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Abstract

We report the synthesis of five dicarboxylic acid-substituted dipolar molecular rotors for the use as linker molecules in metal-
organic frameworks (MOFs). The rotor molecules exhibit very low rotational barriers and decent to very high permanent, charge
free dipole moments, as shown by density functional theory calculations on the isolated molecules. Four rotors are fluorescent in
the visible region. The linker designs are based on push—pull-substituted phenylene cores with ethynyl spacers as rotational axes,
functionalized with carboxylic acid groups for implementation in MOFs. The substituents at the phenylene core are chosen to be
small to leave rotational freedom in solids with confined free volumes. The dipole moments are generated by electron-donating
substituents (benzo-1,3-dioxole, benzo-1,4-dioxane, or benzo-2,1,3-thiadiazole annelation) and withdrawing substituents (difluoro,
or dicyano substitution) at the opposite positions of the central phenylene core. A combination of 1,4-dioxane annelation and
dicyano substitution generates a theoretically predicted, very high dipole moment of 10.1 Debye. Moreover, the molecules are
sufficiently small to fit into cavities of 10 A3. Hence, the dipolar rotors should be ideally suited as linkers in MOFs with potential
applications as ferroelectric materials and for optical signal processing.

Introduction
Rotors are among the fundamental functional units in engi-  basic building blocks in molecular machines and other molecu-
neering in our macroscopic world, as well as at the molecular  lar architectures [1,2]. Equally interesting is the collective be-

level. Molecular rotors have been thoroughly investigated as  haviour of ensembles of molecular rotors in two and three
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dimensions, i.e., on surfaces and in materials. Different strate-
gies have been employed to prepare ordered arrays of rotors in
two dimensions, such as the inclusion of rotors in channels on
the surface of particular crystals [3] on metal surfaces [4-6] or
in Langmuir-Blodgett films [7]. Several strategies have also
been pursued to implement molecular rotors in the solid state.
Crystals of linear molecular rotors [8-13], caged rotor crystals
and gyroscope like molecules [14-20] as well as organosilicates
[21] and metal-organic frameworks [22-25] containing molecu-

lar rotors have been synthesized by several groups.

Molecular rotors with permanent dipole moments can be
oriented by an external electric field as shown by Michl [26,27]
and Price [28,29], or undergo spontaneous ordering by intermo-
lecular dipole—dipole interactions. The ultimate goal is the fab-
rication of an array of dipolar rotors with a ferroelectric ground
state and a Curie temperature above room temperature [30].
Such materials would have a number of exciting optical and
electronic properties and applications such as signal processing
and imaging. Phase transition from a stochastic to an ordered
state with aligned dipoles depends on the arrangement of the
rotors and the strength of their interactions. MOFs [31,32] und
particular SURMOFs [33,34] are ideally suited to achieve an
ordered 3D arrangement and to maximize intermolecular inter-
actions, because the dipolar rotors are used as functional units
as well as building blocks for construction of the lattice (linker).
Towards this end, the dipolar rotors have to meet several
preconditions: 1. the dipole moments should be strong; 2. the
rotors should be small; 3. the barriers to rotation should be
small (<3 kcal mol™!); 4. the chemistry of the dipolar rotors
must be compatible with MOF growth. Preconditions 1. and 2.
are somewhat contradicting each other. In the most simple treat-
ment, the dipole moment is proportional to the point charges
times their distance. However, in a real chemical situation the
distance between the charges cannot be arbitrarily increased
because with increasing lattice parameters controlled MOF
growth becomes increasingly difficult (e.g., interpenetration).
Moreover, large cavities in solids are usually difficult to keep
free from solvents or other impurities that would hamper free
rotation. Hence, a compromise between the size and dipole
moment of the rotor/linker has to be aimed at, and care has to
be taken that the rotational barriers are as low as possible.

Figure 1 shows the interaction of a pair of dipolar rotors with
parallel axes at a distance of 10 A, which is a typical distance of
the linkers in a MOF. Five different orientations in C,,,, Cyj and
D5, symmetry are considered. The energy difference between
the most favourable and the most unfavourable orientation is
9.7 kcal mol™. It is important to note that the energy states of
3D ensembles of dipoles assuming periodic boundary condi-

tions are extremely difficult to predict. Calculations of this type
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would be far beyond the scope of this paper. Figure 1 merely
gives an approximate idea how large pairwise dipolar interac-
tions could be. However, we dare to draw the conclusion that
building a ferroelectric MOF at room temperature might not be
a completely unrealistic endeavour.

Here we report on the synthesis of five different dipolar rotors
(Figure 2) that are designed to meet the criteria 1-4 listed
above, for the use as building blocks in the construction of
functional MOFs.

Results and Discussion
Linker design and quantum chemical
calculations

Aiming at high dipole moments our design was inspired by
recent reports of Miillen et al. who reported on very high dipole
moments of 1,2-dicyano-4,5-diamino-substituted phenyl deriva-
tives [35]. Unfortunately, amino substituents are not compati-
ble with MOF growth. Cyano substituents could eventually also
interfere with the coordination chemistry of MOF formation.
We therefore considered benzoannelation with 1,3-dioxole (4)
and 1,4-dioxane (5) units as electron-donating substituents
instead of amino units and substitution with fluorine (1 and 2)
to replace the cyano units. Almost free rotation is provided by
ethynyl units as rotary joints. Carboxylate groups are termi-
nating the axes on both sides because they are known to form
the typical paddle wheel structures in MOFs [36]. Benzo-
annelated 2,1,3-thiadiazoles were introduced (2 and 3) to shift
absorption and fluorescence into the visible region and to
implement interesting optoelectronic properties into the final
MOF structures [37-41]. Prior to synthesis, we calculated the
dipole moments and barriers to rotation of the isolated rotors
1-5 (Table 1 and Figure 1). The rotational barriers of all rotors
are below 2 kcal mol~!. We interpret these data as the lower
limits of the rotational barriers in a MOF environment. Interac-
tions with other linkers or neighbouring dipoles probably will
increase the barriers. The dipole moments of the cyano-substi-
tuted rotors are considerably higher than those with fluoride
substitution. The annelated thiadiazole ring is rather electron
withdrawing and reduces the dipole moment in combination
with fluoride substitution to almost zero. Compound 5 in rela-
tion to its size has an exceptionally high dipole moment of
10.1 D; thus being in the same range as 1,2-dicyano-4,5-
diaminobenzene of Miillen et al. [32] without compromising

MOF compatibility by 4,5-diamino substitution.

Synthesis of dipolar molecular rotor linkers

The key step for the synthesis of all reported linkers is the cou-
pling of a substituted aromatic core unit with two ethynyl sub-
stituents in para-orientation as spacer units and axis of rotation

(Scheme 1). The aromatic core carries the dipole-generating
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Figure 1: Interactions of a pair of dipolar rotors in different orientations. The axes of the rotors are parallel at a distance of 10 A (terminal H atoms at
the ethynyl units are in a plane and at an intermolecular distance of 10 A), which is a typical distance in MOF lattices. The structures are fully opti-
mized at the PBE-D3/defSVP level of theory within the point groups Ca,, Ca;, and Da,. Relative energies (E;e) are given in kcal mol~! and in meV (in
brackets). The arrows indicate the orientation of the dipoles. The calculated dipole moment p of the rotor (chemical structure on top left) is 8.6 D.
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Figure 2: Structures of molecular dipolar rotors/linker molecules 1-5.
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Table 1: DFT calculated dipole moments and rotational barriers of the
dipolar rotors 1-5. Geometry optimizations (symmetry 1-4: C»; 5: Co)
were performed with B3LYP/aug-cc-pVTZ level of theory and subse-
quent Mullikan dipole moment analysis (analogue to Miillen et al. [32]).
For an appraisal of rotational barriers rotational scans were performed
at the PBE/def2SVP level of density functional theory. For this evalua-
tion both carboxylic groups where fixed in a plane. In all cases, barriers
for rotations are below 2 kcal mol='. In the absence of intermolecular
interactions there should be thermally excited rotation at room temper-
ature and down to very low temperatures.

Linker Hcalc. [D] AEmay. calc. [keal m°|_1]
1 2.6 1.8
2 0.7 1.2
3 6.2 0.9
4 8.6 1.7
5 10.1 1.6

substituents as well as two halogen atoms for cross coupling.
For all syntheses, either terminal trimethylsilylacetylene or
1-trimethylsilyl-2-tributylstannylacetylene was employed for
the coupling step followed by subsequent direct conversion of
the TMS-protected acetylenes to the dicarboxylic acids using a
method of Kondo and co-workers [42]. Following this proce-
dure, purification of TMS-protected compounds was more con-
venient as compared to the tedious work-up with carboxylic
acid derivatives directly obtained from cross coupling. Using
this method, dicarboxylic acids could be obtained from simple

aqueous work-up and extraction.

Synthesis of
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Difluoro compound 1

Difluorobenzenes have been employed as dipolar rotors by
Garcia-Garibay in crystals [10], as an elongated MOF linker by
Blight and Forgan [25] and for the investigation of rotor dy-
namics and dipole interactions in crystals by Price [28]. The
predicted dipole moment of 1 with 2.6 D is small, but the mole-
cule should be suitable for MOF preparation because the struc-
turally similar parent compound 1,4-benzenedipropynoic acid
has been successfully used for MOF synthesis [43].

The synthesis of linker 1 was straightforward (Scheme 2). The
core unit was synthesized by simple di-iodination of commer-
cially available 1,2-difluorobenzene (6). The lithiation and
subsequent metal iodine exchange has already been described in
the literature [44-46]. While in known procedures 7 is obtained
over two mono-iodination steps, we report here the di-iodina-
tion in a single step. Subsequently, 7 was reacted in a Sono-
gashira cross coupling with trimethylsilylacetylene to give 1,4-
bis(2-trimethylsilylethynyl)-2,3-difluorobenzene (8). Finally, 8
was converted to the dicarboxylic acid 1 using cesium fluoride

under a carbon dioxide atmosphere.

Difluoro- and dicyanobenzothiadiazole
compounds 2 and 3

Substituted benzothiadiazole derivatives are well studied in the
literature and are of great interest in organic photovoltaics and
electronics. As there are no reports of such building blocks in

MOF systems yet, both derivatives are promising starting mate-

p-dihalogenated EWG EWG ;osioup_)llll\r;é FVR e " Sci;lib(cj)i?/ilgtlieg?n’
bush-pullcore X — ™Ms—=— H—=—Tms 1-5
X=Br, | —
EDG EDG M =H, SnBuj EDG EDG
Scheme 1: General synthetic strategy to prepare the dipolar rotors 1-5.
——TMS
1. LDA
F F 2 F F [Pd(PPh3),Cl], F F
"2 cul H
THF, ! D THREGN (1), M N\ ™S
-78°C —rt,4h 70°C, 16 h
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F F
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Scheme 2: Synthesis of 3,3'-(2,3-difluoro-1,4-phenylene)dipropiolic acid (1) starting with diiodination of 1,2-difluorobenzene (6), followed by Sono-
gashira reaction with trimethylsilylacetylene and subsequent direct conversion to the dicarboxylic acid.
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rials for the preparation of functional materials based on MOF
structures.

Annelated benzothiadiazole linkers could also be obtained
following the general synthetic approach as shown in Scheme 3.
Synthesis of the difluoro derivative 2 starts from the known
compound 4,7-dibromo-5,6-difluoro-2,1,3-benzothiadiazole (9)
which can be obtained in a four to five step reaction pathway
from commercial compounds as described several times in the
literature [47-50]. 5,6-Difluoro-4,7-bis(2-trimethylsilylethynyl)-
2,1,3-benzothiadiazole (10) could be obtained in a Sonogashira
reaction with trimethylsilylacetylene. Conversion to the dicar-
boxylic acid 2 was achieved using cesium fluoride under a car-

bon dioxide atmosphere.

Not quite as straightforward was the synthesis of the dicyano
derivative 3. While the synthesis of 5,6-dicyano-4,7-diiodo-
2,1,3-benzothiadiazole (11b) was reported by Blakey, Marder
and co-workers [51], no cross-coupling reactions using this de-
rivative have been reported yet. Recently, the synthesis of 4,7-
dibromo-5,6-dicyano-2,1,3-benzothiadiazole (11a) was also re-
ported alongside with its use in a Sonogashira reaction [52].
The cross coupling following a Sonogashira protocol was prob-
lematic though in our case. Phthalonitrile (1,2-dicyanobenzene)
units are known to form phthalocyanines and homologues,

especially under harsher reaction conditions, such as the long
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reaction times and metal catalysis in Sonogashira reactions [53].
In the reported procedure, a bulky substituted acetylene deriva-
tive was used, probably supressing the formation of the phthalo-
cyanine byproduct to some extent. Indeed, 5,6-dicyano-4,7-bis-
(2-trimethylsilylethynyl)-2,1,3-benzothiadiazole (12a) could be
synthesized by Sonogashira coupling in a low yield of 10%
alongside with phthalocyanine byproducts. The triisopropyl-
silyl-protected derivative 12b could be obtained in a slightly
higher yield of 21%, presumably due to the bulkier TIPS-
groups. A crystal structure of this compound was obtained (see
Supporting Information File 2). To increase the yield and avoid
these side reactions, we reacted diiodo compound 11b with
1-trimethylsilyl-2-tributylstannylacetylene in a Stille cross cou-
pling, where no formation of phthalocyanine or similar side
products was observed. Changing the catalyst from tetrakis(tri-
phenylphosphine)palladium(0) to bis(tri-fert-butylphos-
phine)palladium(0) the yield increased to satisfying 90%. For
conversion into the dicarboxylic acid 3, another change of the
general procedure was necessary. Probably because of the
extremely electron deficient aromatic system in 12a, desilyl-
ation at room temperature led to polymerisation of the
acetylides. No deprotected terminal acetylene was observed. To
avoid polymerization, the solvent was changed to acetonitrile
and the temperature was lowered to 0 °C. Additionally, carbon
dioxide was not just used as the reaction atmosphere, but
directly bubbled through the solution. Following this procedure,

FF =—TMS FF F F
[Pd(PPh3),Cl,], Cul >/—\< CsF, CO, H
Br Br TMS—== —TMS HOOC—= =— COOH
— THF/E;N, 70 °C, 18 h H DMSO, tt, H
Ne_. 93% N, N 18 h N._N
S S 46% S
9 10 2
NC CN =SiR3 NC CN
[Pd(PPh3),Cl,], Cul, PPh )/—\<
X 3SI — — SIR3
THF/HN(iPr),, rt, 18 h H
/N X =Br, R = Me 10% BT
g X=1,R=iPr21% g7
11a X =Br 12a R = Me
1M1bX=1 12b R = iPr
[Pd(Pt-Bug),] )—< CsF, CO, />—<\
Br Br ™ms—=— N—=1Ms HOOC—= =— COOH
toluene, 110 °C, 18 h H CH4CN, 0 H
/N 90% /N °C,3h .
N N. _N , N, N
S g7 90% S
11a 12a 3

Scheme 3: Synthesis of 3,3'-(5,6-Difluoro-2,1,3-benzothiadiazol-4,7-diyl)dipropiolic acid (2) and 3,3'-(5,6-Dicyano-2,1,3-benzothiadiazol-4,7-

diyl)dipropiolic acid (3) as well as their silyl protected intermediates.
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3,3'-(5,6-dicyano-2,1,3-benzothiadiazole-4,7-diyl)dipropiolic
acid (3) was obtained in a satisfying yield of 90%.

Dicyanobenzodioxole and -benzodioxane

compounds 4 and 5

With the two dicyanodioxoalkylene derivatives 4 and 5, we
aimed at particularly high dipole moments. Cyano groups are
known to exhibit the highest electron-withdrawing effect among
the uncharged small functional groups [54]. As electron-donat-
ing substitutents, amino groups exhibit the strongest effects,
especially if tris-alkyl substituted. However, we chose alkoxy
substituents for our design, because phenylenediamine (1,2-
diaminobenzene) units are strongly coordinating ligands which
interfere with MOF formation. Moreover, alkoxy substituents
provide several advantages in synthesis. While methoxy substit-
uents are known and common donors, calculations showed that
bridged alkoxy substituents such as the benzodioxole and
benzodioxane groups show an even stronger electron-donating
effect than two methoxy substituents while simultaneously
being less sterically demanding as rotors in coordination
networks. According to our calculations dioxane derivative 5
exhibits a dipole moment exceeding 10 Debye, which is, to the
best of our knowledge, the highest dipole moment reported for
molecules that are suitable as MOF linkers.

Both dipolar rotor units were synthesized according to a proce-
dure outlined in Scheme 4. While the dioxane compound 5 ex-
hibits a higher dipole moment, the dioxole compound 4 was ob-
tained in higher yields. Starting from commercially available
5,6-dibromo-1,3-benzodioxole (13a) and literature known 6,7-
dibromo-1,4-benzodioxane (13b) [55], dicyanation of the
dibromo compounds was achieved with zinc(Il) cyanide under

palladium catalysis [56]. The typical Rosemund—von-Braun
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reaction using copper(l) cyanide was reported before for the
preparation of benzodioxole derivative 13a [57,58], but gave far
inferior yields and was hampered by a tedious work-up. The
dicyano compounds 5,6-dicyano-1,3-benzodioxole (14a) and
6,7-dicyano-1,4-benzodioxane (14b) were dibrominated after a
protocol using dibromoisocyanuric acid in fuming sulfuric acid
[59]. Subsequent Stille cross coupling (to avoid phthalocyanine
formation) using conditions established in the synthesis of
linker 3 gave the bis(trimethylsilylethynyl) compounds 15a and
15b in nearly quantitative yields. Analogously to the above-de-
scribed systems, conversion into the respective dicarboxylic
acids 4 and 5 took place by reaction with cesium fluoride under
a carbon dioxide atmosphere.

Conclusion

In summary, we reported here the synthesis of five dipolar
rotors consisting of a push—pull-substituted phenylene core,
with two ethynyl units in para-position as the rotary axis and
two dicarboxylic acids for the use as MOF linkers. Linkers 2
and 3 contain substituted 2,1,3-benzothiadiazole rotor units,
with absorption and emission wavelengths in the visible region
(see Supporting Information File 1). The dipolar rotors 4 and 5
exhibit the largest dipole moments known for MOF linkers so
far, with 5 even exceeding 10 Debye. Cross-coupling reactions,
particularly Sonogashira reactions of dicyanobenzenes are
known to be accompanied by phthalocyanine formation and
other side products. These problems are avoided by applying
Stille conditions using 1-trimethylsilyl-2-tributylstannylacety-
lene in combination with the bulky palladium catalyst bis(tri-
tert-butylphosphino)palladium. The TMS-protected, dicyano-
substituted rotors with thiadiazole, dioxole and dioxane annela-
tion 12a, and 16 were prepared in yields exceeding 90%. Thus,

the dipolar rotors 1-5 are now available in gram amounts for

Br.  Br NG CN NG CN  BusSIT=——TMS
Zn(CN)y, [Pd(dppf)Cl] DB [Pd(Pt-Bus),]
Br Br
DMAc, 150 °C, 3 h H,SO,4 fum., toluene, 110 °C, 18 h
n=185% 4, .5 0°C, 10min n=180%
oo n =2 64% &,  n=188% oo n=277%
= o
13 14 n=247% 15
an=1 NC CN NC CN
bn=2 — CsF, CO, —(
HOOC—= ——COOH TMS— ——TMS
V DMSO, tt, 18 h M
0, ,O n=186%
& n=281% oWP

Scheme 4: Synthesis of 3,3'-(5,6-dicyano-1,3-benzodioxole-4,7-diyl)dipropiolic acid (4) and 3,3'-(6,7-dicyano-1,4-benzodioxole-5,8-diyl)dipropiolic

acid (5). DBI = Dibromoisocyanuric acid.
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the synthesis of MOF or SURMOF structures with promising

electric and optical properties.

Supporting Information

Supporting Information File 1

Experimental procedures, 'H and 13C NMR spectra of new
compounds as well as UV—-vis and fluorescence spectra of
compounds 1-5 and crystallographic data for compound
12b.

[https://www .beilstein-journals.org/bjoc/content/
supplementary/1860-5397-15-132-S1.pdf]

Supporting Information File 2

cif file for compound 12b.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-15-132-S2.cif]

Supporting Information File 3

checkcif report for compound 12b.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-15-132-S3.pdf]
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