KIT | KIT-Bibliothek | Impressum | Datenschutz

3D silicon/graphite composite electrodes for high-energy lithium-ion batteries

Zheng, Y. 1; Seifert, H. J. 1; Shi, H.; Zhang, Y.; Kübel, C. ORCID iD icon 2; Pfleging, W. ORCID iD icon 1
1 Institut für Angewandte Materialien – Angewandte Werkstoffphysik (IAM-AWP), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)


Graphite composite electrodes mixed with silicon are proposed as next generation anode material for high energy and high power applications. In order to overcome drawbacks caused by volume changes of silicon particles during electrochemical cycling and to maintain high specific capacities at enhanced Crates, free-standing structures are generated on silicon/graphite electrodes by applying ultrafast laser ablation. Electrochemical properties are systematically investigated by means of galvanostatic measurements, cyclic voltammetry, and electrochemical impedance spectroscopy. Cells with structured electrodes exhibit improved battery performances and lithium-ion transport kinetics in comparison to cells with unstructured electrodes. Furthermore, the cells with structured electrodes exhibit a lower impedance at fully lithiated state. After cycling, post-mortem analysis is performed revealing that the mechanical stress within the electrodes and current collector can be significantly reduced due to laser generated free-standing structures.

DOI: 10.1016/j.electacta.2019.05.064
Zitationen: 51
Web of Science
Zitationen: 47
Zitationen: 51
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Angewandte Werkstoffphysik (IAM-AWP)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2019
Sprache Englisch
Identifikator ISSN: 0013-4686, 1873-3859
KITopen-ID: 1000096209
HGF-Programm 37.01.02 (POF III, LK 01) Components and Cells
Erschienen in Electrochimica acta
Verlag Elsevier
Band 317
Seiten 502-508
Projektinformation DFG, DFG EIN, PF 392/9-1
Schlagwörter Lithium-ion battery, Silicon anode, Graphite anode, High rate capability, Ultrafast laser processing;, 2018-019-021333 LMP, 2018-021-024429 TEM
Nachgewiesen in Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page