscopy study

of ferroelectric domains in doped BaTiO3. J. Am. Ceram. Soc. 69(8), 594–602 (1986)
5. Tsou, N.T., Potnis, P.R., Huber, J.E.: Classification of laminate domain patterns in ferroelectrics. Phys. Rev. B—Condens.

Matter Mater. Phys. 83(184120), 1–6 (2011)
6. Tsou, N.T., Huber, J.E., Cocks, A.C.F.: Evolution of compatible laminate domain structures in ferroelectric single crystals.

Acta Mater. 61, 670–682 (2013)
7. Arlt, G., Sasko, P.: Domain configuration and equilibrium size of domains in BaTiO3 ceramics. J. Appl. Phys. 51, 4956–4960

(1980)
8. Jin, L., Xi, Z., Xu, Z., Yao, X.: Study of ferroelectric domain morphology in PMN-32% PT single crystals. Ceram. Int. 30,

1695–1698 (2004)
9. Tagantsev, A.K., Cross, L.E., Fousek, J.: Domains in Ferroic Crystals and Thin Films. Springer, New York (2010)

10. Fousek, J., Safrankova, M.: On the equilibrium domain structure of BaTiO3. Jpn. J. Appl. Phys. 4, 403–408 (1965)
11. McGilly, L.J., Schilling,A.,Gregg, J.M.:Domain bundle boundaries in single crystal BaTiO3 lamellae: searching for naturally

forming dipole flux- closure/quadrupole chains. Nano Lett. 10(4200), 1–5 (2010)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Periodic boundary conditions for the simulation of 3D domain 971

12. Roytburd, A.L., Alpay, S.P., Bendersky, L.A., Nagarajan, V., Ramesh, R.: Three-domain architecture of stress-free epitaxial
ferroelectric films. J. Appl. Phys. 89, 553–556 (2001)

13. Renuka Balakrishna, A., Huber, J.E.: Scale effects and the formation of polarization vortices in tetragonal ferroelectrics.
Appl. Phys. Lett. 106, 092906 (2015)

14. Balakrishna, A.R., Huber, J.E., Muench, I.: Periodic domain patterns in tetragonal ferroelectrics at the nanoscale—a phase
field study. Phys. Rev. B 93(17), 1–13 (2016)

15. Hooton, J.A., Merz, W.J.: Etch patterns and ferroelectric domains in BaTiO3 single crystals. Phys. Rev. 98(2), 409–413
(1955)

16. Kontsos, A., Landis, C.M.: Phase-field modeling of domain structure energetics and evolution in ferroelectric thin films. J.
Appl. Mech. 77, 041014 (2010)

17. Arlt, G.: The influence of microstructure on the properties of ferroelectric ceramics. Ferroelectrics 104(1), 217–227 (1990)
18. Arlt, G.: The role of domainwalls on the dielectric, elastic and piezoelectricproperties of ferroelectric ceramics. Ferroelectrics

76(1), 451–458 (1987)
19. Shu, Y.C., Bhattacharya, K.: Domain patterns and macroscopic behaviour of ferroelectric materials. Philos. Mag. B 81(12),

2021–2054 (2001)
20. Muench, I., Huber, J.E.: A hexadomain vortex in tetragonal ferroelectrics. Appl. Phys. Lett. 95(022913), 1–3 (2009)
21. Rödel, J.: Effective intrinsic linear properties of laminar piezoelectric composites and simple ferroelectric domain structures.

Mech. Mater. 39, 302–325 (2007)
22. Weng, G.J., Wong, D.T.: Thermodynamic driving force in ferroelectric crystals with a rank-2 laminated domain pattern, and

a study of enhanced electrostriction. J. Mech. Phys. Solids 57, 571–597 (2009)
23. Scott, J.F.: Applications of modern ferroelectrics. Science 315(954), 1–9 (2007)
24. Renuka Balakrishna, A., Huber, J.E., Landis, C.M.: Nano-actuator concepts based on ferroelectric switching. Smart Mater.

Struct. 23(8), 085016 (2014)
25. Krauß, M., Muench, I., Landis, C.M., Wagner, W.: Phase-field simulation and design of a ferroelectric nano-generator. Proc.

SPIE 797821, 1–12 (2011)
26. Muench, I., Krauß, M., Landis, C.M., Huber, J.E.: Domain engineered ferroelectric energy harvesters on a substrate. J. Appl.

Phys. 109(104106), 1–5 (2011)
27. Muench, I., Krauß, M., Wagner, W., Kamlah, M.: Ferroelectric nanogenerators coupled to an electric circuit for energy

harvesting. Smart Mater. Struct. 21(115026), 1–8 (2012)
28. Li, Y.L., Hu, S.Y., Liu, Z.K., Chen, L.Q.: Phase-field model of domain structures in ferroelectric thin films. Appl. Phys. Lett.

78, 3878 (2001)
29. Wang, J., Shi, S.-Q., Chen, L.-Q., Li, Y., Zhang, T.-Y.: Phase-field simulations of ferroelectric/ferroelastic polarization

switching. Acta Mater. 52(3), 749–764 (2004)
30. Chen, L.-Q.: Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J. Am. Ceram.

Soc 91(6), 1835–1844 (2008)
31. Woldman,A.Y., Landis, C.M.: Phase-fieldmodeling of ferroelectric to paraelectric phase boundary structures in single-crystal

barium titanate. Smart Mater. Struct. 25, 035033 (2016)
32. Schrade, D., Keip, M.-A., Thai, H., Schröder, J., Svendsen, B., Müller, R., Gross, D.: Coordinate invariant phase field

modeling of ferroelectrics, Part I: model formulation and single crystal simulations. GAMM Mitteilungen 38, 102–114
(2015)

33. Wang, J.J., Ma, X.Q., Li, Q., Britson, J., Chen, L.-Q.: Phase transitions and domain structures of ferroelectric nanoparticles:
phase field model incorporating strong elastic and dielectric inhomogeneity. Acta Mater. 61, 7591–7603 (2013)

34. Ouyang, J., Slusker, J., Levin, I., Kim,D.-M., Eom,C.-B., Ramesh, R., Roytburd,A.L.: Engineering of self-assembled domain
architectures with ultra-high piezoelectric response in epitaxial ferroelectric films. Adv. Funct. Mater. 17(13), 2094–2100
(2007)

35. Li, Y.L., Hu, S.Y., Chen, L.Q.: Ferroelectric domain morphologies of (001) PbZr1−x TixO3 epitaxial thin films. J. Appl.
Phys. 97(3), 034112 (2005)

36. Li, Y.L., Hu, S.Y., Liu, Z.K., Chen, L.Q.: Effect of substrate constraint on the stability and evolution of ferroelectric domain
structures in thin films. Acta Mater. 50(2), 395–411 (2002)

37. Wang, J., Li, Y., Chen, L.Q., Zhang, T.Y.: The effect of mechanical strains on the ferroelectric and dielectric properties of a
model single crystal-phase field simulation. Acta Mater. 53(8), 2495–2507 (2005)

38. Nahas, Y., Prokhorenko, S., Louis, L., Gui, Z., Kornev, I., Bellaiche, L.: Discovery of stable skyrmionic state in ferroelectric
nanocomposites. Nat. Commun. 6, 8542 (2015)

39. Su, Y., Landis, C.M.: Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation,
and application to domain wall pinning. J. Mech. Phys. Solids 55, 280–305 (2007)

40. Kontsos, A., Landis, C.M.: Computational modeling of domain wall interactions with dislocations in ferroelectric crystals.
Int. J. Solids Struct. 46, 1491–1498 (2009)

41. Devonshire, A.F.: Theory of ferroelectrics. Adv. Phys. 3(4), 85–130 (1954)
42. Fried, E., Gurtin, M.E.: Continuum theory of thermally induced phase transitions based on an order parameter. Physica D

68, 326–343 (1993)
43. Fried, E., Gurtin, M.E.: Dynamic solid-solid transitions with phase characterized by an order parameter. Physica D 72,

287–308 (1994)
44. Muench, I., Krauß, M.: An enhanced finite element technique for diffuse phase transition. Comput. Mech. 56, 691–708

(2015)
45. Krauß, M., Muench, I.: A selective enhanced FE-method for phase field modeling of ferroelectric materials. Comput. Mech.

57, 105–122 (2016)
46. Cao, W., Cross, L.E.: Theory of tetragonal twin structures in ferroelectric perovskites with a first-order phase transition.

Phys. Rev. B 44, 5–12 (1991)



972 I. Muench et al.

47. Hlinka, J., Márton, P.: Phenomenological model of a 90◦ domain wall in BaTiO3-type ferroelectrics. Phys. Rev. B 74, 104104
(2006)

48. Wang, J.J., Meng, F.Y., Ma, X.Q., Xu, M.X., Chen, L.Q.: Lattice, elastic, polarization, and electrostrictive properties of
BaTiO3 from first-principles. J. Appl. Phys. 108(034107), 1–6 (2010)

49. McQuaid, R.G.P., McGilly, L.J., Sharma, P., Gruverman, A.: Mesoscale flux-closure domain formation in single-crystal
BaTiO3. Nat. Commun. 2, 404 (2011)

50. Vorotiahin, I.S., Eliseev, E.A., Li, Q., Kalinin, S.V., Genenko, Y.A.,Morozovska, A.N.: Tuning the polar states of ferroelectric
films via surface charges and flexoelectricity. Acta Mater. 137, 85–92 (2017)

51. Li, Y.L., Chen, L.Q.: Temperature-strain phase diagram for BaTiO3 thin films. Appl. Phys. Lett. 88(7), 072905 (2006)
52. Haeni, J.H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y.L., Choudhury, S., Tian, W., Hawley, M.E., Craigo, B.,

Tagantsev, A.K.: Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004)
53. Schlom, D.G., Chen, L.Q., Eom, C.B., Rabe, K.M., Streiffer, S.K., Triscone, J.M.: Strain tuning of ferroelectric thin films.

Annu. Rev. Mater. Res. 37, 589–626 (2007)
54. Lu, H., Bark, C.W., De Los Ojos, D.E., Alcala, J., Eom, C.B., Catalan, G., Gruverman, A.:Mechanical writing of ferroelectric

polarization. Science 336(6077), 59–61 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.


	Periodic boundary conditions for the simulation of 3D domain patterns in tetragonal ferroelectric material
	Abstract
	1 Introduction
	2 The material model
	3 Periodic boundary conditions
	3.1 Standard periodic boundary condition
	3.2 Reverse periodic boundary condition
	3.3 Side conditions for strained states

	4 Results and discussion
	4.1 Evolution of a 2-dimensional domain topology
	4.2 Cell size variation with standard periodic boundary conditions
	4.3 Domain patterns simulated with standard periodic boundary conditions
	4.4 Domain patterns simulated with the reverse periodic boundary condition
	4.5 Impact of an outer electric field

	5 Conclusions
	References




