
A LayeredReference Architecture forMetamodels
to Tailor Quality Modeling and Analysis

Robert Heinrich , Misha Strittmatter , and Ralf Reussner

Abstract—Nearly all facets of our everyday life strongly depend on software-intensive systems. Besides correctness, highly relevant 
quality properties of these systems include performance, as directly perceived by the user, and maintainability, as an important 
decision factor for evolution. These quality properties strongly depend on architectural design decisions. Hence, to ensure high 
quality, research and practice is interested in approaches to analyze the system architecture for quality properties. Therefore, models

of the system architecture are created and used for analysis. Many different languages (often defined by metamodels) exist to model 
the systems and reason on their quality. Such languages are mostly specific to quality properties, tools or development paradigms. 
Unfortunately, the creation of a specific model for any quality property of interest and any different tool used is simply infeasible. 
Current metamodels for quality modeling and analysis are often not designed to be extensible and reusable. Experience from 
generalizing and extending metamodels result in hard to evolve and overly complex metamodels. A systematic way of creating, 
extending and reusing metamodels for quality modeling and analysis, or parts of them, does not exist yet. When comparing 
metamodels for different quality properties, however, substantial parts show quite similar language features. This leads to our 
approach to define the first reference architecture for metamodels for quality modeling and analysis. A reference architecture in 
software engineering provides a general architecture for a given application domain. In this paper, we investigate the applicability of 
modularization concepts from object-oriented design and the idea of a reference architecture to metamodels for quality modeling and 
analysis to systematically create, extend and reuse metamodel parts. Thus, the reference architecture allows to tailor metamodels. 
Requirements on the reference architecture are gathered from a historically grown metamodel. We specify modularization concepts 
as a foundation of the reference architecture. Detailed application guidelines are described. We argue the reference architecture 
supports instance compatibility and non-intrusive, independent extension of metamodels. In four case studies, we refactor historically 
grown metamodels and compare them to the original metamodels. The study results show the reference architecture significantly 
improves evolvability as well as need-specific use and reuse of metamodels.

Index Terms—Domain-specific modeling language, reference architecture, metamodel, quality analysis

1 INTRODUCTION

SOFTWARE is an essential part not only of information sys-
tems but various facets of our daily life. Mobility,

energy, economics, production and infrastructure strongly
depend on software which is not always of high quality.
Critical performance and security issues, for instance, may
arise from bad software quality [1]. Examples can be found
manifold in the press, like when Denver International Air-
port opened 16 months delayed and almost $2 billion over
budget due to lack of performance and scalability of the
baggage-handling software system or when 6.5 million user
account credentials were leaked from LinkedIn.

A system on which software contributes essential influ-
ence is called a software-intensive system [2]. Software-
intensive systems comprise besides software other domains,
such as electronics and mechanics. To specify a software-
intensive system in the form of a model promises many ben-
efits like a better understanding due to abstraction, platform

independence, model-based analysis for behavior and qual-
ity. Many quality properties mainly depend on a good
architectural design, such as performance, availability and
maintainability. Therefore, models are needed to reason
early on qualities of a system. Of course, for such models,
specific modeling languages are needed. Examples for
modeling languages and formalisms to reason on quality
are queuing networks, Petri nets, markov chains, fault trees
or the Palladio Component Model (PCM) [3].

In Model-Driven Engineering (MDE), graphical and textual
modeling languages are often defined through a metamodel.
A metamodel is a model which defines the structure and
characteristics of other models. The background of our
research is the model-based analysis of software-intensive
systems for various quality properties. A plethora of different
metamodels for modeling the quality of software-intensive
systems exist. Such metamodels are specific to different qual-
ity properties (e.g., performance versus reliability), tools (e.g.,
the Palladio bench [3] versus QPN-Tool [4]) or analysis tasks
(e.g., mean time analysis versus prediction of a statistical dis-
tribution). Approaches to come to unified models, such as
extending an existing well-proven metamodel, showed that
metamodels for quality modeling and analysis are prone to
growth due to features (e.g., new quality properties to be ana-
lyzed) being added to the modeling language over time. For
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example, the PCM was initially designed as a metamodel for
performance analysis of software architectures. Over time,
the PCM has been extended for modeling reliability, costs,
maintainability, energy consumption andmany other quality
properties. These modifications may lead to degradation of
the structure of the metamodel [5]. Feature overload, feature
scattering and unconstrained creation of dependencies harm
the evolvability and reusability of themetamodel.

When comparing metamodels for different quality prop-
erties, substantial parts of the models for the specification of
structure and behavior of the system show similar language
features. For example, in [6] modeling performance and reli-
ability rely on the same language features for structure and
behavior and merely differ in quality-specific extensions to
this features. However, metamodels are seldom designed so
that parts (or the entire metamodel) can be reused in differ-
ent contexts. This is because to reuse a metamodel, the
whole metamodel and all of its dependencies must be
reused. Otherwise, dependencies are left unresolved which
results in an invalid metamodel. Reusing the whole meta-
model and all its dependencies is not suitable if only a sub-
set is required. Just ignoring the irrelevant parts of the
metamodel is not a feasible way either as they unnecessarily
increase complexity and reduce understandability when
evolving the metamodel.

Both, extension and reuse bloat themetamodel with plenty
of unnecessary complexity if themetamodel is notwellmodu-
larized. A systematic way of extending and reusing metamo-
dels for qualitymodeling and analysis, or parts of them,while
preserving their structure is required to reduce complexity.

In software engineering, reference architectures provide a
general architecture for applications in a particular domain,
which partially or fully implement the reference architec-
ture [7]. For example, the Java EE architecture is a layered ref-
erence architecture which can be used as a template for
various systems developed in Java. Other examples of estab-
lished reference architectures are the ISO/OSI network stack
and the TCP/IP protocol architecture.

A reference architecture for metamodels for quality model-
ing and analysis can serve as a template solution to support
systematically extending and reusing parts of metamodels.
There are various commonalities in object-oriented design
(like for example advocated byRobert C.Martin [8]) andmeta-
model design. Both describe classes, their attributes and
dependencies. These commonalities encourage us to transfer
established concepts from object-oriented design, such as
composition, acyclic dependencies, dependency inversion
and layering to metamodels. Also transferring the idea of ref-
erence architectures to metamodels seems reasonable as there
are various commonalities in the object-oriented modeling of
structure and behavior for several domains. On a fundamental
level, basic language features, like the connection of compo-
nents by interfaces as well as the composition and nesting of
components, hold true regardless the type of component, like
software, mechanical and electrical components. Domain-
specific properties may extend and refine the basic language
features. Quality-related properties may extend and refine the
domain-specific properties.

To the best of our knowledge, there is no reference archi-
tecture for metamodels for quality modeling and analysis in
existence yet. Recent approaches to language extension and

reuse (described in Section 10) do not maintain compatibil-
ity with the base language. They do not support extending
the language externally and independently. Further, they
are designed for language engineering in general and do
not take into account specifics of a given domain or quality.

In this paper, we investigate the applicability of modula-
rization concepts as known from object-oriented design and
reference architectures as known from architectural design
to metamodels. We do this by presenting the first reference
architecture for metamodels for quality modeling and anal-
ysis to address shortcomings in extension and reuse that we
mentioned earlier. The reference architecture leverages pat-
terns that reoccur for several domains. It proposes a top-
level decomposition of metamodels for quality modeling
and analysis into four layers — paradigm, domain, quality
and analysis. A layer is a set of metamodel modules which
can be extended by lower-level layers and reused in differ-
ent metamodels. Metamodel modules are assigned to a spe-
cific layer depending on the features they offer to the
language. The modularization concepts and reference archi-
tecture are a substantial step towards our research vision of
tailored quality modeling and analysis proposed in [9].

The modularization concepts are applicable to metamo-
dels in general. They are independent of quality modeling
and analysis. Also the idea of a reference architecture can be
applied to any kind of metamodels as long as they face varia-
tion and extension of basic language features. The layers
specification, however, strongly depends on the specific
metamodels. Other scopes would result in other reference
architectures. We believe metamodels for various purposes
can benefit from a reference architecture. Nevertheless, our
research focuses on metamodels for quality modeling and
analysis as this kind of metamodels face high variability for
several quality properties. This is because when applying the
metamodels for modeling different systems, substantial parts
of the metamodels can be reused while the quality properties
of interest may differ. Furthermore, in addition to document-
ing quality properties, systems may be analyzed for quality
properties. Often analysis configurations related to the qual-
ity properties are reflected in the metamodels. Consequently,
metamodels for quality modeling and analysis are well
suited for applying a layered reference architecture. Contri-
butions provided in this paper are listed in the following.

� After introducing modeling foundations and associ-
ated roles in Section 2, we investigate shortcomings
in a historically grown metamodel for quality model-
ing and analysis based on which we derive require-
ments on the reference architecture in Section 3.

� In Section 4, we first provide the foundational modu-
larization concepts for metamodels. These concepts
enable the description of language features, their
relations and grouping to specify a modeling lan-
guage. In contrast to related approaches, the modu-
larization concepts enable clear distinction between
language features and their implementation in meta-
model modules. Then, we propose the reference
architecture for metamodels for quality modeling
and analysis based on the metamodel modulariza-
tion concepts. In contrast to related approaches,
the reference architecture provides guidance and a



systematic way of extending and reusing meta-
models. Furthermore, we discuss design rationale
behind the reference architecture.

� Technical foundations for implementing the modula-
rization concepts and tool support are described in
Section 5.

� In Section 6, we give detailed guidelines on the appli-
cation of the reference architecture. We first describe
refactorings on class and metamodel level. Then, we
present two processes on how to apply our approach
considering two application scenarios: (1) designing a
metamodel from scratch and (2) refactoring an exist-
ingmetamodel.

� In Section 7, we refactor historically grown metamo-
dels from different domains in four case studies by
using the reference architecture to demonstrate its
applicability.

� Based on the case studies, we argue that the refer-
ence architecture supports non-intrusive extension,
instance compatibility and independent extension of
metamodels in Section 8.

� In Section 9, we apply the four case studies to evaluate
the reference architecture by comparing the refactored
metamodels to the original metamodels. Evaluation
results show that the reference architecture improves
evolvability as well as need-specific use and reuse.

The paper concludes with a discussion of related work in
Section 10, a summary and a description of future work in
Section 11.

2 FOUNDATIONS

This section introduces the foundations that are relevant to
understand the approach proposed in the paper.

2.1 Modeling Foundations

Modeling Language: In MDE, languages are created and
applied to efficiently design and reason about systems. Such
languages capture reoccurring domain knowledge in the form
of language features and patterns and are used to build
models. Therefore, they are called Domain-Specific Modeling
Languages (DSMLs). DSMLs can be subdivided into grammar-
based languages and metamodel-based languages. In our
research, we focus on metamodel-base DSMLs. An example
of a metamodel-based DSMLs is the Automation Markup
Language (AutomationML) for modeling automated produc-
tion systems.

Metamodeling: Ametamodel defines the abstractions [10] of
a DSML. An instance of a DSML is a model that conforms to
the metamodel of the DSML. Metamodels also have to be
specified in a formal language. A popular metamodeling
language is EMOF [11]. EMOF is a modeling standard
released by the OMG. In its core, it provides concepts simi-
lar to that of class diagrams. In EMOF, a metamodel imple-
ments the abstractions that the language provides by
classifiers and their properties. A classifier is either a class,
data type or enum. An instance of a class is an object. Classes
may have several types of class properties that introduce
dependencies to other classifiers: attribute, which references a
data type or enum, inheritance to another class (“is a”),
referencing another class (“knows a”), containment to another

class (“has part”), type parameter bounds and type argu-
ments. These dependencies can even point to classifiers of
other metamodels (inter-metamodel dependencies). We
refer to a class that has a containment relation to a second
class as the container of the second class. A class that is not
contained anywhere but has outgoing containments is
called a root container. An instance of a root container is the
root of a model. The classifiers of a metamodel are orga-
nized in a package structure. A package can contain classi-
fiers and other packages. In the simplest case, the hierarchy
of a metamodel consists of one package.

Our approach targets EMOF-based metamodels, as they
are widely used and there is an open source implementation
(EMF’s Ecore1). As EMF is open source, many supporting
tools and frameworks were developed for EMF (e.g., code
generators, transformation languages and editor frame-
works). However, we expect that our approach is also appli-
cable to non-EMOF metamodels that support concepts that
are similar to or can be mapped to the above mentioned
concepts (classifiers, attributes, references and the ability to
depend on classifiers of other metamodels). This is, how-
ever, not the focus of this paper.

Feature Models: In this work, we use feature models to
express the features of a language. Based on a feature model,
subsets of the given features are selected to specify which fea-
tures of a language are of current interest for model instantia-
tion and tool development. A feature model [12] is a formalism
to capture the variability and interdependencies of features of
a specific subject. Except for the root feature, each feature has
exactly one parent. These parent-child relations form a tree.
Parent-child relations are either of the type mandatory or
optional, or can be part of an alternative set or OR set [12]. A
mandatory child feature has to be selected if its parent feature
is selected. An optional child feature may be selected but is
not mandatory. From the features in an alternative set, exactly
one feature has to be selected. From the features in an OR set,
at least one feature has to be selected. In contrast to the usual
use of feature models, in the scope of our work, we allow fea-
ture sets with only one feature. The benefit is that later, more
features can be added to the feature set, without having to
change the child relation type. Features can also have requires
relations and excludes relations to other features. Requires rela-
tions are directional. Excludes relations are mutual. A feature
selection is a subset of the features from the feature model, that
adheres to the constraints imposed by the feature relations.

2.2 Roles

We distinguish different roles that work with DSMLs.
Developer: Basically, we distinguish two developer roles –

metamodel developer and tool developer – depending on
how they work with metamodels. The metamodel developer
develops and maintains the metamodel. For example, s/he
creates the metamodel, fixes bugs, specifies constraints,
modifies classifiers according to changing requirements and
extends the metamodel by new features. The tool developer
develops and maintains tools that work on the metamodel.
S/he writes and modifies code that uses the classifiers
defined in the metamodel. We use the term developer hereaf-
ter if we want to address both roles at the same time.

1. https://www.eclipse.org/modeling/emf/



In our approach, themetamodel developer role is further dis-
tinguished into the module developer and the metamodel archi-
tect. The module developer is responsible for the internals of
metamodel modules. S/he creates and modifies classes and
their class properties. The metamodel architect is responsible
formodule dependencies, the featuremodel, and the layering
of metamodel modules and features. Both roles cooperate
when creating or modifying module dependencies, as these
are determined by the classes within ametamodelmodule.

User: We also refer to the role of the user of a metamodel
in the paper. The user employs a metamodel via tools that
operate on instances of the metamodel (e.g., editors, simula-
tors, analyzers, generators). Thus, we address this role as
tool user. Tool users create and modify models using editors.
They process models with simulators and analyzers. Fur-
ther, they transform models into other formats (e.g., code).
A tool user has specific needs regarding the abstractions
that are implemented by the metamodel. We refer to specific
groups of abstractions that are usually used together and
have a common theme as a concern of the tool user. Exam-
ples of concerns are the modeling of static software design,
software behavior and software performance.

3 APPLICATION SCENARIO AND REQUIREMENTS

ELICITATION

In this section, we provide further details on the PCM to
motivate an application scenario and elicit requirements on
the reference architecture. The requirements we derive can
be distinguished into two categories. One category refers to
the reference architecture and the other aims at extension
mechanisms. The reference architecture, however, cannot
be used without proper extension mechanisms. So we still
regard the requirements to extension mechanisms as a sub-
set of the requirements to the reference architecture.

Whilewe use the PCMas a representative, other historically
grown metamodels for quality modeling and analysis show
similarweak spots. For example, an analysis of theCapella [13]
metamodel for model-based systems engineering showed it
shares 12 of 14 types of metamodeling bad smells [5], [14] with
the PCM2 (e.g., multipath hierarchy, hub-like modularization
and cyclically-dependentmodularization).

The PCM is an established and widely used metamodel.
It provides various useful features for quality modeling
and analysis of component-based software architectures
as described in [3]. The PCM consists of 203 classes in
24 packages. It is divided into five sub-metamodels. Around
73 percent of its classes reside in the biggest sub-metamodel.
Starting in August 2006, the PCM has a long history of evolu-
tion. In the time from spring 2007 to fall 2012, the PCM grew
from under 100 to over 200 classes [5]. There are at least 12
extensions of the PCM3. However, many more exist that are
not publicly documented (e.g., student theses, experimental,
incubation). Due to its historically grown structure, the PCM
exhibits some shortcomings described hereafter.

Package Structure Erosion and Uncontrolled Growth of
Dependencies: Due to repeated extensions and maintenance,
the structure of the PCM eroded over time [15]. Starting

with performance analysis, the scope of the PCM broad-
ened, and more structural features and quality properties
were incorporated. Initially, new features were intrusively
implemented in the metamodel, e.g., for modeling reliabil-
ity [6], event-based communication [16] as well as infra-
structure components and middleware [17].

While intrusively implementing new features, they were
placed inconsistently into the package structure of the meta-
model [5]. Some new features were added to packages of
similar features. Several cross-cutting concerns were scat-
tered over the package structure, instead of being specified
in a new subpackage structure. For other features, distinct
packages were specified. However, these packages were not
placed consistently in the existing hierarchy.

In consequence, language features are hard to grasp, if
they are not adequately reflected in the package structure.
For example, in case a package contains classifiers of multi-
ple features or features are scattered over the package struc-
ture, developers are hindered in narrowing down the part
of the metamodel that is relevant for their current task.
Thus, the erosion of the package structure worsens under-
standability and, therefore, evolvability of the metamodel.

The fact that package structures allow free creation of
new dependencies to other packages causes another related
shortcoming – superfluous inter-package dependencies and
many dependency cycles between packages accumulated in
the PCM. Uncontrolled growth of dependencies hinders
understandability. This is because developers, while trying
to understand the semantics of a class, may follow depen-
dencies to packages irrelevant for their objectives. Uncon-
trolled growth of dependencies further increases the
complexity of the metamodel. Unnecessary inter-package
dependencies increase coupling, which impedes evolving
the metamodel and hinders developers identifying the part
of the metamodel that is relevant to their task.

From these shortcomings – package structure erosion
and uncontrolled growth of dependencies – we derive two
requirements on the reference architecture. R1 (Improved
Evolvability): The reference architecture must improve the
evolvability of metamodels. By good evolvability we under-
stand low complexity, low coupling and high cohesion as
described in further detail in Section 9. R2 (Non-intrusive
Extension): The reference architecture must ensure that
metamodels are not dependent on their extensions. Exten-
sions must not alter the extended metamodel. Thus, by
implementing extensions in a non-intrusive way, we expect
to prevent aforementioned adverse effects.

Instance Incompatibility: Some extensions developed in
branches have never been included in the PCM master (e.g.,
[18], [19], [20]). The advantage is that the master does not
need to be altered, and the development of master and
branches is decoupled. The extension branches, however,
need to be maintained to be up-to-date with the master. The
situation is visualized in Fig. 1 (1). Instances of metamodels
from branches m’ are not compatible with the tools that

Fig. 1. Requirements: Instance compatibility and independent extension.

2. https://sdqweb.ipd.kit.edu/wiki/EMOF Bad Smells
3. https://sdqweb.ipd.kit.edu/wiki/PCM AddOns



operate on instances of the master metamodel m. For brev-
ity, Fig. 2 shows a legend with the notational elements that
are used in all the figures of this paper. So all the figures
shown in the paper refer to Fig. 2.

As a consequence, tools have to be branched andmaintained
in specific branches as well. Alternatively, a transformation
between both metamodel branches needs to be developed. It
transforms parts of instances of the branchedmetamodel to the
original metamodel so that the original tools can still be used.
However, these transformations have to bemaintained as well.
Language features not supported by the original metamodel
cannot be transformed and, therefore, also not handled by the
original tooling. Instance incompatibility has also been tackled
by work from the context of metamodel/model co-evolution
(e.g., [21], [22]). These approaches are described in Section 10.

We derive R3 (Instance Compatibility): The reference
architecture must ensure an instance m’ of an extended
metamodel M’ is compatible with tools that are built to
operate on the base metamodel M.

Note, the original tools can only operate on the part of
the instance m’ that is defined in the base metamodel. If the
original tools are designed to be extensible, they can be
extended to also support the language features of the meta-
model extension. Co-evolution of metamodels and tools is
part of our research vision [9] but not in the focus of this
paper. It will be investigated in respect to analytical and
simulative model solvers in future work.

Incompatible Extensions: Some extensions to the PCM use
inheritance to introduce new class properties to existing
classes. Subtyping is problematic as two different exten-
sions that subtype the same class cannot be used in combi-
nation. This is illustrated in Fig. 1 (2). E1 and E2 both inherit
the base class B and add some class properties. It is not pos-
sible to create an instance i of E1 and E2 (illustrated by the
lightning). i is an object, as denoted by the underlined
name. The only way to use the combination of both exten-
sions is to create another class that inherits from E1 and E2.
However, this means extensions cannot be developed inde-
pendently, as all conflicting extensions have to be extended
to make them compatible. To address this shortcoming, we
specify R4 (Independent Extension): The reference architec-
ture must ensure that extensions can be developed indepen-
dently of each other and used in combination. This is
illustrated in Fig. 1 (3). The base metamodel B is extended
by E1 and E2. In general, it should be possible to create an
instance of B that also carries the information of E1 and E2.
Using an extension must not prohibit using other extensions
because of technical reasons. It is allowed to forbid the use
of two extensions if they are semantically conflicting. To
prevent such workarounds like with the subtyping exten-
sion, an extension should only depend on another extension
if the feature that is implemented by the first extension
depends on the feature that is implemented by the second
extension.

All or Nothing Reuse: A shortcoming of a monolithic meta-
model in general, and thus also of the PCM, is the metamo-
del can only be reused as a whole. It is not possible to reuse
parts of the metamodel. Metamodel developers are con-
fronted with the full extent of the PCM. They stumble over
features that are irrelevant to them. These irrelevant fea-
tures may confuse developers, as it is not always apparent
at first glance what a set of classifiers is representing. From
this shortcoming, we derive R5 (Need-specific Reuse): The
reference architecture must enable a selective reuse of parts
of the metamodel that are indeed needed.

When developing tools, the tool developer has to under-
stand the metamodel. The complexity of monolithic meta-
models also hinders tools developers. Moreover, users of
tools based on a monolithic metamodel, are confronted with
the full extent of its features. Especially optional features
that are not of interest to a specific tool user could distract
and confuse them. To avoid this shortcoming, we derive R6
(Need-specific Use): The reference architecture must enable
a selective use of parts of the metamodel according to the
needs of the tool user, the tool developer and the dependen-
cies of the tools.

4 LAYERED REFERENCE ARCHITECTURE FOR

METAMODELS

In this section, we first describe metamodel modularization
concepts (Section 4.1) that are independent of the purpose
of a language and, therefore, can be applied to metamodels
in general. Then, we propose the reference architecture
(Section 4.2) specific to metamodels used for quality model-
ing and analysis. Moreover, we discuss design rationale
behind the reference architecture (Section 4.3).

4.1 Metamodel Modularization Concepts

General metamodel modularization concepts used as a
foundation of our reference architecture are the following.

Language Features: In our terminology, a language is com-
posed of language features. We introduce this term for the
metamodel architect to be able to specify what a language
should express on a conceptual level. Language features can
either be atomic or composed. An atomic language feature is
an abstraction of a thing to be modeled. A composed language
feature is a set of atomic and composed language features. A
language feature that covers a concern (see Section 2.2) of a
tool user is called a user language feature. Features can have
feature dependencies to other features. The dependencies of
an atomic language feature are determined by the depen-
dencies of the abstraction it models. The dependencies of a
composed language feature are determined by the depen-
dencies of the language features it contains. We distinguish
between first-class and second-class atomic language fea-
tures (in analogy to first- and second-class entities). A first-
class language feature is an atomic language feature that is

Fig. 2. Legend of the notational elements used in the paper.



contained in a root class; a second-class language feature is
only transitively contained.

Use of Feature Models: We use feature models known from
the software product line community and domain modeling
to structure language features more explicitly. In addition to
the usual use of feature models, we use the dependencies of
the feature nodes to restrict the dependencies of parts of the
metamodel that are allocated to the feature nodes.

Almost every node in the feature model represents a lan-
guage feature. Exceptions are the root feature, parents of fea-
ture sets and features that have been created to group other
features. All feature dependencies have to be supported by
either a parent feature relation, a requires relation or a path in
the feature tree that consists of feature required relations and
parent feature relations (in this case, we speak of a transitive
feature dependency). Feature dependencies are not allowed
to form cycles. In our approach, also tool users use feature
models to select the language features they want to use. In
contrast to a mere graph of language features and their
dependencies, a feature model forces the language features
into a hierarchical structure regarding the child/parent rela-
tion. Such a feature hierarchy helps tool users in feature selec-
tion, as tool users can start at the root feature and only follow
down on branches that are relevant to them.

Modules and Dependencies: All feature nodes that repre-
sent language features are implemented by metamodel
modules. We define a metamodel module as a container of
packages and classifiers that has explicit dependencies. The
difference between an EMOF metamodel and a metamodel
module is that the dependencies between metamodel mod-
ules have to be declared explicitly and follow certain restric-
tions. Inspired by the acyclic dependencies principle [23],
metamodel module dependencies are not allowed to form
cycles. A cycle would mean that if one of the metamodel
modules is used, all of the metamodel modules in the cycle
have to be used, which makes the modularization meaning-
less. Further, the dependencies of a module must conform
(directly or transitively) to the dependencies of the mod-
ule’s feature. We consider a metamodel that has been subdi-
vided into metamodel modules still as a metamodel.

Classifiers of one metamodel module M may depend on
classifiers of another metamodel module N. In this case, we
regard M as being dependent on N. The different types of
dependencies between classifiers are explained in Section 2.
Additionally, we introduce a new type of dependency
between two classes: the extends relation. We need this new
type of dependency to reverse existing dependencies and
break dependency cycles. On the level of metamodel mod-
ules and their dependencies, however, it is irrelevant pre-
cisely which types of dependencies there are between both
metamodel modules. The emphasis is foremost on the pres-
ence and the direction of the dependencies. A dependency
from M to N implies that when a tool uses M, N has to be
installed as well.

Extends Relation: The standard EMOF dependencies are
insufficient to restructure metamodel module dependencies
in a way that does not violate the reference architecture. In
contrast to object-oriented design [8], there is no EMOF
dependency that supports the addition of new class proper-
ties to classes without violating R3 (Instance Compatibility)
or R4 (Independent Extension). Thus, we introduce the

extends relation between classes. An extends relation from
one class C1 to another class C2 adds the class properties
(e.g., attributes or references) of C1 to the extended class
C2. More information from a technical point of view is
given in Section 5.3.

Layers: A layer is a logical grouping of language features
and associatedmetamodelmodules that implement a specific
semantic. Each language feature and metamodel module is
allocated to exactly one layer. There can be an arbitrary num-
ber of layers. Having just one layer is equivalent to having no
layering at all. The layers are ordered concerning the depen-
dencies of their language features and metamodel modules.
Similar to the layered software architecture pattern [24], fea-
ture required relations, feature parent relations, and module
dependencies may only point into the same or a more basic
layers (basic concerning its level of abstraction). We illustrate
basic layers at the top of graphical visualizations of the layer-
ing. We do this, as by convention in class diagrams, which
are commonly used to illustrate metamodels, more abstract
classes are shown at the top and inheritance/generalization
arrows point upward.

Relation between Modularization Concepts: Fig. 3 shows how
layers, language features and metamodel modules relate to
each other. If every module dependency is supported by fea-
ture relations, we address this as the feature model and the
module dependencies being conform. A module dependency
from metamodel module M to metamodel module N is con-
sidered as supported if by following relations from the feature
that is implemented by M (i.e., feature F) the feature that is
implemented by N (i.e., feature G) can be reached. The only
relations that can be followed are the required relation, from
the requiring to the required feature, and the parent relation,
from the child to the parent feature. Considering the example
in Fig. 3, the metamodel moduleM implements the language
feature F, and the metamodel module N implements the lan-
guage featureG. As we can reachG from F, by first following
the requires relation and then following the parent relation,
the dependency fromM toN is supported.

Terminology in Related Approaches: Related language engi-
neering approaches bring forth their terminologies. We will
briefly elaborate why we introduce some new definitions
instead of relying on existing terminology. The language
workbench MontiCore [25] uses the terms language compo-
nents, and component grammars to address the abstract syn-
tax definition of language components. We chose to speak
of modules instead of components, as a metamodel module
cannot be instantiated multiple times (in contrast to the
component concept from Component-based Software
Development [3]). Of course, it is possible to have multiple

Fig. 3. Relation between the metamodel modularization concepts.



other metamodel modules depending on a metamodel
module M, but on the type level, M is the same from the
perspective of all dependent metamodel modules. In the
scope of the concern-oriented approach COLD [26], a lan-
guage concern is a configurable unit of reuse that provides
multiple perspectives (e.g., abstract and concrete syntax) of
a language. A facet is the implementation of a perspective.
In the terminology of COLD, our approach aims at abstract
syntax facets. We still chose the term module, as it more
strongly conveys that modularization takes place and the
individual pieces are only puzzle pieces in the big picture.
In addition to explicit dependency control, this is also the
reason why we do not merely speak of metamodels like
Degueule et al. do in [27].

Besides metamodel module our approach applies the
term language feature. Based on the general meaning of fea-
ture in the context of software, we use the term user lan-
guage feature as a unit of use. We did not use the term
abstract syntax facet from COLD, as we want to emphasis
this aspect. By using the term language feature, we separate
a language part, i.e., abstraction of a thing to be modeled,
from its implementation in a metamodel module.

4.2 Layers in Metamodels for Quality Modeling
and Analysis

The metamodel modularization concepts from the previous
subsection apply to metamodels in general with an arbitrary
number of layers. Based on the metamodel modularization
concepts, we give more specific guidance in this subsection
by proposing a reference architecture for metamodels for
quality modeling and analysis. When investigating several
metamodels used for quality modeling and analysis as well
as their extensions, we identified that they reflect in most
cases language features from three categories – structure,
behavior, and quality. Features that fall into these categories
can be found in metamodels like UML MARTE [28], UML-
Sec [29], the Descartes Metamodel [30], the PCM [3], Auto-
mationML [31], ROBOCOP [32], and BPMN2 [33]. Based on
this observation, we decided to separate parts of a metamo-
del dealing with structure and behavior, quality, and the
corresponding analysis into different layers in our reference
architecture. Structure and behavior are further divided
into paradigm and domain. In the following, we present
these layers. We take a conceptual stance and, thus, mostly
speak about language features. The terms metamodel mod-
ule, class and class property are used, if we refer to the
implementation like when examples are given.

Paradigm: The paradigm (p) is the most basic and most
abstract layer. It specifies the foundation of the language by
defining language features for reoccurring patterns of struc-
ture and behavior but without dynamic semantic. For exam-
ple, in the automotive domain, components, their interfaces
and connections may be specified in p without specifying
whether these are software, electrical, mechanical, or other
types of components. As it carries no semantics, a p layer is
not intended to be used without any additional layer. The
advantage of having a p layer is that p metamodel modules
that originate from the development of other languages can be
reused if they fit the abstractions to be modeled. This would
not be possible if domain-specific semantics were located on
this layer. So, if a metamodel developer is designing p, one

criterion is to developmetamodel modules that could be used
in a variety of domains. First-class language features of p
should be abstract. Exceptions can be made if it is meaningful
to instantiate such a language feature in another layer without
adding further properties. It is not recommended to provide
root containers in p to avoid instantiation of concrete first-
class language features inp.

Domain: The domain (D) layer builds upon the paradigm
layer and assigns domain-specific semantics to its abstract
first-class language features. D builds upon structural as
well as on behavioral language features. For example, by
creating subclasses of the component class (e.g., for
the domains of software, mechanics and electronics), the
abstract component class can be enriched by domain-specific
class properties (e.g., attributes or references). This will
result in a metamodel module for software components, a
module for mechanical components and one for electrical
components. If a developer is only interested in software,
the D layer merely includes the metamodel module for soft-
ware components. It is also possible to have metamodel
modules of multiple domains in the D layer (e.g., mechanics
and electronics). A language that consists only of a p and a
D layer can already be applied, e.g., for quality-agnostic
design and documentation of a system. If atomic language
features are defined in p, these have to be subtyped by first-
class language features in D to be usable. Language features
can also reuse (by containment) second-class language fea-
tures ofp and reference other first-class language features of
p. If new atomic language features are introduced in D
(without inheritance into p), it should be considered
whether they contain an underlying pattern that can be
modeled in p. Language features for modeling or analyzing
quality properties, however, are not located on D layer but
part of the layers mentioned hereafter.

Quality: The quality (V) layer defines quality properties
for language features of D. For example, performance, reli-
ability or security properties can be added to the component
language feature. To be more specific, attributes that model
resource demands can be extended to the processing step
class of a service of a component to be able to evaluate the
performance of the service [3]. A V layer is not always
needed. Analyses can be conducted for structural and
behavioral properties and do not always need explicit qual-
ity properties. The V layer contains second-class language
features that enrich the first-class language features of D.
Language features that define quality properties contained
in a root container of V that serve as input to analyses must
not change during the analysis. If they change, they model
state information and have to be contained from a container
in the S layer. V also models derived quality properties.
However, they must not be reachable from a V root con-
tainer by following containment relations. They will instead
be contained by containers in the S layer.

Analysis: The analysis layer (S) comprises language fea-
tures used by analyses. S builds upon the previous layers
by introducing language features to specify configuration
data, runtime state, output data, and input data that does
not belong to D language features. For example, a sensitivity
analysis needs a reference to an attribute as input. The sensi-
tivity analysis modifies the attribute’s value over several
analysis runs. The attribute is defined in a module located



in one of the more basic layers. The reference to the attribute
and the value range are defined in modules of the S layer.
The modules of the more basic layers can be used in several
analyses. Moreover, several analyses may share modules
from S. An example of this is a performability (i.e., perfor-
mance and availability) analysis that may reuse the output
module of a performance analysis. Analyses may also have
their own metamodel modules. On the S layer, new root
containers, first-class language features, and second-class
language features can be created as required by an analysis.
Atomic language features of the other layers should be
reused when possible. However, analysis-specific atomic
language features should not be specializations of more
basic language features. This would mean, that S is not ade-
quately separated from the other layers. The only constraint
that holds is the avoidance of dependency cycles.

4.3 Design Rationale

In this subsection, we explain the design rationale behind
our reference architecture. They are strongly motivated by
the requirements that we described in Section 3. It is impor-
tant to note that several of our metamodel modularization
concepts address the same requirements.

By having metamodel modules with explicit dependen-
cies and by constraining their direction, we aim to tackle R1
(Improved Evolvability). When developers navigate a mod-
ular metamodel, the complexity they face is reduced, com-
pared to a large entangled metamodel. This is because they
are merely confronted with the content of the metamodel
module of interest and possibly with the content of metamo-
del modules to which dependencies exist. Furthermore, by
prohibiting cycles, the coupling between metamodel mod-
ules is forced to be unidirectional. This is beneficial for the
evolvability of the metamodel.

By forbidding mutual dependencies between metamodel
modules, we also aim to tackle R2 (Non-intrusive Exten-
sion), as this prevents a metamodel to be dependent on its
extensions. A modular metamodel with directed cycle-free
dependencies also addresses R5 (Need-specific Reuse) and
R6 (Need-specific Use), as it is possible to use and reuse
only those metamodel modules and their dependencies
needed for a specific purpose.

An extends relation brings several advantages. It enables
factoring out of optional content into an optional metamodel
module. This addresses R5 (Need-specific Reuse) and R6
(Need-specific Use). If these optional modules can be imple-
mented in away that the basemetamodel does not depend on
them, R2 (Non-intrusive Extension) is addressed. We require
the concrete implementation of the extends relation to discuss
R3 (Instance Compatibility) and R4 (Independent Extension).
Therefore, we will get back to these requirements after the
extends relations have been applied and we can properly
assess how they satisfy the requirements (see Section 8).

Assigning the metamodel modules to specific layers has
several benefits. It prevents dependencies from going into a
more specific layer, the complexity of these specific layers is
decoupled from the more basic layers. This addresses R1
(Improved Evolvability). This also has the benefit, that spe-
cific layers can be exchanged or omitted to reuse more basic
layers which addresses R5 (Need-specific Reuse) and R6
(Need-specific Use).

Regarding the specific layering for metamodels for qual-
ity modeling and analysis, the clear separation of the four
layers enables decoupling and exchange of these layers.
Thus, the layers p, D and V can be reused for different ana-
lyzers. p and D can be reused for different quality proper-
ties. p can be reused for different domains. Thus, with this
specific layering we tackle R1 (Improved Evolvability), R5
(Need-specific Reuse), and R6 (Need-specific Use).

5 TECHNICAL FOUNDATION AND TOOL SUPPORT

Although our approach is widely based on EMOF, not all the
concepts proposed in Section 4.1 are supported by EMOF.
Concepts already supported by EMOF are classifier, proper-
ties of classes and dependencies to other metamodels. Con-
cepts not supported aremodule, layer, dependency restriction
and extension relation. This section explains how the concepts
not supported by EMOF are covered by technical concepts of
EMF or by tools that we developed.

5.1 Metamodel Module

We realize a metamodel module as a metamodel that is
encapsulated in an Eclipse plugin. In EMF, dependencies of a
class to another package or to a metamodel that resides
within the same plugin are not restricted. The current graphi-
cal tooling (Ecore diagram editor) and the tree editor, how-
ever, require an explicit declaration if the content of a
metamodel of another plugin is referenced. The plugin
dependencies then reflect these dependencies. If a tool needs
a particular set of user language features, it simply has to
require the metamodel modules that implement the features.
Further metamodel modules to which dependencies exist are
automatically included through the plugin dependencies.

5.2 Modular EMF Designer

We developed a graphical editor, called the Modular EMF
Designer [34], to support modularizing and layering meta-
models as well as restricting dependencies. Fig. 4 shows a
screenshot. The editor can be used to refactor an existing
metamodel or to create the module structure of a new mod-
ular metamodel from scratch. If a metamodel or metamodel
module is loaded into the editor, all metamodel modules it
depends on are also loaded automatically. Metamodel mod-
ules can be assigned to layers. The Modular EMF Designer

Fig. 4. Screenshot of an exemplary metamodel module overview dia-
gram in the Modular EMF Designer.



visualizes dependencies between metamodel modules and
highlights dependency cycles (in red) and violations against
the layering (in orange). It also provides detailed informa-
tion about the dependencies between two metamodel mod-
ules (which classes are dependent by what kinds of
dependencies). The editor also assists in the creation of
empty metamodel modules and can perform move refactor-
ings of classifiers and packages. When a move refactoring is
performed, the editor automatically updates all incoming
dependencies. The editor provides further supporting func-
tionality like hiding of transitive dependencies, and visuali-
zation of profiles. Except for move refactorings of classifiers
and packages, the editor is not intended to create or manip-
ulate the internals of metamodel modules, as this is already
covered by the standard Ecore diagram editor. In conjunc-
tion, both editors can be used to create or refactor an exist-
ing metamodel into a modular and layered form that
adheres to the constraints of the reference architecture. The
standard Ecore diagram editor can be invoked from within
the Modular EMF Designer by double clicking on a meta-
model module. Every external change to a module is imme-
diately updated into the Modular EMF Designer.

5.3 Extension Mechanisms

Extension is a concept, which is well known in object-
oriented design (e.g., stereotyping). EMOF, however, does
not support an extends relation. For this reason, we identi-
fied and examined several ways on how to enable the
creation of extensions with EMF’s Ecore. We call these
extension mechanisms. A selection of extension mechanisms
that are best suited for our purpose are discussed hereafter.

The investigation of different extension mechanisms is
important to our work due to the following reasons. Each
mechanism has its advantages and disadvantages and,
therefore, is appropriate to be applied in a given situation
or not. The selection of a given extension mechanism may
affect the fulfillment of the requirements described in
Section 3 positively or negatively. Consequently, it may be
useful to apply different extension mechanisms in the
implementation of a modular metamodel.

Fig. 5 (0) shows how an intrusive extension looks like.
The class B (short for base class) directly owns the depen-
dency D. Arbitrary dependency (dotted arrow) represents
one of the dependencies introduced in Section 2 (i.e., attri-
bute, reference, containment, inheritance, type bound or
argument). The constellation in (0) is what we want to emu-
late. It could be the starting point of a modularization by
factoring out D. To separate concerns, we extract D into a
new class E (short for extension class) and place it in
another metamodel module. In this context, we call them
the base module and the extension module. This is shown
in (1). The notation we use for the extends relation is a filled
arrow like it is used for stereotype applications in UML [35].

EMF Profiles: There is no native support for stereotypes in
EMOF and EMF. The extension proposed in [36] enables such
support for stereotypes. Its notation coincides with (1). A pro-
file contains a set of stereotypes. Stereotypes can be applied to
a class, in the same way as in UML. Attributes and references
can be specified in the stereotype. Addition of containment is
not possible in the current version.4 Therefore, new classes
and their containersmust be defined in a separatemetamodel.
The use of EMF Profiles fragments the containment tree, if a
new container is introduced. As EMF Profiles adds instances
of stereotypes to the extended model, it is intrusive on the
model level. This means, it requires the EMF Profiles plugin
and the extension metamodel module to be installed to load
andmodifymodels that contain stereotype applications. EMF
Profiles offers helper methods to enable direct navigation
from aB object to its stereotype applications.

Plain Referencing: The simplestway to achieve an extension
is to use a reference from E to B [37]. This is shown in (2). To
contain E, either (2a) a new container Ct is created in the
extension metamodel module or (2b) an inheritance has to be
established to a class A in the base metamodel module that is
already contained somewhere (by Ct). A new container (2a)
leads to multiple containment trees (i.e., model fragmenta-
tion) but is entirely non-intrusive on the model level. This
means, extensions can be applied tomodels and they can still
be read and modified, even when the extension metamodel
module is not installed. Inheriting from a class of the base
metamodelmodule (2b) requires the presence of an appropri-
ate class, to which an inheritance is conceptually correct. (2b)
is intrusive on the model level. As objects of E are contained
in the samemodel as the instances of the basemetamodel, the
model can only be loaded when the extension metamodel
module is installed. Plain referencing does not enable direct
navigation from a B object to its extending E objects. This
results in increased complexity of tools working on the meta-
model which can be alleviated by helpermethods. In contrast
to EMF Profiles, the helper methods have to be implemented
by developers. They have to iterate over all instances of E
until the one is found that points to the B object in question.
These helper methods may use hash tables to speed up the
look-up ofB objects.

Inheritance: If the class to be extended contains another
class A that could be a conceptually correct superclass of the
extension class, cross-module inheritance should be used.
This is shown in (3). Using inheritance keeps the contain-
ment tree of models intact and enables direct navigation to
the extended language features, with the drawback of intru-
siveness on the model level. If such a class does not exist,
the class and a containment to it can still be created in the
base metamodel. In this case, however, this extension mech-
anism is intrusive on the metamodel level. There are two
options on how such a new class can be modeled: (i) a
generic class with the multiplicity of the containment being
0::�. The generic class can then be used as an extension point
for further extensions. However, the containment mixes
extensions of different types. All contained objects have to
be iterated to find the desired extension instance. (ii) a class
specific to the extension with a multiplicity of 0..1. This

Fig. 5. Overview of extension mechanisms.

4. https://sdqweb.ipd.kit.edu/wiki/MDSDProfiles



solution does not mix various extension types but enriches
the base metamodel by extension information. This can be
undesirable, especially if there are multiple extensions, as
the metamodel gets a new abstract class for each extension
and thus the complexity rises. The multiplicity should not
be set to 1..1, as this would have the same effect as an intru-
sive extension (the extension has to be always instantiated).

6 APPLICATION PROCESSES

In this section, we first describe class refactorings and
metamodel module refactorings required for applying our
approach. Then, we present application processes for two
scenarios: (1) creation of a new metamodel, and (2) refactor-
ing of an already existing metamodel to fit the reference
architecture. The main difference between the two processes
is: in the former, the feature model is constructed before the
metamodel modules are implemented; in the latter, the meta-
model modules already exist and are modularized hand-in-
handwith an evolving version of the featuremodel.

On the one hand, the processes restrict the metamodel
developers in their freedom. On the other hand, the pro-
cesses guide the metamodel developers by providing a
given structure to follow and design artifacts (e.g., feature
models) to be specified. Thus, the effort for conducting these
processes is higher compared to an ad-hoc approach. The
additional effort caused by the processes, however, is justifi-
able in the long run if it ensures better evolvability and reus-
ability of the metamodel.

6.1 Class Refactorings

For applying our approach, several refactorings are neces-
sary to split classes, break dependency cycles and reverse
the direction of dependencies. These originate in object-ori-
ented design [8] and make use of the class extension relation
that we introduced in Section 4.1. The refactorings are exe-
cuted by the module developer.

Note, this section heavily refers to the subfigures of
Fig. 6. For the sake of brevity, in the following we only refer
to the subfigure labels.

Class Split: The class split refactoring is used to separate
concerns in a class. It is shown in (1). Class properties of a

class C are factored out into the new class E, which extends
C. Incoming dependencies remain on C. Attributes, referen-
ces, and containments can be factored out without compli-
cations. Also, inheritance can be factored out; however, in
EMOF it is not possible to substitute C with E. Thus, factor-
ing out inheritances is only appropriate in cases where sub-
stitutability is not required. These cases can be identified by
analyzing incoming references onto the superclass. If the
superclass is not referenced by another class, the inheritance
is only used to inherit the class properties of the superclass
and can be factored out.

Breaking Cycles: The class split refactoring can be used to
break dependency cycles. This is shown in (2i). C1 is split,
and the outgoing dependency of C1 that contributed to the
cycle is factored out into E. As C1 does not depend on E,
the cycle is broken.

Dependency inversion can be used to break dependency
cycles (2ii). Dependency inversion is explained below. Revers-
ing one dependency in a cycle is sufficient. In the example, the
dependency fromC2 toC1 is inverted, which break the cycle.

Dependency Inversion: The dependency inversion princi-
ple [23] states that abstractions (class A in the figure) must
not depend on specifics (S), but specifics should depend on
abstractions. By transferring this principle to metamodeling,
we provide several concrete refactorings for all cases in
which dependencies may violate the principle. (3) illustrates
the refactorings.

There are multiple ways to invert an inheritance from A to
S (3a). If S is a specialization of A, the inheritance was speci-
fied in the wrong direction. Instances of A are sometimes
erroneously typedwithS, and the class properties fromS are
not needed. In this case, the inheritance can be simply
inverted (3ai). Some incoming dependencies may have to be
redirected from A to S depending on their meaning. If A and
S implement different atomic language features, the inheri-
tance is removed and N, a new subclass of A and S, is intro-
duced (3aii). Incoming dependencies of A and S must be
redirected to the correct class (either A, S or N). If S is only
used to add class properties toA and not for typing, the inher-
itance can be replaced by an opposite extends relation (3aiii).
For this to be feasible, there must not exist any incoming
dependencies (except inheritance) toS and its superclasses.

Fig. 6. Overview of refactorings.



A reference (3b) can be inverted by using a class split
(3bi). The reference from A to S is factored out into the new
class E. This option should be chosen, if S is a first-class lan-
guage feature (i.e., the existence of an instance of S is not
dependent on an instance of A). An indicator for this is
when an instance of S is referenced by multiple other
objects. The reference can also be inverted into an extends
relation (3bii). This should be done if S is a second-class lan-
guage feature and is not referenced by any other class. If S is
referenced by multiple classes, a common superclass N can
be introduced for these classes, which is then extended by S
(3biii). Sometimes, the reference can be correctly owned by
both A and S. In such cases, the reference can be inverted
(3biv).

A bidirectional reference between A and S (3c) is a spe-
cial case of 3b. In such cases, the reference from A to S is
redundant and can be removed (only the reference from S
to A remains). A containment (3d) can be inverted by replac-
ing it by an opposing extends relation.

In (3b) and (3d), also themultiplicity of the original depen-
dency from A to S has to be modeled correctly after the refac-
toring. If the multiplicity has no lower and upper bounds
(i.e., 0..*), no further modeling is necessary, as an arbitrary
number of instances of the extension can be bound to an
instance of A. If there is at least an upper or lower bound, a
constraint has to be defined that enforces themultiplicity.

6.2 Metamodel Module Refactorings

Our approach relies on several refactorings that modifymeta-
model modules, their dependencies, and content. Fig. 6 illus-
trates these refactorings. Again, we only refer to the subfigure
labels in the following. Many of them perform a split of a
metamodel module, which is supported by the graphical edi-
torModular EMFDesigner. To split ametamodel module, the
metamodel architect first creates a new metamodel module
and then uses the editor tomove classes from the original into
the new metamodel module. The editor then automatically
updates incoming references onmoved classes.

Horizontal Split: If there are parts of a metamodel module
that can be used independently of each other, the metamodel
architect must split the metamodel module. (4i) shows the
potential worst case outcome. The resulting modules M and
N may still share a common part P of the original module.
The brackets indicate that there is not necessarily a common
module P. All the metamodel modules may be mutually
dependent. The metamodel architect and the module devel-
oper have to adjust the dependencies according to the depen-
dencies of the language features that are implemented by M
and N. In the simplest case (4ii), the modules are unrelated.
In (4iii), both modules are dependent on a common base (P).
In (4iv), one of themodules is dependent on the other.

Extension Extraction: The metamodel architect uses this
refactoring, if a metamodel module M contains content that
is optional (P) but cannot be used independently. Extension
extraction is illustrated in (5). The metamodel architect fac-
tors out P into a new metamodel module. The remainder of
M is denoted as M’. The module developer has to split clas-
ses that are essential to M’ if they contain optional class
properties belonging to P. The module developer further
reverses all dependencies from elements of M’ to P. If there
are incoming dependencies to P from other metamodel

modules, they have to be considered for dependency inver-
sion (as depicted by the outgoing dependencies of P’).

Feature Support Extraction: Feature support extraction is a
special case of the extension extraction. It is illustrated in
(6). The metamodel architect can perform this refactoring, if
there is a part P of a metamodel module M that is depen-
dent on another metamodel module N and it is meaningful
to use M without N. The metamodel architect separates P
into its own metamodel module. The remainder of M is
denoted as M’. P is dependent on M’ and N. If there are
dependencies from M’ to P, the module developer must
reverse them. S/he may also conduct class split refactorings
to separate content of both features. As P is an extension of
M’ that includes content of N, P adds support for N to M’,
hence we refer to it as feature support extraction.

Vertical Split: The vertical split is illustrated in (7). Themeta-
model architect performs this refactoring, if a metamodel
module could be assigned tomultiple layers. S/he divides the
metamodel module in a way that each classifier can be
assigned toprecisely one layer. If necessary, themodule devel-
oper has to split classes. The metamodel architect assigns the
resulting metamodel modules to their respective layers. If
there are module dependencies that violate the layering, the
module developer has to performdependency inversion.

Merge: If there is a mandatory child feature relation
between two features or a dependency cycle between meta-
model modules, the metamodel architect should consider
whether it is meaningful to merge those features and their
metamodel modules (8). There may be various dependency
constellations between the merged metamodel modules like
one directional or bidirectional. There can be even no
dependencies between the two metamodel modules, e.g., if
abstract classes that function as ubiquitous superclasses are
consolidated into one metamodel module even if they are
not dependent on each other.

6.3 Creating a new Metamodel

When applying the reference architecture for the creation of
a new language, we use feature models to express the vari-
ability of the language (in analogy to related approaches [38],
[39]). Next, we present process steps that aremeant to be per-
formed iteratively. It can be beneficial to backtrack to a prior
step (e.g., when it is discovered that a feature was forgotten
or a feature can be split).

1) Language Feature Identification: First, the concerns of
tool users are identified. For each language concern, a user
language feature is defined. Note, this is the requirements
identification phase; no technical artifacts are implemented.

2) Reuse: Readily available metamodel modules may exist
in organization-internal or even public online repositories.
The metamodel architect assigns metamodel modules that
can be reused to implement user language features to the
respective user language features. Metamodel modules to
be reused can depend on other metamodel modules. The
metamodel architect either assigns these metamodel mod-
ules to the same user language feature or to a new user lan-
guage feature.

3) Creating the Feature Model: The metamodel architect
starts the feature model by creating the root feature node
and labeling it with the name of the language. For each
of the identified user language features, the metamodel



architect creates a feature node that is named after the lan-
guage feature. From here on, we do not distinguish between
features and feature nodes, because of the almost 1:1 rela-
tion between them. The metamodel architect has to declare
a relation from a feature F to another feature G according to
the following rules:

� Requires Relation: If a reused module that implements
F has a dependency to a reused feature that imple-
ments G.

� Requires Relation: If feature F is an extension of fea-
ture G.

� Requires Relation: If feature F is dependent on content
of feature G.

� Excludes Relation: If feature F prohibits the use of fea-
ture G or vice versa.

Cycles of requires relations are forbidden. Themetamodel
architect solves these cycles by reversing requires relations.

4) Layering: In this step, features are vertically split and
assigned to layers following the guidelines in Section 4.2.
The metamodel architect assigns features that contain lan-
guage features only relevant to a single layer to that layer.
S/he performs the following steps for each layer except for
p, starting from the next basic layer.

4.a) If an unassigned feature contains features relevant to
the current layer alongside with other features, s/he creates a
new feature to hold the features not relevant to the current
layer. S/he assigns the original feature to the current layer;
the new feature remains unassigned (it will be handled fur-
ther when the next layer is modularized). S/he declares a
requires relation from the new feature to the original feature.

4.b) S/he reverses all feature relations coming from fea-
tures of more basic layers to features of this layer.

5) Paradigm Extraction: The root feature is always part of
the p layer. To form the remaining p, the metamodel
architect considers for each language feature whether it
contains any fundamental atomic language features or
patterns. For these fundamental atomic language features
and patterns, s/he creates new features in p and creates
requires relations pointing to them from the dependent D
language features.

6) Feature Grouping: Grouping of language features is
either used to achieve a logical structuring (without effect
on feature selection) or to form feature sets (with effects on
features selection, see Section 2). Groups of features can be
formed from features of the same layer. For each group, the
metamodel architect creates a new feature within the same
layer, and makes it the parent of each feature of the group.
Grouping can be done according to multiple reasons. Multi-
ple features could share a commonality (e.g., they are all
structural abstractions, viewtypes [40], or of the same type).
In some cases, groups have to be used to form feature sets
(i.e., alternative sets or OR sets). If two or more features are
fully interconnected with excludes relations, the metamodel
architect has to use an alternative feature set. The alternative
feature set then replaces all excludes relations.

7) Parent Feature Identification: First, the metamodel archi-
tect identifies all features that are direct children of the root
amongst the p features by the following indicators:

� A feature contains atomic language features that are
fundamental to the language.

� A feature represents a viewtype [40] (sometimes
called sub-model [3]).

� A feature contains atomic language features that are
shared by all viewtypes.

� A feature has no outgoing feature dependencies.
Next, s/he identifies the parents of the remaining fea-

tures, which do not have a parent yet. One of the features to
which a requires relation exists is usually the parent. If a
feature is an extension of another feature, s/he declares a
parent relation from the extending to the extended feature.
In all cases, the parent relation replaces an existing depen-
dency relation between the two features. Like the requires
relations, a parent relation cannot point into a more specific
layer.

8) Child Feature Type Determination: Some features already
got their type in step (5). These features are either part of
alternative sets or OR sets and remain this way. For the
other features, which do not yet have a parent, the metamo-
del architect specifies the child features types as follows.
The root feature has no parent but is always mandatory.
Parent features of feature sets are always mandatory. Child
relations that cross the p layer boundary are always OR sets
(even if the parent has only one child). This enforces that p
features cannot be selected on their own (but always
together with at least one child). Child relations that cross
the other layer boundaries are optional. If this were not the
case, there would be a hard coupling between the layers.
The remaining features, which do not yet have a type
assigned to their child relation, are optional.

9) Feature Implementation: The module developer imple-
ments each feature by metamodel modules. Exceptions are
parents of feature sets, the root feature, and features that are
already completely implemented by reused metamodel
modules. If the module developer introduces new module
dependencies that are not conforming to the feature graph,
the metamodel architect carries out the following steps. The
module developer and the metamodel architect consider
the new feature dependency D from the feature F that is
implemented by metamodel module M to the feature G that
is implemented metamodel module N.

9.1) If the information that is modeled by D is already
present in the implementation of N and is only used
to ease backward navigation, the metamodel archi-
tect omits the dependency.

9.2) If there is no opposing dependency (i.e., G is not
dependent on F) and the new dependency that will
be introduced by D is meaningful in this specific con-
text, s/he creates a new feature dependency from F
to G.

9.3) If there is an opposing feature dependency, the meta-
model architect considers dependency inversion of
D (see Section 6.1).

9.4) If none of the above options are feasible, the meta-
model architect declares a new feature dependency
from F to G. This will result in a dependency cycle
between F and G, which has to be resolved in the
next step.

In case a new feature dependency is created, or an exist-
ing feature dependency is inverted, the restrictions from the
layering have to be adhered to.



10) Revision and Refinement: Using the module refactor-
ings described in Section 6.2, the metamodel architect can
revise and refine the feature model to resolve issues like
dependency cycles, multilayer features and features that
fulfill multiple responsibilities. After each refactoring, the
metamodel architect updates the feature model.

6.4 Refactor Existing Metamodels

We specify the following process for refactoring an existing
metamodel to fit the proposed reference architecture. The
single steps of the process are not intended to be executed
in a strictly sequential manner. Excerpts from the refactor-
ing of the PCM are used to exemplify the process.

This refactoring process can be applied to a metamodel,
if it has the potential to be modularized. For example, multi-
ple language features are implemented in one metamodel
module or there are dependency cycles between modules.

In this process, a feature graph is used as a predecessor
stage of a proper feature model. It consists only of features
and requires relations. In contrast to a feature model, its
parent-child relations do not have to form a tree, because
there can be multiple roots (features with no outgoing
dependencies).

1) Horizontal Decomposition: First, the metamodel archi-
tect investigates the metamodel and its documentation, if
existent, to identify the language features the metamodel
implements. This step is prerequisite for the subsequent
process steps. The metamodel architect subdivides existing
metamodel modules according to the horizontal split refac-
toring until they only implement a single responsibility. The
dependencies are not yet adjusted, this is done in a later
step in the process. A good starting point for the decomposi-
tion is given by the package structure and the outline of the
documentation. The result of this step is a set of metamodel
modules that may be strongly interconnected and possibly
contain dependency cycles. These shortcomings have to be
refactored in the following steps.

For example, the largest metamodel module of the PCM
was split to separate various viewtypes like resources, soft-
ware repository, assembly and usage.

2) Feature Graph Creation: The metamodel architect first
creates a feature for each metamodel module. Then, regard-
less of the module dependencies, the metamodel architect
declares feature dependencies according to the guidelines
and constraints of the reference architecture.

In the PCM, for example, the feature for specifying inter-
nal behaviors of a software service depends on the feature
for specifying the service.

3) Dependency Alignment: In this step, the metamodel
architect inspects module dependencies that are not in line
with the feature graph. S/he starts with the most specific
modules. These are usually the ones with the least incoming
dependencies. For each incoming and outgoing dependency
D on the classifier level, that is not reflected in the feature
graph, the metamodel architect executes the following
steps. D points from metamodel module M to N.

3.1) S/he checks whether the affected classifiers in both
metamodel modules are correctly placed. If not, S/
he moves the respective classifiers into the other
metamodel module.

3.2) If a classifier is encountered that does not fit M nor
N, s/he considers whether it either belongs to
another metamodel module or whether it (and possi-
bly further classifiers) can be factored out into a new
metamodel module.

3.3) If there is a feature dependency from N to M, s/he
considers dependency inversion of D.

3.4) If there is no feature dependency from N to M, s/he
considers introducing a feature dependency from M
to N.

3.5) If there is a feature dependency from N to M, s/he
considers reversing it. If it is meaningful, s/he
reverses all inter-module dependencies that go from
N to M as well.

S/he updates the feature graph accordingly. The result of
this step is a modular metamodel that is free of dependency
cycles, and all inter-module dependencies conform to a fea-
ture dependency.

In the modularization of the PCM, there was no need for
dependency alignment, as the module graph was thor-
oughly designed. Yet, in the modularization of other case
study metamodels, we performed dependency alignment.

4) Vertical Decomposition: Metamodels in the focus of our
research can be reused, at least in parts, formodeling and ana-
lyzing different quality properties or even different domains.
This optional step can be performed to improve the reusabil-
ity of the metamodel. The metamodel architect assigns meta-
model modules that only implement language features
relevant to a specific layer to that layer. On each metamodel
module M that implements language features belonging to
multiple layers, the metamodel architect and the module
developer perform the vertical split refactoring. The metamo-
del architect updates the feature graph accordingly.

An example for a vertical split in the PCM is the extraction
of performance-specific class properties from the resources
metamodel module. Therefore, several classes were split to
move the performance properties into theD layer.

5) Paradigm Extraction: In this step, the metamodel archi-
tect inspects D for atomic language features and patterns that
are fundamental to the language and can be reused in other
domains. Suitable candidates are often amongst the packages
that contain mostly abstract classes. If there is an atomic lan-
guage feature or pattern to be factored out whose classes are
not abstract, the module developer can factor it out into
abstract classes from which the concrete classes then inherit.
The module developer moves class properties that belong to
the atomic language feature or pattern into the abstract clas-
ses, while domain-specific properties stay in the concrete
classes. Incoming dependencies remain on the concrete clas-
ses. After each refactoring, the metamodel architect updates
the feature graph accordingly. The result of this step is a
cycle-free layered feature graph.

An example for a paradigm extraction in the PCM is to
split repository. The abstract definition of components and
interfaces is located at the p layer. We factored out software
specific properties, like signature lists for interfaces, into the
software repository module in D.

6) Feature Model Forming: In this step, the metamodel
architect transforms the feature graph into a feature model.
First, the metamodel architect creates a root feature. Then, the
metamodel architect performs the steps Feature Grouping,



Parent Identification and Child Feature Types Determination
fromSection 6.3.

7 CASE STUDIES

In this section, we introduce case studies for applying the
reference architecture before we provide a discussion of
requirement in Section 8 and a detailed evaluation in
Section 9. We apply the reference architecture to four meta-
models: the PCM [3], Smart Grid Topology [41] (a DSML for
modeling and resilience analysis in smart grid topologies),
KAMP4aPS [42] (a DSML for modeling and predicting the
maintainability of automated production systems) and the
BPMN2 [33] (a DSML for modeling business processes). We
documented the module structure of the original and mod-
ularized versions of the metamodels, links to all source
metamodel files and summaries of the refactorings in a tech-
nical report [43].

It is important to note we created the modular versions of
the case study metamodels primarily for evaluation. We
refactored them solely according to the rules of the refer-
ence architecture. We did not fix bad smells that the refer-
ence architecture does not address as this would damage
the validity of the evaluation. For the PCM, we documented
errors and bad smells that we identified but did not fix [43].
Examples of such smells are redundant (container) relations
that did not violate the constraints of our approach, dead
classes and duplications due to missing superclasses.

We first explain the criteria for selection of metamodels
and extension mechanisms. Next, we explain the stopping
criteria for the modularization process in the case studies.
The remainder presents the four case study metamodels.
Exemplarily, we only go into detail about the metamodel
module structure of the PCM due to lack of space.

Case Study Selection Criteria: One criterion for the meta-
model selection for the case studies is the metamodel must
be available open source. For example, the AUTOSAR [44]
metamodel seems to be modularizable according to our ref-
erence architecture but is not publicly available. The meta-
models should not be too excessive in size, as the effort for
understanding the metamodel, acquiring the needed
domain knowledge and performing the refactoring strongly
increases with the size of the metamodel. So, we limited the
size of case study candidates to metamodels with less than
300 classes. For example, the Capella [13] metamodel was
not chosen as it defines 413 classes. Moreover, the metamo-
dels must have some modularization potential. We also put
a focus on the heterogeneity of the metamodels regarding
new versus old, small versus big size, many versus few
layers, and different domains and analyses. We prioritized
metamodels that have instances available, as they are
needed for the evaluation. Further, we preferred metamo-
dels that have a package structure in contrast to metamodels
that consist only of one package that contains a high num-
ber of classifiers. Such flat metamodels are often the result
when metamodels are transformed to Ecore from other
metamodeling language that do not support the concept of
packages (e.g., XSD).

Applied Extension Mechanisms: For the implementation of
the case studies, we used the inheritance extension mecha-
nism (see Fig. 5 (3)) and the plain referencing extension

mechanism variant with inheritance (2a) to an existing con-
tainer where possible, as they introduce the least amount of
new classes. Where these extensionmechanisms could not be
used, we chose the plain referencing variant with an explicit
container (2b). The applicability of the profiles extension
mechanism (1) is identical to the applicability of the plain
referencing variant with an explicit container, as the use of
both mechanisms does not depend on the presence of prede-
fined containers. The number of new classifiers (if a stereo-
type is considered a classifier) introduced by both extension
mechanisms is equal if the extension references further clas-
ses. If only attributes are added, the profiling requires one
classifier less than referencing with a container, as the stereo-
type can directly contain the attributes (so-called tagged val-
ues). On the other hand, plain referencing uses the standard
Ecore modeling concepts. This simplifies gathering evalua-
tion results, as we were able to use the standard EMF API
and tools to process metamodels andmodels.We chose plain
referencing (2a and 2b) over profiles (1) because of this rea-
son. If we had chosen profiles, the modularized versions of
the metamodels would be even less complex. Note, in addi-
tionwe apply inheritance extension (3).

Modularization Stopping Criteria:We refactored all four case
studies until they satisfied the following criteria: (1) full verti-
cal decomposition (each metamodel module can be assigned
to exactly one layer), (2) no feature dependency and no mod-
ule dependency direction violates the direction of the layer-
ing, (3) full horizontal decomposition (each metamodel
module is at most as extensive as a user language feature), (4)
no dependency cycles. The PCM, Smart Grid Topology, and
KAMP4aPS case studies fulfill an additional criterion: (5)
decoupled extensions. We used dependency inversion to
decouple all metamodel modules from all other metamodel
modules that represent extensions. In BPMN2 we decoupled
as many extensions until we reached a point where further
dependency inversion would merely decrease coupling and
thus further increase the observed benefit.

7.1 PCM

The PCM has already been introduced in Section 1. For infor-
mation about the size of the original metamodel see Section 3.
We split the biggest metamodel module into 23 smaller mod-
ules to separate user language features properly. The other
four metamodel modules were already sufficiently modular.
The number of classes in the modularized PCM (mPCM)
grew from 203 to 229. This is due to splitting classes during
refactoring and the creation of new containers for extensions.
The number of references dropped from 198 to 174, as redun-
dant dependencies that violated the reference architecture
were removed or remodeled. The mPCM populates the
layers p, D, and V. S is populated by extensions of the PCM,
which are also used in the evaluation.

As an example of a layered and modular metamodel, we
give an overview of an excerpt of the metamodel modules
of the mPCM in Fig. 7. Six metamodel modules of the p
layer and five metamodel modules of the D layer are omit-
ted for reasons of space and clarity of visualization. Also,
transitive dependencies are not shown.

The most relevant p metamodel modules are: the reposi-
tory, which defines abstract components, interfaces, and
roles; composition, which enables component composition;



control flow, which provides a structure similar to activity
diagrams. The domain (D) layer contains the composition
and software repository metamodel modules, which extend
their counterpart from the p layer and carry additional
domain-specific content. The environment metamodel mod-
ule defines execution containers and network links between
them. It is extended by the resources metamodel module,
which adds hardware resource specifications to the execu-
tion containers and network links. Using the allocationmeta-
model module, component instances (from the composition
metamodel module) can be deployed on the execution con-
tainers of the environment metamodel module. The usage
metamodel module defines usage profiles, which can be
applied to interfaces from the repository. It reuses the control
flow metamodel module of p, which is also reused by the
seff metamodel module in D. It enables modeling the behav-
ior of operations that components provide. The quality (V)
layer consists of the performance metamodel module, which
requires the resource extension of the environment metamo-
del module. It also adds resource demands to the seff specifi-
cation of components. The reliability dependencies are
analogous. There are also two metamodel modules which
enable annotation of both quality properties in a compo-
nent-based architecture. They reuse the abstract definition
of annotations in the p layer.

7.2 Smart Grid Topology

This metamodel is used for impact and resilience analysis for
smart grid topologies. It was chosen, as in contrast to the
PCM, it is a smaller, younger, more stable andmore modular
metamodel, and covers a different domain. Its development
started in January 2014. It was initially released in October
2015. It consists of 30 classes in 3 metamodel modules. The
main metamodel module defines language features for
modeling smart grid topologies. The other metamodel mod-
ules are used for the input and output state of an analysis.
During the modularization, the main metamodel module
was split: two pmetamodel modules were factored out (one
with common superclasses and one with superclasses for the
graph structures of the topology) and oneDmetamodelmod-
ule was factored out (it contains language features that repre-
sent the types of devices within a smart grid). The number of
modules increased to 6 and the number of classes to 34. The

number of dependencies increased from 60 to 66. The result-
ing modular metamodel populates the layers p, D, and S.
The analysis operates solely on the structural parts of the
topology that are defined in D. As mentioned in Section 4.2,
metamodels for quality analysis does not necessarily need to
populate theV layer.

7.3 KAMP4aPS

KAMP4aPS is used to model automated production systems
and predict the impacts of changes in these systems.We chose
KAMP4aPS, as it covers a further domain and, in contrast to
the other metamodels, recently completed its initial develop-
ment. It has been under development since 2016. It contains 5
metamodel modules with 185 classes in total. During the
modularization, the metamodel module that describes the
systems was split into parts of different specificity: automa-
tion systems (most general metamodel module), automated
production systems, and a specialization for a specific kind of
automated production system, called a pick an place unit
(most specific). The same kind of modularization was per-
formed on the module that describes modifications to the sys-
tems. The refactoring increased the number of metamodel
modules to 9. The number of classes stayed constant as exist-
ing containers could be well utilized. The number of depen-
dencies dropped from 395 to 390, as some redundant
opposite references were removed that violated the reference
architecture.

7.4 BPMN2

The Business Process Model And Notation 2 (BPMN2) is a
DSML by the OMG used for modeling of business pro-
cesses. It is a suitable case study metamodel, as there exist
several quality analyses for BPMN2 (see [45]). In this case
study, we focus on the BPMN2 metamodel, which occupies
the p and D layer. We chose BPMN2 as it is an ISO stan-
dard, widely used and covers yet another domain. BPMN
was first released in March 2007. In January 2011, its succes-
sor BPMN2 introduced further language features (e.g., cho-
reography, conversation, non-interrupting events and event
sub-processes). It consists of 4 metamodel modules. One
metamodel module defines all the concepts of BPMN2,
which we call main metamodel module in the following.
The other three metamodel modules are needed to model
graphical diagrams. During the refactoring, the main meta-
model module was modularized according to its user lan-
guage features into 25 metamodel modules (resulting in 28
metamodel modules in total). 16 of these metamodel mod-
ules are on the p layer; 9 are on the D layer. The number of
classes grew only slightly from 157 to 163. This is because
often we were able to inherit from the abstract class
RootElement that provides a generic extension point, as it is
contained in a root class. The number of dependencies
slightly reduced from 529 to 527 (mainly because of redun-
dant relations that violated the reference architecture).

8 DISCUSSION OF THE REQUIREMENTS

After introducing the case studies and describing their modu-
larization in the previous section, we now discuss whether the
requirements on the reference architecture are satisfied in the
case studies. The requirements R1 (Improved Evolvability),

Fig. 7. Excerpt of the metamodel modules of the mPCM.



R5 (Need-specific Reuse) and R6 (Need-specific Use) cannot
be addressed by mere discussion but require more in-depth
evaluation described in the next section.

Non-intrusive Extension: In the case studies, we imple-
mented the modularized metamodels using inheritance
where possible and both variants of plain referencing in the
remaining cases. If an extends relation had to be created
from one metamodel module M to another metamodel
module N, it was possible to achieve this without having to
modify N (for both extension mechanisms). The implemen-
tation of the extends relation did not introduce any depen-
dencies from N to M, in the case studies. N is not
dependent on M after the extends relation has been imple-
mented. In conclusion, the extension mechanisms used in
the case studies satisfied R2 (Non-intrusive Extension).

Instance Compatibility: We observed that the extension
mechanisms inheritance and plain referencing behaved dif-
ferently regarding R3 (Instance Compatibility).

In situations where we used plain referencing and cre-
ated a new container, extended models were still compati-
ble with tooling of the base metamodel. This is because
instances of extending classes are contained in an instance
of the new container, which is persisted in a separate model
file. Therefore, R3 (Instance Compatibility) is satisfied for
plain referencing with a new container.

In situations where we used the inheritance extension
mechanism or the variant of plain referencing where an
inheritance relation is created to a contained class of the
extended metamodel, an extended model could not be
loaded by tooling of the base metamodel, when the extend-
ing metamodel module was not installed. This results from
instances of the extending classes that are contained in
instances of containers from the original model. The tooling
tried to load all classes, encountered these unknown instan-
ces and crashed. Thus, R3 (Instance Compatibility) is not
satisfied for inheritance and and the plain referencing vari-
ant with inheritance. This is, however, only a technical
shortcoming. It can be fixed by treating the case of unknown
content either in the modeling runtime (e.g., EMF) or the
tools. Besides ignoring the unknown content, another
option is to install the extension metamodel module on the
fly (e.g., in Eclipse via an update site). That way, the model
can be processed and the tool user does not notice any
change. Even if one would ignore these technical work-
arounds, this is no problem to our approach, as one can
always default to plain referencing with external containers.
In consequence, we consider R3 (Instance Compatibility)
satisfied by our reference architecture.

Independent Extension: We extended classes by other clas-
ses that are located in various metamodel modules. With the
extension mechanisms we used, it is possible to supply an
instance of such a class with the content of multiple exten-
sions at the same time. These extensions are unaware of each
other and were not developed in such a way that would
explicitly allow the other extension. Thus, R4 (Independent
Extension) is satisfied by our reference architecture.

9 EVALUATION

This section describes the evaluation of the reference archi-
tecture with respect to the requirements R1 (Improved

Evolvability), R5 (Need-specific Reuse) andR6 (Need-specific
Use). Section 9.1 presents the evaluation goals and metrics.
Section 9.2 explains the evaluation design. Section 9.3 presents
the results and Section 9.4 interprets the results. Section 9.5
summarizes the conclusions. Threats to validity are discussed
in Section 9.6.

In the evaluation section, we speak about metamodel
modules and their contained packages, not language fea-
tures, as we evaluate the case studies on a technical level.

9.1 Evaluation Goals and Metrics

This section presents the evaluation goals and explains how
we break them down to specific metrics for: (1) evolvability
and (2) need-specific use and reuse.

9.1.1 Evolvability

We first introduce the evaluation goal. Second, we give a
detailed explanation of the corresponding metrics. Third, we
describe the scenario-based evaluation and the extraction of
metamodel parts. Fourth, we explain how the metamodel
parts are transformed beforewe can apply themetrics.

The evaluation goal and metrics are derived from R1
(Improved Evolvability) as follows.

Goal 1: is to analyze the metamodels for the purpose of
evaluating the improvement of the metamodels’ evolvability
by comparing the original metamodels to the metamodels
that wemodularized according to the reference architecture.

While there is a variety of publications related to soft-
ware evolvability, to the best of our knowledge, there is no
definition of evolvability for metamodels. Breivold et al.
proposed a software evolvability model [46] which outlines
the sub-characteristics analyzability, integrity, changeabil-
ity, extensibility, portability, and testability. The evolvabil-
ity sub-characteristics of Breivold et al. are covered by the
established ISO/IEC 25010 software quality model [1] in the
characteristics maintainability and portability. The charac-
teristic maintainability in ISO/IEC 25010 covers the sub-
characteristics analysability, changeability, stability and tes-
tability. Portability covers the sub-characteristics adaptabil-
ity, installability, co-existence and replaceability.

Due to the lack of evolvability definitions for metamo-
dels, we discuss the adaption of software characteristics to
metamodel in the following. Adapting the evolvability char-
acteristics of software to metamodels seems reasonable as,
in analogy to any other software artifact, also metamodels
face evolutionary changes due to emerging and changing
requirements [47]. However, the characteristics of ISO/IEC
25010 and Breivold et al. have been specified with software
products in mind. As a consequence, they partly address
properties which are not valid for metamodel evolvability.
The definitions of portability and its sub-characteristics
focus on transferring a software product from one execution
environment to another, which is not useful for evolving
metamodels. Testability is the subject of recent research in
the MDE community, like at the MDEbug workshop5 initi-
ated in 2017. Work on testability in the MDE community
mainly focuses on debugging model transformations which
is not in the focus of our research.

5. https://msdl.uantwerpen.be/conferences/MDEbug



Other characteristics are well applicable to metamodels.
These are analysability, changeability and stability (extensi-
bility and integrity in [46]). Changeability and stability are
often referred to as modifiability in literature.

To the best of our knowledge, there are no specific met-
rics that have been validated to represent metamodel qual-
ity [48], [49]. According to Cruz-Lemus et al. [50] and
Briand et al. [51] analysability and modifiability of a model
is affected by its cognitive complexity. Cognitive complexity
of a model is hard to measure. Therefore, we follow the
argumentation in [50] and refer to the amount of structural
information within a model as structural complexity. Allen
et al. [52] proposed metrics of information size, complexity,
and coupling regarding the information entropy, based on
formal definitions proposed by Briand et al. [53].

Hypergraph Metrics: The metrics proposed by Allen et al.
are based on graph [54] and hypergraph [52] abstractions of
models. They represent the information entropy of the
graphs and hypergraphs [55]. In contrast to simple counting
metrics, the metrics by Allen et al. include the interconnec-
tion of nodes and hyperedges. High entropy values indicate
strong interconnection within the graphs and hyper-
graphs [56]. Hence, the metrics by Allen et al. are well
appropriate for evaluating complexity, cohesion, and cou-
pling in the evolution of metamodels.

A hypergraph consists of nodes and hyperedges, where a
hyperedge can connect any number of nodes. We apply
hypergraphs for evaluation as according to Sch€utt [57] and
Allen et al. [52], software engineering abstractions, like set-
use relations for public variables, are better represented as
hypergraphs than ordinary (binary) graphs. We follow this
argumentation for metamodel modules and their depen-
dencies in our evaluation. For the evaluation, we use a
hypergraph partitioned into several hypergraph modules
we denote as modular hypergraph H. A hypergraph mod-
ule is a set of nodes. Each node can only be contained in one
of the hypergraph modules of H. We denote hyperedges
crossing hypergraph module boundaries as inter-module
hyperedges. Hyperedges that do not cross hypergraph
module boundaries are named intra-module hyperedges.

For calculating the complexity of amodular hypergraph,we
performed a procedure taken from [56] based on the sizemet-
ric byAllen et al. In order to calculate the size of a hypergraph,
we establish a pattern for each node describing the hyper-
edges connected or not connected to the node in form of ones
and zeros. The pattern (i.e., sequence of ones and zeros) for
several nodes may be identical. In that case, we aggregate
them and remember the number of occurrences. Then, we cal-
culate the probability of each pattern p by the ratio of number
of occurrences and number of nodes inH [52]. Equation 1 and
Equation 2 depict the metrics for size and complexity.G is the
modular hypergraph.Gi is the modular hypergraph contain-
ing node i and all nodes which are connected to this node.
pLðjÞ provides the pattern probability of node j. The sizemet-
ric is first used on all Gi partial hypergraphs and then on the
complete hypergraph G. Therefore,H indicates that different
hypergraphs are passed to the sizemetric.

SizeðHÞ ¼
Xn
j 1

ð�log2 pLðiÞÞ (1)

ComplexityðGÞ ¼
Xn
i 1

SizeðGiÞ
!

� SizeðGÞ (2)

The coupling of a modular hypergraph is specified as the
complexity of the hypergraph with only inter-module
hyperedges [52]. Following the procedure for the computa-
tion of coupling in [56], we construct a modular hypergraph
H� containing only inter-module hyperedges. Then, we cal-
culate the complexity ofH�.

Allen [54] defines cohesion as the ratio of the complexity
of the intra-module graph MGo and the complexity of the

complete graph MGðnÞ. A complete graph is a graph for
which all nodes are interconnected by edges [54]. We cannot
construct a meaningful complete graph for a hypergraph.
This is because a complete hypergraph would not only con-
tain hyperedges between two nodes but also all other hyper-
edges for a given set of nodes [56]. Therefore, we apply the
cohesion metric by Allen [54] to graphs, not hypergraphs.
We follow the procedure described in [56]. First, we map the
modular hypergraphH to a modular graphMG. We replace
each hyperedge by a set of edges connecting all nodes that
were previously connected by the hyperedge. Based onMG,
we then derive a graph containing only intra-module edges
MGo and construct a complete graph MGðnÞ. Cohesion is
calculated as shown in Equation 3.

CohesionðMGÞ ¼ ComplexityðMGoÞ
ComplexityðMGðnÞÞ (3)

Extraction of Relevant Subgraphs: Evolvability is not an
absolute property. It is always to be considered in the con-
text of a specific evolution scenario [58]. Because of this, we
do not apply metrics on a metamodel as a whole; instead,
we perform a scenario-based evaluation by applying the
metrics on the part of the metamodel that is relevant to the
evolution scenario. In the following, we call the part of a
metamodel that is relevant to an evolution scenario the sub-
graph of the scenario.

For each evolution scenario, we extract a subgraph as an
approximation of the part of the metamodel to be inspected
by the developer when s/he is conducting the evolution sce-
nario. We form the subgraphs, starting from the classes that
are modified or extended by the evolution scenario. In the
following, we refer to such classes as affected classes of an
evolution scenario. The affected classes have to be known
and understood by the metamodel developer to be able to
perform a modification or extension. From the affected clas-
ses, a subgraph is built by following containment referen-
ces, the superclass hierarchy, dependencies due to generics,
mandatory references (i.e., references having a lower multi-
plicity bound of at least one) and including all classes from
the same package.

Metamodel Subgraph to Hypergraph Transformation: To be
able to apply themetrics to a subgraph,we have tomapmeta-
model concepts onto modular hypergraph concepts. First, all
packages of the metamodel subgraph are mapped to hyper-
graph modules. Second, each class of the metamodel sub-
graph is mapped to a node, and the node is placed in the
correct hypergraph module. Third, edges are constructed



between the nodes. Non-generic inheritances, references,
containments, type bounds and extends relations of classes of
the subgraph are transformed into regular edges (hyperedges
with only two ends). References to and inheritances of
generic classes are transformed into a hyperedge (with poten-
tially more than two ends due to type arguments). The ends
of such a hyperedge are the class which owns the depen-
dency, the class the dependency points at and all classes
which appear in type arguments (if there are any). During the
transformation of dependencies to hyperedges, classes might
be dependent on other classes located outside of the relevant
subgraph. This is only the case, if the dependency is a refer-
ence with a lower multiplicity of 0. References with a lower
multiplicity of at least 1 are already included in the subgraph.
For references with a lower multiplicity of 0, nodes are also
created and placed into the right hypergraph module. Their
outgoing dependencies, however, will not be transformed.
Such border classes must be included, as they resemble a
dependency to a part outside of the subgraph, whichmust be
considered by the developer. However, the developer does
not need to know all dependencies of the class, as they are
outside of his/her scope. It can be seen as an interface to
another metamodel module. Attribute types do not play a
role in the understanding of the metamodel on the user lan-
guage feature level and are thus ignored.

Transforming packages to hypergraph modules brings
some implications. Coupling is measured between packages
and cohesion is measured within packages. The alternative
to transforming packages to hypergraph modules is to
transform metamodel modules to hypergraph modules.
However, we decided to transform packages, as several
case study metamodels are monolithic. They consist of one
large metamodel module and few smaller ones. These
monolithic metamodels would perform very poorly when
transforming metamodel modules. Thus, we decided to cal-
culate the metrics on the basis of packages to allow a more
nuanced evaluation.

9.1.2 Need-Specific Use and Reuse

To evaluate R5 (Need-specific Reuse) and R6 (Need-specific
Use), we have to show that a metamodel refactored according
to the reference architecture enables more targeted use and
reuse.We can evaluate both requirements together, as the acts
of using a metamodel module (as a tool user or tool devel-
oper) and reusing a metamodel module (as a metamodel
developer) are technically the same: Usage is only possible
via a tool that has a requires dependency to the metamodel
modules it uses. These requires dependencies are defined by
tool developers and used by tool users (if they need the lan-
guage features in question). Reuse is done by creating a
requires dependency from a (possibly new) metamodel mod-
ule to the reusedmetamodelmodule.

As based on a givenmetamodel variousmodels can be cre-
ated for specific needs, we apply models to evaluate the use
and reuse ofmetamodel parts. To evaluate both requirements:

Goal 2. is to analyze models for the purpose of evaluating
the improvement of need-specific use and reuse by compar-
ing the original metamodel to the metamodel that is modu-
larized according to the reference architecture.

To be able to quantify the improvement of need-specific
use and reuse, we need to calculate the ratio of how much

of a metamodel is used by a model. For this reason, we
define the mmUtilðÞ metric (see Equation 4), which is the
short form for metamodel utilization. The utilization metric
divides the number of classes that a model M instantiates
(NumInstantiatedClassesðÞ) by the total number of classes
(NumClassesðÞ) of the metamodel modules that are neces-
sary to load the model (InstantiatedModulesðÞ). This evalu-
ation only regards classes, as the other classifiers are used
not by instantiation but the creation of attributes in the
metamodel. We use InstantiatedModulesðÞ, as the smallest
unit of use and reuse is a metamodel module. If a model
instantiates at least one class of a metamodel module, the
whole metamodel module has to be used. The more classes
(of a constant set of metamodel modules) are used, the
higher the utilization. The best value of mmUtilðÞ is 1. This
is the case when M instantiates all classes at least once. A
class also counts as instantiated if it has a subclass (it does
not have to be a direct subclass) that is instantiated. Each
instantiated class is counted only once, regardless how often
it is instantiated.

mmUtilðMÞ ¼ NumInstantiatedClassesðMÞ
NumClassesðInstantiatedModulesðMÞÞ (4)

To compute mmUtilðÞ we infer the types (i.e., classes) of
the objects in the models. We then collect all superclasses.
This results in NumInstantiatedClassesðÞ. We then deter-
mine which metamodel modules have to be delivered to
be able to load the model (InstantiatedModulesðÞ). These
are the metamodel modules where the instantiated classes
and their superclasses are located and also all metamodel
modules these modules depend on. The total count of
classes in these metamodel modules is provided by
NumClassesðÞ.

9.2 Evaluation Design

This subsection explains the rationale behind the eval-
uation design. For the evolvability evaluation, it explains
the types and the selection of evolution scenarios. For the
use and reuse evaluation, it explains the selection of mod-
els. We already explained the selection of metamodels in
Section 7.

9.2.1 Evolvability

We first give an overview of the evolution scenarios for the
case studies. Then, we exemplarily describe two evolution
scenarios in detail. Due to space restrictions, the full descrip-
tion of all evolution scenarios can be found in our technical
report [43].

An evolution scenario can be either a modification or an
extension. As the procedure for evaluating both types of evo-
lution scenarios is the same, we do not distinguish between
modification and extension in the evaluation. First, we gath-
ered historical evolution scenarios. To collect historicalmodifica-
tions, we searched in available change logs of repositories for
modifications. We collected historical extensions by identify-
ing the sources of the metamodel extensions in repositories.
Further, we collected what we call potential evolution scenarios.
We did this by reviewing themetamodel and identifying clas-
ses which in the future may face a change or extension. If the
search for historical and potential scenarios did not yield



enough results, we randomly chose classes formodification or
extension from packages that did not yet face a historical or
potential evolution scenario. We denote these as generic evolu-
tion scenarios. Examples of generic evolution scenarios are
modifications of names and multiplicities, additions of attrib-
utes and dependencies to other classes, deletions of class
properties. A sufficient number of evolution scenarios is
needed for a good variety in the extracted subgraphs.

For the subgraph extraction of historical modification
scenarios based on the current version of a metamodel three
cases can be distinguished as discussed in the following.
Case 1: additions, property changes and deletions with the
exception of class deletions. Case 2: class deletion in the sce-
nario. Case 3: class deletion after the scenario.

Case 1: considering the procedure in Section 9.1.1, the
evaluation of a historical modification scenario is straight-
forward, with the exception of deletions of classes. For
example, if a property change is evaluated on a later version
of the metamodel, the class is simply declared as an affected
class. For the subgraph extraction procedure it is irrelevant
which property of the element was changed and how it
changed. Hence, it does not matter that the historical modi-
fication scenario was already applied in the past.

Case 2: although it is not as simple as the previous case,
historical modification scenarios that contain class deletions
can also be considered in the evaluation as follows. The
deleted class is removed from the set of affected classes of the
scenario, as it is no longer present in the metamodel and
would cause errors in the subgraph extraction. The depen-
dencies of the deleted class are then manually added to the
affected classes according to the rules of the subgraph extrac-
tion (see Section 9.1.1). This enables the inclusion of all depen-
dencies of the deleted class in the subgraph extraction.

Case 3: for all class deletions after the scenario, the samepro-
cedure is applied as for scenarios that contain class deletions.

By following this procedure, the subgraph of the histori-
cal modification scenario can be reproduced, assuming
there was no further evolution. If there were further class
deletions, the procedure has to be repeated. Thus, the same
results are achieved as of an evaluation of the scenario on
the actually modified metamodel. Threats to validity that
may arise from evolution of the metamodel after the sce-
nario was executed are discussed in Section 9.6.

For the PCM,we collected 13 historical evolution scenarios
and one potential evolution scenario. Collected historical
extension scenarios for the PCM are optional extensions, i.e.,
they do not implement any core features of Palladio and,
therefore, are not deliveredwith a standard installation of the
PCM. The extension scenarios for the PCM are KAMP [58]
(not to be confused with KAMP4aPS, which is a standalone
DSML) and IntBIIS [18]. We chose them because they are up-
to-date and heterogeneous concerning the parts of the PCM
they depend on. We collected 11 historical modification sce-
narios for the PCM from its change log6. We started with the
most recent changes and selected the ones that actually
changed the structure of the metamodel and not just the
genmodel, version numbers or namespaces. We skipped
repeated modification of the same class. In addition, there
was one proposed modification in the change log, that we
consider as a potential evolution scenario.

The Smart Grid Topology metamodel has been stable
since its initial release. So we cannot deduce any historical
evolution scenarios from change logs or its repository. Fol-
lowing the aforementioned scenario collection procedure
results in eight evolution scenarios (four potential and four
generic). For the KAMP4aPS case study, we collected 18
evolution scenarios (10 potential and eight generic). For
BPMN2, we collected 23 generic evolution scenarios.

Exemplarily, we present two historical modification sce-
narios of the PCM. In the ProcResSpec scenario, an inheri-
tance relation is introduced from ProcessingResource
Specification to Identifier. The ProcResSpec scenario has
ProcessingResourceSpecification and Identifier as affected
classes. The ProcessingResourceSpecification class is
located in the resources metamodel module of D. Identifier
is located in the identifier metamodel module in p (not
shown in Fig. 7). In the ComLinkResType scenario, a super-
type of CommunicationLinkResourceType is changed to
ResourceType instead of ProcessingResourceType. The
scenario has these three affected classes for the subgraph
creation. The CommunicationLinkResourceType is also
located in the resourcesmetamodel module.

9.2.2 Need-Specific Use and Reuse

To evaluate mmUtil for the PCM, Smart Grid Topology and
KAMP4aPS case studies, we collected all models that were
available to us (611 PCM models, 28 Smart Grid Topology
models and 30 KAMP4aPS models). The number of existing
BPMN2 models is much higher, because, in contrast to the
other case studies, there is a public online repository for
BPMN2 models7. For BPMN2, we collected 103 models
from internal sources [59], [60] and 3739 models from the
repository. For PCM, Smart Grid Topology and KAMP4aPS,
all models were valid. For BPMN2, 46 models were invalid.
These models could not be loaded and, therefore, were
ignored in our evaluation.

9.3 Evaluation Results

In this subsection, we present the results of the evaluation.
We use the metrics to compare the original versions of the
metamodels to the modularized versions. Thus, the absolute
values of the metrics are of less importance to us. The sour-
ces to our evaluation tool and the raw results can be found
in our technical report [43].

9.3.1 Evolvability

The results of the hypergraph metrics analysis are shown
in Fig. 8 (PCM), Fig. 9 (Smart Grid Topology), Figs. 10
(KAMP4aPS) and 11 (BPMN2). The diagrams show the
results for the metrics that are labeled on the right side.
The upper box contains complexity results, the middle box
shows the coupling (between packages), and the lower box
presents the cohesion (inside packages). The values of the
metrics are plotted at the y-axis at the left side. At the
x-axis, the names of the evolution scenarios are listed. The
scenarios are marked with their scenario type: historical
evolutiony, potential evolution� and generic evolution�. If
they produce the same subgraph, multiple scenarios result

6. https://sdqweb.ipd.kit.edu/wiki/PCM Changelog 7. https://github.com/camunda/bpmn for research



in same metric results. In these cases, only the name of the
alphabetically first scenario is shown. How many scenarios
produced the same result, is denoted by the number in
brackets after the scenario name. For each scenario, both
versions of the metamodel were evaluated: the original
one (black) and the version that was modularized accord-
ing to the reference architecture (gray).

The unit for complexity and coupling is bit, as both met-
rics measure information size known from information the-
ory. Their value range is unbounded. Low complexity and
low coupling values are good. The unit for cohesion is ratio
of bits, i.e., the ratio of the current cohesion compared to the
cohesion of the maximal cohesive graph. Thus, its value
range is between zero and one. High cohesion value is good.

9.3.2 Need-Specific Use and Reuse

The results of the metamodel utilization metric are shown
in Fig. 12. Each case study has its own boxplot. The x-axis

shows the name of the metamodel. The left one is the origi-
nal version and the right one is the modularized version.
The y-axis shows the scale for the mmUtil metric. The unit
for mmUtil is ratio of classes, i.e., the ratio of instantiated
classes compared to the total number of classes from all
metamodel modules that have to be loaded. Thus, its value
range is between zero and one. A high value is good. The
lower and upper border of the box represent the first and
third quartiles. The bar in the middle of the box shows the
median. The whiskers extend from the borders of the box
to the last value within 1.5 times the inter quartile range.
The individual results are represented as points. We scat-
tered the results to prevent overplotting. Thus, within
results for one metamodel version, the x-position has no
meaning.

Fig. 8. Evolvability metric results: PCM.

Fig. 9. Evolvability metric results: Smart Grid Topology.

Fig. 10. Evolvability metric results: KAMP4aPS.

Fig. 11. Evolvability metric results: BPMN2.



9.4 Results Interpretation and Discussion

In this subsection, we interpret the results presented in the
previous subsection. We discuss reasons for differences in
the results between the original and modular versions of
the metamodels and their implications.

9.4.1 Evolvability

Complexity: Across all case studies and for all evolution sce-
narios, the complexity of the modular version has decreased
in comparison to the complexity of the original version of
the metamodels. We attribute this to the constrainment of
dependencies (layering, no cycles, conformance to language
feature dependencies) and to slicing modules according to
user language features. Due to these refactorings, the sub-
graphs of the modularized metamodels include less unnec-
essary language features. In many scenarios, the splitting of
modules resulted in smaller package size, as before too
many user language features were lumped together. The
overall complexity of the modularized metamodels was not
reduced. In fact, it grew due to additional indirections and
class splits. However, the complexity of the parts of the
metamodel that are relevant for the metamodel developer,
who is working on an evolution scenario, is reduced.

Coupling: The results for the coupling metric are mixed.
For the PCM, the coupling decreased in all scenarios. For the
other case studies, however, there are scenarios where the
coupling increased. For Smart Grid Topology, the coupling
increased in four scenarios. For the remaining four scenarios
(AbstractType, NewCommEntity, NewPhysicalConn, and
SmartMeter), the coupling value for the original metamodel
cannot be computed, as the subgraph for these scenarios con-
sists only of one package. In these cases, the coupling cannot

be compared to the coupling of themodularized version. The
coupling results for KAMP4aPS increased for four scenarios
and dropped for three scenarios. For BPMN2, the coupling
increased for 15 scenarios, remained equal for one scenario
and decreased for seven scenarios.

The mixed results for coupling are caused by different fac-
tors. Vertical module splits contribute considerably, as they
turn parts of cohesion of modules into coupling. Paradigm
extraction also contributes, as abstract classes are extracted
and placed in anothermodule. The resultingmodules in theD
layer are thus strongly coupled to their modules in the p
layer. In some cases, the extraction of cross-cutting features
contributed to the coupling. A cross-cutting feature is a fea-
ture that depends on many other features. The metamodel
modules of cross-cutting features contain a package structure
that mirrors the structure of metamodel modules that are
extended [5]. Such structuring helps developers to navigate.
These packages are strongly coupled and tend not to contain
many classes. Thus, they contribute more to coupling than
cohesion.

In the particular case of BPMN2, the coupling of the orig-
inal metamodel is very low compared to KAMP4aPS and
PCM, which have a similar size. This is a result of the main
package that contains all language features except for the
ones that are concerned with graphical diagrams. The low
coupling between these packages is the only contributor to
the overall coupling. We split the main package in the
mBPMN2. Thus, a part of the cohesion of this package was
transformed into coupling which caused the growth.

As a sidenote, the BPMN2 results of all metrics for the
original metamodel are constant over all scenarios. This is
the case, as the package of the main metamodel module of
the original BPMN2 is very large. As it is dependent on all
other metamodel modules, this leads to all metamodel mod-
ule to always be included in the subgraph.

Due to the dependency constraints of our reference archi-
tecture, the effect of high coupling is reasonable. To explain
this, two cases of package coupling have to be distinguished:
coupling of packages within a metamodel module and cou-
pling between packages of different metamodel modules. In
our reference architecture, package hierarchies within meta-
model modules are only used for the logical structuring of
classes to guide developers. Coupling of packages within a
module can be viewed as a sort of cohesion within a module.
Especially as the packages within a module are intended to
be always used together. Thus, strong coupling of packages
within amodule does not harm the evolvability and reusabil-
ity of the metamodel, even if it is bidirectional or contains
cycles. One may suspect, that an increase in intra-module
package coupling increases complexity and, therefore, dam-
ages evolvability. This, however, cannot be observed, as the
complexity decreased across all scenarios. An increase in
intra-module package coupling accompanied by the com-
plexity remaining constant could also be obscured by a
decline in cohesion. This is, however, not the case, as the
cohesion increases in all scenarios. Concerning coupling
between metamodel modules, the reference architecture for-
bids dependency cycles. This especially includes bidirec-
tional coupling, which is the smallest form of a dependency
cycle. If in the modularized version, a metamodel module
(M) is coupled to another metamodel module (N), N can

Fig. 12. Metamodel utilization results. cc means class count.



indeed be used without M, but M is always intended to be
used together with N. Consequently, we believe strong pack-
age coupling is not a problem, if it is either package internal,
or unidirectional and has been introduced by intention
according to the reference architecture.

Cohesion: The values of the cohesion metric increased
across all evolution scenarios of all case studies. We attri-
bute this to the modularization according to user language
features. Classes that implement the same feature tend to be
related more strongly. Putting these into the same package
or removing classes of other features, tends to increase the
cohesion. Thus, the increase of cohesion is to be interpreted
positively, as this helps developers in identifying classes
that belong to user language features.

9.4.2 Need-Specific Use and Reuse

For all case studies, the utilization has improved. For the
Smart Grid Topology and the KAMP4aPS studies, the best
utilization for the original metamodel is less than the worst
utilization for themodularizedmetamodel. Regarding the uti-
lization of PCM and BPMN2, for each individual model
the utilization of themodularmetamodel is better than the uti-
lization of the original metamodel. We attribute the improve-
ment of utilization to the modularization according to user
language features. Models contain instances of specific lan-
guage features. If the structure of the metamodel supports the
use of language features independent of each other, the meta-
model utilization increases. This is because EMF requires only
relevant metamodel modules to load the model. These posi-
tive results show the reference architecture supports need-
specific use and reuse.

9.5 Evaluation Conclusion

In summary, the results of the hypergraph analysis showpos-
itive results across all scenarios for complexity and cohesion.
The results for coupling are mixed. As the reference architec-
ture forbids dependency cycles and bidirectional coupling
between modules, the increase of coupling is justifiable. The
decrease in complexity helps metamodel developers when
they try to understand and navigate the metamodel. The
increase in cohesion shows, that packages group classes that
are closely related andmay evolve together. Thus, the evalua-
tion results for goal 1 show that the reference architecture sat-
isfiesR1 (Improved Evolvability).

Also the evaluation of metamodel utilization exhibits very
positive results. The utilization improved for eachmodel that
was analyzed. Thus, the evaluation results for goal 2 show
that the reference architecture satisfies R5 (Need-specific
Reuse) andR6 (Need-specific Use).

9.6 Threats to Validity

In case study research, four aspects of validity are distin-
guished [61] – internal validity, external validity, construct
validity, and conclusion validity.

Internal Validity: In the case studies, the metamodels have
been refactored according to the reference architecture. The
refactored metamodels have been compared to the original
metamodels to evaluate the reference architecture. There
are several ways of refactoring the original metamodels. So
the refactoring may affect the evaluation results. This is
why we did not fix bad smells that are not addressed by the

reference architecture in the refactorings to preserve the
internal validity of the evaluation.

External Validity: According to Runeson et al. [61], in case
study research, the representativeness of a sample case may
be sacrificed to achieve a deeper understanding and better
realism of the phenomena under study. Consequently, the
results achieved for the four metamodels in the case studies
might not be transferable to arbitrary other cases, due to the
individual properties of each case. However, the case stud-
ies give important insights and provide indicators for cases
with similar properties. To be more specific, the selection of
metamodels for the case studies might not be representative
enough. Further, our approach might not be applicable or
not be beneficial to arbitrary metamodels for quality model-
ing and analysis. To address this threat, we selected meta-
models that are as heterogeneous as possible. See Section 7
for details on metamodel selection.

Construct Validity: Construct validitymay be compromised
ifwemerely chose case studies for which our approachworks
well. In the search for case studies, we encountered metamo-
dels of different degree of modularity. As our goal was to
evaluate metamodels as diverse as possible in the case stud-
ies, we chose metamodels of varying degree of modularity.
The benefits of our approach decreases, the more modular a
metamodel is in its original version and the closer the meta-
model modules match the granularity and dependencies of
the user language features. This can be observed in the results
for KAMP4aPS and Smart Grid Topology. These metamodels
were already quite modular. Thus, they show smaller
improvement compared to the other case studies. Neverthe-
less, the results gathered for KAMP4aPS and Smart Grid
Topology show clear improvements when applying the refer-
ence architecture in comparison to the original metamodels.
Consequently, we could show positive evaluation results also
formetamodels that already had quitemodular structure.

Furthermore, we selected metamodels from different
domains – information systems, smart grid, production
automation and business process – to ensure the reference
architecture is not limited to a specific domain. The evalua-
tion results show the metamodels from all the selected
domains benefit from applying the reference architecture.

The selection of evolution scenarios for the case studies
is another threat to construct validity. For the case studies,
we used different types of scenarios as described in
Section 9.2.1 – historical, potential and generic evolution
scenarios. Historical evolution scenarios are considered a
minor threat as they are derived from change logs and exist-
ing extensions to themetamodels. Thus, themetamodel actu-
ally faced this evolution in the past. Potential evolution
scenarios were derived by reviewing the metamodel and
identifying potential modifications and extensions. Generic
modifications were derived by randomly choosing a class for
modification or extension from packages that did not yet
contain an affected class of an evolution scenario. The selec-
tion of potential and generic evolution scenarios might
threaten the validity. However, from the evaluation results
we could not identify different characteristics for potential
and generic evolution scenarios in comparison to historical
evolution scenarios.

We identified further threats to construct validity for the
subgraph extraction and transformation. First, the subgraphs



extracted for evaluationmaynot be an adequate approximation
of the part of the metamodel that is relevant for an evolution
scenario. Second, the transformation from a metamodel sub-
graph into a hypergraph may not map metamodel concepts to
hypergraph concepts in away that enables properlymeasuring
the information size of themetamodel. Third, for historical evo-
lution scenarios, theremight have been evolution after a histori-
cal scenario was executed that would alter the subgraph that is
extracted. These are minor threats, as the subgraph extraction
and transformation is applied by the samemechanism on both,
the original and the modularized metamodel. If the results for
one metamodel version are skewed, the results for the other
metamodel version are skewed in the same direction. Aswe do
not focus on absolute values but comparing the original and
modularizedmetamodel, this is acceptable.

Conclusion Validity: While analyzing the evaluation
results, the effects of interpretation by a specific researcher
must be eliminated. Therefore, we apply metrics based on
information theory and metamodel utilization in the evalua-
tion, which give reasonable evidence and reduce the need
for interpretation. Due to the evaluation design, there is
hardly an interpretation that may lead a researcher to
another conclusion.

In most cases, the evaluation results depicted in the dia-
grams are unambiguous. Sometimes, however, the results
are close enough, that they cannot be easily distinguished
by merely looking at the diagram. So we described the ten-
dencies of all results in Section 9.4. Looking at the raw eval-
uation data [43] makes obvious that also results close in the
diagram can be clearly distinguished. For example, the com-
plexity of the Arm scenario of the KAMP4aPS case study
decreased from 1066.092 to 1059.414 bits. The cohesion of
this scenario increased from 0.011 to 0.013 bits:bits. The cou-
pling of the CategoryValue scenario of the BPMN2 case
study decreased from 52.424 to 51.574 bits.

In the scenario-based evaluation, we extracted parts of
the original metamodels and the refactored metamodels to
be compared for several evolution scenarios. For each evo-
lution scenario, we compared the parts of the respective
metamodels that are relevant for the evolution scenario. We
do not evaluate the actual effort of carrying out the evolu-
tion scenarios. This is because, in analogy to related work
from software engineering [52], we assume the higher com-
plexity and coupling and the lower cohesion of the parts
of the metamodel the harder to implement the evolution
scenarios. Furthermore, the actual effort for carrying out
the evolution scenarios highly depends on various non-
structural factors like the individual skills and experience
of the metamodel developer maintaining the metamodel.

10 RELATED WORK

Approaches from the language engineering community reuse
and compose language fragments to create DSMLs. GEMOC
Studio8 allows for building and composing modeling lan-
guages based on generic language components. Puzzle [62] is
a tool for refactoring DSMLs by detecting specification clones
and extracting reusable language modules. EMF Refactor9

identifies and refactors design smells based onmodel metrics.

EMF Splitter [63] modularizes monolithic metamodels based
on the structural concepts Project, Package and Unit. In con-
trast, the modularization in our approach is based on lan-
guage features. The CORE approach [38] proposes concern-
oriented reuse to specify flexible software modules and
enable model-based software reuse. MontiCore [25] provides
modularity concepts for DSMLs by composing existing lan-
guage fragments to a new language. Melange [27] is an
approach to a modular and reusable development of DSMLs
by combining and subtyping existing DSML artifacts. There
are further techniques that leverage previous experiences in
software reuse, such as aspects (e.g., [64]), polymorphic reuse
(e.g., [65]), parametric reuse (e.g., [66]), advanced composition
operators [26]. Language development using these techniques
is difficult because they are hard to combine due to their het-
erogeneity [26]. Language engineering approaches, however,
do not provide any guidance for modularization and compo-
sition of the language. They do not take the specifics of a given
domain into account. They also do not provide support
for quality modeling and analysis. For a distinction of our
modularization concepts from existing language engineering
approaches, we refer to Section 4.1.

Approaches like that of Str€uber et al. [67] apply clustering
algorithms for modularizing metamodels and models. In
contrast, we transfer concepts from object-oriented design to
modularizemetamodels.

Jimenez-Pastor et al. [68] combine model fragmentation
strategies to split models into more manageable chunks by
using model abstraction and visualization mechanisms.
Atkinson et al. [69] present an underlying model that cap-
tures all concerns into orthogonal dimensions which are
accessed through views. The MIC framework [70] proposes
different abstraction levels of modeling. Melanie [71] uses
multi-level modeling to specify domain-specific and general
purpose languages. However, these approaches merely tar-
get the abstraction and visualization of large MDE models
by providing simpler views of the models. They do not tar-
get the modularization of the modeling language.

Work on model typing [72] and model subtyping [73] is
concerned with model substitutability. This work aims at
automatic model adaptation or reuse of model transforma-
tions but does not provide any support for language modu-
larization and composition.

Metamodel/model co-evolution has been addressed in
related work (e.g., in [21] and [22]). Cicchetti et al. [21] pro-
pose a transformational approach to co-evolution. The
approach is based on a difference model to record the evolu-
tion of a metamodel and generates a model transformation
for the co-evolution of models. Levendovszky et al. [22]
describe a DSML for specifying migration rules to perform
the model migration automatically. Again, approaches to
metamodel/model co-evolution do not provide guidance in
language modularization and composition.

There are approaches to dynamic metamodels and trace
models (e.g., [74] and [75]). Heged€us et al. [74] describe a tech-
nique for the back-annotation of analysis traces based on
change-driven model transformations. Combemale et al. [75]
propose an approach to trace analysis results back to the syntax
and operational semantics of the original DSML. We have the
reflection of analysis results in models in common with these
approaches. In contrast, our reference architecture does not
aim at tracing analysis results back but serving as a template to

8. http://www.gemoc.org/studio
9. https://www.eclipse.org/emf refactor



specify languages to describe analysis configurations aswell as
inputs and results for various quality properties.

There are also model-driven approaches to specify qual-
ity metrics (e.g., [76] and [77]). Szarnyas et al. [76] identify
graph-based model metrics to distinguish real models from
auto-generated synthetic ones. Basciani et al. [77] present an
approach supporting the definition of custom quality mod-
els by a domain specific language to specify the aggregation
of quality properties and metrics. In contrast, we do not
only want to specify modeling languages for metrics but the
entire system including quality metrics and their analysis.

First attempts came up for modular transformations [78]
and generator composition [55]. However, these modulari-
zation concepts are not applied to the metamodels but the
tooling related to the metamodels.

Approaches like JetBrains MPS [79], LISA [80] and
Neverlang [81] support extensibility and reuse in general
programming languages but do not support languages for
quality modeling and analysis.

Configuration and reuse are central to software prod-
uct lines and ecosystems. While this research is limited to
the instance level, our work refers to the metamodel level.
Clafer [82] is a metamodeling language with first-class
support for feature modeling. Clafer has been designed to
express the relation of feature models and metamodels in
context of software product line engineering but does not
aim to support modeling language modularization and
reuse. There are approaches to language product lines
(e.g., [83], [84]) that apply product line techniques for
developing languages. However, these approaches share
the aforementioned limitations of approaches from the
language engineering community.

11 CONCLUSION

In this paper, we investigated the applicability of modulari-
zation concepts as known from object-oriented design and
reference architectures as known from architectural design
to metamodels. We proposed the first reference architecture
for metamodels for quality modeling and analysis to avoid
recent shortcomings in extension and reuse of metamodels.
By leveraging patterns that reoccur in multiple domains,
the reference architecture provides a top-level decomposi-
tion of metamodels into four layers. These layers comprise
fundamental language features (p), domain-specific seman-
tics (D), quality properties (V) as well as analysis configura-
tions and data (S). Inspired by the layered architecture
style, the metamodel modules are assigned to specific layers
with constrained dependencies. We provided detailed
guidelines on the application of the reference architecture
for (1) designing a metamodel from scratch and (2) refactor-
ing an existing metamodel. In four case studies, we com-
pared metamodels refactored according to our reference
architecture to the original metamodels. Evaluation results
show that the reference architecture improves evolvability
as well as need-specific use and reuse. Furthermore, based
on the case studies, we argue the reference architecture con-
tributes to non-intrusive extension, instance compatibility
and independent extension of metamodels.

In the future, we will continue the modularization of
existing metamodels and related tooling to expand and
sharpen the reference architecture. This includes further

investigation of technologies for metamodel extension. The
applicability of the reference architecture to grammar-based
DSMLs can be investigated. The modularization concepts
proposed in this paper are independent of quality modeling
and analysis and can be applied to metamodels in general.
So, based on the modularization concepts, we will investi-
gate other kinds of metamodels to identify reference archi-
tectures for other scopes. We will extend our tool support
by new features for visualizing only the outgoing and
incoming dependencies of a specific metamodel module to
simplify working with large metamodels.

Based on the metamodel modularization concepts pro-
posed in this paper, we will investigate the modularization
and composition of analytical and simulative solvers. Com-
posing modular analysis tools provokes questions from the-
oretical computer science and formal methods community,
for example on behavior preservation and termination of
analyses. We will discuss these questions in the Dagstuhl
Seminar #19481 in fall 2019. There are a range of ways for
composing model-based analysis tools, from isolated analy-
ses with synchronization ex-post, through online co-simula-
tion, to fully integrated analyses [18]. How closely modular
analysis tools can be coupled depends on the intensity of
necessary coordination and the availability of a common
basis. We will investigate a taxonomy of analysis composi-
tion techniques, define a language for modeling the interfa-
ces of modular analyses and develop a proof-of-concept
coupling of modular analysis tools.
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