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Abstract

Carbon dioxide (CO2) and methane (CH4) are the most important greenhouse gases

(GHGs) in terms of anthropogenic activities. The investigation of GHGs’ sources and sinks

is critical in order to understand climate change and global warming.

The Total Carbon Column Observing Network (TCCON) is a worldwide network for

long-term measurement of trace gases. However, its sparse distribution and considerable

infrastructure requirements hinder the study of GHG sources/sinks, especially at remote

sites and in the context of mobile applications. Recently, a new prototype FTIR spectrometer

(EM27/SUN) with high stability, accuracy and portability was developed at KIT (Karlsruhe

Institute of Technology) in cooperation with Bruker Optics, Ettlingen. Such instruments

are promising complements to the TCCON for observations on regional-scale and short-term

campaigns.

This work presents the application of two EM27/SUN spectrometers in measuring GHG

emissions from wetlands near the Arctic Circle in Sodankylä (Finland), Kiruna (Sweden) and

Fairbanks (Alaska). The Finland campaign was performed in the framework of ESA’s (Eu-

ropean Space Agency) Fiducial Reference Measurements for Ground-Based Infrared Green-

house Gas Observations (FRM4GHG) project which aimed at the intercomparison of different

compact low-resolution instruments with respect to TCCON measurements.

To minimize the errors and biases in the retrievals, different optimization strategies are

discussed using one day of measurements as an example. Instrumental line shape (ILS) is

an important characteristic for assessing the instrumental performance and stability, and the

modulation efficiency is the main factor influencing the retrievals. In addition, pressure and

temperature show certain impact on the retrievals, so as the a-priori VMR (volume mixing

ratio) profiles.

To ensure high accuracy of retrievals from the EM27/SUN observations, the results are

compared to the co-located TCCON observations at the Finnish Meteorological Institute

(FMI) in Sodankylä. The overall biases compared to the reference TCCON results are

approximately (0.28± 0.64) ppm in XCO2, (1.99± 5.76) ppb in XCH4 and (1.72± 2.48) ppb

in case of XCO over the year. The a-priori VMR profiles have a significant impact on the

retrieval results, especially in XCH4 during spring. The biases for CH4 profiles were larger

in spring when comparing the modeled daily-variable profiles (MAP) used in TCCON to

the realistic profiles measured by the AirCore soundings. This difference is mainly due to

the influence of the polar vortex which consequently results in the difference in the retrieved

column abundances. In addition, the application of measured ILS parameters helps to reduce



the relative bias by approximately 0.33 % and 0.30 % in XCO2 and XCO, respectively, while

it increases the bias in XCH4 by 0.17 %.

The gradient studies for GHGs surface flux estimates were performed between Kiruna and

Sodankylä in 2017, and in the Fairbanks region in Alaska in 2016 by using two EM27/SUN

instruments located at two sites. The area between Kiruna and Sodankylä is likely to be

a GHG sink, absorbing CO2 on the order of 1018 molec.m−2 s−1 and CH4 on the order of

1017 molec.m−2 s−1. The wetland between Nenana and Anderson in Fairbanks tends to be a

CH4 source with an emission rate on the order of 1017 molec.m−2 s−1.

This work demonstrates that the EM27/SUN FTIR spectrometer is accurate and stable

enough to observe the dedicated sources/sinks on regional scales and to validate satellite

data, e.g., the recently launched Sentinel-5P satellite.



Zusammenfassung

Kohlendioxid (CO2) und Methan (CH4) sind die wichtigsten anthropogenen Treibhaus-

gase (GHGs). Die Untersuchung der Quellen und Senken von GHGs ist wichtig, um den

Klimawandel und die globale Erwärmung zu verstehen.

Das Total Carbon Column Observing Network (TCCON) ist ein weltweites Netzwerk

zur Messung von langlebigen Spurengasen. Ihre spärliche Verteilung behindert jedoch das

Studium der Quellen/Senken von GHGs, insbesondere an abgelegenen Standorten und im

Zusammenhang mit mobilen Anwendungen. Kürzlich wurde am KIT (Karlsruher Institut für

Technologie) in Zusammenarbeit mit Bruker Optics, Ettlingen, ein neuer portabler Prototyp

eines FTIR Spektrometers (EM27/SUN) für die Messung von GHGs mit hoher Stabilität

und Genauigkeit und entwickelt. Solche Instrumente sind vielversprechende Ergänzungen des

bestehenden Netzwerkes TCCON, insbesondere für regionale und kurzfristige Kampagnen.

Diese Arbeit präsentiert die Anwendung von EM27/SUN-Spektrometern zur Messung der

Treibhausgasemissionen aus Feuchtgebieten in der Nähe des Polarkreises in Sodankylä (Finn-

land), Kiruna (Schweden) und Fairbanks (Alaska). Die Kampagne in Finnland wurde im

Rahmen des “Fiducial Reference Measurements for Ground-Based Infrared Greenhouse Gas

Observations (FRM4GHG)” Projektes der ESA (European Space Agency) durchgeführt, bei

dem verschiedene kompakte FTIR Instrumente mit niedriger Auflösung verglichen werden.

Um die Fehler und den Bias des Retrievals zu minimieren, werden verschiedene Opti-

mierungsstrategien am Beispiel eines Messetages diskutiert. Die instrumentelle Linienform

(ILS) ist ein wichtiges Merkmal zur Beurteilung der instrumentellen Leistung. Zusätzlich be-

einflussen der Bodendruck und das atmosphärische Temperaturprofil die abgeleiteten Spuren-

gaskonzentrationen.

Um die hohe Genauigkeit der EM27/SUN-Spektrometer sicherzustellen, werden die Ergeb-

nisse mit den in-situ und TCCON Beobachtungen am Finnischen Meteorologischen Institut

(FMI) verglichen. Der Bias bezüglich der TCCON Ergebnisse beträgt ungefähr (0,28± 0,64)

ppm für XCO2, (1,99± 5,76) ppb für XCH4 und (1,72± 2,48) ppb für XCO über das Jahr.

Die Wahl der a-priori VMR (Volumenmischungsverhältnis) Profile spielen bei den Retrievals

ebenfalls eine wichtige Rolle, insbesondere bei XCH4 im Frühjahr. Für die Abweichun-

gen gegenüber der TCCON-Referenz ergaben sich im Frühling größere Werte, wenn in der

Auswertung anstelle der von TCCON verwendeten aus klimatologischen Schätzungen abgelei-

teten täglich variablen Profile (MAP) die aktuellen mit AirCore Systemen gemessenen Profile

verwendet wurden. Dieser Unterschied ist hauptsächlich auf den in der TCCON-Auswertung

nicht berücksichtigten Einfluss des Polarwirbels auf die Spurengasprofile zurückzuführen.



Zusätzlich reduziert die Anwendung von gemessenen ILS Parametern die Abweichung in

XCO2 und XCO um etwa 0,33 % und 0,30 %, während sie die Abweichung in XCH4 um

0,17 % leicht erhöht.

Die Gradientenstudie zur Ableitung von Treibhausgasemissionen wurde zwischen Kiruna

und Sodankylä und in der Region Fairbanks in Alaska durchgeführt. Das Gebiet zwischen

Kiruna und Sodankylä ist wahrscheinlich eine Senke für CO2 und CH4 in der Größenordnung

von 1018 bzw. 1017 molec.m−2 s−1. Während die Regionen in Fairbanks eine komplexere

Struktur aufweisen, ist das Feuchtgebiet zwischen Nenana und Anderson wahrscheinlich eine

Quelle für CH4 mit einer Emission in der Größenordnung von 1017 molec.m−2 s−1.

Die in dieser Arbeit erzielten Ergebnisse weisen darauf hin, dass mit dem EM27/SUN

FTIR Spektrometer gewonnene Messungen genau genug sind, um Quellen und Senken von

GHGs auf regionaler Ebene zu quantifizieren und weltraumgestützte Sensoren für die Mess-

ung von GHGs zu validieren, z.B. den kürzlich gestarteten Satelliten Sentinel-5P der ESA.
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Introduction

Greenhouse gases (GHGs) trap heat in the atmosphere which thereby warms the at-

mosphere, so called the greenhouse effect. The main GHGs are water vapor (H2O), carbon

dioxide (CO2), methane (CH4), nitrous oxide (N2O) and ozone (O3). Among the GHGs, CO2

is the most common gas emitted by anthropogenic activities and has the greatest impact on

global warming. The atmospheric CO2 levels increased from 280 ppm (parts per million) in

the pre-industrial period in the later 1700s [Joos and Spahni, 2008] to over 400 ppm nowadays

recorded at Mauna Loa Observatory1, corresponding to an approximate increase of 40 %. CH4

is a far more active greenhouse gas with 25 times higher global warming potential (GWP)

than CO2 over 100 years. Moreover, the globally averaged CH4 shows a stronger relative

growth. It has increased by a factor of 2.5 from an annual average of 720 ppb (parts per bil-

lion) to approximately 1800 ppb within the same period [Dlugokencky et al., 2011; Etheridge

et al., 1998]. The pronounced increase in GHGs largely contributes to the greenhouse effect

caused by human activities and has led to the rise of the global mean temperatures by about

1 ◦C [Hansen et al., 2010].

The importance of reducing GHGs emissions has been considered by different interna-

tional parties and organizations. Nearly 200 countries have signed the 1997 Kyoto Protocol

with the objective to reduce the global warming by decreasing the atmospheric concentrations

of GHGs2. Later, the Paris Agreement3 was adopted in 2015 and 196 state parties agreed

on the central aim to hold the increase in the global average temperature in this century

to less than 2 ◦C above pre-industrial levels and to attempt to limit the increase to 1.5 ◦C4.

A special report has been published by the Intergovernmental Panel on Climate Change

(IPCC) in October, 2018 as part of the decision to adopt the Paris Agreement (SR155). The

report focuses on the effects of global warming if the temperature would increase by 1.5 ◦C

over pre-industrial levels. Additionally, global GHG emission pathways are discussed in the

report.

Different measurement programs are implemented for observing atmospheric trace gases

to improve the scientific understanding of the change in climate connected with the increasing

GHGs and to support environmental treaty programs. Generally, three methods are used to

monitor trace gas concentrations and long-term trends in the atmosphere. In-situ measure-

1https://www.esrl.noaa.gov/gmd/obop/mlo/
2https://unfccc.int/process/the-kyoto-protocol
3http://unfccc.int/paris_agreement/items/9485.php
4http://www.documentcloud.org/documents/2647638-ParisAgreemen-tOnClimateChange2015.html#

document/p22
5http://www.ipcc.ch/report/sr15/

https://www.esrl.noaa.gov/gmd/obop/mlo/
https://unfccc.int/process/the-kyoto-protocol
http://unfccc.int/paris_agreement/items/9485.php
http://www.documentcloud.org/documents/2647638-ParisAgreemen-tOnClimateChange2015.html#document/p22
http://www.documentcloud.org/documents/2647638-ParisAgreemen-tOnClimateChange2015.html#document/p22
http://www.ipcc.ch/report/sr15/


ments mostly aim at surface observations and characterize individual sources and sinks of

GHGs, e.g., from plants and cattle and on a local scale. However, the variable exchange be-

tween the planetary boundary layer and the free troposphere introduces errors in simulating

vertical mixing ratios in transport models [Gurney et al., 2004; Yang et al., 2007]. The second

method, based on satellite measurements provides coverage on a global scale but is limited

by its precision and temporal resolution. Its high efficiency in collecting data is accompanied

with additional uncertainties because accumulated data do not always reflect accurately local

sources and sinks [Nicholls et al., 2015]. The third method is the ground-based remote sens-

ing technique, detecting the total column abundances of atmospheric gases at the observer

position. Based on this technique a worldwide network named as the Total Carbon Column

Observing Network (TCCON) has been developed. It aims at providing accurate and pre-

cise measurements of total columns of GHGs for understanding the global carbon cycle and

for validation of satellite observations [Oshchepkov et al., 2013; Wunch et al., 2011]. How-

ever, gaps in global coverage exist, especially in remote regions because this network uses

logistically demanding high-resolution laboratory Fourier-Transform Infrared (FTIR) spec-

trometers. Additionally, the costs for new stations limit further expansion of the network.

Infrastructure, internet, dedicated power, etc. are required and at least one trained person is

needed for operation and maintenance on site. In addition, relocation of a TCCON station,

often built into 2500 kg shipping containers, is a major effort, requiring heavy equipment

such as cranes and semi-trailer trucks.

Therefore, these disadvantages limit the study of local- to regional-scale sources and sinks

of GHGs in interesting regions. A portable spectrometer offering high stability, precision,

robustness, portability and easy operability is desirable. Recently, a ground-based solar ab-

sorption FTIR spectrometer was developed at Karlsruhe Institute of Technology (KIT) [Gisi

et al., 2012; Hase et al., 2016], which offers the aforementioned advantages. The EM27/SUN

spectrometer has been available from Bruker as a commercial item since 2014. EM27/SUN

instruments have been operated in various field campaigns and allow characterization of local

sources and sinks, such as GHGs emission from metropolitan regions or from volcano plumes,

and are capable of detecting sub percent enhancement over the background concentration

[Butz et al., 2017; Frey et al., 2015; Klappenbach et al., 2015]. In addition, this promising

instrument has the potential to complement the TCCON network, especially at remote sites,

and to intercompare GHGs retrievals among different TCCON sites [Hedelius et al., 2017].

This thesis aims at performing highly accurate ground-based remote sensing measure-

ments of GHGs and at estimating the emission from boreal wetland with two mobile EM27/SUN

spectrometers. This work is organized in 6 chapters. The instruments used in this thesis are

introduced in Chapter 2, including the general introduction of the TCCON network, the two

high resolution Bruker FTIR 125HR spectrometers at Karlsruhe and Sodankylä sites and the

low resolution EM27/SUN instruments. Additionally, the important instrumental character-

istics (instrumental line shape) of the EM27/SUN spectrometer are described. Two different



retrieval algorithms—GGG2014 [Wunch et al., 2015] and PROFFIT V9.6 [Hase et al., 2004]

used for retrieving column abundances from spectra or rather interferograms measured with

high and low resolution instruments are introduced subsequently.

In Chapter 3 a more detailed description of the optimization of the retrievals is provided.

Several possible error sources in the retrieval procedure within the PROFFIT software are

analyzed and the resulting level of uncertainty is quantified. An optimized retrieval strat-

egy for column-average dry-air mole fraction of trace gases in the atmosphere is applied to

minimize the errors and to achieve the desired accuracy.

Chapter 4 deals with the ground-based GHG measurements performed at the Sodankylä and

Kiruna stations. First, the complete set of measurements collected with the EM27/SUN in-

strument in Sodankylä, 2017 with and without optimized approaches are analyzed. The

optimized retrievals are compared to the in-situ observations at the Finnish Meteorological

Institute (FMI), Sodankylä. Furthermore, a more detailed comparison with the TCCON

high-resolution and 125HR low-resolution results used as reference is presented respectively.

Finally, the gradients observations between Kiruna and Sodankylä are discussed. Emission

rates from the area are estimated afterwards.

Results from the Alaska campaign performed in 2016 are discussed in Chapter 5. Two

EM27/SUN instruments from KIT and LANL (Los Alamos National Laboratory) were used

to study the emissions of XCO2 and XCH4 from the boreal wetland near Fairbanks. In

Chapter 6 the summary of the work and an outlook on further research topics are given.
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Chapter 1

Theoretical Background

1.1 The Earth’s atmosphere

This section summarizes the relevant properties and processes of the Earth’s atmosphere.

First the composition and vertical structure are described. After that the carbon cycle and

its changes due to anthropogenic activities are outlined, while the last section discusses the

greenhouse effect, including its basic physical principles and important greenhouse gases.

The content of this section is mostly based on Le Quéré et al. [2015], the latest IPCC report

[IPCC, 2013], Archer [2012], Schlager et al. [2012] and Davis et al. [2001].

1.1.1 Composition and structure of the atmosphere

The atmosphere of Earth contains various gases. The dominant constituents are nitrogen

(N2), oxygen (O2) and the inert gas Argon (Ar), assuming dry air. By volume, the fractional

concentration is about 78.09 % for N2, 20.95 % for O2 and 0.93 % for Ar, all of which account

for almost 99.96 % in total. However, these gases have negligible impacts on the climate

system because they interact only weakly with infrared radiation. In addition N2 and O2

absorb in the shortwave ultraviolet region which is less important in the lower atmosphere.

Conversely, the so-called trace gases like carbon dioxide (CO2), methane (CH4), nitrous oxide

(N2O) and ozone (O3) play key roles in the Earth’s climate system due to their radiative

forcing impact, even though they only contribute 0.04 % by volume in dry air.

Gaseous water (H2O) is by definition not included in dry air. It is a major greenhouse gas

with highly variable tropospheric concentrations from less than 100 to over 10 thousand ppm,

and is of particular importance for the Earth’s energy balance in the atmosphere [Bengtsson,

2010]. Approximately 90 % of the H2O molecules are concentrated in the lower atmosphere

(troposphere) and the H2O distribution is regulated by Earth’s hydrological cycle. Water

vapor condensates to the liquid or solid phase by forming clouds, rain, snow and other

precipitation. The transitions among these three phases are shaping our climate and weather

and affect the Earth’s energy budget because H2O is an effective GHG and heat is absorbed

5



or released during the phase changes.

The volume mixing ratio of a trace gas can vary dramatically, ranging from a few parts

per trillion (ppt) to several hundred parts per million (ppm). The trace gases emitted to

the atmosphere depend on two possible kinds of sources—natural or anthropogenic. Nat-

ural emissions encompass biogenic processes at the Earth’s surface (e.g. photosynthesis,

wetlands) or release from solid Earth (e.g. volcanoes) and from the oceans (in particular

sulfur-containing gases). In addition to the natural sources, many trace gases are directly

emitted into the atmosphere by human activities. The anthropogenic sources include fossil

fuel mining and combustion (CO, CO2, NOx, SO2), biomass burning (CO, CO2, NOx, SO2),

agriculture (CH4, N2O, NH3), and industrial activity (CO2, CH4, N2O). The residence time

of a trace gas in the atmosphere depends on its concentration and the rate of elimination.

Some trace gases are characterized by high chemical reactivity and ability to influence the

oxidation processes in the atmosphere, resulting in short lifetimes of these molecules.

Two major layers can be distinguished in the Earth’s atmosphere according to the homo-

geneity of atmospheric composition. The lower layer, the homosphere, reaches up to a height

of 100 km, where the atmosphere is well mixed due to the continuous convection. Above the

homosphere lies the heterosphere, where molecular diffusion dominates. The atmospheric

constituents are stratified and vary according to the molecular mass in this upper layer. The

heavier molecules like N2 and O2 are concentrated in the lower heterosphere, while the lighter

gases dominate the higher layers.

Figure 1.1: Schematic depiction of vertical structure of the Earth’s atmosphere.

6



1. THEORETICAL BACKGROUND

Another way to classify the atmosphere is based on the variation of temperature with

height. The atmosphere can be divided to several layers: troposphere, stratosphere, meso-

sphere, thermosphere and exosphere. A schematic depiction of the vertical temperature

structure of the Earth’s atmosphere is presented in Figure 1.1. The lowest layer is the tro-

posphere and it reaches up to 8–9 km in the regions nearest the two poles and up to about

18 km over the equator, resulting in an average value of 12 km. In the troposphere nearly

80 % of the atmospheric mass and essentially all the water vapor and the primary greenhouse

gases are concentrated. This layer is characterized by a decreasing temperature with height

with an average lapse rate of 6.5 K km−1. In this layer, convective exchange and almost all

weather phenomena as well as cloud formation occur here. The stratosphere lies above the

troposphere, extending from about 10–18 km to 50–55 km. In contrast to the troposphere,

the stratosphere is a relatively stable layer, highly stratified and poorly mixed. It contains

approximately 19 % of total mass of the atmosphere and has only traces of water vapor. In

this layer the temperature increases with height due to the ozone layer. O3 molecules strongly

absorb most of the ultraviolet radiation (UV) from the Sun, which in consequence heats the

atmosphere. The stratopause separates the stratosphere from the mesosphere. The meso-

sphere reaches up to 85–100 km above the Earth’s surface. In the mesosphere, temperature

decreases with increasing altitude because the absorption of solar radiation is decreasing.

The thermosphere lies above the top of mesosphere, separated by the mesopause. The tem-

perature in this layer rises rapidly where the molecular constituents (O2 and N2) are easily

ionized by the solar radiance. The thermopause is highly dependent on solar activity. It

can extend to 400 km during the low sun activity and reach around 500 km when the sun

is active. Above approximately 500–1000 km the exosphere is located, which steadily looses

molecules to space and gradually merges into interplanetary space.

1.1.2 The carbon cycle

Carbon is found in various chemical forms and oxidation states. The most stable forms are

the gaseous CO2 and solid CaCO3 on Earth. The carbon cycle describes the exchange of

carbon among the atmosphere, oceans, biosphere and geosphere (see Figure 1.2). A reservoir

releasing a larger amount of carbon than absorbing is called a net carbon source, while a net

carbon sink absorbs more carbon than it emits.

In general, the carbon cycle can be divided into two components depending on the time

scale. The fast carbon cycle is usually related with biological processes, including photosyn-

thesis and respiration. Through the process of photosynthesis, algea and terrestrial green

plants convert the atmospheric CO2 to a higher-energy reduced form (carbohydrates) by us-

ing solar energy (forward direction of reaction (1.1)). The reverse process of photosynthesis

is called respiration which uses these carbohydrates in metabolism by plants and animals

7



Figure 1.2: Simplified schematic depiction of the global carbon cycle. Numbers denote
reservoir mass in PgC (1 PgC = 1015 gC) and annual carbon exchange fluxes in PgC/year.
Image taken from IPCC [2013].

and in turn releases CO2 back to the atmosphere (backward direction of reaction (1.1)).

6CO2 + 6H2O + energy 
 C6H12O6 + 6O2 (1.1)

In addition, photosynthesis and respiration largely influence the annual and intraday fluc-

tuation of CO2 concentrations in the atmosphere. When plants are in the growing season,

photosynthesis outweights respiration, absorbing more CO2 from the atmosphere than they

release. This leads to decreasing atmospheric CO2 concentrations. When respiration domi-

nates, more CO2 is released to the atmosphere, resulting in increasing CO2 levels.

The atmospheric CO2 is only the tiniest reservoir of carbon in the terrestrial system.

Carbon is also stored for long periods of time at the land surface, in the oceans, in sedimentary

rocks, and in the Earth’s interior. Carbon exchange among these reservoirs usually takes

millions of years, much longer than the fast carbon cycle. This slow carbon cycle is also

known as geological carbon cycle. The movement of carbon from the atmosphere to the

lithosphere (rocks) starts with rain, where atmospheric CO2 is dissolved in water and reacts

8



1. THEORETICAL BACKGROUND

with water molecules to form carbonic acid (H2CO3):

CO2 + H2O 
 H2CO3 
 HCO−1
3 + H+ 
 CO2−

3 + 2H+ (1.2)

Via chemical weathering, H2CO3 reacts with minerals at the Earth’s surface and slowly dis-

solves them into their component ions. These component ions are carried by rivers eventually

to the ocean, where the dissolved carbonate (CO2−
3 ) combines with Ca2+ ions to build cal-

cium carbonate (CaCO3). CaCO3 is a key component to form the shell building of marine

organisms. When the organisms die, a part of CaCO3 from their remains sink and eventually

deposit at the ocean floor as sediments. On geological time scales, the ocean sediments are

converted into rocks called limestone. CO2 is released back into the atmosphere through

volcanoes. The Earth’s land and the whole sea floor are located above moving crustal plates.

If the tectonic plates collide, one moves under another (called subduction), and the sinking

plate is pushed deeper into the Earth. The rocks melt under the extreme heat and pressure,

and release CO2 mostly via volcanic eruption back into the atmosphere.

In addition, the slow carbon cycle has a slightly faster component—the ocean which is a

larger reservoir than the land surface or the atmosphere. CO2 is slowly exchanged between

the ocean and atmosphere through dissolution and evaporation at the ocean surface. The

ocean’s carbon exists in the forms of CO2, H2CO3, HCO−1
3 , CO−2

3 , all of which are called

dissolved inorganic compounds.

1.1.3 The greenhouse effect

The greenhouse effect describes a natural or man-made process that warms the Earth’s surface

and lower atmosphere. When the solar radiation strikes the Earth’s atmosphere, about 30 %

of the radiation is reflected back to space by clouds and by the Earth’s surface. Most of the

remaining radiation is absorbed in terms of shortwave radiation and re-emitted as longwave

radiation by the atmosphere. The solar power flux density at the top of the atmosphere is

about 1372 W m−2 and is called the solar constant S. Therefore, the Earth receives an influx

of solar energy for its cross section given as:

P = πR2
ES = 175 PW (1.3)

where RE = 6378 km is the Earth’s radius. When the infrared light leaves the warm Earth,

it emitted by the whole surface area of the Earth (4πR2
E). In equilibrium between shortwave

intake and outgoing infrared radiation (IR), the averaged radiant power for the whole surface

needs to be:

p =
P

4πR2
E

=
S

4
= 343 W m−2 (1.4)
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The Earth’s surface absorbs the radiation and re-emits the radiation as a black body in order

to keep thermal balance. The emission spectrum can be described by Planck’s law:

Bλ(T, λ) =
2hc2λ−5

exp( hc
λkBT

)− 1
(1.5)

here kB is the Boltzmann constant, h is the Planck’s constant, and c is the speed of light. λ

represents the wavelength of the spectral radiance. When integrating the black body spectral

flux over all wavelengths, the total power emitted per unit area at the surface of a black body

can be determined using the Stefan-Boltzmann law:

I = εσT 4 (1.6)

where ε is the emissivity, a value between 0 and 1, describing how efficient the emitting

surface is. It equals to 1 for a perfect black body. σ is the Stefan-Boltzmann’s constant

(σ = 5.67× 10−8 W m−2 K−4) and T is the temperature in Kelvin. In thermal balance, the

energy fluxes in and out are equal to each other. When no atmosphere exists and therefore,

no radiation interacts between the Earth and the atmosphere, the radiation balance can be

defined as:

εearthσT
4
earth = (1− α)

S

4
(1.7)

the α represents the Earth’s albedo, which is approximately 30 % on average. Assuming

the Earth’s emissivity εearth = 0.95, it yields a surface temperature of Tearth = 258 K in

the absence of an atmosphere (one-layer system, see Figure 1.3, left panel). However, an

approximately 30 K difference exists between the theoretical earth-surface temperature and

the real measured mean value of 288 K [Hansen et al., 2010]. This discrepancy is caused

by the interaction of longwave radiation with the Earth’s atmosphere, called greenhouse

effect. Some minor trace gases (e.g. GHGs) in the atmosphere are transparent for visible

light. However, they are strongly absorbing in the thermal IR spectral range, and they

re-emit longwave radiation in all directions, resulting in an increase of the Earth’s surface

temperature. The main GHGs are CO2, CH4, N2O and H2O.

The existence of the atmosphere containing GHGs is essential for the Earth’s radiation

budget and makes the Earth habitable. For estimating the greenhouse effect, an additional

atmosphere layer is added to the previous one-layer model. The new two-layer system consists

of the Earth’s surface and an atmospheric layer (see Figure 1.3, right panel). The radiative

budget of this simple system can be defined as:

εearthσT
4
earth = (1− α)

S

4
+ εatmσT

4
atm (1.8)

εearthσT
4
earth = (1− αatm)εearthσT

4
earth + 2εatmσT

4
atm (1.9)

10



1. THEORETICAL BACKGROUND

The Equation (1.8) is based on the radiative balance at the Earth’s surface, and Equation

(1.9) represents the atmospheric radiative balance. The subscript ‘atm’ denotes the atmo-

sphere. Assuming εatm = 0.75 leads to a surface temperature Tearth of 287 K which is in good

agreement with the aforementioned actually measured Earth’s surface temperature.

Figure 1.3: Schematic depiction of the simplified model of the Earth’s radiation budget.
Left panel: one-layer system without the Earth’s atmosphere; right panel: two-layer system
including the atmosphere as an absorbing and re-emitting medium.

The strength of the Earth’s greenhouse effect is determined by the GHGs concentrations

in the atmosphere. Besides the natural greenhouse effect, human activities have caused a

pronounced rise in the concentrations of GHGs in the atmosphere since the start of the

industrial revolution in the mid-eighteenth century. The main sources of GHGs due to the

anthropogenic activities include burning of fossil fuels (principally coal, oil and natural gas),

deforestation, land use change and agriculture (e.g. rice paddles and livestock).

The Intergovernmental Panel on Climate Change (IPCC) is an intergovernmental body

established by the United Nations Environmental Programme (UNEP) and the World Mete-

orological Organization (WMO) in 1988. It provides assessments of scientific and technical

results on climate change that is induced by human-related activities. IPCC uses the con-

cept of radiative forcing (RF) to provide a measure for how various factors contribute to the

greenhouse effect. RF describes the net change in the energy balance of the Earth system

influenced by a given climatic factor, e.g. a GHG. A positive value represents an increase in

the Earth’s energy balance, resulting in the warming of the Earth’s surface, while a nega-

tive value describes a decrease in the energy balance, resulting in the cooling of the Earth’s

surface. RF is usually presented for the changes relative to the pre-industrial conditions in

1750. Generally, it is expressed in Watts per square meter (Wm−2).

The CO2 RF is (1.82± 1.90) Wm−2 [IPCC, 2013]. Atmospheric CO2 is currently rising

by about 2 ppm/year. Its concentration has increased approximately by 40 %, from 280 ppm

in the middle 1700s to over 400 ppm that has been observed at the Mauna Loa Observatory

in early 2017. This growth is mainly due to the continuously increasing use of fossil fuels.
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Other anthropogenic activities, e.g. deforestation, industrial processes and biomass burning

also emit CO2 to the atmosphere. CO2 accounts for ∼20 % of the total greenhouse effect

[Schmidt et al., 2010].

Global warming potential (GWP) describes a metric to determine the ability of a GHG

for trapping heat in the atmosphere during a certain period, normalized to CO2 by mass.

CH4 is a far more active greenhouse gas and its GWP is 25 times higher than CO2 over

100 years. Additionally, it shows a stronger growth than carbon dioxide, rising from about

722 ppb (parts per billion) in 1750 to about 1800 ppb by 2011 [IPCC, 2013]. This increase by

approximately 150 % over that time scale is mostly due to human-related activities. Anthro-

pogenic sources (e.g. landfills, agriculture, livestock raising) contribute about 65 % of the

total atmospheric methane emissions. The RF assigned to the excess atmospheric methane

is (0.48± 0.05) Wm−2 [IPCC, 2013].

CO is not a direct GHG. However, it influences the global warming indirectly due to its

reaction with hydroxyl (OH) radicals in the atmosphere, because OH radicals help to reduce

the lifetimes of some GHGs. Natural sources of CO include emissions from vegetation and

oceans. In addition, considerable amounts of CO are due to the oxidation of CH4 and other

hydrocarbons [Daniel and Solomon, 1998].

1.2 IR absorption spectroscopy

In the following section, the interaction of molecules with infrared electromagnetic radiation

is described. Atoms or molecules absorb, emit or scatter electromagnetic radiation and in

consequence, their electronic, vibrational, rotational and translational states are changed.

Concerning the atmosphere, its major constituents O2 and N2 are essentially transparent

in the infrared spectral range, and hence are called infrared inactive. Other trace gases,

such as CO2, H2O and CH4 are infrared active gases, because they can effectively absorb

infrared light. A molecule is an efficient absorber if the molecular dipole moment is changing

during transition. For convenience, only a short and simplified introduction is given in this

section. First, the formation of IR spectra is discussed for diatomic molecules, followed by

the polyatomic molecules using CO2 as an example.

1.2.1 Diatomic molecules

The vibration of a diatomic molecule can be described as quantum-mechanical oscillation,

consisting of two atoms with masses m1 and m2, and a massless spring connecting the two

atoms. This system is known as harmonic oscillator and can be described as:

E(υ) = (υ +
1

2
)
h

2π
ω, υ = 0, 1, 2, ... with ω = (

kf
µ

)
1
2 (1.10)
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1. THEORETICAL BACKGROUND

here, h denotes the Planck constant, kf the force constant and ω the angular frequency. υ

represents the vibrational quantum number and υ = 0 level is the vibrational ground state.

The effective mass µ is given by:

µ =
m1m2

m1 +m2
(1.11)

The vibrational energy G(υ) can be written in terms of wavenumbers ν̃:

G(υ) =
Eυ
hc

= ν̃(υ +
1

2
) with ν̃ =

ω

2πc
(1.12)

According to the harmonic oscillator selection rule, Δυ = ±1 is required. Δυ = +1

represents absorption of radiation, while Δυ = −1 represents emission. At room temperature

(T ∼300 K), kBT is about one order of magnitude smaller than the energy difference and

almost all molecules stay at the ground state. Therefore, the transitions from υ = 0 to υ =

1 dominate.

However, the harmonic oscillation can only partly describe the diatomic molecular vibra-

tion. For lower energy states the harmonic oscillation can be approximated with a parabolic

function. For internuclear separation r � re, dissociation happens and the real molecular

potential differs from a parabolic shape. Therefore, an anharmonic potential (Morse poten-

tial) is used for the higher energy states, modifying the harmonic potential by an additional

different potential. The Morse potential is a better inter-atomic interaction model for the

diatomic molecular potential energy, because it accounts for the effects of bond breaking,

the anharmonicity of real bonds, and the non-zero transition probability for overtone and

combination bands. A schematic depiction of the harmonic potential together with the Morse

potential is given in Figure 1.4. The energy levels of the anharmonic vibrational terms by

using the Morse potential can be expressed as:

G(υ) = ν̃(υ +
1

2
)− xeν̃(υ +

1

2
)2 with xe =

ν̃

4De
(1.13)

here xe is the anharmonicity constant and De the dissociation energy. The first part is

identified as the energy levels of the harmonic oscillation, while the second part represents

the anharmonic potential. Compared to the harmonic oscillation, the selection rule has to be

modified for the anharmonic vibrational energy levels, i.e. Δυ = ±1, ±2, ±3,... is allowed.

Besides vibration, a molecule also rotates. Only one line is generated due to every sin-

gle vibrational transition. However, a highly resolved spectrum of a molecular gas reveals

patterns of closely-spaced lines (10 cm−1 difference). These lines form a band caused by

rovibrational transitions. For diatomic molecules, a simple system of the rigid rotor is used

to describe the rotational energy levels, assuming that only orthogonal rotations about the

molecular axis occur and the centrifugal force is neglected. The rotational potential in terms
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Figure 1.4: Schematic depiction of the harmonic oscillation (green) and anharmonic os-
cillation (Morse potential, blue). The harmonic potential shows a parabolic shape and
the energy differences are equidistant, whereas the Morse potential has an asymmetric
shape, with non-equidistant energy differences. Meanwhile, higher energy levels in the
Morse potential are lower than the harmonic potential. Image taken from Wikipedia
(https://en.wikipedia.org/wiki/File:Morse-potential.png).

of the rotational quantum number J is given:

F (J) = BJ(J + 1), J = 0, 1, 2... with B =
h

8π2Θ
(1.14)

where B represents the rotational constant. Θ is the moment of inertia and R the bond

length of the molecule. However, the centrifugal force affects the molecules in reality which

results in a change of the inertial moment. Thus, it is necessary to also take it into account.

The inter-nuclear distance expands with increasing rotational frequencies. It leads to a higher

angular momentum, which in turn results in a lower energy value:

F (J) = BJ(J + 1)−DJJ
2(J + 1)2 with DJ =

4B3

ν̃2
(1.15)

DJ is the centrifugal distortion constant. The selection rule ΔJ = ±1 is required for the

rotational transition of diatomic molecules. Transitions for ΔJ = 0 are only allowed for

molecules when their angular momentum is parallel to the symmetry axis. According to

the Born-Oppenheimer approximation, the energy levels of a diatomic molecule consist of

rotational and vibrational energy, called rovibrational energy:

S(υ, J) = G(υ) + F (J) (1.16)
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1. THEORETICAL BACKGROUND

Assuming no anharmonicity and centrifugal forces, S can be expressed as:

S(υ, J) = ν̃(υ +
1

2
) +BJ(J + 1) (1.17)

Energy required for transitions between the rovibrational states is provided by absorbed

or emitted photons. Typically, vibrational transitions need more energy and are about two

orders of magnitude larger than the rotational transitions. An energy level scheme is illus-

trated in Figure 1.5.

Figure 1.5: Schematic depiction of the rovibrational energy level transitions for different
vibrational and rotational quantum numbers—υ, J . Transitions with ΔJ = −1 are called
the P-branch, while ΔJ = +1 transitions build the R-branch. Q-branch denotes the tran-
sitions with the same rotational quantum number (ΔJ = 0) at ground and excited states.
Only vibrational transitions occur when the molecular angular momentums is parallel to the
molecular symmetry axis.

According to the Boltzmann distribution, individual line intensities vary with different J

due to different populations Ni at states i:

NJ

N0
= (2J + 1)exp

(−hν
kBT

)
(1.18)

where kB is the Boltzmann constant and T the absolute temperature. (2J+1) represents the

degeneracy of the rotational states. For a J starting from the middle of the transition band,

the term (2J + 1) dominates and the line strength increases linearly with increasing J . At

15



margins of the band, the line strength decreases with increasing J caused by the dominant

thermal distribution of the molecular states (exp(−hνkBT
)).

1.2.2 Polyatomic molecules

Polyatomic molecules like CO2, have much more complicated energy transitions and hence

much more complicated spectra. To locate a molecule with N atoms, 3N coordinates are

required, as each atom moves in three dimensions. The 3N is also known as the number

of degrees of freedom (DOF) of the system due to translations, vibrations and rotations.

The translational motion describes the position of the center mass for a molecule, and every

molecule has three translational DOF. For rotational motion, a linear molecule has two

angular coordinates, i.e. two rotational DOF, while a nonlinear molecule has three angular

coordinates, i.e. three DOF. Therefore, a linear molecule contains 3N -5 (3N -3-2) normal

vibration DOF, and a nonlinear molecule has 3N -6 (3N -3-3) vibrational DOF.

This thesis mainly deals with the linear molecule CO2, consisting of one carbon atom and

two oxygen atoms and containing 3N -5 = 4 vibrational DOF. These four vibrational normal

modes are presented in Figure 1.6. The symmetric stretching vibration with ν̃1 = 1388 cm−1

is infrared inactive because of an unchanged dipole moment. The asymmetric stretching and

both bending vibrations are infrared active and the corresponding wavenumbers are ν̃1 =

2349 cm−1 and ν̃3 = 667 cm−1, respectively. For the stretching vibrations the ΔJ = 0 is

not allowed because the changing dipole moment is parallel to the molecular axis. However,

ΔJ = 0 can exist in the bending vibrations when CO2 becomes a nonlinear molecule and

its dipole moment change is perpendicular to the molecular axis. A schematic depiction of

the structure of a CO2 band is presented in Figure 1.7 where spectral lines are caused by

combinations of four different vibrational modes.

Figure 1.6: The four vibrational modes of a linear polyatomic molecule, using CO2 as an
example, including symmetric stretching (IR inactive), asymmetric stretching (IR active)
and two bending vibrations (IR active) [Atkins and De Paula, 2006].
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1. THEORETICAL BACKGROUND

Figure 1.7: Atmospheric transmission spectrum of CO2 recorded with the 125HR FTIR
spectrometer in Karlsruhe, including the P and R branches of CO2 with some interferring
water lines.

1.3 Spectral line shapes

Absorption or emission line profiles observed in spectra are not infinitely narrow but have

specific shapes and widths. Various physical mechanisms can lead to the broadening of

spectral lines. According to the uncertainty principle, the lifetime of an excited state is

related with the uncertainty of its energy:

∆E∆t ≈ h

4π
(1.19)

Typically, the spectral line width is limited to the finite lifetime of molecular excited states

and a shorter lifetime has a higher energy uncertainty and a spectrally broader emission.

Broadening due to this effect is called the natural linewidth, producing a spectral line with

Lorentzian shape. In general, a full width at half maximum (FWHM) is on the order of Δν̃

≈ 10−8 cm−1 [Hase, 2000]. However, this broadening can be neglected compared to other

effects (Doppler broadening or pressure broadening) for atmospheric spectra.
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1.3.1 Doppler broadening

The Doppler broadening is also known as thermal broadening. The atoms or molecules are

constantly and randomly in motion with velocities depending on the temperature. The ther-

mal velocity distribution for a gas relative to the observer can be described with a Maxwell-

Boltzmann distribution:

n(υ)

N
dυ =

√
m

2πkBT
exp
(−mv2

2kBT

)
dv (1.20)

here n(υ)
N is the fraction of particles with a thermal speed υ, i.e. a probability density function

of the particle energy distribution. In consequence, Doppler broadened spectral lines have a

Gaussian distribution:

fD(ν̃) =
1

σ
√

2π
exp
(
− 1

2

( ν̃ − ν̃0

σ

)2)
dυ with σ =

√
kBT ν̃2

0

mc2
(1.21)

The FWHM of the Doppler line shape is:

∆ν̃D = ν̃0

√
8kBT ln 2

mc2
(1.22)

Δν̃D increases with higher temperature, higher wavenumber, and lower molecular mass.

Typically, for CO2 the Doppler broadening is Δν̃D ≈ 7× 10−3 cm−1 at 270 K.

1.3.2 Pressure broadening

The pressure broadening is caused by the collision between atoms or molecules, resulting

in shorter lifetime of excited states and broader line shapes. Higher pressure, i.e. higher

molecular number density leads to higher probability of collisions. Therefore, the pressure

broadening effect is stronger at lower atmospheric levels. Similar to the natural lifetime

broadening, the profile of the collision broadening lines follows a Lorentzian distribution:

fP (ν) =
1√
π

∆νP
(ν − ν0)2 + ∆ν2

P

(1.23)

The FWHM depends on the mean time τcoll=
√
mkT

4
√
πd2p

:

∆νP =
1

2πτcollc
∼ p (1.24)

ΔνP show a positive correlation to the pressure p and therefore, the pressure broadening is

the dominating factor contributing to the line shape in the troposphere up to the middle

stratosphere. The Doppler broadening is the dominant effect in the middle stratosphere and

upwards. Assuming p = 1000 hPa, ΔνP reaches approximately 0.01 cm−1.
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1.3.3 The Voigt function

In order to determine an atmospheric spectral line shape, both Doppler and pressure broad-

ening are needed. The resulting shape of the observed spectral line profile can be expressed

as the Voigt profile, the convolution of a Gaussian with a Lorentzian distribution:

f(ν) =

∫ ∞
−∞

fP (ν̃)fD(ν − ν̃)dν̃ (1.25)

The above equation is analytically unsolvable. However, various approximations can be

used to numerically solve the convolution [Liu et al., 2001]. Due to the computational expense

of the convolution operation, the Voigt profile is often handled by assuming a pseudo-Voigt

profile which uses different approximative methods instead of a direct convolution.

1.4 Fourier transform infrared spectroscopy

Fourier transform infrared (FTIR) spectroscopy is an analytic technique, measuring the ab-

sorption or emission of infrared radiation by gaseous, liquid and solid constituents versus

wavelength. It helps to qualitatively and quantitatively identify the chemical bonding and

molecular components and structures. This powerful technique is often used in the remote

sensing of GHGs in the atmosphere for measuring trace gas abundances. In the following

section, the principles of FTIR spectroscopy are introduced, together with the principles and

setup of an FTIR spectrometer. In addition, the mathematical procedure is described for

deriving a spectrum from an interferogram (IFG) recorded with the FTIR spectrometer.

1.4.1 The FTIR spectrometer

Generally, the core component of an FTIR spectrometer is a Michelson interferometer (see

Figure 1.8), including a semi-transparent beam splitter, a fixed mirror and a moving mirror.

Incoming radiation from the external light source is collimated and directed to the beam

splitter, which divides the radiation ideally half to a fixed mirror and the other half to

a moving mirror. The optical path difference (x) between the partial beams is thereby

determined by the position of the moving mirror. Both mirrors reflect the radiation back

through the beam splitter acting as a recombiner. The recombined beam is directed to a

photo diode detector, where the fluctuating intensity is measured as a function of the optical

path difference.

According to the principle of superposition when two or more waves travel through the

same medium at the same time, the resulting electric field is determined by the sum of each

wave vector. Considering the two beams from a common source with different distance of
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Figure 1.8: Schematic depiction of a Michelson interferometer. The laser beam is used to
determine the precise position of the moving mirror that helps to generate the path difference.
Image taken from Gisi [2012].

propagation x1 and x2, the superposition of two monochromatic waves is given by:

a = A cos(2πx1ν̃) +A cos(2πx2ν̃)

= 2A cos(πν̃x) cos

(
2πν̃

(2x2 + x

2

)) (1.26)

here A denotes the amplitude and x the optical path difference between x1 and x2. The

measured intensity of the interferogram I(x) is connected to the temporal average of the

square of the superimposed wave amplitudes:

I(x) ≈ a2 = I(ν̃)[1 + cos(2πν̃x)] (1.27)

The beams interfere constructively when the optical path difference is x = n
ν̃ with n =

0,1,2,... while the beams interfere destructively when n = 1
2 ,3

2 ,5
2 ,... When the light radiates

from a polychromatic source instead of a monochromatic one, the superimposed intensity

has to be integrated over all wavenumbers:

I(x) =

∫ ∞
−∞

I(ν̃)[1 + cos(2πν̃x)]dν̃

=

∫ ∞
−∞

I(ν̃)dν̃ +

∫ ∞
−∞

I(ν̃) cos(2πν̃x)dν̃

= IDC(x) + IAC(x)

(1.28)
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The resulting interferogram I(x) comprises a constant term (IDC(x)) and a modulated

fluctuating term (IAC(x)). The latter is generally referred to as the interferogram:

I(x) =

∫ ∞
−∞

IAC(x) cos(2πν̃x)dx (1.29)

1.4.2 The Fourier transformation

To determine the spectrum S(ν̃) from the interferogram I(x), the Fourier transformation is

used:

S(ν̃) = FT (I(x)) =

∫ ∞
−∞

I(x)exp(−i2πν̃x)dx (1.30)

I(x) = FT−1(S(ν̃)) =

∫ ∞
−∞

S(ν̃)exp(i2πν̃x)dν̃ (1.31)

The above mentioned case is assuming that the measured interferogram is continuous.

However, the practically recorded interferogram is finite, consisting of N equally spaced

discrete sampling points with distance Δx. Therefore, Equations (1.30) and (1.31) can be

written as:

S(ν̃m) =
N∑
n=1

I(xn)exp(−i2πν̃mxn) (1.32)

I(xn) =
1

N

N∑
m=1

S(ν̃m)exp(i2πν̃mxn) (1.33)

The sampling interval Δx needs to satisfy the Nyquist-Shannon sampling theorem with

a band limitation of (ν̃max-ν̃min):

1

∆x
> 2(ν̃max − ν̃min) (1.34)

The Nyquist sampling theorem links the continuous-time signals and discrete-time sig-

nals. For recording a useful interferogram, it is necessary to appropriately choose the optical

path difference sampling interval Δx. The spectrum frequency is not allowed to be out-

side the range. Otherwise, the contributions from the out-of-range spectrum will be folded

back into the observed range, resulting in a systematic distortion, called aliasing. For the

FTIR spectrometers used in this work, a reference Helium-Neon (HeNe) laser (632.988 nm)

is used to determine the sampling interval Δx. The high folding limit (HFL) is set to ν̃max =

15 798 cm−1. Ideally, the reference laser passes through the interferometer and the interfer-

ogram is sampled at every zero crossing of the laser AC interferogram. However, to reduce

ghosting for some setups it is only sampled on the rising edge and interpolated in between

using the XSM1 parameter [Hedelius et al., 2016].

1XSM: Bruker code for interpolation during acquisition
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1.4.3 Apodisation and instrumental line shape

In practice, the maximum optical path difference (MOPD) is limited due to the limited

path length of the moving mirror. Therefore, the size of the interferogram is finite and a

realistic interferogram is truncated at MOPD. The truncated interferogram is mathematically

equivalent to the convolution of the infinite interferogram (Iinf (x)) and a Boxcar function

(B(x)):

IAC(x) = Iinf (x)⊗B(x) (1.35)

where B(x) = 1 for |x| ≤ MOPD and 0 for |x| > MOPD. The resultant measured spectrum

Smeas(ν̃) is derived from the Fourier transform of Iinf (x) and B(x):

Smeas(ν̃) = Sinf (ν̃)⊗ sin(2πMOPDν̃)

2πν̃
(1.36)

The spectral resolution is defined by the width of the sinc function with the FWHM of

Δν̃ = 0.6035
MOPD .

However, the sinc function shows pronounced non-physical negative side lobes, which

leads to unrealistic values in the measured spectrum. To eliminate this impact, another

function (e.g. a triangular or Gaussian function) is introduced and multiplied with the Boxcar

function, called apodization. This method dampens the negative side lobes but also reduces

the spectral resolution. In this thesis the Norton-Beer-Medium apodization is applied to the

interferograms recorded with the EM27/SUN spectrometer to obtain sufficient suppression

of the side lobes and acceptable resolution. The spectral resolution of an Fourier transform

spectrometer (FTS) can not be defined unambiguously because different resolution criteria

can be applied. In this work the FTS resolution is defined as:

∆(ν̃) =
0.9

MOPD
(1.37)

The sinc function is also part of the instrumental line shape (ILS), which is an important

factor to characterize the shape of a spectral line. More detail about the ILS is provided in

section 2.2.

1.5 Inversion theory

The scientific inversion problem describes the mathematical process of calculating the target

variables x from a set of observations y. It is the inverse of a forward problem, which sets

the y value as a function of x, using a function F. In the atmospheric remote sensing FTIR

spectroscopy, in general a measured transmission spectrum is considered as y. The inversion

calculation of this atmospheric spectrum is performed to determine the amounts of trace gas

concentrations, x. In this section, vectors are denoted by bold lower case symbols, e.g. x

and matrices by the bold upper case symbols, e.g. A.
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1. THEORETICAL BACKGROUND

In general, the inverse model starts with the forward calculation. Assuming no measured

signal error, a simple forward model is written:

y = F(x,u) (1.38)

here x is the state vector of length n, containing independent unknown variables, e.g. volume

mixing ratio, while u includes fixed parameters, e.g. pressure, temperature. The measured

signal is denoted by a measurement vector y, of size m. In general, F is not linear and has

to be adequately linearized for the inversion within the range of the comparison ensemble:

y− y0 = K(x− x0) (1.39)

where K = ∆F
∆x is the m× n Jacobian matrix. x0 represents a linearization point with only

local permission, and y0 = F(x0). When n > m, the inversion problem is overdetermined,

i.e. more measurements exist than unknowns, otherwise it is underdetermined in case of m

> n. To minimize the difference Δy between the measured signal (ymeas) and the synthetic

signal (y), the square norm is applied:

|∆y|2
S−1
y

= |ymeas − y|2
S−1
y

= (ymeas − y(x))TS−1
y (ymeas − y(x)) (1.40)

where Sy denotes the covariance matrix of the retrieved state. The superscript T represents

the transpose of matrices and vectors. To solve the nonlinearity least-squares problem, the

Gauss-Newton algorithm is used to estimate the state vector after i + 1 iterations:

xi+1 = xi + (KT
i S−1

y Ki)
−1KT

i S−1
y (ymeas − y(xi)) (1.41)

In case of remote sensing measurements, the knowledge from the experiment is insufficient

for the inversion of trace gas profiles, resulting in unrealistic oscillations. To solve the ill-

posed inverse problem, either a constrained profile retrieval or a simple scaling of the a-priori

profile is used. One of the common regularization methods called Tikhonov-Philips [Phillips,

1962; Tikhonov, 1963] is frequently applied. Equation (1.40) after regularization is given by:

|ymeas − y|2
S−1
y

+ γ|B(x− xa)|2 (1.42)

The above term should be minimized. xa denotes an a-priori set of state variables, B the

regularization matrix. γ represents the regularization parameter, ranging from 0 to ∞. A

larger γ depicts higher strictness of the constraint. Therefore, the iterative solution is:

xi+1 = xi + (KT
i S−1

y Ki + γBTB)−1
[
KT
i S−1

y (ymeas − y(xi)) + γBTB(xa − xi)
]

(1.43)
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The altitude resolution of a measurement is described by the resolution matrix R:

R = (KTS−1
y K + γBTB)−1KTS−1

y K (1.44)

where the trace of the matrix determines the number of degrees of freedom for the signal.

In this work, the simple approach of scaling the a-priori profile is applied. This strategy is

also used by TCCON and is even more justified when working with low-resolution spectrom-

eters. The applied retrieval equation for the scalar scaling factor is equivalent to Equation

(1.41).
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Chapter 2

Instruments and retrieval method

This chapter first introduces the Total Carbon Column Observing Network (TCCON) and the

125HR FTIR spectrometer used by the network, mainly focusing on the Karlsruhe, Germany

and Sodankylä, Finland sites. The FTS primarily used in this work is the EM27/SUN

FTIR spectrometer. It is a new kind of a mobile solar absorption spectrometer, developed

by KIT (Karlsruhe Institute of Technology) in cooperation with Bruker Optics GmbH. A

brief outline of the EM27/SUN spectrometer characteristics is given. In order to take into

account the performance of an individual spectrometer, the instrumental line shape is used

as an important assessment and should be considered in the retrieval procedure. Therefore,

a simple open-path measurement is used to obtain the ILS parameters of the EM27/SUN

spectrometer. Additionally, two types of retrieval software, GGG for the official TCCON

retrievals and PROFFIT for the EM27/SUN retrievals are introduced.

2.1 Instrumentation

2.1.1 TCCON Network

Established in 2004, the TCCON1 had the initial purpose of acquiring precise and accurate

column abundance of CO2 [Wunch et al., 2011]. It has been gradually extended to the

detection of more species (e.g. CH4, CO, N2O, HF, HDO) and expanded all over the world.

Currently there are 26 TCCON stations in service and some potential sites are planned (see

Figure 2.1).

The Bruker 125HR instrument (Bruker Optics GmbH, Germany) is a well-developed

commercial FTIR spectrometer. It is characterized as a stable, robust and high-resolution

instrument and is so far the only accepted instrument for TCCON measurements [Wunch

et al., 2011]. In order to obtain comparable and accurate data within the network, instrumen-

tal settings are officially specified, as is the data retrieval approach. The standard TCCON

instrument measures column-averaged abundances of trace gases, like CO2, CH4, CO and

1https://tccon-wiki.caltech.edu
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Figure 2.1: TCCON site map, showing the operational, future and previous sites. Image
taken from https://tccondata.org/.

N2O in the near-infrared (NIR) spectral window by recording solar-absorption spectra. The

MOPD is 45 cm, resulting in a spectral resolution of 0.02 cm−1. Spectral coverage from 3800

to 15 500 cm−1 is achieved by simultaneous operation of two detectors at room temperature.

One is an indium gallium arsenide (InGaAs) detector, covering a spectral range from 3800

to 12 000 cm−1. A dichroic optic is used to define a cutoff at wavenumbers of 10 000 cm−1.

The other official detector is the silicon diode (Si) detector, originally covering a spectral

range from 9500 to 30 000 cm−1. A cut-off filter is applied to discard the visible spectra

with wavenumbers larger than 15 500 cm−1. Additionally, similar optical elements, like beam

splitters, band filters, etc. are applied to further fulfill the standardization.

The standardization decreases the site-to-site bias and improves the comparability within

the network. It also satisfies the requirements for the global-scale satellite validation stud-

ies, like the OCO-2 satellite (Orbiting Carbon Observatory 2), GOSAT (Greenhouse Gases

Observing Satellite), SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmo-

spheric Chartography) and others. A consistent comparison of XCO2 for GOSAT, SCIA-

MACHY, CarbonTracker and MACC (Monitoring Atmospheric Composition and Climate)

with TCCON observations was performed by Kulawik et al. [2016]. The recent work by

Wunch et al. [2017] compared measurements of XCO2 from different TCCON sites around

the world to XCO2 retrievals from the OCO-2 satellite (version B7), based on three kinds of

viewing modes (nadir, glint and target modes). Moreover, TanSat (Chinese Carbon Dioxide

Observation Satellite Mission, also known as CarbonSat) was launched in December, 2016

which carries the Carbon Dioxide Spectrometer (CDS). This high-resolution grating spec-

trometer measures CO2 absorption in the NIR spectral range. The validation projects for

CDS are ongoing including comparisons with TCCON data [Lu et al., 2017].
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2. INSTRUMENTS AND RETRIEVAL METHOD

2.1.1.1 The Karlsruhe site

The Ground-based Remote Sensing group of the Institute of Meteorology and Climate Re-

search at KIT has been operating a TCCON site at Campus North since 2009. Karlsruhe,

located in the Rhine valley is a urban sprawled city (population: ca. 440 000), and is char-

acterized by a mild oceanic climate, with rare extreme temperatures or precipitation year

around. However, it is one of the cities with the highest number of sunshine hours in Ger-

many.

The Karlsruhe FTIR station is located in the central west part of Europe (49.10 ◦N,

8.44 ◦E, 110 m a.s.l.) with a rather flat topography, extending northward to the foothills

of the Black Forest, which is a large forested mountain range. It provides useful data for

understanding the emission of GHGs in Central Europe and is an excellent place for validating

satellite measurements, like the OCO-2 satellite, GOSAT, SCIAMACHY, TROPOMI, etc.

because of its relatively flat topography.

Figure 2.2: Shipping container (left panel) and TCCON FTIR spectrometer (right panel) at
KIT - Campus North, Karlsruhe, Germany. Figures were taken by Dr. Thomas Blumenstock.

The Karlsruhe FTIR instrument is settled in climate controlled container to keep a steady

lab environment year around (see Figure 2.2). The Bruker IFS 125HR spectrometer is op-

erated remotely and performs the measurements semi automatically. In addition to the

standard NIR spectral range covered by the InGaAs detector, the Karlsruhe instrument ex-

tends the measuring region to the mid-infrared (MIR) band, down to 1900 cm−1. A dichroic

optical element with a cut-off wavenumber at 5250 cm−1 is installed in front of the InGasAs

detector, defining a spectral coverage from 5250 to 11 000 cm−1. An indium antimonide

(InSb) detector together with a cut of narrowband spectral filter covers the spectral region

from 3800 to 5250 cm−1. The target gases relevant with the context of this work are CH4,

O2, CO2 measured with InGaAs detector while CO is measured with the InSb detector [Kiel,

2016].
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2.1.1.2 The Sodankylä site

The Sodankylä FTIR instrument is located at the Finnish Meteorological Institute (FMI),

Arctic Research Center (67.37 ◦N, 26.63 ◦E, 188 m a.s.l.), and is about 7 km away from the

low-population-density city center (population: ca. 8500). This area represents a typical

northern boreal forest/taiga environment, surrounded predominantly by coniferous forest

withh some mixed/deciduous forest (see Figure 2.3). The FTIR spectrometer was estab-

lished in early 2009 and has been part of the TCCON since then. Inside the Arctic Circle,

Sodankylä experiences a subarctic climate, with mild temperature and long sunshine hours

in summer. Around the summer solstice (around June 21), the sun shines for a full 24 hours

everyday. Measurements during summer daylight therefore offer a good temporal coverage

for the study of intraday changes.

The Sodankylä FTIR instrument records interferograms from which total columns of CO2,

O2, CH4, CO, N2O, H2O, HDO and HF can be retrieved. These spectra are recorded with

the TCCON official 125HR spectrometer. This instrument is located in a laboratory and a

solar tracker (type Bruker A457N) is mounted on the roof of the building. Since July 2013

the FTIR spectrometer has been operated automatically with the help of a self-controlled

cover for the solar tracker which reads and analyzes weather radar forecast data, along with

rain and direct solar radiation for opening and closing the cover [Kivi and Heikkinen, 2016].

The instrument employs the standard TCCON setting of InGaAs and Si detectors. Spectral

coverage from 4000 to 15 000 cm−1 is achieved by simultaneous operation of two detectors

at room temperature as used by the majority of TCCON sites: an indium gallium arsenide

(InGaAs), covering from 4000 to 11 000 cm−1 and a silicon diode (Si), covering from 9000

to 15 000 cm−1. Two kinds of resolution settings are used for the 125HR instrument during

the campaign. The TCCON official measurements with a high resolution of 0.02 cm−1 is

used as a reference to the retrievals of the EM27/SUN instruments and other portable FTIR

instruments. Lower resolution scans are also recorded with 0.5 cm−1 resolution to mimic

the EM27/SUN instrument using similar measurement parameters (double sided, 4 scans at

20 kHz). The measurements with lower resolution are considered as an additional kind of

comparison reference with matched sensitivity.

2.1.2 The KIT EM27/SUN instruments in Sodankylä and Kiruna

The high-resolution TCCON sites are distributed globally, however, many of these are concen-

trated in Europe, Northern America and eastern Asia. The costs and heavy equipment being

required to move it on site have hindered the expansion of the network to the African con-

tinent, South America and central Asia [Wunch et al., 2015]. Remote sites and regions with

high or low surface albedo are generally poorly covered by the TCCON network. Recently,

cheaper and portable spectrometers have been developed and are now available for GHG

measurements, with the potential to complement the TCCON network. The EM27/SUN
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2. INSTRUMENTS AND RETRIEVAL METHOD

Figure 2.3: TCCON station (right) and the EM27/SUN spectrometer (lower left) at FMI,
Sodankylä, Finland.

spectrometer was developed by KIT [Gisi et al., 2012], in cooperation with Bruker Optics

GmbH, Ettlingen, Germany. It has been offered by Bruker as a commercial device since

spring 2014. The EM27/SUN instrument is a portable ground-based FTIR spectrometer,

consisting of a spectrometer body with dimensions of 35× 40× 27 cm and a solar tracker

which is directly mounted on the spectrometer. The whole weight is approximately 25 kg

and can be carried by one person.

The EM27/SUN employs the Bruker’s RockSolid
TM

pendulum interferometer with paired

retroreflecting cube corner mirrors and a CaF2 beam splitter. The 1.8 cm MOPD is gener-

ated by a balanced wear-free pivot mechanism, corresponding to a spectral resolution of

0.5 cm−1. To reach this, the two gimbal-mounted retroreflectors move a geometrical dis-

tance of 0.45 cm. This creative design achieves high stability and is resistant to thermal

influences and mechanical disturbances. A 90◦ off-axis parabolic mirror is used for center-

ing the solar beam on the detector and it has a focal length of 127 mm. Together with a

0.6 mm aperture, this defines a semi-FOV (field of view) of 2.36 mrad. An external FOV of

around 56 % of the solar disc diameter is used. Double-sided DC coupled interferograms are

recorded with an InGaAs detector at ambient temperature. The detector is a photodiode

type HAMAMATSU
TM

G12181-010K with a size of 1× 1 mm, covering the spectral range

from 5500 to 12 000 cm−1. Total columns of CO2, O2, CH4 and H2O can be retrieved from

this spectral range. The target gases and corresponding spectral windows for the TCCON

and EM27/SUN spectrometers retrievals are listed in Table 2.1.

Recently, a second DC-coupled InGaAs detector has been added to additionally cover the

spectral region from 4000 to 5500 cm−1 [Hase et al., 2016] (see Figure 2.4). The dual-channel

EM27/SUN instrument covers the same spectral range used by the TCCON and TROPOMI

(TROPOspheric Monitoring Instrument) short-wave band used for CO and CH4 retrievals.
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Target gas
Spectral window [cm−1]

TCCON EM27/SUN

O2 7765.00-8005.00 7765.00-8005.00

CO2
6180.00-6260.00

6173.00-6390.00
6297.00-6382.00

CH4

5880.00-5996.00
5897.00-6145.005996.45-6007.55

6007.00-6145.00

CO
4208.70-4257.30

4210.00-4320.00
4262.00-4318.80

Table 2.1: Various target gases and spectral windows for the TCCON and EM27/SUN spec-
trometers.

Figure 2.4: The open EM27/SUN instrument with a second CO channel [Hase et al., 2016].
The yellow arrows depict the light path. This figure is adapted from Frey [2018].

This extension enables the observation of CO, N2O and HDO. To achieve this, a plane

mirror of 10× 20 mm2 is located directly behind the off-axis parabolic mirrors for the partial

decoupling of the beam. This method avoids readjustment of the optical alignment. Nearly

40 % of the incoming beam is reflected to the additional detector. The reflected beam to the

second detector forms approximately a 25◦ intersection angle with the primary reflected beam

going into the first detector. The secondary aperture stop in front of the detector element has

a larger diameter (0.80 mm) than the primary one. The detector element has 1 mm2 sensitive

area. A wedged Germanium long-pass filter is mounted between the secondary field stop and

the additional InGaAs diode in order to suppress the spectral range which is already covered

by the primary detector and hence to increase the signal to noise ratio.
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2. INSTRUMENTS AND RETRIEVAL METHOD

The excellent robust and reliable characteristics of the EM27/SUN instrument have been

demonstrated in several successful field campaigns [Butz et al., 2017; Frey et al., 2015; Klap-

penbach et al., 2015]. The EM27/SUN instrument was also used for the observation of GHGs

in Sodankylä with ambient temperature in the range between −15 to 30 ◦C, see Figure 2.5.

These measurements were performed in the framework of the Fiducial Reference Measure-

ments for Ground-Based Infrared Greenhouse Gas Observations campaign (FRM4GHG).

This project was funded by European Space Agency (ESA), focusing on the intercomparison

of different compact low-resolution instruments.

(a) Spring (b) Summer

Figure 2.5: The EM27/SUN spectrometer operated at FMI, Sodankylä in early spring (a)
and summer (b). The right figure was taken by Dr. Friedrich Wilhelm Klappenbach.

Another EM27/SUN spectrometer (without the secondary channel) was installed at the

Swedish Institute of Space Physics (IRF), Kiruna, northern Sweden (67.84 ◦N, 20.41 ◦E, 419 m

a.s.l.) to study GHG gradients between Kiruna and Sodankylä. As part of the NDACC

network, a Bruker 120 HR FTIR spectrometer has been operated at IRF since 1996 by KIT

in cooperation with IRF and Nagoya University. The EM27/SUN spectrometer co-uses the

solar beam of the Bruker 120HR interferometer. The solar tracker of the HR instrument is

controlled with a camera and camtracker software, see Figure 2.6 (a). The tracker mirror of

the EM27/SUN instrument is pointed to a fixed position, towards the mirror coupling out a

part of the solar beam, see Figure 2.6 (b).

(a) Sun tracker on the roof (b) Sunbeam sharing in the lab

Figure 2.6: Sun tracker and the EM27/SUN spectrometer at IRF, Kiruna. The EM27/SUN
instrument shares the solar beam with the NDACC instrument.
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2.2 Instrument characterization-instrumental line shape

Properly characterizing the instrumental line shape (ILS) is of utmost important, because

systematic biases are introduced into the trace gas retrievals when assuming an incorrect

ILS. Hase et al. [1999] developed the LINEFIT algorithm to characterize the ILS referencing

an ideal instrument in the form of two parameters—modulation efficiency (ME) and phase

error (PE). These two characterizing parameters describe the modulation loss as a function

of optical path difference with respect to an ideal spectrometer [Hase et al., 1999]. The ME

describes the ratio between normalized modulation of actual observed interferogram signal

and that of nominal FTS [Hase, 2012]. A modulation loss (ME < 1.0) indicates a broadening

of the ILS at MOPD, while the ME larger than 1 indicates a narrower ILS. The optical path

dependent phase error measures the degree of the asymmetry of the ILS and a zero value

depicts a symmetric ILS shape.

Low-pressure (∼5 hPa) gas cell measurements of HCl or HBr are normally used in TCCON

and NDACC to retrieve the ILS [Hase et al., 2013]. However, to avoid the requirement of a

gas cell, an open-path observation of a few meters of lab air is sufficient for retrieving the ILS

of the low resolution (0.5 cm−1) EM27/SUN instrument [Frey et al., 2015], see Figure 2.7. An

external light source and ambient pressure, temperature, and humidity sensors are required.

An Osram Halogen Display/Optic lamp 64602 (50 W, 12 V) is used as the radiation source. A

stabilized digital laboratory DC power supply is used to obtain a constant and lower voltage

than the nominal one. Here, a voltage of 11 V is used. An aspherical collimation lens with a

diameter of about 2 inches is used for collimating the lamp’s light. The system of the lamp

and the collimation lens is mounted on a stable photographic tripod which allows simple and

accurate adjustment of the height and direction of the lamp, to obtain an even illumination

on the tracker mirror and a uniform image of the light source on the field stop. The bulb is

slightly tilted to the lens which prevents multiple reflections. Finally, the tracker mirrors are

adjusted manually to achieve a fully illuminated image of the lamp on the field stop.

Figure 2.7: Open-path measurement of a few meters of air in the KIT lab.
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2. INSTRUMENTS AND RETRIEVAL METHOD

The instrument and light source are powered up two hours prior to the actual experiment.

This ensures operation of the non-stabilized reference laser at a constant temperature and

ensures emission of a constant wavelength. This experiment measures a few meters of lab air

and the water column inside the instrument cannot be neglected. Hence, the two venting holes

of the EM27/SUN are opened to allow ventilation, ensuring an equilibrated H2O mixing ratio

inside and outside the spectrometer (see Figure 2.8). Additionally, the ILS measurements

are performed in a reasonably clean and controlled surrounding to avoid condensation and

to obtain a stable thermal and clean condition inside the spectrometer [Frey et al., 2015]. It

is not recommended to open the apertures when the surrounding humidity is too high or the

instrument is colder than the environment.

Figure 2.8: Two apertures located on the top and lower side of the EM27/SUN instrument
are open for the ventilation.

The distance between the spectrometer and the light source should be in a reasonable

range. Too short of a distance might bring in systematic errors due to the non-negligible

heat effect from the lamp on the section of the open-path near the lamp. A longer distance

reduces the impact of the hot air surrounding the light bulb and leads to stronger water

vapor absorption. However, this results in a smaller image on the field view, which makes it

harder to ensure an even illumination. Typically, a distance of 4–5 m between the lamp to

the first mirror of the solar tracker is used in this experiment. An environment with a room

temperature around 20 ◦C and relative humidity between 30 % and 60 % is suggested.

The Bruker software OPUS is used to operate the spectrometer and to record both solar

and laboratory spectra. The settings used in the open-path measurement are almost the

same as those used in the solar observations and only the preamplifier gain which amplifies

the analog signal before digitalization is set to a higher value. Thirty sets of 5 forward

and 5 backward scans at full resolution are recorded of the lamp measurement. These 30

interferograms are averaged, DC corrected and fast Fourier transformed, along with applying

a medium Norton-Beer apodization function at a limited resolution of 0.5 cm−1 in order to

obtain the final spectrum for the LINEFIT analysis.

Several parameters are needed for retrieving the ILS parameters with the LINEFIT: the

total optical path length (L), the air temperature and the pressure in the lab. L is comprised

of the external distance from the very front of the collimator lens to the first tracking mirror
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of the spectrometer (d, normally 4–5 m), the distance between the light bulb and the lens

(5 cm), the distance between the first tracking mirror and the entrance window (38 cm), and

the distance inside the spectrometer housing (58 cm). A Lutron MHB-383SD data logger is

used for measuring both the temperature and the pressure in Karlsruhe, while a VAISALA

PTB220ACA2A3 device records the pressure and a VAISALA HM40 with a HMP113 probe

records the temperature in Sodankylä.

A simple two-parameter model (ME and PE) is obtained with the LINEFIT algorithm and

is sufficient for the EM27/SUN instrument, because the ILS shape is close to the nominal

expectation for a Fourier transform interferometer. The H2O line list is required because

this open-path experiment measures the absorption of the water column in the room. The

H2O line list is based on the HITRAN 2009 database with slight empirical modifications.

Before retrieving the measured and final ILS, a precalculation of the H2O column should be

performed in the LINEFIT software based on the measured spectrum. This total column

value of H2O, together with the total optical path length of L (L=d+5 cm+38 cm+58 cm),

and the air temperature are used to calculate the partial pressure of H2O. The partial pressure

is then used for the final retrieval run of the ILS parameters.

The ILS was first measured in February at KIT before the EM27/SUN instrument was

shipped to Sodankylä. Several ILS characterization experiments were performed in the

FRM4GHG project container on a regular schedule (see Figure 2.9). The values of the

modulation efficiency at MOPD are shown in Figure 2.10.

Figure 2.9: Open-path measurement in the container of the FRM4GHG campaign at FMI,
Sodankylä.
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2. INSTRUMENTS AND RETRIEVAL METHOD

Figure 2.10: The results of the modulation efficiency at MOPD obtained with the LINE-
FIT software at KIT and FMI. EM27/SUN instrument was transported from Karlsruhe to
Sodankylä in late February.

Compared to the experiment done at KIT (black triangle), the modulation efficiency

recorded at FMI increased by about 0.27 %. This small change is probably due to the

mechanical impacts and vibrations during the shipment from Germany to Finland. The ME

results measured during the campaign varied within 0.14 %, showing no clear indication for

a significant drift of the ILS parameters. This tiny variation is mainly caused by e.g. various

surroundings, the lamp situation, everyday carrying in the early period of the campaign and

manual errors during the characterization (e.g. alignment error, and error in the external

distance measurement). The sudden increase of the modulation efficiency on May 8, 2017 is

probably due to the use of the air conditioner in the lab which blew cold air directly through

the path between the lamp and the instrument. This bias indicates that the open-path

experiment requires stable ambient conditions. To study the effect of the length of the air

column, an experiment testing three different distances was performed. Figure 2.11 shows

the ME parameters and the water column as a function of the distance. No obvious change

of ILS parameters occurs when the distance changes. The ME values are between 0.9918 and

0.9929, with a 0.06 % standard deviation (Figure 2.11, left panel). The abundances of the

water column show an excellent linear correlation with distance (Figure 2.11, right panel).

The ME and PE for the two EM27/SUN instrument located in Sodankylä and Kiruna are

listed in table 2.2.
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Figure 2.11: Open-path measurements for the EM27/SUN instrument on May 12, 2017 when
ILS characterization of the instrument at three different locations was performed. The left
panel shows the modulation efficiency with respect to the distance; the right panel shows the
measured water column with respect to the distance and a linear fitting line.

EM27/SUN ME PE

Sodankylä 0.9825 -0.001

Kiruna* 0.9862 0.0034

Table 2.2: Average ILS parameters at MOPD for the EM27/SUN instruments located in
Sodankylä and Kiruna (*: ILS parameters for the Kiruna instrument are taken from Frey
[2018]).

2.3 Retrieval software

2.3.1 GGG for TCCON retrievals

The official TCCON retrieval algorithm is GGG, which is used for obtaining the total column

abundances of the target species from the spectra [Wunch et al., 2011]. GGG is an open-

source software package, including a nonlinear least-squares spectral fitting and the retrieval

program named GFIT. The latest released suite is GGG2014 which offers the option of

correcting the laser sampling errors detected on several TCCON spectrometers [Wunch et al.,

2015]. To maintain consistency, official TCCON data require processing of the measured

interferograms with the GGG algorithm. The prescription of a common retrieval method for

all TCCON measurements decreases the computational errors among different stations and

ensures a consistent TCCON database in long-term.

The GFIT algorithm consists of two models, a forward and an inverse model. The for-

ward model computes an atmospheric transmittance spectrum for prescribed atmospheric

36



2. INSTRUMENTS AND RETRIEVAL METHOD

conditions. The inverse model employs the comparison between the observed spectrum and

the calculated one from the forward model. The retrieved parameters are adjusted during

the inversion model to achieve the best spectral fit. The treatment of the fit parameters, e.g.

the continuum level, the frequency shift, etc. are user defined. Common predefined settings

for the standard TCCON data products helps to ensure a high level of consistency between

sites [Wunch et al., 2011].

The GFIT program does not execute a profile retrieval. The amount of gases at every

altitude level is not scaled independently to obtain the best match to the spectrum. Instead, a

faster and much simpler approach is used which also reduced the effects of certain systematic

errors. An a-priori VMR (volume mixing ratio) profile is scaled, assuming a known shape of

the gas profile because the VMR profile shapes of the most important TCCON target gases

(e.g. CO2 and O2) are well known and fairly constant in the troposphere [Wunch et al.,

2011].

The concentrations of some gases (e.g. CO and CH4) vary strongly with altitude. As the

a-priori knowledge of the VMR profile shape is important, a set of empirical functions are

used to generate them. Most of the a-priori VMR profiles (e.g. CO) are derived from solar

occultation measurements of the space-based Atmospheric Chemistry Experiment (ACE)

interferometer [Bernath et al., 2005] and the balloon-borne Jet Propulsion Laboratory MkIV

interferometer [Toon, 1991]. The relationship between the profiles of HF and those of CH4

and N2O is well studied and shows a nearly inverse trend in the stratospheric layer [Luo et al.,

1996; Saad et al., 2014; Washenfelder et al., 2003]. A constant value of N2O with 320 ppb,

and HF with approximately 0.1 ppt and a secular decrease of 1% per year are assumed in

the troposphere [Wunch et al., 2011, 2015]. The CO2 a-priori profiles are derived from the

GLOBALVIEW dataset [GLOBALVIEW-CO2, 2013] and are variable depending on the time

of year and the latitude of the site. In addition, the research conducted by Andrews et al.

[2001] helps to derive the stratospheric CO2 a-priori profiles from the age of air relationship.

In addition to the aforementioned a-priori VMR profiles, other main inputs for the GFIT

algorithm are the profiles of daily pressure, temperature and humidity which can alter the

spectral line shape. These daily profiles are generated from the NCEP/NCAR (National Cen-

ters for Environmental Prediction/National Center for Atmospheric Research) daily analysis

data [Kalnay et al., 1996]. However, these profiles only represent the vertical atmospheric

conditions during noon time but not the intraday variation. Accurate in-situ measurements

of the ground pressure at TCCON sites are also required to obtain a better prior estimate of

the total column mass corresponding to each spectrum. Here, they are taken from the local

automatic weather station (AWS) at FMI for the Sodankylä TCCON station or from the

meteorological tall tower (200 m) at KIT - Campus North for the Karlsruhe TCCON station.

For the forward calculation of the radiation transfer, trace gas abundance and spectral

data (e.g. line intensities, self-broadening coefficients) are needed in the GFIT algorithm

and generally derived from the HITRAN database [Rothman et al., 2013]. HITRAN is the
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acronym for the High Resolution Transmission Molecular Absorption Database, supporting

various algorithms to predict and simulate the atmospheric transmission and emission of

light1.

Several researches noted that the atmospheric trace gases retrieved from spectra in the

near-infrared region are affected by the solar zenith angle (SZA) because of the spectroscopic

inadequacies and instrumental problems [Deutscher et al., 2010; Wunch et al., 2011]. This

airmass-dependent artifact adds approximately an extra 1 % for XCO2 retrievals at low SZA

around noon as compared to high SZA around sunrise or sunset. Therefore, the airmass-

dependent bias must be taken into account as an additional post correction to meet the

accuracy requirements for TCCON. Wunch et al. [2011] suggested an empirical correction

scheme, using several years of data from remote sites and assuming that on a given day, any

XCO2 variation symmetrical around noon is a bias, and that any anti-symmetrical variation

is real. The statistical estimate of the symmetrical variation is combined for the remote sites

and used for the entire network.

In addition, airmass independent calibration factors (AICF) are needed for performing

a post processing of the trace gases retrievals tie measurements to the WMO scale. These

factors are achieved by comparing the highly accurate in-situ vertical gas profiles from aircraft

or balloon experiments with TCCON data [Geibel et al., 2012; Messerschmidt et al., 2011;

Wunch et al., 2010]. Such a scaling is required due to spectroscopic inaccuracies, especially

in the O2 band.

2.3.2 PROFFIT for EM27/SUN retrievals

PROFFIT (latest version is 9.6) is an algorithm package developed and maintained by Dr.

Frank Hase at KIT and is available for the Windows environment [Hase et al., 2004]. The

code is well developed and has been validated for retrieving dry-air mole fractions (DMF)

of trace gases in the NDACC FTIR measurements [Kiel et al., 2016; Schneider et al., 2008,

2010] and in the EM27/SUN low-resolution measurements [Frey et al., 2015; Gisi et al., 2012;

Klappenbach et al., 2015].

Before retrieving the total amounts of species with the PROFFIT V9.6, a preprocessing is

performed by using the CALPY program. This preprocessor includes the quality check and

the calculation of the solar absorption spectrum from the raw interferograms [Kiel, 2016]. A

constant solar intensity during the interferogram recording is a precondition to obtain the

most accurate and precise trace gas concentrations. However, source brightness fluctuations

(SBF) due to clouds, multiplicatively disturb the interferograms and distort the derived spec-

tra [Keppel-Aleks et al., 2007]. This impact cannot be neglected and needs to be corrected.

Normally, the SBF generates low-frequency variation while the expected inteferograms reveal

relatively higher frequency, containing the useful spectral information [Keppel-Aleks et al.,

2007]. With this knowledge, DC interferograms are acquired for the SBF correction in order

1https://www.cfa.harvard.edu/hitran/
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2. INSTRUMENTS AND RETRIEVAL METHOD

to reduce the SBF-incurred errors. The EM27/SUN instrument is operated in DC mode and

therefore, the SBF correction can be applied directly. TCCON instruments are operated in

a similar manner, and the SBF correction is applied post-acquisition in GGG.

A reweighting procedure is performed by dividing the raw interferogram (Iraw) with the

smoothed one (Ismooth) [Kiel, 2016; Ridder et al., 2011]. The correction is then applied using

the function below:

Icorr =
( Iraw

Ismooth
− 1
)
·DCoffset (2.1)

The smoothed interferogram is obtained from the raw one by applying a moving average

5 times over 61 sampling points. This method suppresses the spectral information with high

frequency and averages out the centerbursts of the interferogram (see Figure 2.12).

However, this SBF correction does not cancel out the DC variation perfectly well, espe-

cially when the intensity is too weak or the IFG has too strong of variations during a single

scan. Therefore, two more parameters for quality checks are introduced. One is the “offset”,

defined by the absolute value of the maximum signal strength. It was set as 0.05 and −0.05

here separately because the two-channel EM27/SUN instrument generates both positive and

negative signals. When the minimum absolute value of the IFG signal is below 0.05, the

measurement is considered bad and discarded. The other quality criteria is the “Threshold”,

describing how variable the IFG is allowed to be and whether it can be determined as a good

IFG. An empirical value is 0.1, i.e. when the variability of a IFG is larger than 10 %, this IFG

is defined as poor and discarded [Frey et al., 2015; Kiel, 2016]. The “Threshold” is defined

as:

Threshold =
|Ismooth|max − |Ismooth|min

|Ismooth|max

(2.2)

The quality-filter-passed IFGs are fast Fourier transformed with the Sande-Tukey algo-

rithm along with Norton-Beer-Medium apodization, and the resulting spectra are stored as

binary files (*.BIN). These files include additional measurement information, like a location

description, coordinates, azimuth degree, spectra information, ILS, etc. and are used as input

files in the PROFFIT software package.

The PROFFIT is a non-linear least-squares fitting algorithm and analyzes spectra based

on inversion methods. The low-resolution spectra measured with the EM27/SUN instrument

are fitted by scaling a-priori profiles, similar to GGG.

Normally, the a-priori VMR profiles are derived from the WACCM (Whole Atmospheric

Chemistry Climate Model). The latest version is WACCM Version 61. This numerical model

encompasses the entire atmosphere, ranging from the Earth’s surface to the thermosphere

[Marsh et al., 2013] and has been applied for the analysis of previous EM27/SUN measure-

ments [Frey et al., 2015]. However, here we use the same VMR profiles from the GGG as used

in the TCCON to avoid that systematic errors which are caused by different a-priori VMR

profiles. The same pT profiles from the NCEP/NCAR are used in the PROFFIT. Addition-

1https://www2.acom.ucar.edu/gcm/waccm
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Figure 2.12: DC correction for a raw EM27/SUN interferogram as an example. (a) Iraw ; (b)
Ismooth ; (c) DC corrected IFG.

ally, the intraday variable ground pressure at the TCCON site are used and interpolated to

the EM27/SUN instrument’s observatory height.

The same O2 and CH4 line lists, based primarily on HITRAN 2012, and as applied in the

TCCON analysis are used in the PROFFIT algorithm. The CO2 line list used by PROFFIT

is slightly different. It applys the modified HITRAN 2008 line list to which Dr. Frank Hase

added line-mixing parameters based on J.-M Hartmann’s code [Lamouroux et al., 2010].

The CO line list is essentially derived from HITRAN 2008 [Hase et al., 2016]. For H2O the

updated HITRAN 2009 line list with empirical corrections is used [Wunch et al., 2010].

Figure 2.13 shows the processing flow chart. The CALPY-filtered and Fourier-transformed

binary files (*.BIN) are imported into the required folder. The pressure and temperature in-

formation, a-priori VMR profiles of the trace gases and line lists are also used as inputs.

The batched code “BAT-SU96.EXE” is used to create the required file structures and input

files, then the batch code “BAT-EX96.EXE” (or BAT-EX96PP.EXE for parallel operation)
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is started for executing a sequence of PROFFIT jobs, including the radiative transfer and

retrieval calculations. PROFFIT creates result files containing the total column amounts

of the target gases. Empirical solar zenith angle corrections can also be applied as a post-

processing step based on the work of Klappenbach et al. [2015] and Frey et al. [2015] to

reduce airmass-dependent artefacts. This will be discussed in Chapter 3.

Figure 2.13: Processing flow chart including pre-processing with CALPY and the retrieving
package PROFFIT.
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Chapter 3

Characterization and optimization

of retrievals

Trace gas retrievals are subject to numerous error sources. The uncertainties of the mea-

surements are mainly caused by the complex measurement environment, uncertainties in the

retrieval algorithms such as spectroscopy and the components of the instrument itself. These

error sources must be quantified and, if possible reduced in order to increase the accuracy

and quality of the retrieved column-averaged amounts of atmospheric trace gases, and to

understand their limitations. Therefore, main error sources are investigated in the following

sections. Moreover, solutions are introduced to minimize them and to obtain retrievals with

optimal accuracy and precision.

To ensure accuracy of trace gas results derived from spectra recorded with the EM27/SUN

spectrometer, each instrument is characterized with open-path measurements. These labora-

tory measurements are used for the determination of the ILS parameters, i.e. the modulation

efficiency amplitude and the phase error at MOPD. The high-resolution spectra recorded with

the ground-based TCCON 125HR FTIR spectrometer at KIT are in the same near-infrared

spectral range as used by the EM27/SUN instrument. Therefore, co-located measurements

are performed before the EM27/SUN spectrometer is transported to field campaigns in order

to obtain the instrument-specific airmass independent calibration factors. Furthermore, for

each species airmass dependent calibration factors are also applied to minimize errors that

vary with solar zenith angle.

The first section contains the fundamental equations for the calculation of the column-

averaged dry-air mole fraction of a trace gas (XGas). Then, in the second section, the empir-

ical corrections are presented, both for the airmass independent and the airmass dependent

corrections.

In section 3.3 the effects of intraday variable pressure and temperature are studied, which

turns out to be an important impact factor on the trace gases retrieval. Since the ILS

slightly deviates from the nominal expectation for each spectrometer, the use of instrument-
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specific measured ILS parameters is required in the trace gases retrieval, which is presented

in section 3.4.

Three different a-priori VMR profiles are investigated for one sample measurement day.

This sensitivity study with respect to the different VMR profiles is presented in section 3.5.

The results of the investigation highlight the importance of the use of realistic VMR profiles,

which helps to minimize the bias of the retrieved total column amounts.

3.1 Column-averaged dry-air mole fraction

The variable surface pressure affects the column amount of atmospheric molecules. Thus, the

column-averaged dry-air mole fraction (DMF) is used to reduce the ground pressure effect.

With this method, the dependency of derived abundances on surface pressure variations

is largely reduced. The column-averaged DMF can be computed by dividing the column

abundances of a gas by the total column of dry air:

XGas =
ColumnGas

Columndryair
(3.1)

The column of dry air is a function of the surface pressure and the atmospheric humidity.

The equation is then:

Columndryair =
Pgr

g ·mdryair
− ColumnH2O

mH2O

mdryair
(3.2)

where Pgr is the ground pressure, g represents the gravitational acceleration. mH2O, mdryair

and ColumnH2O are the mean molecular mass of water and dry air, and the total column of

water, respectively.

The calculation of the ratio of the target gas and the column amount of O2 retrieved from

the same spectrum is an alternative and superior method. The volume mixing ratio of O2

in the atmospheric altitude range up to 100 km is nearly constant at approximately 20.95 %.

Therefore, the total column of dry air based on the retrieved O2 column is:

Columndryair =
ColumnO2

0.2095
(3.3)

By this approach, the systematic errors that affect both the O2 bands and bands of

target gases like CO2, CH4 and CO can be largely reduced. These include, for example, the

deviation in the pointing of the solar position, the offset of the spectral zero level, or errors

in the surface pressure due to the measurement inaccuracy of the data logger [Wunch et al.,

2011]. In addition, for the calculation of the DMFs, it is not necessary to use the water

column to correct the ground pressure. With these advantages, it is therefore the official

method used in TCCON.
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Insertion of Equation (3.3) into Equation (3.1) yields the following expression for the

column-averaged DMF of a target trace gas:

XGas =
ColumnGas

ColumnO2

· 0.2095 (3.4)

3.2 Empirical corrections

Empirical corrections are necessary to match unites defined by the assumed spectroscopic

line contributes with in-situ/WMO units. In addition, airmass dependent correction removes

residual artificial airmass dependency of retrieved XGas due to spectroscopic inaccuracies

(mainly incorrect line shapes and pressure broadening parameters). In this subsection, em-

pirical airmass independent and airmass dependent corrections are introduced.

3.2.1 Airmass independent (AI) correction

The main bias between the retrieved column-averaged DMFs from TCCON and EM27/SUN

measurements is mostly induced by the different spectrometer resolutions. The instrument-

specific deviations from the nominal behavior can be diminished by applying scaling factors

to the trace gas abundances derived from long-term observations. Frey et al. [2018] have

studied nearly four years of measurements from a selected EM27/SUN reference instrument

with respect to the TCCON 125HR high-resolution instrument at KIT. The average bias

between EM27/SUN and TCCON retrievals amounts to approximately 0.20 ppm for XCO2

and 0.80 ppb for XCH4. Meanwhile, an ensemble of 30 EM27/SUN instruments has been

studied to investigate and quantify the variance of the EM27/SUN instruments with respect

to the reference EM27/SUN instrument. Therefore, comparison measurements are required

to ensure that the results measured with the EM27/SUN spectrometers are comparable to

each other and to the TCCON retrievals. Before the EM27/SUN spectrometers are sent out

for campaigns, they are operated on the roof of the institute’s building (49.09 ◦N, 8.43 ◦E,

133 m a.s.l.) together with the co-located reference TCCON instrument for side-by-side

measurements. Additionally, it is advisable to perform another comparison measurement

after the campaigns in order to verify the instrumental stability.

The correction of the spectroscopic differences is carried out by multiplying the dry-air

mole fraction of the particular trace gas by an airmass independent correction factor (fAI).

This factor is deduced by side-by-side measurements over several days. The following ex-

ample describes the practical approach of this procedure on the basis of the campaigns in

Sodankylä and Kiruna. Side-by-side measurements were performed in Karlsruhe from Febru-

ary 13 to 15, 2017 before 2 EM27/SUN spectrometers were transported to Sodankylä and

Kiruna. XCO2, XCH4 and XCO from the co-located reference 125HR measurements were

retrieved following the TCCON protocol with the officially recommended GGG2014 pack-

age [Wunch et al., 2011]. The retrievals from the EM27/SUN measurements were instead
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performed with the PROFFIT V9.6 software. The solar zenith angle dependent corrections

for target gases were applied afterwards in the post-processing step (see section 3.2.2). The

measured ILS (see section 3.4) and the a-priori VMR profiles used in GGG2014 were applied

in the retrieval. The results from the TCCON and the EM27/SUN measurements recorded

at the same time (1 minute) were selected for the generation of a paired dataset. Finally, the

scaling factors were derived from this dataset. We find that a nearly 1 % change of XCO2 can

be observed when measurements recorded at noon and sunset are compared [Wunch et al.,

2011]. Therefore, an SZA filter was here applied to eliminate the measurement errors derived

from high solar zenith angles. Only the results with SZA less than 75◦ were used. The scaling

factor is computed as follows:

fAI =
〈 XTCCON,paired

XEM27/SUN,paired

〉
(3.5)

where the terms in the angle brackets indicate the slope of the linear regression line. This

correction function between the TCCON data and the EM27/SUN data with the SZA de-

pendency correction is forced to go through the point of origin. Figure 3.1 shows the linear

relation corresponding to the TCCON retrievals for XCO2, XCH4 and XCO. The obtained

scaling factors for both EM27/SUN spectrometers are shown in Table 3.1 where the error

margins are the standard deviation from the calibration dataset. The very close scaling

factors between these two instruments verify for all XCO2 and XCH4 the high degree of

instrument-to-instrument consistency. Note that the XCO retrieved from the EM27/SUN

measurements had no empirical SZA dependent correction, and the Kiruna instrument does

not have external CO channel.

Figure 3.1: Correlation between the EM27/SUN that went to Sodankylä and the refer-
ence TCCON data for XCO2, XCH4 and XCO for 1 minute paired averages. The red
line denotes the linear regression line through the origin. The data recorded with the So-
dankylä EM27/SUN are used as an example here. Measurements were performed in Karlsruhe
from February 13 to 15, 2017.
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EM27/SUN XCO2 XCH4 XCO

Sodankylä 0.99879±1.7E-4 1.01241±9.1E-5 0.92347±1.3E-3

Kiruna 0.99871±2.2E-4 1.01250±1.2E-4 –*

Table 3.1: Airmass independent correction factors of XCO2, XCH4 and XCO for the two
EM27/SUN spectrometers deployed to Sodankylä and Kiruna, with the TCCON data as a
reference (*: No CO channel in the Kiruna instrument.)

The entire EM27/SUN dataset is scaled to the TCCON reference with the global scaling

factor fAI,Gas for specific species, which can be calculated by using the formula below:

XGas,EM27/SUN,corr = XGas,EM27/SUN · fAI,Gas (3.6)

3.2.2 Airmass dependent (AD) correction

The impact of the SZA dependency on the spectroscopic trace gas measurements in the

NIR is not negligible. This, in particular, affects all the measurements with large SZA in

the early spring and winter time. Such problems are mainly introduced by the insufficient

accuracy of the spectroscopic data, i.e. the line positions, the line widths, etc. The GGG

package includes an empirical ad-hoc SZA correction. A similar correction is applied for the

PROFFIT retrievals as an external post processing based on the research from Klappenbach

et al. [2015]. The applied polynomial correction is defined as:

XGas,corr = XGas ·

{
1 + a ·

[(
SZA + b

90◦ + b

)2

−
(

45◦ + b

90◦ + b

)2
]}

(3.7)

here the parameters a and b are free fitting factors. XGas,corr and XGas represent the column-

averaged DMF of one species with and without SZA dependent correction. The dataset is

referenced to SZA=45◦ as the neutral angle, where XGas,corr equals to XGas.

The TCCON 125HR spectrometer in Karlsruhe provides high-resolution data as a ref-

erence. It is, however, not well suited for determining the correction parameters due to

the actual intraday variability of the trace gases and the unknown local sources and sinks.

To determine the SZA correction parameters, a scientific campaign covering a wide range

of latitudes was performed [Klappenbach et al., 2015]. In this campaign, an EM27/SUN

spectrometer was operated on the research ship “Polarstern”. The ship departed from the

port Cape Town, south Africa (34 ◦S) on March 4, 2014. The route over the Atlantic Ocean

along the west coast of Africa was far away from local sources and sinks which contribute

to CO2 or CH4. The travel ended at the port Bremerhaven, Germany (54 ◦N) on April 14,

2014. The measured data clearly showed the intraday variability which was only affected by

the solar zenith angle dependency. In contrast to GGG retrievals, the O2 column-averaged

DMFs retrieved with the PROFFIT algorithm from the EM27/SUN spectra do not show a
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significant SZA dependency when angles are less than 80◦. There is an airmass dependency

detectable for the CO2 and CH4 retrievals. The fitting parameters are a=6.296× 10−3 and

b=1.291 for XCO2; and a=3.796× 10−3 and b=16.04 for XCH4.

Finally, these corrections are applied to the raw EM27/SUN retrievals. Figure 3.2 shows

different EM27/SUN time series datasets with different corrections: without any correction

(pink squares), with only AI correction (green crosses), with both AI and AD correction

(blue dots), and the reference TCCON data (black triangles) for (a): XCO2, (b): XCH4 and

(c): XCO. The difference between the EM27/SUN and TCCON datasets is also shown in the

second figure of every panel to quantify the impact of the airmass independent and depen-

dent correction factor for the target gases. The difference between these three EM27/SUN

measurements in XCO2 was close to zero over the whole time series. After the correction,

the offset slightly increased and less change happened around noon because the AD cor-

rection used a diurnal-neutral angle of 45◦ as the reference. The mean offset before was

(−0.16± 0.87) ppm and after the correction was (−6.2× 10−4 ± 0.89) ppm. For XCH4 the

mean offset decreased to (1.7± 1.2) ppb after AD and AI corrections, comparing with the

uncorrected mean offset of (24.0± 2.0) ppb. The agreement of XCO measurements between

EM27/SUN and TCCON reference improved from (8.4± 1.5) ppb to (0.002 ± 1.4) ppb after

applying the AI correction. Note that the TCCON data incorporated an AD correction for

XCO, while no AD correction for XCO was applied in EM27/SUN data processing.
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Figure 3.2: Time series of (a): XCO2, (b): XCH4 and (c): XCO measured with the
EM27/SUN and TCCON spectrometers at KIT, Karlsruhe on February 15, 2017. The ref-
erence TCCON retrievals (black triangles) are presented for all target gases. Measurements
of XCO2 and XCH4 with the AI correction (Xgas,AI) and with the subsequent AD correction
(Xgas,AIAD) are shown. Only an AI correction was applied to XCO.
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3.3 Intraday variable ground pressure and temperature

A good knowledge of pressure and temperature profiles is essential for deriving the DMFs of

greenhouse gases. The same pressure and temperature (pT) profiles are used for evaluating

the TCCON 125HR and EM27/SUN measurements to minimize the associated systemic

errors. These pT profiles can be acquired from in-situ measurements (e.g. radiosonde balloon

profile measurements). However, FTIR stations lack in-situ pT profiles nearby except for the

ground-based pT measurements. Therefore, the pT vertical profiles that are used in this work

for the analysis of the TCCON and the EM27/SUN measurements are obtained from model

data, provided by the NCEP1/NCAR2 analysis product [Kalnay et al., 1996]. A pT profile

is generated every day for a certain location and interpolated to local noon. However, the

retrievals are considerably affected by the intraday variable ground pressure and temperature

[Gisi et al., 2012]. The single vertical pT profiles are not suitable for the evaluation of an

entire measurement day without accounting for station surface pressure. In the next sections,

the effects of intraday variable ground pressure and temperature are discussed.

3.3.1 Intraday variable ground pressure

To emphasize the effects of a intraday variable ground pressure on the retrieval process,

measurements from one day (June 8, 2017) were analyzed. The covered time range extends

approximately from 6:00 AM to 6:00 PM. Figure 3.3 shows the time series of the fixed and

in-situ measured variable ground pressure used in the PROFFIT algorithm (the diurnal time

series of O2, CO2, CH4 and CO retrievals in terms of total columns and column-averaged

DMFs are shown in Appendix A—Figure A.1, A.2). Within the day, the pressure decreases

from ∼999 hPa in the early morning to ∼996 hPa later in the afternoon. The constant

pressure line (red) corresponds to the observed pressure line (green) at noon. Therefore,

the difference between these pressures is maximal in the morning and in the afternoon. We

test the measured ground pressure and the constant value from UTC noon in the retrieval

procedure. Small effect exists in XCO2 and XCH4 which are larger than effects on XCO,

especially in the early morning and later in the afternoon. Figure 3.4 displays the relative

difference between using the variable ground pressure and the fixed pressure in retrieving

trace gases in terms of total columns (left panel) and XGas (right panel), different colors

denoting different gases. Different species show different sensitivity to the ground pressure.

The O2 column reveals the highest sensitivity to pressure changes, compared to those of

CO2, CH4 and CO in descending order. An increase of 1 hPa in the ground pressure leads

to approximately an average 0.05 % decrease in the O2 column. The relative reduction

in of total column amounts for CO2 and CH4 is on the order of 0.019 % and 0.015 % on

average when the pressure increases by 1 hPa, while the CO total column shows no significant

1National Centers for Environmental Prediction
2National Center for Atmospheric Research
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variation (∼− 0.0021 %) with respect to the ground pressure. The O2 total column has a

much larger decrement than the other gases, which causes it to effect XGas values because it is

the denominator in the DMF equation. This overcompensation effect occurs for the retrieved

XCO2, XCH4 and XCO. A change of 1 hPa in the ground pressure causes an average increase

of about 0.035 % in XCO2, 0.039 % in XCH4 and 0.052 % in XCO, respectively.

Figure 3.3: Diurnal time series of fixed and variable ground pressure used in the PROFFIT
algorithm on June 8, 2017 in Sodankylä as an example.

Figure 3.4: Relative difference of O2, CO2, CH4 and CO retrievals with fixed and variable
pressure used in the PROFFIT algorithm, left: in total columns; right: in XGas—using
measurements performed in Sodankylä on June 8, 2017 as an example.

3.3.2 Temperature sensitivity

A slightly modified temperature profile was applied to study the temperature sensitivity for

the retrievals. Since it is difficult to obtain the intraday variable temperature in the boundary

layer, a systematic disturbance assuming a bias of 5 K in the temperature profile in lower
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layers, up to an altitude level of 2 km, was assumed. The diurnal time series of O2, CO2,

CH4 and CO retrievals with the original temperature profile and the modified one in terms

of total columns and column-averaged DMFs are shown in Appendix A—Figure A.3, A.4.

The total columns of trace gases enhance with increasing temperature without exception.

The retrieved total columns of O2, CO2 and CH4 within this selected measurement day

change moderately by 0.23 %, 0.15 % and 0.04 %, respectively. The enhancement of the CO

column, on the other hand, with a value of approximately 2.37 % is much higher. Due to

the compensation by O2, the resulting relative changes for XCO2, XCH4 and XCO show

a different behavior. Both XCO2 and XCH4 are overcompensated with the approximate

changes of −0.08 % and −0.18 %, respectively. XCO is undercompensated with a change of

approximately 2.14 %. Therefore, an increase of 1 K in the temperature leads to a reduction

of about 0.016 % (0.06 ppm) in XCO2 and 0.036 % (0.66 ppb) in XCH4, whereas XCO is

increased by 0.428 % (0.34 ppb).

Figure 3.5: Time series of relative difference of O2, CO2, CH4 and CO retrievals with original
and modified temperature profile used in the PROFFIT algorithm, left: in total columns;
right: in XGas—using measurements performed in Sodankylä on June 8, 2017 as an example.

To summarize, it can be stated that accurate intraday variable pressure values based on

a local meteorological station or portable pressure datalogger are mandatory for accurate

retrieval results. Different species show different sensitivities to the ground pressure and the

temperature. The O2 column amount is more sensitive to the pressure and the temperature

than the CO2 and CH4 columns. Pressure change has no obvious effect on the CO column,

while the temperature brings the highest effect on the CO column among all species. Thus,

the column-averaged DMF method can only partly eliminate the effect of erroneous pressure

and temperature values.
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3.4 Instrumental line shape

The instrumental line shape (ILS) is an important indicator for assessing the instrumental

performance. Misalignment and optical aberrations lead to a non-ideal ILS, which has to

be taken into account in the retrieval procedure [Hase et al., 1999]. Two simplified ILS pa-

rameters are used to characterize the EM27/SUN spectrometer, including the modulation

efficiency (ME) and the phase error (PE) at MOPD which ideally should be 1 and 0, respec-

tively (for more details see section 2.2). In the TCCON network, a dedicated low-pressure

(∼5 hPa) gas cell is used as the standard approach to derive the ILS. However, this method

only works for the high-resolution spectrometer because a longer cell at the same pressure

would be needed for the lower resolution instrument, for which there is no space internally.

The ILS of the EM27/SUN instrument is derived from open-path measurements of H2O per-

formed in laboratory. This experiment can also be easily performed during campaigns since

only an external light source is needed. To derive the ILS from the laboratory spectra, the

LINEFIT retrieval software is used [Hase et al., 1999] (see section 2.2). Regular ILS measure-

ments are necessary especially before the transportation of the EM27/SUN spectrometer to

a field campaign and after the return. It should be noted that ILS effects are only considered

in the PROFFIT retrieval algorithm but not in the current version of the GGG package that

is widely used for retrieving the official TCCON data.

In this section, the sensitivities of the ME and PE on the retrievals are studied by using

a set of solar measurements recorded in Sodankylä on June 8, 2017 as an example.

3.4.1 Modulation efficiency

The ME for EM27/SUN instruments is typically slightly below 1, which would be expected

for an ideal FTS. Frey et al. [2018] has studied 30 EM27/SUN instruments and the ME at

MOPD ensemble average is 0.9851± 0.0078.

Two different values of the ME (i.e. 1.00 and 0.99) are used within the PROFFIT

software for retrievals, using a single measurement day (June 8, 2017) in Sodankylä as an

example (the diurnal time series of target species retrievals with different ME values in terms

of total columns and XGas are shown in Appendix A—Figure A.5, A.6). In general, the

retrievals with different ME values have a similar tendency for each species throughout the

day. The total column abundances increase with decreasing ME value. The time series of

relative differences of these species in terms of total column are displayed in Figure 3.6, left

panel. A decrease of 1 % in the ME value results in higher amount of O2 column with an

average value of (0.37± 0.01)%. CO2 shows a higher sensitivity than O2, with an average

increase of (0.55± 0.03)%, while CH4 is the least sensitive species, with an average change

of (0.27± 0.01)%. Among all these species, CO shows the highest change and reveals the

strongest intraday variability, with an average value of (0.74± 0.10)%, ranging from 0.42 %

to 0.83 %. This is mainly because the absorption of CO within the selected spectral window
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is much weaker than those of the other gases. The superimposition from the nearby strong

interfering lines of CH4 and H2O makes it more sensitive to apparent variation. With the

compensation of O2 column, the relative changes of XGas are approximately (0.18± 0.02)%

in XCO2, (−0.100± 0.002)% in XCH4, and (0.36± 0.11)% in XCO, respectively.

Figure 3.6: Time series of relative difference of O2, CO2, CH4 and CO due to a 1 % decrease
of the ME values, left: in total columns; right: in XGas—using measurements performed in
Sodankylä on June 8, 2017 as an example.

The relative difference changes show an intraday variation, mainly due to the effects of

SZA and different gases display different responses (see Figure 3.7). The O2 and CH4 columns

show a similar and nearly linear positive correlation with SZA. This results in a non-significant

correlation between XCH4 relative change and SZA. Slightly higher correlation is found in

CO2, especially at higher SZA, while the SZA sensitivity decreases a little for XCO2 with the

compensation of O2 column. On the other hand, the CO column is decreasing with increasing

SZA and this effect is most strongly pronounced compared with the other gases and the SZA

effect on XCO becomes slightly stronger due to the influence of O2 column.
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Figure 3.7: Relative difference of O2, CO2, CH4 and CO with respect to SZA due to a
1 % decrease of the ME values, left: in total columns; right: in XGas—using measurements
performed in Sodankylä on June 8, 2017 as an example.

3.4.2 Phase Error

The second ILS parameter is the phase error. For the large majority of the EM27/SUN

instruments characterized at KIT, an average PE value of around ±0.002 rad was found,

indicating a nearly symmetric ILS shape [Frey et al., 2018]. In contrast to the results of the

ME sensitivity, the PE does not show an obvious impact on the target gases (the diurnal time

series of target species retrievals with different PE values in terms of total columns and XGas

are shown in Appendix A—Figure A.7, A.8). By decreasing the PE from 0 to −0.01 rad,

the tendencies of change for both, CO2 and CH4 are mostly similar with average values of

(−0.0066± 0.0048)% and (−0.020± 0.002)%, respectively and both show a slightly positive

correlation with SZA (see Figure 3.8, 3.9). The O2 column amount shows a relatively higher

sensitivity to the PE change by an approximate increase of (0.052± 0.006)% and its relative

difference shows a negative correlation with SZA. This change results in a slight overcom-

pensation in the XCO2 and XCH4 retrievals, with average values of (−0.058± 0.011)% and

(−0.072± 0.007)%, respectively. The PE change affects the CO more strongly with an av-

erage relative difference of (−0.11± 0.10)%, ranging from −0.23 % to 0.06 %. The relative

difference of CO column also shows an obvious sensitivity to SZA. This is because CO is

a weak absorber within the selected spectral window, and there are strong interfering lines

from the nearby H2O and CH4, which makes CO more sensible to apparent variation.
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Figure 3.8: Time series of relative difference of O2, CO2, CH4 and CO due to a 0.01 rad
reduction of the PE values, left: in total columns; right: in XGas—using measurements
performed in Sodankylä on June 8, 2017 as an example.

Figure 3.9: Relative difference of O2, CO2, CH4 and CO with respect to SZA due to a 0.01 rad
reduction of the PE values, left: in total columns; right: in XGas—using measurements
performed in Sodankylä on June 8, 2017 as an example

To summarize, the ME value is the dominate affect on retrievals between the two ILS

parameters. Additionally, the measured PE value is approximately ±0.002 rad based on the

study of an ensemble of EM27/SUN spectrometers [Frey et al., 2018], which results in lesser

change than the aforementioned errors.
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3.5 A-priori profiles

For retrieving correct column abundances from ground-based FTIR spectra, the choice of a-

priori VMR vertical profiles for the target gases is important. In the following section several

different sets of a-priori profiles are used for investigating the sensitivity of the retrievals with

respect to the choice of the a-priori profile. One set of profiles is derived from the Whole

Atmosphere Community Climate Model (WACCM)1. These profiles are sampled on 49 levels

from the observation altitude up to 120 km and stay constant over the year. Another set of

a-priori VMR profiles are derived from the GGG algorithm and change with time. These

empirical profiles are based on several kinds of model data up to 70 km and are sampled on

an equidistant 1 km grid (see subsection 2.2.1).

Any practical choice of the a-priori VMR profiles is generally based on model data. To

assess the quality of the model data, knowledge of the actual profiles is required and might

be obtainable from in-situ AirCore balloon launches. The AirCore, which was an auxiliary

activity in the Finland campaign, is a simple and viable atmospheric sampling system to

measure vertical profiles of greenhouse gases [Karion et al., 2010]. The AirCore system

that was used in Sodankylä was built at the University of Groningen (UG). It consists of a

100 m long coiled stainless steel tube, combing 40 m of 0.25 inch (6.35 mm) tube and 60 m

of 0.125 inch (3.175 mm) tube, along with an automatic shut-off valve and home-made data

logger to record temperature and pressure during the flight. A 3 kg balloon was used to launch

the AirCore along with a radiosonde and an iridium transceiver (see Figure 3.10). The air

is removed from the tube during ascent to an altitude of 30 km while ambient air flushes

into the tube as it descends. A Cavity Ring-Down Spectrometer (CRDS) manufactured by

Picarro Inc. is used afterwards to quantify the mole fractions of CO2, CH4 and CO in the

AirCore sample.

(a) AirCore in package (b) AirCore launch

Figure 3.10: (a): The prepared AirCore in package (Photographs courtesy of FMI and UG);
(b): the launching AirCore with balloon at FMI in March, 2017.

1https://www2.acom.ucar.edu/gcm/waccm
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To determine the influence of the a-priori VMR profiles on the retrievals, these different

profiles (1) the AirCore, (2) the fixed (WACCM), and (3) the daily-variable (MAP) VMR

profiles were applied in the PROFFIT analysis, using the measurements performed in So-

dankylä on August 28, 2017 as an example. Figure 3.11 shows the sets of vertical profiles

(the AirCore in black, the invariable profiles of WACCM in red, and the daily-variable MAP

profile in green) for CO2, CH4 and CO. Both the AirCore and the MAP profiles are from the

same day. Throughout the available altitude levels, the MAP profiles for CO2 and CH4 are

closer to the AirCore data, especially at lower altitudes. The tropospheric CO profiles from

the WACCM and the MAP models are of similar shape, and the relative bias compared to

the AirCore profile for both reaches up to 70 %.

Figure 3.11: A-priori VMR profiles of CO2, CH4, CO from WACCM, MAP and AirCore.

Since the profile shape of O2 is highly predictable and fairly constant in the troposphere,

identical O2 a-priori profiles are used for these three datasets. Thus, there is no obvious

influence from the a-priori profiles on the O2 retrievals (The effect of a-priori VMR profiles

on other species in terms of total columns and XGas are presented in Appendix A—Figure A.9,

A.10). Here, we use the AirCore profiles as the reference. For this measurement day, the

use of MAP profiles results in higher deviations compared to those that use the WACCM

profiles (see Figure 3.12). With respect to the AirCore-retrieved results, total columns are

higher by (0.23± 0.02)%, (0.35± 0.04)%, (0.99± 0.04)% for CO2, CH4 and CO, respectively,

when the MAP profiles are used. Whereas total columns are lower by (0.10± 0.01)% and

(0.26± 0.03)% for CO2 and CH4 on average by using the WACCM profiles. The total column

of CO shows an opposite situation with on average about (0.22± 0.03)% higher values than

the reference.

The use of different a-priori VMR profiles shows different responses to the SZA. The

airmass effects on trace gases retrieved with WACCM and MAP profiles with respect to

the AirCore retrieved results are presented in Figure 3.13. The relative differences of CO2

and CH4 columns (WACCM-AirCore) show a negative correlation with SZA while a positive
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Figure 3.12: Time series of relative difference of CO2, CH4 and CO columns retrieved with
WACCM and MAP a-priori VMR profiles with respect to the AirCore retrieved results,
respectively. The results for WACCM-AirCore are denoted in solid symbols and the results
for MAP-AirCore in hollow symbols.

Figure 3.13: Relative difference of CO2, CH4 and CO columns retrieved with WACCM and
MAP a-priori VMR profiles with respect to the AirCore retrieved results as a function of
SZA. The results for WACCM-AirCore are denoted in solid symbols and the results for
MAP-AirCore in hollow symbols.
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tendency exists in the CO column. For retrievals using MAP profiles (MAP-AirCore), relative

differences of both CO2 and CH4 columns increase with increasing SZA. Whereas, the CO

column displays a negative correlation. The use of an identical O2 profile in obtaining XGas

dose not cause any differences in the different datasets. Therefore, relative differences in

terms of XGas show similar patterns to those in terms of total columns (see Appendix A—

Figure A.11).

To conclude, for investigating this sample day, the shape of the a-priori VMR profiles

affects the retrievals to a certain extent. The use of a-priori VMR profiles has stronger impacts

on XCO than XCO2 and XCH4 due to its larger difference between the modeled a-priori profile

shapes (WACCM or MAP) with the measured AirCore profiles in the troposphere. Note that

the retrieval differences caused by the a-priori VMR profiles can be different over the year,

since the profiles change with season. AirCore launches were performed several times during

the Finland campaign, which will be discussed in more detail in subsection 4.1.2.

3.6 Conclusions

Accurate a-priori information is a precondition to obtain high-precision retrievals from ground-

based FTIR measurements. The approach of using column-averaged dry-air mole fractions

instead of total columns for the target gases reduces the systematic errors. The compensation

by using the O2 column is expected to be better for XCO2 and XCH4 than XCO, since CO

is a weak absorber within the selected spectral window as compared to the other two gases.

The superimposition from the nearby strong interfering lines of CH4 and H2O makes XCO

more sensitive to apparent variation.

To quantify the spectroscopic inadequacies, certain EM27/SUN retrievals are scaled to

the TCCON results with corresponding airmass independent correction factor derived from

in-situ side-by-side measurements. In summary, the XCO2 correction factor is 0.99879 and

0.99871 for the EM27/SUN spectrometers operated at Sodankylä and Kiruna sites respec-

tively; the scaling factors of XCH4 are 1.01241 and 1.01250, and 0.92347 for XCO for the

instrument in Sodankylä. Airmass dependent biases are taken into account in XCO2 and

XCH4 by applying a polynomial function based on the studies of Klappenbach et al. [2015].

The use of an intraday variable ground pressure profile rather than a single fixed value

on the measurement day turns out to be mandatory. For a sample day, a 1 hPa higher

ground pressure leads to a reduction of 0.055 % in the O2 total column, which also causes

the increases of 0.035 % in XCO2, 0.039 % in XCH4 and 0.052 % in XCO, respectively. An

increase of 1 K in temperature corresponds to a decrease of 0.015 % in XCO2, 0.037 % in

XCH4 and an increase of 0.428 % in XCO, respectively.

Considering ILS parameters in the retrieval procedure also helps to reduce the systematic

errors. The modulation efficiency (ME) parameter dominates the effect. The reduction of the

ME value by 1 % induces changes of 0.18 % in XCO2 and −0.01 % in XCH4, respectively, for
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a selected sample day. XCO is affected by the ME changes to a larger range (0.05 %–0.48 %)

and suffers from asymmetry in the ILS due to the presence of strong interfering bands. The

relative difference derived from different affects are summarized in Figure 3.14 (see Table 1

in the Appendix A for numerical values). It should be noted that the measured PE value

changes on the order of 0.001 rad, resulting in much less impact on retrievals than the values

listed here.

The choice of a-priori VMR profiles turns out to be important. The shape of the true

atmospheric VMR profiles is not constant but changing over time. Thus, it is a better choice

to use daily variable VMR profiles reflecting the meteorological structure rather than using

invariable ones. The choice of identical a-priori VMR profiles simplifies the intercomparison

between different FTIR instruments [Rodgers and Connor, 2003].

Figure 3.14: Daily average relative difference (%) in different species due to 1 hPa increase
of ground pressure, 1 K increase of temperature, 1% decrease of modulation efficiency and
0.01 rad decrease of phase error. The results are derived from the measurements performed
in Sodankylä on June 8, 2017 as an example.
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Chapter 4

Ground-based GHG measurements

in Sodankylä and Kiruna

In this chapter, I discuss how two EM27/SUN spectrometers located in Sodankylä and Kiruna

are utilized to detect gradients and to determine the emission strength of trace gases (CO2

and CH4) from wetlands within the Arctic Circle. The observations with the EM27/SUN

instrument at FMI, Sodankylä are performed in the framework of the FRM4GHG campaign.

This campaign focused on the intercomparison of simultaneously measured column-averaged

abundances of GHGs using several different portable low-cost ground-based remote sens-

ing spectrometers. First, the EM27/SUN observations are retrieved with the PROFFIT

algorithm using the optimized processing procedures described in Chapter 3, including the

implementation of the measured ILS parameters and daily-variable a-priori VMR profiles

(MAP) which are also used in retrievals for observations from the co-located 125HR. The

impact of using measured a-priori VMR profiles from the AirCore balloon launches on the

trace gas retrievals is also investigated. In addition, the optimized results are compared to

in-situ tower observations in Sodankylä in the context of surface fluxes. Comparisons of the

EM27/SUN measurements to the reference TCCON data and to the 125HR low-resolution

data are provided, followed by another comparison to the data from the other portal low-

resolution spectrometers participating in the campaign. Additionally, an investigation of the

regional greenhouse gas emissions is discussed.

4.1 Optimization of EM27/SUN retrievals

4.1.1 Measured ILS implementation

An ILS sensitivity study for an example day has been presented in section 3.4 to demonstrate

the effect of the ILS on the trace gas retrievals. The influence of the ILS indicates the

necessity to characterize the ILS and to apply the parameters to the retrieval procedure.

Regular ILS characterizations were performed during the FRM4GHG campaign and the
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variation of the ME value is approximately within 0.1 % (for details see section 2.2). This

value is within the uncertainty budget of the open-path measurement which is 0.29 % in

total as derived by Frey et al. [2018]. The slight variation of the ILS parameters might

be connected to carrying the spectrometer outside for measurements every day in spring,

and due to unavoidable errors during the experiment (e.g. the uncertainty of the distance

measurement between the lamp and the instrument). The absence of a significant change

in the EM27/SUN instrumental performance demonstrates the highly stable characteristics

of the spectrometer. The measurements were stable, even when the instrument was exposed

to −15 ◦C. Note that no realignment of the instrument was performed during the whole

campaign period.

Here, the average values of the ME and PE parameters are used, i.e. 0.9825 and -0.001,

respectively, based on all the ILS measurements performed during the campaign (except the

erroneous experiment on May 8, 2017 when the expected stable lab air was disturbed by the

air conditioner). Note that the constant WACCM-derived a-priori profiles are used for the

EM27/SUN retrievals in this subsection. The impacts of using MAP and AirCore as a priori

profiles are explored in section 4.1.2. Additionally, the quality filter of SZA < 80◦ is applied

to the results to exclude retrievals with higher uncertainty at higher SZA.

Figure 4.1: Time series of the difference between results with the measured ILS parameters
and with the ideal ILS parameters in retrieving (a): XCO2, (b): XCH4 and (c): XCO
measured with the EM27/SUN instrument.

The difference between the EM27/SUN data retrieved with the measured ILS parameters

and with the ideal ILS parameters is presented in Figure 4.1. For XCO2, higher changes

are observed in spring, up to 1.9 ppm, while a maximum of 1.6 ppm is observed in summer.

However, the difference in XCH4 between the two EM27/SUN datasets shows a different
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ideal ILS measured ILS

bias relative bias bias relative bias

XCO2 (-1.57 ± 0.95) ppm (-0.39 ± 0.24)% (-0.22 ± 1.04) ppm (-0.06 ± 0.26)%
XCH4 (-4.22 ± 5.77) ppb (-0.23 ± 0.32)% (-7.36 ± 5.85) ppb (-0.40 ± 0.32)%
XCO (-0.44 ± 1.98) ppb (-0.39 ± 2.37)% (-0.07 ± 2.1) ppb (0.09 ± 2.55)%

Table 4.1: Sensitivity study on the effect of ILS changes. EM27/SUN data are retrieved with
ideal and measured ILS parameters. Depicted is the annual average bias and relative bias of
retrieved XGas with respect to the TCCON retrievals.

tendency. The effect of the measured ILS parameters causes a consistent negative offset

during spring on the order of 3.0 ppb, while a slightly stronger negative offset and more

variability are observed later during the year. XCO is offset by around 0.2 ppb in the early

period of the measurements. After that, the difference increases gradually, peaks in summer

and drops down afterwards, showing a seasonal variability.

The implementation of measured ILS parameters in retrieving EM27/SUN data helps to

achieve a better agreement with the TCCON reference results (see Figure 4.2 in terms of

correlation, time series of these three dataset are presented in Appendix A Figure A.12).

XCO2 shows a most obviously better agreement after using the measured ILS parameters

among all the species. Most of the EM27/SUN data retrieved with the ideal ILS are lower

than the TCCON data and the average bias between these two datasets is approximately

−1.57 ppm. The bias is reduced by using the measured ILS parameters to −0.22 ppm. In

contrast, using the measured ILS increases the bias of XCH4 from −4.22 ppb to −7.36 ppb.

This worse agreement is mainly due to the effect of polar vortex in early spring. Improved

a-priori profiles will be discussed in next subsection. For XCO a slightly better agreement is

achieved after the implementation of the measured ILS parameters, where an annual average

bias of −0.07 ppb is obtained, while the bias before is −0.44 ppb. The annual mean value of

the bias and relative bias for trace gases retrieved with different ILS parameters with respect

to the TCCON data are summarized in Table 4.1. The changes in the relative differences

do not fully correspond to the ILS sensitivity analysis for the example day shown in section

3.4 because the seasonal variability is affected by the airmass dependency. In addition,

the constant WACCM-derived a-priori VMR profiles have been used for the EM27/SUN

retrievals, which results in systematic errors when TCCON data is retrieved with MAP a-

priori profiles.

To investigate the sensitivity of the ILS with SZA, the relative difference between the

EM27/SUN retrieved with different ILS parameters as a function of SZA is presented in

Figure 4.3. XCO2 (red square) shows an obvious positive correlation with SZA and the

tendency becomes stronger at higher SZA. Whereas there is no significant correlation in XCH4

(blue triangle). XCO is most sensitive to SZA, with different layers of negative correlation

which is mainly due to its weak absorption and interference from nearby CH4 and H2O
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spectral lines.

Figure 4.2: XCO2, XCH4 and XCO measured with the EM27/SUN instrument retrieved
with ideal ILS (left panel) and measured ILS parameters (right panel) with respect to the
TCCON results. Different colors denote the measurements recorded in different months.
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Figure 4.3: Relative differences of species between retrieved with measured ILS parameters
and retrieved with ideal ILS parameters as a function of SZA. Left panel: XCO2 and XCH4;
right panel: XCO.

4.1.2 A-priori VMR implementation

WACCM-derived and MAP a-priori profiles

In section 3.5 the influence of a-priori VMR profiles on trace gas retrievals has been discussed

for a measurement day, and I found it impacted the retrievals by as much as 1 % for XCO. The

atmospheric vertical profiles change with season, therefore, seasonal variations of the a-priori

impact are expected. The EM27/SUN data during the whole campaign were retrieved with

two different sets of a-priori profiles—the constant WACCM-derived and the daily-variable

MAP profiles, as used by TCCON. Additionally, the impact of the measured AirCore a-priori

profiles on the retrievals is also discussed for select days. It should be noted that the measured

ILS parameters were used in the EM27/SUN retrievals and measurements with SZA > 80◦

were discarded.

Figure 4.4 shows the constant WACCM-derived and daily variable MAP a-priori profiles

(146 days in total, ranging from February 13, 2017 to November 7, 2017) for CO2, CH4

and CO. Compared with the constant WACCM-derived a-priori profiles, MAP profiles show

obvious seasonal changing and different changing tendency for different species. A significant

seasonal variability exists in the MAP profiles for CO2, especially in the lower atmosphere.

In the beginning of the year, the CO2 concentrations tend to decrease with increasing height.

The lower part of the profiles (below ∼10 km) changes dramatically around May, resulting

in increasing concentrations with altitude and a higher rate of change. For CH4 there is less

seasonal variability than for CO2 and mainly concentrates on the UTLS (upper troposphere
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and lower stratosphere) region, likely related to the tropopause height. The profiles show

similar shapes over the season and mostly shift to higher values with time. CO profiles change

obviously with time below 20 km. Larger vertical change is found early in the year.

Figure 4.4: A-priori profiles of WACCM-derived (dash line in black) and MAP (solid line)
for 146 days in 2017. Different colors represent different days for MAP profiles.
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A-priori profiles are an important prerequisite in retrieving species concentrations, result-

ing in systematic errors when different profiles are used in retrievals. Figure 4.5 shows the

time series of difference for the trace gases for the EM27/SUN measurements retrieved with

the WACCM-derived a-priori profiles and with the MAP profiles. A difference of −0.4 ppm

of XCO2 between retrievals using the two datasets (MAP-WACCM) is seen in the beginning

of the campaign. The difference becomes more negative with the largest value of −1.7 ppm

around May. Afterwards, it becomes smaller and reaches zero around July. Later, the ab-

solute difference increases up to about 2.1 ppm in early September (see Figure 4.5 (a)). For

XCH4 strong daily and seasonal variability is found when using different a-priori VMR pro-

files (see Figure 4.5 (b)). The difference is approximately 20.0 ppb in early March and starts

to decrease, resulting in a minimum value of about 3.3 ppb in July. Afterwards, it increases

gradually back to nearly 20.0 ppb. Using different priors has a much stronger diurnal impact

on XCH4 than XCO2. The largest daily variation from 7.5 ppb to 21.1 ppb occurs on July

25, with a daily standard deviation of 3.7 ppb. Using different a-priori VMR profiles also

changes the bias in XCO over time, with biases from −0.2 ppb to 3.6 ppb (see Figure 4.5 (c)).

The bias increases gradually from March and reaches the maximum value in July, opposite

of XCH4. The seasonal variability found in the retrievals is due to seasonal variability in the

MAP a-priori VMR profiles, while the WACCM-derived profile is constant for all seasons.

Figure 4.5: Time series of differences from retrieving XCO2, XCH4 and XCO with the fixed
WACCM-derived a-priori and the daily-variable MAP a-priori VMR profiles, respectively
(MAP-WACCM). Note that the WACCM-derived profile is a constant climatological profile,
while MAP is a variable day-to-day adjusted profile.
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The linear correlation of the two EM27/SUN datasets with respect to the TCCON refer-

ence results is presented in Figure 4.6 (see Appendix A—Figure A.13 in terms of time series)

and the numerical values for the bias and relative bias are summerized in Table 4.2. In every

panel, EM27/SUN data retrieved with the WACCM-derived a-priori profiles is presented on

the left, and data retrieved with the MAP a-priori profiles is presented on the right. The

fitting line is forced through the origin and different colors denote the measurements recorded

in different months. It should be noted that the TCCON reference results are retrieved with

the MAP profiles. For XCO2 retrieved with the WACCM-derived profile, the best matched

measurements occur in May and June. However, worse agreement is found in the beginning

of and at the end of the campaign. EM27/SUN results are larger than the TCCON results in

spring and early summer and are lower in late summer and autumn. When using the MAP

profiles, the agreement is improved throughout the year. The EM27/SUN retrievals decrease

in spring and increase in autumn. These changes reduce the bias compared to the TCCON

data with an annual-average difference of 0.06 ppm (∼0.01 %), resulting in an overall better

agreement. The annual-average standard deviation is reduced by ∼0.40 ppm indicating a

reduced seasonal variability. A more significant overall increase is found for XCH4 with ap-

proximately 9.72 ppb (∼0.51 %) on average after using the MAP a-priori VMR profiles. The

significant change caused by the different profiles is also clearly visible here when the linearly

dependent coefficient increases from 0.9959 to 1.0011, showing much better correlation with

the reference TCCON data. The XCO correlation becomes slightly worse probably because

the MAP profiles do not properly describe the actual atmospheric variability. Therefore,

in order to reduce these systematic errors derived from different a-priori VMR profiles, ide-

ally identical a-priori profiles should be used when comparing retrievals from different FTIR

spectrometers with different sensitivities.

WACCM MAP

bias relative bias bias relative bias

XCO2 (-0.22 ± 1.04) ppm (-0.06 ± 0.26)% (-0.28 ± 0.64) ppm (-0.07 ± 0.16)%
XCH4 (-7.73 ± 5.85) ppb (-0.40 ± 0.32)% (1.99 ± 5.76) ppb (0.11 ± 0.32)%
XCO (-0.07 ± 2.1) ppb (0.09 ± 2.55)% (1.72 ± 2.48) ppb (2.30 ± 3.2)%

Table 4.2: Sensitivity study of the effect of different a-priori VMR profiles on the EM27/SUN
retrievals. EM27/SUN data are retrieved with the WACCM-derived and the MAP profiles,
respectively. Depicted are the annual average bias and the relative bias of retrieved XGas

with respect to the TCCON retrievals.
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Figure 4.6: XCO2, XCH4 and XCO measured with the EM27/SUN instrument retrieved with
different a-priori profiles with respect to the TCCON results. The EM27/SUN retrievals with
the WACCM-derived profiles are depicted on the left side, while the retrievals with the MAP
profiles are depicted on the right. Different colors denote the measurements recorded in
different months.
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AirCore a-priori profiles

The use of common a-priori VMR profiles is expected to improve the agreement between

different remote sensing measurements. The balloon-based AirCore, as an innovative, simple

and viable sampling system provides the possibility to measure the actual vertical distribution

of CO2 and CH4 [Andersen et al., 2018; Karion et al., 2010; Membrive et al., 2017].

Ten AirCore soundings were launched co-located with the TCCON and EM27/SUN in-

struments during the FRM4GHG campaign between April and October, 2017. Figure 4.7

shows the three kinds of a-priori VMR profiles—the constant WACCM-derived profiles (dash

line), the daily-variable MAP profiles (dot lines) and the measured AirCore profiles (solid

lines) at 10 AirCore sounding days for CO2, CH4 and CO. Different colors denote different

measurement days for the MAP and AirCore profiles.

For CO2, less variation occurs in the higher altitude for all the three kinds of profiles,

while the tropospheric slope of both MAP and AirCore profiles varies significantly over

the year. The constant WACCM-derived profile shows a large difference compared to the

other two profiles with approximately 30 ppm bias for all altitude levels. The shape of the

WACCM-derived profile in lower layers is similar to the MAP and AirCore profiles in October

but with less variation. In spring and early summer the CO2 amounts in both MAP and

AirCore profiles decreased with increasing height. The MAP profiles have larger slope change

compared to the AirCore profiles but underestimate the absolute amounts in the troposphere.

However, the amount of CO2 in the MAP profiles is overestimated by approximately 10 ppm

near the surface. The MAP profiles have similar shapes to the AirCore profiles in August

and September, when the CO2 concentration increased with altitude in general. However,

the amount of CO2 in the MAP profiles is underestimated by approximately 20 ppm in lower

layers and a constant amount between 5 km to 10 km is observed in AirCore profiles. Both

MAP and AirCore profiles in October were during the transition from summer/autumn to

winter but higher variation and concentration are found in the AirCore profile.

The WACCM-derived CH4 profile has a similar shape compared to the MAP profiles

but is around 0.2 ppm lower in the troposphere. The bias is doubled in the intermediate

altitude levels. The MAP profiles show less variability over time and altitude than the

AirCore profiles. Good agreement is found below 8 km. There is no obvious change at the

higher altitude for the MAP profiles throughout time. In the AirCore profiles, CH4 is quite

stable in the lower layer of the atmosphere but varies at higher altitudes over the year. The

dominant variability occurs in the upper troposphere and in the stratosphere. An obvious

decrease is found in April above 20 km which is approximately 75 % as much as in later

seasons.

The WACCM-derived CO profile has a large bias compared to the MAP profile above the

tropopause and the bias increases with higher altitude, while the lower part is similar to the

MAP profiles in autumn. The MAP profiles have similar shapes to the AirCore profiles with

slightly lower values. Strong variability is observed in the altitude range between 8–15 km
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in the AirCore profiles when step changes happen at different altitudes in different seasons.

The AirCore profiles show a high degree of variability up to 20 km and vary with season.

There are lower concentrations of CO in spring and early summer near the surface, while the

amounts are more steady at higher altitude in different seasons.

To quantify the effect of the AirCore a-priori VMR profiles on different species, new

datasets are retrieved using these profiles in the PROFFIT algorithm. The new profiles

combine the measured AirCore profiles, scaled MAP profiles and near-surface observations.

The combination is necessary because the AirCore soundings mostly extend up to around

25 km (or 20 km for CO) and no data below 0.5 km are available from AirCore. These

combined profiles include 71 levels at equally spaced altitudes, similar to the MAP profiles.

The measurements from the in-situ tower mast at FMI are used for prescribing the ground

concentration of the trace gases. Levels from 1 km up to around 25 km (slightly different

for different days) for CO2 and CH4 or up to around 20 km for CO are derived from the

AirCore results, using the average gas concentration between ±0.5 km at each level. For

each species measured with AirCore, the highest available altitude level is considered as the

transition point. The distributions above this point are acquired from the MAP profiles

scaled to the AirCore profiles. The scale ratio equals to the gas concentration in the AirCore

profile divided by the MAP concentration at the transition altitude. Figure 4.8 shows four

measurement days in different seasons for CO2, CH4 and CO. The profiles consisting of the

green square (tower observations at surface) and red dots (AirCore at lower layers and scaled

MAP profiles at higher layers) depict the new a-priori VMR profiles which are used in both

the 125HR and the EM27/SUN retrievals.

Figure 4.9, 4.10, and 4.12 show the correlation of two kinds of retrievals between the

EM27/SUN and the 125HR instruments (left panel). The dot symbols denote the values

retrieved with TCCON-official MAP profiles and the cross symbols denote the values retrieved

with the extended profiles based on the AirCore profiles. Different colors depict different

measurement days when the AirCore profiles are available. The changes after applying new

profiles for both instruments are shown in right panels.

For XCO2 no significant change was observed in the agreement between the EM27/SUN

and the reference 125HR measurements in spring and early summer. Both of them retrieved

similar less amounts of XCO2 (∼− 0.3 ppm) after using the extended a-priori profiles based

on the AirCore profiles in April and nearly no change was found for both datasets in May.

However, stronger change occurred in late summer and autumn due to the larger difference

between the two CO2 a-priori profiles in the troposphere, resulting in better agreement

between the EM27/SUN and the reference 125HR measurements (see Figure 4.8, CO2 profiles

in last two columns). Application of the extended AirCore profiles reduces the 125HR XCO2

values by approximately (−0.47± 0.13) ppm on average and results in nearly double amount

of decrease in EM27/SUN retrievals by (−0.92± 0.08) ppm on August 28, 2017. For the

three AirCore launch days in September, the 125HR retrievals are reduced by approximately
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Figure 4.7: A-priori profiles of the WACCM-derived profile (dash line in black), MAP (dot
line) and AirCore (solid line) at 10 AirCore launch days in 2017. Different colors represent
different days for MAP and AirCore profiles. The figures on the left column show the profiles
with an altitude up to 70 km, while figures on the right columns are zoomed in and with an
altitude up to 30 km.
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Figure 4.8: The MAP, Aircore and combined profiles for CO2, CH4 and CO at four measure-
ment days in 2017. Red points denote the new profiles based on the in-situ tower measure-
ments at ground, AirCore profiles and scaled MAP profiles.
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(−0.66± 0.17) ppm, and (−0.99± 0.12) ppm in EM27/SUN retrievals. The effect of the

combined profiles on the 125HR results is slightly less than on the EM27/SUN retrievals.

This is mainly because the two instruments operate with different spectral resolutions.

Figure 4.9: The left panel shows the CO2 correlation between the TCCON and the
EM27/SUN retrievals for all the AirCore launch days. The data retrieved using MAP pro-
files are denoted with dots, data retrieved using extended AirCore profiles are denoted with
cross symbols. Different colors represent different measurement days. The right panel shows
the difference between the retrievals with the MAP profiles and with the extended AirCore
profiles for the TCCON and EM27/SUN measurements.

A significant change is observed in XCH4 and the EM27/SUN measurements show a

higher sensitivity than the TCCON 125HR measurements to the different a-priori profiles

(see Figure 4.10). The highest change is observed on April 24, 2017, when an average

decrease of (22.46± 5.44) ppb is obtained in EM27/SUN retrievals after using the extended

AirCore a-priori VMR profiles. However, much less change is found in 125HR retrievals with

approximately (2.06± 7.81) ppb on average. The change becomes smaller with approximately

(−11.85± 3.32) ppb for EM27/SUN retrievals in May, while slight increase is found in the

125HR measurements by approximately (0.62± 4.72) ppb. In August and September the

change continuously decreases for the both datasets, with approximately (−6.48± 1.34) ppb

for EM27/SUN and (−0.92± 1.53) ppb for the 125HR observations. Besides the decreasing

sensitivity of both EM27/SUN and 125HR measurements on different a-priori profiles, the

diurnal variation of the changes is weaker in later year than earlier. The main reason is that

the difference between the measured profiles and the modeled MAP profiles is larger in spring

than in autumn. The significant bias in spring is mainly caused by the polar vortex. Ostler

et al. [2014] investigated the stratospheric subsidence caused by the polar vortex and found

different impacts on MIR and NIR retrievals because of the differing sensitivity depending
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on the altitude, although the same a-priori VMR profiles were used. Due to this reason,

the differences between the real atmospheric shapes of trace gases and the assumed profiles

introduce differences in the retrieved column amounts. Similarly, the sensitivities of the

EM27/SUN and TCCON instruments differ due to different spectral resolution. Figure 4.11

shows N2O data from the Microwave Limb Sounder (MLS) on the Aura satellite for two

days in April before the first AirCore launch and four more days when AirCore flights were

performed. Because of its long life time, N2O is a good tracer for estimating the position of

the polar vortex. Therefore, N2O concentrations on the 490 K potential temperature level,

approximately at the height of 18 km, is used here to study the XCH4 abnormal observations

in April during the FRM4GHG campaign. In the beginning of April, 2017 the polar vortex

is found in the Arctic and started to extend to lower latitudes. The polar vortex gradually

disappeared at the end of April. The presence of the polar vortex in April explains the bias

between the TCCON 125HR and the EM27/SUN retrievals in spring, while better agreement

is found in summer and autumn. This hypothesis is also supported by a comparison of the

MAP and the AirCore-measured CH4 profiles in April, May, August and September (see

Figure 4.8, CH4 profiles in middle column). An obvious difference is found on April 24, 2017,

while for the other days the profiles were quite similar and decreased with time.

Figure 4.10: The left panel shows the CH4 correlation between the TCCON and the
EM27/SUN retrievals for all the AirCore launch days. The data retrieved using MAP pro-
files are denoted with dots, data retrieved using extended AirCore profiles are denoted with
cross symbols. Different colors represent different measurement days. The right panel shows
the difference between the retrievals with the MAP profiles and with the extended AirCore
profiles for the TCCON and EM27/SUN measurements.
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Figure 4.11: N2O measurements from the MLS instrument on board the Aura satellite as an
indicator for the position of the polar vortex in April, May and September. Data and plots
courtesy of the NASA science team (https://mls.jpl.nasa.gov/).
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The agreement between the EM27/SUN and TCCON retrievals does not show an obvious

change in XCO when replacing the MAP a-priori profiles with the extended AirCore pro-

files. In April, the EM27/SUN retrievals show slightly higher sensitivity to the change of the

a-priori profiles with approximately (−2.19± 0.28) ppb than the TCCON 125HR retrievals

with approximately (−1.67± 0.11) ppb. However, the changes in 125HR retrievals are over-

all larger than those in EM27/SUN retrievals in the other days, except on September 6,

2017 when both changes are similar with approximately (−0.76± 0.04) ppb in TCCON and

(−0.64± 0.07) ppb in EM27/SUN retrievals. The MAP a-priori profiles had a worse agree-

ment with the AirCore profiles in August and September than the early year, which however,

does not obviously influence the XCO retrieved from both instruments measurements when

using different a-priori profiles. Hedelius et al. [2016] studied the differences in the averag-

ing kernels of retrieved XGas measurements from EM27/SUN and TCCON instruments and

the retrieved XCO from both instruments show no obvious sensitivity to altitude and SZA.

This study indicates that the high-resolution instrument and low-resolution instrument are

similarly sensitive to the CO profiles which later compensates the impact from the a-priori

profiles.

Figure 4.12: The left panel shows the CO correlation between the TCCON and the
EM27/SUN retrievals for all the AirCore launch days. The data retrieved using MAP pro-
files are denoted with dots, data retrieved using extended AirCore profiles are denoted with
cross symbols. Different colors represent different measurement days. The right panel shows
the difference between the retrievals with the MAP profiles and with the extended AirCore
profiles for the TCCON and EM27/SUN measurements.

79



4.2 Analysis of seasonal variations

4.2.1 EM27/SUN and in-situ observations

Boreal vegetation especially at high latitude experiences a clearly distinguishable evolution

cycle between winter and summer seasons. The photosynthetic activity is more likely influ-

enced by temperature than water availability [Suni et al., 2003]. Some studies have proven

that air temperature is a very important factor for the commencement of photosynthesis in

spring and considered as a good predictor for boreal forest growth at high latitudes [Suni

et al., 2003]. Moreover, the beginning of snow melt is also another useful factor to predict

the outset of the growing season [Thum et al., 2009]. Soil respiration increases in autumn

because of the higher temperature, while the photosynthesis activity becomes weaker (Piao

et al., 2008). Therefore, to support the measurements with the FTIR instruments, air/soil

temperature, air pressure, snow depth and trace gases flux are analyzed in this section.

The FMI, Sodankylä hosts various scientific programs, exploring e.g. snow and soil hy-

drology, and the interaction between the biosphere and the atmosphere. Long-term measure-

ments with different purposes are performed using a tower, masts and platforms assembled

with versatile instruments. To support the measurements with the FTIR instruments, air/soil

temperature, air pressure, snow depth and trace gases flux are analyzed in this section. The

operative Automatic Weather Station (AWS: LUO0015)1 has been measuring meteorological

parameters since 2006, including the air temperature at 2 m height, the air pressure at station

level, snow depth, etc. The pressure and temperature from this station are interpolated to

the observation altitude. This diurnal-variation ground pressure and temperature are used

as the official input files for retrieving the TCCON 125HR and the EM27/SUN measure-

ments. A 48 m high meteorological mast (MET0002)2 is located on site and measures wind

speed/direction, snow depth, PPFD (Photosynthetic Photon Flux Density), net radiation,

etc. every 10 minutes. The daily average values are used here. Additionally, the LI-COR LI-

7000 Gas Analyzer installed at the micrometeorological mast (MET0006 station)3 is a quick

response sensor for measuring atmospheric water vapor and CO2 concentration. Together

with a simultaneously measuring sonic anemometer, it is possible to calculate the CO2 flux

from the CO2 concentration and the wind information based on the eddy covariance (EC)

method. The eddy covariance method provides continuous and direct measurements of net

carbon dioxide (and water vapor) exchange across the interface between the terrestrial ecosys-

tem and the atmosphere [Baldocchi, 2003]. The flux is defined by measuring the covariance

between the vertical wind velocity and the volume mixing ratio of CO2 in the atmosphere.

A negative value of the covariance represents uptake when net CO2 is absorbed by the plant

canopy and a positive value denotes the release of CO2 into the atmosphere [Baldocchi, 2003].

1http://litdb.fmi.fi//luo0015_data.php
2http://litdb.fmi.fi//met0002_data.php
3http://litdb.fmi.fi//met0006_data.php
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The measurements recorded with the EM27/SUN spectrometer began from March 6, 2017

and lasted until September 7, 2017 (see Figure 4.13). The atmospheric CO2 was quite stable

from March to the end of April with an average value of (407.61± 0.59) ppm. It decreased

gradually in May (monthly average: (406.60± 0.35) ppm and started to decrease more rapidly

since June. A possible explanation is the change in snow cover and the soil temperature (see

Figure 4.14, first panel with the snow depth (red line) and subsoil temperature (blue line)).

The average of snow depth was (71.0± 2.3) cm in March and April. During this period the

ground was totally covered by snow, keeping the soil temperature close to 0 ◦C. The snow

cover and low temperature froze the subsurface soil, and hindered therefore the water uptake

of plants. Subsequently, this slowed down the recovery of the photosynthesis, resulting in an

constant CO2 concentration in the atmosphere. The snow melting period started from May

and lasted approximately one month. When the snow depth was reduced to around 15 cm,

soil temperature started to increase. The first time temperature reached above 0 ◦C was on

May 26, when a small decrease occurred in XCO2. After the snow completely disappeared at

the end of May, the subsoil temperature rapidly reached values above 10 ◦C in a few days and

remained around 15 ◦C in July. The temperature started to decrease in August and gradually

dropped to 0 ◦C in November. This variability of the soil temperature was inversely similar to

the change of XCO2, which supports the theory of temperature being a critical factor for the

photosynthesis activity [Suni et al., 2003]. The change of XCO2 shows a close correlation with

the variability of the CO2 flux (Figure 4.14 (c)). A negative CO2 flux was detectable from the

middle of May onwards, indicating that the CO2 absorption is larger than the emission. CO2

fluxes typically were less than 2 µmol m−2 s−1 in June and July (nearly half of the data in

July were missing due to a failure of the gas analyzer sensor) during which XCO2 decreased

rapidly. A higher CO2 flux is observed since August with randomly dispersed values due to

the weakening photosynthesis activity. The daily minimum CO2 flux increased from August

to the middle of September, when XCO2 kept a stable level.

XCH4 retrieved from the EM27/SUN measurements ranged between 1.77 and 1.85 ppm

during the campaign (see Figure 4.13 (b)), showing higher variation than XCO2. The con-

centration of XCH4 in the atmosphere shows a positive correlation with the temperature.

The highest amount of XCH4 was observed in the end of July, when both subsoil and air

temperature reached the highest value. This might be due to the warmer weather increasing

the activity of methanogens [Macdonald et al., 1998], resulting in higher atmospheric XCH4.

XCO shows a similar variation tendency to XCO2 (see Figure 4.13 (c)). The highest

atmospheric XCO concentration was observed in the beginning of the measurements. The

concentration stayed around 100 ppb in March and April and started to decrease at the end

of April. Nearly 30 % of XCO was reduced until July. These reduction is mainly due to

reactions with OH radicals (85 %) and soils (10 %), and the diffusion into the stratosphere

[Khalil and Rasmussen, 1990].
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Figure 4.13: Time series of the daily mean of (a): XCO2, (b): XCH4 and (c): XCO observed
with the EM27/SUN spectrometer at FMI, Sodankylä. Error bars represent the standard
deviation of the daily average.

Figure 4.14: Time series of (a): snow depth and subsoil temperature, (b): 5-day average and
daily minimum air temperature and (c): CO2 flux observed at FMI, Sodankylä.
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KIRUNA

The XGas fluxes from the tower measurements show a similar annual variability for trace

gases as compared to the EM27/SUN retrievals (Figure 4.15). The tower observed higher

XCO2 and XCO than the EM27/SUN spectrometer in spring and summer, while a similar

amount of gases were observed in autumn for both instruments. However, XCH4 presents a

different situation that a steady offset existed between the tower observation and the FTIR

measurements during the whole year. These two different situations are mainly because the

tropospheric vertical profiles of CO2 and CO present distinct shapes in early year and late

year, whereas CH4 has a similar shape during the whole campaign in the troposphere. The

difference between the FTIR spectrometer and the tower observations is mainly because the

spectrometer measures the total columns of trace gases in the atmosphere while the tower

mast only observes the concentration near the ground level, and therefore higher values

are expected in the tower observations. In addition, higher variability is found in tower

observations, especially in late summer and autumn. This is because the in-situ observations

are more sensitive to the local sinks and sources, while the total columns of trace gases are

influenced by the atmospheric circulation which suppresses the variability.

Figure 4.15: Time series of (a): XCO2, (b): XCH4 and (c): XCO from the in-situ tower,
the TCCON 125HR and the EM27/SUN spectrometers. Error bars are obtained from the
standard deviation of 5-minute average.
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4.2.2 EM27/SUN and TCCON retrievals

XCO2

Figure 4.16 shows the time series of XCO2 from the EM27/SUN instrument and the TCCON

125HR instrument as a reference (upper panel). The difference between the two datasets

(ΔXCO2) is presented in the lower panel. 5-minute mean value is used here to reduce the

random error. The measurement started in early March and lasted until September, 2017.

Over the whole time series the atmospheric XCO2 showed a strong seasonal variability. XCO2

stayed around 405–410 ppm in the first few months and started to decrease at the end of May

and finally dropped to ∼394 ppm at the end of August. Later, the CO2 concentration in the

atmosphere increased gradually. Approximately 12 ppm change of XCO2 has been observed

between early spring and summer. This decrease is mainly due to the photosynthesis and

respiration of plants. Note that the data from September to November was missing because

of bad weather and high solar zenith angle, as a data quality filter of SZA < 80◦ is applied

here.

Figure 4.16: Time series of XCO2 from the TCCON 125HR and the EM27/SUN spectrome-
ters (upper panel) and the bias between them (lower panel).

Although its spectral resolution is only 0.5 cm−1, the EM27/SUN instrument shows a

good agreement with the high-resolution spectrometer 125HR used in TCCON. The difference

between them is about (0.28± 0.64) ppm throughout the campaign. The slight U shape of the

yearly difference indicates a seasonal variation mainly due to the effects of different airmass

dependencies. The EM27/SUN spectrometer measured approximately 1 ppm higher XCO2

than the TCCON 125HR instrument did in the beginning of March, then the bias decreased

gradually. The results from the EM27/SUN instrument showed better agreement with the
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reference TCCON instrument from April to May when the bias was around zero. The bias

from June to August was mostly negative, reaching nearly −2 ppm. ΔXCO2 increased back

to positive values around September. Even though there were no data after the middle of

September, it is likely that ΔXCO2 would continue increasing because of the diminishing

effect of photosynthesis.

Figure 4.17 upper panel shows the correlation of uncorrected and corrected EM27/SUN

results (airmass independent (AI) and airmass dependent (AD) correction) with respect to

the TCCON 125HR results. Different colors denote the results from measurements derived

in different months. Both sets of measurements from the EM27/SUN spectrometer show

very good agreement with the TCCON reference retrievals. The implementation of AI and

AD correction helps to reduce the bias. However, when considering the SZA effect, an

obvious positive correlation is found in the difference between the corrected EM27/SUN and

the TCCON results (see Figure 4.17 lower panel). The SZA correction for XCO2 based on

previous work [Klappenbach et al., 2015] seems to slightly overestimate the effects. This is

because a different a-priori profile modeled from the CAMS1 was used in the ship campaign

(34 ◦S – 54 ◦N), while the a-priori profiles used in the TCCON network are generated with

the GGG package. Systematic differences caused by these two different models might be the

main reason to cause this non-perfect correction.

1Copernicus Atmosphere Monitoring Service data assimilation and forecasting system
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Figure 4.17: Correlation of XCO2 between the EM27/SUN and the reference TCCON spec-
trometers (upper panel) and the bias as a function of SZA (lower panel). In each panel the
EM27/SUN retrievals without correction are shown on the left, and retrievals with the AI
and AD correction are shown on the right.
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XCH4

The time series of XCH4 from the EM27/SUN and the reference TCCON observations are

displayed in Figure 4.18 upper panel. The bias between the two datasets is presented in lower

panel and shows a seasonal variability. The EM27/SUN instrument measured around 10 ppb

higher XCH4 than the TCCON instrument before June. Later, both instruments observed

similar amounts of XCH4. This seasonal variability is also seen in Figure 4.19, top right.

Measurements in different months show obviously separated bands of data points. The large

difference in March, April and May is mainly due to the improper modeled a-priori profiles

in spring which has been discussed in subsection 4.1.2. To investigate the effect of the AI

and AD corrections, the correlations of the two different EM27/SUN retrievals with respect

to the TCCON results are shown in Figure 4.19 upper panel. The biases as a function of

SZA are shown in the lower panel. The application of the AI and AD corrections decreased

the biases by approximately 20 ppb. However, similar to XCO2, the empirical AD correction

developed by Klappenbach et al. [2015] seems to overestimate the effects, resulting in slightly

higher sensitivity to the airmass.

Figure 4.18: Time series of XCH4 from the TCCON 125HR and the EM27/SUN instruments
(upper panel) and the bias between them (lower panel).
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Figure 4.19: Correlation of XCH4 between the EM27/SUN and the reference TCCON spec-
trometers (upper panel) and the bias as a function of SZA (lower panel). In each panel
EM27/SUN retrievals without correction are shown on the left and retrievals with the AI
and AD correction are shown on the right.
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XCO

The time series of XCO recorded with the EM27/SUN and the TCCON instruments are

presented in Figure 4.20. Throughout the year the bias between the low-resolution and the

high-resolution retrievals ranged from−6 ppb to 8 ppb, showing roughly a concave parabolic

shape. The yearly averaged bias is approximately 1.72 ppb with the lowest value in early

March and the highest value in early June. A higher diurnal variability exists in XCO than

in the other two species. The AI correction improves the agreement between the EM27/SUN

and the TCCON retrievals (see Figure 4.21 upper panel). The significant SZA dependency

can be seen in Figure 4.21 lower panel. The bias decreased with increasing SZA. This

apparently negative correlation is mainly due to the lack of airmass dependent correction

for XCO. Here, only an airmass independent calibration factor was applied to XCO without

airmass dependent correction because it is not clear whether the large airmass dependent

correction applied by TCCON is realistic [Kiel et al., 2016]. Therefore, further studies on

the SZA dependency will be necessary to optimize the XCO results.

Figure 4.20: Time series of XCO from the TCCON 125HR and the EM27/SUN instruments
(upper panel) and the bias between them (lower panel).
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Figure 4.21: Correlation of XCO between the EM27/SUN and the reference TCCON spec-
trometers (upper panel) and the bias as a function of SZA (lower panel). In each panel
EM27/SUN retrievals without correction are shown on the left and retrievals with the AI
correction are shown on the right.
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XAir

XAir (column-averaged amount of dry air) is a sensitive test of the integrity of measurements.

It is used in the TCCON network to examine biases among different stations, and is derived

from the ground pressure, the O2 total column and the water vapor total column. It is also

considered as a characteristic for diagnosing the systematic errors, such as erroneous ground

pressure, wrong saving time for each spectrum and misalignment [Wunch et al., 2015]. XAir

is defined as:

XAir =
Columnair

ColumnO2

· 0.2095−XH2O ·
mH2O

mdryair
(4.1)

here, mH2O and mdryair are the mean molecular masses of water vapor and dry air. ColumnO2

and ColumnH2O are the measured total columns of O2 and H2O. The total column of air can

be assumed as:

Columnair =
Pgr

gair,lat ·mdryair/Na
(4.2)

where Pgr and Na denotes the in-situ measured ground pressure and Avogadro’s constant.

gair,lat is the gravitational acceleration depending on latitude:

gair,lat = 9.780327 · [1 + 5.5024 · 10−3 · sin2(lat)− 5.8 · 10−6 · sin2(2 · lat)] (4.3)

Theoretically, the XAir should be a constant value of 1.0. However, the observed XAir

values from the TCCON measurements are about 0.98 due to an approximate 2 % bias of

spectroscopic line intensities of O2 column [Wunch et al., 2015]. In addition, a diurnal vari-

ation exists because of the spurious airmass dependency. Wunch et al. [2015] also indicated

that the maximal XAir error amounts to less than 0.5 % when the solar zenith angles are

smaller than ∼78◦.

XAir from the two instruments’ measurements is depicted in Figure 4.22. The upper panel

shows the time series of XAir for the TCCON and the EM27/SUN instruments, and the lower

panel shows the bias between the two datasets. The absolute values of XAir differ in the two

instruments, with 0.9783± 0.0018 for the TCCON 125HR instrument and 0.9680± 0.0019

for the EM27/SUN instrument over the whole measurement record. This approximately 1 %

bias and similar variability show the precision and stability of the EM27/SUN instrument.

In spring and early summer (March to May), the XAir of the EM27/SUN instrument was

around 0.9695 and the TCCON 125HR instrument was around 0.9768, leading to approx-

imately 0.73 % difference. Later, the EM27/SUN XAir decreased to approximately 0.9670

after June while the TCCON XAir increased to about 0.9794, resulting in nearly 1.24 %

bias between these two instruments. When plotting the XAir with respect to the solar

zenith angle, the EM27/SUN instrument shows a weaker airmass dependency compared to

the TCCON instrument (Figure 4.23). A small negative slope can be found in the TCCON

retrievals, especially when SZA is larger than 60◦. However, the XAir from the EM27/SUN

measurements shows a pronounced spread with increasing SZA, which is not evident in the
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TCCON instrument. The differing airmass dependent sensitivity is because the solar tracker

used in TCCON has a higher accuracy than the one used in EM27/SUN, especially at high

SZA. In addition, this is probably due to the different resolution of the spectrometers and

the different retrieval algorithms—PROFFIT algorithm for the EM27/SUN measurements

and the GFIT algorithm for the TCCON 125HR measurements. A known discrepancy in

the determination of the EM27/SUN XAir exists due to a 20 % spectroscopic offset of re-

trieved H2O in the near-infrared range [Casanova et al., 2006], which was not corrected for

the calculation of XAir from the EM27/SUN observations.

Figure 4.22: Time series of XAir from the TCCON 125HR and the EM27/SUN measurements
(upper panel), and the bias between them (lower panel).

Figure 4.23: XAir from the TCCON 215HR and the EM27/SUN measurements with respect
to SZA. Different colors denote different measurements recorded in different months.
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4.2.3 EM27/SUN and 125HR LR retrievals

To better understand the precision and stability of the EM27/SUN spectrometer, an addi-

tional set of measurements with the 125HR spectrometer is discussed in this section, called

125HR LR dataset. Same to the setting used in the EM27/SUN instrument, the 125HR

instrument uses the low-resolution of 0.5 cm−1 (double sided forward-and-backward scans)

to record raw interferograms. The ILS of the 125HR is assumed to the same values as mea-

sured for the 125HR spectrometer in Karlsruhe, because measured ILS parameters from the

Sodankylä instrument are not available. Additionally, the same analysis procedure and post

processing are applied to the 125HR LR measurements. According to this identical instru-

mental settings and processing procedure, the differences between the EM27/SUN and the

125HR LR dataset are only ascribed to their own instrumental characteristics, rather than be-

cause of the different resolution, retrieval software, a-priori profiles, and airmass dependency

correction.

XCO2

In Figure 4.24 time series of XCO2 derived from the EM27/SUN and 125HR LR measure-

ments, and the difference between them are presented, as well as their correlation. Both

datasets show similar tendency throughout the campaign and a very good agreement between

them. The XCO2 derived from the EM27/SUN measurements is approximately 0.77 ppm

(∼0.19 %) higher than the 125HR LR retrievals, which is about −0.28 ppm when compared

with the reference TCCON retrievals. This slightly positive offset was also observed in the

long-term measurements in Karlsruhe [Frey et al., 2018]. The annual standard deviation of

the ΔXCO2 (EM27/SUN – 125HR LR) is approximately 0.36 ppm, showing less seasonal

variability than the ΔXCO2 between the EM27/SUN and the TCCON retrievals, which is

0.64 ppm.
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Figure 4.24: The upper two panels show the time series of the EM27/SUN and the 125HR
LR XCO2 measurements, and the bias between these two datasets. The lower panel shows
the correlation between the two datasets and different colors denote different measurements
recorded in different months.
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XCH4

Figure 4.25 shows the time series of XCH4 derived from the two sets of measurements and the

correlation plot. A much better agreement is observed than the one between the EM27/SUN

and the TCCON retrievals. The bias between the EM27/SUN and the 125HR LR datasets

is approximately 6.53 ppb, resulting in a ∼0.36 % higher XCH4. A seasonal cycle is found

with a variability of ∼2.84 ppb, which is nearly half of the value when comparing between

the EM27/SUN and the TCCON retrievals (5.76 ppb). The impact of the polar vortex on

the retrievals is less obvious here, while it is significant in the correlation plot between the

EM27/SUN and the TCCON retrievals in April. This is because both datasets are retrieved

from the instruments with same resolutions, showing similar sensitivity to the a-priori profiles.

Figure 4.25: The upper two panels show the time series of XCH4 derived from the EM27/SUN
and the 125HR LR measurements, and the bias between these two datasets. The lower
panel shows the correlation between the two datasets and different colors denote different
measurements recorded in different months.
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XCO

The EM27/SUN XCO retrievals show an overall higher value with respect to the 125HR

LR dataset (see Figure 4.26). The bias ranges from 2 to 9 ppb with an annual average of

∼4.62 ppb, showing a similar concave parabolic shape to the offset between the EM27/SUN

and the TCCON retrievals. The seasonal variability is reduced approximately by half, from

approximately 2.48 ppb (EM27/SUN–TCCON) to 1.31 ppb (EM27/SUN–125HR LR), result-

ing in a slightly better correlation here.

Figure 4.26: The upper two panels show the time series of XCO derived from the EM27/SUN
and the 125HR LR measurements, and the bias between these two datasets. The lower
panel shows the correlation between the two datasets and different colors denote different
measurements recorded in different months.
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4.2.4 Intercomparison of different portable low-resolution spectrometers

In addition to the EM27/SUN FTIR spectrometer, there are the other three portal low-

resolution instruments participating in the FRM4GHG campaign—both Vertex70 and IR-

Cube instruments are FTIR spectrometers, manufactured by Bruker, while the Laser Het-

erodyne Radiometer (LHR) is a homemade instrument. The Vertex70 instrument uses a

resolution of 0.4 cm−1 and is operated by the University of Bremen and BIRA (Belgian In-

stitute for Space Aeronomy). The University of Wollongong is responsible for the IRCube

instrument with a same resolution of 0.5 cm−1 as used in the EM27/SUN instrument. LHR

instrument is developed by the Laser Spectroscopy Group of the Space Science and Technol-

ogy Department of the Rutherford Appleton Laboratory [Hoffmann et al., 2016; Tsai et al.,

2012; Weidmann et al., 2007]. Its spectral resolution is determined by two different electronic

filters, with 0.002 cm−1 and 0.02 cm−1.

XCO2 measured from all the four portable low-resolution instruments with respect to the

reference TCCON data is presented in Figure 4.27. A SZA filter quality (SZA < 75◦) is ap-

plied to all the datasets. Two different correlations before and after July are presented in the

Vertex70 measurements with respect to the TCCON measurements as a result of instrument

modification. After this modification, the dataset shows an obviously better agreement with

less bias and scatter. Higher measurement biases are observed in the correlation between

the IRCube and TCCON data than in the EM27/SUN and Vertex70 measurements. A step

change also occurs in March mainly due to the replacement of the fiber-optic cable which

changes the alignment of the instrument. The LHR instrument is in its developmental phase

and its measurements show larger biases than the other low-resolution instruments.

Compared with the other three datasets, EM27/SUN data shows the best agreement with

respect to the reference TCCON measurements in the whole set of measurements in 2017.

There are no significant biases or step change observed in the EM27/SUN measurements,

showing impressively stable and consistent. No alignment was performed for the EM27/SUN

instrument during the whole campaign. In addition, the EM27/SUN instrument also shows

a robust characteristic as it was setup at the ambient temperature down to −15 ◦C, while the

other low-resolution instruments were operated in the climate controlled campaign container.
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Figure 4.27: Correlations of XCO2 from portal low-resolution instruments of EM27/SUN,
Vertex70, IRCube and LHR with respect to the reference TCCON data. Different colors
denote the measurements recorded in different months.
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4.3 Gradient observations between Kiruna and Sodankylä

For enabling a study of GHG sources and sinks in the Arctic, a second calibrated EM27/SUN

instrument was operated at IRF, Kiruna, besides the aforementioned EM27/SUN instrument

at FMI, Sodankylä. The IRF is situated around 270 km to the west of Sodankylä (see

Figure 4.28).

Figure 4.28: Map showing the measurement stations in Kiruna, Sweden and Sodankylä,
Finland.

Similar in the forest coverage and climate, the trace gases measured at these two stations

show very similar seasonal variability (see Figure 4.29). Measurements at IRF from the

middle of June until the end of August, 2017 were not available due to a failure of the sun

tracker on the roof.

Figure 4.30 shows one measurement day of the observations at both sites on March 16,

2017. Only coincident measurements within one minute from both instruments are shown.

Obvious differences occurred at both sites after 10:30 UTC, when a nearly 0.86 ppm decrease

of XCO2 and a 11 ppb decrease of XCH4 were observed in Sodankylä. To further study the

sink/source of the target gases, the Hybrid Single-Particle Lagrangian Integrated Trajectory

(HYSPLIT) model [Draxler and Hess, 1998] was used to compute the backward trajectories

of air parcels between Kiruna and Sodankylä on March 16, 2017. The 7 h atmospheric

trajectories were calculated for an arriving time of 12:00 UTC on this measurement day

(Figure 4.30, lower panel). A very good match is found between these two stations at the

lower layer. The two sites were connected roughly by a trajectory with 6 h transport time.

Based on the emission formula (4.4) [Chen et al., 2016], local sources contributed on the

order of −8.2× 1018 molec.m−2 s−1 for CO2 and −1.0× 1017 molec.m−2 s−1 for CH4 on this

day. The negative values denote that the area between Kiruna and Sodankylä was likely to
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be a sink for both CO2 and CH4.

XGas,downwind = ttravel · Emission + XGas,upwind (4.4)

Figure 4.29: Time series of XCO2 and XCH4 recorded with the EM27/SUN instruments in
Kiruna and Sodankylä.

Figure 4.31 shows another measurement day in March, when no obvious enhancement or

reduction was observed for XCO2. Nearly 5–10 ppb higher amounts of XCH4 were observed in

Sodankylä, which was roughly in the downwind direction. However, no connecting air parcel

trajectories passed through the two sites during the measuring period due to the imperfect

matching direction.

In general, it turns out to be quite difficult to deduce the strengths of weak distributed

sources or sinks from paired FTS measurements. The weakness of the source requires a

large distance between the spectrometers to create a measurable signal, but this choice in

turn introduces problems due to dynamic effects and spoils the simple concept of a single

connecting trajectory. Further modeling work will be necessary to support detection of

emission signals.
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Figure 4.30: Time series of XCO2 and XCH4 measured in Kiruna and Sodankylä on March
16, 2017 (upper two panels). The error bars denote the standard deviation of the 5-minute
moving average at each sites. A 7 h backward trajectory ended at both sites at 12:00 UTC
time is presented in the lower panel. Nearly 6 h transported air parcel well connected the
two stations at the lower layer. The wind direction was roughly west northwest, resulting in
Sodankylä as a downwind station.
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Figure 4.31: Time series of XCO2 and XCH4 measured in Kiruna and Sodankylä on March
29, 2017 (upper two panles). The error bars denote the standard deviation of the 5-minute
moving average at each sites. A 9 h backward trajectory ended at 14:00 UTC time is presented
in the right panel. Wind direction was roughly northwest, resulting no direct connection
between the two stations (lower panel).
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4.4 Conclusions

In this chapter, an EM27/SUN instrument was used to study the annual variability of the

atmospheric trace gases (XCO2, XCH4 and XCO) in the Arctic circle. The investigated

low-resolution EM27/SUN spectrometer shows the characteristics of outstanding accuracy,

stabilization and reliability.

The optimization approaches of using the ILS parameters and the a-priori profiles were

applied to the whole EM27/SUN dataset in sequence. The use of the measured ILS param-

eters reduces the annual average bias between the EM27/SUN and the reference TCCON

retrievals by approximately 1.35 ppm in XCO2 and 0.37 ppb in XCO, respectively, while it in-

creased the bias by 3.14 ppb in XCH4. The bias was slightly increased by 0.06 ppm in XCO2

and 1.79 ppb in XCO when the daily-variable MAP profiles were applied in the retrievals

instead of the constant WACCM-derived profiles. For XCH4 a significant better agreement

was seen with a decrease of 9.72 ppb.

The optimized EM27/SUN retrievals were first analyzed with respect to the in-situ mete-

orological observations. The column-average DMFs show a good agreement with the in-situ

gas fluxes. The snow depth, the low subsoil temperature and the air temperature display

impacts on the annual cycle of the atmospheric XCO2 in the early period of the campaign.

This is because the snow cover and the near zero soil temperature hindered the photosyn-

thesis activity of plants. The stronger solar intensity, longer solar light duration and higher

air temperature in summer increase the photosynthesis activity. This impact can be seen in

terms of the decreasing XCO2 concentration.

Additionally, the EM27/SUN data were compared to the reference TCCON data. All tar-

get gases (XCO2, XCH4 and XCO) show a very good agreement with yearly average biases of

approximately (0.28± 0.64) ppm in XCO2, (1.99± 5.76) ppb in XCH4 and (1.72± 2.48) ppb

in XCO. These differences are mainly due to the different spectral resolution and retrieval soft-

ware. Higher discrepancies were found in XCH4 observations in early spring. This is mostly

caused by the inaccurate TCCON a-priori profiles affected by stratospheric intrusions when

a relative strong polar vortex existed in April and gradually vanished afterwards. To reduce

the aforementioned systematic errors, another dataset (125HR LR) is used in comparison to

the EM27/SUN retrievals. The 125HR LR dataset was derived from the same instrumental

setting, retrieving software and post processing procedure to the EM27/SUN dataset. Nearly

half of the annual-average seasonal variability is reduced, resulting in ±0.36 ppm in XCO2,

±2.48 ppb in XCH4, and ±1.31 ppb in XCO.

The intercomparison of different compact low-resolution instruments with respect to the

reference TCCON observations were also discussed. Compared to the other low-resolution

instruments, the EM27/SUN instrument is a promising FTIR spectrometer, with the char-

acteristics of high stability and accuracy.

It has been shown that the usage of the improved a-priori VMR profiles reduced the

observed difference between the high- and low-resolution spectrometers. The usage of the

103



empirical airmass dependent correction is not perfect for retrieving XCO2 for this campaign

performed at high latitude. This AD correction needs to be improved in future work.

Furthermore, different column measurements between Kiruna and Sodankylä were dis-

cussed. A significant decrease of XCO2 and XCH4 was observed at the downwind station in

Sodankylä when two stations were well connected by air parcel transport. The area between

the two places indicates a sink for the target gases on this measurement day. The emission

between the two sites was on the order of 1018 molec.m−2 s−1 for CO2 and 1017 molec.m−2 s−1

for CH4. For another measurement day, similar observations in XCO2 and a nearly constant

offset in XCH4 were seen at both sites when no direct connection existed between the two

stations. Further modeling work is needed for in-depth interpretation of these measurements.
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Chapter 5

Alaska campaign

In this chapter the Alaska campaign performed from August to October 2016, in cooperation

with University of Alaska Fairbanks (UAF) and Los Alamos National Laboratory (LANL)

is presented. Purpose of this campaign was to derive the CO2 and CH4 emissions from the

observed gradients by using two EM27/SUN instruments, especially the CH4 emission from

the wetland surrounding Fairbanks, Alaska. For the precise observation with two instru-

ments, lamp measurement for the instrumental line shape parameters were performed in the

beginning of the campaign. Moreover, the inter-instrument calibration factors were obtained

by performing side-by-side measurements in the beginning and during the campaign on the

GI roof and at Poker Flat.

5.1 Instruments calibration

Every EM27/SUN instrument is aligned and calibrated at KIT before being handed over to

users. Even though the EM27/SUN instrument has been proved as highly reliable and stable

[Butz et al., 2017; Frey et al., 2015, 2018; Klappenbach et al., 2015], long-distance transport

might cause changes in the instrumental performance. The precision requirements are de-

manding when investigating the gradients of a target area, as the local emission/absorption

adds only a small contribution to the amounts of XCO2 and XCH4. Therefore, great care has

to be taken for eliminating the bias caused by instruments. The calibration measurements

comprised the ILS parameters measurements and side-by-side measurements.

The instrumental line shape parameters for the EM27/SUN spectrometer are obtained

from open-path lamp measurement using the LINEFIT algorithm (for more details see sec-

tion 2.2). The measurements were performed for both instruments in the beginning of the

campaign (Figure 5.1). The retrieved ILS parameters (modulation efficiency and phase er-

ror) for the KIT and LANL instruments are collected in Table 5.1. Both instruments show

slight modulation loss at maximum OPD and it is a little more pronounced in the LANL

spectrometer. These obtained ILS parameters of each instrument were taken into account in

the retrieving procedure with the PROFFIT algorithm.

105



Figure 5.1: ILS measurement in the laboratory, UAF, Fairbanks on August 5, 2016.

Modulation efficiency Phase error

KIT 0.9910 2.155E-03
LANL 0.9857 -1.395E-03

Table 5.1: ILS parameters at the MOPD for the KIT and LANL instruments.

Besides the lamp measurement, side-by-side calibration measurements were performed on

the roof of the Geophysical Institute (GI roof), UAF and at Poker Flat which is about 35 km

northeast of Fairbanks (see Figure 5.2). As discussed in Chapter 3, the intraday variable

ground pressure and temperature and the a-priori VMR profiles show certain impacts on

the retrievals. To eliminate these systematic errors, the ZENO3200 device provided by the

LANL was used to record the intraday pressure and temperature. The a-priori VMR profiles

were generated with the GGG package.

Figure 5.2: Side-by-side measurements on the GI roof, UAF (left) and at Poker flat (right)
using the KIT and LANL EM27/SUN FTIR spectrometers.
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Figure 5.3 presents the linear correlation of XCO2 and XCH4 measurements between the

KIT and LANL EM27/SUN spectrometers at two different sites. Only coincident observa-

tions within one minute are shown in the figure. Only measurements with the solar zenith

angle less than 70◦ are used here in order to avoid measurements with higher uncertainty.

Additionally, 5-minute moving averages are used to reduce the random errors. It is obvious

that these two instruments show a very good agreement in XCO2 and XCH4. Some abnormal

observations are mostly due to the effect of clouds. For XCO2, the LANL EM27/SUN mea-

sures approximately a 0.05 % (∼0.18 ppm) higher concentration than the KIT instrument on

the GI roof, while an about 0.06 % (∼0.23 ppm) higher concentration is observed at Poker

Flat. However, XCH4 shows an opposite situation, here the KIT instrument measures higher

concentrations. The differences are about 2.12 ppb on the GI roof and 2.0 ppb at Poker Flat.

(a) GI roof

(b) Poker Flat

Figure 5.3: Linear correlation of XCO2 (left) and XCH4 (right) recorded with the KIT and
LANL instruments on the (a): GI roof and at (b): Poker Flat. Different colors denote the
measurements on different days and the red line denotes the fitting line through the origin.
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To eliminate the systematic errors caused by the different instrumental characteristics,

the empirical inter-calibration factors derived from the side-by-side measurements are applied

for each species. The measurements performed with the KIT instrument are scaled to the

LANL measurements by applying the corresponding scaling factors. The factor of a specific

target gas at one station is the slope of the fitting line for the two datasets through the origin

point (see Figure 5.3). The mean value of the slope derived from the two stations represents

the final scaling factor for the related target gas, see table 5.2.

GI roof Poker Flat factorcalibration

XCO2 1.0005 (7.0E-4) 1.0006 (5.3E-4) 1.00055 (6.2E-4)
XCH4 0.9988 (8.4E-4) 0.9989 (5.9E-4) 0.99885 (7.2E-4)

Table 5.2: Calibration factors for the KIT and LANL instruments (LANL/KIT). Values in
the parentheses denote the 1σ empirical standard deviation of the ratio. The factorcalibration

of a specific trace gas is obtained by averaging the factors from two sites. These factors are
used for calibrating the two spectrometers to a common scale.

As discussed in subsection 4.3.4, XAir is considered as a quality check parameter, derived

only from the ground pressure and the spectroscopically acquired columns of O2 and water

vapor. Figure 5.4 shows the time series of XAir for each instrument at each site. Same to the

data preparation of XCO2 and XCH4, the coincident 5-minute moving averaged XAir values

are shown here for SZA lesser than 70◦. Both spectrometers show similar characteristics and

there is no obvious change in the ratio between them, showing the outstanding stability of the

EM27/SUN instrument. Measurements performed at different sites do not show apparent

differences. The averaged ratio of the XAir from the two instruments is approximately

1.0023± 0.0008 on the GI roof and 1.0028± 0.0006 at Poker Flat. The LANL instrument

has slightly higher XAir value due to the higher recording of O2 total columns than the KIT

instrument at both measurement sites. Figure 5.5 shows the XAir ratio as a function of SZA.

XAir ratios are distributed more dispersed at higher SZA and therefore measurements with

SZA larger than 75◦ are discarded in the following section of gradient studies. Approximately

0.2 % difference is found between the forenoon and afternoon measurements, and is probably

caused by the deviation in pointing of the solar position between the two solar trackers.

When the SZA is around 70◦, the solar tracker changes approximately 0.02◦ every 15 seconds,

resulting in 0.1 % difference in XAir. Spectra are recorded together with the corresponding

system time from the computer, and thus time differences between different computers might

also lead to errors.
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Figure 5.4: Time series of XAir (SZA < 70◦) derived from the calibrated measurements
on the GI roof (solid square) and at Poker Flat (empty circle) with the KIT and LANL
spectrometers. Additionally, the ratio values between the two datasets is presented in the
lower panel.

Figure 5.5: XAir ratio (LANL/KIT) as a function of SZA. Different colors denote the mea-
surements on different days at GI roof (solid square) or at Poker Flat (empty circle). SZA
< 0 correspond to the forenoon measurements
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5.2 Detection of gradients

Wetlands occupy about 43 % area of the State of Alaska [Hall et al., 1994]. Fairbanks, located

in the interior of Alaska, is covered mostly by taiga forests, also known as Boreal Forests.

The Chena River flows through Fairbanks to the Tanana River which passes through the

southern border of the city. The Tanana River emerges into the lowland swamp area known

as the Tanana Valley, stretching south for more than 160 km up to the Alaska Range. The

climate in Fairbanks is characterized as subarctic, with long cold winters and short warm

summers.

Figure 5.6: Map showing the overview of the measurement sites in Fairbanks, Alaska. Blue
markers represent the side-by-side measurements stations; when the KIT instrument was
located on the GI roof, the LANL instrument was settled at the station denoted with the red
markers near Fairbanks; the KIT and the LANL instruments were located at Nenana (black
marker) and Anderson (red marker), respectively for the wetland emission study. (Map
source: Google Map).

Two methods were applied to detect the gradients in XCO2 and XCH4 between two

sites. The first one is settling the KIT instrument always on the GI roof, UAF and moving

the LANL instruments to several places (Airport 1, Airport 2, all-terrain vehicles parking

site (ATV land), Nenana and the downtown of Fairbanks). The other approach was to

measure the wetland emissions between Nenana (KIT EM27/SUN) and Anderson (LANL
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5. ALASKA CAMPAIGN

EM27/SUN). Figure 5.6 shows an overview map indicating the locations of the different

stations. Table 5.3 shows more detailed information, including the measurement dates, co-

ordinates and altitudes of the different stations, and the direct distance between two paired

stations. To reduce the systematic errors when evaluating the emission/absorption rate of

one area with these two instruments, the measured ILS parameters are used in the PROF-

FIT algorithm for the corresponding EM27/SUN measurements. Besides, calibration factors

are applied to the KIT EM27/SUN retrievals for each species. Only coincident measure-

ments from the two sites within one minute are selected to compute one-hour moving mean

observations. This method reduces the random errors, e.g. caused by clouds.

Date KIT LANL Distance

GI-X

160808 160828
160908 161007 161012

GI
(64.86◦N, 147.85◦W

223 m a.s.l.)

Airport 1
6.7 km(64.80◦N, 147.86◦W,

131 m a.s.l.)

160810
Airport 2

7.4 km(64.79◦N, 147.88◦W,
144 m a.s.l.)

160902 160903 160910
ATV land

21.7 km(64.77◦N, 148.26◦W,
405 m a.s.l.)

160830 161001
Nenana

67.6 km(64.56◦N, 149.09◦W,
124 m a.s.l.)

161005
Downtown

7.0 km(64.85◦N, 147.71◦W,
141 m a.s.l.)

Nenana
160816 160817 160818

Nenana Anderson
25.2 km- (64.56◦N, 149.09◦W, (64.34◦N, 149.20◦W,

Anderson 124 m a.s.l) 159 m a.s.l)

Table 5.3: Locations of the KIT and LANL instruments at different stations and their dis-
tances at different days in Fairbanks, Alaska.

5.2.1 GI roof - ATV land

In this experiment, the KIT instrument was operated on the GI roof. The LANL instrument

was moved to the ATV land, about 22 km southwest away from the GI roof and surrounded

by wetland areas. Observations were performed on three days when the wind direction

was mostly northeast on September 2, northeast to east on September 3 and southwest

on September 10, 2016. Connecting trajectories between two stations were found only on

September 2 and 10 (Figure 5.7) while a poorer match of wind direction was found on

September 3 (Figure 5.10).
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Figure 5.7: Eight-hour backward trajectories ending at 18:00 LT on September 2 and 10,
2016 (derived from GDAS Meteorological Data).

On September 2, the GI roof was mostly in the upwind direction. For XCO2, both

instrument observed similar amounts of concentration during most of the time, except the

detection of elevated XCO2 values at the ATV land (see Figure 5.8). This is probably due

to the interaction of variable wind directions with local emissions, as the instrument was

located at the parking lot and near the main road, where the emissions of passing-by cars

generated a sudden enhancement. However, XCH4 shows a different behavior. The upwind

KIT instrument measured higher XCH4 during most of the day. This is probably due to the

complex terrain between the two stations. The ATV land is around 200 m higher than the

GI roof. Both sites are located in the central Tanana Valley and to their west are the low

valleys separated by ridges of hills with up to near 1 km a.s.l. altitude. This uneven terrain

channels the air flow and probably makes the quality of the modeled trajectory poor. It is

likely that the downwind LANL instrument measured different air parcels that did not pass

through the GI roof.

The terrain impact was weaker on the measurements on September 10, when the wind

direction was more parallel to the ridges. The downwind KIT instrument measured higher

amounts of XCO2 and XCH4 on the most of the day (see Figure 5.9). The bias were up

to 1.1 ppm for XCO2 and 7.0 ppb for XCH4, resulting in an emission rate of approximately

6.6× 1019 molec.m−2 s−1 and 4.3× 1017 molec.m−2 s−1, respectively. Since the LANL spec-

trometer stayed at the ATV land and the air flowing direction was mostly along the main

road, the XCO2 was very likely enhanced from the vehicles.
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5. ALASKA CAMPAIGN

Figure 5.8: Time series of XCO2 and XCH4 recorded on the GI roof (KIT) and at the ATV
land (LANL) on September 2, 2016. The wind on this day blew mostly from the northeast
direction, resulting in the GI roof being the upwind station. Error bars represent the standard
deviation of the 5-minute moving mean bias. Zero lines are marked in red.
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Figure 5.9: Time series of XCO2 and XCH4 recorded on the GI roof (KIT) and at the ATV
land (LANL) on September 10, 2016. The wind on this day blew mostly from the southwest
direction, resulting in the GI roof as the downwind station. Error bars represent the standard
deviation of the 5-minute moving mean bias. Zero lines are marked in red.
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The other measurement day was September 3, 2016 when the wind blew from east north-

east to further north, resulting in no obvious connecting trajectory between the two sites

before 22 UTC (local time (LT): 14:00) (Figure 5.10, left panel). Nearly 3-hour of well con-

nected trajectory between the two sites was derived from 15:00 LT to 19:00 LT (Figure 5.10,

right panel). The air parcel transportation is also observed in the measurements from the

two stations (see Figure 5.11). The ΔXCO2 and ΔXCH4 stayed close to 0 ppm and 2 ppb

respectively, when the wind direction was east north-east and two sites’ backward trajectories

were almost parallel. After the wind direction shifted to more north and the two sites were

well connected, the downwind station (the LANL instrument at the ATV land) measured a

slightly higher enhancement of up to 4.1 ppb. This small enhancement is much lower than

the other day’s measurements, because the north of Fairbanks is covered by chains of hills

rather than wetland methane sources. The sudden increase of the amount of LANL XCH4

is most probably due to a local source signal caused by the variable wind direction between

14:00 LT to 15:00 LT.

Figure 5.10: Backward trajectories ending at 14:00 LT (left) and 19:00 LT (right) on Septem-
ber 3, 2016 (derived from GDAS Meteorological Data).
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Figure 5.11: Time series of XCO2 and XCH4 recorded on the GI roof (KIT) and at the ATV
land (LANL) on September 3, 2016. The wind direction on this day was from east north-east
to north north-east. Error bars represent the standard deviation of the 5-minute moving
mean bias. Zero lines are marked in red.
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5.2.2 GI - Downtown

In this part, the KIT EM27/SUN instrument stayed on the GI roof while the LANL instru-

ment was settled in downtown Fairbanks around 7 km to the southeast of the GI roof. East

to northeast wind was the dominant wind direction during the observation day on October

5, 2016 (see the backward trajectories in Figure 5.12). No direct air transport between the

two sites occurred. In the beginning of the measurement the LANL instrument observed

approximately 1 ppm higher XCO2 than the downwind KIT EM27/SUN spectrometer. This

was probably due to the local source, like the anthropogenic activities in downtown Fair-

banks. The different amounts of XCO2 between the two sites became smaller when the wind

direction changed to the northeast in the afternoon. Less variability was observed by the

LANL instrument after noon and by the KIT instrument later in the day. The peak observed

on the GI roof between 13:00 LT and 15:00 LT is probably due to local sources. For XCH4,

both instruments measured similar variability over the whole day. The LANL spectrometer

observed approximately a 2 ppb higher amount in the beginning of the measurement. The

difference slightly decreased to around 1.5 ppb after 13:00 LT because the source of the air

changed. Different from XCO2, no sudden increase of XCH4 was observed in the afternoon.

However, a stronger increase occurred around 12:30 LT on the GI roof than at the down-

town site, resulting in a slight decrease of the bias. This is mostly due to the varying wind

direction.

Figure 5.12: Backward trajectories ending at 13:00 LT (left) and at 16:00 LT (right) on
October 5, 2016 (derived from GDAS Meteorological Data).
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Figure 5.13: Time series of XCO2 and XCH4 recorded at Nenana (KIT) and Anderson
(LANL) on October 5, 2016. The wind direction on this day was east before 13:00 LT and
northeast in the afternoon. Error bars represent the standard deviation of the 5-minute
moving mean bias. Zero lines are marked in red.
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5.2.3 Nenana - Anderson

For achieving a better suited configuration for detecting wetland emissions, two sites named

Nenana and Anderson were chosen to settle the two EM27/SUN instruments. These two

sites are located in the middle of the wetland area with a distance of 25.2 km. The KIT

EM27/SUN instrument was settled in the parking place in front of the Cyberlynx Corre-

spondence Program office, Nenana. The Nenana city is located in the southwest of Fairbanks

and is at the confluence where the tributary Nenana River flows into the Tanana River.

The LANL instrument was settled in the Anderson City Camp Ground in the southwest of

the Anderson townsite and was quite near to the Nenana River in the west. Here two-day

measurements are discussed.

For both days the wind mostly came from southwest and the backward trajectories on

these two days also show the airmass as transport from southwest (see Figure 5.14). The

KIT instrument in Nenana was located in the downwind direction.

On August 17 XCO2 shows quite variable measurements at both sites and no obvious

enhancement in the downwind direction. The ΔXCO2 was steady with the daily-mean value

of ±0.08 ppm (∼0.05 % in term of the relative difference) on this measurement day. Some

suddenly increased or decreased measurements occurred within certain periods (i.e. the peak

measurements at around 15:00 LT at the Nenana station) probably due to the variable wind

direction or other unknown local sources.

XCH4 shows a different behavior with a continuous increase at both sites. An obvious

enhancement is found in the downwind measurements recorded with the KIT EM27/SUN

instrument. The peak measurements are also caused by the varying wind direction and local

sources. However, the different shapes of the peaks and different occurrence times between

the two set of measurements indicate different local sources for XCH4 and XCO2. The average

difference of XCH4 is around 3.2 ppb between these two sites (relative difference: ∼0.25 %),

five times higher than the difference in XCO2, indicating a source predominantly emitting

methane rather than carbon dioxide. In addition, an approximate 2-hour trajectory almost

connected Nenana and Anderson, suggesting a local emission of methane on the order of

1.4× 1017 molec.m−2 s−1.

During the next day (August 18), the wind direction was nearly southwest (see the back-

ward trajectory in Figure 5.14, right panel), but no direct connecting air transport existed

between the two stations. Similar to the measurements on August 17, no significant change

occurred in XCO2 and the bias between the two sites was around 0.11 ppm. XCH4 concen-

tration measured with the KIT and LANL instruments were quite stable due to the calm

air during this observing period. However, about 5.7 ppb higher XCH4 was observed at KIT

station, indicating the presence of a methane source near Nenana.

To conclude, the area around Nenana and Anderson is found to be a XCH4 source rather

than a XCO2 source. The methane emission rate is on the order of 1017 molec.m−2 s−1 for

the measurement day.
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Figure 5.14: Backward trajectories ending at 17:00 LT on August 17, 2016 (left) and at 12:00
LT on August 18, 2016 (right) (derived from GDAS Meteorological Data).
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5. ALASKA CAMPAIGN

Figure 5.15: Time series of XCO2 and XCH4 recorded at Nenana (KIT) and Anderson
(LANL) on August 17, 2016. Error bars represent the standard deviation of the 5-minute
moving mean bias. Zero lines are marked in red.
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Figure 5.16: Time series of XCO2 and XCH4 recorded at Nenana (KIT) and Anderson
(LANL) on August 18, 2016. Error bars represent the standard deviation of the 5-minute
moving mean bias. Zero lines are marked in red.
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5.3 Conclusions

In this chapter two instruments, one from KIT and one from LANL were used to investigate

the GHG emissions from wetlands near Fairbanks, Alaska. Before the gradient study, side-

by-side measurements were performed in several days for the inter calibration on the GI roof

and at Poker Flat. The two different EM27/SUN spectrometers show stable characteristics

and excellent accuracy and reliability even after the long-distance shipment from Karlsruhe

to Fairbanks, and the frequent transport within the campaign. On average, the bias between

these two instruments was approximately 0.06 % in XCO2 and 0.11 % in XCH4. These

differences have been taken into account when attempting the detection of gradients.

To study the sources and sinks near Fairbanks, several paired stations were chosen for

operating the two instruments. When studying the area between the ATV land and Fairbanks

downtown, a short period of peak XCO2 was observed near the ATV land and downtown

because of the anthropogenic activities, e.g. car traffic. For the gradients study between

the GI roof and the ATV land, it is difficult to investigate the CH4 emission from the

measurements in most of these days. This is mainly due to the complex terrain situation

that hinders wind flow, and consequently hinders the air parcel transport. It was only when

the measurements on September 10, 2016 were little influenced by the hills that the CH4

emission rate was observed on the order of 1017 molec.m−2 s−1. The wetland between the

Nenana and Anderson stations is likely to be a CH4 source, when an obvious CH4 emission

was observed at the downwind station. The estimated CH4 emission from this area is on the

order of 1017 molec.m−2 s−1 according to the measurements on August 17, 2016.
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Chapter 6

Summary and Outlook

In this work, the sources and sinks for the atmospheric GHGs CO2 and CH4 on a regional

scale were analyzed. Compared to in-situ and satellite measurement techniques, the applied

ground-based remote sensing technique is advantageous due to its ability to measure column

averaged abundances with high precision and accuracy with high temporal resolution. The

TCCON network provides accurate total column abundances of trace gases globally. However,

the costs and logistical requirements hinder its further expansion, and consequently limit

the study of GHGs sources and sinks in interesting places. A new prototype of a mobile

and compact solar absorption spectrometer (EM27/SUN) was recently developed at KIT in

cooperation with Bruker Optics [Gisi et al., 2012; Hase et al., 2016]. EM27/SUN instruments

have been successfully operated in several field campaigns [Butz et al., 2017; Frey et al., 2015;

Klappenbach et al., 2015] and support the TCCON network by providing a travel standard

[Hedelius et al., 2017]. In my work I used a pair of EM27/SUN spectrometers to study the

sources and sinks of GHGs in the boreal region. The characterization and correction of error

sources to improve the precision of the retrievals are also presented in this work, as these are

prerequisites for detecting small signals.

Systematic errors are reduced by using the column-averaged dry-air mole fraction (DMF)

method instead of the total columns for the target gases. Errors induced by differing in-

struments are calibrated out by side-by-side measurements. An airmass dependent empirical

correction is investigated and applied to the results. A special focus is put on the instru-

mental line shape (ILS), as a 1 % reduction of the modulation efficiency induces change of

0.18 % and −0.01 % in XCO2 and XCH4, respectively. Measured ILS parameters are used

for the retrievals within the PROFFIT algorithm for achieving better accuracy. The effects

of intraday-variable ground pressure and temperature profiles are also discussed. A 1 hPa

change of pressure and 1 K change of temperature cause errors in the O2 columns of about

0.054 % and 0.045 %, respectively. CO2 and CH4 show a similar tendency to the pressure

change with around −0.019 % and −0.015 %, respectively when the pressure increases by

1 hPa and much lesser change exists in CO total columns with approximately 0.002 %. The

use of the DMF method partly compensates the systematic errors affecting both O2 column
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and CO2 and CH4 columns for a 1 hPa change in surface pressure, resulting in approximate

changes of 0.035 % in XCO2, 0.039 % in XCH4, respectively, while XCO is overcompensated

with around 0.052 %. However, CO2, CH4 and CO show larger different sensitivity to temper-

ature changes. A 1 K increase contributes to about 0.03 % and 0.008 % higher total column

abundances for CO2 and CH4, respectively, while CO shows a higher increase of 0.47 %.

Therefore, a 1 K change in temperature up to 2 km results in ∼0.015 % decrease in XCO2, a

0.037 % decrease in XCH4 and a 0.43 % increase in XCO.

The aforementioned optimization methods are used for evaluating the measurements from

the Sodankylä campaign in Finland. The measured ILS parameters are applied within the

PROFFIT algorithm, reducing the relative bias compared to the TCCON measurements

by approximately 0.33 % and 0.30 % in XCO2 and XCO, respectively over the whole year.

The XCH4 bias is slightly different with an increase of ∼0.17 % which is mainly due to the

imperfect choice of the a-priori VMR profiles.

Three kinds of vertical a-priori VMR profiles used in the retrievals are discussed. The use

of the daily-variable MAP profiles results in a better correlation with respect to the TCCON

observations than using constant climatologic a-priori profiles derived from the WACCM

model. The application of the measured AirCore as a-priori profiles is also presented and

emphasizes the importance of using a realistic a-priori profile. Significant improvements are

found in XCH4 during spring time by using the AirCore profiles. This is mainly because the

polar vortex strongly influences the vertical profiles in the stratosphere, which consequently

results in the differences in the retrievals. The slope of the linear correlation between the

EM27/SUN and the TCCON retrievals through the origin point improves from 0.71 to 1.01.

The optimized EM27/SUN results are compared to local meteorological observations at

FMI. The target gas abundances derived from the EM27/SUN observations show a reason-

able agreement with the corresponding in-situ gas fluxes. Additionally, snow depth, soil

and air temperature show certain impacts on the photosynthesis activity of plants, which

consequently influence the atmospheric XCO2 concentrations.

By means of an intercomparison of column-averaged DMFs measured with the EM27/SUN

and co-located 125HR FTIR spectrometers, the EM27/SUN instrument turns out to be highly

precise and stable. The yearly average biases are approximately (0.28± 0.64) ppm in XCO2,

(1.99± 5.76) ppb in XCH4 and (1.72± 2.48) ppb in XCO. The average XAir derived from the

EM27/SUN retrievals amounts to 0.9680 and is about 0.01 lower than the TCCON XAir.

EM27/SUN XAir shows a slightly higher sensitivity to high solar zenith angles than the TC-

CON XAir does. The differences between these two datasets are mainly due to the retrieval

software and instrumental characteristics (e.g. ILS parameters and spectral resolution). To

eliminate these systematic errors, an additional dataset (125HR LR) is introduced here, which

was recorded with the 125HR spectrometer using the same instrumental setting parameters,

retrieval software (PROFFIT) and post processing as to the EM27/SUN dataset. The corre-

lations between the EM27/SUN with respect to the 125HR LR retrievals show better agree-
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ment for all species than with respect to the TCCON retrievals. Nearly half of the seasonal

variability is reduced—from 0.64 ppm to 0.36 ppm in XCO2, from 5.76 ppb to 2.84 ppb in

XCH4, and from 2.48 ppb to 1.31 ppb in XCO. The absolute differences (EM27/SUN-125HR

LR) increase for all XGas because no scaling factors are applied in this comparison.

To study the sources and sinks from boreal areas, two sets of GHG gradient experiments

were performed: one between Sodankylä and Kiruna; the other one in the Fairbanks region

in Alaska. Local source contributions on the order of −8.2× 1018 molec.m−2 s−1 for CO2 and

−1.0× 1017 molec.m−2 s−1 for CH4 were locally derived from the measurements on March

16, 2017, indicating sinks for CO2 and CH4 in this area. However, the Fairbanks campaign

results in different GHGs emission rates. The boreal wetland between Nenana and Anderson

is very likely a CH4 source, which emitted CH4 on the order of 1017 molec.m−2 s−1. Moreover,

the instrumental intercomparison of the two EM27/SUN (one from KIT and one from LANL)

proves very stable characteristics and excellent accuracy and reliability in measuring trace

gas abundances. The average bias between these two instruments was found to be on the

order of 0.06 % in XCO2 and 0.11 % in XCH4.

The excellent performance and high accuracy of the EM27/SUN spectrometer distin-

guish the device as a promising candidate to reduce gaps in the TCCON network. Besides,

after calibration, its advantages of compactness, portability and robustness make it an opti-

mal device for field campaigns to investigate local GHGs sources and sinks. Moreover, this

spectrometer is a valuable tool for the validation of satellite soundings. Retrievals from the

dual-channel EM27/SUN instrument may be used to validate the XCH4 and XCO from the

recently launched Sentinel-5P satellite.

Finally, some ideas for the future are listed here. Cooperation between the modeling

working groups and the provision of observational GHG data should be intensified, because

connecting two sites with direct, stable and sufficiently enough wind is difficult to plan.

Improved a-priori VMR profiles will help to improve the accuracy of the retrievals.

An automated enclosure developed by the Technical University of Munich (TUM) [Heinle

and Chen, 2018] was used for the EM27/SUN instrument in Sodankylä in summer, 2018 and

has proved to be very useful. The instrument is stored in a robust case with cooling fan

and heater inside and a rain sensor on top, which protects the instrument from harmful

environment and poor weather conditions. Its remote-control feature reduces the cost of

human effort since no personnel is needed on site after settling down the instrument. In

addition, this automated shelter improves the practicability in long-term field campaigns.
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Appendix A

Pressure sensitivity

Figure A.1: Time series of total columns of O2, CO2, CH4 and CO retrievals with fixed and
variable ground pressure used in the PROFFIT algorithm—using measurements performed
in Sodankylä on June 8, 2017 as an example.
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Figure A.2: Time series of XCO2, XCH4 and XCO retrievals with fixed and variable ground
pressure used in the PROFFIT algorithm—using measurements performed in Sodankylä on
June 8, 2017 as an example.
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Temperature sensitivity

Figure A.3: Time series of total columns of O2, CO2, CH4 and CO retrievals with the original
and modified temperature profile used in the PROFFIT algorithm—using measurements
performed in Sodankylä on June 8, 2017 as an example.

Figure A.4: Time series of XCO2, XCH4 and XCO retrievals with the original and modified
temperature profile used in the PROFFIT algorithm—using measurements performed in
Sodankylä on June 8, 2017 as an example.
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Instrumental line shape

Modulation efficiency

Figure A.5: Time series of total columns of O2, CO2, CH4 and CO retrievals with different
ME values used in the PROFFIT software—using measurements performed in Sodankylä on
June 8, 2017 as an example.

Figure A.6: Time series of XCO2, XCH4 and XCO retrievals with different ME values used
in the PROFFIT software—using measurements performed in Sodankylä on June 8, 2017 as
an example.
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Phase error

Figure A.7: Time series of total columns of O2, CO2, CH4 and CO retrievals with two different
PE values used in the PROFFIT software—using measurements performed in Sodankylä on
June 8, 2017 as an example.

Figure A.8: Time series of XCO2, XCH4 and XCO retrievals with different PE values used
in the PROFFIT software—using measurements performed in Sodankylä on June 8, 2017 as
an example.
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A-priori VMR profiles

Figure A.9: Time series of total columns of O2, CO2, CH4 and CO retrieved with three
different a-priori VMR profiles.

Figure A.10: Time series of XCO2, XCH4 and XCO retrievals with fixed a-priori VMR
profiles (WACCM, in black), daily varying a-priori profiles (MAP, in red) and measured
AirCore profiles in green.
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Figure A.11: Time series of relative difference for XCO2, XCH4 and XCO retrievals with
different a-priori VMR profiles. Retrievals with MAP profiles w.r.t. WACCM profiles are
denoted in solid symbols while AirCore w.r.t. WACCM are denoted in hollow symbols.
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O2 CO2 CH4 CO

Pressure 1 hPa increase
-5.38E-02±1.01E-02 -1.91E-02±8.30E-03 -1.48E-02±9.00E-03 -2.12E-03±1.39E-02

3.47E-02±8.13E-03 3.91E-02±1.07E-02 5.17E-02±1.77E-02

Temperature increase 1 K
4.51E-02±1.32E-03 2.98E-02±2.87E-03 8.30E-03±2.32E-03 0.474±3.09E-02

-1.52E-02±2.235E-02 -3.67E-02±3.40E-02 0.428±0.0297

ME 1% decrease
3.70E-01±1.04E-02 5.53E-01±3.23E-02 2.74E-01±9.85E-03 7.35E-01±1.03E-01

1.83E-01±2.20E-02 -9.51E-02±1.72E-03 3.64E-01±1.13E-01

PE 0.01 rad decrease
5.18E-02±6.16E-03 -6.61E-03±4.79E-03 -2.00E-02±2.35E-03 -1.06E-01±1.02E-01

-5.84E-02±1.06E-02 -7.17E-02±7.70E-03 -1.58E-01±1.08E-01

Table 1: Relative difference (%) in different species due to different effects. For each species the first row represents the change in total
column and the second row in XGas. The results are derived from the measurements performed in Sodankylä on June 8, 2017 as an
example.
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. APPENDIX A

Figure A.12: Time series of (a): XCO2, (b): XCH4 and (c): XCO results. EM27/SUN data
retrieved with ideal and measured ILS parameters are shown as red squares and green crosses,
respectively. TCCON results (black triangles) are shown as a reference.
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Figure A.13: Time series of XCO2, XCH4 and XCO results, retrieved with the fixed WACCM-
derived a-priori and the daily-variable MAP a-priori VMR profiles, respectively. Both
datasets are compared to the TCCON retrievals.
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algorithm on June 8, 2017 in Sodankylä as an example. . . . . . . . . . . . . 51

3.4 Relative difference of O2, CO2, CH4 and CO retrievals with fixed and variable

pressure used in the PROFFIT algorithm, left: in total columns; right: in

XGas—using measurements performed in Sodankylä on June 8, 2017 as an
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the measurements performed in Sodankylä on June 8, 2017 as an example. . . 61

4.1 Time series of the difference between results with the measured ILS parameters

and with the ideal ILS parameters in retrieving (a): XCO2, (b): XCH4 and

(c): XCO measured with the EM27/SUN instrument. . . . . . . . . . . . . . 64

4.2 XCO2, XCH4 and XCO measured with the EM27/SUN instrument retrieved

with ideal ILS (left panel) and measured ILS parameters (right panel) with

respect to the TCCON results. Different colors denote the measurements

recorded in different months. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Relative differences of species between retrieved with measured ILS parameters

and retrieved with ideal ILS parameters as a function of SZA. Left panel:

XCO2 and XCH4; right panel: XCO. . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 A-priori profiles of WACCM-derived (dash line in black) and MAP (solid line)

for 146 days in 2017. Different colors represent different days for MAP profiles. 68

4.5 Time series of differences from retrieving XCO2, XCH4 and XCO with the fixed

WACCM-derived a-priori and the daily-variable MAP a-priori VMR profiles,

respectively (MAP-WACCM). Note that the WACCM-derived profile is a con-

stant climatological profile, while MAP is a variable day-to-day adjusted profile. 69

4.6 XCO2, XCH4 and XCO measured with the EM27/SUN instrument retrieved

with different a-priori profiles with respect to the TCCON results. The EM27/SUN

retrievals with the WACCM-derived profiles are depicted on the left side, while

the retrievals with the MAP profiles are depicted on the right. Different colors

denote the measurements recorded in different months. . . . . . . . . . . . . . 71

153



LIST OF FIGURES

4.7 A-priori profiles of the WACCM-derived profile (dash line in black), MAP (dot

line) and AirCore (solid line) at 10 AirCore launch days in 2017. Different

colors represent different days for MAP and AirCore profiles. The figures on

the left column show the profiles with an altitude up to 70 km, while figures

on the right columns are zoomed in and with an altitude up to 30 km. . . . . 74

4.8 The MAP, Aircore and combined profiles for CO2, CH4 and CO at four mea-

surement days in 2017. Red points denote the new profiles based on the in-situ

tower measurements at ground, AirCore profiles and scaled MAP profiles. . . 75

4.9 The left panel shows the CO2 correlation between the TCCON and the EM27/SUN

retrievals for all the AirCore launch days. The data retrieved using MAP pro-

files are denoted with dots, data retrieved using extended AirCore profiles are

denoted with cross symbols. Different colors represent different measurement

days. The right panel shows the difference between the retrievals with the

MAP profiles and with the extended AirCore profiles for the TCCON and

EM27/SUN measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.10 The left panel shows the CH4 correlation between the TCCON and the EM27/SUN

retrievals for all the AirCore launch days. The data retrieved using MAP pro-

files are denoted with dots, data retrieved using extended AirCore profiles are

denoted with cross symbols. Different colors represent different measurement

days. The right panel shows the difference between the retrievals with the

MAP profiles and with the extended AirCore profiles for the TCCON and

EM27/SUN measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.11 N2O measurements from the MLS instrument on board the Aura satellite as

an indicator for the position of the polar vortex in April, May and September.

Data and plots courtesy of the NASA science team (https://mls.jpl.nasa.gov/). 78

4.12 The left panel shows the CO correlation between the TCCON and the EM27/SUN

retrievals for all the AirCore launch days. The data retrieved using MAP pro-

files are denoted with dots, data retrieved using extended AirCore profiles are

denoted with cross symbols. Different colors represent different measurement

days. The right panel shows the difference between the retrievals with the

MAP profiles and with the extended AirCore profiles for the TCCON and

EM27/SUN measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.13 Time series of the daily mean of (a): XCO2, (b): XCH4 and (c): XCO observed

with the EM27/SUN spectrometer at FMI, Sodankylä. Error bars represent
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June 8, 2017 as an example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.7 Time series of total columns of O2, CO2, CH4 and CO retrievals with two

different PE values used in the PROFFIT software—using measurements per-
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