Towards Consistency Checking between Software
Architecture and Informal Documentation

Jan Keim, Anne Koziolek
Karlsruhe Institute of Technology
Karlsruhe, Germany
{jan.keim, anne.koziolek } @kit.edu

Abstract—In the development process, documenting the soft-
ware architecture is important to capture all reasoning and design
decisions. Without a good and complete documentation, there is
a lot of tacit knowledge that easily can get lost resulting in threats
for success and increased costs. However, software architecture
documentation is often missing or outdated. One reason for
it is the tedious and costly process of creating and updating
documentation in comparison to (perceived) low benefits. In this
paper, we first present our long-term vision, where all information
from any sources are persisted to avoid losing crucial information
about a system. A base problem in this vision is keeping
information from different sources consistent, with a major
challenge of keeping consistency between models and informal
documentation. We plan to address checking the consistency
between models and textual natural language artefacts using
natural language understanding. For this, we plan to break down
the task into smaller subtasks that should provide a better un-
derstanding of the documents and their semantics. The extracted
information should then be used to create traceability links and
to check whether statements within the textual documentation
are consistent with the software architecture models.

Index Terms—Natural language processing, Software archi-
tecture, Software engineering, Consistency, Natural language
understanding, Software architecture documentation

I. INTRODUCTION

Software architecture plays a major role in the development,
maintenance, and evolution of software systems. Every well-
engineered software system has a good software architecture [1],
so choosing a suitable architecture for software systems is
important for the success of the system. Modelling the software
architecture helps architects in the decision process to find
a suitable architecture. Model facilitate communication and
can enable simulation and prediction of quality attributes of
a software system like performance [2]. This can be useful
when comparing different design alternatives or for identi-
fying potential bottlenecks early. Modern practical software
development principles like agile and iterative development
also state the importance of models [3], [4]. There, a main
purpose of modelling is communication, but modelling is also
seen to be key for iteration planning. For agile modelling,
fundamental practices include the creation of several models
in small increments [4].

Software Architecture Documentation (SAD) is a way
to preserve knowledge about the software architecture and
the underlying design decisions that led to the software
architecture. Architects spend a significant amount of their

time on expanding knowledge to come to good design deci-
sions [5]. Documenting these decisions is important to avoid
losing knowledge and to prevent the deterioration of these
systems [6]. For example, in the context of open source software
(OSS), research has shown that documentation indeed has a
positive impact on the adoption of OSS and the economics of
software development when using OSS [7]. Although software
architecture documentation brings many benefits, there are
some issues that we want to outline in the following.

a) Missing or outdated documentation: One major prob-
lem with SAD is that documentation is often missing or not
updated regularly, causing it to become outdated. Without
explicit up-to-date SAD, knowledge about a software system
might perish. Additionally, incomplete documentation and miss-
ing knowledge in long-living systems result in the deterioration
of these systems and in increased costs for maintenance and
evolution [6]. Yet, Ding et al. showed that only 108 out of 2000
open source projects had some kind of documentation [8].

b) Consistency between artefacts: To avoid having any
contradictory and conflicting information in different artefacts,
it is important to have consistency between artefacts. Some
approaches are already tackling consistency between models,
e.g. [9], [10]. Besides models, there are more informal
artefacts, e.g. software architecture documentation that is
written in natural language. Using natural language texts for
documentation is a common choice [8]. Although the freedom
of expression of natural language comes with drawbacks like
potential ambiguities, a major benefit of natural language is
its accessibility and ease of use. However, there is a lack
of research regarding consistency between models and such
informal software architecture documentation.

A reason for these issues is that the tedious and costly process
to create documentation and keep it up-to-date. Therefore,
Ambler stated in [4] that the benefit must be greater than
the cost of creating and maintaining it. Moreover, the actual
benefits of documentation is often not seen by the creators,
because the creators often do not rely on the documentation
themselves. This is why it is important to research ways to
reduce costs and improve benefits.

To tackle the stated problems, we aim to use natural language
processing (NLP) and natural language understanding (NLU)
techniques to analyse the natural language texts and compare
the contained information with existing models and code. The
core idea is to make NLP and NLU feasible in this context by

including knowledge in the form of ontologies about software
architecture in general, about the domain of the software system
at hand, and about the current software system itself to help
gaining a thorough understanding. The ontologies about the
current software system should be derived from existing models
and code. A similar effort based on knowledge coming from
ontologies constructed from the API of a system has been made
with respect to programming in natural language with promising
results [11]. Considering that modern software development is
characterised by agile methods and iterative and incremental
software development, we are confident to assume that models
and code already exist for the system at hand and can be used
for our approach.

The rest of the paper is structured as follows. In Section II
we present our long-term vision for the software architecture
development and documentation process. We outline in Section
IIT our next goal about checking consistency, namely consis-
tency between models and software architecture documentation
written in natural language. An overview of related research is
given in Section IV and we conclude this paper in Section V.

II. LONG-TERM VISION

Meetings and discussions about the software architecture of
a system are a central aspect in the development and evolution
of software. Important information like design decisions and
their reasoning are voiced in these discussions and in sketches
on whiteboards. Yet, we do not often see all the information
properly represented and persisted in the documentation of
software architecture. Usually, only the results are fed into the
implementation in the form of updates to the previous version;
the ideas behind the changes are only implicitly present. All
information not explicitly contained in these updates is tacit
knowledge and might get lost.

In our long-term vision, we want to explore how to
process and capture information gained through discussions in
meetings, including whiteboard discussions. In a first step,
we are interested to explore whether information can be
extracted from spontaneous speech. For example, architects
may utter statements about the architecture, such as assumed
dependencies or interactions between components. In addition
to make use of information in natural language, we plan to
explore the inclusion of information contained in informal
sketches in a second step. We also want to explore whether
the combined data can be processed to automatically update
models, so the collected information can be fed both into the
software architecture and into its documentation.

If automatic updating of models will turn out to be feasible,
an ad-hoc processing of such discussions could be used to
provide quick feedback as an aid for discussions. On one hand,
this feedback could contain information about possibilities
and impossibilities of certain solution options regarding the
constraints of the software system. On the other hand, the
information could be processed to update models which can
be used to predict certain properties of the system, e.g. quality
properties like performance. With the additional information

. Software System
Domain Knowledge

Architecture Knowledge

SAD

3

Pre-processing
(Il a)

o

aq

[e}

?)
aseg

a3parmoury

—
—
=

NL Understanding

= (Il b)

Consistency

() Checks

Fig. 1. Overview of planned approach, based on [12]

gained through these predictions, different design alternatives
might be compared better to chose more fitting solutions.

There are two major goals, we want to accomplish. Firstly,
we want to tackle the problem of missing or insufficiently
documented software architecture. We want to avoid throw-
ing away any information and persist possibly all available
information about a system to reduce the amount of tacit
knowledge and to reduce the chance of losing important
information. An important part of this involves providing an
easy and fast access to the appropriate information that a user
is interested into. Secondly, we want to reduce the overhead
to create documentation and models to support the architect
by automating (parts of) the needed processes. This way, the
architects can focus on the creation of the actual architecture
instead of spending lots of time on updating models and
documentation. Additionally, this might encourage to actually
create and maintain documentation.

III. CHECKING CONSISTENCY

One problem for SAD we mentioned earlier is the con-
sistency between different artefacts. Our idea is to tackle
automated consistency checking between models and informal
documentation in the form of natural language texts. We plan to
use various NLP techniques and incorporate knowledge bases.

An overview of our plan to realise our idea is depicted in
Figure 1 and can be divided into three major parts: (I) creation
of a knowledge base, (Il a) pre-processing of the input SAD
texts followed by (I b) the main processing to generate a
thorough understanding of the text, and (III) checking the
consistency between the input documents and the system’s
architecture in the post-processing step.

The creation of the knowledge base for part (I) takes
information from different levels into account. We currently
see three different levels of knowledge. Firstly, there is general
architecture knowledge containing concepts such as compo-
nents, interfaces, and associations. Additionally, knowledge
about specific software architecture styles like microservice
architecture falls into this category. Secondly, knowledge about
the domain of the software system, i.e. knowledge about
the business domain, should be included. This can help in
different processing steps, e.g. word sense disambiguation can
be improved by giving domain-specific senses more weight.
Lastly, knowledge about the software system including the

current software architecture and its models, preferably even
existing code, needs to be added into the knowledge base.

In step (II) we aim to gain understanding about the texts.
The framework we plan to use for this step is be based on the
agent-based framework ProNat [12], [13]. We plan to begin
with a pre-processing step (II a) that prepares the input for the
NLU and performs basic NLP tasks, e.g. parsing, chunking, and
sentence splitting. After this, we can do the main processing
step (I b) that tackles NLU. There, we intend to break down
the complex task into smaller subtasks that will be solved
using different agents. In our experience, this enables us to use
more general approaches and to use existing state-of-the-art
techniques for each subtasks. Besides splitting into subtasks,
the usage of agents also allows their independent execution.
Still, agents can use information generated by other agents
and can run multiple times to improve their results based on
other agents’ results. For example word sense disambiguation is
needed to identify topics within the document, but the identified
topics might also improve results of the disambiguation of
single words that got disambiguated wrongly. Example tasks
for agents also include coreference resolution and named entity
recognition. Further, agents can operate either domain-agnostic
or domain-aware using the knowledge base.

The post-processing step of part (III) uses the gathered
information to check consistency. With the check we want
to determine if the documentation contradicts the models in
any way. For this, the previously extracted information is used
to query the knowledge base about the software system. The

results of these queries are then evaluated for any discrepancies.

For example, the documentation might state that a connection
between two components exists using a specified interface. If
there is no connection or the stated interface cannot be matched
with the actually used interface, an inconsistency is found and
the user, i.e. the software architect, is notified.

For us, a major goal of our approach for checking consistency
is the reduction of time-consuming manual work in this area.
This may reduce the human workload and the amount of
undesirable work and may support the software architect to
recognize and update inconsistencies. Besides reduction of
manual work, we also see other benefits. Firstly, consistency
between models and software architecture documentation is
tackled. This is especially helpful in iterative development and
evolution scenarios, where software including its documentation
and architecture needs to be updated regularly. Also, this may
help reducing the overhead needed for software architects
to create either documentation or models. Especially after
updating the software architecture, it is important to also
update the documentation and check for (in-) consistency.
Additional benefits may arise, when this approach is combined
with tools that can perform transformations between code and
software architecture models, e.g. SoMoX [14]. Incorporating
a code-to-architecture-transformation could enable architecture
conformance checks between SAD and the implementation via
the generated software architecture models.

Moreover, our plan for checking consistency involves a
generation of traceability links between documentation and

models. This tackles another problem of SAD as creating and
maintaining traceability links is still a challenge [15]. The
created traceability links may increase knowledge and the
understanding about the system.

IV. RELATED WORK

There are various research directions that are related to the
underlying problem for our approach.

A close research direction deals with conformance checking
between software architecture and code. For example Schroder
and Riebisch [16] developed an approach to check conformity
using reasoning on a knowledge base that is created out
of architecture rules in controlled natural language (CNL)
combined with code. In contrast, our approach aims for
consistency between software architecture and natural language
SAD. Natural language is easier to use than CNL and a
common choice for SAD [8].

Traceability is another closely related research topic that
usually covers traceability between requirement and source
code. Concepts and ideas to create traceability links between
requirements and source code might be helpful and mutual
problems do exist. Zheng et al. developed an approach that
creates traceability links between features of software product
lines and source code through product line architecture using an
extended architecture description language to describe product
features [15]. Other research about traceability focuses on the
analyses of structure and dependencies of source code [17]-
[19]. Many approaches like these use information retrieval
methods to create traceability links. Compared to our idea,
they do not use NLU to gain a better understanding of the
underlying information. Although there are approaches that
consider semantics [20], these approaches do not use the full
potential of NLU techniques.

Another closely related research direction deals with con-
sistency between models, usually by using transformations
between models. One approach within this direction is the
VITRUVIUS approach [21]. Burger et al. aim to generate a
virtual single underlying meta-model (VSUMM) that keeps
consistency between models and allows accessing the models
via views. Changes to a model of a concrete virtual single
underlying model (VSUM) are propagated with change-driven
incremental transformations to preserve the consistency [9].
This and other approaches in this research direction have
the same goal of checking and preserving consistency. While
these approaches tackle model consistency, we aim to tackle
consistency between natural language texts and models instead.

A further related research direction for our idea is about
SAD and the documentation of design decisions. Kruchten
described a classification of design decisions and provided
an ontology to capture said design decisions [22]. He states
that design decisions are both explicitly and implicitly visible
in the resulting software architecture, where for example
non-existence is only implicitly visible. To understand the
full reasoning behind a software architecture, the implicit
knowledge needs to be made explicit. [23] tackles this by
introducing architectural knowledge repositories. Alexeeva et

al. [24] give an overview of literature tackling design decision
documentation including publications aimed at consistency and
compliance of decisions and architecture. Yet, we mainly see
the focus on traceability and barely on consistency between
architecture and design decisions.

Lastly, the research area of natural language processing,
especially for software engineering, is important in our context.
The PARSE project [25] set the goal to generate script-
like programs out of spoken explanation [13]. For this, the
agent-based framework ProNat [12] was developed. Despite
the differences, there are many shared problems and similar
difficulties, thus we plan to use parts of this research. The
problem of mapping natural language texts to models in general
is also tackled by approaches that try to create (UML) models
out of requirements and similar. Some approaches use structural
analyses [26] or semantic roles [27] to resolve this problem.
Although the creation of models is different from comparing
the texts with existing models, underlying concepts of the
structural analyses or considering semantic roles can be useful.

Although all the mentioned research directions are in one
way or another related to our goals, we do not see consistency
between textual SAD and software architecture models properly
tackled yet.

V. CONCLUSION

In this paper, we presented our idea to improve software
architecture documentation. We explained that an important
benefit of software architecture combined with good docu-
mentation is the reduction of tacit knowledge. To tackle this
problem, we presented our long-term vision, where we want to
explore how to capture, understand, and persist what software
architects explain and discuss on whiteboards. All information
in this process should be be persisted to document design
decisions and reasoning. Additionally, models might be updated
automatically to predict quality attributes like performance.

We showed our next goal that consists of checking con-
sistency between software architecture models and informal
software architecture documentation in form of natural language
text, which we did not see properly covered in existing research.
We outlined our planned approach that uses an agent-based
framework to break down the task into subtask and incorporates
knowledge from different sources. The expected benefits
include consistent documentation and increased traceability
but also a reduction in the human workload.

REFERENCES

[1] N. Medvidovic and R. N. Taylor, “Software architecture: Foundations,
theory, and practice,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2, ser. ICSE "10. New
York, NY, USA: ACM, 2010, pp. 471-472.

[2] R. H. Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek,

H. Koziolek, M. Kramer, and K. Krogmann, Modeling and simulating

software architectures: The Palladio approach. MIT Press, 2016.

S. W. Ambler and M. Lines, Disciplined agile delivery: A practitioner’s

guide to agile software delivery in the enterprise. IBM Press, 2012.

[4] S. W. Ambler, “Agile modeling,” http://agilemodeling.com/.

[5] R. Farenhorst and H. van Vliet, “Understanding how to support architects
in sharing knowledge,” in ICSE Workshop on Sharing and Reusing
Architectural Knowledge, 2009, pp. 17-24.

[3

=

[7]

[8

[t

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

D. L. Parnas, “Software aging,” in Proceedings of the 16th International
Conference on Software Engineering, ser. ICSE *94. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1994, pp. 279-287.

S. A. Ajila and D. Wu, “Empirical study of the effects of open source
adoption on software development economics,” Journal of Systems and
Software, vol. 80, no. 9, pp. 1517-1529, 2007.

W. Ding, P. Liang, A. Tang, H. v. Vliet, and M. Shahin, “How do open
source communities document software architecture: An exploratory
survey,” in 19th International Conference on Engineering of Complex
Computer Systems, 2014, pp. 136-145.

M. E. Kramer, M. Langhammer, D. Messinger, S. Seifermann, and
E. Burger, “Change-driven consistency for component code, architectural
models, and contracts,” in /8th International ACM SIGSOFT Symposium
on Component-Based Software Engineering (CBSE), 2015, pp. 21-26.
H. Klare, “Multi-model Consistency Preservation,” in Proceedings of the
21st ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings, MODELS 2018,
October 2018, pp. 156-161.

M. LandhiduBer, S. Weigelt, and W. F. Tichy, “NLCI: a natural language
command interpreter,” Automated Software Engineering, vol. 24, no. 4,
pp. 839-861, December 2017.

S. Weigelt and W. F. Tichy, “Poster: ProNat: An Agent-Based System
Design for Programming in Spoken Natural Language,” in /EEE
International Conference on Software Architecture, 2015, pp. 819-820.
S. Weigelt, T. Hey, and W. F. Tichy, “Context model acquisition from
spoken utterances,” International Journal of Software Engineering and
Knowledge Engineering, vol. 27, no. 09n10, pp. 1439-1453, 2017.

O. Travkin, M. Von Detten, and S. Becker, “Towards the combination
of clustering-based and pattern-based reverse engineering approaches.”
in Software Engineering (Workshops), 2011, pp. 23-28.

Y. Zheng, C. Cu, and H. U. Asuncion, “Mapping features to source
code through product line architecture: Traceability and conformance,”
in IEEE International Conference on Software Architecture, 2017, pp.
225-234.

S. Schroder and M. Riebisch, “An ontology-based approach for docu-
menting and validating architecture rules,” in Proceedings of the 12th
European Conference on Software Architecture: Companion Proceedings,
ser. ECSA *18. ACM, 2018, pp. 52:1-52:7.

H. Kuang, P. Méder, H. Hu, A. Ghabi, L. Huang, J. Lii, and A. Egyed,
“Can method data dependencies support the assessment of traceability
between requirements and source code?” Journal of Software: Evolution
and Process, vol. 27, no. 11, pp. 838-866, 2015.

A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto, D. Poshy-
vanyk, and A. D. Lucia, “When and how using structural information to
improve IR-based traceability recovery,” in /7th European Conference
on Software Maintenance and Reengineering, 2013, pp. 199-208.

J. I. Maletic and A. Marcus, “Supporting program comprehension
using semantic and structural information,” in Proceedings of the 23rd
International Conference on Software Engineering, ser. ICSE *01. IEEE
Computer Society, 2001, pp. 103-112.

A. Mahmoud and N. Niu, “On the role of semantics in automated
requirements tracing,” Requirements Engineering, vol. 20, no. 3, pp.
281-300, September 2015.

E. J. Burger, “Flexible views for view-based model-driven development,”
in Proceedings of the 18th International Doctoral Symposium on
Components and Architecture, ser. WCOP *13. ACM, pp. 25-30.

P. Kruchten, “An ontology of architectural design decisions in software
intensive systems,” in 2nd Groningen workshop on software variability.
Citeseer, 2004, pp. 54-61.

P. Kruchten, P. Lago, and H. v. Vliet, “Building up and reasoning
about architectural knowledge,” in Quality of Software Architectures, ser.
Lecture Notes in Computer Science. Springer, 2006, pp. 43-58.

Z. Alexeeva, D. Perez-Palacin, and R. Mirandola, “Design decision
documentation: A literature overview,” in Software Architecture, ser.
Lecture Notes in Computer Science. Springer, Cham, 2016, pp. 84-101.
S. Weigelt, “PARSE — Programming ARchitecture for Spoken Explana-
tions,” https://parse.ipd.kit.edu/.

0. Keszocze, M. Soeken, E. Kuksa, and R. Drechsler, “Lips: An IDE
for model driven engineering based on natural language processing,” in
Ist International Workshop on Natural Language Analysis in Software
Engineering (NaturaLiSE), 2013, pp. 31-38.

T. Gelhausen and W. E. Tichy, “Thematic role based generation of UML
models from real world requirements,” in International Conference on
Semantic Computing (ICSC), 2007, pp. 282-289.

