KIT | KIT-Bibliothek | Impressum | Datenschutz

Inverse problems for abstract evolution equations II: higher order differentiability for viscoelasticity

Kirsch, Andreas; Rieder, Andreas ORCID iD icon

Abstract:

Abstract. In this follow-up of [Inverse Problems 32 (2016) 085001] we generalize our previous abstract results so that they can be applied to the viscoelastic wave equation which serves as a forward model for full waveform inversion (FWI) in seismic imaging including dispersion and attenuation. FWI is the nonlinear inverse problem of identifying parameter functions of the viscoelastic wave equation from measurements of the reflected wave field. Here we rigorously derive rather explicit analytic expressions for the Fréchet derivative and its adjoint (adjoint state method) of the underlying parameter-to-solution map. These quantities enter crucially Newton-like gradient decent solvers for FWI. Moreover, we provide the second Fréchet derivative and a related adjoint as ingredients to second degree solvers.


Volltext §
DOI: 10.5445/IR/1000095973
Veröffentlicht am 25.06.2019
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2019
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000095973
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 20 S.
Serie CRC 1173 ; 2019/10
Projektinformation SFB 1173/1 (DFG, DFG KOORD, SFB 1173/1 2015)
Schlagwörter full waveform seismic inversion, viscoelastic wave equation, adjoint state method, nonlinear inverse and ill-posed problem, higher order Fréchet derivative
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page