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Abstract: Complex photonic-integrated circuits (PIC) may have strongly non-planar topologies
that require waveguide crossings (WGX) when realized in single-layer integration platforms. The
number of WGX increases rapidly with the complexity of the circuit, in particular when it comes
to highly interconnected optical switch topologies. Here, we present a concept for WGX-free PIC
that relies on 3D-printed freeform waveguide overpasses (WOP). We experimentally demonstrate
the viability of our approach using the example of a 4 × 4 switch-and-select (SAS) circuit
realized on the silicon photonic platform. We further present a comprehensive graph-theoretical
analysis of different n × n SAS circuit topologies. We find that for increasing port counts n of
the SAS circuit, the number of WGX increases with n4, whereas the number of WOP increases
only in proportion to n2.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Photonic integrated circuits (PIC) are becoming increasingly complex, incorporating thousands of
photonic devices on a single chip [1,2]. The silicon photonic (SiP) platform, in particular, stands
out to high integration density and offers high-yield fabrication on large-area substrates using
mature CMOS processes [3,4]. However, as the complexity of PIC increases, non-planar circuit
topologies with hundreds or even thousands of waveguide crossings (WGX) are unavoidable,
and the number of WGX often increases in a strongly nonlinear way with the complexity of the
circuit. As a consequence, compact WGX have evolved into key building blocks, and substantial
research effort has been dedicated to optimizing their performance. This has led to remarkably low
insertion loss (IL) of 0.017 dB and crosstalk as small as –55 dB at λ = 1550 nm, demonstrated for
partially etched multi-mode interference (MMI) structures that feature a relatively large footprint
of approximately 30 × 30 µm2 [2]. Fully etched MMI structures allow to reduce the footprint to,
e.g., 9 × 9 µm2, but losses and crosstalk increase to, e.g., 0.028 dB and –37 dB, respectively [5].
Arrays of WGX can be compactly realized by exploiting Bloch modes in multi-mode waveguides:
For SiP structures fabricated by electron-beam lithography, values of IL = 0.019 dB and crosstalk
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of less than –40 dB per WGX were demonstrated for a 101 × 101 WGX array with a 3 µm
waveguide pitch [6]. For optical lithography, the best reported values for Bloch mode WGX
are IL = 0.04 dB and crosstalk less than –35 dB for a 1 × 10 array of crossings with a 3.25 µm
waveguide pitch [7].

However, while these demonstrations are impressive, even IL of the order of a few hundredths
of dB and crosstalk of the order of –40 dB per WGX may have a substantial impact on the
performance of large-scale PIC that may comprise tens of thousands of crossings. A prime
example in this context are high-radix switches that rely on the so-called switch-and-select (SAS)
architecture [8]. The SAS scheme offers low crosstalk and simple control but requires a complex
and highly non-planar interconnect network that provides a dedicated waveguide from each input
to each output port. In fact, finding a layout that gives the minimum number ηn,n of WGX in an
n × n SAS circuit, and generally in any circuit, is an NP-complete problem [9], and ηn,n scales
with n4/16 according to a still unproven conjecture [10,11]. This leads to tens of thousands of
WGX for n = 32 and to approximately one million WGX for n = 64. To illustrate the associated
performance penalty by WGX crosstalk, let us consider an example of a waveguide that crosses
an array of 100 other waveguides with a crosstalk of –40 dB in each of the crossings. Assuming
incoherent superposition of the various crosstalk contributions and interpreting them as random
noise that deteriorates the signal, the signal-to-noise power ratio (SNR) would amount to 20 dB.
For a 32QAM signals, this would lead to a bit-error ratio (BER) of 6 × 10−4 [12], which is only
slightly below the 4.5 × 10−3 limit for hard-decision forward-error correction (HD-FEC) with
7% overhead [13]. This represents a significant deterioration of the signal quality. For 64QAM,
which is envisaged for high-speed transmission systems with data rates beyond 500 Gbit/s per
wavelength, an SNR of 20 dB would even be insufficient to reach the HD-FEC limit. Such
crosstalk levels hence represent a significant deterioration of the signal quality. The situation
may become even worse in case the crosstalk signals are superimposed coherently. Moreover, a
few hundredths dB of IL per WGX would result in several dB of overall IL that is accumulated
over the 100 crossings. This example illustrates that large-scale PIC with highly non-planar
topologies may face performance limitations when realized by WGX in single-layer integration
platforms.

To overcome the limitations of conventional WGX, multi-layer PIC have been proposed
exploiting multiple stacked waveguide layers, realized from silicon [14,15], silicon nitride
(Si3N4) [16,17] or as a combination of both waveguide technologies [18–23]. The deposition of
the upper layers is typically done by chemical vapor deposition (CVD) and involves chemical-
mechanical planarization (CMP) of intermediate SiO2 cladding layers that separate the waveguide
layers. While simple two-layer implementations offer decent performance [20,22], three-layer
structures have been shown to greatly reduce inter-layer crosstalk while maintaining efficient
interlayer coupling [15,21,23]. This allows to reduce the crosstalk to less than –56 dB with
remarkably low interlayer coupling losses of less than 0.15 dB from the bottom to the top layer
using a pair of vertical directional couplers of approximately 190 µm length per side [21,23].
However, while this approach offers utmost scalability and the ability to cross entire groups of
waveguides, the integration of silicon or silicon nitride waveguides into back-end metal layer
stacks introduces additional technological complexity and is not yet established as part of the
technology portfolios offered by silicon photonic foundries. In addition, all multi-layer PIC
demonstrations so far are limited to silicon photonics.

In this paper we demonstrate hybrid 2D/3D photonic integration based on direct-write laser
lithography as an alternative approach for realizing non-planar circuit topologies. Our approach
is based on 3D-printed freeform polymer structures [24], which we refer to as optical waveguide
overpasses (WOP). WOP are realized in situ by two-photon polymerization [25], which has
previously been used for fabrication of so-called photonic wire bonds that enable low-loss
single-mode connections across chip boundaries [26–29]. The devices offer low crosstalk of less

Vol. 27, No. 12 | 10 Jun 2019 | OPTICS EXPRESS 17403 



than –75 dB and allow to bridge series of parallel waveguides, thereby replacing a multitude of
WGX. We demonstrate the viability of our approach by realizing a 4 × 4 SAS circuit. Based on
a graph-theoretical analysis, we estimate that the number of WOP needed to realize a WGX-free
n × n SAS PIC scales in proportion to n2/2. A 64 × 64 SAS circuit would hence require
only approximately 2000 WOP as opposed to the estimated one million conventional WGX.
Fabrication of WOP may be efficiently combined with 3D-printing for die-level packaging
[26–29], and offers the opportunity to locally incorporate multi-layer elements into standard SiP
circuits, fabricated through readily available foundry services. The concept of 3D-printed WOP
is not limited only to silicon photonics but may be transferred to a wide range of alternative
photonic integration platforms.

The paper is structured as follows: In Section 2 we introduce the concept of 3D-printed
WOP. A graph-theoretical analysis of the number of necessary WOP and WGX for realizing
surface-coupled n × n SAS devices is provided in Section 3. Design and experimental testing of
the demonstrator device are explained in Section 4. Appendix A provides definitions of graph
theory terms. Appendix B gives further details of the graph-theoretical approach used for the
analysis in Section 3. Appendix C gives a detailed graph-theoretical analysis of the number of
necessary WOP and WGX for realizing facet-coupled SAS devices.

2. Concept of waveguide overpasses (WOP)

The concept of a 3D-printed freeform optical WOP is illustrated in Fig. 1 for the example of
a SiP circuit. The PIC may be fabricated through standard processes offered by a commercial
SiP foundry, including selective removal of SiO2 cladding layer to access the tapers of the SiP
waveguides that need to be interconnected [30]. For fabrication of the WOP, a negative-tone
photoresist is locally deposited onto the chip, and the WOP is then 3D-printed into the resist by

Fig. 1. Concept and implementation of waveguide overpasses (WOP) on the silicon
photonic (SiP) platform. (a) The WOP is written into a liquid negative-tone photoresist
that is deposited onto the PIC. For better coupling to the SiP on-chip waveguides, the SiO2
cladding is locally removed down to the buried oxide (BOX) layer. Inset (1): The spatial
resolution of the two-photon lithography is determined by the size of the volumetric pixel
(voxel) that results from two-photon polymerization. Inset (2): Tapers in the WOP and in the
SiP waveguide improve the coupling efficiency. (b) Scanning electron microscope (SEM)
image of the WOP (colors were added by image processing). (c)-(e) Close-ups of different
parts of the WOP. Position markers indicate the positions of the SiP waveguide ends that
need to be interconnected. During fabrication of our chip, the SiO2 cladding layer has been
unintentionally over-etched, and part of the BOX has been unintentionally removed, see
Subfigure (e).
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direct laser writing based on two-photon polymerization. After exposure, the resist is removed,
and the free-standing WOP structures are clad by a low-index polymer that acts as cladding and
humidity protection (not shown in Fig. 1). Depending on the length, WOP may bridge tens
or even hundreds of planar waveguides in the SiP device layer. Figure 1(b) displays scanning
electron microscope (SEM) images of the two WOP on our demonstrator device before the
cladding was applied, with colors added by image processing for better visualization. Figures
1(c)–1(e) show close-ups of different parts of the lower WOP and demonstrate the accuracy
of the direct laser writing method. The two-photon lithography system uses CMOS patterned
silicon markers for automated detection of the SiP waveguides that need to be interconnected.
The 3D-printing time of one WOP is about 30 s with a significant potential for further reduction.
The refractive index of the WOP core material amounts to nWOP ≈ 1.53, and the cladding has
a refractive index of ncladding ≈ 1.36 at 1550 nm. Note that the concept has been illustrated for
the SiP platform here but can generally be applied to a wide range of PIC technologies. As an
example, 3D-printed photonic wire bonds can be efficiently coupled to surface-coupled [28] and
edge-coupled InP-waveguides [29].

3. Theoretical analysis of non-planar switch-and-select (SAS) circuit topologies

To experimentally demonstrate the viability of our approach, we use an m × n SAS circuit as
an example of a PIC requiring many WGX. In the m × n SAS architecture, each of the m input
ports feeds a 1 × n switch distributing the light to one of the n output ports, and each of the n
output ports is fed by an m × 1 switch, which selects light from one of the m input ports. An
illustration of a basic non-optimized implementation of a 4 × 4 SAS architecture is shown in
Fig. 2(a), featuring a total number of 36 WGX in the depicted case, which would scale up to a
total number of

η(basic)
n,n =

(
n(n − 1)

2

)2

(1)

for the case of an n × n SAS circuit. In the following, we show that these circuits can be realized
with a significantly smaller number of WOP than the number of WGX, even if the layout of
the circuit is optimized to reduce the number of WGX. To this end, we exploit graph theory to
investigate the scaling of WGX and WOP number for increasing port counts n. For the remainder
of this section, we consider the case where input and output ports are accessible from the top
surface of the PIC and can hence be positioned anywhere on the chip. This case is referred to as
surface coupling. Surface-coupled PIC may, e.g., rely on grating couplers, SiP waveguides that
are bent upwards by ion implantation [31], or on 3D-printed lensed couplers [32]. We only give
a summary of the results here; mathematical details can be found in Appendix B. In Appendix C,
we also discuss the case of facet coupling, for which light is coupled to and from the PIC via
waveguide facets along the chip boundary.

As a first step of the layout optimization, we exploit the fact that surface coupling allows to
route waveguides around the couplers. This is illustrated in Fig. 2(b) for the example of a 4 × 4
SAS. In this implementation, we consider the 1 × n and m × 1 switches at the input and output
ports as discrete entities that cannot be subdivided and that may hence be considered as lumped
elements (LE). This leads to representation of the SAS circuit by a complete bipartite graph
Km,n having two sets M and N of m and n vertices, respectively. Each vertex of set M represents
an input port of the SAS and its corresponding 1 × n switch, and each vertex of set N represents
an output port and the associated m × 1 switch. Each vertex of one set is connected to each
vertex of the other set by a total of mn edges that represent optical waveguides. In the following,
we restrict our consideration to the particularly relevant cases of Kn,n, for which the number m
of input ports equals the number n of output ports. A generalization to the case of Km,n can be
found in Appendix B.
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Fig. 2. Comparison of layouts of a 4 × 4 optical switch-and-select (SAS) circuit for surface
coupling. (a) Basic layout for single-layer waveguide technology without any optimization
for reduced numbers of waveguide crossings (WGX). (b) Optimal layout for single-layer
waveguide technology, minimizing the number of WGX by routing of waveguides around
the coupling elements. The formula for η(surf)

n,n is a conjecture for the minimum possible
number of WGX for an n × n SAS, if the 1 × n and n × 1 switches at the input and output
ports are lumped elements (LE) [10,11]. For large port counts n, the number of WGX is
conjectured to scale with n4/16. (c) Best found, but not necessarily optimal layout for a
single-layer 4 × 4 SAS circuit, in which the 1 × 4 and 4 × 1 switches have been realized as
binary trees (BT) of 1 × 2 and 2 × 1 switches. A general analysis of this circuit topology
for arbitrary n is subject to ongoing investigations. (d) Best found, but not necessarily
optimal WGX-free layout for hybrid 2D/3D circuits, minimizing the number of WOP. The
switches are realized as BT in the same way as in (c). The formula for µ(surf, BT)

n,n is an upper
bound for the minimum number of WOP. The optical paths that were used for the crosstalk
measurement in Section 4 are marked in green (Path 1) and in blue (Path 2). The arrows
indicate the direction of light propagation for the crosstalk measurement. The drive current
of MZI1 is modulated by a sinusoidal signal for highly sensitive lock-in detection of the
weak crosstalk signals.

                                                                                      Vol. 27, No. 12 | 10 Jun 2019 | OPTICS EXPRESS 17406 



For conventional SAS implementations in single-layer waveguide technology, a layout with
the smallest possible number of WGX can be achieved by optimizing the drawing of the
corresponding graph model for finding the minimum number of edge crossings (or just crossings),
which is an NP-complete problem [9]. Up to now [10], there is only a conjectured formula for
the minimum possible number of crossings (crossing number), based on a straightforward graph
drawing algorithm, only proven to give an upper bound [11],

η(surf)
n,n =

⌊n
2

⌋2
⌊
n − 1

2

⌋2

. (2)

In this relation, bxc denotes the floor function. For large n, the conjectured crossing number
scales with n4/16, thereby reducing the number of WGX by a factor of 4 compared to the
simplistic non-optimized waveguide routing shown in Fig. 2(a). Note that the best published
result for the lower bound of the crossing number in complete bipartite graphs Kn,n states that
for large n the crossing number scales at least with 0.83·n4/16 ≈ n4/19.28 [33]. However, this
is a theoretical result for the case of large n, which has not been supported by drawings of the
corresponding graphs. In fact, for complete bipartite graphs, no drawings are known that lead
to lower number of crossings than conjectured by Eq. (2). We therefore use the conjectured
formula and its corresponding drawing as a basis for our analysis of the scaling of WGX for
increasing port counts n. For an n × n SAS circuit with n = 16, this would lead to a total number
of 3136 WGX.

Regarding hybrid 2D/3D SAS circuit implementations based on WOP, we again start from the
complete bipartite graph Kn,n and determine the number of WOP by subtracting the maximum
number of edges that can be realized without crossings (the number of edges in the spanning
maximum planar subgraph) from the total number of edges. The total number of edges in Kn,n is
n2, and 4n – 4 edges can be realized without crossings [34]. The number of missing edges hence
amounts to

µ(surf)
n,n = n2 − (4n − 4) = (n − 2)2 (3)

and equals the number of WOP necessary to complete the SAS circuit, assuming that each WOP
can cross an arbitrary number of planar waveguides, and that crossings of 3D WOP can be
avoided, see Appendix B for more details. Note that the length of a WOP is only limited by the
write field size of the two-photon lithography system, which currently amounts to approximately
500 µm × 500 µm. In the future, these limitations may be overcome by high-precision stitching
of structures that extend across several write fields. Using Eq. (3), we calculate a total number of
196 WOP for an SAS circuit with n = 16, which is considerably smaller than the corresponding
number of WGX. A comparison of the scaling of WGX and WOP numbers for increasing port
count n is given in the second and third column of Table 1.

As a further step of the circuit layout optimization, we may split up the 1 × n and the n × 1
switches at the input and the output into binary trees (BT) of 1 × 2 and 2 × 1 switches, see Fig.
2(d). This allows to reduce the number of WOP to

µ(surf, BT)
n,n =

⌈
(n − 2)2

2

⌉
, (4)

see Appendix B for an explanation. In the last relation, dxe denotes the ceiling function. The
associated WOP numbers for increasing port counts n are indicated in the fourth column of Table
1. Note that the same technique with BT switches may also be applied to the single-layer SAS
circuit architecture as illustrated in Fig. 2(c). For n = 4, we could not find a layout that reduces
the number of WGX as compared to the implementation with LE switches. Note that the SAS
circuit with BT switches is not any more a complete bipartite graph Kn,n – an analysis of such
circuit topologies has recently been published in [35]. Note further that for increasing port counts
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Table 1. Quantitative Comparison of Surface-Coupled n × n Switch-and-Select (SAS) Circuit
Implementations Based on WGX in Single-Layer Circuits and on WOP in Hybrid 2D/3D Photonic

Integrationa

Total number Maximum number along any optical path

SAS (n × n) WGX (LE) WOP (LE) WOP (BT) WGX (LE) WOP (LE & BT)

4 × 4 4 4 2 1 1

8 × 8 144 36 18 9 1

16 × 16 3136 196 98 49 1

32 × 32 57 600 900 450 225 1

64 × 64 984 064 3 844 1 922 961 1

aThe total number of WGX increases approximately in proportion to n4/16, whereas the number of WOP scales with
n2 for the case of lumped-element (LE) switches, and with n2/2 in case the switches are decomposed into binary trees
(BT) of 1 × 2 and 2 × 1 switches. The maximum number of WGX along any optical path increases approximately in
proportion to n2/4 for the case of LE switches, whereas the maximum number of WOP along any optical path amounts
to 1 in both cases of LE and BT switches.

n of the SAS circuit with LE switches, the number of WGX increases with n4/16, whereas the
number of WOP of the SAS circuit with BT switches increases only in proportion to n2/2. As
a consequence, the number of WOP in a 16 × 16 SAS circuit with BT switches is nearly two
orders of magnitude smaller than the number of WGX with LE switches, and for a 64 × 64 SAS,
the numbers differ by nearly four orders of magnitude, see Table 1.

Besides the total number of WGX or WOP in the circuit, the maximum number of such
elements along any optical path through the circuit is an important figure of merit. For the
single-layer implementation of the SAS circuit with LE switches, the biggest number of WGX
along an optical path amounts to

ξ (surf)
n,n =

(⌈n
2

⌉
− 1

)2
, (5)

which scales with n2/4 for large n, see Appendix B for details. The corresponding numbers for
increasing port counts n are given in the fifth column of Table 1. For an SAS circuit with n = 16,
this leads to up to 49 WGX along a single optical path. In contrast to that, the number of WOP
can be kept to at most one along each path, see last column of Table 1.

Note that these discussions are independent of 3D-printed structures as a specific way to realize
waveguide overpasses and that the findings can be broadly applied to other kinds of overpasses,
e.g., in multilayer circuits [15,21,23]. 3D-printed WOP are particularly attractive for use cases in
which the number of devices and/or the number of WOP per device are limited, while ultra-low
cross-talk and/or the inherent flexibility of 3D printing are important. In contrast to that, the
technique might suffer from limited throughput when applied to very complex circuits with
thousands of WOP required on a single chip. In this case, monolithically integrated multi-layer
circuits [15,21,23], might offer better scalability.

4. Device design, fabrication and experimental characterization

To demonstrate the viability of the WOP concept, we realized a 4 × 4 SAS device, similar to the
one illustrated in Fig. 2(d), featuring two WOP. The device was realized on a silicon-on-insulator
(SOI) wafer having a 220 nm-thick device and a 2 µm-thick buried oxide layer. All waveguides
are realized as oxide-covered strip waveguides with standard width of 500 nm. The SAS circuit
consists of four 1 × 4 switches at the input and four 4 × 1 switches at the output. Each of the
1 × 4 switches is realized as a BT of three 1 × 2 switches, and the same technique is applied to the
4 × 1 switches. In general, for realizing a 1 × n switch as a BT, we need (n – 1) 1 × 2 switches,
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each of which consists of a Mach-Zehnder interferometer (MZI) comprising two multi-mode
interference (MMI) couplers and a pair of thermal phase shifters in the MZI arms. In total, there
are 2n(n− 1) = 24 MZI and 24·2 = 48 phase shifters, leading to 48 signal pads and a common
ground for the electrical control signals. Note that activating one of the two phase shifters of
each MZI is sufficient for switching – the second phase shifter has only been implemented for
better balancing of the MZI arms. We use surface coupling by grating couplers (GC). One of the
WOP bridges three, and the other bridges four SiP waveguides spaced by 3.5 µm, see Figs. 2(d)
and 3(c). The footprint of a single WOP amounts to approximately 15 × 160 µm2, including two
50 µm-long tapers for coupling the WOP to the SiP waveguides. This is more than an order of
magnitude smaller than previously demonstrated overpasses realized by direct laser inscription
of low-index contrast 3D-waveguides into glass matrices [36].

For switching, each of the possible input-output connections can be established by activating
four phase shifters: Two phase shifters at the BT at the input are used to switch to the targeted
output, and another two phase shifters are needed at the BT at the output to select the input. For
an n × n SAS circuit with n = 4, accessing the full set of n! = 24 switch states would require
to operate one phase shifter in each of the 24 MZI. To establish a specific switch state, i.e., a
specific set of connections between input and output ports, it is sufficient to simultaneously
operate a maximum of 2ndlog2ne = 16 phase shifters, while the remaining phase shifters along
unused optical paths are idle. In the experiment, we use a multi-channel current source that
we can flexibly connect to the 16 relevant pads out of the overall set of 48 phase shifters. The
electrical connection to the chip is established through two multi-contact probe wedges (MCW),
see Figs. 3(a) and 3(b), each one with 15 DC probes. For each of these wedges, twelve probes
connect to the phase shifters, two probes are used for the common ground connection pads on
the chip, and one probe is left idle. From the n2 = 16 optical paths connecting the various inputs
and outputs of the switch, four paths contain one of the two WOP, see Fig. 2(d).

To characterize the performance of our SAS PIC, we measured the transmission spectra
of all 16 optical paths, see Fig. 3(d). To eliminate the fiber-chip coupling losses, we use a
reference structure composed of two GC that are connected by a short on-chip waveguide. The
GC are not optimized and show maximum transmission at a wavelength of 1560 nm with a
fiber-chip coupling loss of approximately 6.3 dB per coupling interface. For each path, we
measure the transmission as a function of wavelength, and we correct the data to eliminate
the fiber-chip coupling losses. In Fig. 3(d), the transmission spectra of the 12 optical paths
without WOP is displayed in pale blue, and the bright blue trace corresponds to the average
insertion loss of the 12 paths. At 1550 nm, the average on-chip loss of the paths without WOP
amounts to approximately 7 dB and originates from 8 MMI splitters, 4 phase shifters and up to
6.2 mm of on-chip SiP waveguide for each optical path. Using optimized devices on the SiP
platform, namely MZI with insertion loss of 0.33 dB [8], waveguides with propagation losses
of 0.2 dB/mm, and waveguide lengths of up to only 3 mm, the losses can be reduced to below
2 dB. We also measure the remaining two sets of two paths, each set containing the same WOP –
the results are depicted in pale red, and the average for each set is given by a bright red solid
line. The insertion losses of the two WOP, indicated as black curves in Fig. 3(d), are extracted
from the difference of the bright blue and the two bright red curves by additionally taking into
account the different lengths of the on-chip SiP waveguides along the various optical paths. At a
wavelength of 1550 nm, we measured insertion losses of 1.6 dB and 1.9 dB for the two WOP.
These comparatively high losses are mainly caused by a non-optimum design of the on-chip
coupling structures for the WOP and may be reduced to well below 1 dB by optimizing the design
of the PIC and of the freeform WOP. This expectation is supported by [28], in which 3D-printed
waveguides with a minimum curvature radius of r = 40 µm and with losses of (0.4± 0.3) dB have
been demonstrated. These numbers are comparable to the loss of 0.3 dB that have been reported
for a three-layer evanescently coupled photonic circuit overpass [21,23]. Note that surface
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roughness of the 3D-printed WOP, visible in Figs. 1(c) and 1(e), has only minor impact on the
insertion loss. This is mainly due to the relatively small refractive index contrast of the overclad
WOP (ncore = 1.53, ncladding = 1.36), which reduces the roughness-induced scattering compared
to high-index-contrast silicon-photonic waveguides. Moreover, the roughness is mainly induced
by horizontal slicing of the 3D structure during the writing process, which makes the horizontal
WOP sections essentially invariant along the propagation direction.
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Fig. 3. Experimental demonstration of the 4 × 4 SAS with WOP. The layout of the SAS circuit 

is similar to the one depicted in Fig. 2(d). (a) Experimental setup. A multi-channel current 

source (CS) is used to drive different subsets of 16 out of the overall 24 optical 1 × 2 and 2 × 1 
MZI switches via two multi-contact probe wedges (MCW). This allows testing of all 16 

possible optical paths that connect the various input and output ports of the 4 × 4 SAS PIC. A 

tunable laser source (TLS) and a polarization controller (PC) are used to generate continuous-
wave (CW) test signals that are launched to the various ports of the SAS PIC via a single-mode 

fiber (SMF) and grating couplers (GC). Each of the four optical outputs can be probed by 

another SMF, and the output signal is analyzed with an optical power meter (OPM) and an 
optical spectrum analyzer (OSA) that allows to perform a wavelength sweep that is 

synchronized with the TLS. (b) Microscope image of the SAS PIC with electrical and optical 

connections. (c) Microscope image of two waveguide overpasses (WOP), which bridge three 
and four SiP strip waveguides, respectively. A low-index cladding material is locally deposited 

with high precision to cover the printed WOP without blocking the nearby grating couplers. 

(d) Transmission spectra of various optical paths through the switch.  Pale blue:  Transmission 
spectra of 12 optical paths through the SAS PIC that do not contain any WOP (w/o WOP).  

Bright blue:  Average transmission of the 12 paths w/o WOP.  Pale red:  Transmission 

spectra of two sets of two optical paths each, each set containing the same WOP (w/ WOP1; 
w/ WOP2).  Bright red:  Average transmission of each of the two sets w/ WOP.  Black:  

Transmission spectra of WOP1 and WOP2. 

For switching, each of the possible input-output connections can be established by 

activating four phase shifters: Two phase shifters at the BT at the input are used to switch to 

the targeted output, and another two phase shifters are needed at the BT at the output to select 

the input. For an n × n SAS circuit with n = 4, accessing the full set of n! = 24 switch states 

would require to operate one phase shifter in each of the 24 MZI. To establish a specific 

switch state, i.e., a specific set of connections between input and output ports, it is sufficient 

to simultaneously operate a maximum of 
2

2 log 16n n =    phase shifters, while the remaining 

phase shifters along unused optical paths are idle. In the experiment, we use a multi-channel 

current source that we can flexibly connect to the 16 relevant pads out of the overall set of 48 

phase shifters. The electrical connection to the chip is established through two multi-contact 

Fig. 3. Experimental demonstration of the 4 × 4 SAS with WOP. The layout of the SAS
circuit is similar to the one depicted in Fig. 2(d). (a) Experimental setup. A multi-channel
current source (CS) is used to drive different subsets of 16 out of the overall 24 optical 1 × 2
and 2 × 1 MZI switches via two multi-contact probe wedges (MCW). This allows testing of
all 16 possible optical paths that connect the various input and output ports of the 4 × 4 SAS
PIC. A tunable laser source (TLS) and a polarization controller (PC) are used to generate
continuous-wave (CW) test signals that are launched to the various ports of the SAS PIC via
a single-mode fiber (SMF) and grating couplers (GC). Each of the four optical outputs can
be probed by another SMF, and the output signal is analyzed with an optical power meter
(OPM) and an optical spectrum analyzer (OSA) that allows to perform a wavelength sweep
that is synchronized with the TLS. (b) Microscope image of the SAS PIC with electrical
and optical connections. (c) Microscope image of two waveguide overpasses (WOP), which
bridge three and four SiP strip waveguides, respectively. A low-index cladding material is
locally deposited with high precision to cover the printed WOP without blocking the nearby
grating couplers. (d) Transmission spectra of various optical paths through the switch. Pale
blue: Transmission spectra of 12 optical paths through the SAS PIC that do not contain
any WOP (w/o WOP). Bright blue: Average transmission of the 12 paths w/o WOP. Pale
red: Transmission spectra of two sets of two optical paths each, each set containing the
same WOP (w/ WOP1; w/ WOP2). Bright red: Average transmission of each of the two
sets w/ WOP. Black: Transmission spectra of WOP1 and WOP2.

The high losses in the current structures arise from the fact that the WOP bridges only four or
less SiP waveguides, leading to a small width w = 17 µm of the oxide-overcladding rib underneath
the WOP, see Fig. 1(b). Moreover, the distance d = 20 µm between the tips of the tapered on-chip
SiP waveguides and the edge of the oxide opening was chosen rather small. In combination,
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these effects resulted in a trajectory with a relatively strong curvature with local bending radii
r down to 20 µm along the WOP trajectory to maintain a distance of at least 2 µm between
the WOP and the 2.3 µm-high oxide-overcladding rib. This problem can be avoided by either
bridging more SiP waveguides or by choosing a slightly larger distance d in case only a few
waveguides are to be bridged. Specifically, for seven or more SiP waveguides with spacings of
3.5 µm, the width of the overcladding-oxide rib increases to w ≥ 25 µm, which allows to maintain
a radius of curvature of more than 40 µm along the WOP trajectory even for d = 20 µm. Taking
into account the tapered transition between the SiP on-chip waveguide (lt = 50 µm) and the WOP,
the overall space occupied to each side of the overcladding-oxide rib amounts to d + lt = 70 µm.
This compares favorably to the 190 µm-long transitions between the bottom and the top layer of
a SiN-based multilayer photonic circuit [21,23]. When bridging less than seven in-plane SiP
waveguides, we should still maintain a minimum spacing of dtip ≈ 65 µm between the tips of the
coupling structures to avoid a strongly bent WOP trajectory. In this case, the space occupied
by the WOP to either side of the bridged waveguides is still less than lt + dtip/2 ≈ 83 µm. Note
that WOP can also be coupled to vertical waveguide facets [29], e.g., in deep-etched trenches,
thereby greatly reducing the footprint by omitting the 50 µm-long tapered transitions.

Regarding scalability of the WOP to large numbers of crossed waveguides, we have performed
simulations of 3D polymer waveguides comparable to WOP in our previous work [28], finding
that for an optimized waveguide trajectory the insertion loss is dominated by the coupling to the
SiP waveguide rather than by the length of the polymer waveguide section. Therefore, assuming
an optimized WOP trajectory, increasing the WOP length should not lead to significantly higher
losses. Each additionally crossed SiP waveguide increases the WOP length by approximately
3.5 µm, which is dictated by the minimum spacing between the SiP waveguides that is needed to
avoid crosstalk between them. Further reduction of the spacing can be achieved by using different
SiP waveguide widths to avoid crosstalk [37]. Regarding very complex circuit topologies, the
WOP footprint may hence scale very well. The overall footprint of our current SAS circuit
amounts to approximately 1.8 × 1.4 mm2, mainly dictated by the rather bulky 500 µm-long
thermo-optic phase shifters and the associated electric contact pads. This footprint can be reduced
by using MZI switch modules based on ultra-compact liquid-crystal phase shifters, which can
provide phase shifts in excess of π for a length of less than 50 µm [38,39].

We also measured the crosstalk from a WOP to one of the SiP waveguides underneath. To
this end, we first maximized the optical transmission of two paths through the SAS PIC, where
the first path (“Path 1”) contains the WOP while the second path (“Path 2”) contains one of the
SiP waveguides underneath. We then launch a strong CW signal into the input of Path 1, and
we connect highly sensitive power detectors to the output of both Path 1 and Path 2. Path 1 and
Path 2 are marked in green and in blue, respectively, in Fig. 2(d), and the arrows indicate the
direction of light propagation for the crosstalk measurement. To isolate the crosstalk contribution
of spurious substrate modes excited at the input grating coupler from the impact of the WOP, we
modulated the drive current of MZI right before the WOP (“MZI1”, marked in green) with a
sinusoidal signal at a distinct lock-in frequency of f LI = 10 kHz. We then used a lock-in amplifier
to measure the RMS values of the optical power fluctuations at this modulation frequency both
at the output of Path 1 and at the output of Path 2. The crosstalk is obtained by calculating the
ratio of the two lock-in signals and amounts to –75 dB at a wavelength of 1550 nm. This number
compares favorably with the crosstalk of –56 dB reported for SiN-based multi-layer circuits
[21,23]. Note that our crosstalk figure does not account for differences in on-chip loss between
the point where the crosstalk is generated and the output GC of Path 1 and Path 2. Also note
that this value very likely represents an upper limit for the WOP crosstalk, since it also contains
contributions of other on-chip elements such as waveguide bends and lossy MMI couplers that
follow MZI1.

                                                                                      Vol. 27, No. 12 | 10 Jun 2019 | OPTICS EXPRESS 17411 



5. Summary

We introduced a concept for realizing PIC with non-planar topologies. Planar waveguide
crossings (WGX) are replaced by 3D-printed freeform waveguide overpasses (WOP). We
demonstrate the viability of the approach using a silicon photonic 4 × 4 switch-and-select (SAS)
structure. Our theoretical analysis shows that the number of crossings for an n × n SAS device
realized using surface couplers scales with n4/16, while the number of required WOP scales with
n2/2. We believe that the results may offer an attractive path towards highly complex PIC with
non-planar topologies.

Appendix A: Graph theory

In this section, we shortly summarize a few definitions from graph theory that are used in the
graph-theoretical analysis of SAS circuits in Section 3 and Appendices B and C.

(1) A graph G(N, E) is defined as an ordered pair consisting of a set of vertices N and a set
of edges E, which are two-element subsets of N (one edge connects two vertices). The
number of vertices and edges is |N | and |E |, respectively. The notation |X | denotes the
cardinality (number of elements) of a set X.

(2) A bipartite graph G(M, N, E) consists of two sets of vertices M and N and a set of edges
E, such that there are no edges between two vertices that are in the same set.

(3) In a complete graph G(N, E), each vertex of set N is connected by an edge to all other
vertices of the same set. The number of vertices is |N | = n, and the number of edges is
|E | = n(n − 1)/2. Such a graph is denoted by Kn.

(4) In a complete bipartite graph G(M, N, E), each vertex of set M is connected by an edge to
each vertex of the second vertex set N. The number of vertices is |M | + |N | = m + n, and
the number of edges is |E | = mn. Such a graph is denoted by Km,n.

(5) A planar graph can be drawn in a plane without edge crossings. From Kuratowski’s
theorem [40], it follows that a complete graph Kn is planar if n ≤ 4, and a complete bipartite
graph Km,n is planar if m ≤ 2 or n ≤ 2.

(6) A maximum planar graph would become a non-planar graph by adding one additional
edge.

(7) A plane embedding is a drawing of a planar graph in a plane without edge crossings.

(8) A plane embedding divides the plane into distinct regions called faces. All faces are
bounded by edges except for the single outer face which extends to infinity. In a maximum
planar graph plane embedding, each face is defined by three edges. In a bipartite maximum
planar graph plane embedding, each face is defined by four edges.

(9) The crossing number cr(G) of a graph G counts the minimum number of edge crossings,
taking into account all possible drawings of G in a plane. The crossing number of a planar
graph is zero.

(10) The outerplanar crossing number cr∗(G) of a graph G counts the minimum number of
edge crossings, taking into account all possible drawings of G in a plane, such that all
vertices of G lie on a closed boundary curve, and all edges of G are drawn inside the area
bounded by the boundary curve.

(11) The local crossing number lcr(G) of a graph G is the minimum of the maximum number
of crossings along any edge of G, taking into account all possible drawings of G in a plane.
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(12) The local crossing number of a graph drawing counts the maximum number of edge
crossings along any edge for that particular drawing.

(13) A subgraph of a graph G is a graph consisting of sets of vertices and edges that are subsets
of sets of vertices and edges of G.

(14) A spanning maximum planar subgraph of a graph G is a maximum planar subgraph of G
that contains all vertices of G.

For more information on general graph theory, please refer to [41]. Crossing number problems
are discussed in more detail in [42].

Appendix B: Graph-theoretical analysis of surface-coupled m × n SAS circuits

As previously mentioned, a surface-coupled m × n circuit with 1 × n and m × 1 LE switches at
the input and output ports can be represented by a complete bipartite graph Km,n. The conjectured
crossing number of Km,n is given by [11]

crconj.(Km,n) = η(surf)
m,n =

⌊m
2

⌋ ⌊n
2

⌋ ⌊
m − 1

2

⌋ ⌊
n − 1

2

⌋
, (6)

which in case m = n reduces to Eq. (2). For a complete bipartite graph Km,n, the construction
of a drawing that results in the conjectured minimum number of crossings given by Eq. (6) is
proposed in [11] and illustrated in Fig. 4(a) for the case of K5,5. In a first step, all vertices of
set M are placed on the x-axis, whereas the vertices of set N are placed on the y-axis of the 2D
Cartesian coordinate system. This placement is done such that the number of vertices on both
positive and negative parts of the x and y-axes is as much equal as possible. Achieving exactly
equal numbers is possible only if m and n are even – if any of them is odd, we will put one vertex
more on the positive side of the corresponding axis. Therefore, the x-coordinates of the vertices
of set M are, −bm/2c,−bm/2c + 1, . . . ,−1, 1, . . . , dm/2e, and the corresponding vertices are
labelled with vM,−bm/2c , vM,−bm/2c+1, . . . , vM,−1, vM,1, . . . , vM,dm/2e . Similarly, the y-coordinates
of the vertices of set N are, −bn/2c,−bn/2c + 1, . . . ,−1, 1, . . . , dn/2e, and the corresponding
vertices are labelled with vN,−bn/2c , vN,−bn/2c+1, . . . , vN,−1, vN,1, . . . , vN,dn/2e . Finally, all vertices
of set M are connected by mn line segments to all vertices of set N.

In order to find the local crossing number of such drawing it is enough to analyze the 1st
quadrant of the 2D Cartesian system, since it contains the largest number of vertices and edges,
and since all edges are completely drawn in single quadrants. The two edges that cross the largest
number of other edges, {vN,dn/2e , vM,1} and {vN,1, vM,dm/2e }, are drawn in blue in Fig. 4(a). It
can be easily seen that edge {vN,dn/2e , vM,1} must cross all edges that connect dn/2e − 1 vertices
vN,1, . . . , vN,dn/2e−1 to dm/2e − 1 vertices vM,2, . . . , vM,dm/2e . Similarly, edge {vN,1, vM,dm/2e }

must cross all edges that connect dn/2e − 1 vertices vN,2, . . . , vN,dn/2e to dm/2e − 1 vertices
vM,1, . . . , vM,dm/2e−1. Therefore, the local crossing number of this drawing amounts to

lcrconj. drawing(Km,n) = ξ (surf)
m,n =

(⌈m
2

⌉
− 1

) (⌈n
2

⌉
− 1

)
. (7)

For m = n, this reduces to Eq. (5).
To analyze the number of necessary WOP, we introduce a term 3D edge, which is an edge that

is not restricted to the plane but can be routed in 3D, and we will use it to model a WOP. A WOP
does not directly connect two optical devices on the PIC, but rather links two ends of two planar
waveguides, each of which is connected to an optical device at its respective other end. The
connections of WOP and planar waveguides are an analog to metallic vias that connect metallic
wires in different layers of an electric printed circuits board (PCB). In the graph representation, a
WOP is modelled by a 3D edge that does not directly connect to two vertices on the plane, but
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Fig. 4. Different graph drawings of a surface-coupled 5 × 5 and 4 × 4 SAS circuit: (a)
Graph drawing of a 5 × 5 SAS circuit where 1 × 5 and 5 × 1 switches at the input and
output ports are realized as LE. The circuit is modeled by a complete bipartite graph K5,5,
and the arrangement of vertices of sets M and N is such that the drawing results in the
number of crossings equal to the conjectured crossing number given by Eq. (6). The
two edges depicted in blue are the edges with the maximum number of crossings, which
determine the local crossing number of this particular graph drawing, as given by Eq. (7).
(b) Planar-edge-crossing-free graph representation of the same circuit. The edges depicted
in blue represent a spanning maximum planar subgraph of K5,5. The remaining edges are
realized with help of 3D edges (representing WOP) depicted as dashed red lines, which are
routed outside the plane of the drawing and avoid crossings with the planar edges. Each
3D edge connects to a pair of planar edges depicted in black, that are linked to vertices at
the respective other end. (c) If the 1 × 5 and 5 × 1 switches at the input and output ports
are realized as BT of 1 × 2 and 2 × 1 switches, the number of necessary 3D edges can
be reduced by splitting the vertices of the original K5,5 and placing them into appropriate
faces of the spanning maximum planar subgraph depicted in blue. The white dashed squares
represent 1 × 2 switches, while the dashed circle with gray filling represents a 2 × 1 switch.
This approach allows to replace a pair of 3D edges by a single one. In case where both m
and n are odd, the number of missing edges is also odd, and one missing edge (in this case
{vN,−2, vM,2}) must be realized with help of one single 3D edge. (d) Graph drawing of a
4 × 4 SAS circuit, analogous to the case described in (c). In case at least one of the numbers
m or n is even, the number of 3D edges can be reduced by a factor of 2 compared to the case
when 1 × n and m × 1 switches are realized as LE. For our experimental demonstration, we
used the PIC layout displayed in Fig. 2(d), which was obtained in a similar way as Fig. 4(d),
with the difference that the auxiliary vertices (1 × 2 switches) in Fig. 2(d) were placed in
the outer face of the spanning maximum planar subgraph rather than in its inner face, as
displayed here.
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links two planar edges, each of which is connected to another vertex at its respective other end.
In order to estimate the number of necessary 3D edges, we first construct a spanning maximum
planar subgraph of Km,n, which has 2m + 2n – 4 edges [34]. We do it by connecting each of the
vertices vM,−bm/2c , vM,dm/2e , vN,−1, and vN,1 to each vertex of the opposite set, see Fig. 4(b). The
remaining

µ(surf)
m,n = mn − (2m + 2n − 4) = (m − 2)(n − 2) (8)

edges can be realized using 3D edges. For m = n, Eq. (8) reduces to Eq. (3). The concept is
illustrated in Fig. 4(b) for the case of K5,5. The edges of the spanning maximum planar subgraph
are depicted in blue, the 3D edges in red (dashed), while the planar edges that connect the 3D
edges to the vertices are depicted in black. The red dashed lines are, in fact, vertical projections
of 3D edges on the 2D drawing plane.

Note that the planar projections of the 3D edges on the drawing plane may cross each other.
This, however, does not mean that the two 3D edges cross in 3D space – two freeform WOP
can always be 3D-printed such that one passes over the other, and the corresponding 3D edges
can be routed analogously. Furthermore, by appropriate routing of the planar and 3D edges, the
crossings of projections of 3D edges on the drawing plane can be avoided. Figure 4(b) shows
how a possible crossing of projections of two 3D edges between pairs of vertices {vN,2, vM,2}

and {vN,3, vM,1} has been avoided by making the planar waveguide that connects vN,2 to the
corresponding 3D edge sufficiently long such that it passes underneath the 3D edge between
the pair of vertices {vN,3, vM,1}. We believe that this approach might be generalized to avoid
crossings of projections of 3D edges for general complete bipartite graphs Km,n – a general proof
would need further investigation and is beyond the scope of this paper.

If the 1 × n and m × 1 switches at the input and output ports are realized as BT of 1 × 2 and
2 × 1 switches rather than as LE, we can further reduce the number of 3D edges. We will split
the analysis into two cases: when both m and n are odd, and when at least one of them is even.
Furthermore, we will only analyze cases where both m and n are ≥ 3 since otherwise, according
to Kuratowski’s theorem [40], the complete bipartite graph Km,n is planar. If both m and n are
odd, we do the following steps:

Step 1: Construct the spanning maximum planar subgraph of Km,n as described above. The
edges of this subgraph are depicted in blue in Fig. 4(c) for the case of K5,5 (m = n = 5). This
subgraph has all faces determined by four vertices (two from set M and two from set N) and
four edges. There are (m – 3) vertices of set M whose x-coordinates lie between −bm/2c + 1
and dm/2e − 2 inclusive, and they can be divided into (m – 3)/2 distinct two-element subsets
of vertices (because m – 3 is even, and therefore divisible by two): {vM,−bm/2c+1, vM,−bm/2c+2},
{vM,−bm/2c+3, vM,−bm/2c+4}, . . . , {vM,dm/2e−3, vM,dm/2e−2}. Each of these (m – 3)/2 pairs of ver-
tices of set M together with the pair of vertices {vN,−1, vN,1} of set N, define (m – 3)/2 faces:
{vM,−bm/2c+1, vN,−1, vM,−bm/2c+2, vN,1}, {vM,−bm/2c+3, vN,−1, vM,−bm/2c+4, vN,1}, . . . , {vM,dm/2e−3,
vN,−1, vM,dm/2e−2, vN,1}. For m = 3 there are no such faces. For m = 5, there is only one such
face {vM,−bm/2c+1, vN,−1, vM,dm/2e−2, vN,1} = {vM,−1, vN,−1, vM,1, vN,1}, see Fig. 4(c). Note that
the results of the expressions −bm/2c + i and dm/2e − j in the subscripts of labels of vertices of
set M indicate the x-coordinates of the vertices. Since there is no vertex at x = 0, not a single
expression is allowed to result in zero. Therefore, we restrict the values of integers i and j to
i = 1, 2, . . . , bm/2c − 1, and j = dm/2e − 1, dm/2e − 2, . . . , 2 (the expression −bm/2c + i is used
for vertices on the negative side of the x-axis, while the expression dm/2e − j is used for vertices
on the positive side of the x-axis).

Step 2: Let us put an auxiliary vertex v′N,dn/2e inside the face defined by vertices
{vM,−bm/2c+1, vN,−1, vM,−bm/2c+2, vN,1}. We can connect the auxiliary vertex v′N,dn/2e to vertex
vN,dn/2e with a 3D edge, and the same auxiliary vertex to vertices vM,−bm/2c+1 and vM,−bm/2c+2
with two planar edges. The auxiliary vertex is the place where we put a 2 × 1 switch, which is a
part of the BT m × 1 switch at the vertex vN,dn/2e . In this way, we can replace two 3D edges
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that would otherwise separately connect vertex vN,dn/2e to vertices vM,−bm/2c+1 and vM,−bm/2c+2.
The auxiliary vertex v′N,dn/2e and the two planar edges that connect it to vertices vM,−bm/2c+1
and vM,−bm/2c+2 split the original face {vM,−bm/2c+1, vN,−1, vM,−bm/2c+2, vN,1} into two faces
{vM,−bm/2c+1, vN,−1, vM,−bm/2c+2, v′N,dn/2e } and {vM,−bm/2c+1, vN,1, vM,−bm/2c+2, v′N,dn/2e }. We put
an additional auxiliary vertex v′N,dn/2e−1 to any of the two new faces, and we connect it to vertex
vN,dn/2e−1 with a 3D edge and to vertices vM,−bm/2c+1 and vM,−bm/2c+2 with two planar edges.
We repeat the procedure for all vertices of set N, except for vertices vN,−1 and vN,1, which are
already connected to all vertices of set M. In this way, we connect both vertices of the pair
{vM,−bm/2c+1, vM,−bm/2c+2} to all vertices of set N. We apply the same algorithm to connect the
pairs of vertices {vM,−bm/2c+3, vM,−bm/2c+4}, . . . , {vM,dm/2e−3, vM,dm/2e−2} to all vertices of set N.
This step has been illustrated in Fig. 4(c) where auxiliary vertices v′N,3, v′N,2, and v′N,−2 have been
placed inside the face {vM,−1, vN,−1, vM,1, vN,1}, connected to vertices vN,3, vN,2, and vN,−2 by 3D
edges, respectively, and to vM,−1 and vM,1 by planar edges. For m = 3, Step 2 is skipped.

Step 3: So far, we connected all vertices of set M to all vertices of set N, except for ver-
tex vM,dm/2e−1 that is connected only to vN,−1 and vN,1 and still needs to be connected to the
remaining (n – 2) vertices of set N. There are dn/2e − 1 such vertices on the positive side
of the y-axis: vN,dn/2e , vN,dn/2e−1, . . . , vN,2, and bn/2c − 1 on the negative side of the y-axis:
vN,−2, vN,−3, . . . , vN,−bn/2c . Depending on n, one of these two numbers is even, and the other
is odd. If dn/2e − 1 is even and bn/2c − 1 is odd, then each of the following pairs of vertices
{vN,dn/2e , vN,dn/2e−1}, . . . , {vN,3, vN,2}, {vN,−2, vN,−3}, . . . , {vN,−bn/2c+2, vN,−bn/2c+1} together with
the pair of vertices {vM,−bm/2c , vM,dm/2e } define one face. In each of these faces, we can place
one auxiliary vertex v′M,dm/2e−1, v′′M,dm/2e−1, v′′′M,dm/2e−1, . . . , see Fig. 4(c), where there is only
one such auxiliary vertex v′M,dm/2e−1 = v′M,2. Each of these auxiliary vertices can be connected
to vM,dm/2e−1 by a 3D edge and to the respective pair of vertices of set N (that define the face
in which the auxiliary vertex is placed) by two planar edges. After this step, there will be
only one missing edge between vertices vM,dm/2e−1 and vN,−bn/2c , and we directly connect
these two vertices by a single 3D edge, see Fig. 4(c). Similarly, if dn/2e − 1 is odd and
bn/2c − 1 is even, we can group the vertices of set N into pairs as {vN,dn/2e−1, vN,dn/2e−2}, . . . ,
{vN,3, vN,2}, {vN,−2, vN,−3}, . . . , {vN,−bn/2c+1, vN,−bn/2c } which would define faces together with
the pair of vertices {vM,−bm/2c , vM,dm/2e }. After placing and connecting auxiliary vertices as
described, the only missing edge would be between vM,dm/2e−1 and vN,dn/2e , and we would
connect them by one 3D edge.

The case when at least one of the numbers m and n is even is simpler. We can assume
without loss of generality that m is even and n is odd. By constructing the spanning maxi-
mum planar subgraph of Km,n as described above, we will get a subgraph where each of the
following (m – 2)/2 pairs of vertices {vM,−bm/2c+1, vM,−bm/2c+2}, {vM,−bm/2c+3, vM,−bm/2c+4}, . . . ,
{vM,dm/2e−2, vM,dm/2e−1} together with the pair of vertices {vN,−1, vN,1} define one face. After
performing Step 2 as described above, we will connect all vertices of set M to all vertices of set
N. Figure 4(d) shows an example of the result of the algorithm for the case of K4,4.

The described algorithm allows to replace two missing planar edges by one 3D edge. The
number of necessary 3D edges hence amounts to

µ(surf, BT)
m,n =

⌈
(m − 2)(n − 2)

2

⌉
, (9)

which reduces to Eq. (4) for m = n. The ceiling function in Eq. (9) is used to include the case
when the number of missing edges is odd (both m and n are odd) and not divisible by two (one
single missing edge needs to be realized with one single 3D edge). This algorithm is just an
example and not the unique way of constructing a layout that results in the number of 3D edges
given by Eq. (9): For example, in Step 1 we could construct the spanning maximum planar
subgraph in a different way and then modify Steps 2 and 3 accordingly.
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It should be pointed out that Eq. (9) does not necessarily give the minimum number of
necessary 3D edges, but an upper bound. In our construction we started from the spanning
maximum planar subgraph, and we split some vertices in two by introducing auxiliary vertices.
We did, however, not show that the spanning maximum planar subgraph of Km,n is the optimal
way to start with. We could have also started with a non-maximum planar subgraph and could
have used larger split ratio switches 1 × n′, n′ < n and 1 × m′, m′ < m, and place them in the
auxiliary vertices. Furthermore, the graph model of the device where 1 × n and m × 1 switches
at the input and output ports are realized as BT of 1 × 2 and 2 × 1 switches, is not a complete
bipartite graph Km,n. The crossing number of the SAS circuit realized with such an approach is
subject to ongoing investigations.

Appendix C: Facet-coupled SAS circuits

C.1. Facet-coupled SAS realized in single-layer and hybrid 2D/3D photonic integration

For facet-coupled SAS circuits, all input and output ports are implemented by waveguide facets
arranged along the chip boundaries, making it impossible to route waveguides “behind” the ports,
i.e., between the ports and the chip boundary. In the graph drawing of the circuit, all vertices
representing input and output ports must hence be placed on a closed curve that represents the
boundary of the chip surface, and no waveguide (graph edge) routing outside the area enclosed
by the curve is allowed. In addition, in contrast to surface coupling, the graph of a facet-coupled
SAS is not anymore a complete bipartite graph: For the case of surface coupling, a port and the
associated 1 × n or m × 1 switch can be combined into a single vertex, whereas facet-coupled
circuits must be represented by a first kind of vertices for the switches and a second kind of
vertices for the ports, which must be placed onto the boundary curve. Every port vertex must be
connected to the associated switch by a graph edge that represents the access waveguide. This
results in a 3-partite graph, which comprises three parties of vertices represented by the ports, the
1 × n switches, and the m × 1 switches, and which is not complete. For a general description of
facet-coupled SAS circuits, we can hence not resort any more to the existing theory of complete
bipartite graphs. This renders theoretical assessment of the topologies more difficult and requires
simplifying assumptions for quantifying the numbers of WGX or WOP. Nevertheless, we believe
that non-planar facet-coupled SAS circuits can also greatly benefit from replacing WGX by
WOP.

To support this claim, we first consider the basic non-optimized representation of a 4 × 4
SAS circuit, see Fig. 5(a). This representation relies on the same simplistic approach as the
surface-coupled SAS circuit that is sketched in Fig. 2(a). In this approach, each pair of vertices
of set M is connected by four edges to each pair of vertices of set N, and the four edges make
exactly one crossing. The number of crossings is therefore equal to the product of numbers of
ways to choose two-element subsets of M and N and amounts to

η(facet, basic)
m,n =

 m

2


 n

2

 =

(
m(m − 1)

2

) (
n(n − 1)

2

)
, (10)

which reduces to Eq. (1) for the case of m = n. Interleaving the input and output ports along
the boundary line allows to reduce this number, see Fig. 5(b). In this case, we can simplify the
theoretical assessment to finding the outerplanar crossing number of a complete bipartite graph.
This can be seen if we look at the blue dashed line in Fig. 5(b): All vertices representing 1 × n
and m × 1 switches are placed on it, and all edges are routed inside the area bounded by it. Note
that this implementation is not yet optimal since it does not exploit the possibility to reduce the
number of WGX by routing waveguides between the ports and the corresponding 1 × n or m ×
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1 switches. For the case of n being an integer multiple of m, the outerplanar crossing number of
a complete bipartite graph Km,n. is obtained when the vertices of set M are evenly interleaved
between the vertices of set N and amounts to [43]

η(facet)
m,n =

1
12

n(m − 1)(2mn − 3m − n). (11)

Fig. 5. Different graph drawings of a facet-coupled 4 × 4 SAS circuit: A first set of vertices
(rectangles and half circles) is used to represent facet-coupled optical input and output
ports, and a second kind of vertices (squares and full circles) represents the 1 × n or m × 1
switches. Each port vertex is connected to the associated switch vertex by a graph edge that
represents the access waveguide (a) Simplistic non-optimum graph representation based on
the same approach as the surface-coupled SAS circuit shown in Fig. 2(a). Input and output
ports are clustered into two groups of neighboring vertices along the chip boundary. For a 4
× 4 SAS circuit, 36 WGX are required. (b) By interleaving the input and output ports along
the chip boundary, the number of crossings can be reduced, leading to a total number of 16
WGX for a 4 × 4 SAS circuit. (c) The number of crossings can also be reduced by allowing
routing of waveguides between the ports and the corresponding 1 × n and n × 1 switches,
leading to a total number of 20 WGX for the depicted graph drawing. (d) Circuit layout
obtained by combining interleaving of input and output ports with routing of waveguides
between the ports and the corresponding switches, leading to a total number of 12 WGX.
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For the case m = n, this reduces to

η(facet)
n,n =

1
6

n2(n − 1)(n − 2), (12)

Which scales with n4/6 for large n. The associated numbers of WGX for switches implemented
as LE are listed in the second column of Table 2. Further layout optimization steps may involve
routing of waveguides between the ports and the corresponding switches, possibly in combination
with interleaving of the ports along the chip boundary, see Figs. 5(c) and 5(d). Even though
we are not aware of any relations specifying the exact crossing numbers of these graphs, we
may still use the number of WGX in the associated surface-coupled SAS as a lower bound.
This can be understood by observing that both implementations in Figs. 5(c) and 5(d) contain a
maximum bipartite subgraph (indicated in blue) which is equivalent to that of the corresponding
surface-coupled circuit, Fig. 2(b), and which is complemented by additional crossings caused
by the access waveguides. The number of WGX still scales with at least n4/16, see Eq. (2).
Similarly to the case of surface-coupled SAS, disaggregating the 1 × n and m × 1 switches into
BT of 1 × 2 switches might reduce the number of WGX – this aspect is still under investigation.
For the remainder of this section, we rely on Eq. (12) for determining the number of WGX in
the facet-coupled n × n SAS circuit.

Table 2. Quantitative Comparison of n × n Facet-Coupled Switch-and-Select (SAS) Circuit
Implementations Based on WGX in Single-Layer Circuits and on WOP in Hybrid 2D/3D Photonic

Integrationa

Total number Maximum number along an optical path

SAS (n × n) WGX (LE) WOP (LE) WOP (BT) WGX (LE) WOP (LE & BT)

4 × 4 16 9 5 4 1

8 × 8 448 49 25 24 1

16 × 16 8 960 225 113 112 1

32 × 32 158 720 961 481 480 1

64 × 64 2 666 496 3 969 1 985 1 984 1

aThe total number of WGX (second column) increases approximately in proportion to n4/6, whereas the number of
WOP scales with n2 for the case of LE switches (third column) and with n2/2 in case the switches are decomposed
into BT of 1 × 2 and 2 × 1 switches (fourth column). The maximum number of WGX along an optical path increases
approximately in proportion to n2/2 for the case of LE switches (fifth column), whereas the maximum number of WOP
along an optical path is one in both cases of LE and BT switches (sixth column).

For 2D/3D hybrid implementations, the number of WOP in facet-coupled SAS circuits was
analyzed based on the simplistic layout shown in Fig. 5(a) for cases of LE switches and BT
cascaded 1 × 2 switches, see Figs. 6(a) and 6(b). Mathematical details can be found in Appendix
C.2. For LE switches, this leads to a total WOP number of

µ(facet)
m,n = (m − 1)(n − 1), (13)

which reduces to (n – 1)2 for m = n. For BT switches, the number of WOP amounts to

µ(facet, BT)
m,n =

⌈
(m − 1)(n − 1)

2

⌉
, (14)

i.e., d(n − 1)2/2e for m = n. Hence, in both cases, the number of WOP in the facet-coupled
hybrid 2D/3D implementation scales much more favorably than the number of WGX in the
corresponding single-layer SAS circuit, see third and fourth column of Table 2. Note that this
number represents an upper bound for the number of WOP, which might be further reduced by
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interleaving of ports and by rerouting of connections across the access waveguides, similarly
to the case of the surface-coupled planar circuits shown in Figs. 2(b)–2(d). As in the case of
surface coupling, the number of WOP along any optical path through the facet-coupled hybrid
2D/3D circuit is at most 1, whereas the maximum number of WGX along an optical path in a
single-layer implementation shown in Fig. 5(b) increases in proportion to n2/2. The exact result
for the maximum number of WGX along any optical path for this implementation is

ξ (facet)
m,n = 2

⌊
n − 1

2

⌋ ⌈
n − 1

2

⌉
, (15)

see Section C.2. The corresponding numbers for n = 4, 8, 16, 32, and 64 are indicated in the fifth
and sixth column of Table 2. For the implementations shown in Figs. 5(c) and 5(d), we cannot
provide a formula that describes the minimum number of WGX along an optical path.

Fig. 6. Circuit layouts for facet-coupled 2D/3D hybrid 4 × 4 SAS. (a) Simple, but not
optimal layout, where the 1 × 4 and 4 × 1 switches have been realized as LE. The relation
for µ(facet)

n,n represents the exact number of WOP in this simplistic implementation. (b) Best
found, but not necessarily optimal layout for the case in which the 1 × 4 and 4 × 1 switches
have been realized as BT of 1 × 2 and 2 × 1 switches. The relation for µ(facet, BT)

n,n is an
upper bound for the minimum number of WOP.

C.2. Graph-theoretical models and analysis of facet-coupled m × n SAS circuits

Let us first explain Eq. (15) which is obtained in case of a drawing of the complete bipartite
subgraph Kn,n that results in the outerplanar crossing number – the vertices belonging to different
vertex sets M and N (m = n) are interleaved along the boundary curve. This subgraph is depicted
in blue in Fig. 5(b) for n = 5. The concept of this layout is illustrated in Fig. 7, which shows
graph drawings of a complete bipartite graph Kn,n with interleaved vertices of two different
vertex sets along the boundary (dashed circular line). Each edge divides the bounded area in
two parts, and the largest number of crossings will be on an edge {vM,i, vN,i} that divides the
area such that the numbers of vertices in both parts are as much equal as possible. If n is odd, it
is possible to find an edge that divides the bounded area such that both parts have exactly the
same number of vertices; on the other hand, if n is even, one part will have one more vertex of
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each vertex set than the other part. Both cases are illustrated in Fig. 7 – the edge {vM,i, vN,i} is
depicted in blue. For both cases, edge {vM,i, vN,i} divides the area such that one part contains
b(n − 1)/2c and the other d(n − 1)/2e vertices of each vertex set. That means that edge {vM,i, vN,i}

is crossed by b(n − 1)/2c d(n − 1)/2e edges connecting b(n − 1)/2c vertices of set M in the first
part to d(n − 1)/2e vertices of set N in the second part, and the same number of edges connecting
b(n − 1)/2c vertices of set N in the first part to d(n − 1)/2e vertices of set M in the second part.
From here follows the result of Eq. (15).

Fig. 7. Drawings of complete bipartite graphs Kn,n with all vertices placed on the closed
boundary curve (dashed circular line), and the vertices of two different sets being interleaved
along the boundary. Equation (15) gives the local crossing number of such drawing, which
occurs along the blue edges that divide the boundary area in two parts such that the number
of vertices in both parts is as much balanced as possible. (a) In case n is odd (here: n = 5),
both parts contain the same number of vertices. (b) In case n is even (here: n = 6), there is
one more vertex of each vertex set in one part.

In order to estimate the number of necessary WOP (3D edges), we will use the simplistic
layout shown in Fig. 5(a). It is sufficient to consider a drawing of Km,n with all vertices placed
on a closed boundary curve, since access waveguides do not have any crossings. We construct
a corresponding graph drawing by placing all m vertices of set M: vM,1, vM,2, . . . , vM,m on the
x-axis of the 2D Cartesian coordinate system in points x = 1, 2, . . . , m, see Fig. 8(a) for an
illustration of the case of K4,4. Similarly, we place all n vertices of set N: vN,1, vN,2, . . . , vN,n on
the y-axis in points y = 1, 2, . . . , n. Finally, we connect all vertices of set M to all vertices of
set N by mn line segments. The boundary curve can be for example a rectangle that is oriented
along the x and the y axis, as depicted in green in Fig. 8(a). The total number of crossings is
equivalent to the one given by Eq. (10) – it takes four edges and one crossing to connect each
possible pair of vertices of set M to each possible pair of vertices of set N. In order to estimate
the number of necessary 3D edges, we first construct a spanning planar subgraph of Km,n, by
connecting vertices vM,1 and vN,n to all vertices of the opposite vertex sets, Fig. 8(b). This
subgraph evidently has m + n – 1 edges, and the number of missing edges is therefore equal to
mn – (m + n – 1) = (m – 1)(n – 1), which leads to Eq. (13). These edges can be realized with help
of 3D edges, illustrated by dashed red lines in Fig. 8(b).

Similarly to the case of surface coupled SAS described in Appendix B, if the 1 × n and
m × 1 switches at the input and output ports are BT of 1 × 2 and 2 × 1 switches, the number of
necessary 3D edges reduces. We will split the analysis into two cases: when both m and n are
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Fig. 8. Different graph drawings of a simplistic model of a facet-coupled 4 × 4 and 5 × 4
SAS circuit: (a) Graph drawing of a 4 × 4 SAS circuit where 1 × 4 and 4 × 1 switches at
the input and output ports are LE. (b) Planar-edge-crossing-free graph representation of
the same circuit. The edges depicted in blue represent a spanning planar subgraph of K4,4.
The remaining edges are realized with help of 3D edges (representing WOP) depicted as
dashed red lines. The 3D edges connect to planar edges depicted in black that connect to
the vertices in the drawing plane. (c) If the 1 × 5 and 5 × 1 switches at the input and output
ports are realized as BT of 1 × 2 and 2 × 1 switches, the number of necessary 3D edges can
be reduced by splitting the vertices of the original K4,4 and by placing them into appropriate
areas which are defined by the edges of the spanning planar subgraph (blue) and by the x
or y coordinate axes. The white dashed squares represent 1 × 2 switches, while the filled
gray circle represents a 2 × 1 switch. This approach allows to replace two 3D edges by
one. In case where both m and n are even, the number of missing edges is odd, therefore,
one missing edge (here: {vN,3, vM,4}) must be realized with help of one single 3D edge (d)
Graph drawing of a 5 × 4 SAS circuit, analogous to the case described in (c). In case at
least one of the numbers m or n is odd, the number of 3D edges can be reduced exactly 2
times compared to the case when 1 × n and m × 1 switches are realized as LE.
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even, and when at least one of them is odd. If both are even, the analysis comprises the following
steps:

Step 1: Construct a spanning planar subgraph of Km,n as described above. Each pair of vertices
{vM,2, vM,3}, {vM,4, vM,5}, . . . , {vM,m−2, vM,m−1}, together with vertex vN,n defines one area, which
is bounded by two edges between vN,n and the two vertices of set M and a portion of the x-axis
between the two vertices of set M. This is illustrated on an example of K4,4 in Fig. 8(c).

Step 2: Put an auxiliary vertex v′N,1 inside the area defined by vertices {vM,2, vM,3, vN,n}, see
Fig. 8(c). We can connect the auxiliary vertex v′N,1 and vertex vN,1 by a 3D edge, and the same
auxiliary vertex and vertices vM,2 and vM,3 by planar edges. Similarly to the case of surface-
coupled SAS, we continue adding auxiliary vertices v′N,2, v′N,3, . . . , v′N,n−1, to the same area until
we connect all vertices of set N to vM,2 and vM,3. We then continue with the same procedure for the
following areas defined by groups of three vertices: {vM,4, vM,5, vN,n}, . . . , {vM,n−2, vM,n−1, vN,n}.

Step 3: In this fashion, we will connect all vertices of set M to all vertices of set N, except
for vertex vM,m that is connected only to vN,n. However, each of the following pairs of vertices
{vN,1, vN,2}, . . . , {vN,n−3, vN,n−2}, together with vertex vM,1 define one area bounded by two edges
(between vM,1 and the two vertices of set N) and a portion of the y-axis between the two vertices
of set N. In each of these areas, we can place one auxiliary vertex: v′M,m, v′′M,m, v′′′M,m, . . . Each
of these auxiliary vertices can be connected to vM,m by a 3D edge, and to the respective pair of
vertices of set N that define the area in which the auxiliary vertex is placed by two planar edges.
After this step, there will be only one missing edge between vertices vM,m and vN,n−1, and we
directly connect these two vertices by a single 3D edge, see Fig. 8(c).

In case when at least one of the numbers m and n is odd, we can assume without loss of
generality that m is odd, and n is even. By executing Step 1 as described above, we will
get a subgraph where each of the pairs of vertices {vM,2, vM,3}, {vM,4, vM,5}, . . . , {vM,m−1, vM,m},
together with vertex vN,n defines one area bounded by two edges (between vN,n and the two
vertices of set M) and a portion of the x-axis between the two vertices of set M. After performing
Step 2 as described above, we will connect all vertices of set M to all vertices of set N. This case
is illustrated on an example of K5,4 in Fig. 8(d). For at least one of the numbers m and n being
odd, the number of missing edges is even, and we can replace two missing planar edges by one
3D edge. Combining the two cases leads to Eq. (14).
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