
               Introduction 
 Tribology underlies the performance, safety, and reliability 
of nearly every mechanical system on land, at sea, and in 
space. The understanding and harnessing of tribological phe-
nomena holds promise to address the 11% of annual energy 
consumption in transportation, utilities, and industrial appli-
cations lost due to friction and wear.  1   This is in addition to 
the opportunities to save billions of dollars annually lost to 
downtime of industrial equipment,  2   to eliminate billions of 
tons of CO 2  emissions annually,  3   and to signifi cantly reduce 
human suffering caused by the failure of medical devices 
such as implants.  4 

 Tribology depends on the physical, chemical, electrical, 
and system properties of the sliding materials, such as mechani-
cal stiffness and strength, thermal and electrical conductance, 
hydrodynamic behavior, surface topography, material com-
patibility, temperature, sliding speed, and gas/fl uid environ-
ment; in biological settings, a host of additional properties 
come in to play. Thus, the key parameters of interest such as 
the friction coeffi cient and wear rate are not material param-
eters, but rather, are system properties that vary with opera-
tional conditions. For newly engineered systems, or after a 

materials modifi cation to an existing system, friction and wear 
performance are not currently predictable. Furthermore, the 
lack of direct observation of the sliding surfaces is a central 
obstacle to predicting performance and preventing failures. 
In situ  techniques in tribology reveal the buried interfaces, as 
discussed in the 2008 issue of  MRS Bulletin  on the topic.  5   The 
ensuing decade has brought signifi cant advances both at the 
larger scales (see References  6   –   17 ) and at the nanoscale (see 
References  18   –   22 ); the latter is the focus of the present article. 

In situ  nanotribology decreases the size scale of experiments 
to improve resolution and control over sliding conditions, 
with the goal of identifying and describing the underlying 
physical mechanisms (  Figure 1  ). The fundamental under-
standing that is achieved from  in situ  nanoscale investigations 
can be generalized and harnessed at all length scales to improve 
tribological performance. Further,  in situ  experiments can be 
directly matched with atomistic simulations, enabling atomic-
scale understanding of results. By establishing and quantify-
ing the physical relationships that relate structure, processing, 
and properties, the goal is to enable the rational design of 
components, devices, and systems to improve tribological 
performance.       
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 Instrumentation for  in situ  nanotribology 
In situ  nanotribology experiments include the use of micros-
copy or an analysis technique to characterize interfacial pro-
cesses during sliding. One primary approach is to use specialty 
specimen holders to directly observe the tribological testing 
of nanoscale bodies with an electron microscope.  23   This enables 
Ångström-scale resolution of morphology and surface topog-
raphy. Simultaneously, the crystallographic structure, com-
position, and bonding chemistry can be characterized using 
analytical techniques such as nanobeam diffraction, energy 
dispersive x-ray spectroscopy (EDS), and electron energy 
loss spectroscopy (EELS). Another primary approach is to use 
atomic force microscopy (AFM) to perform both sliding and 
characterization. AFM enables precise control over the load-
ing and sliding conditions, with simultaneous characterization 
of the surface’s morphology and properties.  24   The environment 
can be varied widely, covering vacuum, ambient, controlled 
atmospheres, and liquid environments, including conditions 
that are biologically compatible. 

 Another type of investigation (termed  quasi-in situ ) inter-
rupts sliding to analyze surfaces. This includes sliding an 
AFM probe for some distance before removing it for high-
resolution imaging of the tip or sample, or sliding a pin on 
a disk followed by the sectioning of surfaces for electron 
microscopy analysis. Throughout this article, we discuss these 
 quasi-in situ  investigations as leading indicators, setting up 
the key scientifi c questions that will be answered by true 
 in situ  experiments.   

 Revealing the buried interface: Key results and 
future directions  
 Observations of novel phenomena 
  In situ  tribology experiments were fi rst demonstrated in the 
1960s by the famous tribologist Bowden  25   who developed 
an  in situ  scanning electron microscope (SEM)-based inden-
tation apparatus and studied small contacts of gold, copper, 

and aluminum; the  in situ  capability allowed Bowden and 
colleagues to observe that plastic deformation was negligible 
below a stress approaching the ideal strength of the metals 
tested; they then applied the instrumentation in a transmission 
electron microscope (TEM).  26   Kato and co-workers  27   conducted 
 in situ  SEM-based wear studies of steel in 1988, directly 
observing a transition from plowing to wedge-forming to cut-
ting as the degree of penetration increased. Shortly thereafter, 
Spence and co-workers developed a scanning tunneling 
microscope operating  in situ  inside a TEM, observing nanoscale 
compression of surfaces by the tip.  28 , 29 

 More recently, both commercial and custom-built TEM-
based instruments have revealed a wide range of phenomena 
for several different material classes. For instance,  in situ  TEM 
investigation of contact between noble metals demonstrated 
“cold welding” of asperities upon contact,  30 , 31   followed by 
liquid-like behavior during separation (discussed in more detail 
later). In the case of two-dimensional (layered) materials 
(e.g., graphite, MoS 2 ), which are important solid lubricants,  in 

situ  TEM nanotribology has revealed rolling,  32   exfoliation,  33 , 34 

and material transfer  35   during sliding. Another transformative 
aspect of  in situ  electron microscopy is the ability to reveal 
chemistry and bonding of the materials at the interface. For 
example, EELS analysis revealed changes in the hybridization 
state of carbon-based materials during  in situ  contact. Merkle 
and co-workers  36   demonstrated a sliding-induced increase in 
the  sp  2 -to- sp3  ratio of diamond-like carbon; conversely, Janei 
and co-workers  37   demonstrated a decrease in  sp   2   content of 
soot particles after  in situ  compression. 

 Other recent work has leveraged the ability to work in 
biocompatible fl uids, where  in situ  work has demonstrated 
links between tribological behavior and biological response.  38   
This includes the effects of shear forces on the growth and 
proliferation of cells, as elucidated by approaches such as the 
direct observation of contact between a soft hydrogel cap and 
a layer of corneal epithelial cells imaged via fl uorescence 

  

 Figure 1.      While tribological phenomena are complex and multiscale, fundamental understanding can be gained by reducing the system 

size to improve the control and measurement of local conditions.  In situ  nanotribology reveals the fundamental physical mechanisms and 

enables their systematic interrogation with the goal of informing design and optimization of larger-scale systems.    



microscopy,  17   or the measurement of friction and shear force-
induced infl ammation of cells  in vitro.   39 

 These examples and many others demonstrate the power of 
 in situ  approaches to tribology. We next discuss selected stud-
ies in more detail that have advanced knowledge of tribology 
through direct observations at the nanoscale, and have uncov-
ered or confi rmed specifi c physical mechanisms underlying 
processes related to contact, adhesion, friction, and wear at all 
length scales.   

 The role of tribochemistry in material removal 
 Tribochemistry is the acceleration of chemical reactions at sur-
faces by sliding. Tribochemistry builds on the well-established 
fi eld of mechanochemistry, which describes how mechanical 
forces can alter the kinetics of chemical reactions. However, 
the sliding action adds further complexity in the form of 
spatially and temporally varying loads, evolving surface 
morphology and chemistry, and the transport of reactants and 
products into and out of the contact region. In many appli-
cations, material removal by tribochemistry plays a primary 
role in sliding wear. A common theme that has emerged is the 
importance of thermally and tribologically activated chemical 
processes affecting wear.  In situ  investigations provide a way 
to understand, and even potentially predict and control, these 
wear processes.  

 Tribochemical wear in silicon and carbon-based materials 
 Signifi cant wear and surface modifi cation can occur in cova-
lently bonded materials, even well below the fracture stress.  40 

 Quasi-in situ  investigations using atomic force microscopy 
have demonstrated that material removal could be modeled 
using reaction rate theory.  41   –   45   Gotsmann and co-workers used 
high-speed AFM to study the wear of silicon  43   and carbon  44 

nanoprobes with periodic adhesion measurements (as an 
indirect measure of probe radius) and  ex situ  electron micros-
copy (as a direct measure). They demonstrated that the wear 

was gradual, and could be described by combining reaction 
rate theory with an empirical model for friction stress, and the 
conical geometry of the probe.  43 

  In situ  nanoscale investigations have further advanced the 
understanding of tribochemical material removal. TEM obser-
vations of silicon AFM probes sliding on diamond (  Figure 2 a ) 
demonstrated Ångström-scale recession of the silicon nano-
probe while the subsurface crystallography was maintained.  18 

Signifi cant material removal occurred in the absence of frac-
ture, plasticity (i.e., subsurface defects or permanent shape 
change), or observable debris ( Figure 2b ).  46   The improved 
spatial and temporal resolution of the  in situ  TEM testing 
enabled the characterization of instantaneous tip shape and 
the quantifi cation of the rate of atom removal. By combining 
the asperity shape with subnanonewton force resolution, the 
local and instantaneous mean contact stress could be computed. 
Together, these measurements provided direct evidence that 
sliding wear occurred through surface reactions with an 
Arrhenius dependence on local stress, ( Figure 2c ) where the 
atomic reaction rate  Γ   (with units of s –1 ) is given by:  45 
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 where the prefactor  0Γ    includes the effective attempt fre-
quency of the reaction, which is related to atomic vibration 
frequencies,  Δ actG    is the Gibbs free energy of activation for 
the rate-limiting reaction in the process,  Bk    is Boltzmann’s 
constant, and  T    is the absolute temperature. The fi t to the data 
assumes that  Δ actG    is infl uenced by stress according to:

   σΔ = Δ − Δact actG U V (2)

 where   Δ actU    is the internal activation energy (energy barrier 
in the absence of stress),  σ   is the mean value of the stress 
component affecting the activation barrier, and  ΔV    is the acti-
vation volume. In this case,  σ   was taken as the compressive 

  

 Figure 2.      The sliding of a silicon atomic force microscope probe on diamond in a transmission electron microscope (a) enables characterization 

of the evolving shape and structure during wear (b).  46   Combining the wear data with real-time load measurements (c) enables the direct 

demonstration of reaction rate theory ( Equation 1 ) and the extraction of activation parameters for low-load wear of silicon.  18   The inset in 

(c) shows that the data collapses to a straight line on a log-linear plot.    



stress (which assists in covalent bond formation across the 
interface); however, because the interfacial shear stress depends 
on the compressive pressure, it is diffi cult to distinguish which 
stress is “activating” in a given situation.     

 AFM wear experiments with  in situ  tip-based heating were 
performed on functionalized graphene surfaces (  Figure 3  ) 
to further interrogate the stress-dependent kinetics of bond 
breaking and the effect of temperature on bond-scission dynam-
ics.  19 , 47   Real-time friction measurements were used as an 
 in situ  measurement of molecular-scale material removal, and 
the heated AFM probes directly applied temperature ramps 
to examine temperature-dependent rates of material loss.  47   In 
contrast to prior experiments that assumed thermal activation, 
fi rst-order reaction kinetics were used to verify an Arrhenius 
dependence of the material removal rate on inverse tempera-
ture. Additionally, by controlling applied load and contact 
time, the authors were able to measure the different kinetics of 
oxygen-, fl uorine-, and hydrogen-functionalized graphene.  19 

 The importance of these stress-controlled 
bonding reactions were also demonstrated for 
adhesive contacts even in the absence of slid-
ing.  In situ  TEM experiments of amorphous 
carbon tips in contact with diamond showed 
gradual material removal, and fl uctuations in 
the adhesion force due to covalent bond for-
mation during contact.  48   Finally, interrupted 
( quasi - in situ ) imaging of amorphous carbon 
tips in sliding contact with diamond revealed 
a load-dependent transition from an exponen-
tial dependence on stress (the Arrhenius-like 
behavior described in  Equations 1  and  2 ) to the 
linear dependence described by the Archard 
equation for wear.  49 

 Taken together, these recent  in situ  nanoscale 
investigations established stress-modifi ed ther-
mally activated bond-breaking as the key frame-
work for describing low-load wear behavior of 
covalent materials. The predictive power of this 
framework, and its limits of applicability, are 
still being actively explored.   

 Tribochemical buildup and removal of 
antiwear additives 
 Industrial lubricants contain a substantial frac-
tion (up to ca. 10 wt%) of additives for impor-
tant functions, including reducing boundary 
friction, controlling viscosity, and reducing 
wear. Particularly important is the family of 
zinc dialkyldithiolphosphate (ZDDP) additives, 
which are used in every commercial lubricant 
for internal combustion engines. These tri-
bochemically active molecules reduce wear 
and corrosion by forming thin protective fi lms 
(“tribofi lms”) through adsorption and con-
fi nement at contacting asperities, followed 

by force-induced dissociation and subsequent reactions 
(  Figure 4  ).  20 , 50 , 51   ZDDPs are inexpensive and highly effec-
tive, but contain sulfur and phosphorous that poison catalytic 
converters, thereby increasing harmful emissions. The auto-
motive industry has for decades sought a suitable replacement 
but has not yet succeeded. One reason is that the underlying 
tribochemical behavior at the asperity level was not well 
understood. Macroscopic,  ex situ,  and  quasi-in situ  studies  51   –   55 

have elucidated the structure and composition of these fi lms; 
experiments have shown that compressive  56   and shear  50   forces 
are crucial for fi lm formation, but insights to explain the tri-
bofi lms’ graded structure and self-limiting growth (at approxi-
mately 100-nm thickness) are long-standing challenges.     

 Gosvami et al. recently developed an AFM method where 
tribofi lms are created  in situ  while simultaneously probing 
nanoscale properties including morphology, friction, and wear 
(  Figure 5 a ).  57   A single-asperity contact is formed between 
an AFM tip and a fl at sample submerged in a conventional 

  

 Figure 3.      Temperature-controlled sliding experiments used the friction force,  f , as a real-time 

measurement of surface coverage of functional groups on graphene. Here, the removal 

of oxygen groups from graphene oxide (GO) produces reduced graphene oxide (rGO). By 

varying the temperature, the thermal activation was directly confi rmed and the activation 

parameters of bond scission were extracted. Note:  E  a , activation energy;  k , the Boltzmann 

constant. Reprinted with permission from Reference  47 . © 2017 American Chemical Society.    

  

 Figure 4.      A challenge in understanding force-dependent reactions is that the contacting 

surfaces are not atomically smooth, with energy dissipated largely at nanoscale asperity–

asperity contacts. This affects the reactions of molecules such as zinc dialkyldithiolphosphate 

(ZDDP) that undergo shear-assisted reactions at the single-asperity scale forming surface-

bound fi lms.  20   Image courtesy of N.N. Gosvami, Indian Institute of Technology.    



AFM liquid cell containing the lubricant. Alternatively, multi-
asperity contacts can be formed by using a rough microscale 
colloidal tip.  57   Applied force, sliding velocity, and temperature 
can be varied, and thus nucleation and growth of tribofi lms are 
mapped in real-time against shear rate, stress, and tempera-
ture. Gosvami et al.  20   heated the ZDDP-containing polyal-
phaolefi n oil to 80–140°C during sliding experiments, which 
were performed for a range of normal loads. Sliding-induced 
ZDDP tribofi lms grew at a rate that was well-described by 
 Equation 1  ( Figure 5b ). Again,  σ   was assumed to be the initial 
compressive contact pressure, but shear stress could in fact 
be controlling the reaction, as shown in macroscopic studies 
by Zhang and Spikes;  50   the model holds if the shear stress is 
proportional to the normal stress. Fitting of  Equations (1)  
and  (2)  ( Figure 5b–c ) gave values of   Δ actU    = 0.8 ± 0.2 eV and 
 ΔV    = 3.8 ± 1.2 Å 3 , consistent with a molecular-scale process.     

 Stress-activated growth explains why ZDDP-derived tri-
bofi lms have a graded structure and a self-limiting thickness. 
Reduced contact pressure—resulting from the tribofi lm’s low 
modulus—limits the degree of cross-linking and other tribofi lm-
forming reactions, resulting in a graded structure with pro-
gressively less cross-linking and a lower modulus, thus further 
reducing the contact pressure. The growth rate thus reduces 
and eventually tapers off as the fi lm grows, a sort of “cush-
ioning” effect, which is supported by a recent asperity-based 
kinetic model.  58   Dorgham et al.  59   further demonstrated the 
versatility of this method, when they compared ZDDP with 
an ashless (metal-free) DDP, fi nding that the reaction order 
is different, indicating that the tribochemical reaction path-
ways depend signifi cantly on the molecule’s structure. This 
 in situ  method has also been used to form and study tribo-
fi lms derived from solid ZrO 2  nanoparticle additives in oils,  60   
and applied to form patterned tribofi lms on surfaces, termed 
“nanotribological printing.”  61     

 Tribocorrosion 
 The synergism between chemistry and material removal is even 
more severe in corrosive environments, including biomedical 

implants,  62   nuclear power plants,  63   and marine environments.  64 

Even in corrosion-resistant alloys, sliding action causes repeti-
tive loss of protective surface fi lms, resulting in the loss 
of metal ions to repassivate the worn surface and thereby 
accelerating material degradation.  65   Corrosion-resistant metals 
typically contain costly alloying elements such as Ni and Co, 
and can have complex microstructures with carbide or nitride 
inclusions. Besides solution chemistry and sliding contact 
conditions, the wear-corrosion synergy is controlled by fac-
tors such as composition, applied potential, applied or residual 
stresses, and fatigue resistance.  9 , 66   –   68   The mechanisms by which 
local material properties infl uence tribocorrosion processes 
are underexplored. 

 The state-of-the-art involves breakthroughs from  quasi-in 

situ  investigations. Malayoglu and Neville  69   used examination 
of worn surfaces by AFM to show that the preferential removal of 
Co-rich matrix material was more pronounced on cast versus 
hot isostatically pressed (HIPed) CoCr alloys. Wang et al.  70 

revealed that preferential dissolution at the boundary region 
between carbides and the CoCrMo matrix accelerates abrasive 
wear in medical implant alloys. Shockley et al.  16   demonstrated, 
for an aged duplex stainless steel, that sliding wear initiated 
runaway pitting corrosion in susceptible phases, which did not 
occur in the absence of sliding. 

 These advances motivate locally probing fundamental 
material processes of sliding wear in corrosive environ-
ments. For instance, while repassivation kinetics is mod-
eled in its simplest form using Faraday’s Law  65   and has 
been explored for microscale scratching by diamond tips,  63 

the periodic removal and repassivation of oxide fi lms that 
occurs in tribological sliding is not well understood. Further, 
current tribocorrosion modeling relies on the assumption 
of full oxide removal,  65   while real-world multi-asperity 
contacts may experience only partial removal of the oxide. 
Fully  in situ  nanoscale investigations based on electrochemi-
cal scanning probe microscopy represent a promising path-
way for enriching our understanding of the local processes 
in tribocorrosion.    

  

 Figure 5.      (a) Schematic of the atomic force microscopy setup immersed in a lubricant (zinc dialkyldithiolphosphate [ZDDP] additive molecules 

schematically shown) used for  in situ  tribofi lm formation. (b) ZDDP tribofi lm growth rate versus mean applied normal contact stress at constant 

temperature, fi t with an exponential (stress-activated) function ( Equations 1  and  2 ). (c) Tribofi lm growth rate versus temperature at 

constant normal stress, also fi t with an exponential function. (b, c [inset]) Log of growth rate versus stress and temperature, respectively. 

(b, c) Reprinted with permission from Reference  20 . © 2015 AAAS.    



  

 Surface and subsurface processes in metals 
 The majority of tribologically loaded engineering components 
are metals, including noble metals for specialty applications 
and oxide-forming metals for general use. The understanding of 
deformation and energy dissipation in these metals is being sig-
nifi cantly advanced by  in situ  and  quasi-in situ  investigations.  

 Surface adhesion (or cold-welding) of metal contacts 
 Adhesive wear, often referred to as galling, typically results 
from the combined action of friction and adhesion on slid-
ing pairs, and can be a source of signifi cant energy dissipa-
tion and material removal or degradation. The spontaneous 
bonding of metals has been extensively studied using the 
approach of mechanically controllable break junctions, where 
wires are pulled to breaking in a high-vacuum environment 
and then brought back into contact. Many of these contact-
and-separation experiments have been  quasi-in situ,  where 
electrical current was recorded as an indirect measure of junc-
tion size; these have demonstrated the liquid-like separation 
and reforming of the contact (sometimes referred to as cold 
welding).  71   –   73   As mentioned earlier, fully  in situ  nanoscale 
experiments of nanoscale junctions  30 , 31   established that many 
noble-metal contacts separate in a progressively thinning liga-
ment that culminates, in some cases, in a single-atom chain 
before separation. These results have been confi rmed for tri-
bologically relevant contacts, including gold and silver.  21 , 74   –   77 

This liquid-like behavior has even been observed in nonmetallic 
contacts of aluminum oxide  78   and silicon carbide.  79 

 The fundamental understanding of this liquid-like contact 
behavior has been advanced using  in situ  nanoscale investiga-
tions. Using contact and sliding tests in the TEM on silver,  80 

gold,  81   and oxide-free tin  22   nanocontacts, it was shown that 
this deformation was accommodated through the motion of sur-
face steps in the material surrounding the contact. After separa-
tion, asperities regained a similar resting shape regardless of the 
amount of deformation induced. This indicated deformation that 
was mediated by surface diffusion (  Figure 6 a–b ), analogous 

to Coble creep, where time-dependent deformation in load-
bearing bulk materials occurs via atomic diffusion along grain 
boundaries.     

 Tin contacts were described using a Coble-creep model 
that relates the stress  σ   to the strain-rate  ε  :  22 
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 where  D   is the characteristic dimension (e.g., diameter of 
the asperity) and  K   is a dimensionless constant. The material 
properties are described by surface diffusivity,  SD   , nominal 
surface layer thickness,  δS ,  and atomic volume,  Ω  . Li and 
co-workers combined  in situ  nanotribology experiments with 
simulations to delineate regimes where deformation will 
be liquid-like (what the authors call diffusive plasticity  82  ) 
or dislocation-mediated (termed displacive plasticity  82  ). Both 
processes can occur simultaneously,  83   but a criterion based on 
MD simulations and  in situ  nanoscale experiments determines 
which process will dominate.  84   In dislocation-based plasticity, 
“smaller is stronger,” as expressed by the Hall–Petch rela-
tionship,  1/ 2

0σ σ −= +flow kD   , where  0σ    and  k    are constants. 
In contrast, in surface diffusion-dominated deformation with 
a specifi c material, temperature, and fl ow rate, the fl ow stress 
is governed by  3

0σ σ= +flow kD   , which indicates that “smaller 
is much weaker.” 

 Separate  in situ  TEM adhesion experiments demonstrated 
the critical role that surface chemistry plays in the deforma-
tion of platinum nanocontacts. Liquid-like diffusive behavior 
is not observed in self-mated platinum nanocontacts,  85   likely 
due to the presence of surface monolayers of oxygen or car-
bonaceous material ( Figure 6c–d ),  86   which is consistent with 
atomistic simulations.  87   These surface layers prevent the 
motion of the surface steps that are required for diffusive plas-
ticity. Surprisingly, these surface layers are not removed by 
mechanical means, even with loading and sliding in vacuum.  86 

 Subsurface dislocation processes in metal contacts 
 Dislocation-mediated processes in the subsur-
face region of a contact are critical for under-
standing deformation and energy dissipation 
in metals in sliding contact.  88   The movement 
and self-organization of dislocations leads to 
a dynamic and complex subsurface microstruc-
ture.  89 , 90   The structure–properties relationship 
of a tribological contact was recently described 
as a feedback loop between grain size, friction, 
and surface stresses.  91   This suggests opportu-
nities to tailor alloys for tribological applica-
tions; however, doing so requires revealing the 
mechanisms governing these microstructural 
processes.  In situ  TEM experiments of moving 
tribological contacts represent an important 
opportunity, yet such experiments are very chal-
lenging, both in instrumentation and in appli-
cation to real-world conditions. For instance, 

  

 Figure 6.       In situ  transmission electron microscopy compression of silver contacts shows  80   

that deformation is accommodated through the motion of surface steps (a, b). Scale bars = 

5 nm. However, subsurface defect-based plasticity is observed  85   in platinum nanocontacts 

(c), and real-time electrical measurements  86   are consistent with the presence of atomic-

scale surface layers (d), which may disrupt surface diffusion. (a, b) Reprinted with permission 

from Reference  80 . © 2014 Nature Publishing Group. (c, d) Reprinted with permission 

from Reference  86 . © 2018 IOP Publishing.    



in situ  TEM requires electron transparency and thus ultrathin 
widths, yet these small dimensions introduce image forces 
from the free surfaces and other thin-fi lm effects that strongly 
affect results.  92 

 Critical advances have been established using  quasi-in situ  
tribological experiments, with high-resolution TEM analysis 
of the subsurface structure. Experiments on annealed copper 
revealed that after only one mild pass of a counter body, dis-
locations self-organized and formed a horizontal dislocation 
feature similar to a small-angle grain boundary 150 nm under 
the surface (  Figure 7 a–b ).  93   This feature was the precursor 
to microstructural discontinuities observed upon further slid-
ing  15 , 94   and also separated the regions where deformation 
occurred primarily through twinning or through dislocation 
motion ( Figure 7c ).  93 , 95   With increasing sliding distance, large 
quantities of dislocations are emitted from and through the 
sliding contact to a depth of several micrometers. Dislocations 
self-organized, fi rst into networks of geometrically necessary 
dislocations, then into sub-grains, and ultimately into a fi ne-
grained “tribo-layer.”  96   –   98   This method of interrupted slid-
ing on non-noble metals has also helped to understand how 
pearlitic steels accommodate a tribological strain through a 
sequence of different processes  99   and has shed light on tribo-
logically induced oxidation.  100 

 At the same time, this current state of the art is not satisfac-
tory. Postmortem analyses inherently allow different interpre-
tations for how the observed structures have been achieved. 
For instance, MD simulations  101   have suggested the impor-
tance of the Bauschinger effect, where the back stresses of 
dislocations that are induced during loading in the forward 
direction serve to aid the activation of dislocation slip in the 
reverse direction. Complete understanding of real-time pro-
cesses requires  in situ  nanoscale analysis. A recent fi rst step 
in this direction linked  in situ  TEM with MD to demonstrate 
that the contact area in a metal nanocontact can be up to 160% 
larger than predicted by classical continuum theories due to 
dislocation nucleation and motion, even for contacts without 
irreversible shape change.  85   These results demonstrate the 

need to closely consider dislocation activity even in pseudo-
elastic contacts, and more broadly, show the potential for 
future  in situ  TEM testing of subsurface deformation of metal 
nanocontacts.     

 Summary and outlook 
In situ  nanotribology has enabled breakthroughs in the under-
standing of fundamental mechanisms in tribology, and it 
represents a powerful platform for current and future advances 
in the fi eld. This progress has been facilitated by advance-
ments in electron microscopy, where aberration-correction 
equipment has enabled single-atom resolution and also larger 
physical pole-piece gaps to accommodate an increasing range 
of  in situ  tools.  In situ  tribology investigations have only just 
begun to leverage the analytical capabilities of electron 
microscopy to analyze the chemistry and bonding at the 
interface. The proliferation of environmental TEM equipment 
is ideally suited for tribological experiments—by enabling 
the introduction of humid or gas environments during test-
ing, experiments can more accurately refl ect real-world 
conditions in many tribological contacts. However, to take 
full advantage of these TEM advances, further improve-
ments are required for the  in situ  TEM test platforms. Key 
limitations of existing test platforms include: vibration and 
drift, which limit image quality and precision of movement; 
limited tilt range, which prevents 3D characterization using 
tomographic techniques; and the use of complex or custom 
fi xturing, which signifi cantly limits throughput and thus 
sample size and statistical signifi cance of results. There are 
promising approaches to address some of these limitations, 
including integrating the test surfaces directly into a micro-
electromechanical systems-based chip to improve stability;  102 

however, further progress is needed, especially using com-
mercial  in situ  TEM testers, to fully leverage the advantages 
of modern TEM. 

 There is still much work to be done to apply the mecha-
nisms revealed using  in situ  nanoscale testing to bulk con-
ditions. For example, friction coeffi cients and wear rates for 

the same material can differ by more than an 
order of magnitude when measured at nano-
scopic and macroscopic dimensions.  103   These 
inconsistencies refl ect important differences 
in conditions, such as: wearless sliding in an 
AFM as compared to wear-inducing sliding in 
bearings; or dry  in situ  TEM tests as compared 
to lubricated engine conditions; or an adhesive 
single asperity under gigapascals of contact 
stress as compared to a (nominally) fl at con-
tact under apparent stresses that are orders of 
magnitude lower, and where contact occurs at 
many asperities simultaneously. In many cases, 
the underlying physical processes are related 
across all scales of tribology, but differences 
in conditions can modify the mechanisms and 
their kinetics and energetics. 

  

 Figure 7.      Dislocation self-organization during the very early stages of sliding leads 

to a horizontal small-angle grain-boundary-like feature, which can be observed using 

transmission electron microscopy after only a single sliding event (a, b). The foil was tilted 

to a [103] zone axis (ZA) .  93   The line-like feature was found to be a boundary separating 

regions that accommodate shear differently, with dislocation motion dominant below the 

line and twinning dominant above, as shown in (c).  95      



 Three key needs stand out for further scientifi c advance-
ments of tribology in the future. First, true  in situ  investiga-
tions are needed in cases where the current state-of-the-art 
is  quasi-in situ  investigation. For example, the  quasi-in situ  
investigation of plasticity in a sliding contact must be advanced 
through the real-time observation of dislocation creation and 
self-organization. Second, while signifi cant progress has been 
made in single-asperity experiments and atomistic model-
ing of nanoscale contacts, the fi eld is still lacking the mul-
tiscale modeling and combined multi-resolution experiments 
needed to bridge length and time scales and to directly apply 
fundamental insights to macroscale components. This includes 
work on biological systems, where many opportunities abound.  38   
Third, signifi cant improvements are needed in the descrip-
tion and understanding of surface topography and its effect 
on properties. Scaling-up of knowledge requires not just an 
increase in the size of the contacting components, but also a 
more complete understanding of the statistical distribution and 
behavior of roughness at all scales. Continued advancement 
in these three areas will enable the ultimate goal of rational, 
science-based improvement of the tribological performance 
of sliding components in real-world devices.     
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