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tel vollständig angegeben zu haben. Was ich aus Arbeiten anderer und eigener Veröf-
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Zusammenfassung

Verschiedenste Phänomene, in denen die Struktur von Beziehungen im Vordergrund steht,

lassen sich sinnvoll als Graphen darstellen. Bekannte Beispiel sind soziale Netzwerke, die

Infrastruktur des Internets, Warenkataloge und Kundenvorlieben, Straßennetzwerke und

Nahrungsnetze in Ökosystemen. In wissenschaftlichen Simulationen werden oft Teilauf-

gaben als Knoten modelliert und ihre Datenabhängigkeiten als Kanten. Mit Methoden

aus der Graphentheorie lässt sich dann die parallele Kommunikation optimieren.

Viele Graphen haben eine zugrundeliegende Geometrie. Diese ist explizit bei Graphen, die

ein geometrisches Phänomen modellieren, zum Beispiel Gitternetze aus numerischen Simu-

lationen, oder Sensornetzwerke mit geographischen Koordinaten. Manch andere Graphen

ohne geometrische Informationen folgen jedoch einer versteckten Geometrie und in einer

geeigneten Einbettung würden Graphdistanzen und geometrische Distanzen zusammen-

fallen.

Zunehmende Aufmerksamkeit erfahren komplexe Netzwerke, Graphen mit üblicherweise

kleinem Durchmesser, einer heterogenen Struktur und einer Gradverteilung, in der es ver-

hältnismäßig viele Knoten mit überdurchschnittlich vielen Nachbarn gibt. Solche Graphen

werden auch als skalenfrei oder Kleine-Welt-Netzwerke bezeichnet. Die bekanntesten

Beispiele für komplexe Netzwerke sind soziale Netzwerke, das Netz der über Hyperlinks

verbundenen Webseiten sowie Kommunikationsnetzwerke. Viele davon sind im Bereich

von hunderten Millionen bis Milliarden von Knoten und Milliarden von Kanten. Genera-

tive Modelle für komplexe Netzwerke sind hierbei nicht nur relevant dafür, Erkenntnisse

über Entwicklung realer Netzwerke zu gewinnen, sondern auch für die Erzeugung von

Testdaten für die Entwicklung neuer Analysealgorithmen. Auch wenn reale Testdaten zur

Verfügung stehen, sind sie oft durch ihre Größe umständlich in der Handhabung. Ein

generatives Modell, aus dem Zufallsgraphen effizient gezogen werden können, kann En-

twicklungszyklen deutlich beschleunigen.

Während z.B. Straßennetzwerke der sphärischen Geometrie folgen, in der sie gebaut wur-

den, gibt es einige Hinweise darauf, dass die passende Geometrie für komplexe Netzwerke

weder euklidisch noch sphärisch ist, sondern hyperbolisch. Basierend darauf haben Kri-

oukov et al. hyperbolische Zufallsgraphen definiert, ein generatives Graphenmodell für

komplexe Netzwerke. Ein Graph darin wird generiert, in dem Knoten zufällig in einer

Kreisscheibe in der hyperbolischen Ebene verteilt werden, die Wahrscheinlichkeit für eine

Kante {u, v} wird durch die hyperbolische Distanz zwischen u und v bestimmt. Das Mod-

ell wird durch die Verteilungen der Knotenpositionen und Kantenwahrscheinlichkeiten

parametrisiert. Eine bedeutende Unterklasse sind hyperbolische Schwellwertgraphen, in

denen zwei Knoten genau dann verbunden sind, wenn ihre Distanz geringer ist als ein

Schwellwert. In diesem Modell ergeben sich einige gewünschte Eigenschaften von kom-

plexen Netzwerken direkt aus der Geometrie, was eine theoretische Analyse erleichtert.



Leider hat ein naiver Generierungsalgorithmus eine quadratische Laufzeit, was die Gener-

ierung von Netzwerken interessanter Größe stark erschwert.

Im ersten Teil meiner Dissertation stelle ich vier neue Generierungsalgorithmen für hyper-

bolische Zufallsgraphen vor. Durch die Projektion der hyperbolischen Ebene in die euk-

lidische Geometrie der Poincaré-Kreisscheibe können wir existierende geometrische Daten-

strukturen adaptieren. Unser erster Algorithmus basiert auf einem polaren Quadtree,

durch den wir überflüssige Distanzberechnungen vermeiden und eine Laufzeit vonO((n3/2+

m) log n) (mit hoher Wahrscheinlichkeit) erreichen können. Dies war der erste Gener-

ierungsalgorithmus für hyperbolische Schwellwertgraphen mit subquadratischer Laufzeit.

In Experimenten war unsere Implementierung etwa drei Größenordnungen schneller als

eine Referenzimplementierung des quadratischen Algorithmus.

Für den zweiten Algorithmus haben wir die Quadtreestruktur erweitert, um auch generelle

hyperbolische Zufallsgraphen zu erzeugen, in denen alle Kanten probabilistisch sind. Da

alle Kanten eine positive Wahrscheinlichkeit haben, hätte die explizite Berechnung jeder

Kantenwahrscheinlichkeit wieder eine quadratische Komplexität. Wir betrachten stattdes-

sen für jeden Knoten die Lücken zwischen seinen Nachbarn in einer Liste aller Knoten und

ziehen die Länge dieser Lücken zufällig. Da die Wahrscheinlichkeit für jede Kante von der

Distanz ihrer Knoten abhängt, benutzen wir die Quadtreestruktur um Schranken für die

Abstände und damit Kantenwahrscheinlichkeiten zu bestimmen. Um die Balance zwischen

Qualität der Schranken und dem Aufwand ihrer Berechnung zu halten, aggregieren wir

Teilbäume in virtuelle Blattzellen, wenn in ihnen nur wenige Nachbarn erwartet werden.

Damit können wir sowohl die Anzahl der Distanzberechnungen als auch die Anzahl der

besuchten Quadtreezellen beschränken und erhalten mit O((n3/2 + m) log n) (mhW) die

gleiche asymptotische Zeitkomplexität auch für generelle hyperbolische Zufallsgraphen.

Das Szenario, in dem eine zufällige Teilmenge eines geometrischen Datensatzes gewünscht

ist und die Wahrscheinlichkeit jedes Punktes, in der Ergebnismenge enthalten zu sein, von

der Distanz zu einem Anfragepunkt abhängt, tritt nicht nur bei der Erzeugung hyper-

bolischer Zufallsgraphen auf. Wir definieren probabilistische Nachbarschaftsanfragen und

erweitern unseren Algorithmus für euklidische Datensätze.

Unser zweiter Algorithmus zur Erzeugung von hyperbolischen Schwellwertgraphen teilt

die verwendete Kreisscheibe in der hyperbolischen Ebene in ringförmige Bänder auf. Für

jeden Punkt können für jedes Band die Winkelkoordinaten möglicher Nachbarn mittels

des hyperbolischen Kosinussatzes beschränkt werden, was die Anzahl der zu prüfenden

Kandidaten stark reduziert. Das führt zu einer Komplexität von O(n log2 n + m) und

einer Verringerung der experimentellen Laufzeiten um eine weitere Größenordnung.

Schließlich haben wir auch diese Datenstruktur auf generelle hyperbolische Zufallsgraphen

erweitert und einen Generierungsalgorithmus mit Zeitkomplexität O(n log2 n + m) ange-

geben.

Der zweite Teil meiner Dissertation betrachtet in vielen Aspekten das Gegenteil des er-

sten. Anstatt Graphen mit latenter Geometrie sind es welche mit expliziten Knotenkoordi-

naten. Anstatt Graphen zu generieren, zerteile ich sie. Das Graphpartitionierungsproblem
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besteht darin, zu einem gegebenen Graphen und einer Zielfunktion eine Partition der

Knotenmenge zu finden, so dass alle Teilmengen ähnlich groß sind und die Zielfunktion

optimiert wird. Zu den vielen Anwendungen gehört die Parallelisierung von Simulationen

im wissenschaftlichen Rechnen bei gleichzeitiger Balancierung der Last und Minimierung

der Kommunikation. Andere Anwendungen sind die Aufteilung von Graphen zur Paral-

lelisierung von Netzwerkanalysealgorithmen, Vorberechnungen von Datenstrukturen zur

Routenplanung sowie viele weitere. Da das Graphpartitionierungsproblem NP-vollständig

und schwer zu approximieren ist, werden in der Praxis Heuristiken verwendet.

Unseren ersten Graphpartitionierer haben wir für eine Anwendung in der Quantenchemie

entwickelt. Elektronendichten zu berechnen ist nötig um Interaktionen zwischen Pro-

teinen korrekt vorherzusagen, aber skaliert quadratisch mit der Größe des Proteins. Diese

Skalierung, zusammen mit hohen konstanten Faktoren, limitiert die exakte Berechnung

effektiv auf Proteine mit höchstens einigen hundert Aminosäuren. Diese Einschränkung

kann durch Aufteilung größerer Proteine in Teilstücke umgangen werden, diese Ansätze

sind als Subsystemmethoden bekannt. Dabei aber werden Interaktionen von Aminosäuren

in verschiedenen Teilstücken vernachlässigt, diese Vernachlässigung führt zu einem Fehler

im Ergebnis. Wir modellieren das Szenario als Partitionierungsproblem: Im zu partition-

ierenden Proteingraphen repräsentiert jeder Knoten eine Aminosäure, jede Kante eine

Interaktion zwischen zwei Aminosäuren und jedes Kantengewicht den zu erwartenden

Fehler, der durch die Vernachlässigung dieser Interaktion verursacht würde. Eine Menge

aus Subsystemen mit minimalem Fehler ist dann äquivalent zu einer Partition des Prote-

ingraphen mit minimalem Kantenschnitt. Hierbei wird durch die Hauptkette eines Pro-

teins bereits eine Reihenfolge und implizite Geometrie definiert. Weiterhin muss, um

chemisch sinnvoll anwendbar zu sein, eine Partition weitere Bedingungen erfüllen. Wir

haben die Multi-Level-Heuristik zusammen mit lokaler Suche nach Fiduccia und Matthey-

ses so angepasst, dass sie die zusätzlichen Bedingungen erfüllt. Für ein eingeschränktes

Szenario mit kleinerem Lösungsraum bieten wir einen optimalen Algorithmus basierend

auf dynamischer Programmierung. Wir erreichen insgesamt einen um im Durchschnitt

13.5% geringeren Kantenschnitt gegenüber der naiven Lösung, die bisher in der Praxis

eingesetzt wurde.

Unser zweiter Graphpartitionierer ist für geometrische Meshes aus numerischen Simulatio-

nen. Die Größe der Simulationen, bestehend aus Milliarden von Gitterpunkten, erfordert

eine Parallelisierung nicht nur der Anwendung, sondern auch der Partitionierung selbst.

Die Multi-Level-Heuristik erzielt zwar im Allgemeinen Partitionen mit hoher Qualität,

aber bei geringer Skalierbarkeit. Aufgrund der großen Halos in unserer Zielanwendung

spielt auch die Form der partitionierten Blöcke eine Rolle, konvexe Formen erfordern

weniger Kommunikation. Wir erweitern deshalb Lloyds Algorithmus für das bekannte

k-Means-Problem, welches konvexe Cluster erzeugt. Für den Einsatz zur Graphpartition-

ierung fügen wir einen Balancierungsschritt hinzu und adaptieren mehrere geometrische

Optimierungen um eine schnelle Laufzeit und parallele Skalierbarkeit zu erreichen. Lloyds

Algorithmus in seiner klassischen Form ist anfällig gegenüber lokalen Minima, das Ergeb-

nis hängt stark von den initialen Zentren ab; Verfahren zur Garantie guter Zentren haben

eine für unseren Fall ungeeignet hohe Laufzeit. Wir sortieren deshalb die Eingabepunkte
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entlang einer raumfüllenden Kurve, und selektieren anschließend initiale Zentren äquidis-

tant unter den sortierten Punkten. Unsere Implementierung skaliert zu zehntausenden

Prozessen und Milliarden von Knoten und berechnet eine Partition innerhalb von Sekun-

den. Im Vergleich zum Stand der Technik anderer schneller geometrischer Partitionierer

berechnet unsere Methode Partitionen mit einem im Schnitt 10-15% geringeren Kommu-

nikationsvolumen. Das zeigt sich auch in kürzerer Kommunikationszeit in Benchmarks zu

verteilter Matrix-Vektor-Multiplikation.
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Abstract

Ever since Euler took a stroll across the bridges of a city then called Königsberg, rela-

tionships of entities have been modeled as graphs. Being a useful abstraction when the

structure of relationships is the significant aspect of a problem, popular uses of graphs in-

clude the modeling of social networks, supply chain dependencies, the internet, customer

preferences, street networks or the who-eats-whom (aka food network) in an ecosystem.

In parallel computing, the assignment of sub-tasks to processes can massively influence the

performance, since data dependencies between processes are significantly more expensive

than within them. This scenario has been profitably modeled as a graph problem, with

sub-tasks as vertices and their communication dependencies as edges.

Many graphs are governed by an underlying geometry. Some are derived directly from a

geometric object, such as street networks or meshes from spatial simulations. Others have

a hidden geometry, in which no explicit geometry information is known, but the graph

structure follows an underlying geometry. A suitable embedding into this geometry would

then show a close relationship between graph distances and geometric distances.

A subclass of graphs enjoying significant attention are complex networks. Though hard

to define exactly, they are commonly characterized by a low diameter, heterogeneous

structure, and a skewed degree distribution, often following a power law. The most famous

examples include social networks, the hyperlink network and communication networks.

Development of new analysis algorithms for complex networks is ongoing. Especially

since the instances of interest are often in the size of billions of vertices, fast analysis

algorithms and approximations are a natural focus of development. To accurately test

and benchmark new developments, as well as to gain theoretical insight about network

formation, generative graph models are required: A mathematical model describing a

family of random graphs, from which instances can be sampled efficiently. Even if real test

data is available, interesting instances are often in the size of terabytes, making storage

and transmission inconvenient.

While the underlying geometry of street networks is the spherical geometry they were

built in, there is some evidence that the geometry best fitting to complex networks is not

Euclidean or spherical, but hyperbolic. Based on this notion, Krioukov et al. proposed a

generative graph model for complex networks, called Random Hyperbolic Graphs. They are

created by setting vertices randomly within a disk in the hyperbolic plane and connecting

pairs of vertices with a probability depending on their distance. An important subclass of

this model, called Threshold Random Hyperbolic Graphs connects vertices exactly if the

distances between vertices is below a threshold. This model has pleasant properties and

has received considerable attention from theoreticians. Unfortunately, a straightforward

generation algorithm has a complexity quadratic in the number of nodes, which renders it

infeasible for instances of more than a few million vertices.



We developed four faster generation algorithms for random hyperbolic graphs: By pro-

jecting hyperbolic geometry in the Euclidean geometry of the Poincaré disk model, we are

able to use adapted versions of existing geometric data structures. Our first algorithm

uses a polar quadtree to avoid distance calculations and achieves a time complexity of

O((n3/2 +m) log n) whp. – the first subquadratic generation algorithm for threshold ran-

dom hyperbolic graphs. Empirically, our implementation achieves an improvement of three

orders of magnitude over a reference implementation of the straightforward algorithm.

We extend this quadtree data structure further for the generation of general random hy-

perbolic graphs, in which all edges are probabilistic. Since each edge has a non-zero

probability of existing, sampling them by throwing a biased coin for each would again cost

quadratic time complexity. We address this issue by sampling jumping widths within leaf

cells and aggregating subtrees to virtual leaf cells when the expected number of neighbors

in them is less than a threshold. With this tradeoff, we bound both the number of distance

calculations and the number of examined quadtree cells per edge, resulting in the same

time complexity of O((n3/2 +m) log n) also for general random hyperbolic graphs.

We generalize this sampling scenario and define Probabilistic Neighborhood Queries, in

which a random sample of a geometric point set is desired, with the probability of inclu-

sion depending on the distance to a query point. Usable to simulate probabilistic spatial

spreading, we show a significant speedup on a proof of concept disease simulation.

Our second algorithm for threshold random hyperbolic graphs uses a data structure of

concentric annuli in the hyperbolic plane. For each given vertex, the positions of possible

neighbors in each band can be restricted with the hyperbolic law of cosines, leading to a

much reduced number of candidates that need to be checked. This yields a reduced time

complexity of O(n log2 n+m) and a further order of magnitude in practice for graphs of

a few million vertices.

Finally, we extend also this data structure to general random hyperbolic graphs, with the

same time complexity for constant parameters.

The second part of my thesis is in many aspects the opposite of the first. Instead of a hidden

geometry, I consider graphs whose geometric information is explicit. Instead of using it to

generate graphs, I use their geometric information to decide how to cut them into pieces.

Given a graph, the Graph Partitioning Problem asks for a disjoint partition of the vertex

set so that each subset has a similar number of vertices and some objective function is

optimized. Its many applications include parallelizing a computing task while balancing

load and minimizing communication, dividing a graph into blocks as preparation for graph

analysis tasks or finding natural cuts in street networks for efficient route planning. Since

the graph partitioning problem is NP-complete and hard to approximate, heuristics are

used in practice.

Our first graph partitioner is designed for an application in quantum chemistry. Comput-

ing electron density fields is necessary to accurately predict protein interactions, but the

required time scales quadratically with the protein’s size, with punitive constant factors.

This effectively restricts these density-based methods to proteins of at most a few hundred
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amino acids. It is possible to circumvent this limitation by computing only parts of the tar-

get protein at a time, an approach known as subsystem quantum chemistry. However, the

interactions between amino acids in different parts are then neglected; this neglect causes

errors in the solution. We model this problem as partitioning a protein graph: Each vertex

represents one amino acid, each edge an interaction between them and each edge weight

the expected error caused by neglecting this interaction. Finding a set of subsets with

minimum error is then equivalent to finding a partition of the protein graph with mini-

mum edge cut. The requirements of the chemical simulations cause additional constraints

on this partition, as well as an implied geometry by the protein structure. We provide

an implementation of the well-known multilevel heuristic together with the local search

algorithm by Fiduccia and Mattheyses, both adapted to respect these new constraints. We

also provide an optimal dynamic programming algorithm for a restricted scenario with a

smaller solution space. In terms of edge cut, we achieve an average improvement of 13.5%

against the naive solution, which was previously used by domain scientists.

Our second graph partitioner targets geometric meshes from numerical simulations in the

scale of billions of grid points, parallelized to tens of thousands of processes. In general

purpose graph partitioning, the multilevel heuristic computes high-quality partitions, but

its scalability is limited. Due to the large halos in our targeted application, the shape of

the partitioned blocks is also important, with convex shapes leading to less communica-

tion. We adapt the well-known k-means algorithm, which yields convex shapes, to the

partitioning of geometric meshes by including a balancing scheme. We further extend sev-

eral existing geometric optimizations to the balanced version to achieve fast running times

and parallel scalability. The classic k-means algorithm is highly dependent on the choice

of initial centers. We select initial centers among the input points along a space-filling

curve, thus guaranteeing a similar distribution as the input points. The resulting imple-

mentation scales to tens of thousands of processes and billions of vertices, partitioning

them in seconds. Compared to previous fast geometric partitioners, our method provides

partitions with a 10-15% lower communication volume and also a corresponding smaller

communication time in a distributed SpMV benchmark.
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1. Introduction

Surprisingly many phenomena in computer science, engineering and the natural sciences

can sensibly be modeled as graphs. The first known example is Euler’s analysis of the

bridges of Königsberg, abstracting away the geometry to focus on the connections. The

best-known current examples are probably social networks, in which vertices represent

people (or bots, nowadays) and edges represent interactions and relationships. Assembling

a genome sequence from scattered fragments can be solved as an instance of the longest

path problem [133]. Other common areas include operations research (power grids, logistics

networks) or biology (protein interaction networks) and the internet (router connections,

PageRank).

Numerical simulations in engineering or climate research often discretize the simulation

domain into a geometric mesh, either to model phenomena as partial differential equations

or for use in explicit time-stepping models.

In several graph problems, geometric information is helpful if present or desirable if absent.

In the router network forming the internet, artificial coordinates from a graph embedding

can help in routing, reducing the need for explicit routing tables. In early approaches to

route planning in street networks, Dijkstra’s algorithm to find shortest paths was acceler-

ated by using coordinates to steer it into the right direction. Finally, in graph drawing,

planar coordinates for a given graph are desired to give an intuitive visual impression of

its structure.

This thesis considers two algorithmic problems concerning geometric graphs: Following

the notion that many complex networks have a hidden hyperbolic geometry, how to quickly

generate random graphs from this geometry. Second, given a graph with explicit geometry,

how to partition it into a number of disjoint, equal-sized blocks so that some performance

metric (usually the edge cut) is minimized. This is commonly called the graph partitioning

problem.
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1. Introduction

1.1 Motivation

1.1.1 Generating Random Hyperbolic Graphs

Generative network models play a central role in many complex network studies for several

reasons: Real data often contains confidential information; it is then desirable to work on

similar synthetic networks instead. Quick testing of algorithms requires small test cases,

while benchmarks and scalability studies need bigger graphs. Graph generators can provide

data at different user-defined scales for this purpose. Also, transmitting and storing a

generative model and its parameters is much easier than doing the same with a gigabyte-

sized network. A central goal for generative models is to produce networks which replicate

relevant structural features of real-world networks [35]. Finally, generative models are an

important theoretical part of network science, as they can improve our understanding of

network formation.

Random hyperbolic graphs (RHGs), introduced by Krioukov et al. [93], are a very promis-

ing graph family in this context: They yield a provably high clustering coefficient (a

measure for the frequency of triangles) [63], small diameter [24] and a power-law degree

distribution with adjustable exponent. This family of graphs has been analyzed well the-

oretically [23, 63, 24, 89] and Krioukov et al. [93] show that complex networks have a

natural embedding in hyperbolic geometry. A graph is generated by randomly placing

vertices in the hyperbolic plane and connecting each pair with a probability depending

on their distance. An important special case are threshold random hyperbolic graphs, in

which a pair is connected if their distance is below a threshold. Unfortunately, a straight-

forward generation algorithm has a quadratic time complexity, rendering it infeasible for

large graphs.

1.1.2 Partitioning Geometric Graphs

Numerical simulations in scientific computing require parallelization due to their increasing

size. Since communication between processes is often several orders of magnitude slower

than computation, minimizing communication while balancing the computational load is a

frequent necessity for good performance. This is a common application for graph partition-

ing, with each vertex representing a subtask and each edge representing a communication

dependency between subtasks.

Frequently, though, applications have additional constraints for permissible partitions,

requiring new algorithmic developments. We consider two application scenarios: 1. Sub-

system quantum chemistry, for which protein graphs are partitioned to yield feasible run-

ning times, and the edge weights model the expected approximation error. Several new

constraints induced by the chemical simulations require adaptations of existing graph par-

titioning algorithms or new developments. 2. Parallel scientific computing using geometric

meshes. In this scenario the edge weights model data flow between neighboring grid points,

resulting in inter-process communication if the edge is cut. Due to the input size, also the

partitioning process itself must happen in parallel and scale to high numbers of processes.
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1.2 Outline and Contribution

After this introduction (Chapter 1) follows a chapter on basic notions of graphs, notation

and hyperbolic geometry (Chapter 2). The two main algorithmic problems I consider in

this thesis – generation of hyperbolic random graphs and partitioning of geometric graphs

– are connected by the common theme of graphs and geometry, but sufficiently different

that little of the related literature is related to both. Thus, the discussion of related work

is included in the respective chapters.

We provide several generation algorithms for hyperbolic random graphs in Chapter 3.

Our main data structure is a polar quadtree on the Poincaré disk (Section 3.3). The

first subquadratic algorithm (Section 3.4) uses this polar quadtree and is in practice three

orders of magnitude faster than the existing implementation available at the time. We

prove a time complexity of O(n3/2 log n) with high probability. (We say that a statement

holds with high probability (whp.) if it has a probability of at least 1−1/n for n sufficiently

large.) The algorithm was presented at ISAAC’15 [164] and is restricted to the common

special case of threshold random hyperbolic graphs.

We remove this restriction with our second algorithm (Section 3.5), also using a polar

quadtree and nested probabilistic sampling methods. By aggregating subtrees of the

quadtree to virtual leaf cells, we bound both the number of distance calculations and

quadtree visits, and prove the same time complexity of O(n3/2 log n) whp. We general-

ize this sampling method also for Euclidean spatial datasets, where it can be used for

faster simulations of probabilistic spreading processes.This work was first presented at

IWOCA’16 [161].

Our third algorithm for hyperbolic random graphs deals with the faster generation of

threshold random hyperbolic graphs (Section 3.6). It divides the disk area in the hyperbolic

plane, from which vertex positions are sampled, into concentric annuli. This results in an

(empirical) running time of O(n log2 n) and another order of magnitude improvement in

practice, presented at HPEC’16 [163].

We finally present a fourth algorithm (Section 3.7) combining the concentric annuli and

probabilistic sampling methods, achieving a time complexity of O(n log2 n) also for general

random hyperbolic graphs and also a significant improvement in practice. This extension

has not yet been published elsewhere.

In addition to algorithms for the generation of static graphs, we also define a model for

dynamic random hyperbolic graphs with gradual node change. Since the quadtree data

structure can handle node updates efficiently, the time complexity of updating the neigh-

borhood of a node v is O(
√
n log n+ deg v). This combination, along with the theoretical

background to the nested probabilistic sampling models, was published 2018 in the Journal

of Experimental Algorithms [162].

We present our partitioning algorithms and results in Chapter 4, together with a compari-

son to related graph partitioners. The first partitioning application targets protein graphs

for electron density calculations (Section 4.3). For the special case of main chain partition-

ing, in which each block must be continuous on the main chain of the protein, we provide
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a dynamic programming algorithm and prove its optimality. Compared to naively cutting

the protein graph at every X amino acids, our methods achieve an average reduction of

13% in terms of edge cut. This result was presented at SEA’16 [166].

For the parallel partitioning of large, geometric meshes (Section 4.4), we present and im-

plement a scalable, balanced version of Lloyd’s algorithm for the k-means problem. With

several geometric optimizations and careful seeding of initial centers, our implementation

converges in seconds for tens of thousands of blocks and billions of input points. It also

scales to tens of thousands of processes, independently of the number of blocks. The result-

ing partitions have a 10 – 15% lower communication volume than other current geometric

partitioners. This algorithm and experimental results were presented at ICPP’18 [165].

For faster redistribution of application data, we reorganized the communication patterns

in the LAMA library, leading to a reduction of redistribution time by two orders of mag-

nitude. This was not a new algorithmic development, but resulted from a careful analysis

of the previous communication flow.

We conclude with Chapter 5.
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2. Preliminaries

2.1 Graphs

A graph G = (V,E) in its basic form consists of a set of vertices V and a set of edges

E ⊆ V × V .

Common extensions include node weights and edge weights, defined as functions γ : V → R
and ω : E → R. A graph is called undirected if for every edge (u, v), an opposite edge

(v, u) (with the same weight) exists. We use the set notation {u, v} for undirected graphs.

Two vertices u and v are called adjacent if an edge (u, v) exists between them.

The neighborhood of a vertex u is the set of all vertices adjacent to u:

Γ(u) = {v|{u, v} ∈ E}

The degree deg(u) of a vertex u is the cardinality of its neighborhood Γ(u). For directed

graphs, the in-degree of a vertex u is the number of incoming edges (v, u) and the out-

degree is the number of outgoing edges (u, v). However, all further graphs occurring in

this thesis are undirected.

The names “node” and “vertex” are sometimes used interchangeably. In the context of

graphs, we only use “vertex” and reserve the name “node” for computing units in parallel

processing.

A similar proliferation of names exists with the terms “graph” and “network”. Sometimes

the distinction is made that “graph” is used for the mathematical entity and “network” for

representations of real phenomena. We use “graph”, except for when discussing “complex

networks”, a term which has been established in its own right.

Subgraphs

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the graph G2 is called a subgraph of G1

if it only contains vertices and edges also present in G1: V2 ⊆ V1 and E2 ⊆ E1 ∩ (V2×V2).
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(a) Degree distribution of an Erdős-Rényi
random graph, in which the existence of
each edge is sampled independently at
random. The observed frequencies fol-
low a binomial distribution, with sharply
falling tails after the peak.
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(b) Degree distribution of the largest com-
ponent of the PGP web of trust. Ver-
tices represent keys, edges represent sig-
natures. No “typical” degree exists, as
many vertices have far more than aver-
age.

Figure 2.1: Comparison of degree distributions.

Degree Distribution

The distribution of degrees of a graph is called its degree distribution and can give in-

sight into its nature. In regular meshes, vertices have very similar degrees. In a graph

where the endpoints of each edge are sampled uniformly at random, the degrees follow a

binomial distribution. It is common in social networks that many hubs exists with widely

more connections than average. Thus, the degree distribution is one of many properties

commonly used to classify graphs [17]. Figure 2.1 compares the degree distributions of a

simple random graph and a small social network, the web of trust of PGP signatures. The

distribution in Figure 2.1b follows a power-law : The number of vertices with degree k is

proportional to k−γ for a fixed exponent γ:

#{v| deg(v) = k} ∝ k−γ . (2.1)

For the degrees of the PGP web of trust in Figure 2.1b, γ := 1.5 gives a reasonable fit.

Barabási and Réka [16] propose preferential attachment processes as possible explanations

of power-law degree distributions. If new vertices in a growing graph attach to existing

vertices with a probability proportional to their existing degree (a “rich-get-richer dy-

namic”), the degrees of the resulting graph will follow a power-law distribution. Newman

shows that scientific collaboration networks follow such a preferential attachment dynamic

empirically [121].

The degree distribution has effects on network processes. In disease simulations, for ex-

ample, networks with power-law degree distributions are harder to vaccinate. In networks

with binomially distributed degrees, vaccinating a certain fraction of vertices uniformly at

random stops epidemics in expectation. This strategy does not work for networks with
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power-law degree distributions of similar densities, as the large number of well-connected

hubs enables infections of the remaining parts should any of them be left unvaccinated [59].

Other natural phenomena such as volcano eruptions or personal wealth also have effect

sizes distributed according to power-laws [34, 152].

Paths and Distances

A distinct sequence of vertices v1, v2, . . . vk ⊆ V is called a path of length k if for each

pair vi, vi+1 in the sequence, an edge {vi, vi+1} exists in E. A shortest path between v1

and vk is a path so that no other path from v1 to vk with a shorter length exists. The

distance between two vertices s and t is the length of the shortest path connecting them.

If no such path exists, their distance is considered to be infinite. To distinguish it from

geometric distances, the length of a shortest path between vertices s and t is also called

the graph-theoretic distance of s to t, we denote it with distG(s, t). The diameter of a

graph is the largest distance occurring in it:

diam(G) = max
s,t∈V

distG(s, t) (2.2)

The diameter of a graph thus also determines how long it takes for an information or

epidemic to spread through it.

Cuts and Partitions

A cut of a graph G = (V,E) is a division of the vertex set into two subsets S and V \ S.

Edges with one endpoint in S and the other in V \ S are called cut edges. The weight of

a cut is the sum of weights of cut edges.

A partition is a generalized cut: A k-partition of a graph is a division of the vertex set

into k disjoint subsets. The edge cut of a partition is the sum of all weights of edges whose

endpoints are in different subsets. A vertex subset in a partition is also called a block.

A cluster in a graph is also a subset of its vertices and a clustering seeks to divide a given

graph into a set of clusters that reflect its structure. The main difference to a partitioning

problem is that the number of desired subsets is often not given in advance, but part of

the exploratory analysis performed with a clustering.

Given a graph G = (V,E) and a partition Π, the corresponding block graph GΠ contains

one vertex for each subset in Π. In the block graph, an edge (vi, vj) between the vertices

representing the blocks Vi and Vj exists if an edge connects the blocks Vi and Vj in the

original graph.

Communities

Similarly, a community in a graph is loosely defined as a group of vertices which has many

internal edges and few external edges. Newman and Girvan [119] quantify this idea by

introducing modularity, a measure that compares the actual number of internal edges with

the expected number in a random graph of equal degree distribution. Finding a partition

of a graph that maximizes modularity is NP-hard [29].
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Geometric Embedding

An embedding of a graph into a geometry B assigns coordinates to each vertex v. The

distortion of an embedding is the difference between the geometric and graph-theoretic

distances between its vertices. Graphs with a small diameter tend to be harder to embed.

A graph drawing has a related, but different objective: The graph layout should give an

intuitive visual representation of its structure, mostly in two or three dimensions. Often,

edge crossings should be avoided.

2.1.1 Complex Networks

A network with non-trivial structure is called a complex network [168, 87]. Different defi-

nitions exist, they agree in that social networks, web graphs and most infrastructure net-

works are examples of complex networks, while regular meshes or simple random graphs

are not. Commonly named criteria [120] are a skewed degree distribution, often following

a power-law, a small diameter (commonly called the small-world-phenomenon [6, 168]),

high clustering and a hierarchical structure [35].

Travers and Milgram experimentally measured the average path lengths of random mes-

sages in US acquaintanceship networks [158]. Due to the surprisingly small result – six –

these experiments are now known as the small-world experiments.

2.2 Hyperbolic Geometry

The most well-known and commonly used geometry is Euclidean, but it is not the only

possible one.1

On the surface of a sphere, spherical geometry applies, which is curved positively. When

drawing triangles on a globe, they have an interior angle sum of more than 180◦ and appear

“fat”. A projection from a globe to a (Euclidean) map always leads to distortions. This

is not due to a different number of dimensions, as both a sphere surface and a map have

two dimensions. Different map projections preserve angles, distances or areas, but never

all three.2

Given a line l and a point p not on l in Euclidean geometry, there is exactly one line l′ that

contains p and is parallel to l [53]. This is called the parallel postulate and geometers tried

for centuries to derive it from the other Euclidean axioms. After unsuccessful attempts of

a proof by negation3, Bolyai [25] defined a consistent hyperbolic geometry, in which the

parallel postulate does not hold.

1Lovecraft, a horror author from the early 20th century, used “non-Euclidean” as synonym for alien and
frightening. [102]

2The Mercator projection, the most common projection for world maps, preserves angles but distorts
distances and areas.

3“You must not attempt this approach to parallels. I know this way to the very end. I have traversed
this bottomless night, which extinguished all light and joy in my life. I entreat you, leave the science
of parallels alone...Learn from my example” – in a letter from Farkas Bolyai to his son János Bolyai.
Fortunately for us, he didn’t listen.
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Property Euclidean spherical hyperbolic

Curvature k = −ζ2 0 > 0 < 0
Triangle angle sum 180◦ > 180◦ < 180◦

Circle Length πr - 2πζ sinh(r/ζ) ≈ er
Circle Area πr2 - 2πζ2 (cosh(r/ζ)− 1) ≈ er

Table 2.1: Properties of Euclidean, Spherical and Hyperbolic space. These are also called
the three isotropic spaces, as distances in them are independent of absolute
positions and thus invariant under translation.

Hyperbolic geometry has negative curvature: Triangles have an angle sum of less than

180◦ and appear “thin”. Even more than spherical geometry, hyperbolic space cannot be

projected to Euclidean space without distortions. Also in contrast to spherical geometry,

a hyperbolic space of low dimension d cannot easily be embedded into a Euclidean space

with dimension d+1[99, 71]. An overview of properties is shown in Table 2.1. Among them

is that in Euclidean geometry, the circumference of a circle grows linearly with its radius,

while the area grows quadratically. In hyperbolic geometry, both grow exponentially with

the radius. For a curvature K, the term 1
−
√
K

occurs in many geometric equations, thus

we define ζ = 1
−
√
K

as a shorthand.

In a tree of constant degree b, the number of vertices with distance r to the root also grows

exponentially with r, as (b+1)br−1. The number of vertices with distance at most r scales

with [(b+1)br−2]/(b−1). When drawing a tree of constant degree b into Euclidean space,

the space per vertex thus decreases with increasing distance to the root, as the area to

draw them increases only quadratically. This is not the case for hyperbolic space, where

circle area increases exponentially as well; when setting ζ = ln b, it even increases exactly

with br. This has led to the idea of hyperbolic space as “continuous trees”.

Complex networks, whose hierarchical structure resembles trees, are empirically easier to

embed into hyperbolic space than Euclidean space [94], leading to lower distortions.

2.2.1 Models

Several models for hyperbolic geometry were derived by the French mathematician Poincaré,

among them the Poincaré disk model, which projects the hyperbolic plane into the unit

disk. Angles are preserved, but since an infinite plane is projected into a finite disk,

distances and areas are necessarily distorted.

Figure 2.2 shows examples of the Poincaré disk model. Shortest paths between points are

circle arcs, intersecting the boundary circle at right angles. Figure 2.2a shows parallels in

hyperbolic geometry: The lines P1, P2 and P3 all contain C and are parallel to line L1,

which is impossible within Euclidean geometry – and thus not visible in this Euclidean

projection. To distinguish the notation of geometries, we use distH(., .) for hyperbolic

distances and || · || for Euclidean ones.

The true hyperbolic distance between two projected points pE and qE in the Poincaré disk
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(a) Lines in the hyperbolic
plane are projected to cir-
cle arcs, hitting the unit
circle at a right angle.

(b) Arcs of equal length are
drawn smaller with in-
creasing distance to the
center

(c) Circle Limit III, M.C. Es-
cher, 1959 [38]. Infinitely
many fish in the hyper-
bolic plane.

Figure 2.2: Visualizations of hyperbolic geometry in the Poincaré disk model. Figures a
and b are from [93, Figure 1]. We thank Krioukov et al., who generously gave
permission.

is given by the Poincaré metric4:

distH(pE , qE) = acosh

(
1 + 2

||pE − qE ||2
(1− ||pE ||2)(1− ||qE ||2)

)
. (2.3)

Note that (1− ||pE ||2) and (1− ||qE ||2) are in the denominator, thus the distance between

p and q can be arbitrarily large when they approach the border of the disk. The unit circle

itself at radius 1 is not part of the model – points on it would have an infinity hyperbolic

distance to all others.

Figure 2.2b shows this effect: The connecting lines all have the same hyperbolic length,

but are drawn ever smaller as the distance from the circle center increases.

M. C. Escher used the effect of projecting an infinite plane into a finite area for his Circle

Limit series: Figure 2.2c shows infinitely many fish, projected into the unit disk.

2.2.2 Coordinate Systems

A point p = (x, y) in the plane can also be defined as its distance to the origin ((0, 0)) and

the angle towards the x-axis. In this form (rp, θp), called polar coordinates, the component

rp is the distance to the origin and called the radial coordinate of p, while θp is called the

angular coordinate.

A point in polar coordinates can be converted into classical (Cartesian) coordinates with

x := r cos θ and y := r sin θ. In the opposite direction, the radial coordinates r is
√
x2 + y2

4Note that hyperbolic space is a metric space and the properties following from it, for example the triangle
inequality, also hold.
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and the angular coordinate is found through a case distinction:

θ =



arctan y
x + π for x < 0

arctan y
x for x > 0

π
2 for x = 0 and y > 0

−π
2 for x = 0 and y < 0

undefined for x = y = 0.

Native Coordinates

In the Poincaré model, the hyperbolic distance distH(pE , (0, 0)) of a point p to the origin

can be derived from Equation 2.3:

distH(pE , (0, 0)) = acosh

(
1 + 2

||pE ||2
(1− ||pE ||2)

)
. (2.4)

Krioukov et al. [93] define a coordinate system using polar coordinates, in which the

angular coordinate of each point is the same as in the Poincaré disk model, but its radial

coordinate is the hyperbolic distance to the origin. They call these native coordinates.

Instead of the Poincaré metric, a different method is used to compute distances between

points in native coordinates: Two points p and q, along with the origin, define a triangle.

In native coordinates, the radial coordinates of p and q are the lengths of two sides of the

triangle, while the distance between them is the length of the third side. This distance

can then be calculated using the hyperbolic law of cosines:

cosh distH(p, q) = cosh rp cosh rq − sinh rp sinh rq cos ∆θ (2.5)

distH(p, q) = acosh (cosh rp cosh rq − sinh rp sinh rq cos ∆θ) (2.6)

In this, ∆θ = π − |π − |θp − θq|| is the angle between p and q at the origin.

This coordinate representation avoids numerical precision issues that may occur due to

the small numerical range in the unit disk model. We will mostly use native coordinates in

further explorations into hyperbolic space. When the choice of geometry is clearly implied

by the context, we omit the subscript H for brevity.

A mapping g : H2 → D1(0) from the native representation to the Poincaré disc model

needs to preserve the hyperbolic distance to the origin across models. Given the native

radial coordinate rH, its corresponding radial coordinate re in the Poincaré disc model is

then:

g(rH) =

√
cosh(rH)− 1

cosh(rH) + 1
. (2.7)
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This mapping gives the correct hyperbolic distance, as can be seen:

distH((φH, g(rH)), (0, 0)) = acosh

(
1 + 2

||(φH, g(rH))− (0, 0)||2
(1− ||(φH, g(rH))||2)(1− ||(0, 0)||2)

)
= acosh

(
1 + 2

||(φH, g(rH))||2
(1− ||(φH, g(rH))||2)(1)

)

= acosh

1 + 2

∣∣∣∣∣∣(φH,√ cosh(rH)−1
cosh(rH)+1

)∣∣∣∣∣∣2(
1−

∣∣∣∣∣∣(φH,√ cosh(rH)−1
cosh(rH)+1

)∣∣∣∣∣∣2)


= acosh

1 + 2

(√
cosh(rH)−1
cosh(rH)+1

)2

(
1−

(√
cosh(rH)−1
cosh(rH)+1

)2
)


= acosh

1 + 2

(
cosh(rH)−1
cosh(rH)+1

)
1−

(
cosh(rH)−1
cosh(rH)+1

)


= acosh

(
1 + 2

(cosh(rH)− 1)

cosh(rH) + 1− (cosh(rH)− 1)

)
= acosh

(
1 + 2

(cosh(rH)− 1)

2

)
= acosh ((cosh(rH)) = rH.

2.2.3 Applications

Krioukov et al. suggest that many network structures can be explained by a hidden

geometry, and that complex networks correspond to hyperbolic geometry. As stated above,

an intuitive understanding is that the hierarchy common in complex networks corresponds

to the tree-like fashion of the hyperbolic expansion of space. Indeed, Kleinberg [90] found

that ad-hoc wireless systems and sensor-nets can be projected into hyperbolic space in

such a way to enable greedy geographic routing.

Among others, Shavitt and Tankel [149] embed a network of internet routers with measured

shortest paths into hyperbolic space, constructing a distance oracle for graph distances.

This is possible in hyperbolic space with significantly less distortion than in Euclidean

space.

A generative model called Random Hyperbolic Graphs (RHG) suggested by Krioukov et

al. uses this connection to sample random graphs with some realistic properties. It is

considered in detail in Section 3.1.1.

Independent of networks, hyperbolic geometry is connected to Minkowski spacetime, a

geometric interpretation of special relativity[160].

Embeddings of symbolic data into the Poincaré ball have been used to learn hierarchical

representations [122].
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Figure 2.3: The first four iterations of the Hilbert curve in the unit square.

2.3 Space-Filling Curves

A space-filling curve is a function from a one-dimensional interval that surjectively fills

a higher-dimensional interval. For 2 dimensions, let h be such a curve. Without loss of

generality, it fills the unit square:

h : I[0, 1]→ [0, 1]2. (2.8)

Hilbert [70] presented a construction in which a curve is refined recursively and reaches

the whole unit square in the limit. The first four iterations of the Hilbert curve in the unit

square are shown in Figure 2.3

While Hilbert was not the first to define a space-filling curve, the Hilbert curves show good

spatial locality. Two points whose indices on the curve are close, will also be close in the

projection: ||hr(x+ ε)− hr(x)||2 ≤ 2rε, where r is the recursion level of the curve.

Space-filling curves are a way to relate higher-dimensional geometric problems to one-

dimensional geometric problems. The popular SLURM workload manager, for example,

uses Hilbert curves to linearize the computer topology before assigning jobs, ensuring a

higher locality [128].

For an in-depth discussion including the many applications, see the introductory book by

Bader [15].
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3. Random Hyperbolic Graphs and

Probabilistic Queries

This chapter presents several efficient generation algorithms for Random Hyperbolic Graphs,

a generative graph model proposed by Krioukov et al [93]. After discussing the model itself

(Section 3.1.1) and briefly touching on other generation algorithms for complex networks,

we present our contributions, starting in Section 3.2. These include a model extension for

dynamic graphs (Section 3.2) and four generation algorithms. A polar quadtree on the

Poincaré disk (Section 3.3) is the basis of the first subquadratic generation algorithm for

threshold random hyperbolic graphs (Section 3.4), a common special case. The algorithm

was presented at ISAAC’15 [164]; an extension for general random hyperbolic graphs (Sec-

tion 3.5) was presented at IWOCA’16 [161] and appeared in the Journal of Experimental

Algorithms (JEA), then used with an application to dynamic graph updates [162].

A different data structure based on dividing the Poincaré disk into ring-shaped slabs

enables a more efficient algorithm for threshold random hyperbolic graphs, presented

in Section 3.6. The algorithm and its implementation were first presented at IEEE

HPEC’16 [163] and are reprinted with permission. I’m grateful to Sören Laue, who had

the initial algorithmic idea and to Mustafa Özdayi, who did the first implementation in

NetworKit, which I later refined. An extension to general random hyperbolic graphs is

shown in Section 3.7, it is not published elsewhere yet.

Since the field of generating random hyperbolic graphs has piqued the interest of several

research groups, other generation algorithms have been published in the meantime, partly

building on our work. We discuss these in more detail in the conclusion, Section 3.9.

3.1 Related Work

3.1.1 Random Hyperbolic Graphs

Krioukov et al. [93] relate complex networks with hierarchical structures to hyperbolic

geometry and introduce the family of random hyperbolic graphs (RHG). In the RHG model,
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3. Random Hyperbolic Graphs and Probabilistic Queries

vertices are generated as points in polar coordinates (φ, r) on a disk of radius R (denoted as

DR) in the hyperbolic plane with curvature −ζ2. The angular coordinate φ is drawn from

a uniform distribution over [0, 2π], while the probability density for the radial coordinate

r is given by [93, Eq. (17)] in native coordinates and controlled by a dispersion parameter

α:

f(r) =
α sinh(αr)

cosh(αR)− 1
, r ∈ [0, R). (3.1)

For α/ζ = 1, this yields a uniform distribution on the hyperbolic plane within DR. For

lower values of α/ζ, vertices are more likely to be in the center, for higher values more

likely at the border of DR.

We denote the hyperbolic distance between two points p1 and p2 with distH(p1, p2). In the

model, any two vertices u and v are connected by an edge with a probability depending

on their distance, given by the following equation and parametrized by a temperature T :

p({u, v} ∈ E) =
(

1 + e(1/T )·(distH(u,v)−R)/2
)−1

. (3.2)

For the limiting case of T = 0, the neighborhood of a point consists of exactly those

points within a hyperbolic circle of radius R, giving rise to the name threshold random

hyperbolic graphs.5 In the other extreme of T =∞, the geometry’s influence vanishes and

the resulting model resembles the Erdős-Rényi-model with a binomial degree distribution.

Several works have analyzed the properties of the resulting graphs theoretically. Krioukov

et al. [93, Eq. (29)] show that for α/ζ ≥ 1
2 , the degree distribution follows a power law

with exponent γ := 2 · α/ζ + 1. Gugelmann et al. [63] prove non-vanishing clustering and

a low variation of the clustering coefficient. Bode et al. [24] show a phase transition at

ζ/α = 1: For ζ/α < 1, the size of the largest component is almost surely sublinear, for

ζ/α > 1, it is linear [23]. They also show that the curvature parameter ζ can be fixed while

retaining all degrees of freedom, leading us to assume ζ = 1 from now on without loss of

generality. For 2 < γ < 3, Kiwi and Mitsche [89] bound the diameter asymptotically almost

surely to O((log n)32/((5−γ)(3−γ))). Friedrich and Krohmer [56] present a tighter bound of

O((log n)2/(3−γ)). The average degree k of a random hyperbolic graph is controlled with

the radius R, using an approximation given by [93, Eq. (22)]. This radius is commonly

set to R = 2 log n+ C with a user-defined constant C, leading to a stable average degree

with changing graph size. An example of a threshold random hyperbolic graph with 500

vertices, R ≈ 5.08, T = 0 and α = 0.8 in this representation is shown in Figure 3.1a. For

the purpose of illustration in the figure, we choose a vertex u (the bold blue vertex) and

an artificially small6 example neighborhood, adding edges (u, v) for all vertices v where

distH(u, v) ≤ 0.2 ·R. The neighborhood of u then consists of vertices within a hyperbolic

circle (marked in blue). Figure 3.1b shows the same graph with coordinates in the Poincaré

disk model. Note that geodesics in this model are circle arcs, meeting the boundary circle

5Also called hyperbolic unit-disk graphs, step model of random hyperbolic graphs or (slightly confusingly)
just random hyperbolic graphs. While we consider hyperbolic unit-disk graphs to be more intuitive, we
stick with threshold random hyperbolic graphs to avoid name proliferation.

6Depicting neighborhoods as in the actual model of RHGs would result in a graph too dense to be useful
in a visualization.
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3.1. Related Work

(a) Native representation as specified in [93]. (b) Poincaré disk model.

Figure 3.1: Threshold random hyperbolic graph in native coordinates and the Poincaré
disk model. Neighbors of the bold blue vertex are in the hyperbolic respec-
tive Euclidean circle. In this visualization, an edge (u, v) is only added if
distH (u, v) ≤ 0.2R. The center of the Euclidean circle is marked with ×.

at a right angle.

Papadopoulos et al. [126] consider random hyperbolic graphs as a preferential attachment

model. They argue that, when given in polar coordinates, the angular and radial coor-

dinates model popularity and similarity, respectively, of vertices in a network. An edge

is more likely if one of the vertices is close to the center of the disk (thus having higher

popularity) or when vertices have a small angular distance, modeling their similarity.

3.1.2 Other Graph Generators

Numerous other generative graph models exist, including many designed for complex net-

works and not based on geometry. For a short overview, see [153]. All these models cover

different aspects of network formation and the graphs generated by them have systemat-

ically different properties. No model is widely accepted as covering the majority of use

cases.

Most ancient of all, the Erdős-Rényi (ER) model [52] draws a random graph uniformly

among those with a specified number of vertices and edges. This model is easy to ana-

lyze and implement, but lacking in structure and not a suitable fit for modeling complex

networks.

The Barabasi-Albert model [4] is a preferential attachment model, designed to replicate

the growth of real complex networks. The probability that a new vertex attaches to an

existing vertex v is proportional to v’s degree, which results in a power-law degree distri-

bution. While the distribution’s exponent is constant for the basic model, generalizations

for arbitrary exponents exist (see e. g. [120, Chap. 14]). Preferential attachment processes

can be implemented with a running time in O(n+m) [18].
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3. Random Hyperbolic Graphs and Probabilistic Queries

The Dorogovtsev-Mendes model [47] is designed to model network growth by attaching

new nodes to the end points of a randomly chosen edge. It is very fast in theory (Θ(n)) and

practice and yields a power-law degree distribution. However, it accepts only the vertex

count as parameter and has thus a fixed average degree.

The Recursive Matrix (R-MAT) model [36] was proposed to recreate properties of complex

networks including a power-law degree distribution, the small-world property and self-

similarity. Design goals also include few parameters and high generation speed. The R-

MAT generator recursively subdivides the initially empty adjacency matrix into quadrants

and drops edges into it according to given probabilities. It has Θ(m log n) asymptotic

complexity and is fast in practice. However, at least the R-MAT parameters used by the

Graph500 system benchmark [118] lead to an insignificant community structure compared

to real-world graphs and also small clustering coefficients.

Given a degree sequence seq , the Chung-Lu (CL) model [3] adds each edge (u, v) with a

probability of p(u, v) = seq(u)seq(v)∑
k seq(k) . The expected degree of each vertex is then as specified

in seq . The model can be conceived as a weighted version of the well-known Erdős-Rényi

model and has similar capabilities as the R-MAT model [148]. Implementations exist

with Θ(n + m) time complexity [114]. The LFR benchmark generator [97] was designed

by Lancichinetti, Fortunato and Radicchi to evaluate community detection algorithms.

Typically, the user specifies vertex degrees and community sizes. Each vertex is then

assigned to a community and connects a (1 − µ)-fraction of its edges to other vertices

in the same community, the remaining edges lead to vertices in other communities. The

mixing parameter µ controls the hardness of the benchmark instance.

The block two-level ER model [91] (BTER) uses the standard ER model to form relatively

dense subgraphs and thus distinct communities. Afterwards, the Chung-Lu model is used

to add edges, matching the desired degree distribution in expectation [147]. This is done

in Θ(n + m log dmax), where dmax is the maximum vertex degree. The BTER model has

been extended by Bridges et al. [30] and El-daghar et al. [50] to more faithfully model

community structures.

Mahadevan et al. [104] define and discuss dK -distributions, the vertex degree correlation

among subgraphs of size d. When used to replicate input graphs, an increasing value of d

causes the replica to be increasingly faithful to the original.

Staudt et al. [153] use several graph generators to create scaled replicas of real-world graphs

and compare their similarity to the originals.

3.1.3 Related Range Queries

The probabilistic neighborhood queries used in the generation of general hyperbolic ran-

dom graphs can also be used independently. We thus discuss related range queries on

geometric datasets.

Fast Deterministic Range Queries

A good overview of spatial queries on geometric datasets is given in Samet’s book [141],

mostly concerning trees and their variations. See the survey of Arge and Larsen [7] for
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I/O efficient worst case analysis in an external memory model. A focus on average-case

performance led to the rise of R-trees e. g. [80] in applied settings.

Deterministic queries in balanced quadtrees and kd-trees of dimension d require O(d ·
n1−1/d) time [141, Ch. 1.4], thus O(

√
n) in the planar case. Our algorithm for PNQs

matches this query complexity up to a logarithmic factor. Yet note that, since for general

probability functions f and distance metrics in our scenario all points in the set P could be

neighbors, data structures for deterministic queries cannot solve a PNQ efficiently without

adaptations.

Hu et al. [74] give a query sampling algorithm for one-dimensional data that, given a

set P of n points in R, an interval q = [x, y] and an integer t ≥ 1, returns t elements

uniformly sampled from P ∩ q. They describe a structure of O(n) space that answers a

query in O(log n + t) time and supports updates in O(log n) time. While also offering

query sampling, PNQs differ from the problem considered by Hu et al. in two aspects:

We consider not only the 1-dimensional case, and our sampling probabilities (user-defined

with a distance-dependent function) are not necessarily uniform.

Range Queries on Uncertain Data

During the previous decade probabilistic queries different from PNQs have become popu-

lar. The main scenarios can be put into two categories [130]: (i) Probabilistic databases

contain entries that come with a specified confidence (e. g. sensor data whose accuracy is

uncertain) and (ii) objects with an uncertain location, i. e. the location is specified by a

probability distribution. Both scenarios differ under typical and reasonable assumptions

from ours: Queries for uncertain data are usually formulated to return all points in the

neighborhood whose confidence/probability exceeds a certain threshold [92], or computing

points that are possibly nearest neighbors [2].

In our model, the choice of inclusion of a point p is a random choice for every different

p. In particular, depending on the probability distribution, all vertices in the plane can

have positive probability to be part of some other’s neighborhood. In the related scenarios

this would only be true with extremely small confidence values or extremely large query

circles.

3.2 Dynamic Model

Many phenomena modeled by graphs change over time.7 Dynamic graphs model both

a structure and its changes. For the case of random hyperbolic graphs, Papadopoulos

et al. [127] examine greedy routing in changing networks and for this purpose propose

a dynamic model. Network growth is modeled as newly arriving vertices having higher

radial coordinates than existing ones, thus join the network at the border of a growing disk.

Departure of vertices happens uniformly at random. While this is a suitable dynamic

behavior for modeling internet infrastructure with sudden site failures or additions, change

7Even the famous solution to the problem of crossing all bridges of Königsberg exactly once – it no longer
applies. Some of the bridges in now-Kaliningrad have been torn down, others constructed.
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3. Random Hyperbolic Graphs and Probabilistic Queries

in e. g., social networks happens more gradually; people rarely leave society completely

and rejoin it at a random position.

To model such a gradual change in networks, we design and implement a dynamic version

with vertex movement. Such a model should fulfill several objectives: First, it should be

consistent : After moving a vertex, the network may change, but properties should stay the

same in expectation. Since the properties emerge from the vertex positions, the probability

distribution of vertex positions needs to be preserved. Second, the movement should be

directed : If the movement direction of a vertex at time t is completely independent from

the direction at t+ 1, the same links would vanish and reappear repeatedly.

We attain the first objective by scaling the movements along the radial axis, as given by

Theorem 1. The second objective is fulfilled by initially setting step values τφ and τr for

each vertex and using them in each movement step. As a result, if a vertex i moves in a

certain direction at time t, it will move in the same direction at t + 1, except if the new

position would be outside the hyperbolic disk DR. In this case, the movement is inverted

and the vertex “bounces” off the boundary. The different probability densities in the center

of the disk and the outer regions are translated into movement speed: A vertex is less likely

to be in the center; thus it needs to spend less time there while traversing it, resulting in a

higher speed. In the interpretation of popularity and similarity, this could be compared

to participants having their “15 minutes of fame”.

We implement this movement in two phases and with discrete time steps: In the initializa-

tion, step values τφ and τr are assigned to each vertex according to the desired movement.

Each movement step of a vertex then consists of a rotation and a radial movement. This

step is described in Algorithm 1; a visualization of the radial movement is shown in Fig-

ure 3.2.

Algorithm 1: move(φ, r) – Movement step in dynamic model

Input: φ, r, τφ, τr, R, α.
Output: φnew, rnew

1. x = sinh(r · α);

2. y = x+τr;

3. z = asinh(y)/α;

4. φnew = (φ+ τφ) mod 2π

5. Return (φnew, z)

If the new vertex position would be outside the boundary (r > R) or below the origin

(r < 0), the movement is reflected and τr set to −τr.
Theorem 1. Let fr,φ((pr, pφ)) be the probability density of point positions, given in polar

coordinates. Let move((pr, pφ)) (Algorithm 1) be a movement step. Then, the vertex move-

ment preserves the distribution of angular and radial distributions: fr,φ(move((pr, pφ))) =

fr,φ((pr, pφ)).
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0

R

⇒
1

cosh(R)

⇒
0

R

Figure 3.2: For each movement step, radial coordinates are mapped into the interval
[1, cosh(αR)), where the coordinate distribution is uniform. Adding τr and
transforming the coordinates back results in correctly scaled movements.

Proof. Since the distributions of angular and radial coordinates are independent, we con-

sider them separately: fr,φ(pr, pφ) = fr(pr) · fφ(pφ).

As introduced in Eq. (3.1), the radial coordinate r is sampled from a distribution with

density α sinh(αr)/(cosh(αR) − 1). We introduce random variables X,Y, Z for each step

concerning the radial coordinates in Algorithm 1, each is denoted with the upper case

letter of its equivalent. An additional random variable Q denotes the pre-movement radial

coordinate. The other variables are defined as X = sinh(Q · α), Y = X + τr and Z =

asinh(Y )/α.

Let fQ, fX , fY and fZ denote the density functions of these variables:

fQ(r) =
α sinh(αr)

cosh(αR)− 1
,

fX(r) = fQ

(
asinh(r)

α

)
=

αr

cosh(αR)− 1
,

fY (r) = fX(r − τr) =
αr − τr

cosh(αR)− 1
,

fZ(r) = fY (sinh(r · α)) =
α sinh(αr)− τr
cosh(αR)− 1

= fQ(r)− τr
cosh(αR)− 1

.

The distributions of Q and Z only differ in the constant addition of τr/(cosh(αR) − 1).

Every (cosh(αR)−1)/τr steps, the radial movement reaches a limit (0 or R) and is reflected,

causing τr to be multiplied with -1. On average, τr is thus zero and FQ(r) = FZ(r).

A similar argument works for the rotational step: While the rotational direction is un-

changed, the change in coordinates is balanced by the addition or subtraction of 2π when-

ever the interval [0, 2π) is left, leading to an average of zero in terms of change.
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3.3 Polar Quadtrees on the Poincaré disk

Efficient geometric algorithms need suitable geometric data structures. Our first algorithm

for sublinear neighborhood queries (and thus subquadratic generation) of random hyper-

bolic graphs uses a polar quadtree on the Poincaré disk representation of the hyperbolic

plane, introduced in Section 2.2.1. Since in the Poincaré disk model, the unit disk repre-

sents the entire infinite hyperbolic plane, we construct quadtrees only on a subset of the

unit disk.

Quadtrees are geometric data structures for the plane. Each node in the tree covers a

(usually) rectangular region and either has four children or is a leaf node. Leaf nodes

directly contain points or other objects, for each inner node C, the regions of its four

children are a disjoint partition of the region of C.

While quadtrees are less suited to higher dimensions as for example k-d-trees, the com-

plexity is comparable in the plane. For the (circular) range queries we discuss, quadtrees

have the significant advantage of a bounded aspect ratio: A cell in a k-d-tree might extend

arbitrarily far in one direction, rendering theoretical guarantees about the area affected by

the query circle difficult. In contrast, the region covered by a quadtree cell is determined

by its position and level. Euclidean quadtrees are common [141], but we are not aware of

previous adaptations to hyperbolic space.

Figure 3.3: Polar quadtree

A node in the quadtree T is defined as a tuple

(minφ,maxφ,minr,maxr) with minφ ≤ maxφ and minr ≤
maxr. It is responsible for a point p = (φp, rp) ∈ D1(0)

iff (minφ ≤ φp < maxφ) and (minr ≤ rp < maxr). Fig-

ure 3.3 shows a section of a polar quadtree, where quadtree

nodes are marked by dotted red lines. We call the geometric

region corresponding to a quadtree node its quadtree cell.

The root cell of Q has the boundaries minφ := 0,maxφ :=

2π,minr := 0 and maxr := RT , the radius of the disk that

should be covered by T . When a point is to be inserted into

an already full leaf node, the node is split into four children,

once in the angular and once in the radial direction. Splitting in the angular direction is

straightforward as the angle range is halved: midφ :=
maxφ+minφ

2 . For the radial direc-

tion, we choose the splitting radius to result in an equal division of probability mass. For

this, the radial probability distribution must be integrable and have a support of exactly

[0, RT ). This is the case for random hyperbolic graphs (see Eq. 3.1), the quadtree radius

RT is then the Poincaré projection of the native disk radius R.

Let j(r) denote the radial probability distribution and J(r) :=
∫ RT

0 j(s)ds the indefinite

integral of j(r). We normalize J(r) so that J(RT ) = 1. The value J(r) then gives the

fraction of probability mass inside radius r.

The total probability mass in a ring delimited by minr and maxr is then J(maxr) −
J(minr). Since j(r) is positive for r between 0 and RT , the restricted function J |[0,RT ] is
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a bijection. The inverse (J |[0,RT ])
−1 thus exists and we set the splitting radius midr to

(J |[0,RT ])
−1
(
J(maxr)+J(minr)

2

)
. In the context of random hyperbolic graphs, this leads to:

midrH := acosh

(
cosh(αmaxrH) + cosh(αminrH)

2

)
/α. (3.3)

(Note that Eq. (3.3) uses radial coordinates in the native representation, which are con-

verted back to coordinates in the Poincaré disk.) This leads to three lemmas useful for

establishing the time complexity of the main quadtree operations:

Lemma 1. Let DRT be a disk of radius RT , j(r) be a probability distribution with the

support [0, RT ), T be a polar quadtree on DRQ constructed according to j, and let p be a

point in DRT , drawn with a uniformly distributed angular coordinate and a radial coordinate

distributed as j. Let C be a quadtree cell at depth i. Then, the probability that p is in C

is 4−i.

Proof. Let C be a quadtree cell at level k, delimited by minr, maxr, minφ and maxφ. The

probability that a point p is in C is then given by

Pr(p ∈ C) =
maxφ−minφ

2π
· (J(maxr)− J(minr)). (3.4)

The boundaries of the children of C are given by the splitting rules of Equation 3.3.

midφ :=
maxφ + minφ

2
(3.5)

midr := (J |[0,R])
−1

(
J(maxr) + J(minr)

2

)
(3.6)

We proceed with induction over the depth i of C. Start of induction (i = 0): At depth 0,

only the root cell exists and covers the whole disk. Since C = DR, Pr(p ∈ C) = 1 = 4−0.

Inductive step (i → i + 1): Let Ci be a node at depth i. Ci is delimited by the radial

boundaries minr and maxr, as well as the angular boundaries minφ and maxφ. It has four

children at depth i+ 1, separated by midr and midφ. Let SW be the south west child of

Ci. With Eq. (3.4), the probability of p ∈ SW is:

Pr(p ∈ SW ) =
midφ −minφ

2π
· (J (midr)− J (minr))

.
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Using Equations (3.5) and (3.6), this results in a probability of

Pr(p ∈ SW ) =

maxφ + minφ
2 −minφ

2π
·
(
J

(
(J |[0,RT ])

−1

(
J(maxr) + J(minr)

2

))
− J(minr)

)
=

maxφ + minφ
2 −minφ

2π
·
(
J(maxr) + J(minr)

2
− J(minr)

)
=

maxφ−minφ
2

2π
·
(
J(maxr)− J(minr)

2

)
=

1

4

maxφ−minφ
2π

· (J(maxr)− J(minr))

As per the induction hypothesis, Pr(p ∈ Ci) is 4−i and Pr(p ∈ SW ) is thus 1
4 ·4−i = 4−(i+1).

Due to symmetry when selecting midφ, the same holds for the south east child of Ci.

Together, they contain half of the probability mass of Ci. Again due to symmetry, the

same proof then holds for the northern children as well.

Lemma 2. When n balls are thrown independently and uniformly at random into n3 bins,

the probability that any bin receives more than one ball is less than 1/2n.

Proof. Each ball has a probability of 1/
(
n3
)

to land in a given bin. Since balls are thrown

independently, each pair of balls has a probability of 1/
(
n3
)2

to land in a given bin.

Among n balls,
(
n
2

)
pairs exist. With Boole’s inequality, it follows that the probability of

a given bin receiving at least two balls is:(
n

2

)(
1

n3

)2

.

With n3 bins, it follows again from Boole’s inequality that the probability that any of the

bins receives at least two balls is at most

n3

(
n

2

)(
1

n3

)2

=

(
n

2

)(
1

n3

)
.

This is smaller than 1/n:(
n

2

)(
1

n3

)
=
n(n− 1)

2
· 1

n3
<
n2

2
· 1

n3
=

1

2n
.

Lemma 3. Let RT and DRT be as in Lemma 1. Let T be a polar quadtree on DRT con-

taining n points whose positions follow the probability distributions for which the quadtree

was constructed. Then, for n sufficiently large, height(T ) ∈ O(log n) whp.

Proof. In a complete quadtree, 4i cells exist at depth i. For analysis purposes only, we

construct such a complete but initially empty quadtree of height k = 3 · dlog4(n)e, which

has at least n3 leaf cells. As seen in Lemma 1, a given point has an equal chance to land
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in each leaf cell. Hence, we can apply Lemma 2 with each leaf cell being a bin and a point

being a ball. (The fact that we can have more than n3 leaf cells only helps in reducing the

average load.) From this we can conclude that, for n sufficiently large, no leaf cell of the

current tree contains more than 1 point with high probability (whp). Consequently, the

total quadtree height does not exceed k = 3 · dlog4(n)e ∈ O(log n) whp.

Let T ′ be the quadtree as constructed in the previous paragraph, starting with a complete

quadtree of height k and splitting leaves when their capacity is exceeded. Let T be the

quadtree created in our algorithm, starting with a root node, inserting points and also

splitting leaves when necessary, growing the tree downward.

Since both trees grow downward as necessary to accommodate all points, but T does not

start with a complete quadtree of height k, the set of quadtree nodes in T is a subset of

the quadtree nodes in T ′. Consequently, the height of T is bounded by O(log n) whp as

well.

Lemma 4. Inserting n points into an initially empty quadtree T has a time complexity of

O(n log n) whp.

Proof. Let h(T ) be the final height of T . Since the height never shrinks when inserting a

element, it is also the maximum height during construction. For each element insertion,

at most h(T ) nodes are visited to find the correct leaf for insertion. When a node is split,

all affected elements are moved down one level. Thus, each element is moved at most

h(T ) times during the insertion of other elements and the necessary node splits. The time

complexity to construct a quadtree T with n vertices is thus O(n · 2 ·h(T )) = O(n ·h(T )),

which is O(n log n) whp due to Lemma 3.

3.3.1 Distance between Quadtree Cell and Point

For range queries, both deterministic and probabilistic, we need a lower bound for the

distance between the query point q and any point in a given quadtree cell. Since the

quadtree cells are polar, the distance calculations might be unfamiliar and we show and

prove them explicitly. For hyperbolic geometry, we use native coordinates, the resulting

distance calculations are shown in Algorithm 2 and proven in Lemma 5. To enable a more

general use also in Euclidean geometry (we’ve heard it is slightly more popular for some

reason), we show the distance calculations for Euclidean geometry in Algorithm 3 and

prove them in Lemma 6.

Lemma 5. Let C be a quadtree cell and q a point in the hyperbolic plane, both given in

native coordinates. The first value returned by Algorithm 2 is the distance of C to q.

Proof. When q is in C, the distance is trivially zero. Otherwise, the distance between q

and C can be reduced to the distance between q and the boundary of C, ∂C:

distH(C, q) = distH(∂C, q) = inf
p∈∂C

distH(p, q) (3.7)
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Algorithm 2: Infimum and supremum of distance in a hyperbolic polar quadtree

Input: quadtree cell C = (minr, maxr, minφ, maxφ), query point q = (φq, rq)
Output: infimum and supremum of hyperbolic distances q to points in C
/* start with corners of cell as possible extrema */

1 cornerSet = {(minφ, minr), (minφ, maxr), (maxφ, minr), (maxφ, maxr)};
2 a = cosh(rq);
3 b = sinh rq · cos(φq −minφ);
/* Left/Right boundaries */

4 leftExtremum = 1
2 ln

(
a+b
a−b

)
;

5 if minr < leftExtremum < maxr then
6 add (minφ, leftExtremum) to cornerSet;
7 b = sinh rq · cos(φq −maxφ);

8 rightExtremum = 1
2 ln

(
a+b
a−b

)
;

9 if minr < rightExtremum < maxr then
10 add (maxφ, rightExtremum) to cornerSet;

/* Top/bottom boundaries */

11 if minφ < φq < maxφ then
12 add (φq,minr) and (φq,maxr) to cornerSet;
13 φmirrored = φq + π mod 2π;
14 if minφ < φmirrored < maxφ then
15 add (φmirrored,minr) and (φmirrored,maxr) to cornerSet;

/* If point is in cell, distance is zero: */

16 if minφ ≤ φq < maxφ and minr ≤ rq < maxr then
17 infimum = 0;
18 else
19 infimum = mine∈cornerSet distH(q, e);
20 supremum = maxe∈cornerSet distH(q, e);
21 return infimum, supremum;
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Algorithm 3: Infimum and supremum of distance in a Euclidean polar quadtree

Input: quadtree cell C = (minr, maxr, minφ, maxφ), query point q = (φq, rq)
Output: infimum and supremum of Euclidean distances q to interior of C
/* start with corners of cell as possible extrema */

1 cornerSet = {(minφ, minr), (minφ, maxr), (maxφ, minr), (maxφ, maxr)};
/* Left/Right boundaries */

2 leftExtremum= rq · cos(minφ − φq);
3 if minr < leftExtremum < maxr then
4 add (minφ, leftExtremum) to cornerSet;
5 rightExtremum= rq · cos(maxφ − φq);
6 if minr < rightExtremum < maxr then
7 add (maxφ, rightExtremum) to cornerSet;
/* Top/bottom boundaries */

8 if minφ < φq < maxφ then
9 add (φq,minr) and (φq,maxr) to cornerSet;

10 φmirrored = φq + π mod 2π;
11 if minφ < φmirrored < maxφ then
12 add (φmirrored,minr) and (φmirrored,maxr) to cornerSet;

/* If point is in cell, distance is zero: */

13 if minφ ≤ φq < maxφ AND minr ≤ rq < maxr then
14 infimum = 0;
15 else
16 infimum = mine∈cornerSet distH(q, e);
17 supremum = maxe∈cornerSet distH(q, e);
18 return infimum, supremum;
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Since the boundary is closed and bounded, this infimum is actually a minimum:

distH(C, q) = inf
p∈∂C

distH(p, q) = min
p∈∂C

distH(p, q) (3.8)

The boundary of a quadtree cell consists of four closed curves:

• left: {(minφ, r)|minr ≤ r ≤ maxr}

• right: {(maxφ, r)|minr ≤ r ≤ maxr}

• lower: {(φ,minr)|minφ ≤ φ ≤ maxφ}

• upper: {(φ,maxr)|minφ ≤ φ ≤ maxφ}

We write the distance to the whole boundary as a minimum over the distances to its parts:

distH(∂C, q) = min
A∈{left, right, lower, upper}

distH(A, q) (3.9)

Angular Boundaries

All points on an angular boundary curve A have the same angular coordinate φA. The

distance of a point q in the hyperbolic plane and a point q′ ∈ A thus only depends on the

radial coordinate of q′. Let dA,q(r) = acosh(cosh(r) cosh(rq)−sinh(r) sinh(rq) cos(φq−φA))

for a fixed point q. The distance distH(A, q) can then be reduced to:

distH(A, q) = min
minr≤r≤maxr

dA,q(r).

The minimum of dA,q on A is the minimum of dA,q(minr), dA,q(maxr) and the value at

possible extrema. To find the extrema, we define a function g(r) = cosh(r) cosh(rq) −
sinh(r) sinh(rq) cos(φq −φA). Since acosh is strictly monotone, g(r) has the same extrema

as dA,q(r).

The factors cosh(rq) and sinh(rq) cos(φq −φA) do not depend on r, to increase readability

we substitute them with the constants a and b:

a = cosh(rq)

b = sinh(rq) cos(φq − φA)

dA,q(r) = acosh(cosh(r) · a− sinh(r) · b)
g(r) = cosh(r) · a− sinh(r) · b

The derivative of g is thus:

g′(r) = sinh(r) · a− cosh(r) · b =
er − e−r

2
· a− er + e−r

2
· b

With some transformations, we get the roots of g′(r):
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Case a = b:

g′(r) = 0 ⇐⇒ er − e−r
2

· a =
er + e−r

2
· a ⇐⇒

er − e−r = er + e−r ⇐⇒ −e−r = e−r ⇐⇒ e−r = 0

For a = b, dA,q has no extrema in R.

Case a 6= b:

g′(r) = 0 ⇐⇒ er − e−r
2

· a =
er + e−r

2
· b ⇐⇒

aer − ae−r = ber + be−r ⇐⇒ (a− b)er − (a+ b)e−r = 0 ⇐⇒

(a− b)er = (a+ b)e−r ⇐⇒ er =
a+ b

a− be
−r ⇐⇒

e2r =
a+ b

a− b ⇐⇒ 2r = ln

(
a+ b

a− b

)
⇐⇒

r =
1

2
ln

(
a+ b

a− b

)

For a 6= b, dA,q has a single extremum at 1
2 ln

(
a+b
a−b

)
. This extremum is calculated for both

angular boundaries in Lines 4 and 8 of Algorithm 2.

If d(r) has an extremum x inA, the minimum of dA,q(r) onA is min{dA,q(minr), dA,q(maxr),

dA,q(x)}, otherwise it is min{dA,q(minr), dA,q(maxr)}.

Radial Boundaries

A similar approach works for the radial boundary curves. Let B be a radial boundary

curve at radius rB and angular bounds minφ and maxφ. Let dB,q(φ) be the distance to q

restricted to radius rB.

dB,q : [0, 2π]→ R

dB,q(φ) = acosh(cosh(rB) cosh(rq)− sinh(rB) sinh(rq) cos(φq − φ))

Similarly to the angular boundaries, we define some constants and a function g(φ) with

the same extrema as dB,q:

a = cosh(rB) cosh(rq)

b = sinh(rB) sinh(rq)

g(φ) = a− b cos(φq − φ)
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Case: b = 0:

b = sinh(rB) sinh(rq) = 0 ⇐⇒ g(φ) = a

Since g is constant, no extrema exist.

Case: b 6= 0:

We obtain the extrema with some transformations:

g′(φ) = −b sin(φq − φ)

g′(φ) = 0 ⇐⇒
sin(φq − φ) = 0 ⇐⇒

φ = φq mod π

The distance function dB,q(φ) thus has two extrema.

The minimum of dB,q(r) on B is then:

min
r∈B

dB,q(r) = min ({dB,q(minr), dB,q(maxr)} ∪ {dB,q(φ)|minφ ≤ φ ≤ maxφ ∧ φ = φq mod π})

The distance distH(C, q) can thus be written as the minimum of four to ten point-to-point

distances. Algorithm 2 collects the arguments for these distances in the variable cornerSet

and returns the distance minimum as the first return value.

Lemma 6. Let T be a polar quadtree in the Euclidean plane, C a quadtree cell of T and

q a point in the Euclidean plane. The first value returned by Algorithm 3 is the distance

of C to q.

Proof. The general distance equation for polar coordinates in Euclidean space is

f(rp, rq, φp, φq) =
√
r2
p + r2

q − 2rprq cos(φp − φq). (3.10)

If the query point q is within C, the distance is zero. Otherwise, the distance between

q and C is equal to the distance between q and the boundary of C. We consider each

boundary component separately and derive the extrema of the distance function.

Radial Boundary.

When considering the radial boundary, everything but one angle is fixed:

f(φp) =
√
r2
p + r2

q − 2rprq cos(φp − φq). (3.11)
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Since the distance is positive and the square root is a monotone function, the extrema of

the previous function are at the same values as the extrema of its square g(φ):

g(φp) = r2
p + r2

q − 2rprq cos(φp − φq). (3.12)

If any of rp and rq are zero, the distance is independent from φ and any angle will work.

If not, we set the derivative to zero to find the extrema:

g′(φp) = 0 ⇐⇒ (3.13)

2rprq sin(φp − φq) · (φp − φq) = 0 ⇐⇒ (3.14)

φp = φq mod π. (3.15)

Angular Boundary.

Similar to the radial boundary, we fix everything but the radius:

f(rp) =
√
r2
p + r2

q − 2rprq cos(φp − φq). (3.16)

Again, we define a helper function with the same extrema:

g(rp) = r2
p + r2

q − 2rprq cos(φp − φq). (3.17)

We set the derivative to zero to find the extrema:

g′(rp) = 0 ⇐⇒ (3.18)

2rp − 2rq cos(φp − φq) = 0 ⇐⇒ (3.19)

rp = rq cos(φp − φq)⇒ (3.20)

g(rp) = r2
p + r2

q − 2r2
p (3.21)

= r2
q − r2

p (3.22)

= r2
q(1− cos(φp − φq)). (3.23)

An extremum of f on the boundary of cell C is either at one of its corners or at the points

derived in Eq. (3.15) or Eq. (3.23). If q 6∈ c, the minimum over these points and the

corners, as computed by Algorithm 3, is the minimal distance between q and any point in

c. If q is in C, the distance is trivially zero.

These distance bounds support geometric range queries, by avoiding the descent into

subtrees which cannot have points in the query area.

3.4 Subquadratic Generation of Threshold Random Hyper-

bolic Graphs

Algorithm 4 shows a high-level view of how to use a polar quadtree to generate a random

hyperbolic graph. It takes as input the number of vertices n, the desired average degree k
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Algorithm 4: Graph Generation

Input: n, k, α
Output: G = (V,E)

1 R = getTargetRadius(n, k, α); /* Eq. (3.24) */

2 V = n vertices;
3 T = empty polar quadtree of radius g(R); /* Map to Poincaré with Eq.(2.7) */

4 for vertex v ∈ V do
5 draw φv from U [0, 2π);
6 draw rH[v] with density f(r) = α sinh(αr)/(cosh(αR)− 1); /* Eq.(3.1) */

7 rE [v] = g(rH[v]); /* Map to Poincaré with Eq.(2.7) */

8 insert v into T at (φv, rE [v]);

9 for vertex v ∈ V do in parallel
10 CH = hyperbolic circle around (φv, rH[v]) with radius R;
11 CE = transformCircleToEuclidean(CH); /* Prop. 1 */

12 for vertex w ∈ T ∩ CE) do
13 add (v, w) to E;

14 return G;

and the dispersion parameter α, which controls the power-law exponent γ. The functions

getTargetRadius and transformCircleToEuclidean are discussed afterwards.

Overview

As in previous efforts [5], vertex positions are generated randomly (lines 5 and 6). We

then map these positions into the Poincaré disk (line 7) and store them in a polar quadtree

(line 8). For each vertex u the hyperbolic circle defining the neighborhood is mapped into

the Poincaré disk according to Proposition 1 (lines 10-11) – also see Figure 3.1b, where

the neighborhood of u consists of exactly the vertices in the light blue Euclidean circle.

Edges are then created by executing a Euclidean range query with the resulting circle in

the polar quadtree (lines 12-13). We add edges (u, v) from u to each vertex v returned by

the Euclidean range query, as the hyperbolic distance between u and v is less than R.

Radius of Hyperbolic Disk

For given values of n, α and R, an approximation of the expected average degree k is given

by [93, Eq. (22)] and the notation ξ = (α/ζ)/(α/ζ − 1/2):

k =
2

π
ξ2n · e−ζR/2 +

2

π
ξ2n

·
(
e−αR

(
α
R

2

(
π

4

(
ζ

α

2)
− (π − 1)

ζ

α
+ (π − 2)

)
− 1

))
(3.24)

The value of ζ can be fixed while retaining all degrees of freedom in the model [23], we

thus assume ζ = 1. We then use binary search with fixed n, α and desired k to find an

R that gives us a close approximation of the desired average degree k. Note that the

above equation is only an approximation and might give wrong results for extreme values.

Our implementation could easily be adapted to skip this step and accept the commonly
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used [89] parameter C, with R = 2 lnn + C or even accept R directly. For increased

usability, we accept the average degree k as a parameter in the default version. This

approach is implemented in the method getTargetRadius.

Circles in the Poincaré disk model.

Neighbors of a query point u = (φh, rh) lie in a hyperbolic circle around u with radius R.

This circle, which we denote as H, corresponds to a Euclidean circle E in the Poincaré

disk. The center Ec and radius radE of E are in general different from u and R. All points

on the boundary of E in the Poincaré disk are also on the boundary of H and thus have

hyperbolic distance R from u. Among these points, the two on the ray from the origin

through u are straightforward to construct by keeping the angular coordinate fixed and

choosing the radial coordinates to match the hyperbolic distance: (φh, re1) and (φh, re2),

with re1 , re2 ∈ [0, 1), re1 6= re2 and distH(Ec, (φh, re)) = R for re ∈ {re1 , re2}. It follows:

Proposition 1. Ec is at (φh,
2rh
ab+2) and radE is

√(
2rh
ab+2

)2
− 2r2h−ab

ab+2 , with

a = cosh(R)− 1 and b = (1− r2
h).

This transformation is done in the method transformCircleToEuclidean.

Quadtree Range Query

A Euclidean circular range query in the polar quadtree can be handled as in any other

geometric data structure – recursively descending the tree, skipping subtrees which are

out of range and testing elements in leaf cells individually.

Application to Dynamic Updates

Each vertex neighborhood is computed independently. Thus, an updated vertex position

requires only a modification of the quadtree and a single Euclidean range query.

3.4.1 Time Complexity

The time complexity of the generator is determined by the quadtree operations.

Quadtree Range Query.

Neighbors of a vertex u are the vertices within a Euclidean circle constructed according to

Proposition 1. LetN (u) be this neighborhood set in the final graph, thus deg(u) := |N (u)|.
We denote leaf cells that do not have non-leaf siblings as bottom leaf cells, see Figure 3.4

for an example.

Lemma 7. Let T and n be as in Lemma 3. A range query on T returning a point set A

will examine at most O(
√
n+ |A|) bottom leaf cells with probability at least 1− 1

n2 .
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Figure 3.4: Visualization of bottom leaf cells in a quadtree. Bottom leaf cells are marked
in green, non-bottom leaf cells in red and interior cells in black.

Proof. For simplicity’s sake, we choose a leaf capacity of one for this proof. Since a larger

leaf capacity does not increase the tree height and adds only a constant factor to the cost

of examining a leaf, this choice does not result in a loss of generality.

Let L be the set of bottom leaf cells containing a vertex in A and let Q be the set of

bottom leaf cells examined by the range query. Since the contents of leaf cells are disjoint,

|L| ≤ |A| holds. The set Q\L consists of leaf cells which are examined by the range query

but yield no points in A. These are empty leaf cells within the query circle as well as cells

cut by the circle boundary.

Empty leaf cells occur when a previous leaf cell is split since its capacity is exceeded by at

least one point. Therefore an empty leaf cell a in the interior of the query circle only occurs

when at least two points happened to be allocated to its parent cell b. A split caused by

two points creates four leaf cells, therefore there are at most twice as many empty bottom

leaf cells as points.

The number of cells cut by the boundary can be bounded with a geometric argument. At

depth k = dlog4 ne, at most 4k cells exist, defined by at most 2k angular and 2k radial

divisions. When following the circumference of a query circle, each newly cut leaf cell

requires the crossing of an angular or radial division. Each radial and angular coordinate

occurs at most twice on the circle boundary, thus each division can be crossed at most

twice. With two types of divisions, the circle boundary crosses at most 2 ·2 ·2k = 4 ·2dlog4 ne

cells at depth k. Since the value of 4·2dlog4 ne is smaller than 4·21+log4 n, this yields < 8·√n
cut cells.

In a balanced tree, all cells at depth k are leaf cells and the bound calculated above is

an upper bound for |Q\L|. For the general case of an unbalanced tree, we use auxiliary

Lemma 8, which bounds to O(
√
n) the number of bottom leaf cells descendant from cells

cut at depth k.

Lemma 8. Let DR be a disk with radius R in hyperbolic space. Let T be a quadtree on

DR, containing n points distributed according to Section 3.1.1. Let k := dlog4 ne and let

C be a set of bc · √nc quadtree cells at depth k, for c ≥ 1. The total number of bottom leaf

cells among the descendants of cells in C is then bounded by 4c · √n whp.
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Proof. New leaf cells are only created if a point is inserted in an already full cell. We argue

similarly to Lemma 7 that the descendants contain at most twice as many empty bottom

leaf cells as points. The number of points in the cells of C is a random variable, which we

denote by X. Since each point position is drawn independently and each point is equally

likely to land in each cell at a given depth (Lemma 1), X follows a binomial distribution:

X ∼ Bin

(
n,
bc · √nc

4k

)
(3.25)

For ease of calculation, we define a slightly different binomial distribution Y ∼ Bin
(
n, c·

√
n

n

)
.

Since n ≤ 4k and c · √n ≥ bc · √nc, the tail bounds calculated for Y also hold for X.

Let H
(

2c·
√
n

n , c·
√
n

n

)
be the relative entropy (also known as Kullback-Leibler divergence)

of the two Bernoulli distributions B
(

2c·
√
n

n

)
and B

(
c·
√
n

n

)
. We use a tail bound from [8]

to gain an upper bound for the probability that more than 2c points are in the cells of C:

Pr(Y ≥ 2c · √n) ≤ exp

(
−nH

(
2c · √n
n

,
c · √n
n

))
(3.26)

For consistency with our previous definition of “with high probability”, we need to show

that Pr(Y ≥ 2c
√
n) ≤ 1/n for n sufficiently large. To do this, we interpret Pr(Y ≥

2c · √n)/(1/n) as an infinite sequence and observe its behavior for n → ∞. Let an :=

Pr(Y ≥ 2c ·√n)/(1/n) = n ·Pr(Y ≥ 2c ·√n) and bn := n ·exp
(
−nH

(
2c·
√
n

n , c·
√
n

n

))
. From

Eq. (3.26) we know that an ≤ bn.

Using the definition of relative entropy, we iterate over the two cases (point within C,

point not in C) for both Bernoulli distributions and get:

bn = n · exp

(
−nH

(
2c
√
n

n
,
c
√
n

n

))
= n · exp

(
−n
((

2c√
n

)
ln 2 +

(
1− 2c√

n

)
ln

1− 2c
√
n

n

1− c
√
n
n

))

= n · exp

(
−n 2c√

n
ln 2

)
· exp

(
−n
(

1− 2c√
n

)
ln

√
n− 2c√
n− c

)
= n · exp

(
−2c
√
n ln 2

)
· exp

((
n− 2c

√
n
)

ln

√
n− c√
n− 2c

)
= n · 1

22c
√
n
·
( √

n− c√
n− 2c

)n−2c
√
n

= n · 1

4c
√
n
·
(

1 +
c√

n− 2c

)n−2c
√
n

(While bn is undefined for n ∈ {c2, 4c2}, we only consider sufficiently large n from the

outset.)

We apply a variant of the root test and consider the limit limn→∞(bn)
1√
n for an auxiliary
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result:

lim
n→∞

(
n · 1

4c
√
n
·
(

1 +
c√

n− 2c

)n−2c
√
n
) 1√

n

= lim
n→∞

n
1√
n · 1

4c
·
(

1 +
c√

n− 2c

)√n(
1 +

c√
n− 2c

)−2c

=1 · 1

4c
· ec · 1 =

(e
4

)c
From e/4 < 0.7, c ≥ 1 and the limit definition, it follows that almost all elements in

(bn)
1√
n are smaller than 0.7 and thus almost all elements in bn are smaller than 0.7

√
n.

Thus limn→∞ bn ≤ limn→∞ 0.7
√
n = 0. Due to Eq. (3.26), we know that an is smaller than

bn for large n, and therefore that the number of points in C is smaller than 2c · √n with

probability at least 1− 1
n for n sufficiently large. Again with high probability, this limits

the number of non-leaf cells in C to c · √n and thus the number of bottom leaf cells to

4c · √n, proving the claim.

Due to Lemma 7, the number of examined bottom leaf cells for a range query around u is

in O(
√
n+ deg(u)) with probability at least 1− 1

n2 . The query algorithm traverses T from

the root downward. For each bottom leaf cell b, O(h(T )) inner nodes and non-bottom leaf

cells are examined on the path from the root to b. Due to Lemma 3, h(T ) is in O(log n)

whp. The time complexity to gather the neighborhood of a vertex u with degree deg(u) is

thus: T (RQ(u)) ∈ O ((
√
n+ deg(u)) · log n) whp.

Graph Generation.

To generate a graph G from n points, the n positions need to be generated (in O(n)) and

inserted into the quadtree (in O(n log n) whp, see Lemma 4). The combined complexity

of this is O(n log n) whp. In the next step, neighbors for all points are extracted. This has

a complexity of

T (Edges) =
∑
v

O
((√

n+ deg(v)
)
· log n

)
= O

((
n3/2 +m

)
log n

)
whp. (3.27)

The complexity bounds for each of the n range queries hold with probability at least 1− 1
n2 ,

with a union bound we get a probability of at least 1−1/n for the above complexity. This

dominates the quadtree operations and thus total running time. We conclude:

Theorem 2. Generating random hyperbolic graphs can be done in O((n3/2 + m) log n)

time whp, i. e. with probability ≥ 1− 1/n for sufficiently large n.

Dynamic Updates.

To process an updated vertex position u using the same polar quadtree, we need to first

delete the point at its old position (amortized O(log n) whp), insert it at its new position

(amortized O(log n) whp), then execute a range query (in O ((
√
n+ deg(u)) · log n) whp).

The range query dominates, leading to a time complexity ofO ((
√
n+ deg(u)) · log n) whp.
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3.5 Probabilistic Neighborhood Queries

In general random hyperbolic graphs, the neighborhood of a vertex is probabilistic. We

can extend Algorithm 4 to the general case by using probabilistic queries.

This task of sampling a neighborhood whose elements are probabilistic not only occurs in

random hyperbolic graphs. Connection probabilities depending on the distance frequently

happen in Euclidean applications as well: The probability that a customer shops at a

certain physical store shrinks with increasing distance to it. In disease simulations, if the

social interaction graph is unknown but locations are available, disease transmission can

be modeled as a random process with infection risk decreasing with distance. Moreover,

the wireless connections between units in an ad-hoc network are fragile and collapse more

frequently with higher distance.

To generalize these scenarios, we define the notion of a probabilistic neighborhood in spatial

data sets, both Euclidean and hyperbolic. Let the input dataset consist of a set P of n

points in Rd and a distance metric dist; let a query consist of a query point q ∈ Rd, and

a monotonically decreasing function f : R+ → [0, 1] that maps distances to probabilities.

Then, the probabilistic neighborhood N(q, f) of q with respect to f is a random subset of P

and each point p ∈ P belongs to N(q, f) with probability f(dist(p, q)). A straightforward

query algorithm for sampling a probabilistic neighborhood would iterate over each point

p ∈ P and sample for each whether it is included in N(q, f). This has a running time of

Θ(n ·d) per query point, which is inefficient for small neighborhoods and can be prohibitive

for repeated queries in large data sets. Thus we are interested in a faster algorithm for

such a probabilistic neighborhood query (PNQ, spoken as “pink”).

Based on the polar quadtree introduced in Section 3.3, we describe a baseline version of

such a query algorithm (Section 3.5.3). This algorithm introduces the main idea, but is

asymptotically not faster than the straightforward approach of probing every distance and

throwing a biased coin. In Section 3.5.4, the query algorithm is refined to support faster

queries.

Our quadtree operations are defined for planar datasets used with the Euclidean or hyper-

bolic distance metric (Section 3.3.1), which are thus also the domain for our probabilistic

query algorithms. The algorithmic principle is generalizable to higher dimensions and

other distance metrics, which remains future work.

Since the neighborhood of a vertex in a random hyperbolic graph is an instance of such

a probabilistic neighborhood, we can use a fast PNQ query method to support a genera-

tion algorithm for general random hyperbolic graphs. Figure 3.5 shows an example of a

probabilistic neighborhood query on a hyperbolic disk with 200 points.

3.5.1 Notation

As mentioned, a point p is in the probabilistic neighborhood of query point q with prob-

ability f(dist(p, q)). Thus, a query pair consists of a query point q and a function

f : R+ → [0, 1] that maps distances to probabilities. The function f needs to be monoton-

ically decreasing but may be discontinuous. Note that f can be defined differently for each
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×

Figure 3.5: Query over 200 points in a polar hyperbolic quadtree, with f(d) :=
1/(e(d−7.78) + 1) and the query point q marked by a red cross. Points are
colored according to the probability that they are included in the result. Blue
represents a high probability, white a probability of zero.

query. The query result, the probabilistic neighborhood of q with respect to f is denoted

by the set N(q, f) ⊆ P .

For the algorithm analysis, we use two additional sets for each query (q, f):

• Candidates(q, f): neighbor candidates examined when executing such a query,

• Cells(q, f): quadtree cells examined during execution of the query.

Note that N(q, f) ⊆ Candidates(q, f) and that the sets N(q, f),Candidates(q, f) and

Cells(q, f) are probabilistic, thus theoretical results about their size are usually only with

high probability.

3.5.2 Extension of Quadtrees for Probabilistic Neighborhood Queries

The only change in the quadtree data structure required to support probabilistic neighbor-

hood queries is to store at each subtree the number of points contained in it. This does not

change the time complexity beyond constant factors, thus Lemma 4 still holds. Figure 3.6

shows such a quadtree, corresponding to the query visualized in Figure 3.5. The number

of points in each subtree is a property of the quadtree, but the coloring is a property of a

specific query – the one of Figure 3.5.

3.5.3 Baseline Query Algorithm

The baseline version of our query (Algorithm 5) has a time complexity of Θ(n), but serves

as a foundation for the fast version (Section 3.5.4). It takes as input a query point q, a

function f and a quadtree cell c. Initially, it is called with the root node of the quadtree
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Figure 3.6: Visualization of the data structure used in Figure 3.5. Quadtree nodes are
colored according to the upper probability bound for points contained in them.
The color of a quadtree node c is the darkest possible shade (dark = high
probability) of any point contained in the subtree rooted at c. Each node is
marked with the number of points in its subtree.

and recursively descends the tree. As we prove in Prop. 2, the algorithm returns a point

set N(q, f) ⊆ P with

Pr (p ∈ N(q, f)) = f(dist(q, p)). (3.28)

In the following discussion, line numbers refer to lines of pseudocode in Algorithm 5. This

query algorithm descends the quadtree recursively until it reaches the leaves. For each

leaf l that is reached, a lower bound b for the distance between the query point q and

all the points in l is computed (Line 2). Since f is monotonically decreasing, this lower

bound for the distance gives an upper bound b for the probability that a given point in

l is a member of the returned point set (Line 3). This bound is used to select neighbor

candidates in a similar manner as done by Batagelj and Brandes [18]: In Line 9, a random

number of vertices is skipped, so that every vertex in l is selected as a neighbor candidate

with probability b. The actual distance dist(q, a) between a candidate a and the query

point q is at least b and the probability of a ∈ N(q, f) thus at most b. For each candidate,

this actual distance dist(q, a) is then calculated and a neighbor candidate is confirmed as

a neighbor with probability f(dist(q, a))/b in Line 14.

Regarding correctness of Algorithm 5, we can state:

Proposition 2. Let T be a quadtree as defined above, q be a query point and f : R+ → [0, 1]

a monotonically decreasing function which maps distances to probabilities. The probability

that a point p is returned by a PNQ (q, f) from Algorithm 5 is f(dist(q, p)), independently

from whether other points are returned.

Proof. Algorithm 5 traverses the whole quadtree with all of its leaves. Since each leaf is

examined, we can concentrate on whether the points are sampled correctly within a leaf

cell. Our proof thus consists of three steps: 1) The probability that the first point in a leaf

is a candidate is b. 2) Given two points pi and pj in the same leaf, the probability that

pi is a candidate is independent of whether pj is a candidate. 3) The probability that a

point pi is a neighbor of the query point q is given by Eq. (3.28).

Note that the hyperbolic [Euclidean] distances, which are mapped to probabilities accord-

ing to the function f , are calculated by Algorithm 2 [Algorithm 3] in Section 3.3.1. We

continue the current proof with details for all three main steps.
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Algorithm 5: QuadNode.getProbabilisticNeighborhood

Input: query point q, prob. function f , quadtree node c
Output: probabilistic neighborhood of q

1 N = {};
2 b = dist(q, c);
/* Distance between point and cell, returned by Algorithms 2 and 3.

*/

3 b=f(b);
/* Since f is monotonically decreasing, a lower bound for the

distance gives an upper bound b for the probability. */

4 s = number of points in c;
5 if c is not leaf then

/* internal node: descend, add recursive result to local set */

6 for child ∈ children(c) do
7 add getProbabilisticNeighborhood(q, f , child) to N;

8 else
/* leaf case: sample gaps from geometric distribution */

9 for i=0; i < s ; i++ do

10 δ = ln(1− rand)/ ln(1− b);
11 i += δ;
12 if i ≥ s then
13 break;

14 prob = f(dist(q, c.points[i]))/b;
15 add c.points[i] to N with probability prob

16 return N

Step 1

Between two points, the jumping width δ is given by Line 9 of Algorithm 5. The probability

that exactly i points are skipped between two given candidates is (1− b)i · b:

Pr(i ≤ δ < i+ 1) = Pr(i ≤ ln(1− r)/ ln(1− b) < i+ 1) = (3.29)

Pr(ln(1− r) ≤ i · ln(1− b) ∧ ln(1− r) > (i+ 1) · ln(1− b)) = (3.30)

Pr(1− (1− b)i ≤ r < (1− (1− b)i+1)) = 1− (1− b)i+1 − 1 + (1− b)i = (3.31)

(1− b)i(1− (1− b)) = (1− b)i · b (3.32)

Note that in Eq. (3.29) the denominator is negative, thus the direction of the inequality is

reversed in the transformation. The transformation in Eq. (3.31) works since r is uniformly

distributed in [0, 1].

Following from Eq. (3.32), the probability is b for i = 0, and if a point is selected as a

candidate, the subsequent point is selected with a probability of b.

Step 2

Let pi, pj and pl be points in a leaf, with i < j < l and let pi be a neighbor candidate.

For now we assume that no other points in the same leaf are candidates and consider the

40



3.5. Probabilistic Neighborhood Queries

probability that pl is selected as a candidate depending on whether the intermediate point

pj is a candidate.

Case 2.1: If point pj is a candidate, then point pl is selected if l − j points are skipped

after selecting pj . Due to Step 1, this probability is (1− b)l−j · b

Case 2.2: If point pj is not a candidate, then point pl is selected if l− i points are skipped

after selecting pi. Given that pj is not selected, at least j − i points are skipped. The

conditional probability is then:

Pr(l − i ≤ δ < l − i+ 1|δ > j − i) =

Pr(1− (1− b)l−i < r < (1− (1− b)l−i+1)|δ > j − i) =

(1− b)l−i · b/(1− b)j−i = (1− b)l−j · b

As both cases yield the same result, the probability Pr(pl ∈ Candidates) is independent of

whether pj is a candidate.

Step 3

Let C be a leaf cell in which all points up to point pi are selected as candidates. Due to

Step 1, the probability that pi+1 is also a candidate, meaning no points are skipped, is

(1 − b)0 · b = b. Due to Step 2, the probability of pi+1 being a candidate is independent

of whether pi is a candidate. This can be applied iteratively until the beginning of the

leaf cell, yielding a probability of b for pi being a candidate, independent of whether other

points are selected.

A neighbor candidate pi is accepted as a neighbor with probability f(dist(pi, q))/b in

Line 14. Since b is an upper bound for the neighborhood probability, the acceptance ratio

is between 0 and 1. The probability for a point p to be in the probabilistic neighborhood

computed by Algorithm 5 is thus:

Pr(p ∈ N(q, f)) = Pr(p ∈ N(q, f) ∧ p ∈ Candidates(q, f)) =

Pr(p ∈ N(q, f)|p ∈ Candidates(q, f)) · Pr(p ∈ Candidates(q, f)) =

f(dist(p, q))/b · b = f(dist(p, q))

Since Algorithm 5 examines the complete quadtree, its time complexity is at least lin-

ear. We omit a more thorough analysis until the next section, in which we show how to

accelerate the query process.

3.5.4 Queries in Sublinear Time by Subtree Aggregation

One reason for the linear time complexity of the baseline query is the fact that every

quadtree node is visited. To reach a sublinear time complexity, we thus aggregate subtrees

into virtual leaf cells whenever doing so reduces the number of examined cells and does

not increase the number of candidates too much.
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Algorithm 6: QuadNode.getProbabilisticNeighborhood

Input: query point q, prob. function f , quadtree node c
Output: probabilistic neighborhood of q

1 N = {};
2 b = dist(q, c);
/* Distance between point and cell, returned by Algorithms 2 and 3.

*/

3 b=f(b);
/* Since f is monotonically decreasing, a lower bound for the

distance gives an upper bound b for the probability. */

4 s = number of points in c;

5 if c is inner node and |c| · b ≥ 1 then
/* internal node: descend, add recursive result to local set */

6 for child ∈ children(c) do
7 add getProbabilisticNeighborhood(q, f , child) to N;

8 else
/* leaf case: sample gaps from geometric distribution */

9 for i=0; i < s ; i++ do

10 δ = ln(1− rand)/ ln(1− b);
11 i += δ;
12 if i ≥ s then
13 break;

14 neighbor = maybeGetKthElement(q, f , i, b, c);
15 add neighbor to N if not empty set;

16 return N

To this end, let S be a subtree starting at depth l of a quadtree T . During the execution of

Algorithm 5, a lower bound b for the distance between S and the query point q is calculated,

yielding also an upper bound b for the neighbor probability of each point in S. At this

step, it is possible to treat S as a virtual leaf cell, sample jumping widths using b as upper

bound and use these widths to select candidates within S. Algorithm 7 is used in a virtual

leaf cell where the candidate confirmation (Line 14 of Algorithm 5) happens in an original

leaf cell. Aggregating a subtree to a virtual leaf cell allows skipping leaf cells which do not

contain candidates, but uses a weaker bound b and thus a potentially larger candidate set.

Thus, a fast algorithm requires an aggregation criterion which keeps both the number of

candidates and the number of examined quadtree cells low. 8 As stated before, we record

the number of points in each subtree during quadtree construction. This information is

now used for the query algorithm: We aggregate a subtree S to a virtual leaf cell exactly if

|S|, the number of points contained in S, is below 1/f(dist(S, q)). This corresponds to less

than one expected candidate within S. The changes required in Algorithm 5 to use the

subtree aggregation are minor. Lines 5, 14 and 15 in the original algorithm are changed

to use subtrees, shown in Algorithm 6 and marked in blue.

The main change consists in the use of the function maybeGetKthElement (Algorithm 7).

8In the extreme case, candidates are selected directly at the root. In this case, the distance to the query
point is 0 and the probability bound b is f(0), resulting in linearly many candidates.
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Algorithm 7: maybeGetKthElement

Input: query point q, function f , index k, bound b, subtree S
Output: kth element of S or empty set

1 if k ≥ |S| then
2 return ∅;
3 if S.isLeaf() then

4 acceptance = f(dist(q,S.positions[k]))/b;
5 if 1 − rand() < acceptance then
6 return S.elements[k];
7 else
8 return ∅;
9 else

/* Recursive call */

10 offset := 0;
11 for child ∈ S.children do
12 if k − offset < |child| then

/* |child| is the number of points in child */

13 return maybeGetKthElement(q, f , k - offset, b, child);

14 offset += |child|;

Given a subtree S, an index k, q, f , and b, the algorithm descends S to the leaf cell con-

taining the kth element. This element pk is then accepted with probability f(dist(q, pk))/b.

Since the upper bound calculated at the root of the aggregated subtree is not smaller

than the individual upper bounds at the original leaf cells, Proposition 2 also holds for the

virtual leaf cells. Points are thus included in the result with the correct probabilities.

3.5.5 Query Time Complexity

Our main analytical result of this section concerns the time complexity of the faster query

algorithm. Its proof relies on several lemmas presented afterwards.

Theorem 3. Let T be a quadtree with n points and (q, f) a query pair. A query (q, f)

using subtree aggregation has time complexity O((|N(q, f)|+√n) log n) whp.

Proof. Similar to the baseline algorithm, the complexity of the faster query is determined

by the number of recursive calls and the total number of loop iterations across the calls.

The first corresponds to the number of examined quadtree cells, the second to the total

number of candidates. With subtree aggregation, we obtain improved bounds: Lemma 11

limits the number of candidates to O(|N(q, f)| + √n) whp, while Lemma 12 bounds the

number of examined quadtree cells to O((|N(q, f)|+√n) log n) whp. Together, this results

in a query complexity of O((|N(q, f)|+√n) log n) whp.

For the lemmas required in the proof of Theorem 3 we need some additional notation: Let

T be a quadtree with n points, S a subtree of T containing s points, q a query point and f

a function mapping distances to probabilities. The set of neighbors (N(q, f)), candidates

(Candidates(q, f)) and examined cells (Cells(q, f)) are defined as in Section 3.5.1.
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For the analysis we divide the space around the query point q into infinitely many bands,

based on the probabilities given by f . A point p ∈ P is in band i exactly if the probability

of it being a neighbor of q is between 2−(i+1) and 2−i:

p ∈ band i ⇐⇒ 2−(i+1) < f(dist(p, q)) ≤ 2−i

Based on these bands, we divide the previous sets into infinitely many subsets:

• P(q, f, i) := {v ∈ P|2−(i+1) < f(dist(v, q)) ≤ 2−i}

• N(q, f, i) := N(q, f) ∩ P(q, f, i)

• Candidates(q, f, i) := Candidates(q, f) ∩ P(q, f, i)

• Cells(q, f, i) := {c ∈ Cells(q, f)|2−(i+1) < f(dist(c, q)) ≤ 2−i}

Note that for fixed n, all but at most finitely many of these sets are empty. We call

the quadtree cells in Cells(q, f, i) to be anchored in band i. The region covered by a

quadtree cell is in general not aligned with the probability bands, thus a quadtree cell

anchored in band i (c ∈ Cells(q, f, i)) may contain points from higher bands (i.e. with

lower probabilities).

We continue with two auxiliary results used in Lemma 11.

Lemma 9. Let T be a polar hyperbolic [Euclidean] quadtree with n points and s < n a

natural number. Let Λ be a circle in the hyperbolic [Euclidean] plane and let 	 be the

disjoint set of subtrees of T that contain at most s points and are cut by Λ. Then, the

subtrees in 	 contain at most 24
√
n · s points with probability at least 1 − 0.7

√
n for n

sufficiently large.

Proof. Let k := blog4 n/sc be the minimal depth at which cells have at least s points in

expectation. At most 4k cells exist at depth k, defined by at most 2k angular and 2k radial

divisions. When following the circumference of the query circle Λ, each newly cut cell

requires the crossing of an angular or radial division. Each radial and angular coordinate

occurs at most twice on the circle boundary, thus each division can be crossed at most

twice. With two types of divisions, Λ crosses at most 2 · 2 · 2k = 4 · 2blog4 n/sc cells at depth

k. Since the value of 4 · 2blog4 n/sc is at most 4 · 2log4 n/s, this yields ≤ 8 ·
√
n/s cut cells.

We denote the set of cut cells with ς. Since the cells in ς cover the circumference of the

circle Λ, a subtree S which is cut by Λ is either contained within one of the cells in ς,

corresponds to one of the cells or contains one. In the first two cases, all points in S are

within the cells of ς. In the second case, at least one cell of ς is contained in S. As the

subtrees are disjoint, this cell cannot be contained in any other of the considered subtrees.

Thus, there are no more subtrees containing points not in ς than there are cells in ς, which

are less than 8 ·
√
n/s many.

Due to Lemma 1, the probability that a given point is in a given cell at level k is 4−k.

The number of points contained in cells of ς thus follows a binomial distribution B(n, p).

An upper bound for the probability p is given by 8·
√
ns
n , thus a tail bound for a slightly
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different distribution B(n, 8·
√
ns
n ) also holds for B(n, p). In the proof of Lemma 8, a similar

distribution is considered. Setting the variable c to 8
√
s, we see that the probability of ς

containing more than 16 · √sn points is smaller than 0.7
√
n.

The subtrees in 	 contain at most s points by definition, thus an upper bound for the

number of points in these subtrees is given by s · 8 ·
√
n/s (points not in ς) + 16 · √sn

(points in ς). This results in at most 24 · √sn points contained in 	 with probability at

least 1− 0.7
√
n.

Lemma 10. Let n be a natural number and let A, B be random sets with A ⊆ B, |B| ≤ n
and the following property: Pr(b ∈ A) ≥ 0.5, ∀b ∈ B. Further, let the probabilities for

membership in A be independent. Then, the number of points in B is in O(|A| + log n)

with probability at least 1− 1/n3.

Proof. Let X = |A| be a random variable denoting the size of A. Since the individual

probabilities for membership in A might be different, X does not necessarily follow a

binomial distribution. We define an auxiliary binomial distribution Y ∼ Bin(|B|, 0.5).

Since all membership probabilities for A are at least 0.5, X has first-order stochastic

dominance [136] over Y and lower tail bounds derived for Y also hold for X.

The probability that Y is less than 0.1|B| is then [72]:

Pr(Y < 0.1|B|) ≤ exp

(
−2

(0.5|B| − 0.1|B|)2

|B|

)
= exp (−0.32|B|) .

If |B| ≤ 10 log n, then |B| is trivially inO(log n), otherwise the probability Pr(|A| < 0.1|B|)
is

Pr(|A| < 0.1|B|) ≤ Pr(Y < 0.1|B|) (3.33)

≤ exp (−3.2 log n) = n−3.2 < 1/n3. (3.34)

Thus |B| ≤ 10|A| ∈ O(|A|) with probability at least 1− 1/n3.

The following Lemmata 11 and 12 bound the number of examined candidates and examined

quadtree cells, concluding the proof of Theorem 3.

Lemma 11. Let T be a quadtree with n points and (q, f) a query pair. The number of

candidates examined by a query using subtree aggregation is in O(|N(q, f)|+√n) whp.

Proof. For the analysis we consider each probability band i separately. As defined above,

band i contains points with a neighbor probability of 2−(i+1) to 2−i. Among the cells

anchored in band i, some are original leaf cells and others are virtual leaf cells created by

subtree aggregation. The virtual leaf cells contain less than one expected candidate and

thus less than 2i+1 points. The capacity of the original leaf cells is constant. All the points

in cells anchored in band i have a probability between 2−(i+1) and 2−i to be a candidate.
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Among the points in virtual or original leaf cells, some are in the same band their cell is

anchored in, others are in higher cells.

We divide the set of points within cells anchored in band i into four subsets:

1. points in band i and in original leaf cells

2. points in band i and in virtual leaf cells

3. points not in band i and in original leaf cells

4. points not in band i and in virtual leaf cells

The points in the first two sets are unproblematic. Since the probability that a point in

these sets is a neighbor is at least 2−(i+1), the probability for a given candidate to be a

neighbor is at least 1
2 . Due to Lemma 10, the number of candidates in these sets is in

O(|N(q, f)|+ log n) whp, which is in O(|N(q, f)|+√n) whp.

Points in the third set are in cells cut by the boundary between band i and band i + 1.

Since the probabilities are determined by the distance, this boundary is a circle and we can

use Lemma 9 to bound the number of points to 24
√
n · capacity with probability at least

1 − 0.7
√
n for n sufficiently large. The mentioned capacity is the capacity of the original

leaf cells.

Likewise, points in the fourth set are in virtual leaf cells cut by the boundary between

bands i and i + 1. A virtual leaf cell, which is an aggregated subtree, contains at most

2i+1 points, otherwise it would not have been aggregated. Again, using Lemma 9, we can

bound the number of points in these sets to 24
√
n · 2i+1 points with probability at least

1− 0.7
√
n.

We denote the union of the third and fourth sets with Overhang(q, f, i). From the

individual bounds derived in the previous paragraphs, we obtain an upper bound for

the number of points in Overhang(q, f, i) of 24(
√
n · capacity +

√
n · 2i+1) with proba-

bility at least (1 − 0.7
√
n)2. Simplifying the bound, we get that |Overhang(q, f, i)| ≤

24
√
n · (2(i+1)/2 +

√
capacity) with probability at least 1− 2 · 0.7

√
n.

Each of the points in Overhang(q, f, i) is a candidate with a probability between 2−i and

2−(i+1). The candidates are sampled independently (see Step 2 of Lemma 2). While

different points may have different probabilities of being a candidate and the total number

of candidates does not follow a binomial distribution, we can bound the probabilities from

above with 2−i.

We proceed towards a Chernoff bound for the total number of candidates across all over-

hangs. Let Xi denote the random variable representing the number of candidates within

|Overhang(q, f, i)| and let X =
∑∞

i=0Xi denote the total number of candidates in over-

hangs.
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The expected value E(X) follows from the linearity of expectations:

E(X) =

∞∑
i=0

E(Xi)

=

∞∑
i=0

(24
√
n · (2(i+1)/2 +

√
capacity) · 2−i)

= 24
√
n

∞∑
i=0

√
2 · 2−i/2 + 2−i

√
capacity

= 24
√
n

( ∞∑
i=0

√
2 · 2−i/2 + 2−i

√
capacity

)

= 24
√
n

(
√

2
∞∑
i=0

(
2−i/2

)
+
∞∑
i=0

2−i
√

capacity

)

= 24
√
n

(
√

2
∞∑
i=0

(
2−i/2

)
+ 2
√

capacity

)

= 24
√
n

(
√

2

( ∞∑
i=0

(
2−2i/2

)
+

∞∑
i=0

(
2−(2i+1)/2

))
+ 2
√

capacity

)

= 24
√
n

(
√

2

( ∞∑
i=0

(
2−i
)

+

∞∑
i=0

(
1√
2
· 2−i

))
+ 2
√

capacity

)

= 24
√
n

(√
2

(
2 +

1√
2
· 2
)

+ 2
√

capacity

)
= 24

√
n
(

2
√

2 + 2 + 2
√

capacity
)

= 48
√
n
(

1 +
√

2 +
√

capacity
)

(Cells anchored in the band ∞, which has an upper bound b of zero for the neighborhood

probability, do not have any candidates and can be omitted here.)

Since the candidates are sampled independently with a probability of at most 2−i, we

can treat X as a sum of independent Bernoulli random variables. This allows us to

use a multiplicative Chernoff bound [116] and we can now give an upper bound for the

probability that the overhangs contain more than twice as many candidates as expected:

Pr(X > 2E(X)) ≤
( e

22

)E(X)

=
( e

22

)48
√
n(1+

√
2+
√

capacity)

≤
( e

22

)√n
≤ 0.7

√
n

Including this last one, we have a chain of 2n+1 tail bounds, each with a probability of at

least (1− 0.7
√
n). The event that any of these tail bounds is violated is a union over each
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event that a specific tail bound is violated. With a union bound [116, Lemma 1.2], the

probability that any of the individual tail bounds is violated is at most (2n+1)0.7
√
n. Since(

(2n+ 1)0.7
√
n
)−1

grows faster than n for n sufficiently large, we conclude that the total

number of candidates is thus bounded by O(|N(q, f)|)+96
√
n
(
1 +
√

2 +
√

capacity
)
) with

probability at least (1−1/n) for n sufficiently large. The leaf capacity is constant, thus the

number of candidates evaluated during execution of a query (q, f) is in O(|N(q, f)|+√n)

whp.

We proceed with a lemma necessary for bounding the number of examined quadtree cells

in a query.

Lemma 12. Let T be a quadtree with n points and (q, f) a query pair. The number of

quadtree cells examined by a query using subtree aggregation is in O((|N(q, f)|+√n) log n).

To prove Lemma 12, we first need to introduce another auxiliary lemma:

Lemma 13. Let DR be a hyperbolic or Euclidean disk of radius R and let T be a polar

quadtree on DR containing n points distributed according to the probability distributions

assumed when constructing the quadtree. Let Υ(q, f) be the set of visited, unaggregated

quadtree cells that have only (virtual) leaf cells as children. With a query using subtree

aggregation, |Υ(q, f)| is in O(|N(q, f)|+√n) whp.

Proof. Let c ∈ Υ(q, f, i) be such an unaggregated quadtree cell anchored in band i that

has only original or virtual leaf cells as children. It contains at least 2i points and has

four children, of which at least one is also anchored in band i. We denote this (virtual)

leaf anchored in band i with l. Since each child of c contains the same probability mass

(Lemma 1), each point of c is in l with probability 1/4:

Pr(p ∈ l|p ∈ c) =
1

4
. (3.35)

A point in l is a candidate (in l) with probability f(dist(q, l)), which is between 2−(i+1) and

2−i since l is anchored in band i. The probability that a given point p ∈ c is a candidate

in l is then

Pr(p ∈ l ∧ p ∈ Candidates(q, f, i)|p ∈ c) =
1

4
· f(dist(q, l)) ≥ 2−(i+3) (3.36)

Since the point positions and memberships in Candidates(q, f, i) are independent, we can

bound the number of candidates in l with a binomial distribution Bin(|c|, 2−(i+3)). The

probability that l contains no candidates is:

f

(
0, |c|, 1

8
· 2−i

)
=

(
1− 1

8
· 2−i

)|c|
≤
(

1− 1

8
· 1

2i

)2i

(3.37)
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3.5. Probabilistic Neighborhood Queries

Considered as a function of i, this probability is monotonically increasing. In the limit of

2i →∞, it trends to exp(−1/8) ≈ 0.88, a value it never exceeds. The probability that the

cell c contains at least one candidate is then above 1− 1
8√e > 0.1.

For each cell in Υ, the probability that it contains at least one candidate is > 0.1. Let

X be the random variable denoting the number of cells in Υ that contain at least one

candidate. We define an auxiliary binomial distribution Bin(|Υ|, 0.1) and use a tail bound

to estimate the number of cells in Υ containing candidates. Let Y ∝ Bin(|Υ|, 0.1) be a

random variable distributed according to this auxiliary distribution.

We use a tail bound from Arratia and Gordon [8] to limit the probability that Y < 0.05|Υ|
to at most exp(−|Υ|/80). Since 0.1 was a lower bound for the probability that a cell

contains a candidate, this tail bound also holds for X. The probability that the set of Υ

contains at least 0.05|Υ| many candidates is then at least (1− exp(−|Υ|/80)).

That |Υ| ∈ O(
√
n) (whp) now follows from a case distinction:

• Case |Υ| ∈ O(
√
n): Then it trivially follows that |Υ| ∈ O(

√
n) with probability at

least 1− 1/n.

• Case |Υ| ∈ ω(
√
n): The probability (1 − exp(−|Υ|/80)) is then larger than (1 −

exp(−√n/80)), which is > 1 − 1/n for sufficiently large n. Thus the number of

examined quadtree cells during a query is linear in the number of candidates. Due

to Lemma 11, this is in O(|N(q, f)|+√n) whp.

The proof of Lemma 12 then follows easily:

Proof. We split the set of examined quadtree cells into three categories:

• leaf cells and root nodes of aggregated subtrees (C1)

• parents of cells in the first category (C2)

• all other (C3)

The third category (C3) then exclusively consists of inner nodes in the quadtree. When

following a chain of nodes in category C3 from the root downwards, it ends with a node in

category C2. The size |C3| is thus at most O(|C2| log n) whp, since the number of elements

in a chain cannot exceed the height of the quadtree, which is O(log n) by Lemma 3.

With a branching factor of 4, |C1| = 4|C2| holds.

The number of cells in category C2 can be bounded using Lemma 13 to O(|N(q, f)| +√
n) with high probability. The total number of examined cells is thus in O((|N(q, f)| +√
n) log n).
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3. Random Hyperbolic Graphs and Probabilistic Queries

3.6 Near-Linear Time Generation of Threshold Random Hy-

perbolic Graphs

The time complexity of a query using polar quadtrees cannot easily get below O(
√
n),

since a query circle might cut up to O(
√
n) quadtree cells. To improve on this, we divide

DR, the disk in the hyperbolic plane, into ring-shaped slabs and use these to bound the

coordinates of possible neighbors in each slab.

3.6.1 Data Structure

For a given hyperbolic disk DR of radius R, let C = {c0, c1, ...cmax} be a set of dlog ne
ordered radial boundaries, with c0 = 0 and cmax = R. We then define a slab Si as the

area enclosed by ci and ci+1. A point p = (φp, rp) is contained in slab Si exactly if

ci ≤ rp < ci+1. Since slabs are ring-shaped, they partition DR:

DR =

dlogne⋃
i=0

Si.

The choice of radial boundaries is an important tuning parameter. After experimenting

with different divisions, we settled on a geometric sequence with ratio p = 0.9. The

relationship between successive boundary values is then: ci+1 − ci = p · (ci − ci−1). From

c0 = 0 and cmax = R, we derive the value of c1:

logn−1∑
k=0

c1p
k = R ⇐⇒ c1

1− plogn

1− p = R ⇐⇒ c1 =
(1− p)R
1− plogn

The remaining values follow geometrically.

Figure 3.7 shows an example of a graph in the hyperbolic plane, together with slab Si. The

neighbors of the bold blue vertex v are those within a hyperbolic circle of radius R (0.2R

R

ci+1

ci
φmin

φ m
ax

Figure 3.7: Graph in hyperbolic geometry with unit-disk neighborhood. Neighbors of the
bold blue vertex are in the hyperbolic circle, marked in blue.
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3.6. Near-Linear Time Generation of Threshold Random Hyperbolic Graphs

in this visualization), marked by the blue egg-shaped area. When considering vertices in

Si as possible neighbors of v, the algorithm only needs to examine vertices whose angular

coordinate is between φmin and φmax.

3.6.2 Generation Algorithm

Algorithm 8: Graph Generation

Input: number of vertices n, average degree k, power-law exponent γ
Output: G = (V,E)

1 α = (γ − 1)/2;

2 R = getTargetRadius(n, k, α);
3 V = n vertices;
4 C = {c0, c1, ...cmax} set of log n ordered radial coordinates, with c0 = 0 and

cmax = R;
5 B = {b0, b1, ...bmax} set of log n empty sets;
6 for vertex v ∈ V do in parallel
7 draw φv from U [0, 2π);
8 draw rv with density f(r) = α sinh(αr)/(cosh(αR)− 1);
9 insert (φv, rv) in suitable bi so that ci ≤ rv ≤ ci+1;

10 for b ∈ B do in parallel
11 sort points in b by their angular coordinates;

12 for vertex v ∈ V do in parallel
13 for band bi ∈ B, where ci+1 > rv do
14 minφ, maxφ = getMinMaxPhi(φv, rv), ci, ci+1, R);
15 for vertex w ∈ bi, where minφ ≤ φw ≤ maxφ do
16 if distH(v, w) ≤ R then
17 add (v, w) to E;

18 return G;

Algorithm 8 shows the generation of G = (V,E) with average degree k and power-law

exponent γ. The first part is similar to Algorithm 4: Vertex positions are drawn randomly

and then inserted into the respective data structure.

Vertex Positions and Bands

After settling the disk boundary, the radial boundaries ci are calculated (Line 4) as defined

above, the disk DR is thus partitioned into log n slabs. For each slab Si, a set bi stores the

vertices located in the area of Si. These sets bi are initially empty (Line 5).

The vertex positions are then sampled randomly in polar coordinates (Lines 7 and 8) and

stored in the corresponding set, i.e, vertex v is put into set bi iff ci ≤ rv < ci+1 (Line 9).

Within each set, vertices are sorted with respect to their angular coordinates (Lines 10 to

11).

getMinMaxPhi

The neighbors of a given vertex v = (φv, rv) are those whose hyperbolic distance to v is

at most R. Let bi be the slab between ci and ci+1, and u = (φu, ru) ∈ bi a neighbor of v
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3. Random Hyperbolic Graphs and Probabilistic Queries

in bi. Since u is in bi, ru is between ci and ci+1. With the hyperbolic law of cosines, we

conclude:

coshR ≥ cosh rv cosh ci − sinh rv sinh ci cos |φu − φv| ⇐⇒
cosh rv cosh ci − coshR ≤ sinh rv sinh ci cos |φu − φv| ⇐⇒

cos |φu − φv| ≥
cosh rv cosh ci − coshR

sinh rv sinh ci
⇐⇒

|φu − φv| ≤ cos−1

(
cosh rv cosh ci − coshR

sinh rv sinh ci

)

To gather the neighborhood of a vertex v = (φv, rv), we iterate over all slabs Si and

compute for each slab how far the angular coordinate φq of a possible neighbor in bi can

deviate from φv (Line 14). We call the vertices in bi whose angular coordinates are within

these bounds the neighbor candidates for v in bi.

Since points are sorted according to their angular coordinates, we can quickly find the

leftmost and rightmost neighbor candidate in each slab using binary search. We then only

need to check each neighbor candidate (Line 15), compute its hyperbolic distance to v and

add an edge if this distance is below R (Lines 16 and 17). Since edges can be found from

both ends, we only need to iterate over slabs in one direction; we choose outward in our

implementation (Line 3). The process is repeated for every vertex v (Line 2).

3.6.3 Time Complexity

The time complexity of Algorithm 8 depends on the quality of the angular bounds. We

conjecture a time complexity of O(n log2 n+m), due to the following steps: Allocating ini-

tial data structures (Lines 2 to 5) takes time at most linear in n. Generation of coordinates

(Lines 6 to 9) takes constant time per vertex, finding the correct band takes O(log log n)

per vertex with binary search.

For each of the n vertices and each of the log n bands, we compute the angular bounds

and search the closest points in the bands using binary search. This has a complexity

of O(log n · log n
logn) ⊆ O(log2 n) per vertex. If the number of neighbor candidates in-

vestigated in Line 15 is at most a linear overhead over the number of true neighbors, as

the measurements seem to suggest, this results in a complexity of O(log2 n + deg v) for

sampling the neighborhood of a vertex v and thus a total complexity of O(n log2 n+m).

This fits to our experimental measurements (Section 3.8) and was later proven by Manuel

Penschuck [132].

3.7 Near-Linear Time Generation of General Random Hy-

perbolic Graphs

In (Section 3.5), we sample waiting times from a geometric distribution to generate general

RHGs and in (Section 3.6) we generate threshold RHGs in near-linear time using a band

data structure. Can both be combined?
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3.7. Near-Linear Time Generation of General Random Hyperbolic Graphs

The main idea of our next algorithm is to assemble the neighborhood of a vertex by

sweeping through each band with increasing angular distance. Instead of aborting the

sweep after the distance grows larger than R, as done for threshold RHGs, we sample

geometric waiting times between neighbor candidates.

Algorithm 9: Generating general hyperbolic random graphs in near-linear time

Input: vertex set V , annuli bi ∈ B in which points are sorted by their angular
coordinates

Output: Edge set E
1 E ← ∅;
2 for vertex v ∈ V do in parallel
3 for band bi ∈ B, where ci+1 > rv do
4 for dir ∈{clockwise, counterclockwise} do

/* Sweeping in direction dir */

5 w ← vertex ∈ bi with closest angular coordinate φw when sweeping from
φv counterclockwise [clockwise];

6 totalSwept ← 0;
7 while ∆φ(v, w) < 180◦ and totalSwept ≤ |bi| do

8 b← f(distH(v, (φw, ci+1))− (ci+1 − ci));
9 δ ← ln(1− rand)/ ln(1− b);

10 w′ ← jump δ + 1 vertices in bi counterclockwise [clockwise];

11 prob ← f(distH(v, w′))/b;
12 if rv < rw or (rv = rw and v < w) then
13 add (v, w′) to E with probability prob;

14 totalSwept += δ + 1;
15 w ← w′;

16 return E

Algorithm 9 shows the edge sampling pseudocode. As the sampling of vertex positions and

construction of band data structure are unchanged from Algorithm 8, we omit them here

and take already constructed bands as input. The sampling of neighborhoods happens

independently for each vertex and can thus be parallelized (Line 2). To assemble the

neighbors a vertex v has in band bi, we sweep the half that is left of v counterclockwise

and the half right of v clockwise, each so that the angular distance to v only increases during

a sweep. The first vertex of each sweep is the one with the highest [lowest] coordinate that

is at most [higher than] φv (Line 5). During a sweep (Line 7), the number of vertices

that are skipped between neighbor candidates is sampled from a geometric distribution.

To sample the gap between candidates w and w′ (which is unknown), we need an upper

bound (b) for the probability f(distH(v, w′)) that vertex w′ is a neighbor of v and for this

we need a lower bound for the distance of v to w′ (Line 8).

Unfortunately, the distance distH(v, w) is not a lower bound for the distance distH(v, w′),

since even though the angular distance ∆φ(v, w′) is at least ∆φ(v, w), the radial coordinate

rw′ can be any between ci+1 and ci, and thus the actual distance might be smaller.

Instead, we use auxiliary points a := (φw′ , ci+1), b := (φw, ci+1) (see Figure 3.8a) and the
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v

w
w′

ab

φ

r

ci

ci+1

≤ (ci+1 − ci)

(a) Deriving a lower bound for the distance
distH(v, w′). The distance of v to b
(which is known) is a lower bound for the
distance of v to a (which is unknown).
Due to the triangle inequality, the un-
known distance distH(v, w) is at least
distH(v, a)− (ci+1 − ci).

φ

r

ci

ci+1

v

...

(b) Selecting candidates within a band, done
in Line 7 of Algorithm 9.

Figure 3.8: Visualization of the candidate sampling process.

triangle inequality:

distH(v, w′) + distH(w′, a) ≥ distH(v, a) (3.38)

⇒ distH(v, w′) ≥ distH(v, a)− distH(w′, a) (3.39)

⇒ distH(v, w′) ≥ distH(v, a)− (ci+1 − ci) (3.40)

⇒ distH(v, w′) ≥ distH(v, b)− (ci+1 − ci). (3.41)

Thus, lb(v, w, ci+1, ci) := distH(v, (φw, ci+1))−(ci+1−ci) is a lower bound for the unknown

distance distH(v, w′). It is used to compute an upper bound for the probability that any

given of the following vertices is a neighbor, which is the basis for the jumping width

calculation in Line 9. Lines (10 – 15) are similar to Algorithm 8 in that each candidate w′

is confirmed with probability f(distH(v, w′))/b and added to the edge set. Line 12 ensures

that an edge is not added twice and Line 14 is to prevent a large jump circling through the

sweep area multiple times. Afterwards, the procedure is repeated for the other direction.

3.7.1 Time Complexity

For each vertex v, Algorithm 9 visits every band and every neighbor of v, thus has at

least a complexity of Ω(n log n+m). The full time complexity depends on the number of

candidates that do not yield an edge, which we name excess candidates. Their number is

of course probabilistic, but their expected number depends on the tightness of the upper

bound used for the jumping widths (Line 8).

The distance bound in (3.41) underestimates the true distance in two ways: First, the offset

(ci+1 − ci) is almost always larger than the true distance distH(w′, a). Second, the sweep

covers increasing angular distance, and ∆φ(v, w′) is almost always larger than ∆φ(v, w).

We address these separately in two lemmata. Lemma 14 considers the offset in the ra-

dial coordinates (the vertical dashed lines in Figure 3.8b) and Lemma 16 states the time

complexity of Algorithm 9 including the angular jumps (horizontal arrows in Figure 3.8b).
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Lemma 14. Let v, w,w′ and a be points as defined in (Eq.3.41), let ∆c := (ci+1−ci) be the

width of band i and let f(x) = 1
e(1/T )(x−R)/2+1

be the edge probability function of the extended

hyperbolic random graph model with T > 0. Then, the upper bound f(distH(v, a) − ∆c)

overestimates the probability f(distH(v, w′)) of an edge between vertices v and w′ by at

most e∆c/T .

Proof. We use the definition of the upper bound and again the triangle inequality::

distH(v, w′) ≤ distH(v, a) + distH(a,w′)

⇒ distH(v, w′) ≤ distH(v, a) + ∆c

⇒ distH(v, w′)− (distH(v, a)−∆c) ≤ distH(v, a) + ∆c− (distH(v, a)−∆c)

⇐⇒ distH(v, w′)− (distH(v, a)−∆c) ≤ 2∆c.

Due to the exponential in the edge probability function, a constant distance offset leads

to a multiplicative factor:

f(distH(v, w′)− 2∆c)

=
(
exp

(
(1/T )(distH(v, w′)− 2∆c−R)/2

)
+ 1
)−1

=
(
exp (−2∆c/(2T )) · exp

(
(1/T )(distH(v, w′)−R)/2

)
+ 1
)−1

≤
(
exp (−∆c/T ) · exp

(
(1/T )(distH(v, w′)−R)/2

)
+ exp (−∆c/T )

)−1

= e∆c/T ·
(
exp

(
(1/T )(distH(v, w′)−R)/2

)
+ 1
)−1

= e∆c/T · f(distH(v, w′))

Lemma 15. Let v be a point, bi a band delimited by radii ci and ci+1, let deg(v, bi) be

the number of neighbors v has in bi and let T be fixed. Then, the while loop in Line 7

of Algorithm 4, sampling the neighborhood of v in bi, takes time O(deg(v, bi) + log |bi|) in

expectation.

Proof. For the purpose of the proof, divide the points in bi into infinitely many subsets

Pj , with Pj = {w ∈ bi|2−(j+1) < f(distH(v, (φw, ci+1))) ≤ 2−(j)}. All but a finite number

of these will be empty.

Let w be the point of the current loop iteration and w′ the next candidate after the jump

in Line 10. One of two cases happens:

• w,w′ are in the same subset Pj . Then, the ratio between f(distH(v, w′)) and

f(distH(v, w) is at least 1
2 and by Lemma 14 the probability that the candidate

w′ is confirmed as a neighbor of v is at least 1
2 · e−∆c/T .

• w′ is in a subset Pl with l > j.

Since the expected δ for a vertex w ∈ Pj is at least 2j/e∆c/T (Lemma 14), the second case

happens only O(log |bi|) often in expectation before all points in bi are covered. The first
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case happens O(deg(v, bi)) often in expectation, since each candidate is a neighbor with a

probability bounded from below by a constant.

The operations in a single loop iteration, sampling the δ and computing the bounds, take

constant time.

Thus, the expected time complexity of O(deg(v, bi) + log |bi|) follows.

Lemma 16. Sampling the neighborhood of a point v has a complexity of O(deg(v)+log2 n).

Proof. Due to Lemma 15, the complexity of sampling within a single band is O(deg(v, bi)+

log |bi|). The number of bands is dlog ne and each of them has at most n points.∑
bi∈B

deg(v, bi) + log |bi| = deg(v) +
∑
bi∈B

log |bi| ≤ deg(v) + log2 n

Theorem 4. Generating a graph with n points and m edges using Algorithm 9 takes

O(m+ n log2 n) time in expectation.

Proof. Use Lemma 16: ∑
v∈V

deg(v) + log2 n = m+ n log2 n

Note that we treated the temperature T and the band width c as constants. If treated as

variables, they form a multiplicative factor of e∆c/T in the time complexity. However, for

small T the rapidly increasing jumping widths limit the number of excess candidates in

practice and a tighter bound is likely possible.

3.8 Experimental Results

Our algorithms were the first to have a lower asymptotic time complexity than the naive

sampling method. Later, Bringmann et al. [31] presented a generation algorithm for geo-

metric inhomogeneous random graphs (GIRG), a generalization of RHGs. To determine

their performance in practice, we compare the implementations for static and dynamic

graphs, both in the threshold and general model.

Implementation.

In the following comparison, let QuadGen denote the implementations of our quadtree-based

algorithms (Section 3.4 and BandGen the implementations of our band-based algorithms

(Section 3.6). All our implementations use the NetworKit toolkit [154], are written in C++

11 and use OpenMP for shared-memory parallelism. QuadGen was released in NetworKit

56



3.8. Experimental Results

version 4.0.1 for threshold random hyperbolic graphs and in version 4.1.1 for general ran-

dom hyperbolic graphs. To evaluate BandGen, we use the current version of NetworKit,

which is 4.6.

Other authors also published graph generators during my PhD studies, both for general

and threshold random hyperbolic graphs. Aldecoa et al. [5] implement the straightforward

approach with quadratic time complexity, calculating distances and sampling edges for all

Θ(n2) vertex pairs. We denote it with Aldecoa.

Bringmann et al. [31] propose Geometric Inhomogeneous Random Graphs as a generaliza-

tion of RHGs and describe a generation algorithm with expected linear time complexity.

Bläsius et al. provide an implementation9 of this algorithm as part of their hyperbolic

embedding work [22], which won the Track B best paper award of ESA 2016. We denote

it with Girg. When comparing times for dynamic graphs, we based our changes to their

data structure on commit f83b46111c69819b7447fbd29fe8ed9bdb1fba3f.

All implementations are compiled with GCC 7.3. Scripts and a docker image to recreate the

experiments are available at DOI 10.5445/IR/1000095237 on the KITOpenData repository.

Experimental Setup

The experiments were run on a workstation with 16 physical cores and 256GB of memory,

using OpenSuse 15. Except for the parallel scaling studies, all experiments were run on a

single core of a Xeon E5-2680, clocked at 2.70GHz. Other cores were kept idle to avoid

influencing memory access times.

3.8.1 Time

Static Generation of Threshold RHGs

Figure 3.9a shows the generation times per vertex for graphs of different sizes. As ex-

pected, in straightforward distance probing as done by Aldecoa the time per vertex scales

linearly with graph size. Due to this quadratic scaling of generation times, graphs with 219

vertices and more did not finish in the alloted time of five hours. The times per vertex are

approximately constant for Girg, implying a near-linear scaling behavior. For QuadGen, the

time per vertex does rise with the graph size, but less than expected from the worst-case

complexity. At 229 vertices, however, issues in floating point precision occur due to the

projection in the Poincaré disc. The number of edges is less than desired and the running

time thus not representative, which is why we omit the final data point. The times per

vertex for BandGen are almost one magnitude faster than Girg.

Parallel Scalability

Figure 3.10 shows the scaling behavior of QuadGen and BandGen for 1 to 16 threads on

graphs of constant size. It appears that slower sampling methods have better parallel

scaling: QuadGen scales better than BandGen, both scale better on non-threshold graphs,

9https://bitbucket.org/HaiZhung/hyperbolic-embedder
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Figure 3.9: Generation times per vertex of different graph sizes. Average degree is held
constant at 8 and dispersion parameter α is 1. Since the generators Aldeoca

and Girg are sequential, we execute all generators sequentially, even though
QuadGen and BandGen can use shared-memory parallelism. We aborted runs
taking longer than 5 hours.
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Figure 3.10: Strong scaling of QuadGen and BandGen for 107 vertices with average degree 8
and α = 1. Values are averaged over 10 runs. QuadGen-E and BandGen-E
denote variants that measure only the edge sampling step.
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Figure 3.11: Running times and candidate ratios for graphs of 223 vertices, average degree
8, γ = 3 and different temperatures.

which take longer to generate. This implies that the edge sampling methods themselves

scale comparatively well, but other steps in the graph generation, perhaps the preparation

of coordinates, allocation of memory or the final assembly of the graph data structure,

do not. This is supported by measurements omitting the final graph assembly, noted as

dashed lines: These achieve a higher speedup, ranging from 5.73 for BandGen on threshold

graphs to 12.38 for QuadGen on non-threshold graphs.

Static Generation of General RHGs

Figure 3.9b shows running times of Aldecoa, Girg and QuadGen for the generation of general

random hyperbolic graphs, with T set to 0.5. Again, the times per vertex for Girg are

almost constant with increasing graph size. The running times of Aldecoa are similar to

the generation of threshold graphs. This is unsurprising, given that the time for pairwise

distance probing does not depend on the edge probabilities. The scaling behavior of

QuadGen is more in line with the expected theoretical complexity of O(
√
n log n) per vertex

than in the threshold case. It is also more than an order of magnitude slower than for

threshold graphs, since many more vertices need to be examined. BandGen, while also

slower than for threshold random hyperbolic graphs, is still about 20% faster than Girg for

graphs of up to a billion vertices.

This also holds for different temperatures, as seen in Figure 3.11. Somewhat surprisingly,

the time does not increase with smaller temperatures, as could be expected by the fac-

tor of exp(∆c/T ) in the theoretical time complexity. It seems that the probabilities fall

sufficiently quickly with increasing hyperbolic distances and fewer probabilistic jumps are

required.
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Figure 3.12: Running time of dynamic vertex movements, values are averaged over 10000
movements. The quadtree operations are up to two orders of magnitude
faster and scale better with increasing graph size. Trend lines are fitted with
a = 0.48, b = 900, c = 0.00118, d = 0.017 and e = 30.

Dynamic Generation of General RHGs

Figure 3.12 shows the experimental time measurements for dynamic updates on sparse

graphs of varying sizes. For easier empirical comparisons, we conduct our benchmark on

the previous dynamic model proposed by Papadopoulos et al. [127]. In each iteration of

this dynamic benchmark, one point is deleted from the data structure, moved to a random

location consistent with the probability distribution and reinserted into the data structure.

The graph is then updated with the new position. For each graph, we execute 10 000 point

movements and recreate the graph after each.

The temperature parameter T is set to 0.1, the dispersion parameter α to 0.75 and the

radius R to 2 · log n− 1, leading to an average degree of ≈ 9.3.

Since changes in a sorted sequence may require linear time to process, the data structure

used by BandGen is not suited for dynamic updates and we omit it here. QuadGen is

faster than Girg for graphs of at least 105 vertices; the improvement reaches two orders

of magnitude for graphs with 2 · 108 vertices; a query on hundreds of milllions of vertices

returning about 10 neighbors runs in the order of milliseconds.

The fastest way to obtain a static graph together with a sequence of dynamic updates

would be to generate the static graph first with BandGen, then use dynamic updates with

QuadGen. Moving data into a new data structure takes at least linear time, Figure 3.13

shows the number of vertex movements needed until the overhead of this preprocessing step

is amortized by the faster queries. For graphs with 105 to 108 vertices, this combination

of BandGen and QuadGen is faster than Girg if performing more than roughly 104 iterations,

a value that grows only slowly with increasing graph size.
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Figure 3.13: Number of vertex movements needed to amortize overhead of quadtree con-
struction. Values are averaged over 10000 iterations.

Optimizations

The expected degree of a vertex in a random hyperbolic graph depends on its radials

coordinate, a smaller radius leading to a higher degree. Since the edge probabilities are

symmetrical, vertices with small radius are more likely to be in the result set of a query.

Due to this effect, the central cells in the quadtree are examined much more often than

cells on the periphery, see Figure 3.14a.

Probably due to this effect, deliberately imbalancing the polar quadtree and allocating

less probability mass to the inner children improves the running time by several orders of
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(a) Probability that a given cell is examined in
an update step, depending on its maximum
radial coordinate maxr. Cells in the center
of the polar disk are visited almost certainly,
while cells in outer regions are visited rarely.
Measurements are made on a random hy-
perbolic graph with 213 vertices.
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(b) Influence of balance parameter on run-
ning time. Measurements are for a graph
with 223 vertices and averaged over 10000
queries. Deliberately imbalancing the
quadtree improves running times by over
one order of magnitude.

Figure 3.14: Imbalance in quadtree accesses and effect of imbalancing quadtrees.
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magnitude. The splitting radius splitH which divides the outer from the inner children

of T , originally given in Eq. 3.6, is then governed by a balance parameter b. For random

hyperbolic graphs, this yields:

midrH = acosh((1− b) · cosh(α ·maxrH) + b · cosh(α ·minrH))/α. (3.42)

The original behavior of Eq. 3.6 is equivalent to setting b to 0.5. Choosing instead b =

0.001, which yields an allocation of 0.1% of the area to the inner two children and 99.9% to

the outer children, decreases running time by more than an order of magnitude compared

to a balanced tree (Figure 3.14b). The running times in the previous figures include the

effect of these optimizations.

3.8.2 Network Properties

To ensure that our generation algorithms sample from the correct distribution, we compare

the properties of the generated graphs with those produced by Aldecoa. For 28 combi-

nations of the average degree k and the power law exponent γ of the degree distribution,

we used both generators to sample 214 graphs each, resulting in roughly 12 000 samples

in total. Figures 3.15 and 3.16 show average properties for graphs generated by Aldeoca

and the relative differences to graphs from our generators. These differences of averages

are on the order of 1-2%, except for the degree assortativity, which trends towards zero

for dense graphs (≈ 0.00037 for k = 256 and γ = 4) and thus causes even small absolute

fluctuations to have a large relative difference. In all cases, including the degree assorta-

tivity, the difference between the generators is less than the differences within the set of

graphs produced by one generator, on average by an order of magnitude. More formally,

the average difference between the means of the distribution of properties of the generated

graphs is one order of magnitude less than the standard deviation σ of measurements for

the graphs produced by the same generator for any fixed set of parameters.
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Figure 3.15: Comparison of clustering coefficients. Left are average values for the imple-
mentation of [5] (left), error bars show the standard deviation. Right are the
relative differences of our implementation. Values are averaged over 214 runs.
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Figure 3.16: Comparison of diameter, degree assortativity and degeneracy. Degree assor-
tativity describes whether vertices have neighbors of similar degree. A value
near 1 signifies subgraphs with equal degree, a value of -1 star-like structures.
Degeneracy refers to the largest core number in a k-core decomposition, a
generalization of components. Left are average values for the implementation
of [5] (left), error bars show the standard deviation. Right are the relative
differences to our implementation. Values are averaged over 214 runs.
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To investigate this rigorously, we define two hypotheses H0 and H1 and compute a Bayes

factor [78] to estimate their relative likelihood. As the properties have different variances,

we estimate the standard deviation σ separately for each property. Let H0 be the hypothe-

sis that for all properties, the true difference between the average outputs of the generators

is at most 10% of the estimated standard deviation σ. Let H1 be the hypothesis that this

difference is above 10%. We use MCMC sampling to compute the Bayes factor comparing

H0 and H1.It shows that hypothesis H0 is overwhelmingly more likely, meaning that if

there is a difference between the properties of the generated graphs, it is at least one order

of magnitude smaller than the average difference between graphs from one generator.

3.8.3 Probabilistic Spreading

When both contact graph and travel patterns of a susceptible population are not known in

detail, the resulting spreading behavior of an infectious disease is probabilistic. Contagious

diseases usually spread to people in the vicinity of infected persons, but an infectious person

occasionally bridges larger distances by travel and spreads the disease this way. We model

this effect with our probabilistic neighborhood function f , giving a higher probability for

small distances and a lower but non-zero probability for larger distances. Note that this

scenario is meant as an example of the probabilistic spreading simulations possible with

our algorithm and not as highly realistic from an epidemiological point of view.

In the simulation, the population is given as a set P of points in the Euclidean plane.

In the initial step, exactly one point (= person) from P is marked as infected. Then, in

each round, a PNQ is performed for each infected person q. All points in N(q, f) become

infected in the next round. We use an SIR model [69], i. e. previously infected persons

recover with a certain probability in each round and stay infectious otherwise. In our

simulation, persons recover with a rate of 0.8 and are then immune.

Results

We experimented on three data sets taken from NASA population density raster data10

for Germany, France and the USA. They consist of rectangles with small square cells

(geographic areas) where for each cell the population from the year 2000 is given. To

obtain a set of points, we randomly distribute points in each cell to fit 1/20th of the

population density. Figure 3.17 shows an example with roughly 4 million points on the

map of Germany. The data sets of France and USA have roughly 3 and 14 million points,

respectively.

The number of required queries naturally depends heavily on the simulated disease. For

our parameters, a number of 5000 queries is typically reached within the first dozen steps.

To evaluate the algorithmic speedup, Table 3.1 compares running times for 5000 pairwise

distance probing (PDP) queries against 5000 fast PNQs on the three country datasets. To

obtain a similar total number of infections, we use a slightly different probabilistic neigh-

borhood function for each country and divide by the size: f(x) := (1/x) · e7/n, resulting

in a slower initial progression for the United States. Our algorithm achieves a speedup

factor of at least two orders of magnitude, even including the quadtree construction time.

10http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density/data-download
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3.9. Concluding Remarks

Country 5000 PDP queries Construction QT 5000 QT queries

France 1007 seconds 1.6 seconds 1.2 seconds
Germany 1395 seconds 2.8 seconds 1.3 seconds
USA 4804 seconds 8.7 seconds 0.7 seconds

Table 3.1: Running time results for polar Euclidean quadtrees on population data. The
query points were selected uniformly at random from P, the probabilistic neigh-
borhood function is f(x) := (1/x) · e7/n.

3.9 Concluding Remarks
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Figure 3.17: Heat map of the 23rd time
step of a simulated carnival
fever progression through
Germany.

Based on the popular generative model of ran-

dom hyperbolic graphs, we defined a dynamic

model for gradual vertex movement.

We developed four generation algorithms for

random hyperbolic graphs, three of which were

published and were the fastest at their time

of publication, often by several orders of mag-

nitude. This was achieved through geometric

data structures adapted for hyperbolic geome-

try. For dynamic updates to random hyperbolic

graphs, our algorithm remains the fastest one

available, both in theory and practice. Oth-

ers have built on this work, especially Pen-

schuck [132] and Lamm [96], leading to even

faster generators for external and distributed

memory. This culminated in a joint work of Funke et al. [58] (in which I was a co-author),

which won the IPDPS 2018 best paper award. An extended version was accepted to the

IPDPS 2018 Special Issue of the Journal of Parallel and Distributed Computing.
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We present two graph partitioners, designed for very different applications.

After considering a small part of the rather extensive previous work done in graph parti-

tioning (Section 4.2), we discuss the issue of partitioning protein graphs for an application

in quantum chemistry (Section 4.3). Compared to general graph partitioning, it has sev-

eral additional constraints due to properties of the chemical simulations. We adapt several

existing approaches to fulfill these additional constraints. For a scenario with a restricted

solution space, we provide an optimal dynamic programming algorithm. This work was

done jointly with Henning Meyerhenke, Mario Wolter and Christoph Jacob and was first

presented at SEA’16 [166].

The second graph partitioning algorithm (Section 4.4) is designed for a geophysics appli-

cation. The WAVE project11 creates an open-source toolbox for full waveform inversion,

to which we contribute the load balancing. Since geometric information is available, we

adapt the well-known k-means algorithm to yield balanced blocks suitable for partitioning.

Using MPI for distributed memory parallelism, it scales to tens of thousand of processes

and partitions graphs with billions of vertices in seconds. The algorithm and implementa-

tion for balanced k-means were presented at ICPP 2018 [165] as joint work with Henning

Meyerhenke and Charilaos Tzovas.

4.1 Problem Definition

Given a graph, the Graph Partitioning Problem (GPP) asks how to best cut it into parts.

More formally, let G = (V,E) be a graph, k ∈ N0 the desired number of parts, ε ∈ R+ a

balance constraint and ω : E → R+ an edge weight function. Then, the problem consists

of finding a k-partition Π of V so that the blocks (V1, . . . , Vk) are pairwise disjoint, each

has at least 1 and at most d(1 + ε) |V |k e vertices and some objective function is optimized.12

11http://wave-toolbox.org/
12In the mathematical use of “partition”, it is implied that the blocks are non-empty and pairwise disjoint.

We specified it for completeness sake.
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The most common objective function is the edge cut : The sum of the weights of all edges

whose incident vertices are in different blocks.

edgeCut(Π) :=
∑

e={u,v}∈E:u∈Vi,v∈Vj ,i 6=j

ω(e) (4.1)

Apart from the edge cut, another suitable objective function when partitioning for parallel

numerical simulations is the communication volume, as it measures communication costs

in some scenarios more accurately [67]. For each vertex, it counts the number of blocks

the vertex is connected to:

commVol(Π) :=
∑
Vi∈Π

∑
v∈Vi

|{Vj ∈ Π : ∃u ∈ Vj ∧ {u, v} ∈ E}| (4.2)

To evaluate the shape of a block Vi, its diameter is of interest. In contrast to (2.2), this

distance distVi only considers vertices and paths in block Vi:

diam(Vi) := max
u,v∈Vi×Vi

distVi(u, v). (4.3)

The graph partitioning problem is NP-complete and hard to approximate [32] for most

objective functions, thus heuristics are used in practice.

4.1.1 Applications

Graph partitioning is relevant for many applications, both when the interest is in the

graph itself or in the underlying phenomenon. In simulations of spatial phenomena, it

is common to discretize the simulation domain into a geometric graph called mesh. In

the common use case of modeling with partial differential equations (PDEs) [117], this

discretization ultimately leads to linear systems or explicit time-stepping methods. The

resulting matrices are typically very large and sparse, requiring parallelization for efficient

solutions. When the matrix rows are modeled as vertices and the data dependencies

between them as edges, a partition of this graph yields a parallelization scheme.

Electricity networks sometimes fail, which is unpleasant for those who need them [139]. A

way to reduce the effects of a failure is to partition the power grid into a set of self-sufficient

islands, which can continue service in the face of a wider disruption. Load imbalances

between these islands should be minimized, while fulfilling other constraints [100].

In parallel graph analysis tasks, partitioning the input graph is often a first step to a

parallelization [1]. In route planning, partitioning the street graph into natural parts can

give high speedups in preprocessing [19].

Many other applications exist.13 Note that graph partitioning is different from Graph

Clustering, which also requires a partition of the vertex set, but usually does not specify

the number of parts in advance and does not enforce a balance constraint.

13Of course, since GPP is NP-complete, all problems in NP can be phrased as graph partitioning problems.
Needless to say, addressing the whole of NP is beyond the scope of this work.
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4.1.2 Extensions and Additional Constraints

The graph partitioning problem can be extended with additional data and constraints.

While each application may bring its own unique set, the following are the most common.

Vertex Weights

Different computational loads can be represented by a vertex weight function w. The

balance constraint is then extended to the sum of vertex weights per block. For gen-

eral weights, deciding whether a partition with a certain balance constraint is possible is

equivalent to the bin packing problem, which is NP-complete [60]. To ensure a partition

is always possible, we relax the constraint by adding the difference between the largest

and smallest weight:

∑
v∈Vi

w(v)
!
≤
⌈

(1 + ε)

∑
v w(v)

k
+ max

v
w(v)−min

v
w(v)

⌉
.

Geometry

Many meshes from numerical simulations come with geometric information, which give a

global view useful for partitioning heuristics.

Multiple Weights

Some problems are best modeled with multiple vertex weights and multiple balance con-

straints [82, 81]. One example are numerical simulations using different solvers in which

computational cost and memory requirements scale differently. Each processing element

should get a subproblem with a similar amount of computational load, but also not ex-

ceeding the available local memory.

Unequal Block Sizes

Due to the increasing use of GPUs and accelerators for scientific computing [115], parallel

computation on heterogeneous infrastructure becomes common. When partitioning for

parallel computations in such a scenario, the tasks assigned to these computing elements

should reflect the different computational power to avoid stragglers or inefficient use of

memory. Thus, the balance constraint is replaced by a list of target block sizes, each

modeling the capabilities of one computing element.

4.2 Previous Work

4.2.1 Exact Methods

As graph partitioning is NP-complete, exact methods are possible, but usually take very

long. Numerous authors approached this problem using branch-and-bound or semidefinite

programming. For example, Ferreira et al. [54] develop separation heuristics based on

graph-based inequalities, they use these to partition graphs of a few hundred vertices
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Figure 4.1: Moving vertex 4 from the red block to the blue block has a gain of 1. Before
the move, three edges were cut. After the move, only two edges are cut.

optimally. Delling et al. develop a combinatorial branch-and-bound algorithm [42] for

minimum graph bisection, the case where k = 2. They achieve provably optimal results on

graphs with small cuts in the range of millions of vertices. In current graph partitioning,

exact methods and approximations are of mostly theoretical interest [33].

4.2.2 Local Search

Local search methods, also called local refinement methods, improve an existing partition

by changing the assignments of individual vertices. Most current methods can be traced

back to the foundational pair-swapping heuristic by Kernighan and Lin [84], which swaps

pairs of adjacent vertices between different blocks in the order of induced improvement

in the target function. This improvement is called the gain of a move. When optimizing

the edge cut, the gain is the difference between the edge cuts before and after the move.

Fiduccia and Mattheyses (FM) [55] adapt this method to unpaired vertex movements,

enabling larger improvements. Figure 4.1 shows an example of a move with a gain of 1.

After every vertex has been moved once, even those with negative gain, the solution with

the best quality is chosen. Such a phase is repeated several times, each running in time

O(m).

The original Fiduccia-Mattheyses targets bisections, i. e. partitions for k = 2. Karypis

and Kumar [83], among others, extend it to general k-way refinement.

Parallelization of local refinement algorithms is challenging, as the gain of moving a vertex

depends on the block assignments of its neighbors. In addition, if the same block is

modified by several processes concurrently, changes to its size have to be communicated

to avoid violating the balance constraints.

Holtgrewe et al. [73] approach these issues by allocating one process per block and com-

puting an edge coloring of the block graph. They then perform local refinement in distinct

rounds, one per color. In each round, processes sharing an edge with that round’s color

communicate to perform FM on the common border between their blocks. This limits

communication to pairs of processes and avoids race condition regarding the block size. A

downside is that it limits the partitioner to have the same number of processes and blocks.
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4.2.3 Multilevel Heuristic

The multilevel metaheuristic [66] consists of coarsening the input graph in a way that

preserves its topology, using an initial partitioning method on the coarse representation,

and then uncoarsening it again to project the partitioning solution to the original graph.

During uncoarsening, local search methods can be used to improve the solution quality.

This heuristic turned out to be so successful that after it was presented in the mid-90s,

most current tools now use some variant of it [33]. An intuition for its effectiveness is that

moving single vertices on the coarse level induces large changes in the finer levels, allowing

fast progress towards a good solution and avoiding getting stuck in local minima. Also,

since the coarse representation is much smaller than the input graph, the initial partitioning

can be done with a method that yields high quality but would be too expensive to apply

to the whole graph. When edges are merged during coarsening, their edge weights are

summed, thus the edge cut of a partition is the same for all levels.

The performance and solution quality of this approach depend on the tools employed in

the three phases: In the coarsening phase, in which a hierarchy of graphs G0, . . . , Gl is

computed, it is important that the coarsest and thus smallest graph is of manageable size

but still topologically similar to the input graph. Depending on the graph type, coarsening

based on matchings or clusterings is more effective [1], possibly used together with edge

ratings. After coarsening, an initial solution is computed on the coarsest level. Among

the many methods used for this step are region growing [135], recursive bisection [85] and

spectral methods [68], which exploit the connection between a graph’s topology and the

Eigenvalues of its Laplacian matrix. For local refinement during uncoarsening, variants of

the Fiduccia-Mattheyses method remain popular.

Probably the most popular implementation of the multilevel heuristic with Fiduccia-

Mattheyses-style local refinement is the parallel tool ParMetis [145], which is particularly ap-

preciated for its fast running time. Other parallel graph partitioners include PT-Scotch [131]

and the parallel versions of Jostle [167], DibaP [108], and KaHIP [111].

While yielding high solution quality, the construction of successively smaller graphs seems

to be limited in scalability, though. The tool xtraPulp [151] uses distributed label propaga-

tion, avoiding the scalability issues with the multi-level method. This makes it specifically

apt for complex networks, when applied to meshes it yields a reduced quality.

4.2.4 Geometric Methods

When the input consists of a mesh with attached geometry information, geometric parti-

tioning methods can be used; those are often significantly faster.

Due to its relevance in numerical simulations, numerous survey articles and books cover

the partitioning of meshes from numerical simulations [144, 33, 21]. Most geometric parti-

tioning techniques in wide use consider points and optimize for load balance [43, 103, 150].

Established geometric methods include the recursive coordinate bisection (RCB [150, 20])

and recursive inertial bisection (RIB [155, 170]). Deveci et al. [43] introduce a multisection
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algorithm, called MultiJagged (MJ), as a generalization of the traditional recursive tech-

niques. The space is divided into rectangles while minimizing the weight of the largest

rectangle. This method has better running time and is more scalable but yields less bal-

anced partitions compared to RCB. Many common geometric partitioning methods are

implemented in the Zoltan toolbox [26].

Another class of geometric techniques uses space-filling curves (SFCs), usually the Hilbert

curve [15] discussed in Section 2.3. These techniques are also fast and scalable and rely

on the fact that two points whose indices on the curve are close, are also often close in the

original space. While load balance is fairly easy to maintain, the quality of the computed

partitions in terms of graph-based methods is relatively poor for non-trivial meshes [75].

Implementations of partitioning algorithms using space-filling curves are available in the

ParMetis and Zoltan packages.

4.2.5 Shape optimization

The benefit of optimizing block shapes has been acknowledged in a number of publications,

not only for certain applications [45], but also for established graph metrics [110]. However,

previous shape-optimizing approaches suffer from a relatively high running time for static

partitioning [109, 110, 57] and limited scalability [45, 108].

The bubble framework introduced by Diekmann et al. [45] achieves well-shaped partitions

by repeatedly selecting center vertices and growing blocks around them using constrained

breadth-first search. This concept is similar to the k-means problem (discussed in Sec-

tion 4.2.6 below), except that cluster membership and centers are computed with graph-

theoretic instead of geometric distances. Due to the discrete nature of graph distances,

the center selection can be computationally demanding.

Shape optimization with Bubble-FOS/C [110], a variation of the bubble framework with

diffusion distances for the part resembling k-means, has been shown to have some theo-

retical foundation [112]: similar to spectral partitioning, it computes the global optimum

of a relaxed edge cut optimization problem. At the same time, the quality of diffusive

partitioning is in practice typically higher than that of spectral methods.

4.2.6 k-Means

The k-means problem, common in unsupervised machine learning and clustering, consists

of a set of points P in d-dimensional space Rd and a number k of target clusters. It asks

for an assignment C of the points in P to k clusters so that the sum of squared distances

of each point to the mean of its cluster is minimized. This target function is as follows,

with clusters denoted as c:

f(C) =
∑
c∈C

∑
p∈c

dist(p, center(c)). (4.4)

Optimizing this target function (Eq. 4.4) yields clusterings with small within-cluster dis-

tance and larger between-cluster distance, which is often considered important for a good
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clustering [46]. In practice, it is useful in load balancing parallel computations on ge-

ometric datasets [107]. Also, even though this target function bears no relation to our

graph-based metrics, local minima yield convex Voronoi diagrams, useful for our geomet-

ric partitioning phase with shape optimization. Unfortunately, optimizing it is NP-hard,

even in the Euclidean plane [105].

The first successful heuristic for the k-means problem in Euclidean space is Lloyd’s greedy

algorithm [101]. It consists of repeatedly alternating two steps:

• For every point p ∈ P : Assign p to the cluster c so that the distance between p and

center(c) is minimized.

• For every cluster c: Set cluster center center(c) to the arithmetic mean of all points

in c.

The algorithm stops when the maximum movement of cluster centers is below a user-

defined threshold, at the latest if no cluster membership changes.

In each step, the sum of squared distances between each point and the center of its cluster

decreases. As distances are nonnegative and the number of possible cluster assignments is

bounded, the algorithm eventually converges to a local optimum. The number of necessary

iterations is exponential in the worst case (bounded by the number of possible assignments

O(kn)), but in practice polynomial. Arthur et al. [9] bridge this difference by showing that

input instances with exponential running time need to be carefully constructed; randomly

perturbing any input data instance will again yield expected polynomial running time.

Which local optimum is reached after convergence depends on the choice of initial centers.

A straightforward option is to choose them uniformly at random among the input points,

with erratic and arbitrarily bad results [10]. Alternatives include K-Means++ [10], which

chooses the first center at random and then iteratively chooses each subsequent center to

maximize the distance to all existing centers. This method yields an expected approxima-

tion ratio of O(log n). Unfortunately, it is inherently sequential and the k passes over n

points lead to a complexity of O(nk).

Bachem et al. [13] present a probabilistic seeding method using Markov Chain Monte Carlo

(MCMC) sampling and claim an effective complexity of O(n+ k) for similar quality. Still,

the empirical running times are in the order of minutes for a few million points [13].

Several approaches exist to accelerate the main phase of Lloyd’s algorithm, many of them

exploiting the triangle inequality. Elkan [51] keeps one upper bound and k lower bounds

for each data point p, avoiding distance calculations to clusters that cannot possibly be the

closest one. Hamerly et al. [64] simplify this approach to one upper bound for the distance

of each point to its own center and one lower bound for the distance to the second-closest

center. Figure 4.2 shows a visualization. When for a point p this first bound is below

the second, the cluster membership of p cannot have changed and the loop over all centers

can be skipped. In both works, the bounds are relaxed when the cluster centers move and

are updated to their exact values when a distance calculation becomes necessary.

As the computations of distances between points and centers happens independently for

each point, this step can be parallelized easily [44].
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Figure 4.2: Visualization of a k-means partition on uniformly distributed points in the
plane. Cluster centers are marked as colored diamonds and each point has the
color of its closest center. The marked point is closer to the teal center than to
the blue center, thus it is in the teal-colored cluster (lines of shortest distance
drawn in red).

The simplicity and empirical effectiveness of k-means have inspired diverse further research,

both in improving it and analyzing it theoretically: Hartigan and Wong [65] apply a

different objective function and avoid some of the local minima of Lloyd’s algorithm [157].

Ding and He [46] investigate the relationship between k-means and spectral dimensionality

reduction, showing that principal component analysis can be described as a continuous

version of the k-means cluster membership indicators. Sculley [146] presents a sampling

method for k-means using gradient descent, with a reported speedup of two orders of

magnitude over methods using the triangle inequality.

Balanced k-Means

The classical k-means problem does not require equal sizes of clusters, even empty clusters

may occur. Borgwardt et al. [27] present a balanced k-means algorithm for weighted point

sets using linear programming. They also bound the number of necessary iterations needed

for its convergence. In the solution yielded by their algorithm, a point can have partial

membership in several clusters. To the best of our knowledge, no implementation of this

algorithm is available.

4.3 Partitioning of Protein Graphs

The biological role of proteins is largely determined by their interactions with other proteins

and small molecules. Quantum-chemical methods, such as Density Functional Theory

(DFT), provide an accurate description of these interactions based on quantum mechanics.

A major drawback of DFT is its time complexity, which has been shown to be cubic with

respect to the protein size in the worst case [39, 79]. For special cases this complexity
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Figure 4.3: Time in seconds required for quantum chemical density functional (DFT, BP86,
DZP) calculations of protein fragments on 16 Intel Xeon cores (2x Haswell-
EP/2640v3/2.6 GHz) executed with pyADF [76] and ADF program pack-
age [156]. As seen by the close match of the red fit line, time grows quadrati-
cally.

can be reduced to being linear [123, 62]. Typical DFT implementations, though, show

quadratic behavior with significant constant factors, making simulations of proteins bigger

than a few hundred amino acids prohibitively expensive [39, 79]. As an example, Figure 4.3

shows an excerpt from experimental running times of quantum-chemical calculations on

protein fragments which support this quadratic dependence.

To mitigate the computational cost, quantum-chemical subsystem methods have been de-

veloped [61, 77]. In such approaches, large molecules are separated into fragments (=

subsystems) which are then treated individually. A common way to deal with individual

fragments is to assume that they do not interact with each other. The error this introduces

for protein-protein or protein-molecule interaction energies (or for other local molecular

properties of interest) depends on the size and location of fragments: A partition that cuts

right through the strongest interaction in a molecule will give worse results than one that

carefully avoids this. It should also be considered that a protein consists of a main chain

(also called backbone) of amino acids. This main chain folds into 3D-secondary-structures,

stabilized by non-bonding interactions (those not on the backbone) between the individual

amino acids. These different connection types (backbone vs non-backbone) have different

influence on the interaction energies.

Motivation

Subsystem methods are very powerful in quantum chemistry [61, 77] but so far require

manual cuts with chemical insight to achieve good partitions [86]. Currently, when

automating the process, domain scientists typically cut every X amino acids along the

main chain (which we will call the naive approach in the following). This gives in general

suboptimal and unpredictable results.
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We construct graphs representing the proteins by considering amino acids as vertices and

interactions between them as edges. The edges are weighted with the expected error that

would result when assigning the incident vertices to different subsystems and thus neglect-

ing their interactions. Graph partitions with a small cut, i. e. partitions of the vertex set

whose inter-fragment edges have low total weight, should then correspond to a low error

for interaction energies. A general solution to this problem has high significance, since it

is applicable to any subsystem-based method and since it will enable such calculations on

larger systems with controlled accuracy. Yet, while several established graph partitioning

algorithms exist, none of them are directly applicable to our problem scenarios due to

additional domain-specific optimization constraints (which are outlined in Section 4.3.1).

Contributions

For the first of two problem scenarios, the special case of continuous fragments along the

main chain, we provide in Section 4.3.2 a dynamic programming (DP) algorithm. We

prove that it yields an optimal solution with a worst-case time complexity of O(n3/k) for

n vertices and k blocks.

For the general protein partitioning problem, we provide three algorithms using established

partitioning concepts, now equipped with techniques for adhering to the new constraints

(see Section 4.3.3): (i) a greedy agglomerative method, (ii) a multilevel algorithm with

Fiduccia-Mattheyses [55] refinement, and (iii) a simple postprocessing step that “repairs”

partitions from external graph partitioners.

Our experiments (Section 4.3.4) use several protein graphs representative of DFT calcu-

lations. They are rather small (up to 357 vertices), but are complete graphs. The results

show that our algorithms are usually better in quality than the naive approach. Even

though the optimality guarantees of the DP algorithm only holds for the special case of

main chain partitioning, its solutions are also the most robust in general protein partition-

ing, since they are always as least as good in quality as the naive approach. Running

all single algorithms and picking the best solution would still take only about ten seconds

per instance. This meta algorithm takes a time that is negligible in the quantum-chemical

workflow and would improve the expected error compared to the naive approach by 13.5%

to 20%, depending on the imbalance.

4.3.1 Modeling

We represent a protein as a weighted undirected graph. Vertices represent amino acids,

edges represent bonds or other interactions between amino acids. (This is different from

protein interaction networks [129], in which vertices model whole proteins and edges model

interactions between them.) Figure 4.4a shows a spatial visualization of Ubiquitin, a

common protein, colored on the level of amino acids. Edge weights are determined both

by the strength of the bond or interaction and the importance of this edge to the protein

function. Such a graph can be constructed from the geometrical structure of the protein

using chemical heuristics.
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(a) 3D-Visualization of Ubiquitin. Each
amino acid is shown in a different color.
A helical secondary structure can be seen
at the bottom, beta-sheet-like secondary
structures in the upper left and right.
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(b) Predicted error for interaction energies
with naive fragmentation every X amino
acids. Unpredictable minima and max-
ima occur, depending on the location of
the cuts along the main chain.

Figure 4.4: Visualization and error prediction for Ubiquitin, a small protein named for its
abundance.

Partitioning into fragments yields faster running time for DFT since the time required for

a fragment is quadratic in its size. The cut weight of a partition corresponds to the total

error caused by dividing this protein into fragments. A balanced partition is desirable as

it maximizes this acceleration effect. However, relaxing the constraint with a small ε > 0

makes sense as this usually helps in obtaining solutions with a lower error.

Note that the positions on the main chain define an ordering of the vertices. From now on

we assume the vertices to be numbered along the chain. Figure 4.4b shows a prediction

for the interaction error when partitioning naively along this order.

New Constraints.

Established graph partitioning tools using the model of the previous section cannot be

applied directly to our problem since protein partitioning introduces additional constraints

due to chemical idiosyncrasies:

• The first constraint is caused by so-called cap molecules added for the subsystem

calculation. These cap molecules are added at fragment boundaries (only in the

DFT, not in our graph) to obtain chemically meaningful fragments. They cannot

overlap spatially or be too close, thus cuts in the main chain cannot be too close

for the same fragment. This means for the graph that if vertex i and vertex i + 2

belong to the same fragment, vertex i + 1 must also belong to that fragment. We

call this the gap constraint; Figure 4.5a shows an example where the gap constraint

is violated.

• More importantly, some graph vertices can have a charge. It is difficult to obtain

robust convergence in quantum-mechanical calculations for fragments with more than

one charged vertex. Therefore, together with the graph a (possibly empty) list of
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charged vertices is given and two charged vertices must not be in the same fragment.

This is called the charge constraint, Figure 4.5b shows an example where the charge

constraint is violated. Note that, different from how we do it, adding a charge

constraint could also be modeled as a special case of graph partitioning with multiple

balance constraints.

We consider here two problem scenarios (with different chemical interpretations) in the

context of protein partitioning:

• Partitioning along the main chain: The main chain of a protein gives a natural

structure to it. We thus consider a scenario where partition fragments are forced

to be continuous on the main chain. This minimizes the number of cap molecules

necessary for the simulation and has the additional advantage of better comparability

with the naive partition.

Formally, the problem can be stated like this: Given a graph G = (V,E) with

ascending vertex IDs according to the vertex’s main chain position, an integer k and

a maximum imbalance ε, find a k-partition which respects the balance and charge

constraints and with minimum cut weight such that

vj , vj + l ∈ Vi → vj + 1 ∈ Vi, l ∈ N+.

The gap constraint is always fulfilled trivially, since all fragments are continuous

along the main chain.

• General protein partitioning: The general problem does not require continuous

fragments on the main chain, just minimizing the cut weight while adhering to the

balance, gap, and charge constraints.

4.3.2 Solving Main Chain Partitioning Optimally

As discussed in the introduction, a protein consists of a main chain, which is folded to

yield its characteristic spatial structure. Aligning a partition along the main chain uses

the locality information in the vertex order and minimizes the number of cap molecules

(a) Excerpt from a partition where the gap
constraint is violated, since vertices 4
and 6 (counting clockwise from the up-
per left) are in the green fragment, but
vertex 5 is in the blue fragment.

(b) Excerpt from a partition where the
charge constraint is violated. Vertices
3 and 13 are charged, indicated by the
white circles, but are both in the blue
fragment.

Figure 4.5: Examples of violated gap and charge constraints, with fragments represented
by colors.
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necessary for a given number of fragments. The problem of finding fragments with con-

tinuous vertex IDs is equivalent to finding a set of k− 1 delimiter vertices vd1 , vd2 , ...vdk−1

that separate the fragments. Note that this is not a vertex separator, instead the delimiter

vertices induce a set of cut edges due to the continuous vertex IDs. As a convention,

delimiter vertex vdj belongs to fragment j, 1 ≤ j ≤ k− 1. We further define maxSize as a

shorthand for d (1+ε)n
k e, as it will come up several times.

Consider the delimiter vertices in ascending order. Given the vertex vd2 , the optimal

placement of vertex vd1 only depends on edges among vertices u < vd2 , since all edges

{u, v} from vertices u < vd2 to vertices v > vd2 are cut no matter where vd1 is placed.

Placing vertex vd2 thus induces an optimal placement for vd1 , using only information from

edges to vertices u < vd2 . With this dependency of the positions of vd1 and vd2 , placing

vertex vd3 similarly induces an optimal choice for vd2 and vd1 , using only information from

vertices smaller than vd3 . The same argument can be continued inductively for vertices

vd4 . . . vdk .

Algorithm 10 is our dynamic-programming-based solution to the main chain partitioning

problem. It uses the property stated above to iteratively compute the optimal placement

of vdj−1
for all possible values of vdj . Finding the optimal placements of vd1 , . . . vdj−1

given a delimiter vdj at vertex i is equivalent to the subproblem of partitioning the first i

vertices into j fragments, for increasing values of i and j. If n vertices and k fragments are

reached, the desired global solution is found. We allocate (Line 3) and fill an n× k table

partCut with the optimal values for the subproblems. For each i and j, the table entry

partCut[i][j] denotes the minimum cut weight of a j-partition of the first i vertices. After

the initialization of data structures in Lines 2 and 3, the initial values are set in Line 4: A

partition consisting of only one fragment has a cut weight of zero.

All further partitions are built from a predecessor partition and a new fragment. A j-

partition Πi,j of the first i vertices consists of the jth fragment and a (j − 1)-partition

with fewer than i vertices. A valid predecessor partition of Πi,j is a partition Πl,j−1 of the

first l vertices, with l between i−maxSize and i− 1. Vertex charges have to be taken into

account when compiling the set of valid predecessors. If a backwards search for Πi,j from

vertex i encounters two charged vertices a and b with a < b, all valid predecessors of Πi,j

contain at least vertex a (Line 7).

The additional cut weight induced by adding a fragment containing the vertices [l + 1, i]

to a predecessor partition Πl,j−1 is the weight sum of edges connecting vertices in [1, l] to

vertices in [l + 1, i]: c[l][i] =
∑
{u,v}∈E,u∈[1,l],v∈[l+1,i]w(u, v). Line 8 computes this weight

difference for the current vertex i and all valid predecessors l.

For each i and j, the partition Πi,j with the minimum cut weight is then found in Line 10

by iterating backwards over all valid predecessor partitions and selecting the one leading

to the minimum cut. To reconstruct the partition, we store the predecessor in each step

(Line 11). If no partition with the given values is possible, the corresponding entry in

partCut remains at ∞.

After the table is filled, the resulting minimum cut weight is at partCut[n][k], the corre-

sponding partition is found by following the predecessors (Line 14).
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Algorithm 10: Main Chain Partitioning with Dynamic Programming

Input: Graph G = (V,E), fragment count k, bool list isCharged, imbalance ε
Output: partition Π

1 maxSize = d|V |/ke · (1 + ε);
2 allocate empty partition Π;
3 partCut[i][j] = ∞,∀i ∈ [1, n], ∀j ∈ [1, k];
/* initialize empty table partCut with n rows and k columns */

4 partCut[i][1] = 0, ∀i ∈ [1,maxSize];
5 for 1 ≤ i ≤ n do
6 windowStart = max(i−maxSize, 1);
7 if necessary, increase windowStart so that [windowStart, i] contains at most one

charged vertex;
8 compute column i of cut cost table c;
9 for 2 ≤ j ≤ k do

10 partCut[i][j] = minl∈[windowStart,i] partCut[l][j − 1] + c[l][i];

11 pred[i][j] = argminl∈[windowStart,i] partCut[l][j − 1] + c[l][i];

12 set i = n;
13 for j = k; j ≥ 2; j− = 1 do
14 nextI = pred[i][j];
15 assign vertices between nextI and i to fragment Πj ;
16 i = nextI ;

17 return Π

Correctness

The correctness of Algorithm 10 depends on the correct filling of table partCut:

Lemma 17. After the execution of Algorithm 10, partCut[i][j] contains the minimum cut

value for a continuous j-partition of the first i vertices. If such a partition is impossible,

partCut[i][j] contains ∞.

Proof. By induction over the number of partitions j.

Base Case: j = 1, ∀i. A 1-partition is a continuous block of vertices. The cut value is zero

exactly if the first i vertices contain at most one charge and i is not larger than maxSize.

This cut value is written into partCut in Lines 3 and 4 and not changed afterwards.

Inductive Step: j − 1→ j. Let i be the current vertex: A cut-minimal j-partition Πi,j for

the first i vertices contains a cut-minimal (j − 1)-partition Πi′,j−1 with continuous vertex

blocks. If Πi′,j−1 were not minimum, we could find a better partition Π′i′,j−1 and use it to

improve Πi,j , a contradiction to Πi,j being cut-minimal. Due to the induction hypothesis,

partCut[l][j− 1] contains the minimum cut value for all vertex indices l, which includes i′.

The loop in Line 10 iterates over possible predecessor partitions Πl,j−1 and selects the one

leading to the minimum cut after vertex i. Given that partitions for j−1 are cut-minimal,

the partition whose weight is stored in partCut[i][j] is cut-minimal as well.

If no allowed predecessor partition with a finite weight exists, partCut[i][j] remains at

infinity.
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Time Complexity

Theorem 5. Algorithm 10 computes the optimal main chain partition in time O(n2 ·
maxSize).

Proof. The nested loops in Lines 5 and 9 require O(n · k) iterations in total. Line 7 is

executed n times and has a complexity of maxSize. At Line 10 in the inner loop, up to

maxSize predecessor partitions need to be evaluated, each with two constant time table

accesses. Computing the cut weight column c[·][i] for fragments ending at vertex i (Line 8)

involves summing over the edges of O(maxSize) predecessors, each having at most O(n)

neighbors. Since the cut weights constitute a reverse prefix sum, the column c[·][i] can

be computed in O(n ·maxSize) time by iterating backwards. Line 8 is executed n times,

leading to a total complexity of O(n2 ·maxSize). Following the predecessors and assigning

vertices to fragments is possible in linear time, thus the O(n2 · maxSize) to compile the

cut cost table dominates the running time.

4.3.3 Algorithms for General Protein Partitioning

As discussed in Section 4.3.1, general-purpose graph partitioning programs in general do

not fulfill the new constraints required by the DFT calculations. The DP-based algorithm,

while optimal for main chain partitioning, is also not optimal in general.

Thus, we propose three algorithms for the general problem: The first two, a greedy ag-

glomerative method and Multilevel-FM, build on existing graph partitioning knowledge

but incorporate the new constraints directly into the optimization process. The third one

is a simple postprocessing repair procedure that works in many cases. It takes the output

of a traditional graph partitioner and fixes it so as to fulfill the constraints.

Greedy Agglomerative Algorithm

The greedy agglomerative approach, shown in Algorithm 11, is similar in spirit to Kruskal’s

MST algorithm and to approaches proposed for clustering graphs with respect to the

objective function modularity [37]. It initially sorts edges by weight and puts each vertex

into a singleton fragment. Edges are then considered iteratively with the heaviest first;

the fragments belonging to the incident vertices are merged if no constraints are violated.

This is repeated until no edges are left or the desired fragment count is achieved.

The initial edge sorting takes O(m logm) time. Initializing the data structures is possible

in linear time. The main loop (Line 5) has at most m iterations. Checking the size

and charge constraints is possible in constant time by keeping arrays of fragment sizes and

charge states. The time needed for checking the gaps and merging is linear in the fragment

size and thus at most O(maxSize).

The total time complexity of the greedy algorithm is thus:

T (Greedy) ∈ O(m ·max {maxSize, logm}).
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Algorithm 11: Greedy Agglomerative Algorithm

Input: Graph G = (V,E), fragment count k, list charged, imbalance ε
Output: partition Π

1 Ẽ = sort edges E by weight, descending;
2 Π = create one singleton partition for each vertex;
3 chargedPart = partitions containing a charged vertex;
4 maxSize = d|V |/ke · (1 + ε);

5 for edge {u, v} ∈ Ẽ do
6 allowed = True;
7 if Π[u] ∈ chargedPart and Π[v] ∈ chargedPart then // Charge Constraint

8 allowed = False;
9 if |Π[u]|+ |Π[v]| > maxSize then // Balance Constraint

10 allowed = False;
11 for vertex x ∈ Π[u] ∪Π[v] do // Gap Constraint

12 if x+ 2 ∈ Π[u] ∪Π[v] and x+ 1 6∈ Π[u] ∪Π[v] then
13 allowed = False;

14 if allowed then
15 merge Π[u] and Π[v];
16 update chargedPartitions;

17 if number of fragments in Π equals k then
18 break;

19 return Π

Multilevel Algorithm with Fiduccia-Mattheyses Local Search

Algorithm 12 uses non-binary (i. e. k > 2) Fiduccia-Mattheyses (FM) local search, as do

existing multilevel partitioners. Our adaptation incorporates the constraints throughout

the whole partitioning process. First a hierarchy of graphs G0, G1, . . . Gl is created by

recursive coarsening (Line 1). The edges contracted during coarsening are chosen with

a local matching strategy. An edge connecting two charged vertices stays uncontracted,

thus ensuring that a fragment contains at most one charged vertex even in the coarsest

partitioning phase. The coarsest graph is then partitioned into Πl using region growing

or recursive bisection. If an optional input partition Π′ is given, it is used as a guideline

during coarsening and replaces Πl if it yields a better cut. We execute both our greedy

and DP algorithm and use the partition with the better cut as input partition Π′ for the

multilevel algorithm.

After obtaining a partition for the coarsest graph, the graph is iteratively uncoarsened and

the partition projected to the next finer level. As we relax the balance constraint for coarser

levels for greater flexibility, a rebalancing step is necessary after uncoarsening (Line 6). A

Fiduccia-Mattheyses step is then performed to yield local improvements (Line 10): For

a partition with k fragments, this non-binary FM step consists of one priority queue for

each fragment. Each vertex v is inserted into the priority queue of its current fragment,

the maximum gain (i. e. reduction in cut weight when v is moved to another fragment) is

used as key. While at least one queue is non-empty, the highest vertex of the largest queue

is moved if the constraints are still fulfilled, and the movement recorded. After all vertices
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Algorithm 12: Multilevel-FM

Input: Graph G = (V,E), fragment count k, list charged, imbalance ε, [Π′]
Output: partition Π

1 G0, . . . , Gl = hierarchy of coarsened Graphs, G0 = G;
2 Πl = partition Gl with region growing or recursive bisection;
3 for 0 ≤ i < l do
4 uncoarsen Gi from Gi+1;
5 Πi = projected partition from Πi+1;
6 rebalance Πi;

/* Local improvements */

7 gain = NaN;
8 repeat
9 oldcut = cut(Π′i, G);

10 Π′i = Fiduccia-Mattheyses-Step of Πi with constraints;
11 gain = cut(Π′i, G) - oldcut;

12 until gain == 0 ;

have been moved, the partition yielding the minimum cut is taken. Of course, vertices are

only moved if the charge constraint stays fulfilled.

Repair Procedure

To be able to use existing tools, we propose a simple repair procedure (shown in Algo-

rithm 13) that takes an existing partition and modifies it to fulfill the charge and gap

constraints. It performs three sweeps over all vertices: In the first sweep (Line 6), only the

charge constraint is considered and fixed. For each fragment with more than one charged

vertex, all but one of the charged vertices are moved to previously uncharged fragments.

They are moved to those fragments where the move yields the highest gain, not considering

the gap or size constraints. In the second sweep (Line 11), violations of the gap constraint

are repaired in a way that does not violate the charge constraint. This is achieved by swap-

ping the block assignment of a vertex v within a gap with its right neighbor, or embedding

v in the surrounding block. After the second sweep, the gap and charge constraints are

fulfilled, but the blocks are possibly imbalanced. The third sweep (Line 14) thus consists

of a modified Fiduccia-Mattheyses step: Vertices in oversized blocks are moved to other

blocks, as long as this move would not violate a gap, size or charge constraint. Among its

possible targets, each surplus vertex v is moved to the block where the move yields the

highest gain.

The changes made by Algorithm 13 will most likely increase the edge cut compared to the

“raw” external partition, since some low-cut solutions are no longer possible. However, it

is not impossible to find a better solution during the repair procedure. In Line 20, a new

block is added if no other way can be found to satisfy the constraints. In the intended

application, the total edge cut matters more than the number of blocks, thus this solution

might still be valuable.
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Algorithm 13: Repairing an external partition

Input: Graph G = (V,E), k-partition Π, set C ⊆ V of charged vertices, imbalance
ε

Output: partition Π′

1 k ← |Π|;
2 cutWeight[i][j] = 0, 1 ≤ i ≤ n, 1 ≤ j ≤ k;
3 for edge {u, v} in E do
4 cutWeight[u][Π(u)]+ = w(u, v);
5 cutWeight[v][Π(v)]+ = w(u, v);

6 for block b ∈ Ψ do // First Sweep

7 while number of charged vertices in b > 1 do
8 Ψ← {t without charged vertices|t ∈ Π};
9 v, target ← argmaxv∈b∩C,t∈Ψ cutWeight[v][t];

10 move v to target, update cutWeight;

11 for vertex 0 ≤ v < |V | do // Second Sweep

12 if v − 1, v + 1 ∈ V and Π[v − 1] == Π[v + 1] 6= Π[v] then
13 repair gap at v with local swaps while preserving charges;

14 for vertex v in V do // Third Sweep

15 b← block of v;

16 if |b| > d (1+ε)n
k e then

17 Ψ← {t acceptable target for v|t ∈ Π};
18 target = argmaxt∈Ψ{cutWeight[v][t]};
19 if Ψ is empty then
20 target ← create new fragment for v;
21 move v to target, update cutWeight;

Time complexity.

The cut weight table allocated in Line 2 takes O(n · k + m) time to create. Whether a

constraint is violated can be checked in constant time per vertex by counting the number

of vertices and charges observed for each fragment. Finding the best target partition

(Lines 9 and 18) takes O(k) iterations, updating the cut weight table after moving a

vertex v is linear in the degree deg(v) of v. The total time complexity of a repair step is

thus: O(n · k +m+ n · k +
∑

v deg(v)) = O(n · k +m).

4.3.4 Experiments

We evaluate our algorithms on graphs derived from several proteins and compare the

resulting cut weight. As main chain partitioning is a special case of general protein par-

titioning, the solutions generated by our dynamic programming algorithm are valid solu-

tions of the general problem, though perhaps not optimal. Other algorithms evaluated are

Algorithm 11 (Greedy), 12 (Multilevel), and the external partitioner KaHiP [142], used

with the repair step discussed in Section 12. The algorithms are implemented in C++

and Python using the NetworKit tool suite [154], the source code is available from a git

repository.14 Scripts and a docker image to recreate the experiments are available at DOI

10.5445/IR/1000095237 on the KITOpenData repository.

14https://github.com/kit-parco/networkit-chemfork
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4.3. Partitioning of Protein Graphs

We use graphs derived from five common proteins, covering the most frequent structural

properties. Ubiquitin [137] and the Bubble Protein [124] are rather small proteins with 76

and 64 amino acids, respectively. Due to their biological functions, their overall size and

their diversity in the contained structural features, they are commonly used as test cases for

quantum-chemical subsystem methods [86]. The Green Fluorescent Protein (GFP) [125]

plays a crucial role in the bioluminescence of marine organisms and is widely expressed

in other organisms as a fluorescent label for microscopic techniques. Like GFP, the pro-

tein Bacteriorhodopsin (bR) [98] and the Fenna-Matthews-Olson protein (FMO) [159] are

large enough to render quantum-chemical calculations on the whole proteins practically

infeasible. Yet, investigating them with quantum-chemical methods is key to understand-

ing the photochemical processes they are involved in. The graphs derived from the latter

three proteins have 225, 226 and 357 vertices, respectively. They are complete graphs with

weighted n(n− 1)/2 edges. All instances can be found in the mentioned git repository in

folder input/.

In our experiments we partition the graphs into fragments of different sizes (i. e. we vary

the fragment number k). The small proteins ubiquitin and bubble are partitioned into 2,

4, 6 and 8 fragments, leading to fragments of average size 8–38. The other proteins are

partitioned into 8, 12, 16, 20 and 24 fragments, yielding average sizes between 10 and 45.

As maximum imbalance, we use values for ε of 0.1 and 0.2. While this may be larger than

usual values of ε in graph partitioning, fragment sizes in our case are comparably small

and an imbalance of 0.1 is possibly reached with the movement of a single vertex.

On these proteins, the running time of all partitioning implementations is on the order of

a few seconds even with small machines, we therefore omit detailed time measurements,

especially since the partitioning time is insignificant in the whole quantum-chemical work-

flow.

Charged Vertices.

Some of the amino acids in proteins may carry charges. Each protein has some potentially

charged amino acids, whether they are actually charged depends on the environment. As

discussed in Section 4.3.1, at most one charge is allowed per fragment. We repeatedly

sample b0.8 · kc random charged vertices among the potentially charged, under the con-

straint that a valid main chain partition is still possible. To smooth out random effects, we

perform 20 runs with different random vertex charges. Introducing charged vertices may

cause the naive partition to become invalid. In these cases, we use the repair procedure

on the invalid naive partition and compare the cut weights of other algorithms with the

cut weight of the repaired naive partition.

Results

For the uncharged scenario, Figure 4.6 shows a comparison of cut weights for different

numbers of fragments and a maximum imbalance of 0.1. The cut weight is up to 34.5%

smaller than with the naive approach (or 42.8% with ε = 0.2). The best algorithm choice

depends on the protein: For Ubiquitin, the green fluorescent protein, and the Fenna-

Matthew-Olson protein, the external partitioner KaHiP in combination with the repair
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Figure 4.6: Comparison of partitions given by several algorithms and proteins, for ε = 0.1.
The partition quality is measured by the cut weight in comparison to the naive
solution. 86
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Figure 4.7: Comparison of cut weights for ε = 0.2.

87



4. Graph Partitioning

2 4 6 8

0.6

0.7

0.8

0.9

1

1.1

1.2

k

cu
t

w
ei

gh
t

Ubiquitin

ML
Greedy

KaHiP + Repair
DP

Naive

2 4 6 8

0.6

0.7

0.8

0.9

1

1.1

1.2

k

cu
t

w
ei

gh
t

Bubble

8 12 16 20 24

k

Bacteriorhodopsin

8 12 16 20 24

0.6

0.7

0.8

0.9

1

1.1

1.2

k

cu
t

w
ei

g
h
t

Green Fluorescent Protein

8 12 16 20 24

k

Fenna-Matthews-Olson

Figure 4.8: Comparison of cut weights for ε = 0.1 and vertex charges.
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step described in Section 12 gives the lowest cut weight when averaged over different

fragment sizes. For the bubble protein, the multilevel algorithm from Section 19 gives on

average the best result, while for bacteriorhodopsin, the best cut weight is achieved by

the dynamic programming (DP) algorithm. The DP algorithm is always as least as good

as the naive approach. This already follows from Theorem 5, as the naive partition is

aligned along the main chain and thus found by DP in case it is optimal. DP is the only

algorithm with this property, all others perform worse than the naive approach for at least

one combination of parameters.

The general intuition that smaller fragment sizes leave less room for improvements com-

pared to the naive solution is confirmed by our experimental results. Figure 4.7 shows

the comparison with imbalance ε = 0.2. While the general trend is similar and the best

choice of algorithm depends on the protein, the cut weight is usually more clearly im-

proved. Moreover, a meta algorithm that executes all single algorithms and picks their

best solution yields average improvements (geometric mean) of 13.5%, 16%, and 20% for

ε = 0.1, 0.2, and 0.3, respectively, compared to the naive reference. Such a meta algorithm

requires only about ten seconds per instance, negligible in the whole DFT workflow.

Randomly charging vertices changes the results only insignificantly, as seen in Figure 4.8.

The necessary increase in cut weight for the algorithm’s solutions is likely compensated

by a similar increase in the naive partition due to the necessary repairs.

4.3.5 Concluding Remarks and Future Work

Partitioning protein graphs for subsystem quantum-chemistry is a problem with unique

constraints which general-purpose graph partitioning algorithms were unable to handle.

Thus, several simple algorithmic approaches were sufficient to achieve partitions of signifi-

cantly improved quality. For the special case of partitioning along the main chain, dynamic

programming already yields an optimal algorithm. With our algorithms chemists are now

able to address larger problems in an automated manner with smaller error.

Promising future work exists on both sides of this collaboration. On the chemical side,

usability of results could be improved by modeling the approximation error and chemical

constraints more precisely. For example, preliminary results indicate that also gaps of two

or three amino acids are detrimental to the simulation fidelity, as close proximity of cap

molecules induces spurious interactions.

Algorithmically, the resulting gaps of arbitrary size cannot easily be repaired with local

swaps, requiring a more general solution. Further complicating our abstraction, errors

in density calculations can have both positive and negative signs. They can thus can-

cel out, leading to a lower total error than expected when considering them individually.

The corresponding optimization problem would be mixed-sign graph partitioning problem

– something we have never seen before in the literature. We adapted our dynamic pro-

gramming solution to accept mixed-sign edge weights and minimize the absolute sum,

further research on its effectiveness in practice is required. Concluding, this first foray

into the partitioning of protein graphs already yielded significant benefits, but is far from

exhaustive.
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4.4 Balanced k-means for Parallel Geometric Partitioning

In the context of the WAVE project, we target geometric meshes with billions of vertices,

partitioned into tens of thousands of well-shaped blocks. A high degree of parallelism is

required to solve these problems in reasonable time. Established graph partitioners mostly

use the multi-level approach to achieve a good edge cut [33], but unfortunately, previous

work showed an increase in running time of this approach when using more than a few

hundred processes [73, 88, 111].

Thus, for large-scale simulations the research community has moved to more scalable

geometric methods, e. g. space-filling curves [15], or seemingly simpler space-partitioning

methods [43]. Their solution quality leaves something to be desired, though.

Our motivation is thus: At a range of parallelism past where the multi-level method is

useful, can we get a better quality than existing geometric approaches?

Besides the traditional quality metrics, we are also interested in good block shapes: Con-

nected, compact, to some extent convex. These are not only beneficial for certain ap-

plications [45], often they tend to induce a high partitioning quality w. r. t. established

graph metrics [109]. Graph-based tools are usually not satisfactory in this regard unless

specifically designed for this purpose [113].

Other key application areas for massively parallel numerical solvers are the atmosphere

and ocean simulations in weather and climate models; they feature prominently on the list

of exascale challenges [143].

Although the simulations are run in 3D, their vertical extent is typically very small and

variable over the application domain. Thus, the mesh tends to be partitioned in 2D and

then extended to a 3D mesh during the simulation using topography information; therefore

this type of mesh/problem is sometimes called 2.5-dimensional. The computational effort

depends on the number of 3D grid points and is reflected in the 2D mesh as a vertex

weight.

Following from these requirements, we are interested in a scalable mesh partitioning algo-

rithm for 2D and 3D meshes that yields high quality in terms of block shapes and relevant

graph metrics.

4.4.1 Weighted Balanced k-Means for Mesh Partitioning

Many requirements of a good geometric partition for parallel load balancing are fulfilled

by Lloyd’s algorithm: Convex clusters, fast convergence in practice and mostly indepen-

dent calculations, which imply good scalability [44]. Indeed, k-means has been used for

load balancing in parallel n-body physics simulations [107]. The balancing part in load

balancing, however, implies that the clusters should be of equal size. This is not delivered

by Lloyd’s algorithm, its solutions can be unboundedly imbalanced.

While existing approaches for balancing k-means exist [27], these do not have the other

required properties of a scalable load balancer, for example parallel scalability.

Formally, we extend the k-means problem as follows:
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Definition 1. Let P be a set of points in d-dimensional space Rd and w : P → R+ be an

optional weight function. Let k ∈ N be a target cluster count and ε ∈ R+ be the allowed

imbalance.

The balanced k-means problem is then: Find a partition of P into disjoint subsets Ci,

0 ≤ i < k, so that the weight w(Ci) of each subset is at most dw(P )
k e · (1 + ε) and the sum

of squared point-center distances is minimized.

This is NP-hard, as it contains the classical k-means problem. When non-uniform block

sizes are desired, for example when partitioning for heterogeneous architectures, this can

easily be adapted: Let ti be the target size of block i, the balance constraint then demands

that the weight w(Ci) of subset Ci is at most ti · (1 + ε).

Starting from Lloyd’s algorithm (see Section 4.2.6), we discuss the changes we made to ad-

dress parallelization, balancing and geometric optimizations, finally presenting the overall

algorithm.

Parallelization and Space-Filling Curves

Lloyd’s algorithm parallelizes well and our extensions do not change that. Each processor

stores a subset of the points, while the cluster centers and influence values are replicated

globally. The computationally most expensive phase is assigning points to the appropriate

cluster, which can be done independently for each point. After points are assigned, k

parallel sum operation are performed (log p each [95]) to calculate the new cluster centers

and sizes. Using p processes to perform one k-means iteration of n points into k clusters

has then a complexity of O(kn/p+ k log p).

As preparation for the geometric optimizations, we globally sort and redistribute all points

according to their index on a space-filling curve, thus ensuring that each processor has

local points that are grouped spatially and their bounding box is reasonably tight. For

this distributed sorting step, we use the scalable quicksort implementation of Axtmann et

al. [12].

Balancing

To achieve balanced cluster sizes, we add an influence value to each cluster, initialized to 1.

In the assignment phase, instead of assigning each point p to the cluster with the smallest

distance, we assign it to the cluster c for which the term dist(p, center(c))/influence(c) is

minimized. We call this term the weighted distance of p to center(c). This approach results

in the creation of weighted Voronoi diagrams [11] (which are not necessarily convex).

After all points are assigned, the global weight sum is calculated for each block. The

influence values of oversized blocks are decreased, those of undersized blocks increased.

How strongly to increase or decrease the influence in response to an imbalanced partition

is a tuning parameter. Our decision is guided by geometric considerations: The volume

of a d-dimensional hypersphere with radius r scales with rd. Assuming a roughly uniform

point density, increasing the weighted distance of a cluster to all points by a factor of b
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0.28 0.2

Figure 4.9: Example of an oversized cluster, whose influence is adjusted down to yield
better balance.

leads, all else being equal, to a change in size of b−d. Thus, if the ratio of the target size

and current size for a cluster c is γ(c), we set:

influence[c]← influence[c]/γ(c)1/d. (4.5)

Then, the new expected size of cluster c is
(

1
γ(c)1/d

)−d
· sizeold =

(
γ(c)1/d

)d · sizeold =

γ(c) · sizeold = sizetarget.

Figure 4.9 shows an example of influence adjustment on points which are uniformly dis-

tributed in the plane. Of course, the input points are usually not uniformly distributed

and more than one balance iteration is needed. To prevent oscillations, we restrict the

maximum influence change in one step to 5%. This approach is repeated for a maximum

number of balancing steps or until the maximum imbalance is at most ε; then centers are

moved and a new assign-and-balance phase starts. The maximum number of balancing

iterations between center movements is a tuning parameter.

In very heterogeneous point distributions, it can happen that clusters need very small or

very large influence values to gain a reasonable size. If, after a movement phase, cluster

centers with very different influence values are in close proximity, anomalies such as empty

or absurdly large clusters might occur. To avoid such cases, we add an influence erosion

scheme: When cluster centers move, we regress their influence value according to a sigmoid

function of the moved distance. Let δ(c) be the distance that center(c) moved in the last

phase and let β(C) be the average geometric cluster diameter. We then define an erosion

factor α(c) between 0 and 1, controlling how strongly the influence is eroded:

α(c) =
2

1 + exp(min(−δ(c)/β(C ), 0))
− 1

influence(c)← exp((1− α(c)) · log(influence(c)))

The influence value of stationary centers does not move, but after moving more than the

average distance between centers, the influence value is thus almost back to 1. This reflects

92



4.4. Balanced k-means for Parallel Geometric Partitioning

that an influence appropriate for one neighborhood of clusters might not be appropriate

for a different neighborhood.

Geometric Optimizations

We adapt the distance bounds of Hamerly et al. [64] for weighted distances, as nearest-

neighbor data structures like kd-trees are outperformed by simpler distance bounds in

most published experiments [48, 64].

Our adaptations are thus: Let p be a point and c := c(p) its assigned cluster; then ub(p)

stores an upper bound for the weighted distance of p and c; lb(p) stores a lower bound

for the second-smallest weighted distance. If lb(p) > ub(p) holds when evaluating the new

cluster assignment of point p, it is still in its previous cluster and distance calculations to

other clusters can be skipped.

When a cluster center moves or its influence value changes, these bounds need to be relaxed

to stay valid. Again, let δ(c) be the distance that center(c) moved in the last phase. For

each point p in cluster c, the new upper bound ub′(p) is then:

ub′(p) = ub(p)− δ(c)/influence(c). (4.6)

The lower bounds are relaxed with the maximum combination of δ and influence, as any

cluster could be the second-closest one:

lb′(p) = lb(p) + max
c′∈C

δ(c′)/influence(c′). (4.7)

Using these bounds, the innermost loop can be skipped in about 80% of the cases, more

in the later phases where centers and influence values change less.

Bounding Boxes

For a given point p, most clusters are unlikely candidates. In fact, the likely cluster centers

lie roughly in a d-dimensional hypersphere around p. As discussed earlier (Section 4.4.1),

we parallelize k-means by dividing the points among processors and sorting them according

to a space-filling curve, achieving some degree of locality. Thus, for each process the

bounding box B around the process-local points covers only a small area and most cluster

centers will be outside of it. When assigning point p, we only need to consider centers c

with dist(c,B) < ub(p). By sorting the cluster centers by their weighted distance to B, we

can avoid evaluating possible clusters for a point p when their minimum weighted distance

is above the ones for already found candidates. Figure 4.10 shows a visualization.

In a scenario with uniformly distributed input points, this reduces the expected complexity

of one k-means iteration from O(kn/p+k log p) to O(n/p+k log p+k log k), as for a fixed

volume, the surface of a d-hypersphere is bounded, independently of d [138].

Algorithm

Algorithm 14 shows the resulting assign-and-balance phase of our k-means and is executed

by all processors in parallel. The first 5 lines prepare data structures and optimizations,
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Figure 4.10: Combining Hamerly bounds with bounding boxes. The grid represents the
division into process-local points and the dashed lines show the distance be-
tween other cluster centers and the bounding box of the marked point. The
marked point is closest to the teal cluster center, distance calculations to other
cluster centers can be stopped as their distance to the point’s bounding box
is larger.

the main loop starts in Line 7. If the distance bounds for a point p guarantee that its

cluster assignment has not changed, the inner loop can be skipped (Line 9). If not, we

iterate over the cluster centers and assign p to the one with the smallest weighted distance

(Line 17). As soon as the weighted distance between a cluster center and the bounding

box of local points is higher than the second best value found so far, the remaining clusters

cannot improve on that and can be skipped (Line 14).

We update bounds for all points where distance calculations were necessary (Lines 22 and

23). Finally, global block sizes are computed as sums of all local block sizes (Line 25).

This is the only part requiring communication in the balance routine, marked in blue.

If the global block sizes are imbalanced, we use Eq. (4.5) to adapt the influence values

for the next round (Line 29). As the block sizes were communicated in Line 25, this can

be done independently by each process. The algorithm returns either when the blocks

are sufficiently balanced or when a maximum number of balancing iterations is reached.

In our experiments with ε ∈ {0.03, 0.05}, balance was always achieved when allowing a

sufficient number of balance and movement iterations.

Algorithm 15 shows our main k-means algorithm. We first sort and redistribute the points

according to a space-filling curve to improve spatial locality (Lines 4 – 6), place initial

centers in equal distances on the sorted points (Line 7) and initialize data structures

(Lines 8 and 9). Deriving initial centers from the space-filling curve in this way yields a

beneficial geometric spread.

The main loop consists of calling Algorithm 14 until the centers converge sufficiently or a
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Figure 4.11: Partition of hugetric-0000 in 8 blocks with different tools. From left to right,
the pictures show the input and the results of RCB, RIB, MultiJagged, zoltanSFC
and Geographer. The varying density of the mesh is indicated by the heat
map in the first picture, it ranges over three orders of magnitude.

maximum number of iterations is reached. New cluster centers are the weighted average

of the assigned points; this can be computed efficiently with a local sum and two global

MPI vector sum operations (Line 13). Apart from the initial setup, all communication

steps are global reduction operations, for which efficient implementations exist. Lines

needing communication are marked in blue. Note that the number of blocks the point set

is partitioned into is independent from the number of parallel processes that are used to

do it.

One optimization omitted from the pseudocode for the sake of brevity is random initializa-

tion. In the initial phases of k-means, cluster centers and influence values change rapidly

and the geometric bounds are of little help. However, during these wild fluctuations not as

much precision is required as in the later fine-tuning stages. To exploit this effect, each pro-

cess permutes its local points randomly and then picks the first 100 as initial sample. After

each round with center movement, the sample size is doubled. These dlog2(nlocal/100)e
initialization rounds take about as much time as one round with the full point set, but

move centers much closer to their final positions. Starting with only a randomly sampled

subset of points does not impact the quality noticeably.

4.4.2 Experimental Evaluation

Implementation

Our graph partitioner Geographer is implemented in C++11 and parallelized with MPI. To

increase portability and usability, we develop the partitioner within LAMA [28], a portable
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(c) Alya and Delaunay (3D)

Figure 4.12: Average ratio of between (geometric mean except diameter, see text) of the
evaluation metrics for all tools. Baseline: Geographer.

framework for distributed linear algebra and other numerical applications. LAMA provides

high-level data structures and communication routines for distributed memory, abstracting

away the specifics of the MPI communicator and also supporting other parallelization

mechanisms. In the course of this work, we contributed several optimized communication

routines to LAMA that are used by our partitioner.

Our implementation is publicly available at https://github.com/kit-parco/geographer.

Experimental Settings

Machine

We perform our experiments on Thin Phase 1 nodes of the SuperMUC petascale system at

the Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities.

Each node is equipped with 32 GB RAM and two Intel Xeon E5-2680 processors (Sandy

Bridge) at 2.7 GHz and 8 cores per processor. In our experiments, we allocate one MPI

process to each core. Both our code and the evaluated competitors are compiled with

GCC 5.4 and parallelized with IBM MPI 1.4.

Compared Partitioners

We compare our new partitioner Geographer with several established geometric partitioning

implementations from the ParMetis (4.0.3) and Zoltan 2 (part of the Trilinos 12.10 Project)

toolboxes. The geometric partitioner within the ParMetis package uses space-filling curves,

the Zoltan package contains implementations of Recursive Coordinate Bisection (RCB),

Recursive Inertial Bisection (RIB), space-filling curves (zoltanSFC) and the MultiJagged al-

gorithm, mentioned in Section 4.2. Since the ParMetis version of space-filling curves is
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dominated by the space-filling curves in the Zoltan package, we omit it from the detailed

presentation.

While we see geometric partitioners as our main competitors, we also compare with the

graph-based partitioners Mt-KaHiP and ParHIP [111] and the corresponding graph datasets.

Both are variants of the sequential partitioner KaHIP, which is known for its high solution

quality [142]. It is expected that both tools will achieve a better quality at the expense

of a higher running time. For ParHIP, we select the “fastmesh” preconfiguration for its

appropriate tradeoff between running time and edge cut for our scenario.

Test Data

We evaluate the partitioners on a variety of datasets: a collection of benchmark meshes

from the 10th DIMACS implementation challenge [14], 2.5D meshes with vertex weights

from climate simulations [41], 3D meshes from the PRACE Unified European Applications

Benchmark Suite (UEABS) [134] and Delaunay triangulations15 of random points in two

and three dimensions. More precisely, the graphs hugetrace, hugetric and hugebub-

bles are 2D adaptively refined triangular meshes from the benchmark generator created

by Marquardt and Schamberger [106]; they represent synthetic numerical simulations and

have approx. 5M to 20M vertices. 333SP, AS365, M6, NACA0015 and NLR are 2D finite

element triangular meshes from approx. 3.5M vertices and 11M edges up to approx. 21M

vertices and 31M edges. rgg_n are 2D random geometric graphs with 2n vertices for

n = 20, . . . , 24. All these graphs come from the 10th DIMACS Implementation Chal-

lenge [14]. The graphs in the DelaunayX series are Delaunay triangulations of X random

2D points in the unit square [73]. The smallest graph in the series has 8M vertices and

approximately 24M edges; the largest one has 2B vertices and approximately 6B edges.

We also generated five 3D Delaunay triangulations from approx. 1M to 16M vertices using

the generator of Funke et al. [58]. The graphs alyaTestCaseA with 9.9 million vertices

and alyaTestCaseB with 30.9 million vertices (representing the respiratory system) are

from the PRACE benchmark suite [134].

Metrics

We evaluate the generated partitions with respect to several metrics. In addition to the

classical edge cut, we report both max comm, the maximum communication volume and∑
comm, the total communication volume.

To evaluate the effect of shape optimization, we also measure the graph diameter for each

block. Since a precise computation of the diameter scales at least quadratically with the

number of vertices, we instead use a lower bound generated by executing the first 3 rounds

of the iFUB algorithm by Crescenzi et al. [40]. This lower bound is a 2-approximation of

the exact diameter, but often already tight.

To estimate the impact on the communication patterns of a parallel application, we mea-

sure the communication time of a parallel SpMV benchmark.

15We thank Christian Schulz, who kindly provided the generator [73] for the Delaunay graphs.
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Other Parameters

In all experiments, we set the number of blocks k to the number of processes p and the

maximum imbalance ε to 3%, which was respected by all tools. Reported values are

averaged over 5 runs to account for random fluctuations.

Results

For a brief first visual impression of the results of Geographer, RCB, RIB, MultiJagged, and

zoltanSFC, see Fig. 4.11. Recursive coordinate and inertial bisection produce thin, long

blocks, MultiJagged produces rectangles with a better aspect ratio, zoltanSFC’s blocks

have wrinkled boundaries, balanced k-means produces curved blocks.

Both Mt-KaHiP and ParHIP achieved a significantly improved quality on small graphs, but

ran out of time (25 minutes) or memory (256GB) for graphs with more than ≈30 million

vertices. As we target mainly larger graphs, we omit these tools from most of the detailed

comparisons.

A collection of raw measurements are available at the corresponding data archive at DOI

10.5445/IR/1000095237 on the KITOpenData repository.

Quality

Figure 4.12 compares the partitions yielded by the tested tools under the metrics edgeCut,

maximum and total communication volume and diameter. For easier presentation, we

report the relative value compared to Geographer and aggregate the results by graph class

using the geometric mean.

In some cases, blocks are disconnected and thus have an infinite diameter. To avoid a

potentially infinite mean diameter, we use the harmonic instead of the geometric mean to

aggregate the diameter over all blocks.

The first instance class consists of the 2D geometric benchmark meshes from the DIMACS

challenge, the second consists of the 2.5D graphs from climate simulations. The third class

consists of the alya test case and Delaunay triangulations in the unit cube, all 3D meshes.

In all graph classes, Geographer produces on average the partition with the lowest total

communication volume. The advantage is most pronounced on the 2D geometric meshes

from the DIMACS collection, but visible also in other classes. This does not mean that

Geographer achieves always the best results, as these are aggregated values.

The performance as measured by the edge cut differs: On the DIMACS graphs, Geographer

is leading with 15% difference, on the 2.5D and 3D graphs MultiJagged has an advantage

of 0.5% and 4%, respectively. Similar developments are visible also for other metrics.

The empirical average communication time within the SpMV benchmarks (timeComm in

Figure 4.12) correlates little with the more established measures. Results fluctuate, but

Geographer has on average the smallest SpMV communication time.
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4.4. Balanced k-means for Parallel Geometric Partitioning

Note that the behavior of balanced k-means is stable: If it performs worse on some class,

then not by much. None of the evaluated competitors clearly dominates: While Multi-

Jagged, for example, has a lower mean edge cut (5%) on 3D graphs, its performance on

the DIMACS graphs is clearly worse, with a 30% higher edge cut.

Detailed results for individual graphs are shown in Tables 4.1 and 4.2.

Table 4.3 shows a comparison against the graph-based partitioners Mt-KaHiP and ParHIP.

Mt-KaHiP is a shared-memory partitioner, thus the size of instances was limited to those

fitting into 256GB of memory. On average, Mt-KaHiP has a 15% better cut than the

best geometric partitioner and a running time that is higher by two orders of magnitude.

Surprisingly, the lower edge cut does not lead to shorter communication in the SpMV

benchmark. The average edge cut of ParHIP is similar to the best geometric partitioner,

with a difference of under one percent. The running time, though, is about one order of

magnitude higher.

Statistical Analysis

Some of the compared algorithms use randomness, and even the deterministic ones may be

sensitive to hardware effects and peculiarities of the input. To determine whether the lower

total communication volume and shorter SpMV communication time are possibly just the

result of random fluctuations, we model the performance of Geographer and MultiJagged as

dependent random variables with input graphs g1, g2 . . . gn and a multiplicative Gaussian

noise term ε:

log2(commVolG(gi)) = α+ log2(commVolMJ(gi)) + ε (4.8)

log2(commSpMVG(gi)) = β + log2(commSpMVMJ(gi)) + ε (4.9)

This is equivalent to drawing from parametrized normal distributions:

log2(commVolG(gi)) ∼ N (α+ log2(commVolMJ(gi)), σε) (4.10)

log2(commSpMVG(gi)) ∼ N (β + log2(commSpMVMJ(gi)), σε) (4.11)

Since the results are log-transformed, the additive Gaussian noise term models a multi-

plicative error. Thus, we model the communication volume of a graph gi partitioned by

Geographer to follow a parametrized log-normal distribution, with the mean depending on

the result of MultiJagged for the same instance.

We then perform a Bayesian linear regression on our entire graph set to get estimates

for α and β. For both α and β, we use weakly informative normal priors with mean

0 and standard deviation 10. This represents the prior belief that the performance of

algorithms is equivalent. For the variance σε of the likelihood function, we use a half-

normal distribution with standard deviation 1.

We approximate the posterior distributions of α, β and σ using Markov Chain Monte Carlo

sampling provided by the PyMC3 [140] package. Stable estimates are reached after 500
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Figure 4.13: Scaling results on DelaunayX regarding (a) strong and (b) weak scaling. The
number of blocks k is kept equal to the number of processes.

tuning and 10000 sampling iterations. In the resulting posterior distributions, the 0.95-

credible intervals for α and β are [−0.308,−0.205] and [−0.21469671,−0.062] respectively,

implying that with 95% probability, the true average performance ratios of the algorithms

are between 0.80 and 0.87 (for the total communication volume) and between 0.86 and

0.96 (for the SpMV communication time). Note that this does not mean that Geographer

always yields solutions with a 13–20% smaller total communication volume than Multi-

Jagged. Instead, after accounting for random noise in the measurements, the true average

improvement in total communication volume is 13–20% with probability at least 95%. The

same holds for the 4–14% improvement in SpMV communication time.

As an alternative to Bayesian analysis, we also offer a Wilcoxon [169] test on the paired

results of MultiJagged and Geographer. The null hypothesis of both algorithms being from the

same distribution yields p-values of 1.27× 10−17 for the total communication volume and

0.007 for the SpMV communication time. Strictly speaking, evaluating several metrics is

equivalent to testing multiple hypothesis in the null hypothesis statistical testing (NHST)

framework, requiring a correction to reduce the risk of false positives. However, our values

are far lower than commonly used significance thresholds, thus even an overly conservative

Bonferroni [49] correction would not change this conclusion

Weak Scaling

Fig. 4.13a shows a direct comparison of weak scaling performance on the DelauanyX graph

series. We start with 32 processes (p) and blocks (k) on 8 million vertices and repeatedly

double both until we reach 8 192 processes on 2 billion vertices, keeping the ratio fixed

at approximately 250 000 vertices per process. Geographer exhibits similar behavior as

MultiJagged and zoltanSFC: they scale almost perfectly up to 1024 PEs, then increase roughly

by a factor of two over the next three doublings. The recursive methods RIB and RCB show

an immediate increase in running time with larger inputs and scale especially poorly on

more than 1 024 processes, more than doubling the running time for each doubling of
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input and process count. A comparison of running times on all graphs can be seen in

Fig. 4.14. The scaling behavior of the different tools follows similar trends as on the

DelaunayX series. Fitted trend lines show a better weak scaling behavior of Geographer

than on Delaunay graphs alone, which may also be an artifact of the higher number of

smaller graphs in our collection.

Strong Scaling

We perform strong scaling experiments (see Fig. 4.13b) with the largest graph at our

disposal, Delaunay2B. With 2 billion vertices, it is small enough to fit into the memory of

1 024 processing elements but also sufficiently large to partition it into 16 384 blocks. Note

that our experiments are not, strictly speaking, strong scaling, as we increase the number

of blocks along with the number of processors.

Similarly to the weak scaling results, Geographer, MultiJagged and zoltanSFC have similar

scaling behavior: almost perfect scalability for up to 4 096 PEs (MultiJagged also for 8 192).

RCB and RIB start with the slowest running times, around 6.5 seconds for k = 1024 and

climb to 23 seconds for k = 16384 showing poor scalability. For all tools, the running time

increases from 8 192 to 16 384 processes; we attribute this to the SuperMUC architecture:

an island in SuperMUC contains 8 192 cores and communication is more expensive across

islands.

Components

The main parts of Geographer contributing to the running time are the initial partitioning

with a Hilbert curve, the redistribution of coordinates according to this initial partition

and finally the balanced k-means itself. As the number of processes increases, the relative

share of these components changes: For small instances, the computation of Hilbert indices

and the balanced k-means iterations constitute a majority of the time, while for higher

number of processes, the redistribution step dominates. For example, when partitioning

Delaunay2B with 1024 processes, calculating the partition using a space filling curve takes

20%, data (graph, coordinates and vertex weights vectors) redistribution 32% and k-means

takes 47% of the total running time. For the same graph and 16384 processes, the space

filling curve step requires 10%, data redistribution 46% and k-means 42% of the total

running time.

Local Refinement

For the case that graph adjacency data is available and quality is of higher importance,

we also offer an implementation of the multi-level heuristic together with parallel local

refinement based on the algorithm by Fiduccia-Mattheyses [55]. It is used to subsequently

improve the partition computed by the k-means algorithm. On average, this graph-based

refinement takes 10-20 seconds and decreases the cut by a further 10%. Performance is

less predictable, though, which is why we did not include it in our main experiments.
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Figure 4.14: Comparison of running times with different tools, graphs and numbers of
processes. Each dot represents the running time of one tool on one graph.
We select the number of blocks k (and processes k) as a power of two and aim
for 250 000 points per block. For example, a graph with 4.5 million vertices
is partitioned into 16 blocks, since 4.5 · 106/16 = 281 250 is closer to 250000
than 4.5 · 106/32 = 140 625.

4.4.3 Conclusion

We designed and implemented Geographer, a balanced, scalable version of k-means for

partitioning geometric meshes. Combined with space-filling curves for initialization, it

scales to thousands of processors and billions of vertices, partitioning them in a matter of

seconds.

An evaluation on a wide range of input meshes shows that the total communication volume

and resulting SpMV communication time of the resulting partitions is on average 5–15%

better than those of state-of-the-art competitors. This difference is most pronounced on

meshes from the DIMACS benchmark collection, but also measurable on graphs from

climate simulations and 3D meshes. Concerning the edge cut, another common metric to

evaluate graph partitioners, MultiJagged also performs well, giving the best results on 3D

meshes. No partitioner dominates on all point sets.

Graph-based partitioners which focus on quality, as for example Mt-KaHiP and ParHIP, do

achieve lower edge cuts and communication volumes on small graphs, but do not scale to

the large graph sizes which are our main focus.

Future work will be concerned with further improving quality and scalability, in particular

for 3D meshes. A faster redistribution routine, necessary to achieve scalability for a higher

number of processes, is also of independent interest.

Our implementation also includes a graph phase using the multi-level heuristic, local re-

finement and diffusion steps. First experiments indicate a promising effect of not following

the classical multi-level paradigm with an initial partitioning on the coarsest graph, but

instead performing a geometric partitioning step before the coarsening. Further exploring
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this effect is also part of future work.

Finally, the requirement of having geometric coordinates could be lifted by generating

artificial coordinates with a sufficiently fast graph drawing or embedding algorithm [88].

So far, these algorithms tend to not scale sufficiently to be useful for the range of parallelism

we target, addressing this is thus also part of future work.
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Algorithm 14: AssignAndBalance

Input: centers C, local points Plocal, vertex weights W , influence, previous
assignments Aold, ub, lb, ε

Output: assignments A, new influence, bounds ub, lb
1 bb ← bounding box around local points Plocal;
2 for center c ∈ C do
3 distToBb[c] ← maxDist(bb,c)/influence[c];
4 localBlockSizes[c] ← 0;

5 sort centers C by distToBb;
6 for i ∈ {0, ...,maxBalanceIter} do
7 for p ∈ Plocal do
8 if ub[p] <lb[p] then
9 A[p]← Aold[p];

10 else
11 bestValue, secondBestValue ← ∞;
12 for c ∈ C do
13 if distToBb[c] >secondBestValue then
14 break;
15 effDist = dist(c, p)/influence[c];
16 if effDist<bestValue then
17 A[p]← c;
18 secondBestValue ← bestValue;
19 bestValue ← effDist;

20 else if effDist<secondBestValue then
21 secondBestValue ← effDist;

22 ub[p] ← bestValue;
23 lb[p] ← secondBestValue;

24 localBlockSizes[A[p]]+ = W [p];

25 globalSizes ← globalSumVector(localBlockSizes);
26 if imbalance(globalSizes) < ε then
27 return A, I, ub, lb
28 for c ∈ C do
29 influence(c)← adaptInfluence(influence(c), globalSizes[c]);

/* Eq. (4.5) */

30 update ub;
31 update lb;

32 return A, I, ub, lb
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Algorithm 15: BalancedKMeans

Input: points P , number of blocks k, maximum imbalance ε, deltaThreshold
Output: assignments A

1 n← #P ;
2 #proc ← number of processors;
3 r ← rank of processor;
4 sfcIndex[p] ← index of p on space-filling curve ∀p ∈ P ;
5 sortedPoints ← sortGlobal(P , key=sfcIndex);
6 Plocal ← sortedPoints[r · n/#proc, ..., (r + 1) · n/#proc];
7 C[i] ← sortedPoints[i · n/k + n/2k] for i ∈ {0, ...k − 1};
8 I[c] ← 1 for c ∈ C;
9 ub[p] ← inf, lb[p] = 0 ∀p ∈ Plocal;

10 for i ∈ {0, ...,maxIter} do
11 A, I, ub, lb ← AssignAndBalance(C, Plocal, I, A, ub, lb, ε);
12 C ′local[c]← mean of p ∈ Plocal with A[p] = c;
13 C ′ ← globalWeightedMeanVector(C ′local[c]);
14 if max δ(C,C ′) < deltaThreshold then
15 return A
16 C ← C ′;
17 adapt bounds ub, lb with Eq. (4.6) and (4.7);

18 return A

Table 4.1: Comparison of results for large graphs for k = p = 1024. Best values are marked
in bold. Times for SpMV communications are given in microseconds.

graph name tool time(s) cut maxComm Σ comm diam timeSpMVComm

alyaTestCaseB Geographer 0.35 5 823 055 6 508 5 403 716 63 198.77
n = 30 959 144 HSFC 0.04 6 613 710 8 275 6 802 889 83 361.43

MultiJagged 0.02 5 364 660 6 062 5 482 086 62 198.04
RCB 0.10 6 188 060 6 526 5 825 470 79 315.97

delaunay250M Geographer 0.83 2 037 960 2 183 2 033 939 457 34.61
n = 250 000 000 HSFC 0.23 2 356 510 2 918 2 349 673 570 136.38

MultiJagged 0.23 2 118 810 2 214 2 114 657 494 74.32
RCB 0.85 2 118 220 2 211 2 113 916 491 126.76

delaunay2B Geographer 6.09 5 771 443 6 136 5 754 364 - -
n = 2 000 000 000 HSFC 1.87 6 335 780 6 807 6 314 790 - -

MultiJagged 1.72 5 994 110 6 164 5 976 573 - -
RCB 6.66 5 995 910 6 137 5 978 340 - -

fesom-jigsaw Geographer 0.77 33 135 424 1 539 680 638 392 37.69
n = 14 349 744 HSFC 0.02 33 749 900 1 500 735 964 339 58.12

MultiJagged 0.02 27 472 100 1 111 641 574 320 43.53
RCB 0.08 30 447 900 1 524 642 714 320 67.78

refinedtrace-06 Geographer 1.50 813 450 1 596 1 380 977 1 052 40.95
n = 289 383 634 HSFC 0.52 1 044 170 2 856 1 909 341 1 834 119.55

MultiJagged 0.26 1 063 020 3 790 1 801 389 1 607 71.64
RCB 1.10 930 479 3 864 1 552 315 1 335 108.35

refinedtrace-07 Geographer 3.54 1 144 423 2 205 1 948 602 1 483 51.98
n = 578 551 252 HSFC 0.81 1 467 320 4 054 2 689 631 2 609 156.08

MultiJagged 0.57 1 521 740 4 644 2 551 801 2 285 89.13
RCB 2.04 1 314 980 6 988 2 189 002 1 898 146.98
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Table 4.2: Comparison for smaller graphs and k = p = 64. Best values marked in bold.
Times for SpMV communications are given in microseconds.

graph name tool time(s) cut maxComm Σ comm diam timeSpMVComm

333SP Geographer 1.49 32 170 1 203 32 306 205 81.66
n = 3 712 815 HSFC 0.05 83 162 2 341 83 077 845 61.70

MultiJagged 0.08 90 650 3 899 90 793 517 33.96
RCB 0.08 59 558 2 291 59 700 357 45.76

AS365 Geographer 0.47 51 666 1 114 51 832 274 29.65
n = 3 799 275 HSFC 0.06 87 274 1 863 87 355 487 64.69

MultiJagged 0.05 64 312 1 796 64 480 364 21.74
RCB 0.10 55 880 1 075 56 040 313 52.14

M6 Geographer 0.29 51 971 1 145 52 131 259 27.71
n = 3 501 776 HSFC 0.04 82 905 1 749 82 938 416 64.17

MultiJagged 0.04 58 270 1 080 58 430 310 22.89
RCB 0.09 56 867 1 052 57 027 301 52.29

NACA0015 Geographer 0.10 27 841 549 27 997 152 24.26
n = 1 039 183 HSFC 0.01 56 902 1 367 56 897 370 51.45

MultiJagged 0.01 40 314 759 40 476 244 19.41
RCB 0.03 29 484 603 29 638 162 31.60

NLR Geographer 0.37 56 805 1 073 56 969 281 28.93
n = 4 163 763 HSFC 0.05 85 740 1 704 85 803 377 63.83

MultiJagged 0.06 61 034 1 102 61 193 306 23.68
RCB 0.11 60 703 1 170 60 863 306 47.99

alyaTestCaseA Geographer 0.96 894 845 18 341 841 593 113 214.97
n = 9 938 375 HSFC 0.12 988 168 21 325 1 001 416 132 356.05

MultiJagged 0.08 839 540 17 798 839 437 107 250.60
RCB 0.17 847 188 17 726 839 377 108 274.82

alyaTestCaseB Geographer 1.86 1 869 558 38 203 1 774 168 163 329.37
n = 30 959 144 HSFC 0.39 1 857 670 39 351 1 880 792 171 589.69

MultiJagged 0.25 1 772 580 37 435 1 785 528 156 511.83
RCB 0.57 1 784 790 37 447 1 785 598 167 574.01

delaunay017M Geographer 0.73 122 875 2 235 122 634 476 30.13
n = 17 000 000 HSFC 0.25 131 407 2 428 131 012 549 103.83

MultiJagged 0.18 125 088 2 302 124 823 489 38.32
RCB 0.39 124 789 2 263 124 545 499 106.32

fesom-f2glo04 Geographer 0.45 4 758 930 1 590 66 472 547 29.48
n = 5 945 730 HSFC 0.07 7 677 820 2 372 108 910 957 45.74

MultiJagged 0.08 5 866 330 2 263 85 789 740 31.85
RCB 0.14 5 596 840 1 755 79 220 631 42.22

fesom-fron Geographer 0.51 3 870 505 1 565 61 576 731 33.20
n = 5 007 727 HSFC 0.06 5 272 540 1 993 90 305 1 067 32.05

MultiJagged 0.06 4 214 460 1 485 70 794 788 26.91
RCB 0.09 4 365 920 1 846 74 330 706 34.41

fesom-jigsaw Geographer 1.09 8 444 620 4 225 166 006 6 306 42.33
n = 14 349 744 HSFC 0.18 8 224 760 4 269 177 071 2 159 121.37

MultiJagged 0.18 6 185 490 3 078 142 214 1 843 41.01
RCB 0.39 8 637 620 3 980 173 583 2 800 123.33

hugebubbles-20 Geographer 2.58 47 763 1 636 81 556 1 048 31.00
n = 21 198 119 HSFC 0.28 63 053 2 561 118 785 2 002 75.07

MultiJagged 0.28 60 958 2 430 105 714 1 453 31.91
RCB 0.61 57 482 2 003 98 404 1 299 78.98

hugetrace-20 Geographer 1.48 43 522 1 471 74 122 948 31.02
n = 16 002 413 HSFC 0.20 50 800 2 081 98 367 1 585 55.83

MultiJagged 0.19 50 493 1 872 86 699 1 117 27.60
RCB 0.39 50 851 1 911 84 526 1 084 39.04

hugetric-20 Geographer 0.82 29 298 972 49 899 615 28.78
n = 7 122 792 HSFC 0.16 39 373 1 658 72 388 1 210 57.25

MultiJagged 0.09 39 382 2 203 67 949 899 30.33
RCB 0.18 35 512 1 364 60 706 810 54.82

rdg-3d Geographer 0.32 1 481 602 12 683 761 610 45 251.51
n = 4 194 304 HSFC 0.04 1 596 600 13 391 821 701 50 328.72

MultiJagged 0.06 1 537 820 12 552 790 899 48 278.77
RCB 0.09 1 537 980 12 558 791 086 48 297.71

rgg-24 Geographer 0.18 185 371 1 791 94 132 273 27.63
n = 4 194 304 HSFC 0.05 207 415 2 029 104 841 311 28.88

MultiJagged 0.04 191 502 1 856 96 863 290 27.05
RCB 0.08 189 795 1 864 96 539 303 28.13
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Table 4.3: Comparison against Mt-KaHiP and ParHIP for smaller graphs and k = p = 64.
Best values marked in bold. As Mt-KaHiP only supports shared memory, it was
limited to 16 threads. Where values for ParHIP are missing, it crashed or did
not finish in the alloted 25 minutes. Times for SpMV communications are given
in microseconds.

graph name tool time(s) cut maxComm Σ comm diam timeSpMVComm

333SP Geographer 1.49 32 170 1 203 32 306 205 81.66
n = 3 712 815 HSFC 0.05 83 162 2 341 83 077 845 61.70

m = 11 108 633 MultiJagged 0.08 90 650 3 899 90 793 517 33.96
RCB 0.08 59 558 2 291 59 700 357 45.76

Mt-KaHiP 16.10 33 499 972 31 883 245 55.21

AS365 Geographer 0.47 51 666 1 114 51 832 274 29.65
n = 3 799 275 HSFC 0.05 87 274 1 863 87 355 487 64.69
m=11 368 076 MultiJagged 0.05 64 312 1 796 64 480 364 21.74

RCB 0.10 55 880 1 075 56 040 313 52.14
Mt-KaHiP 20.10 52 343 1 045 47 988 268 34.80

ParHIP 22.40 55 733 1 183 55 849 - -

M6 Geographer 0.29 51 971 1 145 52 131 259 27.71
n = 3 501 776 HSFC 0.04 82 905 1 749 82 938 416 64.17
m=10 501 936 MultiJagged 0.04 58 270 1 080 58 430 310 22.89

RCB 0.09 56 867 1 052 57 027 301 52.29
Mt-KaHiP 17.40 52 186 944 48 841 280 31.74

ParHIP 24.25 55 939 1 164 56 099 - -

NACA0015 Geographer 0.11 27 841 549 27 997 152 24.26
n = 1 039 183 HSFC 0.01 56 902 1 367 56 897 370 51.45

m = 3 114 818 MultiJagged 0.01 40 314 759 40 476 244 19.41
RCB 0.03 29 484 603 29 638 162 31.60

Mt-KaHiP 6.90 28 284 513 25 764 161 26.40

NLR Geographer 0.37 56 805 1 073 56 969 281 28.93
n = 4 163 763 HSFC 0.06 85 740 1 704 85 803 377 63.83
m=12 487 976 MultiJagged 0.06 61 034 1 102 61 193 306 23.68

RCB 0.11 60 703 1 170 60 863 306 47.99
Mt-KaHiP 9.50 58 107 1 024 53 019 304 40.02

ParHIP 25.06 61 241 1 267 61 402 - -

alyaTestCaseA Geographer 0.96 894 845 18 341 841 593 113 214.97
n = 9 938 375 HSFC 0.12 988 168 21 325 1 001 416 132 356.05

m = 39 338 978 MultiJagged 0.08 839 540 17 798 839 437 107 250.60
RCB 0.17 847 188 17 726 839 377 108 274.82

Mt-KaHiP 51.20 801 765 23 315 1 089 682 138 270.82

hugebubbles-20 Geographer 2.58 47 763 1 636 81 556 1 048 31.00
n = 21 198 119 HSFC 0.28 63 053 2 561 118 785 2 002 75.07
m =31 790 179 MultiJagged 0.28 60 958 2 430 105 714 1 453 31.91

RCB 0.61 57 482 2 003 98 404 1 299 78.98
Mt-KaHiP 19.90 40 602 1 476 67 574 1 166 34.19

ParHIP 30.40 44 686 1 917 89 082 - -

hugetrace-20 Geographer 1.48 43 522 1 471 74 122 948 31.02
n = 16 002 413 HSFC 0.20 50 800 2 081 98 367 1 585 55.83

m = 23 998 813 MultiJagged 0.19 50 493 1 872 86 699 1 117 27.60
RCB 0.39 50 851 1 911 84 526 1 084 39.04

Mt-KaHiP 24.90 35 314 1 306 59 702 1 012 37.24
ParHIP 31.00 39 303 1 576 78 373 - -

hugetric-20 Geographer 0.82 29 298 972 49 899 615 28.78
n = 7 122 792 HSFC 0.16 39 373 1 658 72 388 1 210 57.25
m=8 733 523 MultiJagged 0.09 39 382 2 203 67 949 899 30.33

RCB 0.18 35 512 1 364 60 706 810 54.82
Mt-KaHiP 14.40 23 889 843 40 496 856 33.14

ParHIP 23.80 26 531 1 122 52 789 - -
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While graphs have been used to abstract away from geometry as early as Euler’s problems

in Königsberg, several graph problems can profit from considering the underlying geometry.

In Chapter 3, we presented several algorithms for the fast sampling of random hyper-

bolic graphs, a generative model for complex networks. Among these are the first sub-

quadratic generation algorithms for both the threshold and general case, with a complexity

of O((n3/2 +m) log n) to generate a graph with n vertices and m edges. In later work, we

reduced this to a near-linear time complexity, with O(n log2 n + m) for threshold graphs

and general graphs with fixed temperature. The implementations reach a speedup of sev-

eral orders of magnitude over the naive sampling algorithm, the main component of these

improvements is the development of suitable geometric data structures. For the general

case of non-threshold graphs, our implementation is still the fastest in practice. Our sam-

pling algorithms also enable efficient dynamic graph updates and sampling in geometric

datasets in Euclidean space.

In Chapter 4, we considered graph partitioning problems with additional constraints and

geometric information. An application in quantum chemistry approximates electron den-

sities on protein graphs by dividing the protein graphs into subsystems. For this division,

we provide a dynamic programming algorithm and prove its optimality for a restricted

problem scenario. Together with versions of the multi-level heuristics extended to incor-

porate additional constraints, we reduce the average approximation error by 13.5%. Our

second application scenario are geometric meshes derived from numerical simulations. We

adapt Lloyd’s algorithm of the popular k-means problem to balanced block size; we also

add geometric optimizations and seeding with space-filling curves, yielding fast conver-

gence. A circular problem common in parallel graph partitioning is that to ensure a fast

running time of the partitioner, first a good partition is needed. We address this by first

sorting input points along a space-filling curve, a fast and rough partition to ensure some

degree of spatial locality before our main partitioning phase. Our implementation scales

to tens of thousands of processes and billions of vertices in distributed memory, partition-

ing them in seconds. The resulting partitioning solutions show a smaller communication
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volume than those of current geometric partitioners. While this result is useful for the

targeted application, it does not generalize to higher dimensions as well as we had hoped.

Graph partitioning has been active for decades, abstracting away communication patterns

to graphs. Still, many applications have additional constraints or information and even on

those problems which have been studied previously – partitioning geometric point sets –

results can still be improved.

5.1 Future Work

Many directions for future work follow immediately from the contributions presented in

this thesis.

Distributed Generation of Random Hyperbolic Graphs

With the expected linear generation algorithm of Bringmann et al., the theoretically op-

timal complexity has been reached, thus further developments will focus on empirical

improvements. A combination of BandGen, the general model of random hyperbolic graphs

and the request-centric approach by Funke et al. [58] would allow the efficient generation

of random hyperbolic graphs in distributed memory, and for larger graph sizes.

Theoretical and Further Empirical Analysis of Balanced k-Means

While the balanced k-means converges in acceptable time in practice, this is not guaran-

teed – in fact, ensuring a balanced partition of weighted point sets is at least as difficult as

the subset sum problem, which is known to be NP-hard. A smoothed analysis of expected

convergence time could close this gap and give additional insight on the algorithm’s be-

havior. Other aspects to explore are partitionings and clusterings of other datasets. How

does our algorithm work on street networks, for example, or higher-dimensional clustering

problems? Employing hybrid parallelization with both OpenMP and MPI will likely

further improve the running time.

Evaluation of Graph Partitioning Results

The experimental results concerning the graph-theoretic communication volume show that

it is not a good predictor for the communication time in distributed sparse-matrix-vector

multiplications. This is a common problem in the evaluation of graph partitioning algo-

rithms, where graph-theoretic performance metrics are easily measured, but reduction in

application running time is targeted. A set of simple yet robust performance models for

the most important distributed application building blocks would make a step towards

closing the gap.

Beyond Input Coordinates

Our graph partitioner uses coordinates to partition graphs, using geometry information

to make decisions about topology. Earlier, we mentioned graph drawing and embedding,

approaches to find geometric coordinates fitting a given topology. Can these usefully
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be combined? One could find coordinates for a graph lacking them and then use them to

partition it. In reverse, one could partition a graph to draw it better, reducing dependencies

between coordinates. Which of these directions are fruitful is a purely empirical question.

In the case of creating artificial coordinates to then use geometric partitioning methods,

no new information is gained by this detour through geometry, but it might work out

in practice if the algorithms for the subproblems fit well together. A combination with

centrality measures to only embed important nodes seems like a promising direction.
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[47] Sergei N Dorogovtsev and José FF Mendes. Evolution of networks: From biological

nets to the Internet and WWW. Oxford University Press, 2003.

[48] Jonathan Drake and Greg Hamerly. Accelerated k-means with adaptive distance

bounds. In 5th NIPS workshop on optimization for machine learning, pages 42–53,

2012.

[49] Olive Jean Dunn. Multiple comparisons among means. Journal of the American

Statistical Association, 56(293):52–64, 1961.

[50] Omar El-Daghar, Erik Lundberg, and Robert Bridges. Egbter: Capturing degree

distribution, clustering coefficients, and community structure in a single random

graph model. In International Conference on Advances in Social Networks Analysis

and Mining (ASONAM), pages 282–289. IEEE, 2018.

[51] Charles Elkan. Using the triangle inequality to accelerate k-means. In Proceedings

of the 20th International Conference on Machine Learning (ICML), pages 147–153,

2003.
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