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Abstract Various methods based on classical classification methods such as
linear discriminant analysis (LDA) have been developed for working on data
streams in situations with concept drift. Nevertheless, the updated classifiers
of such methods may result in a bad prediction error rate in case the underlying
distribution incrementally changes further on.

Therefore, we invented a rather general extension to such methods to improve
the forecasting quality. Under some assumptions we estimate a model for the
time-dependent concept drift that is used to predict the forthcoming distributions
of the features. These predictions of distributions are finally used in the LDA
to build the classification rule and hence for predicting new observations. In a
simulation study we consider different kinds of concept drift and compare the
new extended methods with the methods these are based on.
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1 Introduction and Motivation

Various methods based on classical classification methods have been developed
for working on data streams in situations with concept drift. For a first explanation
of the term concept drift along with examples see Hoens et al (2012). Webb et al
(2016) present a comprehensive overview over the different types of concept
drift and then try to formulate a standardized terminology by introducing
formal definitions for the different types. We focus on the linear discriminant
analysis (LDA) as a classification method in the context of data streams and
concept drift.

Pang et al (2005) focus on Fisher’s LDA (Fisher, 1936) and use standard
formulas for updating the means and variances iteratively with new observations.
The resulting classification rule is identical to that built on all observations at
a time. Every data point has the same influence and is assigned the same weight,
respectively (no adaptation to a possible concept drift).

However, observing data streams, the underlying distribution of features
and/or the target variable may change over time. In such a case, exact updates
and equal weighting of all observations in the data streams may lead to bad
performance of the updated classifier. A weighting adapted to the currentness
of new observations can show a better performance.

Kuncheva and Plumpton (2008) deal with an adaptive online version of the
canonical LDA. They also use standard formulas for updating the relevant values.
In addition, they extend the adaptive online version with an option to adjust
to concept drift by introducing a fixed or adaptive learning rate. Hence, new
observations are assigned different weights indirectly.

Anagnostopoulos et al (2012) use the idea of exponential forgetting by expo-
nentially down-weighting the contribution of past observations in the updating
steps for the classifier based on new observations in the data stream.

Nevertheless, the updated classifiers of such methods may result in a bad
prediction error rate in case the underlying distribution incrementally changes
further on and the forecasting quality can still be improved. Hence, in the
following a framework is formulated that extends existing methods for online
LDA. The idea is to estimate a model for the time-dependent concept drift under
some assumptions. This model is used to predict the forthcoming distribution
of the features. These predictions of distributions are finally used in the LDA
to learn the classification rule and hence for predicting new observations.
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2 Online Linear Discriminant Analysis

We focus on a data stream of p-dimensional vectors x;, i = 1,2,.. ., denoted
by {x1,x2,...}. The label of each observation arrives temporally delayed, more
precisely, the label of observation x; shows up at time ¢ + 1.

At any time ¢ the iteratively updated classifier is indirectly based on a set
of ¢ training vectors X = {x;};=1....;. The observations possess M different
classes, where g(x;) = ¢, ¢ € {1,...,M}, denotes the label of x;. ngc) indicates
the number of observations with label ¢ up to time ¢ and #; is the number of
all observations in the data stream up to time ¢, n; = ¢ in this contribution.

To build the classifier we need the class means, the priors as well as the
inverse of the empirical covariance matrix, denoted by m'© Pfc) and S t‘l. The

n©”

.....

subscript n§C> indicates on how many observations the class mean at time ¢ is
calculated on. The initialization can be performed on the first ¢ observations of
the data stream and by standard formulas: Class means, relative frequencies and
inverse of the empirical covariance matrix as estimators for the expected values,
the priors of the classes and the inverse covariance matrix.

2.1 Exemplary Method for Online Linear Discriminant Analysis

We concentrate exemplarily on an advanced online LDA, the online version of
the canonical LDA as proposed by Kuncheva and Plumpton (2008). They use
standard updating formulas: Mean vectors as maximum likelihood estimators for
the expected values of the classes, the inverse of the empirical covariance matrix,
and estimators for the priors. Thereby they iteratively update the classifier with
every new observation in the data stream by updating all the needed measures.

In addition, they extend their adaptive online version with an option to
adjust to concept drift through a weighting adapted to the currentness of new
observations. This is done by introducing a fixed or adaptive learning rate 4,
0 < 4 < 1, that assigns different weights to new observations indirectly. For
the adaptive case the authors introduce a heuristic approach (Kuncheva and
Plumpton, 2008, p. 516f.). A large learning rate 4 — 1 can be interpreted as
focusing only on most recent data, a small learning rate 4 — 0 is equivalent to
not updating the classifier. For 4 = 0.5 all observations are weighted equally.
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The updated quantities at time ¢ + 1, based on the respective quantities at time
t and the new observation x,, with label g(x,.1) = k, as well as the learning
rate are given as follows (Kuncheva and Plumpton, 2008, p. 514):

(©)

m ifg(xt-i-l)?&C,

i)
m(C) - (1 - /l) . ng(’) . milc(z) + /l ° xt+1 (1)
n'<) T (;) - ifg(x;s)=ce{l,...,M},
-A)-n" +
Xr+l ifg(xip1))=c=M+1,
(1-2)-n .
(1/1)—’14‘/1 if g(x/41) # ¢,
—)-n
© _ (1=2)-n'9+2 ,
P i ’; ) if g(x;41)=ce{l,...,M}, 2)
—A)n
1 .
——— ifg(x;p1)=c=M+1,
t
-1, T g1
1 _(l_l)n['f‘/l -1 St vy St
Sear = (1-2)-n T N 0<d<l &
! —/l’ T +vIS 'y
-l
where
(ngk) + 1) m;k(,)() — X4l
V=X - 5 a2 : )
t

For more details on this updating method see Kuncheva and Plumpton (2008).
Note that the updated inverse covariance matrix from Equation (3) (and Equa-
tion (4)) has been corrected compared to Kuncheva and Plumpton (2008, p. 514)
so that it represents the properties for 4 = 0.5,4 — 0and 1 — 1.

In the canonical LDA the classification rule is based on M different discrimi-
nant functions, that are calculated based on the Gaussian distribution. A new
observation x is assigned to the class ¢ with the highest value (e.g. Kuncheva
and Plumpton, 2008, p. 512):

NI | Ny . Ny
argmax g.(x) = log P — 3 (m(‘)) S7'm© + (m(°)) S7'x. (5
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3 Extension of Existing Methods

We propose the following framework that extends existing methods for online
LDA with the aim to build better online classifiers concerning the forecasting
quality by, first of all, estimating the time-dependent concept drift.

3.1 Estimation of time-dependent Concept Drift

As a first step, we assume the expected values of all classes ¢ to be subject to a
linear trend:

p =g g0 =1, 6)
As aresult the expected values of one class ¢ differ for different times # # s and
B(lc) #0: ugc) # u(sc), t # 5. Furthermore, we assume the covariance matrices
of all classes are unchanged over time and identical for all classes, which is the
standard assumption for the LDA. For a two-dimensional distribution of one
class this linear shift of the expected value over time, yet unchanged covariance
matrix, is exemplarily illustrated in Figure 1.

m Class 1 at time t=:
Class 1 at time t=:

Feature 2

Figure 1: Example for a linear shift of the ex-
J . pected value of a two-dimensional distribution
of one class from one time to the next. The
covariance matrix is unchanged over time.

Feature 1

3.1.1 Local Linear Regression Model

The overall idea in order to improve the forecasting quality of the running

classifier is to replace each maximum likelihood estimator m(iz , in the prediction
n

rule from Equation (5) of the LDA by an estimator based on a local linear
regression model of the class means, hence a model for the time-dependent
concept drift.
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We will exemplarily focus on the extension of the method proposed by Kuncheva
and Plumpton (2008) (see Section 2.1). In the case of a fixed learning rate
A = 0.5 the resulting model from the updating steps in Equations (1)—(3) at any
time ¢ is the same as that trained on all data up to time ¢ at once. Hence, the class
mean at time # can also be written in a static way based on all observations:

(c). Z Xj= —

t lg(x) c
i<t

t
Z Aig=cy), (D

i=1

Y- 1]1{g<xj> =c}

where 1 is the indicator function and y( ) = m(c) holds for 4 = 0.5. The

class means as unbiased maximum likelihood estlmators can be considered as
estimates for the expected values of the features of all classes. In order to model
the linear trend of the expected values and predict the forthcoming expected
values of the features at time ¢ a local linear regression model is fitted to 7yeng
recent updated class means from the interval

I={j:g(x;)=c, j=t—ngena+1,...,1} )

Rirend time points

using the shifted times zgc):

ygc) = “(C) + OZ(C) z(c) + €;, i€l )
i
(© _ 1 .
4 = (c) Z T Z (J ' ]1{g(xj>:c})- (10)

N jiglxj)=c Zk=1 ]l{g(xk):c} Jj=1

Jjsi

Note that if A # 0.5, the class means yE.C) in Equation (9) have to be the streaming
counterparts from Equation (1), even for formal notation of the linear regression
model.

The shifted times are used, because the class mean with index i is not an
adequate estimator for the expected value at time i in the case of a linear trend
of the expected values. That is because the class means are updated with each
new observation in the data stream, hence the class mean at time i is based
on all observations in class ¢ from time 1 to i. The idea of shifted tlmes is
graphically visualized in Figure 2. You can see that the class means y clearly
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)

do not represent the expected values p;* at time i. Instead they represent the

)

respective expected values of class 1 at time z; .
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Figure 2: Example for the determination of shifted times from Equation (10) for one class ¢ = 1.
The gray points represent the expected values ,ug.w for each time i. This expected value is subject
to a linear trend. The black points illustrate observations x; that show up in class 1 at time i (here

i €{1,2,3,4,6,7,10}). These observations follow the distribution with expected value ”gc). The

circles represent the class means calculated by Equation (7). These are adequate estimators for the
(1)

expected values at time z; instead of time i.

Simplified, consider observations x; for one class for each timei = 1,...,7 and
A = 0.5 with a linearly changing expectation. Then m,, = X is a good estimator
for the expectation of x = rather than for the desired x,..

3.1.2 Prediction of Forthcoming Distribution of the Features

This linear regression model for the time-dependent concept drift is used to
predict the forthcoming distribution of the features:

5O =a9 a4 ), c=1,....M. (1D
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Because we focus on the linear regression model, closed forms for least squares es-
timators of linear regression can be used, leading to the following estimators:

Sier (& =29 (51 - 59

@\ =
t —(
Tier (@9 = 72
~(0) _ <(c) _ Al0)  =(c) o) _ |1 (c)
a,’ = -a,’ 79, where = e
0t ‘ 1¢ Y Ntrend ;yl
1
=(c) _ (c)
79=—— > 7. (12)
ntrendZ !

iel

These predictions jrgi)l are then used to build the classification rule for the LDA.
(c)

The former maximum likelihood estimator m”
ny

parameter 5’5?1 in the prediction rule of Equation (5). New observations in the

data stream can then be predicted by:

is replaced by the estimated

o U (2@ e-lalc
argmax g.(x,;+1) = log pi ) _ 5 (ygi)l) S: 1y§+)1
ce{l,..., M}
s@ )\ o1
+(yr+1) S; X4 (13)

3.2 Algorithm

The extension of methods for online LDA for data streams with concept drift,
e.g. a linear drift of the expected values of the classes, is summarized in the
following Algorithm 1:

Algorithm 1 Extension for online LDA for data streams with concept drift

Require: Data stream {x,Xx2,...}, t, Nyend-
1: Initialization of LDA based on ¢ observations (8) by e.g. (1).
2: When new observation x, arrives — Update of measures (1), (2) and (3) for LDA.

3: Use class means of nyeng recent updates of the interval (8) to fit a model, e.g. (9)
(for the first time after nyeng updates of measures for LDA).

4: Estimation of forthcoming expected values of features by means of prediction of the
forthcoming class means (11).

5: Use estimated parameters of classes in the LDA to build the classification rule and
predict the new observation by (13).

6: Repeat 2-5 for data stream.




Online Linear Discriminant Analysis for Data Streams with Concept Drift 9

As we propose a general procedure for extending methods for online linear
discriminant analysis the training complexity of such an extended method at
any time ¢ in the data stream overall consists of the complexity of the specific
method for online LDA and in addition the training complexity of the linear
regression based on ngenq Observations.

In the case of using normal equations to solve the least-squares problem the
different steps of calculation have a complexity of O(nyeng - pz) (matrix multipli-
cation of p X nyeng- and Ageng X p-matrix), O(nyend - p) (Matrix multiplication of
P X Ryrend-matrix and ngend-dimensional vector) and O(p?) (inversion and matrix
multiplication of p X p-matrices) when using standard matrix multiplication and
matrix inversion via Gaussian elimination (Golub and Loan, 1996), where p is
the dimension of the feature space. If ngeng > p, then the training complexity
simplifies to O(nyend - 7).

4 Simulation Results

All implementations and analyses of results were performed in R (R Core Team,
2018), using the standard packages as well as the additional packages MASS
(Venables and Ripley, 2002), mvtnorm (Genz and Bretz, 2009; Genz et al,
2019), BatchJobs (Bischl et al, 2015), and biglm (Lumley, 2013). We
compare the advanced online LDA by Kuncheva and Plumpton (2008) using
a fixed learning rate (see Section 2.1) 4 € {0.1, 0.3, 0.5, 0.7, 0.9} with the
new introduced extension on a range of different data situations representing
different characteristics of both incremental and sudden concept drift. These
data situations are schematically visualized and explained in Figure 3.

For the simulation of each of the four data situations we focus on 4000 data
points in two classes. The distributions in both classes are two-dimensional
Gaussians with equal covariance matrix (assumptions in LDA), but differing
expected values. The covariance matrices, we use

20
z:(oz), (14)

are even unchanged over time ¢, while the expected values of the classes change,
representing a concept drift.
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In the case of an incremental drift (Figure 3 (a)—(c)) the distribution changes for
every new observation in the data stream, while in the case of a sudden drift
(d) each 1000 successive observations follow one underlying distribution.

(a) Circular data
t=1 t=181 t=271 t=361
@ . °
P of o0 oo atesn. P
~ - ~ Nl o ¢ o % &
AR ) 5 g ., & ° 5| R¥e
X b ® %@ X 3 8o o4 x o X oo ?
R
Xl, 1 XlSl, 1 X271, 1 X361, 1
(b) Crossing data
t=1 t=1000 t=2000 t=3000 t=4000
o~ o~ . o~ *' o~ .‘
pr g : g o g : g
=t 3 & S N <] 1S)
X . = o S 15 5
#* X x X X
Xi,1 X1000, 1 X2000, 1 X3000, 1 X4000, 1
(c) Passing data
t=1 t=1000 t=2000 t=3000 t=4000
X 14 o~ o o~ o~ ~
o ¥ g ¥ . g g
43 S S k] S .. g
x X = ﬁ, P
Xi1 Xi000,1 X2000, 1 X3000,1 X4000,1
() Sudden drift
t=1 t=1001 t=2001
.
. ° . ..
o~ ® o ~ : .y ~
N - = ° '] o ° ) o
SR 1 8 ol ) S P 8
S S 8
F) .O @ x > X %3 e
A
* 8e
Xl, 1 XlOOl, 1 XZOOI, 1

Figure 3: Visualization of binary (two classes) two-dimensional distributions of the four different
data situations (rows (a)—(d)) for four or five different times, respectively (columns).

The following steps are performed for all four data situations: For each dis-
tribution of features at each time we simulated 100 additional observations
for testing the prediction accuracy. The initialization is performed on the first
t = 10 observations respectively. The initialization of the linear regression
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model for class means is based on the class means of the first nyeng update
steps of the LDA. The steps 2-5 of Algorithm 1 are repeated for all 4000
observations. The prediction (step 5) is performed for the test data of the next
time point, respectively. The simulation of the whole data situation and execution
of Algorithm 1 is repeated 100 times to be able to produce a mean prediction
error for each time.

In the following sections the four data situations and their simulations are ex-
plained in detail followed by a discussion of the results on these simulated data.

4.1 “Circular” data (a)

For the “circular data” the expected values of the two classes geometrically lie
on a circle with radius 2 on contrary sides. We focus on a shift of the expected
values of one degree at each time. That means a full rotation of the distribution
of features after 360 data points in the data stream (see Figure 3 (a)).

As our proposal assumes a linear trend of the expected values while the
example shows a circular one, the latter can be approximated by a local version
of the former, i.e. modeling a local linear trend. Table 1 summarizes the results
by means and standard deviations of the mean predictions errors as well as
means of standard deviations of prediction errors for the whole data stream.

Table 1: Results of simulation study for “circular” data. Means and standard deviations (in parentheses)
of mean prediction errors over time (curves in Figure 4; first row resp.) and means of standard deviations
of prediction errors over time (second row resp.).

base model (Section 2.1) extension with

A no extension Nyrend = 10 Nyrend = 20 Nyrend = 50 Ngrend = 200

0.1 0.4979 (0.308) 0.1111 (0.007) 0.0955 (0.005) 0.1077 (0.011) 0.5995 (0.088)
0.0737 0.0506 0.0338 0.0368 0.0866

0.3 0.4974 (0.313) 0.1083 (0.006) 0.0932 (0.043) 0.1044 (0.007) 0.5946 (0.080)
0.0584 0.0468 0.0324 0.0335 0.0641

0.5 0.4976 (0.190) 0.1080 (0.006) 0.0928 (0.004) 0.1032 (0.004) 0.5832 (0.084)
0.1483 0.0464 0.0322 0.0331 0.0611

0.7 0.4695 (0.078) 0.1083 (0.006) 0.0928 (0.004) 0.1024 (0.004) 0.5627 (0.104)
0.1338 0.0468 0.0323 0.033 0.0599

0.9 0.3672(0.107) 0.1110 (0.009) 0.0941 (0.007) 0.1010 (0.004) 0.4897 (0.137)

0.0817

0.0492

0.0335

0.0331

0.0584
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The results are visualized in Figure 4 for fixed learning rates 4 € {0.1, 0.3, 0.5,
0.7, 0.9} with the proposed extension by a local linear regression model based
on a window size of nyeng € {10,20,50,200} recent class means and without
our extension, respectively.

e e A=03
o o
j j
il il
210 i 210
o o o o
a a
j j
I I
£° £°
1000 2000 3000 4000 0 1000 2({00 3000 4000
e =0 I A=0.7
o o~
c c
il il
S0 2w
L O L O
a i ras
c c
It It
g° g°
1000 2000 3000 4000 0 1000 2({00 3000 4000
2 A=0.9
o -
c
o
210
o o
E- /
j
<
g o
0 1000 2({00 3000 4000
no extension with regression model— nyeq = 10 Nirend = 20 ——  Nyeng = 50 ——  Nyeng = 200

Figure 4: Exemplary mean prediction errors for fixed learning rates A € {0.1, 0.3, 0.5, 0.7, 0.9} with
the extension by a local linear regression model based on an interval of ngeng € {10, 20, 50,200}
recent class means and without our extension for the simulated “circular” data (see Figure 3 (a)).

For this data situation the method for online LDA can be drastically improved
concerning the forecasting quality by extending it with a local linear regression
model to estimate the concept drift. For example, we see the proposed extension
can improve the mean prediction error by a factor of about 4-5 for 4 = 0.5
(cp. Table 1). Without the extension the mean prediction error rises to a value
of about 0.9 over time (green curve in Figure 4) in some cases. It declines
to almost the value from the beginning for some A after 360 points or rather
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oscillates because the distribution of features has fully rotated once on the
circle, leading to the same distribution as the one in the beginning. Furthermore,
the results strongly depend on the choice of 1. The oscillation declines with
rising value of A. Still, the decrease of the mean prediction error is much
lower. The minimal mean prediction error is not less than 0.35 for 4 = 0.9.
In addition, note that the optimal setting of A is typically unknown for new
applications. With the introduction of a local linear regression model these
problems can partly be solved. The prediction error settles at a level of around
0.1 or even a little less with small standard deviation, where both mean and
standard deviation are almost independent of A. In this case the results are more
dependent only on the choice of nyeng. Until a certain value an increasing value
of nyend (higher smoothing) leads to a lower mean prediction error for all A.
Hence, a too high value of nyeng degrades the results concerning the forecasting
quality (see Table 1) in this case. This result is due to a non-linear trend of the
expected values and hence opposition to the assumptions of the model. Still,
we see that the trend can be approximated by a local linear trend leading to an
improvement compared to the method without extension (here for ngenq < 50;
cp. Table 1 and Figure 4).

All in all, although the assumption of a linear trend of the expected values
is not fulfilled in this data situation the approximation by a local linear trend is
sufficient to drastically improve the results.

4.2 “Crossing” data (b)

In the case of “crossing” data (cp. Figure 3 (b)) the assumption of a time-
dependent linear trend of the expected values of the classes in Equation (6) is
fulfilled. The two-dimensional distributions change over time as the expected
values smoothly shift along a hyperplane (here straight line). The speed is
identical for both classes and the hyperplanes intersect at time ¢ = 2001, the
expectation of both classes being

10
Ha001 = (10) (15)

so that the distributions fully overlap, before moving apart again. In detail the
expected values follow the following linear trend:
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a _ (—0.005) N (0.005) i i=1,....4000,

i —0.005 0.005

20.005 0.005 (16)
@ _ (20. -0. P
= (_0‘005) + ( 0.005 ) i, i=1,...,4000.

The results for 2 € {0.1,0.3,0.5,0.7,0.9} and nyeng € {10,20,50,200} are
summarized in Table 2 and visualized in Figure 5.

Table 2: Results of simulation study for “crossing” data. Means and standard deviations (in parenthe-
ses) of mean prediction errors over time (curves in Figure 5; first row resp.) and means of standard
deviations of prediction errors over time (second row resp.).

base model (Section 2.1) extension with

A no extension Airend = 10 Airend = 20 Mirend = 50 Nrend = 200

0.1  0.5015 (0.455) 0.0756 (0.133)  0.0628 (0.126) 0.0596 (0.121) 0.0579 (0.118)
0.0136 0.0506 0.0144 0.0123 0.0116

0.3 0.5008 (0.458) 0.0749 (0.134) 0.0630 (0.127) 0.0598 (0.122) 0.0582 (0.119)
0.0117 0.0467 0.0143 0.0123 0.0117

0.5 0.4965 (0.454) 0.0723 (0.135) 0.0629 (0.127) 0.0598 (0.122) 0.0582 (0.119)
0.0160 0.0318 0.0142 0.0123 0.0117

0.7 0.2136 (0.349) 0.0703 (0.135) 0.0627 (0.126) 0.0596 (0.122) 0.0579 (0.119)
0.0182 0.0222 0.0142 0.0123 0.0117

0.9 0.0736 (0.163) 0.0692 (0.134) 0.0629 (0.126) 0.0597 (0.122) 0.0580 (0.119)

0.0133

0.0199

0.0144

0.0124

0.0117

In this situation the prediction error rises to a value of about one over time for
the online LDA without extension for different learning rates (green curves).
Extending the method with a local linear regression model to estimate the
concept drift leads to a huge reduction of the maximal prediction error over
time. The error does not exceed the Bayes error of 0.5 at ¢t = 2001, when both
distributions fully overlap. After r = 2001, the mean prediction error decreases
to a value close to zero over time for all values of A and nyeng contrary to
the advanced online LDA without extension. For a lower value of ngeng the
prediction error decreases for higher learning rates. For higher values of ngeng
(higher smoothing) the value of A does not strongly affect the results anymore.
Comparing the results for varying magnitudes of smoothing the mean prediction
error as well as the standard deviations of prediction error decrease for increasing
Nirend for all learning rates A (cp. Table 2). However, the mean prediction errors
differ just slightly which is evident from the fact that the curves for the extension
in Figure 5 strongly resemble each other for all A and nepg.
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Figure 5: Exemplary mean prediction errors for fixed learning rates A € {0.1, 0.3, 0.5, 0.7, 0.9} with
the extension by a local linear regression model based on an interval of ngeng € {10, 20, 50,200}
recent class means and without our extension for the simulated “crossing” data (see Figure 3 (b)).

4.3 “Passing” data (c)

In the case of “passing” data (see Figure 3 (c)) the two expected values smoothly
shift along two parallel hyperplanes (here straight lines) in opposite directions:

M _

-0.005
@ _

—-0.005 N 0.005
0.005

23 _ (~0.005
i 17) 7 1-0.005

)-i, i=1,...,4000,
)
)-i, i=1,...,4000.

In this case the advanced online LDA by Kuncheva and Plumpton (2008) works
well for large learning rates, especially 4 = 0.9 (see Figure 6).
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Table 3: Results of simulation study for “passing” data. Means and standard deviations (in parentheses)
of mean prediction errors over time (curves in Figure 6; first row resp.) and means of standard deviations

of prediction errors over time (second row resp.).

base model (Section 2.1)

extension with

A no extension Nyrend = 10 Nrend = 20 Nyrend = 50 Nyrend = 200
0.1 0.3467 (0.361) 0.0202 (0.028) 0.0147 (0.023) 0.0137 (0.022) 0.0133 (0.021)
0.0640 0.0239 0.0086 0.0077 0.0075
0.3  0.1206 (0.118) 0.0229 (0.028) 0.0192 (0.025) 0.0179 (0.023) 0.0173 (0.023)
0.0247 0.0155 0.0106 0.0096 0.0093
0.5 0.0640 (0.060) 0.0222 (0.028) 0.0189 (0.025) 0.0176 (0.023) 0.0170 (0.023)
0.0184 0.0143 0.0104 0.0095 0.0091
0.7 0.0316 (0.039) 0.0174 (0.026) 0.0149 (0.023) 0.0139 (0.022) 0.0134 (0.022)
0.0125 0.0112 0.0082 0.0074 0.0071
0.9 0.0114 (0.024) 0.0115 (0.023) 0.0097 (0.020) 0.0089 (0.019) 0.0085 (0.018)
0.0054 0.0070 0.0052 0.0047 0.0045
e A=0.1 e A=03
o — A o — A
5 ] 3
547 547
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g s
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Figure 6: Exemplary mean prediction errors for fixed learning rates 4 € {0.1, 0.3, 0.5, 0.7, 0.9} with
the extension by a local linear regression model based on an interval of ngeng € {10, 20, 50,200}
recent class means and without our extension for the simulated “passing” data (see Figure 3 (c)).
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However, the extension of the method for online LDA with a local linear
regression model produces low mean prediction errors for all values of A (cp.
Table 3). More precisely, a higher smoothing (large 7neng) leads to lower mean
prediction errors over time (cp. first rows in Table 3: decreasing means of mean
prediction errors with decreasing standard deviations of mean prediction errors)
with lower standard deviation (cp. second rows in Table 3: means of standard
deviations of prediction errors over time) for all learning rates A.

All in all the error rates just slightly vary for different values of A and ngeng
in this data situation. The curves (except the green ones) are very similar for
all parameters. As a result, finding a good value for the learning rate is no
longer crucial when the extension is applied, because the result in form of the
prediction error does not that much depend on the learning rate A anymore.

4.4 Sudden drift (d)

The data for the situation of a sudden drift is simulated analogous to the idea
of drifting expectations on a circle (cp. “circular” data (a) in Section 4.1) with a
difference in frequency and magnitude of drift. Contrary to the “circular” data we
only focus on three changes of the underlying distribution at # = 1000, 2000, 3000
leading to four different concepts for the data stream. At these times the
expectations not only shift one degree, but 180, 90, and at last once again 180
degrees (see Figure 3 (d)). Note that a shift of 180 degrees of both classes
represents a change of class affiliation, because the expectations are interchanged.

The results in form of mean and standard deviation of the mean prediction
errors over time as well as mean of standard deviations of prediction errors over
time are summarized in Table 4. The mean prediction error over time for all
parameters A € {0.1,0.3,0.5,0.7,0.9} and nyeng € {10,20,50,200} is visualized
in Figure 7.

Our proposed general extension for online discriminant analysis method for
data streams with concept drift has not been constructed for situations with
a sudden concept drift or structural break. Yet, we can see that the method
performs quite well when including the extension of a local linear regression
model to estimate the “trend”. It is not necessary to “detect” the sudden drift
as the extended method is able to very quickly adapt to such situations. The
results in Table 4 indicate that the mean prediction error can be reduced by
estimating the underlying “trend” of the expectations.
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Table 4: Results of simulation study for sudden drift. Means and standard deviations (in parentheses)
of mean prediction errors over time (curves in Figure 7; first row resp.) and means of standard
deviations of prediction errors over time (second row resp.).

extension with

base model (Section 2.1)

A no extension Nyrend = 10 Nrend = 20 Airend = 50 Nyrend = 200
0.1 0.5037 (0.291) 0.1118 (0.036) 0.0964 (0.055) 0.0972 (0.090) 0.1311 (0.181)
0.0808 0.0533 0.0332 0.0308 0.0327
0.3 0.5009 (0.334) 0.1113 (0.037) 0.0953 (0.054) 0.0950 (0.090) 0.1263 (0.180)
0.0445 0.0504 0.0329 0.0297 0.0302
0.5 0.4896 (0.405) 0.1148 (0.039) 0.0973 (0.054) 0.0956 (0.089) 0.1251 (0.178)
0.0417 0.0516 0.0343 0.0301 0.0301
0.7 0.3134(0.314) 0.1200 (0.037) 0.1002 (0.054) 0.0973 (0.088) 0.1244 (0.173)
0.0385 0.0549 0.0356 0.0304 0.0301
0.9 0.1581 (0.217) 0.1209 (0.037) 0.1017 (0.053) 0.0982 (0.085) 0.1187 (0.156)
0.0326 0.0556 0.0362 0.0308 0.0303
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Figure 7: Exemplary mean prediction errors for fixed learning rates A € {0.1, 0.3, 0.5, 0.7, 0.9} with
the extension by a local linear regression model based on an interval of ngeng € {10, 20, 50,200}
recent class means and without our extension for the simulated data with sudden concept drift (see
Figure 3 (d)).
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Focusing on the green curves in Figure 7 it becomes clear that for most learning
rates A the method for online LDA is not able to adapt quickly to the new
distribution following the sudden concept drift. The mean prediction error
increases abruptly after the change of concept and decreases slowly afterwards.
Only for a large learning rate of 4 = 0.9 this effect is reduced.

By including the estimation of the trend of the expectations the situation can
be improved. The adaption to the new distribution can be strongly accelerated.
The prediction error jumps to a higher level when the distribution changes but
then declines very quickly again for all learning rates A. A higher smoothing
through a higher value of nyenq (bigger interval) is only improving the results
up to a certain point because the assumption of a linear trend is not fulfilled.
Yet, up to an interval of nyenqg = 50 observations the mean prediction error can
be improved by a factor of 1.5-5.0, depending on the learning rate used in the
method for online LDA (cp. Table 4).

5 Conclusion

We propose a general procedure for extending methods for online linear discrim-
inant analysis (LDA) in order to improve the forecasting quality in situations
where concept drift has to be considered. We try to track and forecast changing
expectations of the distributions of features by a local approximation via a linear
model. The maximum likelihood estimator used for the LDA model is replaced
by the predicted value from the linear model. As an example, we applied this
procedure to the advanced online LDA method with fixed learning rate by
Kuncheva and Plumpton (2008).

Knowing that the space of possible concept drift situations is infinitely huge,
we have chosen a set of very different and difficult situations (sudden and
incremental drift, rotating and straight movement of class expectations, etc.).
The simulation shows that even if assumptions do not hold at all, namely a
violation of our assumption of a linear trend of the expectations, our extension is
still capable of reducing the prediction error drastically. Because we focus on
a local linear regression model, various types of trends can be approximated
by a linear one. Last but not least, finding a good value for the learning rate is
no longer crucial when the extension is applied.
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