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Abbreviations used

BM: Bone marrow

CPA3: Carboxypeptidase A3

CRAC: Ca21 release–activated Ca21

CTMC: Connective tissue mast cell

DUSP: Dual-specificity phosphatase

ERK: Extracellular signal-regulated kinase

GPCR: G protein–coupled receptor

HSC: Hematopoietic stem cell

IP3: Inositol-1,4,5-trisphosphate

MAPK: Mitogen-activated protein kinase

MC: Mast cell

MCC: Mast cell expressing only chymase

MCp: Mast cell precursor

MCT: Mast cell expressing only tryptase

MCTC: Mast cell expressing tryptase and chymase

MMC: Mucosal mast cell

mMCP: Mouse mast cell protease

MyD88: Myeloid differentiation response gene–88

PEP: PEST domain–enriched tyrosine phosphatase

PLC: Phospholipase C

PMC: Peritoneal mast cell

SCF: Stem cell factor

SOCE: Store-operated Ca21 entry

S1P: Sphingosine-1-phosphate

TLR: Toll-like receptor

TRIF: TIR domain-containing adapter inducing IFN-b

TRP: Transient receptor potential

TULA-2: T-cell ubiquitin ligand 2
Mast cells (MCs), which are best known for their detrimental role
in patients with allergic diseases, act in a diverse array of
physiologic and pathologic functions made possible by the
plurality of MC types. Their various developmental avenues and
distinct sensitivity to (micro-) environmental conditions convey
extensive heterogeneity, resulting in diverse functions. We briefly
summarize this heterogeneity, elaborate on molecular
determinants that allow MCs to communicate with their
environment to fulfill their tasks, discuss the protease repertoire
stored in secretory lysosomes, and consider different aspects of
MC signaling. Furthermore, we describe key MC governance
mechanisms (ie, the high-affinity receptor for IgE [FcεRI]), the
stem cell factor receptor KIT, the IL-4 system, and both Ca21-
and phosphatase-dependent mechanisms. Finally, we focus on
distinct physiologic functions, such as chemotaxis, phagocytosis,
host defense, and the regulation of MC functions at the mucosal
barriers of the lung, gastrointestinal tract, and skin. A deeper
knowledge of the pleiotropic functions ofMCmediators, aswell as
the molecular processes of MC regulation and communication,
should enable us to promote beneficial MC traits in physiology
and suppress detrimental MC functions in patients with disease.
(J Allergy Clin Immunol 2019;144:S31-45.)
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HETEROGENEITY OF MAST CELLS
The term mast cell (MC) describes a highly heterogeneous cell

population. NumerousMC subtypes have now been characterized
in both human subjects and animals based on differences in cell
morphology, histochemical properties, protease content in
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granules, piecemeal or anaphylactic types of degranulation,
receptor expression, and function.1,2 A certain subtype plasticity
has been recognized depending on the tissue environment, and
in vitro MCs change their phenotype depending on culture
conditions.3-5
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In addition to intraspecies heterogeneity, interspecies hetero-
geneity has been discovered.6 This is of relevance because a large
part of the scientific literature onMCs is based on animal work, in
particular mouse studies. Data on human MCs are scarce because
they are difficult to collect from tissue sources. Therefore many
laboratories use genetically transformed human MC lines instead
of primary MCs from tissue or immature MCs derived from bone
marrow (BM) or peripheral blood that are partially maturated un-
der particular culture conditions. Although it is well known that
such MCs differ functionally from primary tissue MCs, they
have nonetheless provided useful insights into the regulation
and function of human MCs.
MC subtypes in human subjects
Human MCs can be characterized according to the types of

proteases they contain, such as mast cells expressing tryptase and
chymase (MCTCs), mast cells expressing only tryptase (MCTs),
and the rare mast cells expressing only chymase (MCCs). MCTCs
are located at nonmucosal sites (in the skin, the submucosa, adja-
cent to blood vessels, and in the peritoneum in mice), whereas
MCTs are primarily found at mucosal sites (nose, lung, and
intestine).

Further division of these subtypes into site-specific populations
has been proposed to reflect the microenvironment of the
anatomic compartments where they are localized, such as ‘‘lung
MCT’’ to reflect prevalence in the bronchi, bronchioles, and alve-
olar parenchyma and ‘‘MCTC’’ to denote abundance in pulmonary
vessels and the pleura. Within each MCTC and MCT population,
there are also distinct localization-specific expression patterns
of receptors, enzymes, and growth factors that can be used for
further characterization. For instance, bronchial MCTs consis-
tently express more histidine decarboxylase than alveolar
MCTs, whereas for both MCTCs and MCTs, the high-affinity re-
ceptor for IgE (FcεRI) is highly expressed in conducting airways
but virtually absent in alveolar parenchyma.7 It is not only the tis-
sue site but also the disease status that influences MC heterogene-
ity. In patients with poorly controlled, severe, TH2-associated
asthma, an altered subtype that could play a role in the pathophys-
iology of this disease8 has been described to express tryptase, chy-
mase, and/or carboxypeptidase A3 (CPA3). Genetic analyses
have revealed even more heterogeneity among MCs from
different sites within one tissue, although the clinical implications
are yet unclear.9
MC subtypes in rodents
In mice and rats MCs are traditionally subtyped into

connective tissue mast cells (CTMCs) and mucosal mast cells
(MMCs) based on their histochemical properties, mediator
content, and functional properties.10 CTMCs can be stained
with both Alcian blue and safranin, whereas MMCs can only
be stained with Alcian blue. In terms of their mediator content,
heparin proteoglycans predominate in CTMCs, whereas
chondroitin sulfate predominates in MMCs. In their functional
properties CTMCs typically contain rodent tryptases,
chymases, and CPA3, whereas MMCs contain chymases only
and thus differ fundamentally from their human counterparts
in mucosal tissues that contain tryptase only. The subtyping
of murine MCs into CTMCs and MMCs might be an
oversimplification for the mouse intestine and peritoneum but
not for the lung.11
REGULATION OF MC DEVELOPMENT
Development of MCs can be subdivided into 3 major steps:

differentiation of hematopoietic stem cells (HSCs) to mast cell
precursors (MCps) in the BM, distribution ofMCps through blood
and transendothelial migration into target tissues, and eventually
phenotypic maturation in different tissues. Although there are still
certain discrepancies concerning our understanding of MCp
development in the BM, it is justified to suggest that committed
MCps stem from bipotent progenitors endowed with the capacity
to differentiate into both MCs and basophils, as has been studied
in mice.12

Expression of the receptor tyrosine kinase KIT for MC
development is mandatory. Likewise, expression of the KIT
ligand stem cell factor (SCF) is obligatory for MC development
in vivo. Mature MCs are usually characterized by their expression
of KIT and FcεRI, as well as distinct metachromatic cytoplasmic
granules. MCps do not necessarily express FcεRI and are typi-
cally not identifiable by means of metachromatic staining, indi-
cating that commitment to the MC lineage occurs before FcεRI
expression. Indeed, early committedMCps lack FcεRI expression
but show KIT expression.13 Hence MCps ready to leave the BM
can be either FcεRI positive or FcεRI negative. Less is known
about committed MCps in human subjects, although an immature
human MCp population, similar to mouse MCps in terms of
amount and developmental state, has recently been identified in
human blood. These have been reported to be lineage-negative
CD34hiKITint/hiFcεRI1 cells and to give rise only to granulated
tryptase-positive KIT1FcεRI1 MCs.14 Interestingly, the fre-
quency of development of such MCs starting from a lineage-
negative CD34hiKITint/hiFcεRI2 cell subset was reduced by
more than a factor of 10, indicating the importance of FcεRI
expression for MC commitment.

After leaving the BM, MCps are distributed through the blood
to their target tissues. This requires productive interaction
between surface molecules of MCps and endothelial cells for
transendothelial migration. Homing of MCps to the small intes-
tine requires expression of the a4b7 integrin on MCps15 and
mucosal vascular addressin cell adhesion molecule 1 and vascular
cell adhesion molecule 1 as counterligands on intestinal
endothelial cells for interaction.15,16 Integrin activation requires
chemokine receptor–mediated inside-out signaling by CXCR2
expressed on MCps.16 Although b7 integrin–deficient mice
showed impaired MCp homing to the intestine, homing to the
lung was still possible, although reduced. By using a model of
ovalbumin-induced allergic airway inflammation, pulmonary
recruitment of MCps was shown to depend on both a4b7 and
a4b1 integrins on the MCps and on vascular cell adhesion
molecule 1 on the endothelial side.17 The same transmigration
mechanism was recently demonstrated in influenza A–infected
mice.18

Homing of MCps to the small intestine occurs in a constitutive
manner in naive mice,15 although it can be amplified by inflam-
matory conditions. In contrast, in the lung the numbers of
MCps that home constitutively is strongly exceeded by numbers
recruited on inflammation in a T cell–dependent manner.19 In
addition to the intestine and the lung, the skin is an important
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MC-containing tissue. However, less is known about MCps hom-
ing to the skin, although a promoting role for the fractalkine re-
ceptor CX3CR1 on MCps has been suggested.20

After migration to their respective tissues, MCps differentiate
into 2 major subclasses of mature tissue MCs: MCTCs and MCTs
(see the section ‘‘Heterogeneity of mast cells’’). Finally, matura-
tion of MCs, both in vitro and in different tissues, is associated
with downregulation of cell-surface adhesion molecules and che-
mokine receptors. As an example, primary peritoneal and pulmo-
nary MCps from naive mice express considerably higher levels of
b7 integrin than the respective mature MCs.21 Moreover, analysis
of MCps and mature MCs differentiated in vitro from human cord
blood revealed expression of 4 different chemokine receptors
(CXCR2, CCR3, CXCR4, and CCR5) on MCps, whereas only
CCR3 was retained on mature MCs.22 Generally, expression of
plasma membrane proteins important for migration changes dur-
ing MC maturation.

Very recently, with the aid of a new hematopoietic fate
mapping model, murine MCs were demonstrated to have dual
developmental origins arising through both primitive (yolk sac–
derived) and definitive (HSC-derived) hematopoiesis.23 MC
maintenance in adult tissues was found to occur largely indepen-
dent of the BM, probably through proliferation of tissue-resident
MCps differentiated from HSCs during embryogenesis.23 This
intriguing study proves that much more remains to be discovered
in MC development and migration to target tissues, and it would
be exciting to learn about the respective processes in human
subjects.
REGULATION AND FUNCTION OF MC PROTEASES
Proteases, particularly tryptases, chymases, and CPA3, expres-

sion of which is largely restricted to MCs, contribute importantly
to the pleiotropic effector functions of these cells. Proteases are
the major proteins of MC secretory granules, which also contain
histamine, serotonin, and proteoglycans. After release by means
of degranulation, these proteases primarily exert proinflammatory
functions and have been implicated in the pathogenesis of MC-
related disorders, but they also contribute to tissue homeostasis
and host defense.24-26

Human MCs express 4 tryptases (a, b, g, and d), 2 proteases
with chymotrypsin-like activity (chymase and cathepsin G [also
expressed in neutrophils]), and CPA3. Tryptase b, which forms
noncovalent tetramers with limited trypsin-like activity, is
considered the prototypical and biological active ‘‘tryptase.’’27,28

Tryptase a can assemble to virtually identical tetramers but is
inactive.29 Tryptase d lacks the C-terminal 40-amino-acid resi-
dues,30 and from a structural point of view, its folding and activity
are enigmatic. Tryptase g is less closely related to the other tryp-
tases, and it is likely membrane bound in a monomeric form.31

Although chymase and CPA3 are exclusive to MCs, chymase,
cathepsin G, and CPA3 are usually expressed only in the MCTC

subset of MCs. MCs with distinct protease expression patterns,
such as chymase-only MCs32 and, more recently, CPA31 MCTs
have been described in patients with eosinophilic allergic inflam-
matory disorders.33,34

Comparative genomic analysis has shown that tryptases and
chymases are poorly conserved between human subjects and
rodents and even between human subjects and chimpanzees.35

The mouse genome encodes 4 tryptases: mousemast cell protease
(mMCP) 6, mMCP-7, mMCP-11, and tryptase g/transmembrane
tryptase. mMCP-6 is most likely the functional counterpart of
human tryptase b, whereas mMCP-7 apparently is dispensable
and not expressed in some mouse strains, such as C57BL/6.36

The chymase locus has expanded considerably and encodes 7
chymases: mMCP-1, mMCP-2, mMCP-4, mMCP-5, mMCP-8,
mMCP-9, and mMCP-10. mMCP-4 appears to be the
functional counterpart of human chymase, whereas its rodent
orthologs mMCP-5 and rMCP-5 have altered elastase-like
activity.37,38 Instead of being expressed in MCs, mMCP-11 and
mMCP-8 are preferentially expressed in basophils,39,40 which
are virtually devoid of tryptases and chymases in human
subjects. In contrast to the heterogeneity of tryptases and
chymases, a single CPA3 gene is expressed in human subjects
and rodents.

Considering their role in host defense versus their
proinflammatory potential, it is not surprising that the expression
and activity of MC proteases is extensively regulated. On the
genomic level, the variation of a- and b-tryptases is complex: of
the 4 tryptase genes (TPSAB1, TPSB2, TPSG1, and TPSD1),
TPSAB1 and TPSB2 can harbor alleles encoding enzymatically
active b, inactive a, or deficiency alleles.41 All subjects initially
surveyed have 2 to 4 b alleles, suggesting that the b allele has
essential functions, whereas the enzymatically inactive a allele
is dispensable.41 Recently, subjects with duplications or
triplications of the a-encoding TPSAB1 gene, increased basal
serum tryptase levels, and multisystem complaints have been
identified, a trait now classified as hereditary a-tryptasemia
syndrome.42 On the level of gene regulation, expression of human
tryptase, its mouse counterpart mMCP-6, and several mouse
chymases is driven by the microphthalmia-associated
transcription factor, which is also central to the development of
MCs.43,44 Posttranscriptional and posttranslational mechanisms
contribute to this regulation and result in an increased number
of tryptase species. For example, alternative splicing of human
a- and b-tryptases has been reported, which likely affects the
tetrameric architecture, stability, and enzymatic activity of these
proteins.45 Posttranslational processing further results in several
forms of the proteins with slight differences in glycosylation,
charge, and enzymatic activity.46 In contrast to most other
proteases, tryptases and chymases are not regulated at the level
of zymogen activation. Rather, they are activated by cathepsin
C and potentially by other cathepsins before storage in granules,
a feature shared with other ‘‘granule-associated serine proteases
of immune defense.’’47,48 Within the granules, the activity of
tryptases and chymases is likely controlled by compartmentaliza-
tion, its acidic pH, and its close packaging. After degranulation,
binding to high-molecular-weight proteoglycans continues to
modulate diffusion, activity, and substrate specificity. In
particular, the active b-tryptase tetramer requires stabilization
by bound proteoglycans that protect it from dissociation into
(almost) inactive monomers. Enzymatically active monomers
with altered substrates and inhibition profiles can be formed
in vitro,49 but these remain to be demonstrated in vivo.
Tetramerization is likely the main mechanism regulating tryptase
b activity and selectivity in vivo because it restricts the access of
large substrates to the active sites located within the central pore
and sterically blocks inhibition bymost protease inhibitors.26,28,50

Monomeric chymases are more prone to inhibition by tissue- and
plasma-derived inhibitors, but they can evade inhibition by
inactivating serpins and they can retain some activity when in
circulation in an a2-macroglobulin complex.51
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MC RECEPTORS AND SIGNALING

Immunoglobulin receptor signaling and function
MCs express FcεRI and several IgG receptors (FcgRs) on their

surfaces.52,53 FcεRI is a tetramer consisting of an a-chain that
binds IgE, a membrane transversing tetraspanin b-chain, and a
homodimeric disulfide-linked g-chain.54,55 IgE is bound at 1:1
stoichiometry at very high affinity (Ka >_ 1010 M21). Binding of
low doses of monomeric IgE to FcεRI provides an MC survival
signal,56 and IgE levels affect surface expression of FcεRI.57,58

Low binding of IgE or antigen to FcεRI triggers expression and
secretion of chemokines and other mediators, whereas optimal
binding triggers degranulation.59 Supraoptimal cross-linking
can suppress MC activation.60 Human MCs express FcgRIIA,
FcgRI, or both. Both receptors can stimulate degranulation and
cytokine gene expression. In mice FcgRIIB, which is expressed
also on human MCs, acts as an inhibitor, and FcgRIII is stimula-
tory on degranulation.

After cross-linking by antigen, IgE-prebound FcεRI is phos-
phorylated by the kinase LYN at tyrosine residues in the
immunoreceptor tyrosine-based activation motifs of the b- and
g-chains. This is followed by activation of SYK and other kinases.
The core signaling pathways have been extensively reviewed
elsewhere.53,55,61 The relationships among the 2 classes of en-
zymes, other kinases and phosphatases that control MC function,
are complex and sometimes hierarchical. Much has been learned
from ‘‘knockout’’ or ‘‘knockdown’’ models, which need to be in-
terpreted with caution because compensatory mechanisms might
be turned on. The balance of specific signaling pathways
emanating from FcεRI depends on the MC type, its site of resi-
dence, its FcεRI-independent activation status, and other biolog-
ical parameters.

Cross-linking of FcεRI by IgE/antigen complexes causes it to
translocate into lipid rafts.62,63 LYN is tethered to the cytoplasmic
membrane through acylation and coassembles in lipid rafts,
which promote high local concentration of receptor and kinase,
resulting in efficient phosphorylation of FcεRI. Other components
of the FcεRI signalosome are embedded in these membrane do-
mains as well, such as the transmembrane adapter proteins,
LATand NTAL. Not only are some proteins included in lipid rafts
when FcεRI becomes cross-linked, but also others, such as certain
phosphatases, are excluded from lipid rafts.64 Thus formation of
these lipid-protein domains provides a versatile mechanism for
the regulation of FcεRI signaling. Other signals that modulate
FcεRI-mediated degranulation likely include cell-cell contact-
dependent signals from adhesion receptors (RJ; own unpublished
results). EmbeddingMCs in appropriate tissue niches and thereby
controlling MC activation might be an important mechanism to
keep degranulation under finely balanced control. Many other
factors that regulate the final outcome of FcεRI signals are incom-
pletely understood, such as noncoding RNAs, membrane
biophysics, intracellular liquid-phase separation, and physical in-
teractions with other cells, including immune and nonimmune
cells.

A large range of compounds from plant molecules to bacterial
substances and snake venoms but also complement, Toll-like
receptor (TLR) ligands, and other stimuli, such as pressure or
heat, can causeMC exocytosis.65 Thus a plethora of receptors can
trigger MC degranulation independently of or in conjunction with
FcεRI. MC FcεRI-mediated degranulation can also be facilitated
by other pathways. Examples, such as SCF (see the section
‘‘Cytokine receptor signaling and function’’), prostaglandins, nu-
cleotides, interleukins, and chemokines illustrate the wide spec-
trum of ligands that modulate MC activity.66

MCs, at least BMMCs, can be desensitized by various pathways
to keep FcεRI signaling and thus degranulation under control.67,68

Low-dosage exposure to monomeric IgE, IgE-bound antigen, or
anti-Fc receptor antibodies reduces FcεRI sensitivity.69,70 Activa-
tion of the single-chain FcgRIIB by cross-linking it to FcεRI
through immune complexes made of the immunoglobulin Fc
fragments Fcg and Fcε blocks phosphoinositide 3-kinase–medi-
ated FcεRI signaling.71 FcεRI can be downregulated by means
of internalization, followed by either degradation or recycling to
the cell surface.61,72,73 Ubiquitination and neddylation are key
signals for these endocytic processes and/or the potential subse-
quent lysosome- or proteasome-mediated degradation of the Fc
receptor complexes.63 Furthermore, signaling through cross-
linked FcgRs can induce BMMC apoptosis.74
Cytokine receptor signaling and function
SCF, IL-4, and IL-33 are major cytokines regulating MC

mediator release. SCF acts not only as an MC growth, survival,
and chemotaxis factor but also as a regulator of mediator release
by either enhancing IgE-dependent responses (both degranulation
and production of leukotrienes and cytokines) or directly
inducing cytokine production and release.75,76 Mechanisms of
activation of the SCF receptor KIT in MCs are quite well under-
stood and have been reviewed elsewhere.77,78 In contrast to the
acute effects of SCF stimulation, chronic SCF treatment results
in suppression of FcεRI-mediated MC activation caused by sig-
nificant attenuation of cytoskeletal reorganizations.79

In a comparable manner acute IL-33 stimulation of MCs
augments antigen-triggered cytokine production, as studied in
BMMCs and human umbilical cord blood–derived MCs.80,81

Interestingly, KIT has been shown to interact constitutively
with the b-chain of the IL-33 receptor IL-1 receptor accessory
protein, and it appears to be required for the full IL-33 response
in BMMCs and human mastocytosis MC lines.82 In opposition
to acute stimulation with IL-33, chronic treatment of BMMCs
and primary human MCs with IL-33 (>72 hours) resulted in a hy-
poresponsive secretory phenotype, demonstrating fundamental
proteomic and regulatory changes induced by long-term IL-33
stimulation.83

In addition to SCF and IL-33, IL-4 is another important human
MC regulator. In contrast to SCF, IL-4 does not affect matured
MCs by itself but acts synergistically with SCF on MC survival,
proliferation, and IgE-dependent mediator release.3 Moreover,
IL-4 alters the cytokine profile released by human intestinal and
skin MCs (Fig 1).84-86 Cytokines produced byMCs, either consti-
tutively or on activation, vary in different species depending on
the maturity of the MCs, tissue environmental factors, MC sub-
types, and types of stimuli that trigger MC signaling. Below is a
summary of data from primary human MCs, either MMCs from
the gut84,85 or skin.86,87

MMCs from the gut express constitutively small amounts of
TNF-a and IL-6. On FcεRI cross-linking, expression of TNF-a
and IL-6 is enhanced, and additional expression of TH2 cytokines,
such as IL-3, IL-5, and IL-13, occurs. If theMMCs are exposed to
an IL-4 environment, IL-6 expression is blocked, although IL-3,
IL-5, and IL-13 expression is markedly enhanced. Similar



FIG 1. Expression of cytokines (A and C) and chemokines (B) in human

MCs. Intestinal MCs were isolated from gut (Fig 1, A and B) and skin MCs
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variations in cytokine expression can be observed in human skin
MCs depending on FcεRI cross-linking and IL-4 treatment. How-
ever, no TH2 cytokine expression has been described in this cell
type (Fig 1, C). Human MMCs are also a rich source of several
chemokines, expression of which is again regulated by FcεRI
cross-linking and IL-4 (Fig 1, B).

Human skin MCs produce chemokines also, namely CCL2,
CCL3, and CCL4, on activation by CD30, but their regulation has
been less extensively studied.87 The priming effect of IL-4 is
likely not restricted to intestinal or skin MCs but has been
observed also in lung MCs, the human MC line LAD2, and other
human MCs.88-91

IL-4 is a key mediator of allergic inflammation, considering
that it also induces development of TH2 cells and IgE switching in
B cells.3 Thus SCF and IL-4 can be considered primary costimu-
latory mediators because they not only enhance FcεRI-mediated
signals but also induce upregulation of secondary stimulatory re-
ceptors, such as the substance P (NK-1) receptor. Such costimu-
lation draws comparisons between MC and T-cell signaling
because both require cooperation of 2 signals for optimal activa-
tion: an antigen-dependent signal, such as from the T-cell receptor
or IgE-bound FcεRI, and a costimulatory molecule, such as
CD80, in T cells or SCF/IL-4 in MCs.

The priming effect of IL-4 in human MCs is possibly not
restricted to FcεRI-mediated stimulation. In human cord blood–
derived MCs, IL-4 pretreatment enhances TNF production after
stimulation with the TLR2 agonist peptidoglycan and enables
MCs to produce TNF in response to LPS.92 In the LAD2 human
MC line, IL-4 pretreatment enhances IL-31 production after stim-
ulation with IL-33.91 These 2 studies are probably insufficient for
generalization of IL-4–priming effects in IgE-independent
signaling in human MCs but demonstrate that the priming effects
are not restricted to FcεRI-mediated stimulation.

The intracellular mechanisms connecting SCF and the IL-4
signaling pathway have been analyzed in human MCTs isolated
from gut mucosa.93 Activation of MCTs by means of FcεRI
cross-linking alone results in phosphorylation of extracellular
signal-regulated kinase (ERK) and mitogen-activated protein ki-
nase (MAPK) p38 but not AKT. Stimulation with SCF alone also
induces phosphorylation of ERK andMAPK p38 and additionally
of AKT. As opposed to human MCTs, in murine BMMCs both
KIT- and FcεRI-mediated stimulation results in ERK, MAPK
p38, and AKT activation.76 IL-4 priming of human intestinal
MCTs enhanced activation of ERK but blocked activation of
MAPK p38. Because activation of MAPK p38 is required for
IL-6 production, the reported negative effect of IL-4 on MAPK
p38 explains the inhibitory effect of IL-4 on IL-6 expression in
human MCs. Moreover, IL-4 priming that antecedes FcεRI
cross-linking induces activation of AKT. Combined treatment
of MCs with IL-4, SCF, and FcεRI cross-linking substantially up-
regulates activation of AKT, whereas blocking of AKT inhibited
the pronounced production and release of cytokines and chemo-
kines in response to the 3 MC agonists.93
from the foreskin and breast skin (Fig 1, C). Cytokine/chemokine mRNA

expression without stimulation (upper left quarter), after stimulation with

IgE receptor cross-linking (IgErcl, right quarters), and after priming with

IL-4 (lower quarters) are shown. Cytokine/chemokine mRNA expressions

in boldface letters in the upper right quadrantswere enhanced by IgE recep-

tor cross-linking, whereas cytokine/chemokine mRNA expressions in bold-

face letters in the lower right quadrants were enhanced by IL-4.84-86
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Innate immune receptors
The particular localization of MCs makes their expression of

receptors recognizing microbial constituents meaningful and
mandatory. MCs are equipped with different TLRs, which can
productively interact with various pathogen-associated molecular
patterns present on bacteria, viruses, and fungi. Differential types
of MCs of different species have been reported to express various
TLRs (investigated mainly at the mRNA level). TLR1 to TLR9
have been found in murine and human MCs,94-96 whereas TLR10
can only be detected in human lungMCs.97 By far most studies in
the field of TLR function and signaling have been published for
TLR4 and its ligand LPS. In macrophages LPS is bound by
mCD14 and eventually transferred to the TLR4–MD-2 complex,
hence activating the myeloid differentiation response gene–88
(MyD88)-dependent and TIR domain–containing adapter-
inducing IFN-b (TRIF)–dependent pathway. The former induces
production of proinflammatory cytokines, and the latter induces
generation of type I interferons.98 Intriguingly, BMMCs and hu-
man intestinal MCs lack mCD14, with the consequence that
they recognize R-chemotypes of LPS but not S-chemotypes.99,100

In correlation, macrophages deficient in CD14 show an LPS
recognition phenotype comparable with MCs.101

Moreover, both murine BMMCs and murine peritoneal mast
cells (PMCs) were found to lack the adaptor protein TRIF-
related adapter molecule, resulting in their inability to activate
the TRIF pathway and hence to produce type I interferons on
LPS stimulation.102,103 With respect to MyD88-dependent
proinflammatory TLR4 signaling, B-cell lymphoma 3, a mem-
ber of the inhibitor of nuclear factor kB family, has been shown
to play a suppressive role in PMCs, which was not obvious
in BMMCs.104 Most likely, many more differences between
diverse MC types are to be found at the level of signal transduc-
tion as well.

C-type lectin receptors have also been found to be involved in
MC signaling activated by certain bacteria. MCs differentiated
frommurine BMor peritoneal cells express mannose receptor and
macrophage galactose-type lectin, for which roles in the recog-
nition of Bordetella pertussis have been demonstrated.105 In addi-
tion, expression of the C-type lectin receptor Dectin-1, which
participates in antifungal immunity, has been reported in different
types of MCs, such as BMMCs,106 human MCs generated from
peripheral blood CD341 progenitors,107 and cord blood–
derived MCs.108 Thus MCs are well endowed with different fea-
tures for pathogen recognition.
Regulation of Ca21-dependent MC activation
MC activation by numerous stimuli relies on Ca21

entry. Numerous stimuli, including antigen acting on IgE-
bound FcεRI, adenosine, endothelin-1, or compound 48/80, for
which the receptor in MCs (ie, MRGPRB2 in mice and
MRGPRX2 in human subjects) was identified only 3 years
ago,109 trigger a marked increase in free cytosolic Ca21 concen-
tration to evokeMC activation. Degranulation achieved by means
of regulated exocytosis of secretory vesicles requires an increase
in free cytoplasmic Ca21 concentration similar to the production
of leukotrienes or activation of several transcription factors,
which drive cytokine synthesis. Before degranulation can occur,
vesicles loaded with, for example, inflammatory mediators are
transported to the plasma membrane, where they fuse with the
plasma membrane. This process of regulated exocytosis is
initiated by an increase in the Ca21 concentration in the vicinity
of the membrane, which depends on Ca21 influx through Ca21-
permeable channels in the plasma membrane.110,111

A major downstream target of FcεRI stimulation is phospho-
lipase C (PLC) g1, which leads to generation of inositol-1,4,5-
trisphosphate (IP3). IP3-mediated Ca21 release from intracellular
stores is subsequently followed by an influx of Ca21 from the
extracellular space, a process called store-operated Ca21 entry
(SOCE).112 SOCE has been described in MCs,111,113 and ionic
currents mediating this Ca21 influx were first characterized as
Ca21 release–activated Ca21 (CRAC) channels.114 Molecular
constitutions of this Ca21 entry pathway include proteins of the
ORAI family. Depletion of intracellular Ca21 stores through IP3
generation can be achieved by several agonists mentioned above
that act on G protein–coupled receptors (GPCR), leading to stim-
ulation of PLCb. These signaling pathways are also shown to acti-
vate transient receptor potential (TRP) channels.

Ca21 entry into MCs through channels consisting of

ORAI proteins. The ORAI family of cation channels consists of
3 members, ORAI1, ORAI2, and ORAI3, all of which are
sufficient to build SOCE channels (see references in Tsvilovskyy
et al115 and (Table I).115-128 Inmurine BMMCs inwhich theOrai1
gene has been targeted by a gene-trap approach,116 CRAC cur-
rents (ICRAC) were reduced by 66%, and FcεRI-mediated Ca21

entry and release of inflammatory mediators were reduced to a
similar extent. In contrast, in Orai22/2 mice, antigen-evoked
Ca21 levels increase, and degranulation of PMCs and passive sys-
temic anaphylaxis were increased.115 This finding was initially
surprising because overexpression ofOrai2 orOrai1 cDNA leads
to a pronounced enhancement of both SOCE and ICRAC (see ref-
erences in Tsvilovskyy et al115). An increase in SOCE was also
observed inOrai22/2 T cells and macrophages,129 which was ex-
plained by a role of ORAI2 proteins in fine-tuning the magnitude
of SOCE mediated in ORAI1:ORAI2 heteromeric channels.129

A Ca21 increase triggered by compound 48/80 is increased in
Orai22/2 PMCs, suggesting that Ca21 entry channels triggered
by MRGPRB2 receptors contain ORAI2 proteins.115

In human lung MCs, all 3 ORAI genes (also termed CRACM in
some studies) are expressed. Adenovirus-mediated knockdown of
ORAI1 in human lung MCs resulted in a significant reduction of
approximately 50% in Ca21 influx and in FcεRI-dependent
release of b-hexosaminidase and leukotriene C4, whereas
ORAI2 knockdown had only marginal effects.117 However, it is
still unknown whether any of the 3 ORAI proteins contribute to
Ca21 entry and MC activation triggered by other agonists, such
as those acting through GPCRs.

TRP channels determine Ca21 entry into MCs.

Twenty-eight mammalian TRP proteins are classified into 6
subfamilies according to structural homology: TRPC, TRPV,
TRPM, TRPA, TRPML, and TRPP (see references in Freichel
et al,110 Table I). TRP channels not only contribute to Ca21 entry
across the plasma membrane but also play an important role in
electrogenesis, regulating the driving force for Ca21 entry
through other Ca21-permeable channels, such as CRAC or other
store-operated channels. In BMMCs indirect regulation, as a
limiting factor of SOCE, was found to be a characteristic feature
of TRPM4 channels, which act as Ca21-activated cation channels
primarily conducting Na1. TRPM4 channels depolarize the
membrane after FcεRI stimulation, thereby critically decreasing
Ca21 influx through CRAC channels. Accordingly, TRPM4 dele-
tion results in an increased Ca21 entry and excessive release of



TABLE I. Summary of data concerning cation channel functional importance in primary MC models obtained by using knockout

and knockdown approaches

Channel

Consequence of knockout or knockdown on:

In vivo function in channel-deficient mice ReferencesCa21 entry

Inflammatory

mediator release

Orai1 Decrease Decrease Regulation of passive cutaneous anaphylactic

reaction

116,117

Orai2 Increase Increase Regulation of passive systemic anaphylaxis 115

TRPC1 Decrease; decreased frequency of Ca21 wave

initiation

Decrease Regulation of recovery in passive systemic

anaphylaxis

120-122

TRPC3 Decreased frequency of Ca21 wave initiation ND ND 120

TRPC5 Decrease Decrease ND 123

TRPV1 No effect No effect ND 124

TRPV2 No effect on PMCs Decrease ND 124,125

TRPV4 No effect No effect ND 124

TRPM2 Decrease Decrease ND 126

TRPM4 Increase Increase Regulation of acute cutaneous anaphylaxis 118,119

TRPM7 ND Decrease ND 127

TRPM8 No effect Decrease Regulation of passive systemic anaphylaxis 128

ND, Not detected.
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histamine, leukotrienes, and TNF-a and aggravates acute cuta-
neous anaphylaxis.118 A similar role has recently been described
in PMCs119 in a study that demonstrated that TRPM4 proteins
localize to the plasma membrane in response to FcεRI stimula-
tion, suggesting that increased translocation of TRPM4 to the
plasma membrane is part of the mechanism that limits MC
activation.

The other TRP channels that contribute to MC activation do so
by directly mediating Ca21 entry. First evidence of the involve-
ment of TRPC in MC activation came from knockdown experi-
ments of TRPC1 and TRPC3 in RBL-2H3 cells, which resulted
in decreased sensitivity to antigen stimulation.120 Also, in
BMMCs deficits in FcεRI-triggeredMC activation were observed
after TRPC1 downregulation.121 However, contrary to expecta-
tions, analysis of Trpc12/2 mice showed a delayed recovery in
passive systemic anaphylaxis, and Trpc12/2 BMMCs responded
to antigen stimulation with an enhanced increase in intracellular
Ca21 compared with wild-type controls. Intriguingly, Ca21 entry
and degranulation triggered by antigen stimulation were un-
changed.122 Concerning the TRPC5 channel, Ma et al123 found
that TRPC5 downregulation in RBL-2H3 cells reduced SOCE
and proposed an association of TRPC5 with STIM1 and ORAI1.

Within the TRPV subfamily, several studies have described
expression of TRPV1, TRPV2, and TRPV4 in different types of
mouse, rat, and human MCs,110 including mouse PMCs.124 How-
ever, the Ca21 increase triggered by either antigen, endothelin-1,
or compound 48/80 was unchanged in PMCs from TRPV1-,
TRPV2- and TRPV4-deficient mice, respectively. In a similar
manner degranulation triggered by antigen or compound 48/80
was unchanged.124 Although degranulation induced by physical
stimuli was found to involve TRPV2 activation in HMC-
1 MCs,125 the heat-evoked Ca21 increase and degranulation
were unchanged in TRPV22/2 PMCs.124

Within the TRPM subfamily, expression of TRPM2, TRPM4,
TPRM7, and TRPM8 has been reported in different types of
mouse, rat, and human MCs.110 In Trpm22/2 BMMCs a heat-
evoked cation current was lacking, and the antigen-evoked
Ca21 increase and degranulation were reduced.126 Interestingly,
SOCE levels were also reduced in Trpm22/2 BMMCs, and the
authors raised the concept that TRPM2 can act as a store-
operated channel independently of ORAI1. TRPM7, like
TRPM6, serves as a bifunctional protein, with the protein kinase
domain fused to an ion channel. TRPM7 is permeable to divalent
cations including Mg21 and Ca21. TRPM7 currents and hista-
mine release evoked by either macrophage inflammatory protein
1a or substance P are significantly reduced in PMCs from mice
lacking the TRPM7 kinase domain.127 TRPM8 can be activated
by cold and cooling compounds, such as menthol. Trpm82/2

mice showed enhanced passive systemic anaphylaxis, which
could not be explained by alterations in the antigen-evoked
Ca21 increase or degranulation measured in BMMCs, suggesting
that TRPM8 expressed on non-MCs can contribute to the protec-
tive role of TRPM8 during anaphylaxis.128

Taken together, it is commonly accepted now that the
intracellular [Ca21] increase is indispensable for MC activation,
and numerous studies demonstrate that proteins of the ORAI
and TRP families are essential constituents or modulators of
antigen-induced Ca21 entry; however, the Ca21 entry pathways
evoked by stimulation of GPCRs in MCs remain unclear and
will be the subject of upcoming studies.
Phosphatase regulators of MC signaling
MCeffector functions are controlled by regulatory systems that

act to counterregulate excessive activation that would otherwise
lead to disease. One of these regulatory systems is represented by
phosphatases that inhibit the action of the kinases whose activity
is triggered by the activation of different MC receptors.

The role of phosphatases in different MC models has been
reviewed in recent years. Although most of them have predom-
inantly negative regulatory activities through removal of differ-
ential phosphorylation in the MC signaling cascade (eg, protein
tyrosine phosphatase a130 and ε,131 SH2 domain–containing
inositol-59-phosphatase 1132,133 and 2,134 phosphatase and tensin
homolog,135 the phosphatidate phosphatase LIPIN-1,136 and T-
cell ubiquitin ligand 2137), others exert positive activities (eg,
dual-specificity phosphatase [DUSP] 2138) and some even possess
both regulatory properties (positive and negative; eg, CD45139,140



TABLE II. Phosphatase regulators of MC functions

Phosphatase Function in BMMCs Function in mice References

Negative regulators

PTPa FcεRI-mediated degranulation FcεRI-mediated anaphylaxis 130

PTPε Degranulation and cytokine production FcεRI-mediated passive systemic anaphylactic reaction 131

SHIP1 Degranulation and FcεRI-mediated IL-6, TNF, and IL-5

production

Allergic inflammation and MC hyperplasia 132,133

SHIP2 FcεRI-mediated degranulation and cytokine (IL-4 and

IL-13) gene expression

— 134

PTEN FcεRI-mediated degranulation and cytokine (IL-3 and

IL-6) production and survival

Antigen and SCF-induced allergic response 135

LIPIN-1 FcεRI-mediated degranulation and prostaglandin D2

release

FcεRI-mediated passive systemic anaphylaxis 136

TULA-2 FcεRI-mediated degranulation — 137

Positive regulators

DUSP2 FcεRI-mediated IL-6 and TNF expression Promotes the ‘‘K/BxN’’ model of inflammatory arthritis

that depends on MCs and macrophages

138

Dual positive and negative regulators

CD45 Negative: degranulation and IL-3–dependent

proliferation

Positive: Degranulation and cytokine secretion

Positive: FcεRI-mediated systemic anaphylaxis 139,140

SHP-1 Negative: IL-4, IL-13, IL-6, and TNF expression on

H2O2, LPS, and FcεRI cross-linking

Positive: IL-3–dependent proliferation

Negative: allergic response 141-144

SHP-2 Negative: Ca21 mobilization

Positive: FcεRI-mediated TNF secretion

— 146

PTEN, Phosphatase and tensin homolog; PTP, protein tyrosine phosphatase; SHIP, SH2 domain–containing inositol-59-phosphatase; SHP, SH2 domain–containing phosphotyrosine

phosphatase; TULA-2, T-cell ubiquitin ligand 2.
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and SH2 domain–containing phosphotyrosine phosphatase
1141-144 and 2145,146). Almost all the studies on the role of phos-
phatases in MC function were performed on phosphatase-
deficient mice or BMMCs, which are mucosal-like MCs (Table
II).130-144,146 Because reports have been made on subtle differ-
ences in phosphatase function in different types of tissue-
resident MCs,133 future studies will be needed to compare the
role of phosphatases in different MC types.

A number of the phosphatases are transcriptionally regulated
by glucocorticoids (GCs), which are famous therapeutically for
their antiallergic and anti-inflammatory actions. GCs in general
are known to exert their antiallergic actions onMCs by binding to
an intracellular receptor (the GC receptor) that then interacts with
a number of proinflammatory transcription factors, such as
activator protein 1 or nuclear factor kB, to downregulate their
activity.147 However, GCs also acting through the GC receptor
activate the expression of certain phosphatases as an indirect
means of downregulating MC action.

DUSP1 (also known asMAPK phosphatase 1) was the first GC-
inducible phosphatase gene reported to inhibit MC action through
dephosphorylation of the MAPKs ERK1 and ERK2 in RBL-2H3
rat basophilic leukemia cells, which have been widely used as rat
MMCs.148,149 Later studies carried out in BMMCs showed amore
complex regulatory effect of GCs. GC-induced activation of
DUSP1 was found to be important for dephosphorylation of the
MAPK p38 at early time points (4-8 hours), whereas it did not
alter the phosphorylation of ERK1/2 or c-Jun N-terminal kinase.
This shows a difference in the regulatory action of DUSP1 in
BMMCs compared with RBL-2H3 cells that have been used
repeatedly in many MC signaling studies. The results of the
GC-induced DUSP1 expression also showed that only a subset
of MAPKs was regulated by DUSP1 in BMMCs.150 Therefore
it was not surprising that GC-mediated inhibition of proinflamma-
tory cytokine and chemokine gene expression (Ccl2, Il6, and Tnf),
as well as degranulation, were unaltered in BMMCs from
Dusp12/2 mice.150

A search for other mechanisms that might accompany GC
regulation ofMC function showed that several other phosphatases
were transcriptionally upregulated by GCs in MCs. Intriguingly,
inDusp12/2BMMCsGC upregulated the expression of phospha-
tases, such as DUSP2, DUSP4, DUSP9, and PEST domain-
enriched tyrosine phosphatase (PEP).150 Of these GC-regulated
phosphatases, PEP is the most studied. Unlike the other GC-
regulated phosphatases, PEP is exclusively expressed in hemato-
poietic cells.151 In addition, disease-associated studies showed
that alterations in LYP, the gene that codes for the human homolog
of PEP, is a risk factor for human diseases, including inflamma-
tory conditions, such as rheumatoid arthritis,152 for which GC
therapy is used.153

PEP is a potent negative regulator of T-cell receptor signaling
that acts on receptor-coupled protein tyrosine kinases in T
cells.154,155 However, in BMMCs Pep gene deletion resulted in
reduced antigen-mediated MC responses, such as serum hista-
mine release, and a decreased number of degranulated MCs in
the skin of knockout compared with wild-type mice, suggesting
a positive regulatory function of this phosphatase.156 GC-
mediated inhibition of c-Jun N-terminal kinase 1/2 and PLCg1
phosphorylation and Ca21 mobilization after FcεRI cross-
linking was abolished in Pep2/2 BMMCs.156 These studies
show that although PEP expression is positively regulated by
GCs, PEP is not a negative regulator of MC action, an apparent
discrepancy in the putative role of this phosphatase in GC action.
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Thus whole-genome expression profiling has recently been
carried out using RNA sequencing analysis on Pep1/1 and Pep2/2

BMMCs to find a mechanistic explanation for the action of PEP in
the regulation of MC activity and GC action (see GSE108972 for
expression profiling data). These results identify PEP as a positive
and negative regulator ofMC functions. In its absence cytokine and
chemokine gene expression (eg, Tnf, Il13, and Csf2) was downre-
gulated, whereas expression of other genes (eg, Il33, Ccr1, Il1r1,
and Tnfrsf12a) was upregulated in response to antigen (see
GSE108972).157 Furthermore, PEP was needed for the antiallergic
action of GCs in MCs because GC-induced negative regulation of
antigen-mediated Cox2 gene expression was attenuated in Pep2/2

BMMCs (GSE108972),157 showing that PEP is a promising
target in antiallergic therapy. In this light some attempts have
already been made to inhibit PEP activity by using small-
molecular-weight compounds. The first attempt was with an
Au(I)-phosphine complex, but because this was less specific,156 a
more selective inhibitor, L75NO4, has since been described.158

Further studies will be needed to determine whether PEP/LYP is
a valid target for future therapeutic approaches for MCs in human
subjects.
PHYSIOLOGIC FUNCTIONS OF MCs

Chemotaxis and phagocytosis
Generally, MCs are thought of as long-lived tissue-resident

cells with little turnover. The traditional thought is that there is a
continuous stream of MCps from the BM, circulating in the
blood and replenishing peripheral sites in which final maturation
happens. This view has very recently been challenged by using
lineage-tracing experiments that show very little MC replenish-
ment of peripheral tissues from the BM.23 In many inflammatory
settings, however, MC numbers strongly increase in target tis-
sues. Local cell divisions alone, if mature and terminally differ-
entiated MCs would proliferate at all, could not account for the
massive increase in MC numbers.17 ThusMCmigration remains
an important and insufficiently understood aspect of MC
biology.6,12,159-162

MC chemotaxis is often assayed in vitro by using transwell as-
says or similar approaches and less often in vivo by using injection
of labeled MCs through the tail vein and analysis of their arrival at
certain anatomic locations, including the skin, peritoneal fluid, and
small intestine. However, many of these experiments used mouse
models carrying deficiencies in the KIT/KITL system that have
multiple effects and thus are problematic. Depletion of specific
MC populations, such as through MC-specific diphtheria toxin
expression, followed by their reconstitution from BM transfer,
has proved an important tool in many studies.163-165 Yet, under
nonchallenged conditions, reconstitution was slow and seemed
to occur from endogenous MCps not affected by the toxin.23

The most prominent receptors described above, FcεRI and
KIT, were also found to act on MC migration, and thus IgE and
SCF are potent inducers of MC migration. Antigen-mediated
migration (ie, IgE/antigen-triggered FcεRI activation that
causes MCs to migrate) was observed, for example, after
sensitizing mice and challenging their lung airways with aero-
solized antigen. KIT-triggered pathways are involved not only in
proinflammatory MC activation but also in migration. Key to
migratory behavior and the required F-actin– and tubulin-
dependent cytoskeletal dynamics162 are RHO GTPases, particu-
larly RAC, RHOA, and CDC42, and their regulatory
factors.166,167 Chemotaxis toward SCF expressed by endothelial
cells and fibroblasts has been demonstrated numerous times
in vitro for mouse and human cultured MCs.168,169 Because
some MCp populations express only low levels of KIT, in such
cases SCF can support chemotaxis that is mainly triggered by
chemokines, such as CCR2.170

The chemotactic landscape, even for the same tissue, is highly
complex and depends on a plethora of parameters, including
species, strain, age, activation status, cell type involved, and sex,
and thus generalized predictions are very difficult, as is the
assignment of direct effects of chemoattractant to a specific MC
type. MC chemotaxis is also induced by many other agents as
diverse as lipid mediators, such as sphingosine-1-phosphate
(S1P), leukotriene B4, and prostaglandins (prostaglandin E2),
and by CC or CXC chemokines.171-173 The respective receptors
are found on the surfaces of MCs, including 2 S1P receptors
(S1P1 and S1P2) and chemokine receptors, such as CCR3,
CCR5, CXCR2, and CXCR4. For example, in CXCR2-deficient
mice MCs do not home efficiently to the intestines.10,16,160

Cytokine signaling can result in stimulatory or inhibitory
effects on migration; for example, the anti-inflammatory IL-10
inhibits TNF-a– or nerve growth factor–induced MC migra-
tion.174 Migration is affected by the environment through
which MCs migrate, such as the extracellular matrix and/or
other cell types. Indeed, some immune cells substantially sup-
port reconstitution of MC-depleted tissues. Dendritic cells, for
example, but not lymphocytes, promote MCp trafficking to the
intestine.175

When immature MCs reach a site of inflammation or mature
resident MCs become locally activated near that site, these MCs
(potentially further matured) not only rapidly degranulate and
express further mediators but also can become actively involved
in phagocytosis. MCs are strategically located in the skin,
airways, gut, and other surface-exposed places to defend attack-
ingmicrobes. In the skinMCs are estimated at a density of 3000 to
7000 cells per cubic millimeter and thus are prone to contact and
attack invading pathogens.176

Studies using BMMCs indicate that to combat pathogens, the
cells can phagocytose using complement and FcgRs, as well as
CD48 and TLRs, and thus are involved in opsonin-dependent and
independent means of defense, respectively.177 Bacteria, such as
Escherichia coli, Klebsiella pneumoniae, and Enterococcus fae-
cium, are phagocytosed by using mouse BMMCs or human
cord blood–derived MCs. The endosome-lysosome axis in MCs
was reported to internalize and kill pathogens through either reac-
tive oxygen species or nonoxidative means.178 These conclusions
are debatable because other authors did not find intracellular
destruction of bacteria but rather extracellular attachments.
Furthermore, some bacterial strains can enter MCs and thereby
protect themselves from immune attack, although at least some
of the bacteria, such as Staphylococcus aureus, will be destroyed
intracellularly.179,180

The pathogenic fungus Candida albicans is found on mucosa
and thus at a site prominently populated byMCs. The contribution
of MCs to defense against Candida albicans is controversial
because some authors suggest that MCs primarily fight the fungi
through extracellular means,181 whereas others describe phagocy-
totic killing of the fungus. After recognition through TLR2 and
Dectin-1 receptors, Candida albicans was reported to be phago-
cytosed by BMMCs and killed by a nitric oxide–dependent
mechanism.182
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After phagocytosis, MCs display pathogenic peptides on their
surfaces, thus supporting the adaptive immune response through
this antigen-presenting activity. A further twist of the defense
strategies used by MCs, although suicidal, is formation of
extracellular traps.183 Here MCs release DNA to trap microbes
that stick to the viscous material. The MCs die, but this process
is not accidental but rather a programmed mechanism that appar-
ently involves high reactive oxygen species production.
Host defense against pathogens
MCTs are important immune cells that fight off selected species

of intestinal nematodes (eg, Trichinella spiralis and Strongyloides
venezuelensis), and worm expulsion is closely associated with in-
testinal mastocytosis. Different kinetics of resolution of infection
correlatewith the ability of different mouse strains tomount intes-
tinal MCT responses.184 Immune elimination of primary nema-
tode infection in rats correlated with secretion of the neutral
protease rat MC protease II from MMCs.185 Moreover, glycos-
aminoglycans, such as chondroitin sulfate A and heparin, stored
in secretory lysosomes of MCs have been found to inhibit attach-
ment and invasion of adult worms into the intestinal epithelium,
hence promoting worm expulsion.186

About 20 years ago, a critical protective role of serosal-type
MCs was described by using a murine model of acute septic
peritonitis, cecum ligation, and puncture.187,188 MC-secreted
TNF-a on bacterial recognition acted as a chemotactic ligand
for neutrophils necessary for the eradication of bacteria. These
data were collected comparing WT and Kit mutant MC-
deficient KitW/Wv mice, which are known to exert additional he-
matopoietic abnormalities, such as neutrophilia and deficiency
of peritoneal macrophages.189,190 Piliponsky et al190 advised
caution in formulating general statements because they found
the effect of MC deficiency to depend on mouse strain back-
ground, the nature of the mutation causing MC deficiency, and
both the type and severity of infection.190 In particular, MC
engraftment of MC-deficient C57BL/6-KitW-Sh/W-Shmice even re-
sulted in increased mortality during severe cecum ligation and
puncture or on intraperitoneal inoculation of Salmonella typhimu-
rium.190 Moreover, when using a Kit mutant–independent mouse
model, allowing conditional ablation of MCs, MCs were found to
aggravate severe septic peritonitis by secreting IL-4, which in turn
acted on peritoneal macrophages, attenuating their phagocytosis
of bacteria.165 Nevertheless, although the role ofMCs in infection
and immunity obviously is multifaceted, it is without a doubt that
MCs are important actors in infectious and immunologic sce-
narios by secreting various mediators and/or regulating responses
of myeloid and lymphoid immune cells.
Protection and regulation of tissue barriers
MCs are favorably located at boundaries where the host and

environment meet, such as the skin or the mucosa of the lung and
gastrointestinal tract. The intestinal mucosa is the largest
boundary of the human body (estimated to be 200-400 m2) and
a most challenging one because the intestine hosts a large number
of bacteria that need to be controlled to prevent host invasion. The
second largest boundary is the respiratory mucosa (estimated at
100-200 m2), whereas other mucosal sites (<1 m2) and the skin
(2 m2) are rather small. Such boundaries are equipped not only
with MCs but also with numerous cells of the innate and adaptive
immune system, suggesting tight communication between these
cells, as well as with tissue cells, including epithelial cells, endo-
thelial cells, fibroblasts, and keratinocytes. The boundaries form
unique functional barriers to protect the host against toxins, path-
ogens, and other harmful agents. MCs contribute to such barrier
functions. In the intestine MCs regulate blood flow, smooth mus-
cle contraction and peristalsis, mucosal secretion, and innate and
adaptive immune responses.191,192 This explains why MCs are
involved in so many different types of gastrointestinal diseases,
not only allergic disorders but also gastrointestinal infections
and chronic inflammatory disorders, colon cancer, and other
malignancies.193

The most effective stimulus for MMCs is cross-linking of cell
surface–bound IgE, either by allergen in sensitized subjects or by
parasitic antigens. However, this pathway is likely of no
importance in healthy nonallergic subjects. It is not yet clear
which stimuli might play a role in MC activation in healthy
persons. Little is known about IgE-independent triggers of human
MMCs of the lung or gastrointestinal tract. They might differ
from triggers for human skinMCs orMCs from other species.91,92

Important progress has been made in understanding MC regula-
tion through the discovery of several inhibitory mechanisms
that might balance the agonistic activities of mediators discussed
previously.194 Of particular relevance to the gastrointestinal tract
are the anti-inflammatory cytokines TGF-b1 and IL-10, which are
highly expressed in the healthy intestine. TGF-b1 inhibits SCF-
dependent growth of human gastrointestinal MCs in vitro and
modulates the mediator profile released on FcεRI aggregation
by reducing proinflammatory mediator release, except for prosta-
glandin D2 production, which is enhanced by TGF-b1.195

Multiple studies in rodents and, to some extent, also in human
subjects have shown that MCs have a central role in host defense
against bacteria, viruses, and parasites (see the ‘‘Host defense
against pathogens’’ section). More recently, it was shown that
gastrointestinal MCs interact also with commensal bacteria in
the intestine. For example, intestinal commensal bacteria regulate
the migration of murine MCs into the intestine through induction
of CXCR2 ligands from intestinal epithelial cells in a TLR-
dependent manner. Germ-free mice have lower MC densities in
the small intestine than normal mice.196 On the other hand,
commensal bacteria, such as Enterococcus faecalis, suppress
degranulation of MCs, at least in vitro, in a MyD88-
independent manner, for example through partial inhibition of
Ca21 signaling on FcεRI cross-linking.197

It is tempting to speculate that MC–commensal bacteria
interactions play a role in the gastrointestinal barrier and in
protection against barrier-related diseases. By using in vitro
models, it could be demonstrated that MC proteases are directly
responsible for the increase in epithelial paracellular perme-
ability.198 The MC-dependent modulation of intestinal perme-
ability was confirmed in human subjects exposed to stress.199

The fact that gastrointestinal MCs are in intimate contact with
the epithelium and nerves suggests further that MCs are involved
in regulatingmucosal permeability and intestinal barrier function.

Most of the physiologic functions of MCs described for the gut
also apply to the lung. However, a comprehensive study of MC
functions in normal lung physiology is lacking. Most work
focuses on MC functions in the pathogenesis of asthma and other
pulmonary diseases. It was only recently pointed out that MCs
and their activation contribute to lung health through innate and
adaptive immune responses to respiratory pathogens.



J ALLERGY CLIN IMMUNOL

VOLUME 144, NUMBER 4

HUBER ET AL S41
Human skin MCs are quite distinct in their development,
functions, and biological properties compared with human
MMCs. Skin MCs are sensitive to stimulation by substance P,
compound 48/80, and other basic nonimmunologic stimuli.
Moreover, skin MCs are also important players in protective
immune responses against pathogens.

The fact that MCs are largely found at interfaces between the
environment and the internal milieu predestines them to be
involved in wound healing and tissue remodeling. Wound healing
is a complex process of lysis and reconstitution controlled by a
series of cell-signaling proteins. MCs have been shown to play a
significant role in the early inflammatory stage of wound healing
and also to influence proliferation and tissue remodeling in the
skin.200 In the skin, but also in the lung and intestinal mucosa,
MCs are located around small vessels that are involved in vasodi-
lation. MCs intimately communicate with endothelial cells
providingMC growth factors, and in consequence of this commu-
nication, MCs are involved in regulation of extravasation of
blood-derived immune cells.201 In summary,MCs regulate a large
number of physiologic tissue functions, namely maintenance of
tissue barriers.
CONCLUSIONS
The mechanisms underlying pleiotropic MC functions to sup-

port the host’s homeostasis have been unraveled to a large extent
within the last few decades. MCs vary considerably depending on
their grade of maturation, growth and trigger factors, tissue
environmental conditions, and presence or absence of pathogens.
MCs express a large variety of receptors, allowing them to respond
specifically to particular conditions. Their major effector func-
tions, the physiologic importance of which has to be elucidated in
many cases, comprise the generation and release of proteases,
amines, and cytokines, as well as chemotaxis and phagocytosis.
These functions are regulated by SCF, IL-4, and other cytokines
and chemokines; IgE and IgG receptor–dependent mechanisms;
and innate immune receptors and other mechanisms and depend
on an intracellular Ca21 increase that is mediated or modulated by
TRP andORAI channels inmany cases. Suchmechanisms explain
howMCs, both in human subjects and in different animal species,
can exert a number of physiologic functions, including host de-
fense against pathogens and regulation of mucosal and skin func-
tions. The understanding of such mechanisms not only explains
particular body functions but also offers novel opportunities for
pharmacologic interventions.

We regret that we are unable to cite all relevant studies because of space

limitations, andwe apologize to our colleagueswhosework has not been cited.
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