
A Model-Based Approach to Calculate
Maintainability Task Lists of PLC Programs for

Factory Automation
Kiana Busch, Jannis Rätz, Sandro Koch,

Robert Heinrich, Ralf Reussner
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
{kiana.busch, sandro.koch, heinrich, reussner}@kit.edu,

jannis.raetz@student.kit.edu

Suhyun Cha, Matthias Seitz,
Birgit Vogel-Heuser

Technical University of Munich (TUM)
Garching, Germany

{suhyun.cha, matthias.seitz, vogel-heuser}@tum.de

Abstract—As long-living systems, automated Production Sys-
tems (aPS) have to be adapted due to optimization and inclusion
of new features in their life cycle over decades. aPS consist
of electrical, mechanical, and software components, which have
a complex interaction and mutual dependencies. Consequently,
these heterogeneous components have to be maintained together.
Thus, the change propagation analysis in aPS is a challenging
task. Existing approaches to change impact analysis lack tool-
support and require expert knowledge in the aPS, as well as in the
machine under study and its environment. This paper presents a
tool-supported approach to change propagation analysis in aPS
based on initial change requests. Our approach calculates a list
of maintainability tasks to implement change requests in control
programs deployed on Programmable Logic Controllers (PLC).
To evaluate the quality and coverage of the generated task lists,
we applied our approach to a community case study.

Index Terms—Change Impact Analysis, PLC Program, IEC

I. INTRODUCTION

Automated Production Systems (aPS) are subject to changes
due to changing requirements and laws during their life cycle [2].
Therefore, expandability and maintainability are important
characteristics of PLC-controlled aPS [3]. aPS consist of het-
erogeneous hardware and software components from different
disciplines influencing each other during the operation. As
these different disciplines co-evolve, they have to be considered
together when analyzing the change propagation in aPS [3].

Modifications in one machine component from a discipline
can lead to a high impact on other components of the machine,
or even in other disciplines [3]. Thus, the adaptation of aPS to
new requirements affects not only the hardware, but also the
software and their communication. A change to the machine,
such as adding a sensor to handle different types of work
pieces, may cause a different behavior of the machine [4]. This
change can lead to the adaptation of the PLC program [3]. Thus,
planning the changes and estimating their costs are difficult
tasks that require expertise in aPS and their environment [5].

This work was supported by the DFG under the Priority Programm SPP1593
(RE1674/12-1, VO937/29-1). The content of this paper has been developed in
the context of the thesis of Jannis Rätz [1].

The approach of Prähofer et al. [6] uses feature models and
feature to code mapping to analyze the change propagation
in industrial automation software. Delta extraction approaches,
such as [7], uses variants to analyze the change propagation.
However, these approaches require reliable expert knowledge.
The model-based approaches to change propagation (e.g., [8],
[9]) calculate differences and inconsistencies between models.
However, they also require users’ expertise to determine
relevant changes for adaptation. To version the different
engineering results, the approach of Biffl et al. [10] extracts the
data elements of AutomationML (AML) and links the results to
an AML tree of the overall machine. However, most approaches
lack tools to automatically analyze change propagation and
extract task lists to implement change requests.

This paper addresses the change propagation analysis in PLC
programs following International Electrotechnical Commission
(IEC) 61131-3 – a standard for programming PLCs [11]. We
propose Karlsruhe Architectural Maintainability Prediction for
IEC (KAMP4IEC) – a model-based approach to analyze the
effects of an initial change in PLC programs following IEC
61131-3. The analysis of KAMP4IEC results in a task list
containing the potential tasks needed to implement the initial
change requests. The generated task lists allow aPS experts
to plan the change implementation process and estimate the
change effort more precisely. Thus, KAMP4IEC supports the
decision-making process. Our approach applies a methodology
to change impact analysis [12], which is a generalization of
Karlsruhe Architectural Maintainability Prediction (KAMP) [5].
KAMP is a model-based approach to change impact analysis
for the component-based software architecture. An empirical
study on the quality evaluation of the generated task lists by
KAMP shows that a tool-supported approach speeds up the
analysis of the change propagation even in smaller software
models compared to manually creating task lists by a factor
of 1.98 [5].

The contributions of this paper are: i) a model-based
approach assisting the change propagation analysis in an IEC
61131-3 programmed PLC software, ii) metamodels for PLC

software according to IEC 61131-3 standard tailored to change
propagation analysis of KAMP4IEC, and iii) the evaluation of
KAMP4IEC to present its applicability and the quality of its
task list. The evaluation presents the precision and the recall
of the generated task list compared to manually created ones
based on change scenarios for a lab-size community case study.

The paper is structured as follows: In Sec. II, we give an
overview of our foundation. We present our approach in Sec. III.
Sec. IV explains the structure of the evaluation. Related work
is addressed in Sec. V, followed by the conclusion in Sec. VI.

II. FOUNDATION

A. Domain-spanning Change Impact Analysis

aPS contain mechanical, electrical, and software compo-
nents. The approach Karlsruhe Architectural Maintainability
Prediction for aPS (KAMP4aPS) [3] applies the methodology
for change impact analysis in mechanical and electrical
components [12]. This paper proposes KAMP4IEC focusing
on the change propagation in PLC software. The application of
KAMP4aPS and KAMP4IEC in combination allows analyzing
the change propagation from the hardware to the PLC software.

B. IEC 61131-3

The IEC 61131-3 [11] is a standard for programming the
software deployed on PLC. The standard allows developing
different dialects based on the specification. KAMP4IEC is
based on the dialect used by the IEC development tool CodeSys
V3.1 [13]. This dialect is very close to the original specification.
Further, it offers a run-time environment for PLC simulation.
However, in principle KAMP4IEC can be extended to other
dialects of the IEC standard. Therefore, the metamodels and
the corresponding change propagation rules must be adapted.

According to IEC 61131-3, a PLC software comprises three
types of main elements: program, function, and function block.
A program controls the whole machine, whereas function blocks
represent parts of the program. Functions serve as stateless
helper. Programs can contain global variables. Global variables
provide access to inputs and outputs (e.g., sensors). Programs
and function blocks are stateful by granting access to global
variables.Configurations manage programs and global vari-
ables [11], [13]. We consider the Object-Oriented Programming
(OOP) extensions of IEC 61131-3 [14]. They include Method
and Property as subelements of function block and Abstract
Method and Abstract Property as subelements of Interface.

III. KAMP4IEC

KAMP4IEC calculates the change propagation in an IEC
61131-3 program based on dependencies between IEC model
elements. Similar to the KAMP approach [5], it consists of
three phases: i) In the preparation phase, the aPS experts
model the PLC program based on the provided IEC metamodel,
additional information (e.g., test cases), and the initial change
requests (hereinafter called seed modifications). Once the IEC
program is modeled, the model can be used to predict the
impact of future change requests and compare different design
decisions. ii) In the impact phase, KAMP4IEC automatically

calculates the propagation of changes in the PLC program
model triggered by seed modifications. The result of this phase
is a temporary task list containing all potential changes in
the model of the PLC software. iii) The post-analyze phase
enriches the temporary task list with the modeled additional
information. This results in a task list containing maintenance
tasks needed to implement the initial change requests. In the
following we discuss each phase of the approach in more detail.

Application Example
As running example, we show the propagation of a seed

modification in the eXtended Pick and Place Unit (xPPU). The
xPPU is developed at Technical University of Munich (TUM) as
a demonstrator and a common case study for aPS evolution [4],
to which several approaches in aPS can be applied. All relevant
engineering artifacts of the xPPU are available [3]. The xPPU
is an extensible machine, which in its most basic form consists
of a stack for work pieces, a crane for transporting the work
pieces, and a ramp as the end point for work pieces [4]. Based
on the PLC program of xPPU we discuss in the following
sections the analysis steps of KAMP4IEC.

A. Preparation Phase
In this phase, the aPS expert has to model the IEC program

structure, additional information and the seed modifications
according to the KAMP4IEC metamodel.

1) Modeling IEC Program Structure: To model the structure
of the PLC program, we provide a metamodel describing the
structure of an IEC software. This metamodel allows specifying
the elements of an IEC software that are relevant for the
maintainability analysis. It is split in two further metamodels:
i) a repository metamodel and ii) a system metamodel.

The repository metamodel contains IEC elements that need
to be specified once. These elements are then referenced in the
program. This metamodel includes programs, global variables,
function blocks, functions, interfaces, abstract methods, meth-
ods, abstract properties, and properties. Fig. 1 gives an excerpt
of the repository metamodel. It illustrates program, global
variable, function block, interface, and their relationship.

[0 *]

Function-
Block

Program

Function
Global

Variable

Configuration
[1][0 *]

[0 *] [0 *] [0 *]

[0 *]

[0 *]

[0 *]

[0 *]

[0 *] [0 *] [0 *]

reads/writes

reads/writesinstantiates

calls

Fig. 1. An excerpt from IEC repository metamodel

Fig. 2 illustrates the relationships between methods, abstract
methods, properties, and abstract properties. A function block
can contain methods and properties, whereas an interface can
contain abstract methods and abstract properties.

Functionblock

Method

Property

Interface

Abstract
Method

Abstract
Property

[1]

[0..*]

[0..*]

[0..*]

[0..*]

[1]

[1]

[1]

Fig. 2. An excerpt from IEC repository metamodel

The system metamodel contains an IEC configuration. The
model elements specified in the IEC repository model can
be referenced in the system model. Consequently, the system
metamodel has a composite structure. The relations between
configuration, program, and other metamodel elements are
shown in Fig. 1. The modeling effort depends highly on the
granularity of models. Although the effort for coarse-grained
models could be lower than fine-grained ones, the fine-grained
models can improve the precision of the analysis. Modeling
leads to extra effort in early development stages. It is expected
that program models reduce the work in subsequent stages [15].

2) Modeling Additional Information: A change affects not
only the structure of a PLC program, but it may result in
organizational and technical activities. These activities also
account for the impact of implementing a change request [5],
[3]. Providing additional information about the source code
files, metadata files, tests, and the responsible staff improves
the effort estimation. Using such information, the task list can
be extended to include concrete working steps and annotations
for responsible staff. This aims at automatically identifying
efforts caused by additional information (e.g., rerunning the
tests and adapting source code).

3) Change Request: We provide a further metamodel
allowing modeling the modified elements. Each element in
this metamodel references an element in the IEC metamodel.
This way, the seed modifications can be modeled. Our ap-
proach supports change requests on a high abstraction level
(e.g., changing the PLC program) and on a low abstraction
level (e.g., changing a method). The modeled seed modifications
should be minimal to avoid overestimation [16].

Application to the xPPU: We model the IEC program
of the xPPU and additional information. The change request
is exchanging the binary start button of the machine with a
rotary one to switch between different production modes. The
aPS expert selects as seed modification the global variable
IN_START_BUTTON in the program.

B. Impact Phase

This phase automatically analyzes the change propagation
based on a change propagation algorithm (cf. Algorithm 1).
It calculates the impact of the seed modification on the PLC
program model. A change propagation algorithm consists of
a set of change propagation rules [12]. A change propagation
rule describes from which metamodel element the change can
propagate to which metamodel element [12]. In general, the
rules need to be defined by the aPS expert.

Algorithm 1 iterates over all seed modifications. For each
seed modification “Element A” all corresponding change
propagation rules are applied. The change propagation rules
are given in. Table I. Each row shows from which metamodel
element (i.e., elements in first column) to which metamodel
element (i.e., elements in the second column) a change can
propagate [17]. After applying the change propagation rules,
the algorithm adds the newly affected elements to the temporary
task list. This task list does not contain any duplicates.

Algorithm 1 Algorithm for the Change Propagation Analysis
Require: Model of the program structure, list of seed modifications
Temporary task list = ∅
while There is at least one unprocessed seed modification referring
metamodel element A do

for all Elements B accessing the modified element A and
element A is from the first column of Table I and element B is
from the second column of the same row as element A do

if Temporary task list does not contain element B then
Add element B to temporary task list
if Element A is a function block or an interface then

Add Element B to the list of seed modification
end if

end if
end for

end while
Application to the xPPU: Algorithm 1 iterates in the

while loop over all unprocessed seed modifications (i.e.,
IN_START_BUTTON). Then, it iterates in the for loop over
all model elements that access IN_START_BUTTON. If these
model elements are from the first row of Table I (i.e., configu-
rations, function blocks, methods, and programs), Algorithm
1 adds these model elements to the temporary task list. For
example, there is a configuration model element, in which
the global variable is defined and a program model element,
which reads from the global variable. These model elements
are added to the temporary task list.

Element A Element B
Global Variable Configuration, function block, Method, Program
Function Function, Function Block, Method, Program

Function Block Abstract Method, Abstract Property, Function, Func-
tion Block, Global Variable, Method, Program, Property

Interface
Abstract Method, Abstract Property, Function, Func-
tion Block, Global Variable, Interface, Method, Pro-
gram, Property

Abstract Method Function Block, Method, Program
Abstract Property Function Block, Method, Program, Property
Method Function Block, Method, Program
Property function block, Method, Program

TABLE I
LIST OF SIMPLE PROPAGATION RULES IN KAMP4IEC [17]

If the seed modification is a function block or an interface,
the change can propagate through the whole program. In this
case, Algorithm 1 calculates the affected elements referencing
the modified function block or interface and adds them to seed
modifications [17]. The algorithm recursively calculates the
change propagation. In all other cases, Algorithm 1 calculates
the change propagation in one iteration to avoid false positives.

Application to the xPPU: As the seed modification is the
global variable (i.e., neither a function block nor an interface),
we can abort the change propagation after one iteration.

The algorithm terminates, if there are no unprocessed seed
modifications. The result is a temporary task list containing all
potential modification to implement the change request.

Application to the xPPU: The temporary task list contains
IN_START_BUTTON and the affected model elements such
as configuration, program, function block, and method.

C. Post-analyze Phase
The result of the impact phase is a temporary task list. Each

task references a modified element in the PLC model. The post-

analyze phase enriches the task list with activities regarding
additional information modeled in the preparation phase. These
activities aims at estimating the change effort more precisely.

Application to the xPPU: If the aPS expert modeled
additional information such as source code files for PLC
program, corresponding metadata, or test cases for the IEC
program in our example, KAMP4IEC extends the task list by
changing the corresponding source code files, metadata files,
or test cases.

IV. EVALUATION

KAMP4IEC analyzes the impact of seed modifications on
the model of an IEC 61131-3 program. In this section, we
evaluate the quality and coverage of the generated task lists
by applying KAMP4IEC to the community case study xPPU.

A. Study Design

We used a Goal Question Metric (GQM) plan to evaluate
KAMP4IEC. The Goal is to evaluate the quality of the
generated task lists compared to manually created reference
task lists. After comparing both task lists, we categorize each
task of the generated task list into the following groups: i) True
Positive (tp) tasks are contained in both task lists. ii) False
Positive (fp) tasks are included in the generated task list, but
not in the reference task list. In other words, the generated
task list contains elements, which are not actually modified. iii)
False Negative (fn) tasks are included in the reference task list,
but not in the generated task list. KAMP4IEC aims at avoiding
false negatives at the expense of an overestimation of affected
model elements (i.e., false positives). iv) True Negative (tn)
tasks are not included in both task lists.

We define Question 1 as: How precise and complete are
the generated task lists in comparison to the reference task
lists? To answer this question we use two metrics: Metric 1.1:
precision =

tp
tp+fp

and Metric 1.2: recall = tp
tp+fn

. Metric
1.1. (i.e., precision) relates the number of true positives to the
number of false positives. Metric 1.2. (i.e., recall) relates the
number of true positives to the number of false negatives. Thus,
both metrics neglect the number of all model elements [16].

To consider the number of all model elements we formulate
Question 2 as: Does the application of KAMP4IEC reduce
the number of model elements, which the aPS expert needs to
consider during the impact analysis? We define the following
metrics: Metric 2.1 is the ratio of the number of model
elements referenced by the reference task list to the number
of all model elements n: rt =

tp
n . Metric 2.2 is the ratio of

the number of all model elements referenced by the generated
task list l to the number of all model elements: rg = l

n [16].

B. Change Scenarios

To evaluate KAMP4IEC, we choose nine change scenarios,
which represent equivalence classes of change requests that are
relevant for change propagation. All scenarios are applied to a
model of the IEC program of xPPU. There are several change
scenarios for xPPU, describing the machine’s evolution [4].
An aPS machine is composed of four element types: Structure,

Component, Module and Interface [3]. The first three scenarios
are partially based on change scenarios of [4] and present
changes to structures, components, and modules. The other
scenarios cover the functionalities of remaining rules and the
relevant IEC model elements for the maintainability.

1) Change Scenario 1 (CS1) – Structure: We consider a
basic version of xPPU and add a whole structure to it – the
stamp. Thus, the seed modifications are the corresponding
function blocks and global variables.

2) Change Scenario 2 (CS2) – Module: In this scenario three
microswitches modules indicating the direction of the crane
are replaced by one potentiometer. This results in replacing
three global variables with a new one and adapting all elements
accessing the global variables.

3) Change Scenario 3 (CS3) – Component: This scenario
represents the running example.

4) Change Scenario 4 (CS4) – Function block: We delete a
function block performing some simple arithmetic operations,
as the program is restructured and its functionalities will be
implemented in other elements. The function block accessed
by several IEC model elements. The seed modification is the
function block. All elements accessing it will be affected.

5) Change Scenario 5 (CS5) – Function: We analyze the im-
pact of deleting the helper function CheckGreaterEquals
checking whether one of the values is greater than or equal
to the other values. The seed modification is the function. All
elements accessing this function will be affected.

6) Change Scenario 6 (CS6) – Interface: During the
refactoring we delete an interface. The seed modification is
the interface. All elements accessing or implementing it or its
abstract methods and properties are affected.

7) Change Scenario 7 (CS7) – Method: We change the
return type of the abstract method IUnitMode.Hold from
boolean to the more flexible enum. The seed modification
is IUnitMode.Hold. All elements accessing it or methods
implementing it will be affected.

8) Change Scenario 8 (CS8) – Property: We change the
return type of the abstract property IUnitmode.Active
from boolean to int. The seed modification is
IUnitmode.Active. All elements accessing or properties
implementing IUnitmode.Active will be affected.

9) Change Scenario 9 (CS9) – Program: We rename the
program MAIN to xPPU, as the PLC runs different IEC
programs. The seed modification is MAIN. A change to the
program represents a coarse-grained change. This change can
propagate to the elements containing or accessing the program.
The configuration managing MAIN will be affected, as we have
one configuration in our PLC program. In general, the seed
modification should be kept as small as possible.

C. Results

Table II shows the results of the evaluation. The first two
columns present the results regarding Metric 1.1 and 1.2 to
answer Question 1, the last two columns show the results
regarding Metric 2.1 and 2.2 to answer Question 2. Each
row describes the evaluation results for a change scenario.

The precision of the generated task list in CS1 was 88.9%
due to the overestimation, mentioned in Sec. III. To avoid
false negatives (i.e., a recall of 100%), we accept some false
positive modifications. The reason for the overestimation is
general change propagation rules that generate some false
positives to avoid missing tasks in the task list (i.e., false
negative). The false positives in CS1 occurred for example due
to dependencies between the methods of an affected function
block to the methods of another function block. A further
metric is the ratio of the number of model elements, which
have to be changed, to the number of all model elements (i.e.,
rt). rt is in this scenario 0.138. KAMP4IEC marks 0.155 of
all model elements as changed. Thus, our approach reduces the
number of model elements that the aPS experts need to consider
during the impact analysis. In other scenarios, the values of
precision and recall are 100%. This means, that the generated
task lists do not have any false positives. Further, no element
from the reference task list is missing in the generated task list.
Thus, the values of rt and rg are equal. These values show
that only a minimal part of the model had to be considered
during the change propagation analysis. Thus, the generated
task list for CS2 to CS9 was equal to the reference task list.

Precision Recall rt rg

CS1 0.889 1.000 0.138 0.155
CS2 1.000 1.000 0.052 0.052
CS3 1.000 1.000 0.021 0.021
CS4 1.000 1.000 0.05 0.05
CS5 1.000 1.000 0.021 0.021
CS6 1.000 1.000 0.037 0.037
CS7 1.000 1.000 0.021 0.021
CS8 1.000 1.000 0.017 0.017
CS9 1.000 1.000 0.009 0.009

TABLE II
RESULTS OF THE EVALUATION

D. Threats to Validity

As described in [18], we consider four classes of validity:
1) Internal Validity: As KAMP4IEC is based on models,

the accuracy of the model affects the accuracy of the change
propagation analysis [16]. IEC 61131-3 supports different
dialects. We chose the dialect of CodeSys V3.1 [13], as it is very
close to the original standard. The dialect also allows the OOP
extensions to IEC 61131-3 [14], which allows modularizing
the PLC program and creating a detailed program model.
However, programs written in other dialects may need other
IEC metamodels. These programs could be transformed into
IEC programs, which are based on the OOP extensions. Further,
the provided IEC metamodels and change propagation rules
can in principle be extended to other IEC dialects.

2) External Validity: We applied KAMP4IEC to a lab-size
community case study, namely xPPU. The results of a case
study might not be transferable to all other PLC programs (e.g.,
PLC programs that are not based on IEC 61131-3). However,
the case study allows a better understanding of the evolution
of a PLC, in comparison to an experiment.

3) Construct Validity: As KAMP4IEC is a model-based
approach, a model of the analyzed program conform to the
given IEC metamodel has to be created. However, other models

could also be converted to an instance given IEC metamodel.
Another option is changing the IEC metamodel. In this case,
the change propagation algorithm needs to be changed based
on the changed metamodel. The evaluation change scenarios
represent equivalence classes of metamodel elements, which
are relevant for the change propagation analysis.

4) Conclusion Validity: The evaluation results are based on
statistical metrics (e.g., precision or recall). This way, we aim
at avoiding different interpretation by other researchers.

E. Assumption and Limitation

KAMP4IEC derives a task list including IEC model elements
that are potentially affected by an initial change request.
KAMP4IEC overestimates the maintenance tasks (i.e., false
positives) to prevent false negatives (e.g., in the case of
function blocks or interfaces). If the task list would contain
many false negatives, the aPS expert has to manually analyze
the change propagation [16]. Nevertheless, the evaluation
shows that the generated task list is precise in most cases.
KAMP4IEC analyzes the change propagation using static
references based on the proposed metamodel. The metamodel
contains the elements relevant for the maintainability on an
abstract level. Therefore, other elements (e.g., user defined data
types) have to be mapped to the proposed metamodel. It is also
possible to extend the metamodel and the corresponding change
propagation rules to include new elements and dependencies.

V. RELATED WORK

This section proposes related work on metamodels and
approaches to change impact analysis in aPS.

A. Metamodels for aPS

In the field of aPS, model-based system engineering has
been regarded as an important methodology [19] to handle the
complexity in aPS development and metamodels. It has been
introduced for different engineering aspects in aPS. Especially
for the control software in IEC 61131-3, Thramboulidis
[20], Katzke et al. [21] (UML-PA for process automation),
and Witsch et al. [22] (plcML) adapted UML from the
software field to the automation field for PLC code design
and generation, as well as the deployment of software to
hardware as early approaches. They provided a metamodel
for IEC 61131-3 and plcML as the UML profile and suggested
a mapping methodology between the metamodels. Marcos et
al. suggested a validation methodology for industrial control
system in automated way [23], [24]. The authors presented
metamodels of Industrial Process and Measurement and Control
Systems (IPMCS) using 3+1 SysML view-model architecture
of Thramboulidis suggested in [25]. In addition to these
metamodels, Marcos et al. [26] presented a UML metamodel in
order to describe modeling elements needed for reconfiguration
of the control system. Estvez et al. [27] proposed a markup
language of automatic generation of PLC automation projects
from component-based models. The approach of [26] generates
software for service-oriented systems (SOA) based on a
metamodel description. Feldmann et al. [28] presented a

metamodel to capture the dependency of the software for
software analysis framework. A recent approach [29] presents
a change impact information acquirement as one step of system
test prioritization. In this analysis, a change impact analysis
algorithm is developed for indirect influences on the control
software based on the extended dependency model from [28].

B. Change Propagation Analysis in aPS

Change impact analysis approaches in aPS can be di-
vided into two categories. i) Configuration-based approaches:
Prähofer et al. [6] propose a feature-oriented modeling en-
vironment. They use a feature to code mapping to estimate
the change effort. The approach of [30] extracts variability
information from related variants of a product line and map the
features and their interactions to code. However, the change
impact analysis and task list generation have to be done
manually. The delta extraction approach of [7] transforms
variants into each other by a delta. The delta has to be created
semi-automatically, which is an error-prone task. ii) Model-
based change detection approaches: [2] proposes an approach
to automatically creation of a behavior model based on the
input and output of a system. Other approaches such as [8], [9]
use UML models to create a list of deltas between two system
states and find inconsistencies in the design. The framework of
[8] offers visualization tools for deltas. Thus, human experts
can determine relevant changes, find duplicates, and resolve
conflicts during merging the deltas. Dam et al. [9] present a
general approach for difference calculation in UML models.
The user can define rule violations for the UML model. In case
of a modification a repair plan can be calculated to make the
model valid again. As these approaches are domain independent,
rules for IEC 61131-3 have to be defined. Biffl et al. propose a
model-driven approach to version the different results and link
them to a structure tree of the overall machine in [10]. Egyed
et al. [31] analyze the change propagation from the perspective
of transformation to achieve consistent model with the change.
However, these approaches do not offer automatically change
propagation or task list derivation.

VI. CONCLUSION AND OUTLOOK

This paper presented KAMP4IEC – a tool-supported ap-
proach to change propagation analysis for PLC programs
following the IEC 61131-3 standard. We use models to
represent the structure of the IEC program on an abstract level,
additional information, and initial change requests. Based on
these models, KAMP4IEC analyzes the propagation of the
initial change requests in the program model. It calculates a
task list referencing the changing elements in the model of the
PLC program. The task list allows aPS experts planning the
change implementation process. We evaluated the precision and
coverage of the generated task lists based on the representative
change scenarios of the common case study xPPU.

As future work, we plan to analyze the effects of changes
to electrical design and extend the evaluation to include
the adaptability metrics. We will integrate our approach to
engineering tools for cost estimation and programming.

REFERENCES

[1] J. Rätz, “Erweiterung eines Wartbarkeits-Frameworks für die Program-
miersprache IEC 61131-3,” 2017.

[2] J. Ladiges et al., “Automated determining of manufacturing properties
and their evolutionary changes from event traces,” Intelligent Industrial
Systems, 2016.

[3] B. Vogel-Heuser et al., “Maintenance effort estimation with kamp4aps
for cross-disciplinary automated production systems - a collaborative
approach,” in IFAC, 2017.

[4] B. Vogel-Heuser et al., “Researching Evolution in Industrial Plant
Automation: Scenarios and Documentation of the Pick and Place Unit,”
Tech. Rep., 2014.

[5] K. Rostami et al., “Architecture-based assessment and planning of change
requests,” in ACM QoSA, 2015.

[6] H. Prähofer et al., “Feature-oriented development in industrial automation
software ecosystems: Development scenarios and tool support,” in IEEE
INDIN, 2016.

[7] M. Soto, “Delta-p: Model comparison using semantic web standards,”
Softwaretechnik-Trends, vol. 2, no. 27-30, p. 87, 2007.

[8] C. Pietsch et al., “Sipl–a delta-based modeling framework for software
product line engineering,” in IEEE/ACM ASE, 2015.

[9] H. K. Dam and M. Winikoff, “Supporting change propagation in uml
models,” in IEEE ICSM, 2010.

[10] S. Biffl et al., “Linking and versioning support for automationml: A
model-driven engineering perspective,” in INDIN’15. IEEE.

[11] IEC, “61131-3:programmable controllers–part 3:programming languages.”
[12] R. Heinrich et al., “A methodology for domain-spanning change impact

analysis,” in Euromicro Conference on SEAA. IEEE, 2018.
[13] J. T. AG. Codesys - entwicklungssoftware für industriesteuerungen.

[Online]. Available: https://www.janztec.com/embedded-pc/codesys
[14] B. Werner, “Object-oriented extensions for iec 61131-3,” IEEE Industrial

Electronics Magazine, vol. 3, no. 4, pp. 36–39, 2009.
[15] H. Koziolek, “Parameter dependencies for reusable performance specifi-

cations of software components,” Ph.D. dissertation, KIT.
[16] K. Rostami et al., “Architecture-based change impact analysis in

information systems and business processes,” in IEEE ICSA, 2017.
[17] K. Busch et al., “A cross-disciplinary language for change propagation

rules,” in 14th CASE. IEEE, 2018.
[18] P. Runeson et al., Case Study Research in Software Engineering:

Guidelines and Examples. Wiley Publishing, 2012.
[19] B. Vogel-Heuser et al., “Evolution of software in automated production

systems: Challenges and research directions,” JSS, vol. 110, 2015.
[20] K. C. Thramboulidis, “Using uml in control and automation: a model

driven approach,” in IEEE INDIN, 2004, pp. 587–593.
[21] U. Katzke and B. Vogel-Heuser, “Combining uml with iec 61131-3

languages to preserve the usability of graphical notations in the software
development of complex automation systems,” IFAC’07, vol. 40, no. 16.

[22] D. Witsch and B. Vogel-Heuser, “Plc-statecharts: An approach to integrate
uml-statecharts in open-loop control engineering aspects on behavioral
semantics and model-checking,” IEEE IFAC, vol. 44, no. 1, 2011.

[23] M. Marcos et al., “Analysis and validation of iec 61131-3 applications
using a mde approach,” in IEEE ETFA, 2010, pp. 1–8.

[24] E. Estevez and M. Marcos, “Model-based validation of industrial control
systems,” IEEE TII, vol. 8, no. 2, pp. 302–310, 2012.

[25] K. Thramboulidis and A. Buda, “3+1 SysML view model for IEC61499
function block control systems,” IEEE INDIN, pp. 175–180, 2010.

[26] R. Priego et al., “On applying mde for generating reconfigurable
automation systems,” in IEEE INDIN, 2015, pp. 1233–1238.

[27] E. Estévez et al., “Automatic generation of plc automation projects
from component-based models,” The International Journal of Advanced
Manufacturing Technology, vol. 35, no. 5, pp. 527–540, 2007.

[28] S. Feldmann et al., “Analysis framework for evaluating plc software: An
application of semantic web technologies,” in IEEE ISIE, 2016.

[29] S. Ulewicz and B. Vogel-Heuser, “Industrially applicable system regres-
sion test prioritization in production automation,” IEEE Transactions on
Automation Science and Engineering, pp. 1–13, 2018.

[30] L. Linsbauer et al., “Variability extraction and modeling for product
variants,” SoSyM, vol. 16, no. 4, pp. 1179–1199, 2017.

[31] A. Egyed et al., “Fine-tuning model transformation: Change propagation
in context of consistency, completeness, and human guidance,” in ICMT.
Springer, 2011, pp. 1–14.

