McSAFE – High Performance Monte Carlo Methods for SAFEty Demonstration

Victor Sánchez-Espinoza (KIT), L. Mercatali (KIT), D. Mancusi (CEA), P. Smith (WOOD), J. Dufek (KTH), M. Seidl (Preussen Elektra), L. Milis dorfer (CEZ), J. Leppanen (VTT), J. E. Hoogenboom (DNC), R. Vocka (NRI), S. Kliem (HZDR), P. Van Uffelen (JRC), H. Billat (EDF)

Project Goals: move MC-methods towards industrial applications

- Generalized and optimized N/TH/TM coupling
- Optimal depletion simulations (stability, CPU, memory requirements, fast convergence)
- Extension of MC-codes for transient analysis e.g. RIA (Safety) ➔ dynamic MC-codes
- Validate MC tools using experimental data
- Full core simulations at pin-level using HPC
- Provide reference solutions for low-order solvers ➔ Industry-like applications

McSAFE Structure & Partners

McSAFE: MC-Based Multiphysics Tools

- Two coupling approaches:
 - ICOCO-based approach
 - Internal coupling based on Multi-physics interface

McSAFE User Group

- User Group established
- To join the UG contact: victor.sanchez@kit.edu
- Test the tools and give your feedbacks

ICOCO-Coupling with flexible Preprocessor

PWR: Subchannel FA and core model
VVER: Subchannel and core models

dynSERPENT/SubChanFlow: Analysis of a REA in Minicore

Parallel Scalability in HPC

Validation: SPERT-III REA

• Visit our Website: www.mcsafe-h2020.eu
• Any additional information needed: contact victor.sanchez@kit.edu

OUTLOOK

- Validation using plant data and tests
- Optimization of codes/methods for HPC-simulations
- Optimizations to reduce CPU-usage for full core depletion
- Reduce statistical uncertainties of MC-codes
- Applications to PWR, VVER and SMR

Serpent/SubChanFlow
dynTRIPOLI Simulation