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1. Introduction

1. Introduction

1.1. Motivation: Waveguide arrays

Telecommunication technology is concerned with the transport of data. One possibility
to transmit data from one place to another is to send light through an optical fiber.
In physics, light is a travelling electromagnetic wave and optical fibers which allow for
coherent travelling waves are called waveguides. Since the worldwide data flow is more
and more increasing it is common to use densely packed bundles of optical fibers. When
these fibers are close to each other, then the light travelling through one waveguide can
interact with light in neighbouring waveguides. In particular, the data signal can be
perturbed or the energy loss over long distances may become so large that the arriving
light is too weak to allow for reconstruction of the data.

We start the investigation of the underlying physical model in three dimensional space
by considering a single straight waveguide W along the z-direction. We assume that the
waveguide is infinitely long and surrounded by vacuum. In this situation the nonlinear
Schrédinger equation

.dE(z)

i— + BE(2) +4|E(2)|*E(2) =0, z€R,

is used to describe an approximation E of the amplitude of the electric field of a pulse
travelling along the waveguide. Here, i denotes the imaginary unit whereas (3 is called the
field propagation constant, a material parameter which depends on the waveguide. The
nonlinear term |E|?E, is called Kerr-type nonlinearity and describes the self modulation,
where the size of the real parameter v measures the strength of this effect.

A quite simple arrangement which admits the interaction between pulses in different
waveguides is a so-called waveguide array. This is a system of infinitely many (physically:
a large number of), parallel optical fibers (see Figure . The distance between two
neighbouring waveguides is fixed as the positive parameter h.

I v

=

c

Figure 1.1: Sketch of a nonlinear array of coupled waveguides (cf. [8]).
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We denote by Ej; the amplitude of a pulse propagating along the j-th one-dimensional
waveguide W;, where j is an integer. Then, we obtain the following system of coupled
nonlinear Schrédinger equations (see [8]):

i% + BEj + c(Ej41+ Ej-1) + M E;|*E; + u(|Ej41)* + |E;—1|)E; =0, j €Z.
Again, z describes the position along the waveguide. Moreover, ¢ is a positive coupling
constant. Note that the corresponding coupling term c¢(E;; + Ej_1) only allows inter-
action with direct neighbours. Since pulses in waveguides further away have much less
influence they are neglected. This assumption is called the nearest neighbour assumption.
As the self-phase modulation dominates the non-linear interaction with the neighbours,
the parameter A is much larger than p. Thus, it is reasonable to consider in the following
only the case p = 0. This simplification leads to

dE; i
=+ BEj + c(Ejp + Eja) + ME;E; =0, jeL

We divide the equation by h? and rearrange it to see that

idE; [+2c c A .
ﬁT;+TEj+ﬁ(Ej+1—2Ej+Ej—1)+ﬁ|Ej\2Ej =0, jELZ.
Then, we interpret E as a function F(z, z) depending on = € hZ, z € R and obtain

idE
h? dz

B+ 2c c

(z,2) + 2 E(x,z) + ﬁ[E(mjL 1,2) —=2E(z,2) + E(x — 1, 2)]

A
+ ﬁ|E(x, 2)2E(x,2) =0, x€hZ, z€R.

Next, we look for monochromatic waves, i.e., we assume that the light travelling through
the parallel waveguide has one single wavelength w, which is a real parameter. This
means that the function E(z, z) is of the form u(z)e™?. Inserting this ansatz into the
equation and dividing afterwards by the factor €’“*, we eliminate the z-dependence and
deduce

B+ 2c—w

2 u(z) + %[u(m +1) —2u(x) +u(zx — 1)) + %]u(:ﬁ)]%(m) =0, z€hZ.

Since the one-dimensional discrete Laplace operator Apu(z) at the point x in hZ is given
by % [u(z+1) —2u(z)+u(x—1)], we can rewrite the equation as the discrete Schrodinger
equation

— B —2c

A
—cApu+ 2 U= ﬁ]upu in hZ.

Arranging the waveguide array as 2d-stacks of parallel waveguides we arrive at the same
equation in hZ?. If the wavelength w is equal to the constant 8 + 2¢, then the second

summand vanishes. In this case, the rescaled function v(z) = \/ﬁu(az) solves the
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discrete Emden equation
—Apv =13 in hZ"

withn =1, 2.

The finite difference method
The discrete Emden equation
—Apu = uP

with exponent p in (1,00) also arises in the field of numerical computations. Here, the
finite difference method is used to approximate classical C%-solutions of the continuous
Emden equation

—Au=1u?

by solutions of the discrete Emden equation. When the parameter h tends to zero and
the corresponding solutions of the discrete Emden equation are uniformly bounded, then
these solutions converge (in a certain sense) to a classical solution of the continuous
Emden equation (see e.g. |30, Thm. 9.10]).

1.2. Outline

In this work we investigate positive solutions of discrete nonlinear elliptic equations. We
use the discrete Emden equation

—Apu = uP (1)

as a prototype problem. Here, the exponent p is in the range (1,00), and Ay denotes the
discrete Laplacian (introduced in Definition corresponding to the positive grid size
h. We consider the discrete Emden equation on subsets , of R} := {hz: z € Z"}.
If Q, is not the entire grid R}, we impose boundary conditions on the discrete boundary
Or€)p. Here, we restrict ourselves to zero Dirichlet boundary conditions, i.e., we consider
positive solutions u: €, — [0,00) of

{ —Apu=1uP in Q, @)

u=20 on ath,

where the discrete closure €, is given by Q, U 0,9;,. Depending on the domain €, and
the exponent p, we are mainly interested in the following two questions:

(a) Do positive solutions u = wuy, exist or not?

(b) If solutions uy, exist, is the norm [luy| o (q,) uniformly bounded with respect to h?
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The importance of the second question, can be seen when we consider a sequence of grid
sizes which tends to zero: If the corresponding solutions are uniformly bounded, then
we can expect convergence to a classical C%-solution (see e.g. [30, Thm. 9.10]). On the
other hand, if the sequence of solutions is unbounded, then it either tends to a singular
function or it does not converge and thus it contains spurious solutions, which do not
correspond to continuous counterparts.

Next, we give a brief overview of the subsequent chapters. In Section [2| we explain our
notation and collect some important results from the literature.

Afterwards, in Section [3| we prove the absence of positive solutions if the underlying
domain €2 is a generalized orthant

R™F = {r eR": z1,...,21 > 0}

with n € Nand k € {0,...,n} and if the exponent p is below some critical value p,. The
value p, depends on €2 and is given by

k
Rt k—2>0,
pxi=14 n+k—2 (3)
+ 00, else.

For such non-existence results the name Liouwille theorem has been established in the
literature and will be used in the sequel. Our main result reads as follows:

Theorem 1 (Discrete Liouville theorem for generalized orthants)
Let h>0,neN, ke {0,...,n} and 1 < p < p.. Then, the only non-negative solution

w: RF — [0,00) of

— P in R™F
Apu>uP in R,

1s the zero solution u = 0.

Afterwards, we show that the exponent p, is a critical exponent: On the one hand, if p is
smaller than p,, then there are no positive solution due to the Liouville theorem above.
On the other hand, for p greater than p,, we ensure the existence of positive solutions
by the following theorem:

Theorem 2 (Existence of solutions)
Let h>0,n>2,ke€{0,...,n}, where k #0 if n =2, and p > p.. Then, there exists a

positive solution u: RZ’k — (0,00) of

—Apu>uP in RZ’k.

In dimension two, we can use techniques from the proof of the Liouville theorem above
to obtain the subsequent variant of the discrete Liouville theorem for infinite cones:
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Theorem 3 (Two-dimensional discrete Liouville theorem for cones)
Forme{1,...,8} let

Q= {(ml,mg)T = (rcosp,rsing)T €R%:r >0, p € (0, Zm)}

Moreover, let h > 0 and 1 < p < py = mT” Then, the only non-negative solution
u: Q" — [0,00) of

—Apu>uP in Q)
su=0.

In their celebrated paper [11]|, Gidas and Spruck used a scaling argument to obtain a
priori bounds for positive C2-solutions of the continuous Emden equation on bounded
smooth domains. In order to get a contradiction, they employed rescalings of solutions
violating the L*°-bounds. After taking the rescaling limit, the contradiction is reached
by two Liouville theorems for classical C2-functions on the entire space R™ and the half
space {x € R™: z, > 0}. In Section {| we transfer this scaling approach to positive
solutions u: Q — [0,00) of the discrete problem (2)), where € := (0,1)" and deduce the
following result:

Theorem 4 (A priori bounds for cubes)
For dimensions n > 2 let Q@ = (0,1)" and 1 < p < p, = 5. Then, there erists a

constant C' > 0 such that for every grid size h = % > 0 with v € N and every non-
negative solution up,: Qp, — [0,00) of

—Apu=uP in Qy,
u=0 on 0

the a priori estimate ||up||p(q,) < C holds.

In the proof we assume for contradiction that there exists a sequence of grid sizes and
corresponding unbounded solutions. Using the scaling approach, we obtain rescaled so-
lutions on rescaled grids. Then, we show that the sequence of new grid sizes either
converges to some positive constant (discrete limit) or to zero (continuous limit). In
the discrete limit case, we construct a non-zero limit function, which contradicts the
discrete Liouville theorem above. In the continuous limit case, we also obtain a non-
zero limit function, which violates the corresponding Liouville theorem for C2-functions
(|5, Thm. 4.6]). The rescaling of the cube €2 can lead to different geometric limit con-
figurations, i.e., —Apu = «P in RZ’k for k € {0,...,n}, where k reflects that a cube has
n — k—dimensional facets with k = n (vertices), k = n — 1 (edges), k = 1 (faces), k =0
(inner point). For each k there is different Liouville exponent p,(k), which is given by
and is minimal for £ = n. In this case p, = "5 is the exponent, which allows to deduce
a contradiction by applying the Liouville theorem for all k& € {0,...,n}. Therefore, we
n

can proof the a priori result for all p smaller than 5.



1. Introduction

Moreover, we generalize Theorem |4 to nonlinearities f(u) = u? (1 + o(1)) with o(1) — 0
as u — oco. In dimension two, we also prove an a priori bound result for a right-angled
isosceles triangle by means of the scaling approach:

Theorem 5 (A priori bounds for triangles)

Let Q i={x € R?: 21,29 >0, 21+ 29 < 1} and 1 < p < p, = % Then, there exists a
constant C > 0 such that for every grid size h = % > 0 with v € N and every non-negative
solution up: Qp — [0,00) of

—Apu=uP in Qy,
u=0 on Iy,

the a priori estimate ||up| o (q,) < C holds.

In the proof the rescaling of the triangle leads to infinite cones. Thus, we use the discrete
Liouville theorem for cones as well as the analogous Liouville theorem for C?-functions
from the literature to obtain a contradiction.

In Section |§| we return to the discrete Emden equation on the entire grid R} and prove
the following existence result:

Theorem 6 (Existence on entire space)

Let h > 0 and n > 3. Then, for every exponent p > "—'_'“3 there exists a positive solution

n
u: R — (0,00) of

N n
—Apu=uP inRj.

This theorem is somehow complementary to the discrete Liouville theorem above: For
dimensions n > 3 there is a positive solution of the discrete Emden equation on the entire
n+2

grid R} if the exponent p is larger than 7=5. In contrast to that, the discrete Liouville

theorem says that for p smaller than 5 there are no positive solutions. It remains an

open problem whether positive solutions exist if p is between =5 and Z—J_rg

We prove Theorem [ with a concentration-compactness argument. If we consider the
discrete Emden equation on an infinite strip, this method can be transferred. In this
case we can apply the discrete Poincaré inequality instead of a Sobolev inequality to

show the existence of a positive solution for all p € (1, 00):

Theorem 7 (Existence on infinite strip)

Let n > 2 be the dimension, Sy, = {x € R}}: 0 < x, < 1} an infinite strip and h = % >0
with v € N and 0,5, = {x € R}: x,, = 0 or x, = 1}. Then, for every p € (1,00) there
exists a positive solution of

—Apu=uP in Sy,
u=0 on dpSh.



2. Preliminaries and notation

2. Preliminaries and notation

Throughout this work we will use the following notations: For n € N let {e1,... ey}
be the standard basis in R™. For the grid size h > 0 we denote the equidistant grid by
R} = {hz: z € Z"}.

Definition 2.1 (Discrete interior, closure and boundary; admissibility)
For A CR™ and a grid size h > 0 we define

Ah = AQRZ

Let Q C R™ be open. Then, Sy, is called discrete interior. Furthermore, for x € Ry, the
set of discrete neighbours is denoted by

Np(z) = {z the;: i€ {1,...,n}}.
With that, the discrete closure Q, and the discrete boundary 9,Qy, are given by

m:: QhU U Nh(l’) and 8th Izm\ﬁh.

€Q

[ ] [ ] [ ] [ ]

o . o . e discrete interior

o . o . o discrete boundary
[ ] [ [ ] [ ]

5 4 -3 2 -1 0 1 2 3 4 5
Figure 2.1: Discrete interior and boundary for a quadrangle 2 with h = 1.

We call h admissible for Q if O,Qp, C 0. In order to define function spaces corresponding
to Qp, we specify parts of the boundary and set

8ZiQh = {x € O, : Ely € QO with x = Y+ hei}

for alli € {1,...,n}. Furthermore, for a discrete set B C R}, we define the discrete
closure by

cly(B) = BU | Ny(a). (2.1)
zeEB
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Remark 2.2 (Admissibility)

There are open sets 0 C R™ such that there is mo admissible grid size h > 0, e.qg.
the two-dimensional rectangle (0,1) x (0,4/2). On the other hand, if Q is a hypercube
[T (ai, b)) C R™ with a;,b; € Q and a; < b; for i € {1,...,n}, then every h > 0,
which divides all a; and b; (i.e., there are y;, z; € Z such that hy; = a; and hz; = b;), is
admissible. Throughout this work, we only consider admissible grid sizes.

Definition 2.3 (Finite difference quotients)

Let h > 0 and  C R™ be open. For a given function u: ), — R we define the forward
and backward finite difference quotients by

u(x + he;) — u(x)

Dfu(z) = - forallx € Q, U0, Q) and
— — he;
D; u(zx) = u(@) u}(Lx i) for all x € Q, U,

forallie{1,...,n}.

Definition 2.4 (Discrete Laplacian)
Let h > 0, Q C R" be open and u: Qp — R. For all x € Qj, the discrete Laplace operator
of u at x is given by

n

Apu(z) = ZD;D:FU(JJ) = ZDfD;u(m)
i=1

i=1
1 n
=13 Z[u(w + he;) — 2u(z) + u(z — he;)).
i=1
Definition 2.5 (Compact support) o
Let Q@ C R™ be a domain and h > 0. A function ¢: Qp — R is said to have compact

support if the set supp(p) = {x € Qp: @(x) # 0} is bounded and = 0 on Q. We
denote the set of all functions with compact support by

C(Q) = {p: Q, — R: ¢ has compact support}.

Definition 2.6 (Discrete harmonic, sub- and superharmonic functions)
Let Q C R" be a domain and h > 0. A grid function u: Q, — R is called discrete
harmomic or subharmomic or superharmomic in Qy if

—Apu =0 or — Apu <0 or accordingly — Apu >0 in Q.

Notation 2.7 (Norms in R™)
For q € [1,00) and = € R™ we use the following conventions:

n 7
= a: ; d = Z 4] .
7[00 ie?ll,..%n} || an |x’q <i1 || )

Instead of |x|2 we write |x|.
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2.1. Discrete function spaces

Let A > 0 and €2 C R™ be a domain. For 1 < ¢ < oo and functions u: 0, — R we set

1
q
lull Ly, = <Z Ju(z !qh"> ,

ey

1wl oo (q2,) = sup |u(z)]
z€Q

and for u: Q; — R

IV ull Lo, = <Z > !DTU(x)Iqh"> ,

=1 2€Q,U8; Q

[un

lullwragany = (15wl dagq,) + 1o ) "

Corresponding to these norms we define the function spaces

Lq(Qh) ={u: Qp = R: HuHLq(Qh) < 00},
W a(0) ={u: 0 > R: IV ull faq,) < oo and u = 0 on 0,04},
q(Qh) ={u: Q= R: JJullwreq,) < oo and u =0 on 9},
wha(Qy) ={u: Q, - R: [ullwiac,) < 0o}

In I/VO1 “I(RY) we identify functions u; and ug which differ only by a constant. Then, all
four spaces endowed with the corresponding norms are Banach spaces.

Further, for 1 < ¢ < oo we define the dual Holder exponent by ¢ = q_il. We also

introduce the following shorthands:

= 3" f@)g(@)h® for | L), g € L7 (),

xEQh

(Viu, Viv) Z Z D u(z)Dfv(x)h™  for u € WhH(Qy,),v € Wha' ().

i=1 xGQhUC()Z Qp

If ¢ = 2, then ¢’ = 2 and L?(2},) equipped with the scalar product (-,-)q, is a Hilbert
space. Addionally, the spaces H'(Q) == WH2(Q,) with (V-V} N, + (-, ), and
HE () = Wy (Qp,) endowed with (Vif, Vi Ya, are Hilbert spaces as well.

10
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2.2. Inequalities and embeddings for grid functions

For functions u: R™ — R the Poincaré, Sobolev and Hardy inequalities are well known
(|1])- In the following sense they hold also for grid functions u: R} — R.

Theorem 2.8 (Discrete Poincaré inequality)

Forb>0let S:={x €R": 0 <z, <b} be an infinite strip and h > 0 be an admissible
grid size. Moreover, let ¢ € (1,00). Then, there exists a constant Cp(q,S) > 0, which is
independent of h, such that

lullzagsny < Cp(a S)llullyrags,)  for allu € Wo(Sp).

Proof. For n =1 and ¢ = 2 the result follows, e.g., from [21, Lemma 3]. The proof can
be generalized to all ¢ € (1,00). Finally, using this one-dimensional result and summing
over the other directions, we obtain the assertion. O

Theorem 2.9 (Discrete Sobolev inequality)
Let h>0,1<q<mn and ¢* = "q be the critical Sobolev exponent. Then, there exists

a constant Cs(n,q) = 2qn—_qn . > O, which is independent of the grid size h, with
.
Il o gy < 5, @)l for all w € WEI(RE).

Proof. For the special case ¢ = 2 and n > 3 the result can be found in |24, Thm. 9|. For
the general case 1 < ¢ < n we can adapt the proof and the assertion follows. ]

Theorem 2.10 (Discrete Hardy inequality)
Let 1 <qg<nandy>0. Forxz € R}, we write

2l = /a2 + 2. (2.2)

Then, there exists a constant Cy(7y,n,q) > 0 such that

u - "
Z [t ;1)1 < CH(v,n, q)||ull’ Wl for all u € Wy I (RY). (2.3)
z€RY

Proof. In [6] the so-called vector field approach is used to prove Hardy inequalities for
functions in C¢°(R™\ {0}). This ansatz can be adapted to grid functions and we obtain
(2.3)) for all functions u € C(R}). By density, the assertion follows. O

2.3. Sobolev spaces

In this section we briefly summarize the notation which we use for the well-know Sobolev
spaces. Let 2 C R™ be open. We denote

L (Q) ={u: © — R measurable and lull L1 (k) < oo for every compact set K C Q}.

11
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Moreover, we define the support of a function u: Q — R by

supp(u) = {z € Q: u(x) # 0}
and use the convention
C(Q) ={u e C™(Q): supp(u) is a compact subset of Q}.

Let u € L (Q) and i € {1,...,n}. If there exists a function g € L{. () such that

/ udjp dx = —/ gipdr for all p € C°(2),
Q Q

then we call 0;u = g; the weak derivative of u in direction z;. With that, for 1 < ¢ < oo
and u € L (9) we set

1
q
llullpa) = </Q |u(x)|qd$> as well as  ||u| oo (q) = sup |u(z)|

€N

and

|Vl o) = (/Z|8u |qu) (/|Vu |qu> ,

Jullwraca) = IVl @y + el )"

Correspondingly, we define the Banach spaces

LU(Q) ={u € Lipo(Q): |lull Loy < oo},
WH(Q) ={u € Lige(Q): [[ullwra) < oo},
W) =c@) v,

Wol’q(Q) (0 )HV'”L‘I(Q).

2.4. Frequently used results

In this section we collect some basic results for finite difference solutions of boundary
value problems.

Definition 2.11 (Discretely connected set)

Let h > 0 and Q@ C R™. Then, Qy, is called discretely connected if for all y,z € €,
there exist some m € N and grid points x1,...,xTym € Qp such that x1 = y, T, = z and
|x; — xip1| =h foralli e {1,...,m —1}.

Lemma 2.12 (Discrete maximum principle)
Let Q C R™ and h > 0 such that 2y, is discretely connected in the sense of Definition|2.11]

12
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Moreover, let u: Q) — R with
—Ahu < 0 Qh.

Then, the following is true:

(a) If there exists some & € Qp, with u(2) = max u(z) > 0, then u = u(%) in Q.
zE€Q

(b) If Q is bounded and u < 0 on 0, then u < 0 in Q.
Proof. The result can be found e.g. in [30, Lemma 5.15]. O

Definition 2.13 (Discrete Green’s function)
Let h > 0 and Q C R" be a bounded domain. We introduce the function ép: R} — R by

1
Sp(x) =< A
0, x#0.

z =0,

With that, for fived y € Qp, we define G(-,y): Q, — R as the solution of the problem

_Ah,xG(xﬂ y) = (5h<1’ - y)7 HARS th
G(z,y) =0, T € Op,.

The resulting function G: Qp, x Q, — R is called discrete Green’s function (for zero
Dirichlet boundary conditions).

Theorem 2.14 (Solution formula for the discrete Poisson equation)
Let h > 0 and Q C R"™ be a bounded domain. Moreover, let f: Qp — R. Then, there

exists a unique solution u: Qp, — R of the discrete Poisson equation

—Apu=f inQy,
u=0 on Q.

This solution is given by the following representation formula:

u(z) = Z G(x,y)f(y)h™  for all x € Q.

yeQ,
Proof. The statements follow from Theorem 5.16 and Lemma 5.19 in |30]. O

Lemma 2.15 (Partial summation formula)
Let Q C R™ with an admissible grid size h > 0 and u: Q;, — R. Then, the following
identity holds true:

((V;u, V,‘fnp»gh = (=Apu,p)q, for all o € C(Qy).

13
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Proof. 1f @ = R™, then the assertion follows directly from [24, Lemma 5]|. So, let  # R"
and u: ), — R. Moreover, let ¢ € C(€;) be an arbitrary test function. We extend u
and ¢ by zero to grid functions defined on R}. Note that

Dfp(z) =0 forall z € R} \ (Q4 U9, Q)
for all i € {1,...,n}. Thus, we conclude
(Viiu, Vioha, = (Viu, Viehrr = (—Apu, ©)rn = (=Apu, ©)q,,

since the assertion holds true in the case 2 = R" by |24, Lemma 5|. t

14
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3. Liouville theorems

If one considers any nonlinear boundary value problem in the field of partial differential
equations, one natural question is whether solutions exist or not. In the case of non-
existence of positive solutions the name Liouville theorem has been established in the
literature and will be used in the sequel.

The Emden equation
—Au =uP

with exponents p € (1,00) is often used as a prototype problem. With a deeper under-
standing of this equation we can replace the Laplacian A by a more general differential
operator in divergence form and allow other nonlinearities f(u) instead of u?.

Concerning classical positive solutions of the Emden equation on R™ with n > 3 the ques-
tion of existence depends on the exponent p € (1, 00) and was answered quite completely.
A classical solution is a C?-function u: R™ — [0, 00) which satisfies

—Au=uP inR". (3.1)

For p € (1,22) Gidas and Spruck ([12|) proved the following Liouville theorem: If

' n—2
u € C?(R") with u > 0 is a solution of (3.1)), then u = 0. For p = Z—fg the instantons
ue € C°(R™),

n—2

[n(n — 2)62]77

[e2 + |=?) =

[CII'S

ue(x) = , 7€R" >0,

are up to translations the only positive solutions of (3.1 (e.g. [29, proof of Thm. III.2.1]).
Finally, for p € (22, 00) there are classical positive solutions of (3.1]) due to a result of

n—2"

Joseph and Lundgren (|18, Thm. 1]). Therefore, 2 is a threshold and is called the

) n—2

critical Liouville exponent for C2-solutions of (3.1]).

For weak solutions the critical exponent is the same: A weak solution of (3.1)) is a function
u € HE (R™), u > 0, such that

Vu-Vedr = / uPodx  for all ¢ € C°(R™). (3.2)

n

RTL

For p € (1, Z—J_rg) we can show, by means of regularity theory, that every weak solution
of (3.1) is in fact a classical C2-solution of (3.1)) (see e.g. Appendix B in [29]). Thus,
we can apply the Liouville theorem for C2-functions and conclude that u = 0 is the

unique solution of (3.2). Moreover, by definition, every classical solution is also a weak

one. We showed above that for p € [Z—i‘%, oo) there are classical positive solutions, which
are therefore also weak solutions. In summary, the critical Liouville exponent for weak
solutions is Z—‘fg

15



3. Liouville theorems

Concerning very weak solutions there is a different critical exponent: A very weak solution
of (3.1) is a function u € L{ (R™), u > 0, with

loc
/ u(—Ayp)dr = / uPodr  for all o € C2(R™). (3.3)

For p € (1,-"5) every very weak solution of (3.1)) belongs to VVli’cq(R”) for all ¢ > 1
according to e.g. Thm. 2| and thus, by regularity theory, is a classical solution of
(3.1). So, the Liouville theorem for C?-functions by Gidas and Spruck applies and u = 0
is the only solution of (3.3). For p € (-5, 00) the function ug € C>°(R™ \ {0}) defined

n—2"7
by
__2 2 2
’U/(](.%') = Cp‘x’ pzl Wlth C’I;_l = Ifl <n -2 — p_1>

solves —Au = uP in R™ \ {0} and is a very weak solution of ({3.1). Hence, the critical
Liouville exponent for very weak solutions is 5. The statements about very weak

solutions can be found in [25].

All these existence and non-existence results are summarized in the chart below:

Liouville: only zero solution 3 positive solutions
n n+2
1 n—2 n—2

classical I } I > D
n n+2
1 n—2 n—2

weak I f ' > D
n n+2
1 n—2 n—2

very weak [ } i > D

Figure 3.1: Overview of existence and non-existence results.

For finite differences, Anton Verbitzky showed in his dissertation () the following
Liouville theorem for the discrete Emden equation

—Apu=uP in Rj. (3.4)

If u: R} — [0, 00) is a solution of (3.4) with p € (1, %5), then u = 0.

The next step is to analyse the Emden equation on a half space H = {x € R": z, > 0}
with Dirichlet boundary conditions. For p € (1 "—”] Gidas and Spruck revealed in \\

' n—2

16



3. Liouville theorems

that the only solution u: H — [0,00), u € C*(H) N C(H), of

—Au=uP in H,
u=0 on JH,

is the zero solution.

The goal of the subsequent section is to prove the discrete Liouville Theorem for half
spaces and more general unbounded domains, e.g. orthants. The method used is based on
a comparison argument and the asymptotic behaviour at infinity. In the continuous case
this approach goes back to Kondratiev, Liskevich and Moroz, especially Theorem 1.3.
in [19].

3.1. Generalized orthant

Notation 3.1
For dimension n € N and k € {0,...,n}, we consider the generalized orthant

RY = {z € R": 21,..., 24 > 0}.

xro €2

4h o o o o 4h o o o o

3h e o o o 3h e o o o

o2h o o o o 2%h o o o o

h o . . o h o o . .
0 00— —o—o—o
0 h 2h 3h 4h ™ h 2h 3h 4h !

—h o o . o

e discrete interior —2h o o o )

o discrete boundary —3h ° ° ° °

—4h . o o o

(a) Orthant (k = n) (b) Half space (k = 1)

Figure 3.2: Discretization of two generalized orthants with n = 2.
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3. Liouville theorems

If k = 0 the special case R™* = R™ occurs, if k = 1 we have a half space and if
k = n then R™* is an orthant. Moreover, for h > 0 the discrete analogon is defined by
RZ’k = Rk MR} and the corresponding discrete boundary 8hRZ’k as well as the discrete

closure RZ’k are given by Definition .

Remark 3.2

The discrete boundary 8hRZ’k is the empty set if k = 0. In this case we use the convention
that a boundary condition on the empty set is an empty condition. Further, a product
over the empty set is defined to be 1.

Notation 3.3
Fora >0 and b € R we use the abbreviation

, if b>0,

Sl S

a
by oo, ifb<O.

Theorem 3.4 (Discrete Liouville theorem for generalized orthants)

Let h > 0 be the grid size, n € N be the dimension, k € {0,...,n} and1 <p < ﬁ
Then, the only non-negative solution u: RZ’k — [0,00) of
—Apu >uP in RZ’k (3.5)

isu=0.

Remark 3.5 (Scale invariance)
Let h,h, > 0 be two grid sizes. Then, WU: RZ;k — RZ’k, given by

U(z) = —ux,

*

s an isomorphism. Moreover, if u: ]RZ7k — [0,00) is a solution of (3.5)) with respect to h,

then uwo W: ]RZ;k — [0,00) is a solution of (3.5]) with respect to h., where uwo W denotes
the composition of ¥ and u.

Let us mention the outline of this section: First, we proof Theorem for dimensions
n > 3. Later, the cases n = 1,2 are treated separately. We want to point out that
Theorem for n = 1 is a consequence of Theorem whereas the case n = 2 follows
from Theorems B.14] and B.21]

The subsequent lemma goes back to the work of Bramble, Hubbard and Zlamal (|7]),
especially the proof of Lemma 3.1 therein. There they prove neighbour estimates for
lz]n, = /|z|> + vh? with some fixed v > 0, whereas we consider |z| with a similar
approach.

18



3. Liouville theorems

Lemma 3.6 (Neighbour estimates)
For all k € (0,1), there exists a radius R, := max {ﬁ, i} > 1 such that for all

x € RY with |x| > R, h € (0,1] and § € {x + The;: T € [—11_,512]} forie{l,...,n} we
have
R0l 2 € 2 K2l
Proof. Let z € R, h € (0,1], 7 € [-1,1], £ :== o + The;, k € (0,1) and |z| > R,. Using
€1* = |@ + Thei|* = |x]* + 27ha; + T2h?
we obtain
€17 — kz|* = (1 — K?) |2|* + 27hay + 72k > (1 — k%) |z]* — 2|z| > 0
since |z| > R, > 125, and likewise
K2z? =€ = (k2 = 1) [z]® — 27ha; — 72R% > (k2 — 1) |2> = 3|z| > 0
as |x\>R,€2max{ﬁ,l}. O
The following auxiliary result is also based on the proof of Lemma 3.1 in [7]: For fixed

B < 0 the authors estimate —Ay, U:):\f] for x € R}. Instead of z — |x]5, we investigate
analogously the comparison function 6 defined below.

Lemma 3.7 (Discrete subharmonic comparison function)

Let h € (0,1], n € N withn >3, k € {0,...,n} and 6: R"\ {0} — R defined by

k
O(x) = (H xj> |z]P.
j=1

For every exponent B < 2 —n — 2k, the function 6 is subharmonic in R™*. Moreover,
there exists a radius Rg > 0 such that

—Apf(z) <0 forallx e RZ’k with x| > Rg,
i.e., 0 is discrete subharmonic in {x € RZ’k: ||oo > Rg}. Further, § =0 on ah]RZ’k\{O}.

Proof. For all x € R™\ {0}, i € {k+1,...,n}, direct computations show that

9 4(a) (

I
E?T‘

o)
&

xj) B|x|6—2xi’

<.
Il
—

Q
Q
RM )
&
I
VR
—=
8
<

<.
Il
_

»)ﬁ [(8 = 2)lal?~aF + jal?7]
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3. Liouville theorems

-
8

|88 =2) (8= Dlal’ i + 3l

<
Il
—

|88 =2) (8= 9)(8 = )|l 2! +6(8 = Dlal’ 2 + 3[/7~]

<
I
-

4 2

l’i o
6(8 —4)— 3
a7 608 >mw+]

-
8

Q

Q
&“; =
&

I
S

» M5—mmW4[w—4xﬁ—m

fﬂj)ﬁ(ﬁ —2)|z/"p <|2722)

with p(s) = (8 —4)(8 — 6)s? + 6(8 — 4)s + 3 for s € [0,1]. Next, we consider the case
i €{1,...,k} and introduce the abbreviation

JF={je{l,....k}: j#i}. (3.6)

Then, for all x € R™ \ {0}, follows

5ﬂ@=(ﬂx)k@“ﬁ+mﬂ,

<
Il
-

I
/N
=P

Il
=

jeJk
82 B8—4,_.3 B8—2
—50@) = | [T a5 )88 = 2lel’"a? + 3l %] (3.7)
! jeJF
63
oa3") =

74 2
L 1 —4)—= 1
2t TP g T #

Mﬂ—mmw4kﬁ—MW—6>

with ¢(s) = (8 — 4)(8 — 6)s? + 10(3 — 4)s + 15 for s € [0, 1]. Therefore,

n

2
> o)

k 82
i=1 ? i=k+1
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3. Liouville theorems

-

s
Il
—

) 508 - Dl a2 + 3jal 2]

<.

+
3
i
T=p

xj)ﬁ (8= 2)l2P~1a? + |2]"~?]

s
Il
el
T
A

I

<
I
—_

)

:L'j>5(2k+n+ﬁ —2)]z|’72 >0

(3k+n—k)Blz|P 2+ B(8 - 2)|as|“Za:%]
=1

Il

<
Il
—

for all z € R™* and 8 < 2 —n — 2k < 0, i.e., 6 is subharmonic in R™*.

In order to show that € is discrete subharmonic for large ||, we estimate the difference

between —A@ and —Af, as it was done in |7] in a similar context: Let z € RZ’k

Wlth |z| > 2h. By Taylor’s theorem there exist €% € {z + The;: 7 € (0,1)} and
) e {x —7hej: 7€ (0,1)},i€{l,...,n}, with

2 n 4 4 ]
“AWB(z) = —AB(z) — ZZ 3 { P o) + ai' e(n@)]
=1 7

n

: so I o iy L 9 )

In the following we will verify that the right hand side is non-positive for all x € RZ’k
with |z|s > R for a sufficiently large radius R. Roughly speaking this works since the
Laplacian is of order 8 — 2 and the forth derivatives are of order § — 4 with respect to
|z|. Thus, the next step is to find a lower bound for 9(3:) for all x € R™* \ {0}.

a 4
Elementary calculations reveal

min p(s) = ( 5 ) —66-3)  na

s€[0,1] 6—p 8—6
. 5 —10(8 - 1)
i =0 (525) = =555

z’z <1 for all z € R™F this yields for i € {k+1,...,n}

x|

o b 22 —6ﬁ(5— b
M@(@:(g ) ety () = 0 (r:[ )m“

As 0 <
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3. Liouville theorems

and for i € {1,...,k}

22 - —1)(B - i
Z (H%)‘”mH%@QZIW%inKE%%W*

In order to apply Lemma for €@ and ) we choose k € (0,1) and set R, =

max ﬁ,ﬁ Hence, for x € RZ’k with || > R, and ¢ € {k+1,...,n} we
have
o ~68(8 -2(8-3) [ 17 .0 g1
@) > (1) (i)
89:;10 (f ) —6 ]1_[153 , )5
=x;
k
> —65(3 —_2)(5 -3) H 25 | KP4
-6 i1

and in the same manner

k
38;:4 (n(i)) > —65(5ﬁ— (H ) B4 4,

for i € {1,...,k} we use §i(i) < 2z; and (3.6]) to obtain

o' (@) » —10B(8—1)(B—2) (@) | O
axf (5 ) B—6 (H gj &/

Vv

_ —208(3 - %“‘”([1@>M4mﬁ4
p— o
and ni(i) < z; yields
o ) - —108(8—1)(8—2) @ ) 0 [ o]
=50 (n) = II »” ) w” |n®
4 -6 J i
6961 5 je‘]f?gj/ ?;-1’
k
> —108(8 - 1)(8 - 2) (H%>Hﬁ—4|$,5—4
56 P
Thus, we can conclude with
h2 n 84 ) 84 .
_ _ p-2 _ " il (4) il (4)
Anf(z (H%> 2k +n+ B — 2)|z| 242[%?0(5 >+ax§9(’7 )]
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3. Liouville theorems

k
(H )M 2[—6(2k+n+6—2)
h

o (C128-2)(8-8) . —308(3-1)(3-2)
s (=25 R ]

—6
<0

for every 8 < 2 —n —2k and = € RZ’k with |z| > Rp for a sufficiently large radius
Rﬁ > 0.

Finally, by definition § = 0 on dR™* \ {0} and hence on 9,R}"* \ {0}. O

The lemma below is a variant of [30, Lemma 10.7]. Although the argumentation is similar
to the original proof, we give all the details for the reader’s convenience.

Lemma 3.8 (Reverse Hardy inequality)
There exists a sequence (u;)ien C C(R}), w # 0 with

n,k 1 .
clp(supp(wy)) C {1‘ eER,: |x|oo > 1h, 2y > ﬁm (i = 1,...,k)} ,

l € N, such that

> Z|D+ul IREESDY ‘ (3.9)
z€R} =1 zeRM\{0}
for a constant C > 0 independent of h and [.
Proof. (1) Reduction
Using the scale invariance with respect to h we obtain
erRZ > i |D‘+ul( )[2h" B erRZ > i [z + he;) — w(x)[?
Ju(z)[2 N ACIDIR '
D eeRI\ {0} ui 7 ht > zezm\{0} ul|zz|2
Due to the norm equivalence in R™ it is therefore sufficient to show
Y wern 2oimt [ui(@ + hei) — wi(@)[? s 510
|ur(zh)[? - (3.10)
2 sezn {0} P
(2) Construction of u
For sets A C R™, the characteristic function y4: R™ — R is given by
1, z€A,
xa(z) = (3.11)
0, else.
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3. Liouville theorems

Defining also e := (1,...,1)T € R", we set

l
l—m
Uy = Z TX{J:ERZ: |x—2lhe|1=mh}-

m=0
T2
9h . . . . . . . . .
8h . . . .
7h . . . .
6h . . . .
5h . . . .
4h . . . .
3h . . . . . . . . .
2h . . . . . . . . .
h . . . . . . . . .
0

O h 2n 3h 4h 5h 6h Th 8h 9h M1

Figure 3.3: Hlustration of ug in the case n = 2.

According to ({2.1]), the discrete closure of a discrete set B C R} is given by

cly(B) = BU | Ny(=).
z€EB

From the definition of w; follows that u; € C(R}) with

clp(supp(w)) = {xz € Ry : |z — 2lhe|y < [h}

> NG

For the last inclusion we used the following: |x —2lhe|; < lh implies |z; —2lh| < Ik

1
C {xERZ’k: |z|oo > h, i > ——=|| (izl,...,n)}.

24



3. Liouville theorems

and hence x; € [lh,3lh] so that |z|s > [h. From that we can conclude

1 1 (& R :
x; > 1h = mBlh\/ﬁ =37 (Z(Blh)2> > NG (Z}ﬁ) = ﬁm

for all : € {1,...,n}.

N[

Estimating the numerator in (3.10))

First, we compute |u;(z + he;) — w(x)| for I € N, i € {1,...,n} and z € R}.
If x and = + he; are not contained in supp(w;), then |u;(z + he;) — wi(x)| = 0.
Otherwise, due to the special construction of u; (see also Figure , we deduce
lwi(x + he;) — w(x)| = 7. In summary, we obtain

» | o 0, if {z,z+ he;} Nsupp(u;) =0,
uy(z + he;) —u(x)]* =

2 else,

foralll e N, i e {1,...,n}, x € R}. Next, we estimate the number of elements in
n
A= U {z e R}: {z,z + he;} Nsupp(u;) # 0}.
i=1
In view of
A; C clp(supp(w)) = {z € R}: |z — 2lhe|; <lh} C{z € R}: |x — 2lhe|o < IR}
we see that A; contains at most (2] + 1)" elements. This yields

" 1
DY lua + hei) — w(x)* < (21 + 1) < 32,

zERY i=1

Estimating the denominator in (3.10)

Since Zin:l (1 - %)2 (%)n_l % is a Riemann sum for

1
2
1— 2 nfld —_
/0( x)w T n(n+1)(n+2)>o’

there exists a constant K (n) > 0 with

! m\2 ym\n—11
3 (1 - 7) (7) 72 K(n) foralll€N. (3.12)

m=1

Furthermore, there exists some constant K’(n) > 0 such that for all | € N and
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3. Liouville theorems

m € {0,...,l} we have

Z X{zeRp : [z—2lhely=mh} (21) = #{z € R} : |x — 2lhe|; = mh}

zeZ™\{0} (3 13)
=#{y € Z": |y, =m} '

Z Kl(n)mnil,

where # denotes the counting measure. Moreover, from |zh —2lhe|; = mh we infer
that |z[1 < m + 2l|e|; = m + 2in. Together with (3.12]) and (3.13) this leads to

lw(zh)> z- )% X{zeRy: |z—2the|s=mn} (2h)
2 B 2 Z 213

2€Zn\{0} 2€2n\{0} m=0

3 Z l— )2 X{zeRp: |o—2the|s=mn} (2h)
(2nl + m)?

Y

2€Zm\{0} m=0
I

1 (I—m)
2 REE e D XiweRp: lo—aneli=mn} ()
m=0 z€Z™\{0}

The estimates for numerator and denominator together prove (3.10) and thus, the reverse
Hardy inequality (3.9)) for u; follows. O

Proof of Theorem[3.4) for n > 3. We prove the result by contradiction: Suppose there
exists a solution u: RZ’k — [0,00),u # 0 of (3.5). Due to the scale invariance of prob-
lem (3.5) (Remark , we may assume h € (0, 1].

(1) Positivity

Assume u(xp) = min u(x) = 0 for some zg € ]RZ’k. Then, the discrete maximum
zeRMF

principle (Lemma [2. , applied to the function —u, directly yields u = 0 in ]Rh ,
a contradiction. ThUb, u > 0in Rh

(2) Comparison argument

From 1 <p< ni‘};g, we get 6 :=2—(p—1)(n+k—2) > 0. By setting ¢ : 2(p5 0
and f:=2—n — 2k — ¢, we infer
(k+B)(p—1)+2>0. (3.14)
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3. Liouville theorems

We define the comparison function 6: R™ \ {0} — R by

k
O(x) = <H1‘J> ||P.
j=1

Note that x — H§:1 x; is a positive, harmonic function in R™* which is zero on

the boundary OR™*. According to Lemma there exists a radius Ry € hN such
that

—Af(x) <0 for all z € R"F with |z]s > Ro.
As the set {z € RZ’k: |z]oo = Ro} is finite, we can find a constant C' > 0 with
CO(x) < u(x) forall z € RP" with || = Ro.

Due to definition of § we have 8 + k < 0 and therefore (x) converges to 0 for
|x| — oo. Hence, for all w > 0, there exists a radius R,, € hN, R,, > Ry, such that

Cl(z) —w <0 forall xze RZ’k with |z]eo = Ry.
As wu is non-negative, we infer that
CO(z) —w <wu(zx) forallze RZ’k with |z]e = Ry.

We remark that R,, — +00 as w — 0. Now we can apply the discrete maximum
principle (Lemma [2.12)) to the function x — C@(z) — w — u(x) defined on the set

My : =R N {y € RY: Ry < [y|oo < Ru}
:{yGRZ Yty - Yk >07 RO < |y|oo <RU)}

With the considerations above we can easily conclude

—Ap[CO(z) —w —u(x)] <0 in M,,
CO(x) —w—u(z) <0 on JpM,.

Thus, the maximum principle (Lemma [2.12)) yields CO(z) — w — u(xz) < 0 in M,,.
By taking the limit w — 0, we get the comparison estimate

CO(x) <u(x) forall z € R}" with || > Ro. (3.15)

Hardy-like inequality

Due to (3.15)), for all x € RZ’k with |z|s > Rp and z; > (t=1,...,k), it

N
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—Apu(z) > uP~H(z)u(z)

p—1
> vt H%) |2 u()
j=1
k p—1
I1 i || BRI P=142 1 3=2 4 ()

p—1
2(( f)’“) || P2 =2 ().
3v/n

As the exponent (k + 8)(p — 1) + 2 is strictly positive by (3.14]), for every K > 0
there exists a radius Rx > Ry such that

for all z € Ng = {w € RZ’k: |z|co > Ri, @i > ﬁ\x! (1= 1,...,k)}.

—Apu(x) > |$K’2u(x)

Agmon principle
Below, we use a discrete variant of the so-called Agmon positivity principle. A
classical version thereof can be found in Agmon’s work (|2, Thm. 3.1]) or in the
book of Davies (|9, Thm. 1.5.12.]). The theory introduced by Agmon is based on
preliminary studies of Allegretto (|4, Thm. 2|) and Piepenbrink (|26, Thm. 3.3]).
Roughly speaking, the idea behind is the following: Inequality says that

K

(3.16)

u is a supersolution for the operator —Aj, — 755 on Ng. This yields that the

|z[*

corresponding bilinear form is positive for all suitable functions ¥: Ng — R, i.e.,

> [ X wrvwr - fpve) 2o

ze€NK -1=1

Next, we turn our attention to the details: For test functions ¢ € C(R}) with

2
clp(supp(¥))) C Nk, we multiply the inequality (3.16) by 1/;(7(;6)) > 0. Choosing test
functions with such a support ensures that we can apply the partial summation
formula from Lemma 2.15] and we obtain

) K )
05 3 |ane T - g T

rENK -

- % |- opn ) - L)
=1

2| w@)  ToP
o B +u 7 + wz(fﬁ) _£ 2 T
= 2 [P (%)~ v
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Direct computations lead to
et (@ L (P he) ()
Dz‘ ()Dz <u(x)>_h2(( +hz) ())( (x+hel) ($)>
= 5 [P+ hed) — 2000 + heg) (@) + 47(@)]

u(x + he;)u(x) [wz(:ﬂ) B Qw(x + he; ) (z) N Y2 (z + hei)]
h? u?(x) u(z + hed)u(z)  u?(z + he;)

2
— i [bte + e — w(o)t = LI D gy L)

u

~IDf 0@~ ule + hegu(o) | D (L)) | 2

for all x € N and all i € {1,...,n}. Together with (3.17)), this implies

> S0 - i@

€Nk Li=1
_ ¢ oD (L@ i nevatar [ (L 2_£2x
-3 3 (Dl- @7 (L2 + ate + heouta) [f (L >)]) Ko >]
> Y S pruwnt (L) - B 20

el b ul@) ) TP

(3.18)

(5) Contradiction to the reverse Hardy inequality
Choosing K bigger than the constant C from Lemma 3.8 and [ € N so large that

clp(supp(u)) C Nr,

the estimates (3.18)) and (3.9) yield
n
)2
kY 0oy Sipuersc ¥

$€NK QTENK =1 JJENK

Iw!2 ’
which is a contradiction since K > C. O

Remark 3.9

In the case RZ’k = Ry withn > 3, i.e., k = 0, the discrete Liouuville Theorem with
“>7 replaced by “=" in was already proven by Anton Verbitsky in his dissertation
(130, Thm. 10.8.]) with a similar approach.
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3. Liouville theorems

Theorem 3.10 (Existence of solutions for generalized orthants)
Let h > 0 be the grid size, n > 2 the dimension, k € {0,...,n}, where k # 0 if n = 2,

”+EQ. Then, there exists a positive solution u: RZ’k — (0,00) of

and p >
—Apu>uP in RZ’k. (3.19)

Proof. We divide the proof into the two parts k € {1,...,n} and k = 0.

k €{l,...,n}: Due to the scale invariance (Remark 3.5) we may assume h € (0,1].
Furthermore, we reuse the comparison function #: R” \ {0} — R from Lemma

defined by
k
= < 11 xj) 2|7,
j=1
where we choose 3 := p— — k < 0. Thus, we see
(p—1)(B+k)+2=0. (3.20)
Moreover, the assumption p > n’f,gﬁz yields
8 >2—n-—2k. (3.21)

Next, we recall some results from the proof of Lemma By ., for all x € R" ok
with |z| > 2h there exist €9 € {z + The;: 7 € (0,1)} and 7% € {x — The;: T € (0, 1)}
i€ {1,...,n}, such that

o RSO oy 9t
—Apb(x (Hx]> 2k+n+ﬁ—2)\x|ﬁQ—M;[MGQ())%—WG(T]())

7

(3.22)

Further, for all z € R™\ {0}, i € {k+1,...,n}, we obtain

st~ (I o -2 ()

with q1(s) = (B —4)(8 — 6)s? + 6(8 — 4)s + 3 for s € [0,1]. Similarly, fori € {1,...,k}

we have
(Ha;]> B — 2)|z|P4q (é;) (3.23)

with ga(s) = (8 —4)(8 — 6)s® + 10(8 — 4)s + 15 for s € [0,1]. Note that 0 < é‘i

<1
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3. Liouville theorems

for all x € RZ’k and that the continuous functions g1, ¢o attain a positive maximum on
[0, 1], respectively. Hence, there exists a constant C' = C(3) > 0 such that

o i A
5af@) <C 1E Lt (3.24)
1 j:l

for all x € RZ’k and i € {1,...,n}. For k € (0,1) fixed, let R,; > 0 be the corresponding
radius from Lemma which allows the neighbour estimates for |z| > R,. From (3.24),
we infer as in the proof of Lemma that there exists some constant C' = C(8,k) > 0
with

0t iy 9 - 61
210 (€7) 52000 = C(jl_[le>\xl

for all € R™* with |z| > R,. We insert this in (3.22) and deduce
1 k
—Apf(z) > —2<ij>ﬂ(2k+n+ﬁ—2)|x]5_2 (3.25)
j=1

for all z € R™F with |z| > Ry and a sufficiently large Ry > R,., since 2k +n+5—-2>0
by (3.21) and 5 < 0. Below, we use the notation cg := —% (2k+n+ p —2) > 0. Next,

we determine some 7 > 0 such that
—Ap, (70(2)) > (10(2))? (3.26)
for large |z|. Due to (3.25), it is sufficient to show that
k
cs < 11 xj> |22 > 771 (70(z))P. (3.27)
j=1

The last inequality is equivalent to

k
cg > Tpfl\x|’8(p71)+2 ( H 3;'?_1) )
j=1

In view of 0 < z; < |z| for all x € RZ’k and i € {1,...,k}, we obtain the estimate
k
— —1 —
|z|PP 1)+2<H$§? ) < || BHREP=1)+2,
j=1

Note that the exponent (8 + k)(p — 1) + 2 is zero by (3.20). Therefore, the condition
(3.27)) is satisfied if cg > 7P~L. In summary, for 7 > 0 such that cg > 777! the inequality
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3. Liouville theorems

(3:26) holds true for all z € R} with || > Ro. Finally, let e € R" with

1, i<k,
€; ‘=
0, else.

Then, the function u: IR{Z’k — R, given by u(z) := 76(x + Roe), solves (3.19).

k = 0: Note that n > 2 by assumption. In view of the scale invariance we may assume
h € (0,1]. In the sequel, we consider the function v: R™ — R, defined by

v(@) = |zlj,

where we choose 8 = ;)%21 < 0 and recall that |z|, = /|z]?> + vh? by (2.2). Here we fix
some sufficiently large v = v(8,n) > 0 such that we can apply Lemma 6.2 in [30] and
deduce the estimate

—Apo(z) > —B(B+n—2)[z|7% for all z € R} \ {0}.

Note that the choice of 8 ensures § —2 = Bp. Using also the assumption p > -5, we
infer 8—2 < 8.5, which leads to 8 > 2—mn. Therefore, the constant ¢z :== —3(8+n—2)
is positive and we conclude

—Apv(z) > égvP(x) for all z € Ry \ {0}. (3.28)

In the next step we proof a similar estimate for x = 0: Direct computation shows that
A LS (e TR — o/ heiZ 1 k2
~Apo(0) = —22 Vihei? + 902" = 23/482 + /[ = heil? + 4

- h5*22n [fya — v+ 1)5} > 0.

Recalling that Sp = f—2, we see vP(0) = \/’thBp = 7% h#~2. Thus, with the shorthand

B8 B8
y2 —(y+1)2
B—2

’7 2

¢g =2n we deduce

—Apv(0) = WP~ 22n [wg —(v+ 1)§] = 657¥hﬁ_2 = ¢zvP(0).
Introducing Cg := min{ég, ég} > 0, we obtain by means of (3.28)) that
—Apv > Cgv?  in Ry.

So, for all 7 > 0 with 7P~ < Cj, the function u(z) = Tv(z) solves (3.19) in RY. O
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3. Liouville theorems

Remark 3.11 (Critical exponent)

For dimensionsn > 2 and k € {0,...,n} (with k # 0 if n = 2) the exponent p, = nTI:ﬁZ

is a critical exponent for positive solutions wu: RZ — (0,00) of
—Apu>uf in RZ’k. (3.29)

On the one hand, for 1 < p < p. there is no positive solution due to Theorem[3.]] On
the other hand, Theorem[3.10] provides the existence of a positive solution for all p > p..
In the case p = py, it is still unclear whether positive solutions exist or not.

3.2. One-dimensional case

For the sake of completeness we consider the case n = 1. Using the techniques from
Section we can prove that the only non-negative solution u: Ry — [0,00) of the
one-dimensional discrete Emden equation

—Apu=uP inRy (3.30)

isu =0 for all p € (1,00) and h > 0. Instead of giving all the details we focus on the
following stronger result.

Proposition 3.12
In dimension one every discrete superharmonic function on R}, which is bounded from
below, is constant.

Proof. Let h > 0. Suppose v: Ry — R be bounded from below and discrete superhar-
monic, i.e.,

“Apo(a) = —% (@ + R) — 20(z) + v(@ — B)] > 0

for all z € Ry. Since problem (3.30)) is scale invariant (Remark [3.5), it suffices to
investigate the case h = 1. Then, v: Z — R satisfies

v(iz+1) —v(z) <v(z) —v(z—1) (3.31)

for all z € Z. Assume v is not constant. Thus, there exists some zy € Z such that
e:=w(z9) —v(z0 — 1) # 0. If € > 0, applying inequality (3.31)), leads iteratively to

e=wv(z0) —v(z0—1) <v(zo—k)—v(z0—k—1)
for all £ € Ny. Hence, for all M € N, we deduce

M-1
v(z0) —v(z0 — M) = Z [v(zo — k) —v(z0 — k —1)] > Me
k=0
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3. Liouville theorems

and we infer

v(zo — M) <wv(z9) — Me = —o0
as M — oo. This contradicts the assertion that v is bounded from below. If ¢ < 0,
similarly

M
v(zo + M) = v(z +Z (z0+ k) —v(z0+k—1)] <wv(z0) + Me - —o0
k=1

for M — oo which yields a contradiction since v is bounded from below. ]

Theorem 3.13
Let h > 0 and p € (1,00). Then, the only non-negative solution of

(a) the real line problem

—Apu > uP in Ry,

(b) the half ray problem

—Apu > uP  in hN,
u(0) >0,

1s u = 0, respectively.

Proof. The first part is covered by Proposition [3.12} However, both problems can be
treated as in the proof of Liouville Theoremfor n > 3. For exponents 3 € (p%zl, 0), the

comparison function §: R\ {0} — R, defined by 8(z) := |z|?, is discrete subharmonic in
{z € Ry: x > R} if R is sufficiently large. Further, the crucial constraint S(p—1)+2 > 0
is valid. Thus, the comparison argument from the proof of Theorem for n > 3 is
applicable and the rest of the proof of Theorem [3.4] can be adapted. O

3.3. Two-dimensional case
3.3.1. Infinite cones

This section is devoted to examine the case n = 2 separately. Here it is possible to use
spherical coordinates to find an appropriate comparison function. For m € {1,...,8} we
consider the infinite cones

Q"= {(1}1,1‘2)T = (rcosp,rsing)l eR?: 1 >0, p € (O, %m)} . (3.32)

The corresponding discrete boundary 027", defined by Definition satisfies by con-
struction 0,7 C 9Q™.
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T2 X9
4h + 4h ° ° ° °
3h T ° 3h ° ° ° °
2h T ° ) 2h ° ° ° °
h + ° ° ° h ° ° ° °
0 f > 0 pd
0 h 2h 3h 4h ! 0 Rk 2n 3h 4h !
(a) Cuspid corner (m = 1) (b) Orthant (m = 2)

Figure 3.4: Discretization of two infinite cones.

Employing the spherical coordinates
(r1,22) = (rcos,rsinp)

we introduce the comparison function v: R?\ {0} — R by

4

v(x) = A+ sin (—(p) (3.33)

m
with some 8 < 0. Note that v(z) = |x|f3r% sin (2¢) and moreover, z rm sin (Z¢)
is a positive, harmonic function in 2" which vanishes on the boundary 92™. Thus, the
ansatz for the comparison function is similar to the case of a generalized orthant.
The aim of this paragraph is the subsequent Liouville theorem which is proven afterwards
with the help of some auxiliary lemmas.

Theorem 3.14 (Two-dimensional discrete Liouville theorem for cones)

Let h >0 andn=2. Form € {1,...,8} let Q™ be defined by (3.32)) and 1 < p < p, =
mTH. Then, the only non-negative solution wu: W — [0,00) of

—Apu >uP  in QF (3.34)

s u=0.

Lemma 3.15 (Discrete subharmonic comparison function II)
Let h € (0,1]. For every exponent 3 < —%, the function v, defined by (3.33)), is subhar-

monic in Q™ and there exists a radius Rg > 0 such that
—Apv(z) <0 for all x € Q)" with |x| > Rg.

Further, v =0 on 0,2 \ {0}.
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3. Liouville theorems

Proof. Using the representation of the Laplacian in spherical coordinates reveals
92 10 1 97
A =l=+-=+===
v(x) <6r2 + 3 + 2 a(pg) v(r, ¢)
4 4 4 4 4\?
= Pt 2sin <g0> <ﬁ+ > <5+ — — 1) +08+ —— <> ]
m m m m m

= AT 2gin (4g0> B (5 + 8) >0
m m

for all z = (rcos(p), rsin(p))? € Q™ as B < —2 i.e., v is subharmonic in Q™.

In the following we proceed as in the proof of Lemma and show that v is discrete
subharmonic for large |z|. Let x € Q" with || > 2h. By Taylor’s theorem there exist
€W € {x 4 The;: 7€ (0,1)} and n® € {x — The;: 7 € (0,1)}, i € {1,2}, with

h? 2 o* ) 94 ‘
~Auola) = ~8ulo) ~ 52 3 [ a0 (69) + g0 ()]
e ,

1=
2

1., . (4 8 h? o4 ; ot ;
=it (o) (40 < 5 0 [ (€0) + e ()

(3.35)

Recall that v(z) = P+ sin (£¢) with 8+ 2 < 0. Thus, v(z) is of order 8+ 2 with
respect to r. Due to

i—cos( )g—lsm( )—
or1 Plor — ¢ MY dp’
0 0 1

86;41) (x) is of order

B+ L —4forie{1,2}. Inview of the neighbour estimates from Lemma we infer
that %v (g@')) and %v (n(i)) are of order 5 + % — 4 for i € {1,2}. Therefore, on the
right hand side of (3.35) the first summand is negative and of order 3 + % — 2 whereas

the second summand is of order 8+ % — 4 with respect to r. Hence, there exists a radius
R > 0 such that

every derivative in direction z; decreases the order by 1 and therefore

—Apv(z) <0, |z| > R.
Finally, by definition, we have v = 0 on 9™ \ {0} and hence on 0,2} \ {0}. O
The next ingredient needed is the reverse Hardy inequality. If m € {2,...,8}, the proof

of Lemma [3:§ can be adopted literally. If m = 1, then the supports of the functions u;
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3. Liouville theorems

from Lemma [3.8 are not contained in Q™. In this case it is sufficient to use translated
versions of the functions u;. For the sake of completeness, we prove a version of the
reverse Hardy inequality which is applicable for all m € {1,...,8}.

Lemma 3.16 (Reverse Hardy inequality IT)
Let 1,02 € (0, g) with

1 1
tan(p1) = g and tan(pz) = 7 (3.36)
Then, there ezists a sequence (u;)jen C C(R}%), uy Z 0 with

clh(supp(ul)) - {SE € R}QI, |‘/E‘OO > lh’ pe [801;902]},

[ € N, such that

2
YD IDfu@)Prr<c Y ’u’(TQ)Ph? (3.37)

reR? =1 cerpvoy |
with a constant C' > 0 independent of h.

Proof. As in the proof of Lemma for [ € N we define the functions u;: ]R,Ql — R by

l
) l—m
U = Z I X{xER%: |x—2lhel1=mh}>
m=0

where e := (3,1)7 € R? and y4: R® — R denotes the characteristic function correspond-
ing to A C R"™. Moreover, the discrete closure cl,(B) of some set B C R} is given by
([21). Therefore, we obtain u; € C(R?) and

clp(supp(ur)) = {z € R}: |z — 2lhe|y < Ih}
- {av ER?: |z]oo > lh, p € [801a<P2]}-

To see the last inclusion, we use the following: |z — 2lhe|; < lh implies |z1 — 6lh| < Ih
as well as |zg — 21h| < [h and hence, |x|s > lh. Further, for x = (r cos g, rsinp)’ € R?
with |z — 2lhe|; < [h the maximal angle @9 is achieved by z = 2lhe + lhey = Ih(6,3)T,
whereas the minimal angle ¢ is attained for 2 = 2lhe — lhey = 1h(6,1)T. Figure
illustrates the supports of the grid functions w;.

Similar to the proof of Lemma 3.8, we can show that the functions u; satisfy the reverse
Hardy inequality (3.37) with a constant C' > 0, which is independent of [ € N. O

Proof of Theorem[3.1J The argumentation is analogous to the proof of Theorem [3.4] for
n > 3. We suppose for contradiction that there exists a solution u: Q" — [0,00),u # 0

of (3.34). Due to the scale invariance of problem ((3.34)) (cf. Remark , we may assume
h € (0,1].
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T2 A

g w2 P1 T

Figure 3.5: Support of uw; for i =1,...,4.

(1) Positivity
Assume u(zg) = mgiln u(z) = 0 for some zo € Q). Then, the discrete maximum
zeQ

principle (Lemma [2.12)) directly yields v = 0 in Q}", a contradiction. Thus, u > 0
in Q).
(2) Comparison argument

Since 1 < p < mTH we have § = 2 — (p — 1)% > 0. Settlng g = 72(1’6_1) and

8= —% — ¢ implies
4
(ﬂ + m> p—1)+2>0. (3.38)
Via spherical coordinates, we define the comparison function v: Q™ \ {0} — R by
v(z) =v(r,p) =71 sin <m<p> .
According to Lemma there exists a radius Ry € hN such that

—Apv(z) <0 for all x € Q) with |z| > Ro
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and moreover v = 0 on O, \ {0}. Since the set {x € Q" |z|c = Ro} is
finite, we can choose a constant C' > 0 with Cv(z) < u(z) for all € Q) with
|z|.c = Rp. Applying the discrete maximum principle (Lemma , as in the
proof of Theorem for n > 3, yields the comparison estimate

Cv(z) < u(z) (3.39)

for all x € Q)" with |z|o > Ro.
Hardy-like inequality

Recall that 1,2 € (0,75) are given by (3.16). For all 2 = (rcos¢,rsing) € QF

with |z|s > Ro and ¢ € [p1, p2] we deduce from ({3.39))
—Apu(z) > uP~H(z)u(z)
> CP P~ (z)u(x)
= C’p*1|xl(ﬁ+%)(p_1)+2 sin? ! <4<p> ]w\”u(w)
m

4
ZCp‘lsinp‘l( @1)|m|< V=142 2y ().

Since the exponent (5 + %) (p—1)+2 is strictly positive by (3.38)), for every K > 0
there exists a radius R > Ry such that

K
—Apu(z) > —|x’2u(x) (3.40)
for all x € NK = {ZU S Q;Ln ‘-’B|oo > RKv p e [(1011()02]}'

Agmon principle
Employing the discrete version of the Agmon principle (cf. proof of Theorem
for n > 3) we infer that for all test functions ¢: R} — R with clj(supp(¢))) C Ng:

2

oD (Df () - |x|2¢2() (3.41)

€Nk Li=1

Contradiction to the reverse Hardy inequality
Choosing K bigger than the constant C' from Lemma [3.16] and [ € N so large that

clp(supp(w)) C Nk,

the estimates (3.41]) and (3.37)) yield

2
kY U< S puwpse Y .

xENK (EGNK =1 CﬂeNK

This is a contradiction since K > C. O
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Remark 3.17 (Critical exponents for Liouville theorems and a priori bounds)
Let  C R? be a bounded Lipschitz domain with 99\ {0} € C* and B.(0) N Q =
B.(0) N Q™ for a number m € {1,...,8} and a radius r > 1, i.e., 0 is a domain with
one conical corner. In [22] McKenna and Reichel showed that every positive very weak
solution u of

—Au =14’ inQ,
(3.42)

u=0 on o

is a priori bounded in L>°(Q2) provided that 1 < p < p*. In general p* is given by

* 2
* n-7 . .« 2-mn n—2 -
_=— th = + + A
P n+y*—2 v 2 \/( 2 ) b

where n > 2 is the dimension and Ay is the first Dirichlet eigenvalue of the Laplace-

Beltrami operator —Agn-1 on w = QN S" 1. That is to say, the critical exponent p* is

determined by the so-called opening angle w. Here n = 2 and A\ = (%)2 and therefore

it follows that p* = 2“75 = mT” So, in this case the critical exponent p* for a priori
1

bounds of very weak solutions from [22] and the Liouville exponent p, for finite difference
solutions from Theorem [3.14] coincide.

Regarding cones Q™ with m € {1,...,7}, the exponent p, = mTH is critical for positive

solutions of
—Apu>uP  in Q.

If 1 < p < py, there is no positive solution in view of Theorem [3.14] and the following
theorem ensures the existence of a positive solution for all p > p,.

Theorem 3.18 (Existence of solutions for cones)
Let h >0 andn =2. Form € {1,...,7} let Q™ be defined by (3.32)) and p > p, = mT+2
Then, there ezists a positive solution u: Q7" — (0,00) of

—Apu > P in Q. (3.43)

Proof. The argumentation is analogous to the proof of Theorem [3.10] Due to the scale
invariance of the problem we may assume h € (0, 1]. Further, we consider the comparison

function v: R?\ {0} — R from Lemma m given by
4
v(z) = B+ sin (cp) ,
m

With,@Z:p%zlf < 0.

4
m
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Hence, we have

4
(p—1) <B+m>+2:0 (3.44)
and the assumption p > m+2 yields
8
8> - (3.45)

Next, let z € Q" with |z| > 2. Due to (3:35), there exist £®) € {x + The;: 7 € (0,1)}
and ) € {& — The;: T € (0,1)}, i € {1,2}, with

. 2 4 4 ,
~Apo(@) = —r" i 2sin (f@ >ﬂ<ﬁ+ 8) 242[8 o(69) + 5 ”(”(“)]‘
=1 ?

Since 3 > —% by (3.45)), we can choose some sufficiently large radius Ry > 0 such that

—Apv(z) > — Pt 2sin <4<p> B <ﬁ + 8) (3.46)
m m

for all x € Q" with || > Ro (cf. proof of Thm. [3.10). Additionally, let 7 > 0 such
that 777! < ¢z := -1 (8+ 2). Thus, with (3.46) and (3.44) we infer

—Ap (ro(x)) > cgTr? T sin (is@) > 72 (4 5) gin? (T:p) = (rv(@))’

for all z € Q) with |z > Ro.
Finally, let e € R? be defined as follows:

2,07, ifme{1,2},
e=1 (0,)T, ifme{3,4},
(=3, 1), ifme {567}

Then, the function u: Q" — R, given by u(z) := Tv(z + Rpe), solves (3.43) in Q". O

3.3.2. Entire space problem in dimension two

In the previous section the case Q = R? was not included and this gap will be closed
below. The subsequent two results for the entire space go back to Hans Heilbronn ([15])
and an unpublished manuscript of Michael Plum (|27]), respectively: We prove that all
discrete harmonic, bounded functions are constant in all dimensions n € N. Thereby, it
can be verified that all discrete superharmonic functions, which are bounded from below,
are constant in the two-dimensional case.
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Theorem 3.19 (Liouville theorem for discrete harmonic functions)
Let h > 0 and n € N be arbitrary. Then, every bounded, discrete harmonic function on
R} is constant.

This result was first published by Hans Heilbronn (|15, Thm. 5]). For the reader’s
convenience we give an alternative proof which is based on the explanations of Michael
Plum (]27]).

Proof. In view of the scale invariance (Remark [3.5) we may assume h = 1 and use the
notation Azr instead of Ap. For n = 1 the result is a direct consequence of Proposi-
tion [3.12] So, let n > 2 and u: Z"™ — R be bounded and discrete harmonic.

(1) Reduction
First, for all z € Z we show that

m(z) = inf{u(z,y): y € 2"} = inf{u(z): 2 € Z"} = M. (3.47)

Let z € Z and y € Z" 1. Then,

n

0= Aznu(z,y) =Y [ul(z,y) +e) = 2u(z,y) +ul(2,9) — )]
i=1

= u(z+1,9) +u(z = Ly) = 2nu(z,y) + ) [u((z9) + &) + ul(zy) — )]
>m(z+1)+m(z—1) —2nu(z,y) + 2(nzi21)m(z),
which leads to
2nu(z,y) > m(z+1)+m(z —1) + 2(n — 1)m(z).
Taking the infimum over all y € Z"~! yields
—Agm(z) = —m(z+1) +2m(z) —m(z —1) >0

for all z € Z. Thus, m: Z — R is bounded and discrete superharmonic. Ap-
plying Proposition ensures that m is constant. Since the discrete hyperplanes
{(z,y): y € Z" '} (2 € Z) cover Z", the constant has to be M and is proven.
Analogously, this result can be shown for hyperplanes with fixed jth component
(j=2,...,n), ie.,

inf{u(&, z,y): €€ 2771y € 2"} = inf{u(z): x € Z"}

for all z € Z.

(2) Symmetry
The next auxiliary statement is that u is symmetric with respect to all hyperplanes
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{a} x Z"', a € Z. To check this, let a € Z and v: Z" — R be given by
v(z,y) =ula+z,y) —ula —z,y) (2 €Z, yecZ" ).
With wu also 4w is discrete harmonic and bounded. Applying to v entails
inf{+v(0,y) : y € Z" '} = inf{*v(z): 2 € Z"}.

As v(0,y) = 0 for all y € Z"!, it follows inf +v = 0 and hence, v = 0. This is

just the desired symmetry property for u. The symmetry of u with respect to the

hyperplanes Z/~! x {a} x Z"~J with j = 2,...,n can be obtained mutatis mutandis.
(3) Conclusion

In view of the symmetry with respect to the hyperplanes Z~1 x {z; + 1} x Zn~*

for all z = (x1,...,2,)7 and i € {1,...,n}, the function u is 2 periodic in all

coordinate directions e;, i.e.,

u(z) = u(z + 2e;)

for all x € Z™ and i € {1,...,n}. Therefore, u attains only finitely many values
and there exists some & € Z" with 2; € {0,1} and

u(z) = min u(z) = M.
TEL™

From
0=Agnu(d) = —2nM + Y [u(@ + ¢;) + u(d — ¢;)]
=1

we infer u(z £ e;) = M for all i € {1,...,n}. Inductively, this implies u = u(Z) on

7" O

With the Liouville theorem in the discrete harmonic setting, we are now in the position
to prove it in the discrete superharmonic, two-dimensional case.

Theorem 3.20 (Liouville theorem for superharmonic two-dimensional case)
Let h > 0 be fized. Then, every discrete superharmonic function on ]R%, which is bounded
from below, is constant.

Proof. This proof is based on ideas of Michael Plum (]|27]). Due to the scale invariance

(Remark of the problem we assume h = 1.

(1) First, we show the result under the additional assumption boundedness from above.
So, let u: Z? — R be bounded and discrete superharmonic. The idea is to verify
that v is in fact discrete harmonic and therefore, by Theorem [3.19] constant. We
define the operator © by
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Then, the superharmonicity just reads 4u > ©u. Moreover, we introduce the
sequences of grid functions (ug), (di) and (wg) by

1
to =4, Uk+1 = Z@Uk,
dk - _AZ2U’]€7
1 k k
4k ;i |z| 4+ [yl <k, k+ 24y even,
wi(z,y) = { 4F (;(kﬂ—x—i—y)) (%(k—i—x—y)) =] + |y Yy
0, else,

for all k € Ng and z,y € Z, where the binomial coefficient is given by

!

k!
k> 2>0
<k>: (k—z)lzl” "F=T=D

v 0, else.

With these notations the following relations which are established in the appendix

(Lemma |A.2)) hold:

(a) 4(up — ups1) = dy,

(d) di(z,y) = >0 wrlp,v)[-Ageul(z 4+ p,y +v),

wVEL
00
(e) > wk(0,0) = +o0.
k=0

From the definition of u; we inductively deduce uy > infu for all £k € N. With ,
@ and the non-positivity of —Agzau, wy we obtain

4(“(:5’ y) — inf U) > 4(“(377 y) — Uj+1 ('Ia y)) = Z 4(“14:(1:7 y) - uk-i—l(:l:a y))

k=0

= di(w,y) =D | D wilpv)[-Ageul(x + gy +v)
0

k=0 L p,veZ

e
i

M~

> > wi(0,0)[-Agul(z,y)

B
Il
o

for every (z,y) € Z*. Due to (g, this gives —Agzu < 0. Thus, u is indeed discrete
harmonic on Z? and hence constant by Theorem

(2) Next, let u: Z?> — R be discrete superharmonic and only bounded from below.
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3. Liouville theorems

Defining a := u(0,0) + 1, we introduce v: Z* — R by
v(z,y) = min{u(z,y),a} for all z,y € Z.
The superharmonicity of u ensures for all z,y € Z
du(z,y) > Ou(z,y) > Ouv(z,y).
By definition, we have
4a > Ouv(z,y)

and this yields immediately

dv(z,y) > Ou(x,y).

So, v is discrete superharmonic. Furthermore, v is bounded from above and from
below. According to the first part v is constant. Hence,

v(z,y) = min{u(z,y),a} = min{u(0,0),a} = min{a — 1,a} =a—1
which leads to u(z,y) = a — 1 =u(0,0) for all x,y € Z, i.e., u is constant. O

After this excursus about discrete superharmonic functions, we return to the investigation
of the discrete Emden equation:

Theorem 3.21 (Discrete Liouville theorem)
Let h > 0 be the grid size, n = 2 the dimension and 1 < p < oo. Then, the only
non-negative solution u: R — [0,00) of

~Apu>uP inRZ (3.48)
isu=0.

Proof. The result follows directly from Theorem [3.20] O

Remark 3.22 (Alternative proof of Theorem |3.21))
We can also prove Theorem|3.21| by applying the comparison argument used in the proof
of Theoremfor n > 3. For some fixed 5 € (]3%21, 0), the comparison function

0: R2\ {0} = R, 0(z) = |z|°

is discrete subharmonic in {x € R3: |z|e > R} if R is sufficiently large (cf. Lemma.
Moreover, [ satisfies the crucial constraint 3(p — 1) +2 > 0. The rest of the proof of
Theorem [34] for n > 3 can be transferred mutatis mutandis.

Remark 3.23 (Applicability of the comparison approach)
We investigate for which p € (1,00) our comparison approach is applicable on R}, depend-
ing on the dimension n € N. Thereto, we need the comparison function : R™\ {0} — R,
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3. Liouville theorems

0(x) == |z|® to be discrete subharmonic and therefore the exponent B has to satisfy
<0 and B(p—1)+2>0. (3.49)

Case n =1,2: For every p € (1,00) we can fixz any f € (])%21,0). Then, (3.49) holds true
and the comparison argument can be applied.

Casen > 3: Due to Lemma we have to ensure additionally that
6<2—n. (3.50)

For p > M5 the conditions (3.49) and (3.50)) contradict each other. If p < "5, we can
find some 3 (see proof of Theorem|[3.4) such that (3.49) and (3.50) are satisfied. Hence,
forn > 3, the comparison approach is applicable if and only if p < ;5.

3.4. More complex geometries

With our comparison argument it is possible to obtain finite difference Liouville theorems
for unbounded domains with more complex structures. Exemplarily, we consider for
dimensions n >3, k € {1,...,n — 2} and m € {1,...,8} the unbounded domains
kym . _mok -2k
AP =RY x R" x Q"

= {(xl, e ,xn)T eER": zq,...,25 >0, (xp_1,2n) = (pcosp, psiny) with

p>0,g0€<0,%m)}.

By construction, we have 8hA’Z’m C 0A*™ . Using spherical coordinates

(xn—h xn) = (p Cos @, psin 90)

we define the comparison function 6: R™\ {0} — R by
d . 4
0(z) == |z|° < 1_[1%> pm sin (mgo> . (3.51)
j:

Note that z +— (H?Zl y:j> p% sin ( 4 cp) is a positive, harmonic function on A®™ which

m
is zero on the boundary 9A*™.
The further proceeding is analogous to Section [3.1} First, the Liouville theorem is stated.
Afterwards, we show that the chosen comparison function is discrete subharmonic. Then,
a suitable version of the reverse Hardy inequality is given. Finally, we prove the Liouville
theorem by means of these auxiliary statements.
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3. Liouville theorems

Theorem 3.24 (Discrete Liouville theorem for more complex geometries)
Let h>0andn>3. Forke{l,....n—2} and m € {1,...,8} let

Akm o — R’i x R"=27Fk QM

n+k+%

g Then, the only non-negative solution u: Aﬁ’m — [0, 00) of

and 1 <p<

—Apu>uP i AP (3.52)

isu=0.

Lemma 3.25 (Discrete subharmonic comparison function IIT)
Let h € (0,1]. For every exponent B < 2 —n — 2k — %, the function 0, defined by (3.51)),

is subharmonic in A®™ and there exists a radius R = Rg > 0 such that
—Apf(z) <0

for all x € Az’m with |z|o > Rg. Moreover, we have 8 =0 on 3hA2’m \ {0}.

Proof. For all x € R™\ {0}, i € {1,...,k}, we recall that

82 k k
ox2 <|$|ﬁ H x]) = (H =75j>5 [(5 — 2)|x\ﬁ*4xf + 3]3:\5*2} (3.53)
i j=1 j=1

by (3.7). For i € {k+1,...,n— 2} it follows similarly

82
Sglel? = B |(8 - 2)lelP~a? + a2 . (3.54)

Employing the spherical coordinates (z,—1,%,) = (pcos g, psin ) we obtain

Zn:ﬁHﬁimi _ﬁ_i_lg_i_ii Hﬁiini
. Ox? eI L)) T Op?  pdp  p?0p? wrpmsm ) )

i=n—1

Moreover, we have
0 4 9 4 4 4
== (lelom) = Blal? 2! + —Jafpie !
I m
as well as

0? 4 4 8 . 4[4 4
- B ) — —9 p—4 —+2 I | B=2 s S | B mT2
57 (1107 ) = B(8 = 2)[2l~*p +5(m+ )m p +m(m )rm\ p
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3. Liouville theorems

Using the last two identities, we compute

iﬁ||ﬂi- 4
‘ &E?xpsmmgo

i=n—1

_ ﬁ+lg+ii ||5 is' é
“\o2 T pap " pPagz ) TR mY

4 (4
= [ﬂ(ﬁ—m\xl“ +2+/3< +1> P2 p 4 — (—1) z[Bpm—2  (3.55)
m m
4 4
8220 1 2 jajipi2 () ol 2| sin ()
m m
8 4
=[5 (24 2) 2+ 505 - Dl 7] o sim (2).
m m
By means of @53), (B53) and E53), we conclude

AG(:B): . —

) <2k+”+ i) )72 + (8 - 2)|x!’842x§]
i=1
k
:<H%‘>p3¢sin (:ﬁ)ﬁ [2k+n+6—2+7ﬂ 2772 >0

for all z € A¥™ and 8 < 2 —n — 2k — % <0, i.e., # is subharmonic in A®™.
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3. Liouville theorems

In the following we proceed as in the proofs of Lemma [3.7] and Lemma [3.15] and show
that € is discrete subharmonic if |z|y is large enough. Let = € Akm with |z| > 2h. By
Taylor’s theorem there exist £ € {z+7he;: 7 € (0,1)} and ¥ € {:L' The;: 7 € (0,1)},
i€ {l,...,n}, with

2 N 4 4
—Anf(z) = — AO(z) — % 3 [839:49 (€0) + 8‘149 (nmﬂ
=1

% %

b 4 4 8
=— (ij>pmsin <m<p> B [2k+n+ﬁ—2+m] |2|P~2
WS90 ey, 2 g (0o
T2 { (5 ) 91 (” )}

<0

)

provided |z| = r > R for a sufficiently large radius R > 0 (cf. proof of Lemma [3.15)).
Finally, by definition we get # = 0 on 9A*™ \ {0} and hence on 6hAfL’m \ {0}. O

Lemma 3.26 (Reverse Hardy inequality III)
Let @1, 02 € (0,%3) with

1
tan(p1) = and tan(pz) = 7 (3.56)

1
6
Then, there exists a sequence (u;)ien C C(R}), g # 0 with

1
Clh(Supp(UZ)) C {x € Rz’k: "CL'|OO > lh’ T > mkd (Z = 1’ s 7”)? pe [3017902]},

l € N, such that

ZZ;DWZ Prr<c (@ 2 (3.57)
Il‘\

zeRY i=1 zeRP\{0}
with a constant C' > 0 independent of h and .

Proof. The functions wu; are constructed similarly to the proof of Lemma Setting
e:=(1,...,1,3,1)T € R", we define

!
Z X{xeR |z—2lhel,=mp} for all l € N,

m=0

where x 4: R™ — R denotes the characteristic function corresponding to A C R™. Recall
that the discrete closure cl,(B) of some discrete set B C R} is given by (2.1]). From the
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3. Liouville theorems

definition of u; we obtain u; € C (RZ) with
clp(supp(wy)) = {x € R?: |z — 2lhe|; < Ih}

C {$€RZ: |LL“OO Zlh7 %Z |ZL"(Z:1,,’I?,), pe [8017(102]}a

1
7v/n
where the last inclusion can be justified in the following way: |z — 2lhe|; < [h implies
|zn—1 — 6lh| < lh as well as |z; — 2lh| < lh for all i € {1,...,n — 2,n}. Therefore,
ZTp—1 € [blh,Tlh|, x; € [lh,3lh] for all : € {1,...,n — 2,n} and hence |x|o > lh. This
yields

1 1
3 1 n 2
z; > lh = —=Tlh\/n = (7lh)? ] > — z? |z
o= i (o) = o (3 =
for all i € {1,...,n}. Furthermore, for z = (z1,...,Zn—2,pcosp, psiny) € R™ with

|z —2lhe|; < Ih the maximal angle @9 is achieved by & = 2lhe+lhe, = lh(2,...,2,6,3)7,
whereas the minimal angle ¢; is attained for & = 2lhe — lhe, = Ih(2,...,2,6,1)T (cf.
two-dimensional case, especially Figure .

As in the proof the Lemma we can show that the functions u; satisfy (3.57) with a
constant C > 0 independent of h and I. O

Proof of Theorem[3.2]). Once more, we follow the lines of the proofs of Theorem [3.4]
for n > 3 as well as Theorem and suppose for contradiction that there exists a

non-negative solution w: Ak i [O 00),u # 0 of (3.52).

(1) Positivity
By the same arguments as in the proof of Theorem [3.4] for n > 3, we may assume
h € (0,1] andu>01nAkm

(2) Comparison argument

. ntk+ -+ .
Since 1 < p < #—%WG haveé::2—(p—1)(n+k+%—2) > 0. Setting
5::%andﬁ::ankaf%—5<Oyields
4
<k+6+m>(p—1)+2>0. (3.58)

By means of the spherical coordinates (x,—1,zy) = (pcosp, psin ), we define the
comparison function 6: A¥m\ {0} — R by

0(z) i= [2]? (ﬁ)w sin (j,bso) .
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In view of Lemma there exists a radius Ry € hN such that
—Ahe(x) < 0

for all x € AZ’m with |2|sc > Ro and § = 0 on 8hA£’m \ {0}. Since the set
{z € Ai’m: |z|oo = Ro} is finite, we can choose a constant C' > 0 with C0(z) < u(z)
for all x € AZ’m with |z|s = Rp. Applying the discrete maximum principle, as in
the proof of Theorem for n > 3, entails the comparison estimate

CO(x) < u(x) (3.59)

for all z € A} with |z > Ro.

Hardy-like inequality
Let 1,2 € (0, 5) be given by (3.56). For all z = (x1,...,2,_2, pcos p, psin o)l €
A’Z’m with |z|ec > Ro, z; > ﬁ]aﬂ foralli e {1,...,n} and ¢ € [¢1, p2] we deduce

from
—Apu(z)
> uP ™ (2)u(x)
> CP 1P (z)u(z)
ko\ P! 2 (p—1)
_ Cp—l‘x|(k+ﬁ+f;)(1?—1)+2< :c]> sinP ™1 <4g0> < P > || P u(x)

p—1
> (CH N C T [ e e
(TR m

Since the exponent (k‘ + 5+ %) (p — 1) + 2 is strictly positive by (3.58)), for every
K > 0 there exists a radius Rx > Ry such that

K
—Apu(z) > Wu(ac) (3.60)
for all z € Ni with

1 .
Ny = {x € A’;’m: |Z|oo > Ricy i > m\aﬂ (i=1,...,n),p€ [@1,902]}.

Agmon principle
Employing the discrete version of the Agmon principle (cf. proof of Theorem for
n > 3), we conclude that for all test functions ¢: R} — R with clj(supp(y’)) C Ng:

3 [Zwrw(w))?— |f|2w2<x>

€Nk Li=1

> 0. (3.61)
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3. Liouville theorems

(5) Contradiction to the reverse Hardy inequality
Choosing K bigger than the constant C' from Lemma and [ € N so large that

clp(supp(u)) C Nr,

the estimates (3.61]) and (3.57) yield

W2(x n ui (T
Ky, |lx<‘2) < DD Dfu@P<C )] |lac(]2)’

$ENK JZENK i=1 JTENK

which is a contradiction since K > C. O

Finally, we complete this chapter with the following existence theorem, which ensures
n—l—k—i—%
ntk+2—2

that the exponent from the Liouville Theorem [3.24|is a critical exponent.

Theorem 3.27 (Existence of solutions)
Let h>0andn>3. Forke{l,....n—2} and m € {1,...,7} let

APm = RE X R"T27R

4
UALA Then, there exists a positive solution u: A’Z’m — (0,00) of

and p > v —
p N kv
—Apu >uP in A, '

Proof. We show the result similar to the proofs of Theorem [3.10] and [3.18 by considering
the comparison function §: R™ \ {0} — R, given by

0(z) = |x\6<f[lxj>pi sin <;¢) ,

with exponent § = %21 -4 _k<o. ]

P m
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4. A priori bounds

4. A priori bounds

It is a quite natural question to ask whether all solutions of a nonlinear elliptic boundary
value problem are bounded. In their celebrated paper, [11]|, Gidas and Spruck considered
non-negative solutions of

—Au =4’ in Q,
(4.1)

u=0 on 01,

where Q C R” is a bounded domain with 9Q € C* and n > 2. If 1 < p < (n”j22)+, then
every non-negative solution u € C?(2) N C(Q) of (4.1) is a priori bounded, i.e., there

exists some uniform constant C' > 0 (depending on p and € but not on u) such that
|l oo () < C.

Since we use a similar approach, we give a short outline of their proof: The result is
proven by contradiction. Therefore, they assume there exists a sequence of solutions
(ur)ken C C*(Q) N C(Q) with [lug||peo () — 00 for k — co. After some rescaling, they
extract a non-negative, nontrivial limit function v € C%(A) N C(A) which solves

—Au=uP in A,
u=0 on 0A,

where A is either the entire space R™ or a half space. As 1 < p < (n”f2§+ this leads in
both cases to a contradiction to the nonlinear Liouville theorem. So, below the minimum
of the Liouville exponents on the whole space and on the half space (which is given by
(n“_'*'22)+), the scaling argument of Gidas and Spruck gives rise to a priori bounds on a
bounded C'-domain.

The statement in |11] allows also for more general uniformly elliptic differential operators
and nonlinearities f(z,u) = g1(x)uP + ga(z,u) with g1 in L™ and |g2(z,u)| = o(uP) as
u — oo. The idea to prove a priori bounds by means of a scaling ansatz and corre-
sponding Liouville theorems has been adopted many times, e.g. in Reichel and Weth
(|28, Thm. 1]) for higher order differential operators or in Hirsch (|17, Thm. 4.3]) for
cylindrically symmetric solutions of the curl-curl problem. In the context of finite dif-
ferences Verbitzky employed this approach in [30, Thm. 10.9] to show a priori bounds
for a discrete Schrodinger equation on the entire grid Ry. In this case only the Liouville
theorems on R™ and R} were needed and boundary issues were not involved. For finite
difference solutions on a hypercube McKenna, Reichel and Verbitzky used in [24] a com-
parison argument which was based on the knowledge of the first eigenfunction and gave
explicit a priori bounds.

In the following we transfer the scaling approach of Gidas and Spruck from C?-functions
to grid functions. The advantage of our method is that it can be applied to other domains
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4. A priori bounds

than hypercubes. Exemplarily, we prove later a priori bounds for right-angled isosceles
2d-triangles. In order to get a better understanding of the new method, we first analyse
the approach on hypercubes and turn later to more general domains.

4.1. Hypercubes

Notation 4.1

Let © = [[i(a;,b;)) C R™ be a bounded hypercube for dimensions n > 2 and a; < b;
fori e {1,...,n}. Further, we denote by py = -5 the discrete Liouville exponent for
orthants from Chapter @ For admissible grid sizes h > 0 and exponents p € (1,p,) we
consider positive solutions of the discrete Emden equation

—Apu=1uP in Qy,
{ (4.2)n

u=0 on Q.

Remark 4.2 (Liouville lexponents for orthants)
According to Theorem 3.4 the Liouville exponent for discrete generalized orthants

RZ’k:{xERZ:ml,...,xk>O}

18 (nfk%km for alln € N, k € {0,...,n} and grid sizes h > 0. In the special case of
n

orthants we have n > 2 as well as k = n and therefore the Liouville exponent is 5.

Theorem 4.3 (A priori bounds for hypercubes)
Let 1 < p < p, =25 and Q = [[;_(a;,b;)) C R™. Then, there exists a constant C' > 0

such that for every admissible grid size h > 0 and every solution uy: ), — [0,00) of
[4.2)n the a priori estimate ||up| Lo (q,) < C holds.

This is our main results in the section and it is proven by contradiction with the aid of
a scaling argument inspired by Gidas and Spruck. The idea is to construct appropriate
limit functions which violate corresponding Liouville theorems: In the discrete limit
case we can use Theorem and in the continuous one we will employ the following
corresponding Liouville theorem for classical solutions which is a collection of several
known results from the literature.

Theorem 4.4 (Liouville theorem on generalized orthants for C2-functions)
Letn e N,n>2 ke {0,...,n} and1 <p< (”7+k Then, the only non-negative

TL+I€*2)+
solution u € C?(R™F) N C(R™*) of

—Au=uP inR"F,
u=0 on OR™F

s u=0.
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4. A priori bounds

Proof. In the case of k = 0, this is just the classical Liouville theorem for the entire space
R"™ of Gidas and Spruck if n > 3 or a variant of it which can be found in the work of Wei
and Xu (|31]) if n = 2.

If k € {1,...,n} the result is based on [5, Thm. 4.6]. For the reader’s convenience we
illustrate how to apply this theorem such that it yields the desired statement: For z € R™
let (r,0) € [0,00) x S*~! be the spherical coordinates of = abbreviated by = = (r,0).
Thereby, for w C S"~! we define the infinite cone

Co={z=(r0):r>0,0¢cw}

and consider non-negative solutions u € C%(C,) N C(C,,) of

(4.3)

—Au=u? inC,,
u=0 on dC,.

Moreover, let (5\1,1/;1) be the first Dirichlet eigenpair of the Laplace-Beltrami operator
—Agn-1 on w and denote the two roots of the equation y(y +n —2) — A\; =0 by

2—n n—22~
+

— + .
22 ¢(2>+1

With that, Theorem 4.6. in [5] says that for 1 < p < ppr the Emden equation (4.3) has
only the zero solution, where

-2 n+~t
v ntat =2

PBT =

is the so-called generalized Brezis-Turner exponent (see |23]). It remains to verify that
vt = k if the cone C,, is a generalized orthant R™* with k € {1,...,n}. Indeed, in this
case

w=R"NS" ={zxecS" " a,..., 2 >0}

and according to Lemma the principle eigenfunction of —Agn-1 on w is given by
U1(x) = Hle x; with corresponding eigenvalue A\; = k(k +n — 2). Thus,

2—n n—2\2 -
T = A
y 5 —i—\/( 9 >+ 1

_2—7’L 1 2
=3 +§\/(n 2)" +4k(k+n —2)

2 — 1
= n+§\/(n+2k—2) —k

2

and the assertion is valid. O
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Definition 4.5 (Tensor product interpolation)
Let Q C R™ be a hypercube and h > 0 be an admissible grid size. We define the discrete
sets
Qh =N RZ,
5th =00 NRY  as well as
éf@h ={x € Qs x & he; ¢ Qh} forallie{1,...,n}.

Foru: Q, > R and g € (1,00), we assign

HUHWOlq(Qh) = (Z Z |D:“u(w)|‘1hn>

=1 xGQh\é;rQh

Furthermore, we denote by i: Q — R the corresponding tensor product interpolant from
/30, Def. 8.12. If v: Qp, — R, then ©: Q — R denotes the tensor product interpolant
corresponding to the by zero extended function v: Qp — R.

Lemma 4.6 (Norm estimates for interpolants)
Let Q C R™ be a hypercube, h > 0 be an admissible grid size. Moreover, let u: Q2 — R

and 4: Q — R be the corresponding tensor product interpolant.

(a) There exists a constant C = C(n) > 0 such that
]| oo (@) < Cllull oo,y

(b) For all q € (1,00), there exists a constant C = C(n,q) > 0 such that
IVl Loy < Cllullyrag,)-

Proof. The first estimate follows from |30, Cor. 8.8|, whereas the second estimate can be
proven as in the proof of [30, Thm. 8.13]. O

Lemma 4.7 (Special estimate for interpolants)

Let ¢ € (1,00), Q C R™ and h > 0 be an admissible grid size. Moreover, let u: Q) — R
with w = 0 on OpQdy,. Then, there exists a constant C = C(n,q) > 0 such that for every
hypercube A C Q (with h is admissible for A) the following estimate holds true

1 " g
lllyr.aca) < ClA]s (uunmh> 2 HDﬁuHim@Qhugh)) ,
i=1

where we extend the function u by zero to a function wu: Aj, = R and denote bya: A—R
the corresponding interpolant.
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Proof. As u =0 on 9,8, we see that

el < ll ey -

(4.4)
1D ] e

AT An) < HDZFUHLOO(B;QhUQh) for all i € {1,...,n}.

In the following C' > 0 denotes a positive constant, which depends only on n, ¢ and can

vary from line to line. From Lemma and (4.4]) we deduce

IVl Lacay < Cllullyraa,

—c(Z > |D;Lu(x)\qh">

i=1 oeA,\0F Ay

) n
< C|A|s (Z HDTUHiM@QhUW)
=1

Q=

as well as

~ ~ q 1. 1 1
follsga = ([ filtde) " < 1A il < CLAR Tl i,y < LA o

Combining the last two estimate we conclude

1
lllwragay = (19 80a) + N800 )

Q=

< ClAfs <HUHL°°(Qh) +y HD;_uHiW(B;QhUQh)>

i=1

O

Proof of Theorem[{.3 The result is shown by a contradiction argument. Hence, assume
there exists a sequence of admissible grid sizes (h;)ieny C (0,00) and corresponding solu-
tions wu; == up,: Qp, — [0,00) of (4.2))5, such that

||ulHLoo(th) — 00 (l — OO) (4.5)
This means that there exist points P; € €2}, with

M = max w(x) = u(P) = oo (I = o0).
ZEEth

In the sequel, we suppose without loss of generality M; > 0 for all [ € N. As Q C R" is
compact, we can assume that P, - P € Q for [ — oc.
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4. A priori bounds

Boundedness
Let h > 0 be admissible and uy,: Q — [0, 00) be a non-negative solution of (4.2)),.
From

WR() = A () = — 13 D (une -+ hes) — 2 (@) + un(e — hep)) < Tyune)
i=1

we infer that
_ 2n
ul ( )<ﬁ for all z € Q.
This yields the uniform boundedness of the non-negative solution wy, if the grid size
h > 0 is fixed and moreover
p—1

hu,? (x) < V2n for all x € Q. (4.6)

Combining (4.5) and (4.6]), we see that h; — 0 as | — oc.
Scaling

1—p

We introduce the scaling parameter \; := M, 2 for [ € N. Note that \; — 0 as
| — oo. Further, the rescaled function v;: Dln [0,00) is given by

1
v(z) = Mlul(/\la: + P),
p=1
where the new grid size 77 = % = M, ? h; and the domain D! = )%Z(Q — PB) is

chosen such that \jxz 4+ P, € 5, = QN Rzl if and only if z € DlTl =DIn R7 . This
entails

[oell oo oL ) = u(0) = 1.
Since x € aTlDlTl is equivalent to \jx + P € 0,1, we obtain
||vl||L°°(6TlDlTl) =0.
Moreover, for all x € Dln we have the equality

1
—Aqu(r) = — Z(vl(x + mei) — 2u(x) + vz — 1e;))
=

= Mlphlz Z w(N(z +me;) + P) = 2u(Nx + ) +w(N(z —ne;) + B))
i=1
1
—uf (N + B) = o] (). (4.7)

Ahlul()\lf -+ Pl) Mp

sz
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Alternatives for (1)1en
From the definition of M; and (4.6) we deduce

p—1

ol T
= Mlp2 h; = (max ul(x)> h; < V2n.

IGth

Hence, (77)1en C (0,00) is a bounded sequence and the following two alternatives
can occur: Either 7, — 7 =0 or, up to a subsequence, 7, — 7 > 0 for [ — oo.

From now on, we separately discuss the two possibilities P € 2 and P € 0f). In each of
the two cases we consider the alternatives 7 > 0 (discrete limit) and 7 = 0 (continuous
limit) separately.

Case 1: P € Q. In this situation we can deduce a contradiction with the aid of the two
Liouville theorems on R} and R"™:

{4)

Domain convergence
Defining d = 3 dist(P,99) = 1 min{||y — P||1: y € 2}, we ensure that the ball
Byi(P) ={|ly — P||1 < 2d: y € R"} is a subset of Q. Since P, — P we have

By(P) C ©
and thus
B4 (0)NRY C DL (4.8)
l
for sufficiently large [ € N. This is an important feature since )% — 00 as [ — oo.

Discrete limit
Below, we analyse the case 77 — 7 > 0 for a subsequence which is again denoted
by (77). We construct the limit function v, : R} — [0, 1] as follows. First, note that

v-(0) :== lim v;(0) = 1.
=00
Next, we choose lp € N such that v;(me1) is well-defined for all [ > [y. This
is possible in view of (4.8). According to the Bolzano-Weierstrat theorem, the

sequence (vi(me1));>1, C (0, 1] contains a convergent subsequence (v, (7,,€1))meN
with a limit in [0, 1] and we assign

vr(Tey) = nlgnoo vy, (T1,,€1)-

Analogously, we extract a convergent subsequence from (vy,, (77,,€2))m>m, and call
the limit v, (7e2), where again the starting index mg € N is chosen so that v;,, (7, e2)
is well-defined for all m > myg. Extracting iteratively more and more subsequences
and using a diagonal sequence, we define v, (z) for all z € R?. Taking the limit for
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4. A priori bounds

the renamed diagonal sequence in (4.7) and employing (4.8) yields
—Arvr(z) = v7(2)

for all x € R?. Keeping in mind that v,(0) = 1, this is contradictory to the discrete
Liouville Theorem [3.41

Continuous limit

In the sequel, we regard the case 7; — 0. Let (R;);en C (0,00) be a non-decreasing
R

LmeN,ie, B™ >R and (—Rfm),Rl(m’)” is admissible for 7,,. Due to (@&.8)

we have

sequence of radii with R; — oo for [ — oo. Further, we define Rl(m) = [ -‘ T for

[—2R§m>, 2R§m)}n CBa (0)NR: C DM,

Tm Am

for all sufficiently large m € N. Thus, we see that ||v,, || = 1 and ||A,, v |lpee =1
n

on —2R§m), 2R§m) } and therefore Theorem 5.31 from [30] yields

Tm

+ ~

for a fixed constant C' > 0, every i € {1,...,n} and all sufficiently large m € N.
According to Definition there exists an interpolant v, € C ([—Rgm),Rgm)]")
associated with vy, : [-Ry" ,Rgm)]ﬁm — [0,1] for all large enough m € N (cf. (4.8)).
Next, we fix some ¢ > n. In view of ([4.9), Hvl||Loo(Dle) =1and vy =0 on 8TlDlTl,
Lemma [£7] ensures

HﬁmHleq([ngm),Rgm)]") <C

for a constant C' > 0 and all large enough m € N. As ¢ > n we can use the
compact embedding Wh4([— Ry, R1]") < C%¥([~Ry, Ry]") for some o € (0,1 — &)
(see |1, Thm. 6.3]) and extract from <6m|[_ R Rl]") N uniformly convergent
’ me
subsequence with limit function v € C%*([~Ry, R1]") N W14([—= Ry, R1]™), v > 0
and v(0) = 1. In the next step, we use the resulting subsequence of (v;,)men as a
starting point to repeat this argument on [—Ra, Re|". Using a diagonal sequence,
we obtain a limit function v € Cp%(R™) N WL4(R™) with v(0) = 1 = vl Loo (rny.-
From the proofs of Lemma 9.8 and 9.9 in [30] we infer that the limit function v
satisfies

/n o(—A) da = / P d

for all ¢ € C°(R™). Thus, regularity theory (see Lemma [A.7) guarantees that
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4. A priori bounds
v € C%(R") and solves
—Av =" inR"™

By virtue of v(0) = 1 this contradicts Theorem [4.4

Case 2: P € 09.

(4)

Bounded discrete gradients
Recall that HWHLN(DT) =1 and ||ATlleLoo(Dzl) =1 for all | € N. Employing the
T 7

discrete Schwarz reflection principle, which is carried out in Proposition [A.5] and
applying subsequently Theorem 5.31 from [30] yields a uniform constant C' > 0
with

HD;_UIHLOO({);DLZLJD%) < c (410)

foralll e Nand i€ {1,...,n}.

Distance to the boundary
For | € N let 6; := min {[y[|1: y € 9, D } € 7N be the distance between 0, which
is the maximizer of the functions v;, and the discrete boundary 0, Dln- Then, there

!

)

exist an integer J = J(I) € N and a minimizer y; € 05, D., so that
o = min {lyll1: y € 0D}, } = llys = Jm.

Using the definition yy = 0 € R", we can choose y; € Dln, j=1,...,J —1, such
that

Yj+1 =il =7
and together with (4.10]) it follows that
1
o (i) —uly)l < €

for all j =0,...,J — 1. This finally leads to

1 =v(0) —v(ys)
= v (yo) — vi(ys)
J—1 1
=7y —(ulyj) —vuly+1))
=0 Tt
<nJC
= C¢
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and therefore,

1
o > ok 0 forallleN. (4.11)

Thus, these two alternatives may occur: Either §; — oo or there exists a convergent
subsequence, which is again denoted by (;);en, such that 6; — § > 0 for | — oc.
Drifting away

First, the case §; — oo is investigated: The definition of §; assures

Bs(0)NRE = {y eR2: |jy|1 < &} c DL (4.12)

for all [ € N. Using instead of (4.8)), the steps (5) and (6) can be transferred
literally and we obtain a contradiction to the Liouville theorems on R? and R",
respectively. In a manner of speaking, the discrete as well as the continuous limit
function does not see the boundary.

Staying near the boundary - half space case

The case §; — 6 > 0 can be much more delicate, especially when P € 9 is a
vertex. Before we come to that we analyse the situation when the boundary 02
coincides, in a neighbourhood of P, with a hyperplane. Up to a rotation and a
translation we may assume that P = 0 and there exists a radius ¢ > 0 such that

By(P)N{z, >0} C Q,
By(P) N {z, =0} C 09 and (4.13)
Bo(P)N{z, <0} CR"\ Q.

Employing the notation z = (2',z,) € R" with 2’ := (21,...,2,-1) € R ! we
introduce the modified scaled functions wy: Dln — [0, 00) given by
() = 2w + (F,0)) (0, Pi)
wi\r) = —u €T = Tr — —
l Ml 1\ [ l )\l s Lln
with domain D! = /\il(Q — (P/,0)) = D' + A%(O/’Plv")' Thus, according to (4.10))
there is a constant C' > 0 so that

HDjleLoo(a;Dlnulel) <C (4.14)

uniformly for all I € N and ¢ € {1,...,n}. Other important properties of the
functions w; are

— P [
—Anw =w; in Dy,

[will Lo, DL ) = 0, (4.15)
1

-1
leHLOO(DlTl) =w (0, \ " Pip) = MUZ(PZ) =1
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4. A priori bounds

for all [ € N. Furthermore, since

/\l_lpl,n = )\l_l min{||z — PlHlt AS Bhlﬂhl}

— P
— min{ ||Z = On, S,
Al
= min {|y|, : My + P € On,n,} (4.16)
= min {Hylhr y € 3nDln}
for large enough [ € N, we see that
(0,01 P,) = (0,8) — (0,8) (1 — o0). (4.17)
As B,(0) N {x, > 0} C Q by (4.13) we have
1
D' = L[2~ (F,0)
Al
1
2 3, [(Be(0) Nz > 0}) = (F7,0)] (4.18)
1

= —B, (—F,0) n{z, > 0}.

Employing A\; — 0 and P/ — 0 directly leads to
D' - {x, >0} =H forl— . (4.19)

The shorthand D' — H means that for all z € H there exists some lo(z) € N such
that = € D! for all I > lp(x). In the same manner we obtain

D' — {2z, =0} = OH (4.20)

for [ — oo. In the case of P € Q the correlation (4.8) has been important. Below,

(4.19) and (4.20) are used instead. Again the distinction between 7, — 7 > 0 and
71 — 0 is appropriate.

First, the case of a discrete limit 7, — 7 > 0 is considered. Then (4.19) and (|4.20))
entail

DL = {z eR!: z, > 0} = H,
0,DL — {z € R!: x, = 0} = 0. H,
for I — oco. In analogy to (5) we generate a limit function w,: H, — [0, 1] with

wr(0,6) == 1= lim w, (0, 4),
l=00 (4.21)
wr =0 on d,H,.
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4. A priori bounds

Moreover, taking the limit | — oo in (4.15) reveals
—A;w,(z) =wl(z) forall z € H..

In view of (4.21)) this contradicts the discrete Liouville Theorem

In the situation 77 — 0 our approach is similar to (6). Let (R;)jen C (0,00) be

an increasing sequence with R; — oo for | — oco. Assigning Rl(m) = [&-‘ T for

Tm

l,m € N yields R™ > R; and the sets Ab™ := ;Rl(m),Rl(m)y " x (0. R™)
are admissible for 7,,,. Moreover, due to Definition [4.5], there exists an interpolant
W, € C(ALm[0,1]) corresponding to wy, for m € N large enough (cf. (E18)).
Since wy, = 0 on 9, D" it is guaranteed by Lemma 8.11 in [30] that

n—

1
=0 on [—R&m),Rﬁm)} « {0}. (4.22)

Again, we fix some ¢ > n. Due to (4.14) and (4.15), Lemma yields a constant
C > 0 such that

[Dm |lwr.acarmy < C

for all sufficiently large m € N. Since Rgm) > Ry, we can restrict the interpolant
w,, to the set A; = (le,Rl)nfl x (0,Ry) for all m € N large enough. As
g > n we can apply the compact embedding W19(A;) — C%%(A;) for some

a € (0,1 —2) (see [I, Thm. 6.3]) and extract from ( wn|z; . uniformly
me

convergent subsequence with limit w € C%*(A;) N W19(A;). As in (6), we obtain
a limit function w € Cﬁ)éx(ﬁ) N Wﬁ)cq (H). In view of (4.15), (4.17) and (4.22) we

see that

w(0',0) =1 = [|[w|[oo(y and
w=0 ondH.

Repeating the argumentation in the proofs of Lemmas 9.8 and 9.9 in [30] reveals
that the limit function w satisfies

/Hw(—Aw)dx:/pr¢dx

for all ¢ € C(H). Therefore, classical regularity theory (Lemma [A.7)) ensures
that w € C?(H) N C(H) with

—Aw=wP in H,
w=0 ondH.

Since w(0',0) =1 and p € (1, -"), this contradicts the Liouville Theorem
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4. A priori bounds

(8" Staying near the boundary - generalized orthant case
We still investigate the situation §; — § > 0 and P € 992. This time no special
case is considered as in the previous section and we only know that the domain 2
coincides in a neighbourhood of P with a generalized orthant. Up to an isometric
transformation and a translation we may assume that P = 0 and there exists a
radius ¢ > 0 such that

B,(P)NR™ c Q,
B,(P) N oR™" C 99 and (4.23)
B,(P)\R"* c R"\ Q,

where R™¥ = {2 € R": x1,...,2; > 0} for some k € {1,...,n}. In Section (7’)
the relation )\l_lle = ¢§; has been important. Inspired by that, we define

O =N P
for j € {1,...,k} and see similar to (4.16] that

8= NPy
> N\ U dist(Py, 9k, )
=X\ 'min{[|z — Pll1: 2 € 0, W, } =G

for sufficiently large | € N due to (4.23). Fixing any j € {1,...,k} and recalling
that 9 = 0 > 0 as | — oo, there are two alternatives for (0 ;)ien: Either 6; ; — oo
or 0;; —+ 0s0,j = 0 > 0 up to a renamed subsequence. With that, we assign

K = #{j € {1,...,k}: (01)ien converges to (500,j},

where # denotes the counting measure. The case k = 0 entails §; — oo and
was already treated in subsection “(6’) Drifting away”. Thus, we may assume
k > 1. In order to simplify the notation we make once more use of an isometric
transformation such that without loss of generality the sequences (d; ;);en converge
t0 000 for j € {1,...,k} and accordingly to oo for j € {k +1,... k}.

Establishing the notation x = (2/,2") € R" with 2’ == (21,...,2,) € R*, 2" :=
(Trt1,- -5 2n) € R*F we introduce the modified scaled functions wy: DL — [0, 00)
given by

1 1
(o) = g + 0,7 = (o= 3 (70"
with the domain ® = )\%(Q — (0, P") = D' + )\%(Pl’jO”). Hence, due to (4.10)

there is a constant C' > 0 so that
+
1Dl e o0, oy < € (4.24)

T
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4. A priori bounds

uniformly for all l € N and i € {1,...,n}. Moreover,

P !
—Anw =w; in D,

lwll Lo o, 1 ) = O (4.25)

1
—1
le”LOO(DlTl) =w (N 'F,0") = MUI(PI) —

for all { € N and
NTPLO") = (01155016, 07) = (Goo,ts -+ - s oo 07) € RS (4.26)

as | — 0o0. According to (4.23)) there exists a radius ¢ > 0 with B,(0) NR™¥ C Q.
Since P, — 0 we can therefore fix a constant R > 0 such that

B"=(0, R)" x (0,2P, 1) X ... % (0,2P;) x (—R, R)"*

k n
=0,R)"x [ 0.2P;) x [] (-

j=r+1 i=k+1
CB,(0)NR™ c O

for sufficiently large I € N and thus
1

o' = [0 (0, P
Al
> LIB' - (0,
i k n
Al ((0 R x ] (0,2P;) x ] ( RR)) (0, Pis1s- s Pin)
! L ]=H+1 i=k+1

(4.27)
Due to \; = 0, P/’ — 0" and §;; = )\lflPlvj — oo forj € {k+1,...,k} this reveals
D - R™* (4.28)

and correspondingly
D! — OR™* (4.29)

as [ — co. In the case of P € Q the relation (4.8) was pivotal. In the sequel (4.28])
and (4.29) are used as a substitute. Once more the distinction between 7, — 7 > 0
and 7, — 0 is convenient.
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4. A priori bounds

To begin with, the case of a discrete limit 7; — 7 > 0 is considered. The relations

(4.28) and (4.29)) lead to

@ln —{r eR:zq,...,2 >0} =R,
0Dt — O RI"

as | — oo. Similar to (5) we construct a limit function w,: R?"™ — [0, 1] with

wT(5oo71, PN 7500757 0”) =1= lim Wy (51,1, ‘e 751,/47 0//),
l—o0

. (4.30)
wr(r2) =0= lhm wr,(mz)  for all z € OR™ NZ".
—00

As in (5), passing to the limit [ — oo for the renamed diagonal sequence in (|4.25|)
results in

—Arwr(z) = wl(z) for all z € RM".

In view of (4.30) this contradicts the discrete Liouville Theorem

In the case of 77 — 0 the argumentation is like in (6). Let (R;)en C (0,00) be
R
%
I,m € N yields Rl(m) > R; and the sets Ab™ = O,Rl(m))f$ X (—Rl(m),Rl(m)>n_n
are admissible for 7,,,. According to Definition there exists a tensor product
interpolant &y, € C(A™,[0,1]) corresponding to w,, for m € N sufficiently large
(cf. (4.27)). In view of [30, Lemma 8.11] the boundary condition w, = 0 on

1
Im g RYSC Q)

Tm

a increasing sequence with R; — oo for [ — oco. Denoting Rl(m) = T for

DT ensures
m

Om =0 on AL™ N OR™". (4.31)

We fix some ¢ > n. By means of (4.24)) and (4.25]), Lemma guarantees that

[[Om [[wragarmy < C

for a constant C' > 0 and m € N sufficiently large. Since Rgm) > R; we can
restrict @y, to Ay == (0, R1)" x (—Ry1, R1)"™". As ¢ > n we can apply the compact

embedding W14(A;) — C%¥(A;) for some o € (0,1 — 7) (|1, Thm. 6.3]) and

extract from <®m|71) N a uniformly convergent subsequence with limit function
me
w € C¥Y(A)NWHI(A;). Asin (6) we construct a limit function w € C’loo’? (R™*)N

I/VI})’C‘I(R"’“). In view of (4.25]), (4.26]) and (4.31]) we see that

W(él, e ,5,{70”) =1= Hw”LOO(Rn,)i) and
w=0 on JR™",
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4. A priori bounds

Similar to (6) we conclude that w € C?(R™*) N C(R™*) and w solves

—Aw =w? in R™",
w=0 on JR™".
Since w(d1,...,0,,0”) = 1 and p € (1,-2;), a contradiction is reached by the
Liouville Theorem (.41 O

In the sequel, we still consider a bounded hypercube Q = [[";(a;,b;) C R™ with n > 2.
Further, recall that the discrete Liouville exponent for orthants is given by p, = 5.
the previous proof we used the scaling argument for nonlinearities ©? with p < p,. This
scaling approach can be generalized to nonlinearities f(u) with a continuous function
f:[0,00) — [0,00) such that

In

(A1) 1i_>m % =k > 0 for some p € (1,p,) and
Yy—00

(A2) £(0) = 0.
Condition (A1) ensures that limit equation is the Emden equation, as before. Further-
more, condition (A2) allows the application of the Schwarz reflexion principle.

Theorem 4.8 (A priori bounds for hypercubes)

Let Q@ = [ (ai,b;)) C R™ and f: [0,00) — [0,00) be a continuous function satisfying
(A1) and (A2). Then, there exists a constant C > 0 such that for every admissible grid
size h > 0 and every solution uy: Qp, — [0,00) of

{ —Apu = f(u) in Qp,

4.32
u=20 on O, ( I

the a priori estimate ||upl| Lo (q,) < C holds.

Proof. The following argumentation is similar to the proof of Theorem[-3] Thus, we only
explain the new ideas. Without loss of generality we may assume k = 1. Otherwise, for
any solution uy : €, — [0, 00) of (#.32)),, we consider the corresponding rescaled function

wp: Qp — [0, 00), given by wy, () :== k7T u(x). Then, wy, solves

—Apwy, = f(wy) in Qy,
wp =0 on Op2
with rescaled nonlinearity f(y) = /{ﬁf(/ﬁip;_ll y) and lim f(—ry,) =1.
y—oo Y

Assume for contradiction that there exists a sequence of grid sizes (hi)ieny C (0,00),
corresponding solutions u; = up,: Qp, — [0,00) of (.32);, and points P, € Qj, such
that

M, = max w(z) =w(P) = oo (I — o00). (4.33)
S hy
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4. A priori bounds

As ) C R" is compact, we may assume that P, — P € Q for [ — oo.

{1

Boundedness

Let h > 0 and uy,: Q) — [0,00) be a non-negative solution of (4.32);, with uy # 0.
The discrete maximum principle (Lemma [2.12)) ensures up > 0 in 2. Since

1 ¢ 2n
fun(z)) = —Apup(z) = —3 Z(uh(a: + hei) — 2up(x) + up(z — he;)) < ﬁuh(x)
i=1
we deduce
1
3
h M <+V2n forall x € Q. (4.34)
up ()
Combining (A1), (4.33) and (4.34)), we infer for large [ € N
1
p—1 P 2
hyu, 2 () < 2hy Fa@)N (4.35)
u ()
In view of (4.33]), we infer h; — 0 as | — oo.
Scaling
1-p
For [ € N, we introduce the scaling parameter \; := M, 2 and the rescaled function

v Dflﬂ — [0, 00) given by

1
vy(z) = Mlul()\ﬂ + P),

p—1
with new grid size 7; := % = M, *> h; and new domain Dl = /\%(Q — P)). Thus, we
have

HUIHLOO(DZTZ) =v(0)=1 and |vllgee, pry=0. (4.36)

T

Additionally, for all z € DlTl we obtain the identity

_Anvl(a:) = -1 Ahlul(/\la? + Pl) = ]\;lpf(m(/\lm + Pl)) = ]\;lpf(Mlvl(x))

My

Alternatives for (1;)ien
For sufficiently large | € N, estimate (4.35] leads to

p—1

p—1 p—1
T = thl 2 = hlul 2 (Pl) < 2V 2n.
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4. A priori bounds

Hence, (77)ieny C (0,00) is a bounded sequence and we may assume 7, — T as
[ — oo with some limit 7 € [0, 00).

Below, we separately discuss the two possibilities P € ) and P € 0¢). In both cases we
consider the alternatives 7 > 0 (discrete limit) and 7 = 0 (continuous limit).

Case 1: P € Q. In this situation we can deduce a contradiction with the aid of the two
Liouville theorems on R} and R™:

{4)

Discrete limit
Firstly, we investigate the case 7; — 7 > 0. As in the proof of Theorem we use
a renamed diagonal sequence to construct a limit function v,;: R? — [0, 1] with

v (T2) = zlggo v(mz) for all z € Z"™.

Moreover, for all z € Z"™ with Mjv;(7;z) — oo as | — oo, we infer from assumption
(A1) that

lim f(Mi(n2)) v (m2) = vB(72).

] 1
lim ﬁlpf(le(le)) - W |

l—o00

On the other hand, if (Mv;(7;2))1en is bounded, then v, (7z2) = llim v(mz) =0
—00

since M; — oo as [ — oco. Thus, we deduce

1
1 —_— = ey p
lliglo Mlpf(Mwl(le)) 0= vP(7z).
In summary, we have
1
lliglo Wf(Mlvl(nz)) =vP(rz) forall z € Z". (4.38)

Due to (4.38), taking the limit in (4.37)) yields
—Asvr(z) = vB(z) for all x € RZ.

As v-(0) = lim v;(0) = 1, this contradicts the discrete Liouville Theorem

N l—00
Continuous limit

In the following, we consider the case 7, — 0. Recall that [jv|, o) =1 for all
m

[ € N by (4.36). Furthermore, we aim to show that there exists some constant
¢ > 0 such that

HATlleLoo(Dle) <c¢ foralll eN. (4.39)
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4. A priori bounds
Note that identity (4.37)) leads to

1
HATZUZ||L°°(DlTl) = HMlpf(MzUz('))

Le=(DL)
In view of (A1), there is some yo € (0,00) such that

fy)

1
yp—l‘<2 forallyzyo.

Hence, if Mjvi(x) > yo, we deduce

1 f(My(z)) 3 3
— == 7/ < Z P < Z.
’Mff(Mlvl(x))‘ ‘ Mrn(@))? vy (z)] < 5 ‘vl (w)‘ <3
Otherwise, if Mjv(z) < yo, we estimate
\1 7 (Mo <x>)\ < max |f(y)
Mlp i ~ ming Mlp y€[0,y0] Yl

Altogether, (4.39) holds true. Corresponding to the grid function v;: Dln — [0, 00),

there exists the tensor product interpolant & € C(D,[0,1]) from Definition
Using (4.36)) and (4.39), we construct a limit function v € C&g‘(R”) N Wli’cq(]R”)
with v(0) = 1 = [|v|| Lo (rn) and

o —v (I —00) (4.40)

uniformly on compact subsets of R™, similar to (6) in the proof of Theorem
For all ¢ € C°(R™), the proof of Lemma 9.8 in |30] shows that

Y ul@) (A = | v(-Ag)de (4.41)

n
z€DL, R

as | — o0o. Next, we verify that

1 N
ﬁlpf(Ml'Ul) — Up

uniformly on compact sets as [ — oco. To this end, we define g: [0,00) — R by
9(y) = f(y) —yP. Due to (A1), g € o(y?) as y — oo, and according to Lemma
we have

uniformly for all ¢ € [0, 1].
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4. A priori bounds

Together with (4.40)), this reveals

=, (z) — VP (x)
My M}

uniformly on compact sets as | — oo. Thus, we obtain for every ¢ € C°(R™)

S i (M) ()

l

:ceD!rl

= 3 i Ota@) @] v+ ¥ e )
wept, -1 zeDL,

— Py dx (I — o0).
Rn

Moreover, identity (4.37) and partial summation (Lemma/[2.15)) yield for sufficiently
large [ € N that

S w(@) (A = 3 A;lpf(me))w(x)n"-

zeDL,

Taking the limit | — oo, we see by means of (4.41)) and (4.42)) that the limit function
v satisfies

/v(—Aw)dx:/ vPpdr  for all ¢ € CZ°(R™).

Hence, regularity theory (see Lemma [A.7)) ensures that v € C?(R"™) and solves
—Av =" in R™

Since v(0) = 1, this contradicts Theorem
Case 2: P € 09.

(4" Bounded discrete gradients
Recall that [v]|; . Do) = 1 for all I € N by (4.36]). Using the same arguments as

in the case P € Q ((4.39) is still valid here), we obtain some constant ¢ > 0 such
that

HATlleLoo(Dle) <c¢ forallleN.

Hence, using the discrete Schwarz reflection principle (cf. Proposition |[A.5)) and
applying subsequently Theorem 5.31 from [30] yields a uniform constant C' > 0
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4. A priori bounds

with

[DF vl e <C (4.43)

&, DL UDL)

forallle Nand i€ {1,...,n}.

The subsections “(5') Distance to the boundary” and “(6’) Drifting away” can be trans-
ferred literally from the proof of Theorem

(7" Staying near the boundary - generalized orthant case
The argumentation is similar to subsection (8') in the proof of Theorem 1.3l We
only point out the two significant changes: In case of a discrete limit, we proceed as
in (4) in the proof of Theorem [4.3[and use assumption (A1) to ensure that the limit
equation is the discrete Emden equation. If the limit is continuous, we argue like in
(5) in the proof of Theorem to show by means of (A1) that the limit equation
is the continuous Emden equation. The rest of (8') in the proof of Theorem
can be transferred mutatis mutandis. O

4.2. More general convex domains

The statement of Theorem was already proven by McKenna, Reichel and Verbitzky
in |24]. They used a comparison argument which requires knowledge of the principle
Dirichlet eigenfunction of —Aj; on . On the one hand, if Q@ = [ ;(a;,b;) C R
is a hypercube the corresponding principle eigenfunction is known and the comparison
approach gives explicit a priori bounds as a function of 2. On the other hand, it is not
clear how to compute the first eigenfunction if 2 is not a hypercube.

The advantage of our scaling method is that it can be applied for a class of convex,
admissible domains and not only for hypercubes. As a prototype domain we consider
right-angled isosceles triangles and give the details in the subsequent theorem. Before,
we have a closer look at the proof of Theorem and point out the crucial steps of the
scaling approach we applied:

(a) It has to be guaranteed that after scaling the maximizer does not tend to the
boundary of the rescaled domain, i.e., (0;);en has to be bounded away from zero
as it was done in section (5'). For hypercubes we could achieve this by uniformly
bounding the discrete gradients with respect to the L°-norm by means of the
discrete Schwarz reflection principle. Thus, this strategy is possible for all domains
Q which allow the application of the reflection principle.

At this point, we suppose that the scaling approach can be employed for more
general convex domains. The key idea is to universalize Theorem 7.9 from |30] in
the following way:

Conjecture 4.9 (Discrete LP-estimates)
Let Q C R™ be a bounded, convexr domain with admissible grid size h > 0 and
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4. A priori bounds

€ (1,00). Further, let g: Qp — R be given and u: Qp, — R be the solution of

—Apu=g inQy,
u=20 on Op,.

Then, there exists a constant C > 0 which depends only on n, q and || such that

lullyiyrai,) < CligllLagy):

If this were true, then this result for ¢ > n, multiplication with a suitable cut-off
function together with Lemma would ensure that (d;);en stays away from zero
without using the Schwarz reflection principle.

Conjecture [£.9)is a discrete analogue of a special case of Theorem 1 in Alkhutov
and Kondratiev (|3]) and was verified by Verbitzky in |30] for hypercubes. Turning
to more general convex domains most of the proofs in the discrete case can be
transferred mutatis mutandis but the crucial step, the estimate for the obstacle
function in |30, Lem. 6.6], remains an open problem.

(b) The construction of the interpolants demands evaluations of functions at each ver-
tex of every reference box (cf. Chapter 8 in [30]). For hypercubes everything works
fine but e.g. for right-angled isosceles triangles there are missing values along
boundary segments which are diagonal to the coordinate axes. If so, we prescribe
the missing values by odd reflexion.

(c) The contradiction is always achieved by means of classical or discrete Liouville
theorems. Therefore, we have to make sure that for all limit domains the corre-
sponding Liouville statements are available. For hypercubes these limit domains
are the generalized orthants and thus, Theorem can be applied if the limit is
discrete and accordingly Theorem if the limit is continuous.

Exemplarily, for a more general bounded, convex domain which permits our scaling
argument for a priori bounds we consider in the sequel a right-angled isosceles 2d-triangle.

Theorem 4.10 (A priori bounds for triangles)

Let b > 0, Q == {z € R%2: 21,20 > 0, 21 + 22 < b} and 1 < p < p, = Then,
there exists a constant C' > 0 such that for every admissible grid size h > 0 and every
non-negative solution uy: £, — [0,00) of

[\C][9N]

(4.44),,

—Apu=uP in Qp,
u=0 on o

the a priori estimate ||up|| p(q,) < C holds.
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4. A priori bounds

e discrete interior

o discrete boundary

Figure 4.1: Discrete interior and boundary for triangle Q = {z1,22 > 0, z1 + 22 < b}
with b=5 and h = 1.

Remark 4.11 (Liouville theorems and exponents for cones)
(a) According to Theorem|3.14| the discrete Liouville exponent for cones

Qo= {($1,1‘2)T = (rcosp,rsing)’ €R*:7 > 0,p € (O’ Zm)}

is mT” forallm € {1,...,8} and grid sizes h > 0. Further, in the case of a triangle
Q= {recR? 21,70 >0, 21 + 29 < b} the smallest internal angle is T and thus,
the smallest Liouville exponent is attained for m =1 and equals %

or all m € {1,..., as well as 1 < p < 5= the only non-negative solution
(b) For all {1 8} Il as 1 mE2 the only g l
u € C?(Q™) N C(Qm) of

—Au=u?P inQ",
u=0 onoQ"

is the zero solution.

Proof of (b). This Liouville-type result follows as in the proof of Theorem The first

eigenfunction of —Ag1 on w = Q™ NS! is given by V- © > sin (%gp) and \; = (%)2 is
the corresponding eigenvalue. This directly yields pgT = mT’LQ O

Proof of Theorem[{.10 The argumentation is similar to the proof of Theorem [.3|for hy-
percubes. Thus, we only recall the main steps and notation. New aspects are illuminated
in detail whereas parts which do not change substantially are only mentioned.

Again, we assume for contradiction that there exists a sequence of admissible grid sizes
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4. A priori bounds

(h1)ien C (0,00) and solutions u; = up,: Qp, — [0, 00) of ([.44)p, such that
||UZHL°°(th) — 00 (I — o0). (4.45)
Further, there exist points P} € ), with

M; = max y(x) = w(P) - oo (I = o0)
IEEth

and after passing to a subsequence we may assume that P, — P € Q for | — oo thanks
to the compactness of €.

(1) Boundedness o
For h > 0 and up: €, — [0,00) a solution of (4.44)5, we have the bound

p—1

hu,? (z) <V2n =2 forall z € Q. (4.46)

Thus, together with we see that h; — 0 for | — oo.
(2) Scaling
For | € N, we introduce the scaling parameter \; = Mll%p. Then, the function
vy: DL — [0, 00) is given by
1
v(z) = Mul()\lx + P)

p—

1
with the new grid size 7; := % = M, * h; and domain D! = /\il(Q — P)). This

entails
[oill Loty = wi(0) =1,
lvell 2o~ o, bt ) = 05 (4.47)
—Aqu(z) =vf(z) forall z € DL.

(3) Alternatives for (1;)ien
Since 7; < 2 by (4.46)), the following two alternatives can occur: Either 7, — 0 or,
up to a subsequence, 7, — 7 > 0 for [ — oc.

From now on, we separately discuss the two possibilities P € £ and P € 0f0.

Case 1: P € . Then we can find a contradiction with the aid of the two Liouville
theorems on R%L and R?. The details can be transferred almost literally from the proof
of Theorem [4.3] for n > 3.

Case 2: P € 09.

(4") Bounded discrete gradients
Recall that Hvl”LOO(DTTl) =1 and HAﬂleLm(Dzﬁ) =1 for all I € N. Applying first
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4. A priori bounds

the discrete Schwarz reflection principle as carried out in Propositions [A-6] and [A75]
and subsequently Theorem 5.31 from [30] yields a uniform constant C' > 0 with

HDz'Jr”lHLoo(a;DlnuDln) <C (4.48)

for all l € N and ¢ € {1,2}.

Distance to the boundary

For all I € N, (4.48)) leads to

. 1
5 = mln{Hyle y € anDln} > 5 >0,
Thus, these two alternatives may occur as [ — oo: Either §; — oo or, up to a
subsequence, &; — § > 0.
Drifting away
Once again, the situation §; — oo can be treated as the inner point case P € ().
Staying near the boundary

Next, we analyse the situation §; — § > 0 when P € 9€). There are four possibili-
ties:
(i) P =(0,0)T: Here Q2 coincides in a neighbourhood of P with an orthant. This
setting was already discussed in the proof of Theorem [4.3| (Subitem (8')).

(ii) P € {0} x (0,b) or P € (0,b) x {0}: That is just the local half space case also
analysed in Theorem (Subitem (7')).

(iii) P = (b,0)T or P = (0,b)”: This time, Q2 coincides locally around P with an
infinite cone. Thus, up to an isometric transformation and a translation we
may assume that P = (0,0)7 € R? and Q = { € R?: 0 < 25 < 21 < b}.

T2

b__

P =(0,0)" p 1

Figure 4.2: Situation after the transformation.
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4. A priori bounds

So, given the cone S with
S::{x€R2: 0<zy<ua1}
= {(xl,xg)T = (rcosg,rsing)l e R%:r >0, p € (0, %)} ,
there exists a radius ¢ > 0 such that

By(P)NS C Q,
Bo(P)N oS C 0N and (4.49)
Bo(P)\S C R"\ Q.

Analogously to the local orthant case, we define
60 =X\ 'Po and &=\ "(P1— Po)
in such a way that the relations

o1 :)\l_l dist( P}, Op, 2, N {z2 =0}) and
5172 :)\l_l diSt(Pl, ahl th N {xl = 1‘2})

hold (see Figure [4.3)).

(4.50)

2 {71 = 22}
S
P = (Pn,Po)T
Po+ e
P1— P
P o
Py 1

Figure 4.3: Illustration of the distance between P, and the boundary 0S.
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4. A priori bounds

Consequently, we have
5l,j > )\l_l diSt(Pl,athhl) = )\l_l min{Hz - PlH13 S 8thhl} =9,

similar to . Since §; — 6 > 0 as [ — oo, for both sequences (6, ;)ien
there are two alternatives: Either ¢;; — 00 or §;; — 0o j = 6 > 0 up to
a subsequence. Generally speaking, the limit domain L sees the boundary
{z2 = 0} if and only if (0;1)1en is bounded and respectively {1 = x2} is
seen if and only if (&;2)ien is bounded. More precisely, the following four
alternatives can occur. Note that the contradiction is always achieved with
the aid of the Liouville theorems on L respectively £ (cf. Theorem [4.3)).

1.) If the sequences (6;,1)ien and (6;,2)ien are both unbounded, then § — oo
in view of (4.50). Here the limit domain is R? and this has already been
considered in “(6') Drifting away”.

2.) In the case that (0;1)en is bounded and (8;2);en is unbounded, the limit
domain £ is the halfspace {z2 > 0} (cf. (7') in the proof of Theorem [4.3)).

3.) The situation (d; 1);en is unbounded and (0; 2);en is bounded can be treated
mutatis mutandis and here the limit domain is the halfspace {z; < z2}. For
specifics we refer to Subitem “(iv) P € {z € R?: zy,29 > 0, 29 = b — x1}”
which is carried out later.

4.) Now let (6;1)ien and (072)1en be both bounded. For this alternative we
explain the details in the sequel. Initially, we introduce the modified scaled
functions w;: DL, — [0, 00) given by

1 1
wi(z) = Mul()\lx) = <a: — )\IPZ>

with the domain

’Dl::1Q:Dl+1Pz={$ER2:O<x2<x1<b}. (4.51)
Al Al Al
Hence, due to there is a constant C' > 0 so that
HD;FWZHLoo(a;@lnu@ln) <C (4.52)
uniformly for all [ € N and i € {1,2}. Moreover,
—Ajw =w) in @ln,
llwrll Lo o, 0L ) = 0 (4.53)

1
1
lwll oo (ot ) = @i\ P1) = MUZ(PZ) =1
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4. A priori bounds

for all [ € N and
N Pi= (011 + 612,601) = (0,1 + 00,2, 000,1) €S (4.54)
as [ — oo. Further, from (4.51)) and A\; — 0 it follows that
oS (4.55)
as well as
09! — 98 (4.56)
for [ — oo. Therefore, the limit domain L is the cone S. Once more, the
distinction between 7; — 7 > 0 and 7; — 0 is convenient.
To begin with, the discrete limit case 77 — 7 > 0 is considered. The coheren-
cies (4.55)) and (4.56) lead to
oL — S,
0, 9L, — 0,5,

for | — oco. As in the proof of Theorem subsection (6), we construct a
discrete limit function w,: S — [0, 1] with

WT((Soo,l + 500,27500,1) =1= lim Wr, (5l,1 + 51,2, 5l,l)a
l—00

' , (457)
wr(rz)=0= lhm wr,(mz) for all z € S NZ~.
—00

Moreover, taking the limit [ — oo in (4.53]) entails
—Asw,(z) =wl(z) forall z € S;.

In light of (4.57)) this contradicts the discrete Liouville Theorem

Next, the continuous limit case 7; — 0 is investigated. Let (R;);eny C (0,00) a

non-decreasing sequence with R; — oo for [ — co. Assigning Rl(m) = {%—‘ Tm

2
for I,m € N yields Rl(m) > R; and the sets Ab™ = (O, Rl(m)> are admissible

for 7,,. Due to (4.51)), we have ®" = {0 <ro < < %} Thus, we can
extend wy, by the discrete Schwarz reflection principle (cf. Prop. [A.6]) to a

~ 2 R ~
function wy,: M7 — [0, 1] with M™ = (0, ﬁ) and wy, = 0 on O, M .
Therefore, for m large enough, wy,: AL™ — [0,1] is well-defined and in view
of Definition there exists the corresponding tensor product interpolant

Om € C(AL™[0,1]). According to |30, Lemma 8.11] the discrete boundary
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" 1
condition w,, = 0 on A7" N OR?*? ensures

Om =0 on AN IR?2,

Since w,, is extended by odd reflection and w,, = 0 on .,Zli,’;n N{x; = x2}, the
interpolant inherits the non-negativity &,, > 0 in A NS and the boundary
values

Wy =0 onmﬁ{xl =za}
and we can summarize the boundary conditions of interest by
Om =0 on ALmNIS. (4.58)
Let ¢ > n be fixed. Using and , we obtain with Lemma that

[[Om [wragarmy < C

for a constant C' > 0 and m € N sufficiently large. Since Rgm) > Ry we may

restrict @, to Ay = (0,R;1)? for large enough m € N. As ¢ > n we can
apply the compact embedding W14(A;) < C%*(A;) for some a € (0,1 — 7)

(see |1, Thm. 6.3]) and extract from ("Dm’le> 0 uniformly convergent
me

subsequence with limit w € C%*(A;) N W19(A;). Similar to the proof of
Theorem subsection (6), we obtain a limit function w € CP%(R22) N
VV&)’(?(]RQ’Q), which can then be restricted on S C R22 = {x1, 25 > 0}. In view

of (4.53)), (4.54) and (4.58) we deduce that

W01 +62,01) = 1 = [|w|| p=(s) and
w=0 ondS.

As in the proof of Theorem subitem (7’), we see that w € C?(S) N C(S)
and w solves

“Aw=wl InS,
w=0 ondS.

Since w(d1 + d2,01) =1 and p € (1, %) this contradicts Remark

P e {r € R?: 21,13 > 0, 13 = b — x1}. This alternative can be handled as
the previous one. We only want to point out two crucial steps:

1.) The discrete limit leads to the Liouville theorem on the half space
{z € R?: 0 < z2 < z1} which can be verified similar to Theorem [3.14]

2.) In the continuous limit case it is suitable to apply the discrete Schwarz
reflection with respect to the straight line {z; = z2} (cf. Prop. |A.6) before
introducing the tensor product interpolants. ]
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4. A priori bounds

Finally, we point out that we can extend the a priori result for triangles of the form
Q= {r € R?: 21,29 > 0, x1 + o2 < b} by replacing the nonlinearity u? with the more
general f(u). In the previous proof we applied the scaling argument for nonlinearities u?
with 1 < p < pe = %, where p, is the smallest Liouville exponent which occurs in the
limit (cf. Remark [4.11]). For the general nonlinearity f(u) we consider as in Section
continuous functions f: [0, 00) — [0, 00) such that

(A1) li_>m % =k > 0 for some p € (1,p,) and
Y—00

(A2) £(0) = 0.

Combining the methods in the proofs of Theorem and [£.8| we obtain the following
result:

Theorem 4.12 (A priori bounds for triangles with general nonlinearity)

Letb >0, Q = {x € R%: 1,29 > 0, 21 + 22 < b}. Further, let f: [0,00) — [0,00) be a
continuous function satisfying (A1) and (A2). Then, there exists a constant C > 0 such
that for every admissible grid size h > 0 and every non-negative solution uy,: Qp — [0, 00)

of

—Apu = f(u) in Qp,
u=20 on Oy,

the a priori estimate ||up| o (q,) < C holds.
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5. Existence of solutions

5. Existence of solutions

In Section [3| about Liouville theorems we showed the non-existence of positive solutions
of the finite difference Emden equation for exponents p € (1,p4). The critical value p,
depends on the unbounded domains we considered, especially on the dimension n. In
contrast to these negative results, we give two positive results in this paragraph and
prove the existence of positive solutions on the entire space as well as on an infinite strip
for exponents p larger than some threshold value p*.

In both cases, the proof is based on a concentrated compactness argument and an em-
bedding H& — L71is used. The procedure requires the condition p+1 > ¢. On the entire
grid the application of the Sobolev embedding with ¢ = 2* = % leads to p > Z—fg,
whereas on a infinite strip ¢ = 2 can be chosen in view of Poincaré inequality and all

p > 1 are allowed.

5.1. Entire space

Theorem 5.1 (Existence on entire space)
Let h > 0 be a fixed grid size and n > 3 be the dimension. Then, for every p > Z—i‘g there

exists a positive solution u: R} — (0,00), u € H&(RZ), of

—Apu=uP inRj. (5.1)

Before proving the theorem, two lemmas are required. Both statements are verified
similar to their classical analogue.

Lemma 5.2 (Lions’ lemma for finite differences)
Let h > 0 be a fized grid size and n € N the dimension. For q € [1,00) let (ug)ken be a
bounded sequence in LY(R}), i.e., there exists a constant C' > 0 such that

Z lug(x)|7h" < C  for all k € N. (5.2)
z€Rp
Further, assume
sup Y Jug(@)|7h" =0 (k= o) (5.3)
veky mEB}h%(y)

for some R > 0, where BR(y) == {z € R}: ||z — y|l~o < R} denotes a discrete ball with
radius R. Then,

up — 0 in L*(Ry) (k— o)

for all ¢ < s < .
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5. Existence of solutions

Proof. Let u: R} — R. Since the grid size h > 0 is fixed, we have for ¢ < s < oo
1 1
q
HUHLS(R" = ( Z lu(z)[® hn) ( Z u(z |qhn> he"a = hg_EHUHLq(RZ)-
z€RY z€RY
For every () # Qj, C R?, we therefore obtain

lullie gy < 2" lullagy)- (5:4)

Next, we choose for some fixed R > 0 a sequence of midpoints (y;)ien C R} such that
Uien B(y,) is a disjoint covering of R?, i.e., every z € R} is contained in exactly one

ball Bﬁ(yl). Using (5.4), ¢ < s < 00, (5.3) as well as (5.2)) we conclude
ol ey = 3 fun) A"

TRy
=1 zeBl(y1)
00 a
< Zh"q( > \uk(w)!qh">
=1 zeBY (y1)
0o rit
¥ [( 3 \uk(x)|qh”> ( > uk<x>|%">]
=1 L\ zeBhy) z€B(y1)
5.1 o
< hn_n;<su121 Z |uk(ﬂ:)qhn> Z( Z |Uk(x)|qhn)
VeRT ceBh () I=1 \zeBl(w)
51
q
:h"ti(sup Z lug(x )qhn> Z lug(z)|Th"™ — 0
yEeRY zeBg(y) zeRY
=0 <C

as k — oo. An immediate consequence is

1
[k Lo mp) < ( Z |ug(2)]? hn) = h_%Huk”Ls(Rg) =0  (k—o0).

z€Rp O

Lemma 5.3 (Discrete Brezis-Lieb lemma)

Let r € [1,00) and (ug)ren be a bounded sequence in L"(R}) with ui, — u pointwise in
Ry . Then

T _ : ™ _ _ r
el gy = Jim (luelze gy = e =l eyy)
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5. Existence of solutions

Proof. The result is proven as its classical analogue, Lemma 1.32. in [32]: According to
Fatou’s lemma, we have

ol oy < ok g7y < o
and thus v € L"(R}). Now let € > 0 and define f,gs): R? — R by

£ = ([l = fux = ul” = Jul"| = elug —ul"), |

where t; = max{t,0} denotes the positive part for all £ € R. Due to Lemma there
exists a constant C' = C'(¢) > 1 with

lla+0]" — |a["| < ela]” + Clo"

for all a,b € R. Using also the monotonicity of the function t — t, we estimate

£ = (Jlurl” = Jug —ul” — || = elug, — "),
< (Huk\r — Jug — u|r‘ + |u|" — elug, — u|’")Jr
< (elug —ul" + Clul" + Ju|" — elug, —u|") .

= (C+1)u".

Since f,gs) — 0 pointwise in R} for & — oo, Lebesgue’s dominated convergence theorem
guarantees || f,ia) I rirp) — 0 as k — oo. Moreover, from the definition of f]ga) we infer
[lurl” = e = ul” = Jul"| < £ + elux — ul”

and obtain

limsupz | ug]" = |uk —ul” = u|"|n" < e supz |ug — u|"h™.
keN R™ keN RY

As sup Y Jug — ul|"h™ < (HUHL’"(RZ) + sup HukHLr(RZ))T < oo by assumption, taking the
keN

keN Ry
limit € — 0 ensures

ZWW—W—W%WW%O%%%%
R}

which leads to

> (lurl” = e = u)B™ =D " Jul"h" (b — 00).

Ry Ry

This is exactly the claim. O
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5. Existence of solutions

Proof of Theorem [5.1, We minimize the functional J: Hg(R}) — R,

T = [l gy = IVl = S5 (D () Pan
=1 zeR}

over the set
M ={ue€ H&(RZ): L[u] =1}

. +1 —
with Llu] = ||u||’zp+1 &) and define d := ulél/{/t Ju] >0

(1) FEzistence of a minimizer
Let (uk)ken be a minimizing sequence of J in the set M. The Sobolev embedding

HY(R?) — L%(RZ) yields that (HUkH o is bounded. The next step is

Lﬁ(R"))
the application of Lions’ Lemma[5.2] Assume

sup Z |uk|n SR 0 (k—0)
YRR Bay)

for aradius R > 0 and discrete balls BR(y) = {z € R}: |[z—y|l < R}. Employing

Lions’ lemma with ¢ = 2—" entails
up — 0 in L(RY)
for all s € (%,oo) The choice s = p+1 > an leads to a contradiction as

up € M for all k € N. Thus, there exists a radius R > 0 and a sequence of
midpoints (yx)ken C R} with

3" furl=Eh" > 6> 0.
By (yr)

Shifting back by yx we define vi(x) = ug(z + yr). The sequence (vg)gen has the
following properties:

[okll Lo+rrp) = llukll Lo+ y)  and H”k|’H3(Rg) = HukHH(g(Rg)'

Going to a subsequence we may assume that there exists a limit function v: R} — R
with

v — v in HY(RY),
vy — v in LPTY(RY) and

v — v pointwise in R}.
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5. Existence of solutions

The function v is not the zero function since by pointwise convergence
Z |U\n SR = hm Z |vk|n SR = hm Z |uk|n SR > 5> 0.
B(0) (0) Bh(yk)

From the weakly lower semicontinuity of the norms || - || HARY) and || - || o+1(rp), we
further deduce

llv < hmlnf HU’CHHl = liIkneian HukH?{l ®p) = hmlnf Jug] = d,

HHI Rn) R")

[vllze+1®py < hr]gleglf lorll o+ gy = Hminf [ug | zov gy = 1-

Consequently, we obtain d > 0 and |[v[|ps+1(rn) € (0,1]. In order to show that v is
the desired minimizer, it remains to verify that v € M, ie., [[v||gp+1@gp) = 1. This
is done by means of the Brezis-Lieb Lemma which yields

1 1
ol gy = Jimn (1= llog = ol ) (55)

as Hvk‘”iﬁl(RH) =1 for all £ € N. Moreover,
h
d= inf ||ul|%, ... = inf — 2 R
a2 iy e 0Awe B (RY) \leLp+1(R“)
entails
Aoy < 1015 (56)
for all w € H(R}). Furthermore, for all A € (0,1) and 3 € (0,1), we have

(1-27+ XN >1. (5.7)

Employing the weak convergence vy — v in H& (R}) together with (5.6)), (5.5) and
(5.7), we conclude

_— ] 2

. o Ut

— i (1o o~ el + 26530, D)
= lim o = 0% gy + 1003 gy

. 2 2
= d (JL%O ok = vllZp41 @y + ”“”L”“(Rm>

2
r p+1)
= (1= Wl )™ + Il ) > o
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provided [|v[|Lp+1(gr) € (0,1). This would be a contradiction. So, |[v[|pr+1(rn) =1
and therefore v € M is a minimizer of the functional J over the set M.

The minimizer v € M yields a weak solution of —Apw = |w|P~ 1w

Above we verified that v € M = {u € H}(R}): L[u] = 1} satisfies J[v] = d =
inf,ecaq J[u]. Hence, there exists a pair of Lagrange multipliers (o, 3) € R?\{(0,0)}
with

aJ'[v] = BL'[v]. (5.8)

Here J’ and L’ denote the Fréchet derivative of J and L, respectively. They are
given by

J'wl(e) = 2(Viw, Vighry and  L'wl(e) = (p+ 1){wl'w, ¢)zp

for all w,p € HY(RP). Evaluating (5.8) at v ensures

+1
2010l gy = BP + Dllol s gy

Due to |[v[|%,,... = J[v] = d > 0 and || Lp+1rpy = 1 we deduce a, 8 # 0 and
Hg (Ry) h
g = ]?le. Thus, we infer J'[v] = ;?leL/[v]’ ie.,

(0, Vi ehrp = Aol o, o)y
for all ¢ € H}(RY). In other words, v is a weak solution of

~Apv =dlvP"'v  in R},

1 .
Hence, the rescaled function w := dr-Tv € H}(R}) is a weak solution of

—Apw = |w|P'w  in RY.

Pointwise solution
The last statement means that w satisfies

(Viw, Viohry = ([wlP " w, o)re

for all ¢ € H}(RP), in particular for all ¢ € C(R}). So, partial summation

(Lemma [2.15)) leads to
(—Anw, o)ry = ((wlP~w, o)y

for all ¢ € C(R}). Choosing the indicator function x. € C(R}) as test function ¢,
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we obtain

—Apw(z) = |w(2)[P w(z)  for all z € RY.

(4) Positivity
Without loss of generality we may assume u, > 0 for all £ € N since for every
minimizing sequence (uy)ren the sequence (|ug|)ren is also minimizing. Then, by
1

construction, we deduce v > 0 in R}'. Consequently w = d»=Tv > 0 solves pointwise
—Apw =w? >0 inR}.

Finally, the discrete maximum principle (Lemma [2.12)) yields w > 0 in R}. ]

Let us collect our results for the discrete Emden equation —Apu = P in R}: The Liou-
ville Theorem [3.4]yields that for 1 < p < p, = "5 there is only the zero solution, whereas

Theoreom guarantees the existence of positive solutions for p > p* = Z—S For
p € [ps,p*], it remains an open question whether positive solutions do exist or not.

Thereby, the overview for classical and very weak solutions (Figure [3.1)) can be extended
to the finite difference solutions:

Liouville: only zero solution 3 positive solutions
n n+2
1 n—2 n—2

classical I } } > D
n n+2
1 n—2 n—2

weak I } } > D
n n+2
1 n—2 n—2

very weak f } i > P
n n+2
1 n—2 n—2

finite difference | } } > P

Liouville 777 3 positive solutions

Figure 5.1: Extended overview of existence and non-existence results.
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5.2. Infinite Strip

Notation 5.4

For dimensions n > 2 we consider the infinite strip S := {z € R": 0 < =, < b} with
width b > 0 . Let the grid size h > 0 be admissible, i.e., there exists j € N such that
Jj = 2 and jh = b. Moreover, the discrete analogon is defined by Sy = S NR}, the
corresponding discrete boundary is 0,S = 0S N R} and the discrete closure is given by
Sy = S,UdLS, =SnN RY. For exponents p € (1 o) we consider the discrete Emden
equation

5.9
u=0 on IS (5.9)

{ —Apu =uP in Sp,
Theorem 5.5 (Existence on infinite strip)
Let n > 2 be the dimension, S = {x € R": 0 < x,, < b} a infinite strip and h > 0 a fized
admissible grid size. Then, for every p € (1,00) there exist two in Sy, positive solutions of
. One solution uy € Ho(Sh) has finite energy, the other one us has infinite energy
and does not belong to LI(Sy) for all q € [1,00).

Proof. Solution with infinite energy
Let v: [0, b], — [0,00) be a in (0, b); positive solution of

1

—ﬁ[v(x—i—h) —2v(z) +v(x — h)] =vP(z), z € (0,b)p,
v(z) =0, x=0orz=>h
Indeed, we construct v by minimizing the functional F': HL(0,0)n) — R, F(w) =
[|wl|% on the set {w € H}((0,b)s): |l o+1¢0,), 1} similarly to the proof

Hy((0,b)n)’
of Theorem Then ug: S, — [0,00) defined by uz( ) == v(xy,) solves (5.9) and
ug & L1(Sy) for all ¢ € [1,00).

Solution with finite energy
The approach is analogous to the proof of Theorem The main difference is that the

. 2n
Sobolev embedding H{ (R}) < L»—2(R?) is replaced by Poincaré’s inequality. For the
reader’s convenience the most important steps are executed below:

In the following we identify functions in H}(Sy) and L9(Sy) with their zero extensions
in H}(R?) and L9(RY), respectively. Note that

HY(Sp) = {w: Sp— R: ||wHHS(Sh) < 00, w =0 on ahsh},

where

1
2

biligeny = (£ X 100t + S pgwtoe

i=1 x€Sy €9, SphUSH
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We minimize the functional J: H(Sy) — R,

T = fullyy 1y = 32 5 IDFu@PA" = fullyy

=1 zeRy

over the set

M = {u e H}Sp): Llu] = 1}

with L[u] = |Ju|/?}! S |u(z)[PTIR™ and define d == inf J[u] >

LP+1(Sh) = wEM

(1) Existence of a minimizer

Let (ug)ren be a minimizing sequence of J in the set M C H}(Sp). The Poincaré
inequality ensures the embedding H(Sy) < L*(Sp) and thus, ([uklz2(s,))
bounded in R. Next, we assume

ken 18
sup |ug(y)] = 0 (k—0).
yESh
Employing the Lions’ Lemma for a radius R € (0,h) and ¢ = 2 results in
ug — 0 in L°(Sp)

for all s € (2,00). Choosing s :=p+ 1 > 2 leads to a contradiction as uy € M for
all k € N. Hence, there exists a sequence of points (yi)reny C S with

|ur(yx)| = 6 > 0.

Shifting back by 9% == (Yk 1, - -, Ykn—1,0) we define vg(x) = up(x+7). Immediate
consequences are

[orllLoti(s,) = Nurllrvis,)  and orllgaes,) = lunlgas,)-

Up to a subsequence we may assume that there exists a limit function v: S, — R
such that

v — v in H}(S),
vy — v in LPY(S,) and

v — v pointwise in S},

Considering the finite set Ay, = {x € Sp: z1,...,2,—1 = 0} we note that

Z lv(z)| = 11m Z lug ()] = hm Z |uk(x + )| > hmsup\uk(yk)\ >5>0
TEA Z‘GAh IEAh

and conclude that v #Z 0. Due to the weakly lower semicontinuity of norms, we
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obtain

2 . 2 T 2 T -
HUHH(}(Sh) < lnglegllf ”U’“HH(}(Sh) = lnglegllf ”uk”H(}(Sh) = hlglegllf Jug] = d,

lollzo+1(s,) < liminf flogllovics,) = lminf [lugl| s,y = 1.

The rest of the proof is akin to the proof of Theorem O

Remark 5.6 (Infinite energy solutions on entire space)

For dimensions n > 4 and p > Z—fé there are also positive solutions with infinite energy
of the entire space problem (5.1)), where Z—J_r:l)) is larger than the critical exponent Z—J_rg from
Theorem [5.1l The construction works as in the proof of Theorem [5.5: In this case, we

can apply Theorem withn —12>3 and p > (=12 " hich yields a positive solution

(n—1)—2~
v on szl, By setting ua(x) == v(x1,...,Tp-1) for x € R}, we get a solution uy on R}
with infinite energy.

With the methods executed in the proof of Theorem it is possible to obtain the
subsequent result for more general strips with minor adjustments since the Poincaré
inequality and the concentrated compactness argument can be employed in this situation.

Theorem 5.7 (Existence on general infinite strip)

Let n > 2 be the dimension, S = (a1,by) % ... x (ag,bx) x R*™* an infinite strip for
some k € {1,...,n— 1} and let h > 0 be an admissible grid size for S. Then, for every
p € (1,00) there exist two in Sy positive solutions of

—Apu=uP in Sy,
u=0 on LS.

One solution uy € H&(Sh) has finite energy, the other one us has infinite energy and
does not belong to L1(Sy,) for all ¢ € [1,00).
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A. Appendix

Lemma A.1
Let r € [1,00). For every € > 0 there exists a constant C = C(g) > 1 such that

lla+b]" —la|"| < ela]” + CJo[]"
for all a,b € R.

Proof. Let € > 0 and s € R. By continuity there exists some § > 0 such that |s| < §
implies ||1 + s[" — 1| < e. On the other hand, we can fix some C' = C(¢g) > 1 so that

|s| > 0 leads to % < C. This results in
1+ s]" =1 <e+Cls|"
for all s € R. For a # 0, the choice s := 2 and multiplication with |a|" yields
lla+0]" — |a["| < ela]” + Clo"

for all @ £ 0, b € R. If a = 0, the inequality is obviously satisfied as C' > 1. O
Below, some auxiliary statements for the proof of Theorem [3.20] are recaped and verified.

Lemma A.2
Let u: Z?> — R be bounded and discrete superharmonic. The operator © is given by

Ou(z,y) =u(x + 1,y) +u(z — 1,y) + u(z,y + 1) + u(xz,y — 1)

for x,y € Z and the sequences of grid functions (uy), (di) and (wy) are defined by

1
uo = U’ Uk+1 = 19uk7
dk = _AZ2Uk,
1 k k
4k ,if |zl Hlyl <k k+x+y even,
wk(x,y) = 4k (é(k‘—kx{-y)) <%(l€+$—y>> f| | |y‘ Yy
0, else,

for all k € Ng and z,y € Z, , where the binomial coefficient is given by

k! ,

v 0, else.

Then, the following assertions hold:
(a) 4(uk — ugt1) = dy,

93



A. Appendix

(b) dit1 = Odx,
(¢) wgy1 = 1OWy,

(d) dip(z,y) = > wr(p,v)[—Agul(z + p,y + v) (Note that only finitely many sum-
WVEZL
mands are different from 0 as wy has compact support.),

(e) ioj w(0,0) = +oo.
k=0

Proof. @ The definitions of u and dj directly show

A(ug — ugy1) = dug — Oug, = —Agauy, = dy.

(]ED By means of the definitions of di and uj as well as @, we see

diy1 = —Agaupr1 = 4upy1 — Oupp = Ouy — Ougy

1
= @(uk - uk+1) = Ze)dk

Let k € Ng and z,y € Z fixed. If |z| + |y| > k + 1, then |z + 1] + |y| > k,
|l — 1]+ |y| > k, ||+ |y + 1| > k and |z| + |y — 1| > k. Thus, wgy1(z,y) =
wr(z+1,y) = wr(x — 1,y) = wi(x,y + 1) = wi(x,y — 1) = 0 by construction and
the promised equality is valid.

Ifk+14+z+yisodd, thenk+ (x+1)+y, k+(xr—1)+y, k+z+ (y+1) and
k+x+(y—1) are odd as well and hence, wiy1(z,y) = wg(z+1,y) = wp(z—1,y) =

Now, let |z| + |y| < k+ 1 and k+ 1+ x + y be even. With the shorthands

k k
1 = 3 (k+1+z+y), ca = 2 (k+1+a—y) € {0,...,k+1} and <_1> = (k N 1> =0

we obtain

=5 (). o= 21
wtey =3 (5) () wea-v=5 (5 ) (8)

and thus
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@ As dyg = —Ap2u and

1, ifx=y=0,

0, else,

wO(x7y) = {

the assertion holds true for k = 0. The induction step & ~ k+1 is shown by means
of , the induction hypothesis and :

4dk+1(l‘,y) = (H)dk:(xay)
=dp(z+1,y) +di(z — 1,y) + dp(2,y + 1) + dp(z,y — 1)

= > wilpv)[=Agul(e + 1+ py +v)

WVEZL
+ > wilp V) [ Ageul(e — 1+ py +v)
WVEL
+ Z wk(M7 I/)[—AZZU](I + w,y +1+ V)
wVEZ
+ > wi(p,v) [~ Ageul(z + gy — 1+ )
wVEZ
= Z wi(p — 1, v)[—Ageul(x + p,y + v)
W VEZL
+ > wi(p+ 1) [~ Ageu)(x + p,y + v)
WVEZ
+ Z wk(uv v—= 1)[7A22u]($ +uy+ V)
WwVEZ
+ Z wk(/Jﬂ v+ 1)[_AZQU](‘T Y+ V)
wVEZ
= Z Owy(p, V) [—Ageu](z + p,y + v)
WVEL
=4 Z wk-l—l(“: V)[_AZNL](:U + Y+ V)'
W VEZL
@ By construction
Do wi(0,0)= ) 4k;<k> = 1(5<k>
k=0 =0 2 k=0
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,_
w‘i
[

2
and the divergence ﬁ (2kk> — 400 for M — oo follows in view of
k=0

L (2(k—1)\* 16
6T\ k-1

with Raabe’s test (see e.g. [16, Section 33.10]). O

1k(2k>2 2 2

165\ k 1 [2k(2k — 1) 1 11 1

= R NE— =1(1 =1—- — —>1 - =
[ k2 ] ( ) R TE R

Lemma A.3 (Spherical harmonics)
Form>2 ke {l,...,n}, let

w=R"Wn§ 1= {zesS" iay, ...,z >0}
Then, the first eigenvalue-eigenfunction-pair (5\1,1/;1) for

{ —Agnqz/:f =X inw, (A1)
Yv=0 onodw

is given by ¥y (x) = Hle z; and A\ = k(k+n —2).

Proof. The function f: R™ — R, f(z) := Hle x; is harmonic and a homogeneous poly-
nomial of degree k, i.e.,

F(tx) =t f(x)

for all z € R™ and ¢ > 0. Therefore, Proposition 1.8 in Gallier’s article ([10]) yields that
the restriction f|gn—1 =: 1, solves

gt = X in

with eigenvalue Ao = k(k +n — 2). By construction we have 1[15 = 0 on dw and hence,
¥y is an eigenfunction for (A.1)) with corresponding eigenvalue .. The positivity of 1,
in w shows that A, is indeed the first eigenvalue (|5]). O

Definition A.4 (Odd reflected function)

Let @ == T]"_(ai, b;) C R™ be a hypercube and h > 0 be admissible. For x € R™ and fived
i€{l,...,n} we denote by x~ = x + 2(a; — z;)e; and x+ = x + 2(b; — x;)e; the image
points of x reflected with respect to the hyperplanes {x; = a;} and {x; = b;}, respectively.
Thereby, the corresponding reflected domains are given by

Q7 ={zcR": z~ €Q},
QF = {zeR": zT €Q}
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as well as M = (ﬁ uQitu F) . Moreover, for a given function u: Qp — R, we define
the odd reflected function v: My — R by

u(), x € Qy,

—u(z”), e,
—u(zt), zeQt,

0, if ¢; = a; or x; = b;.

v(z) =

T2

Ql- 1 Q QL

I

Figure A.1: Reflected domains for the rectangle Q = (—1,5) x (1,5).

Proposition A.5 (Discrete Schwarz reflection principle for hypercubes)
Let p € (1,00), Q == [[i(as,b;)) C R™ be a hypercube and correspondingly h > 0 be an
admissible grid size. Moreover, let u: Qp — R be a solution of

(A.2)

—Apu = |uP"lu in Qp,
u=20 on Op8y,.

Then, for fizred i € {1,...,n}, the odd reflected function v: My, — R given by Definition

[A74) solves

—Apv = ]v|p_1v wmn My,
v=20 on OpM;,

and HUHLoo(m) = ||U||Loo(gTh)-

Proof. The assertion is verified by direct computation. First, for x € ), we have
—Apv(a) = =Apu(e) = [u(@) [P~ u(z) = o(@) P~ ().
Moreover, for = € Q;; we obtain

—Apv(z) = Apu(z”) = ~Ju(z?) P u(e”) = [o(@) P ().

97



A. Appendix

A similar calculation can be done for z € Q?. Finally, let x € M}, with z; = a;. Then,
from 0 = v(x) = v(z & he;) for all j # i together with (z — he;)™ = x + he; we deduce

- 1
2 jzl[v@ + hej) = 20(x) +v(x — hej)] = =5 [0 + hei) + v(x = hey)]

—Apv(z) =

1
= —slule + hei) — (e + hep)] = 0 = ()P~ Ho(@).
If x € My, with z; = b;, the argumentation is analogous. Additionally, by construction
we see that \|U||Loo(m) = ||u||Loo(gTh)~ -

Proposition A.6 (Discrete Schwarz reflection principle for triangles)
Letp € (1,00), b >0, Q := {z € R?: 21,29 > 0, z1 + 22 < b} a triangle and h > 0 an
admissible grid size. Further, let u: Qp, — R be a solution of

{ —Apu = |uP"lu in Qp, (A3)

u=20 on Op$y,.

Moreover, for x € R? we define the reflected element with respect to the straight line
{reR?2: 29 =b—x1} by 2* == (b— 2,0 — x1)T and the reflected domain

QO ={rcR* 2" cQ}
as well as M = (QUW)O = (0,b)2.

Z2

Q*

0

0 b 1
Figure A.2: Schwarz reflexion principle for a triangle Q = {x1,z9 > 0, 1 + z2 < b}.

Then, the odd reflected function v: My — R given by

u(x), z € Qp,
v(z) = ¢ —u(z*), z€Q,
0, T € O My,
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solves

—Apv = [Pl in My,
v=0 on OpMj,

and [|v]| oo 3z = llull oo -
Proof. For x € ), we have
—Apv(z) = —Apu(z) = [u(@) P~ u(z) = [v(z) P ().
Besides, for x € {}; we obtain
~Apv(z) = Apu(z®) = ~[u(@®) P u(z") = |o(@) P ().
Finally, let * € M}, with xo = b — x;. Then, recalling h > 0,

(v + he1)* = (1 + h,29)* = (b— 29, — 21 — h) = (x1,79 — h) = — hey € ), and
(x+ hea)* = (w1, 22 +h)* = (b—22 — h,b—21) = (21 — h,22) = = — hey € Q.

Therefore, also using v(x) = 0, we conclude

2
1
—Apv(x) = —3 [v(z + hej) — 2v(x) + v(z — he;)]
j=1
1
= —ﬁ[v(m + her) +v(x — hey) + v(z + heg) + v(xz — he)]
1
= —ﬁ[—u(a} — hea) + u(x — hey) — u(x — hey) + u(z — hea)]
= 0= [o(@)"o(z).
By construction, the boundary condition is fulfilled and [[v]| ;@7 = [l oo ;) holds
true. Ul

Lemma A.7 (Regularity in the interior) B
Let n>2 and Q C R" be a (possibly unbounded) domain. Moreover, let v € C*(Q2) N

loc
VVlt’Cq(Q) with ¢ >n and o € (0,1 — 7) be a non-negative solution of

/ v(—AY)dx = / vPpdr  for allp € C°(Q).
Q Q

Then, v € C%(Q) and v solves

—Av=v" inQ.
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Proof. Let B C € an open ball. We consider the problem

(A4)

—Aw =" in B,
w=wv on 0B.

Due to v € C%*(B, [0, 00)) we deduce vP € C%*(B)N L>®(B) and v|gp € C(0B). Hence,
according to classical existence and elliptic regularity theory (e.g. [13, Thm. 4.3]) there
exists a unique solution w € C?(2) N C(Q) of (A.4]). Therefore,

/Bw(—Aw) dx:/B(—Aw)z/de:/vawdx:/Bv(—Aw)d:c

and integration by parts yields

Oz/B(w—v)(—Aw)dx:/BV(w—v)-V¢d$

for all 1y € C°(B). In view of ¢ > n > 2 we have w —v € W2(B) as well as w —v =0
on 0B. Thus, w —v € Wol’Z(B) and since C°(B) is dense in Wol’Z(B), we may choose
the special test function ¢ = w — v and obtain w = v. As B C {2 was arbitrary, we
conclude v € C%(Q) with —Av = v in . O

Lemma A.8 (Pointwise estimates from gradient bounds)
Let Q@ = [[;—,lai,b;] be a closed cube in R™ with dimension n > 2 and edge length
r:=0b; —a; foralli=1,...,n. Further let g € (n,00) and f:=1— % € (0,1).

(a) There exists a constant C > 0 independent of Q such that

(@) = FWI < ClIVlgllzalz — i3

for all x,y € 0Q with |x — y|oo =7 and all f € WH(Q).

(b) Additionally, let h > 0 and a;,b; € Ry, (i =1,...,n), i.e., Q is admissible for h.
Then,

/(@) = FWI < Cllf lyrag,)lz — vl = C(Z > !fo(z)lqh"> o =yl

=1 2eQn\5; Qn

for all f: Qn — R and z,y € 8,Q), with |x — y|loo = r, where the constant C' > 0
depends only on n and p.

Proof. (a) The following argumentation goes back to the proof of Lemma 4.28 in [1].
Let f € CHQ) and 2o € Q. We define M = ﬁ fQ fdx =r" fQ fdx. By means
of the transformation y = t(x — ) and Holder’s inequality we compute

|f(z0) — M| =

/ (f(x0) — f(x)) de
Q
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—f (xo + t(x — xp)) dt dx
gr—n/Q/O IV f (w0 + Ha — 20)) - (& — w0)| dt da
1
n/o /Q|vf($0+t(x—xo))|lda:dt

1
- / / V(0 +y)l, " dy di
0 t(Q—Z’o)
1

1
1 q q
< rl_"/ (/ IV f(zo +y)| dy) (/ 1 dy) " dt
0 t(Q—xo) t(Q—CE())

1 1 q n
§r1+q’_n/ / IVf(2)|9dz | to " dt
0 tQ+(1*t):L’0
@ 1
”‘(/ IVf(2)lg dz> /tq’ " dt
Q 0

= OV flgllza)

with constants ¢, C > 0 which depend only on n and gq. The crucial constraint
% —n > —1 is equivalent to the assumption ¢ > n whereas tQ + (1 — t)zyp C Q
for all ¢t € [0,1] is due to the convexity of the cube Q). Now, let z,y € 9Q with
| — y|oo = 7. By means of the estimate above we conclude

[f (@) = fy)l < [f(x) = M|+ |f(y) — M|
<2C77)|V flgll o)
= 20|V flqll zaoylz — vl
As CX(Q) = {flo: f € C(R™)} is dense in WH4(Q) due to |14, Thm. 1.4.2.1]
we obtain the estimate also for all f € Wh4(Q).

By means of interpolation theory, the second statement is a direct consequence of
the first one: Let f: Qp — R. According to the proof of [30, Theorem 8.12.] there
exists a corresponding tensor product interpolant f: @ — R such that

(i) f=/onQand
(ii) there is a constant C(n,q) > 0 such that

£ 1irra oy < C @) fllyiraa, -
0 (Q) 0 (Qh)

Note that in the statement of Theorem 8.12. a boundary condition f =0 on éth
is required which is not needed in the proof. Employing the interpolant f directly
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yields
1f(z) = f)| = f(z) — f(y)|
< IV flgll Lagylz — yl%
= Cllfllyypagle = yl2,
< Cllflyiraglr =yl
1
_ é(z 3 |D,-+f<z>|w> o
=1 2eQn\6; Qn

for all &,y € 9,Q, with |z — y|oe = 7 and constants C,C > 0 depending only on ¢
and n. O

Lemma A.9
Let g: [0,00) = R be continuous with g € o(yP) as y — co. Then,

g(yt)
yp

—0 (y — o0)

uniformly for all t € [0, 1].
Proof. Let ¢ > 0. Since g € o(yP) as y — oo, there exists some yo > 0 such that

‘g(y)‘ <e forall y > yp.

yp
In view of the continuity of g, we may assign

B := max |g(y)|
y€[0,y0]

1
Next, we fix some t € [0, 1]. Then, for all y > max {yg, (g)f' } we deduce

as well as

t t
‘g(y)‘:‘g(y) P <et! <e if yt > yo.

yp yp tpP
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