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Abstract 
Azo-COP-2 is a nanoporous polymer with exceptional CO2/N2 separation performance. 

In this study, we further investigate the application of Azo-COP-2 as a low-energy CO2 

adsorbent and porous filler in mixed matrix membranes (MMMs) for CO2/N2 separation. 

As an adsorbent, the UV-irradiated Azo-COP-2 showed lower CO2 uptake than in the  

non-irradiated state and Azo-COP-2 also exhibited highly efficient CO2 photoswitching 

between the two states. Combined with high CO2/N2 selectivity, this makes Azo-COP-2 

an excellent candidate for low-energy CO2 capture and release. Azo-COP-2  is also 

shown to be a beneficial filler in MMMs. For polysulfone-based MMMs, the CO2 

permeability and CO2/N2 selectivity could be increased up to 160% and 66.7%, 

respectively. The strategy shows the great potential of Azo-COP-2 not only for a low-

energy CO2 adsorbent but also to improve the performance of conventional polymeric 

membranes for CO2 post-combustion capture. 

_____________________________________________________________________ 

1. Introduction 
There is a growing interest recently in the development of microporous materials which, 

according to IUPAC definition, have the pore size that is below 2 nm.1 There are a 

number of different types of recently-developed microporous materials. They can be built 

through metal-ligand coordination (metal-organic framework, MOF)2 or through organic 

covalent bonding such as in covalent organic framework (COF)3 and polymer of intrinsic 

microporosity (PIM).4 The latter is also generally classified as nanoporous polymers.5 As 

with MOFs, nanoporous polymers also have large surface areas and can also be 

functionalized to make them applicable for various applications such as liquid separation6 

gas separation7 and catalysis.8 In addition, these materials could be expected to have a 

better affinity with other organic materials (something often not the case with MOFs) 

since their frameworks are constructed from organic building blocks. This property is 

particularly important when attempting to fabricate a composite material such as mixed 

matrix membranes (MMMs).9   

In this study, we chose to study an azobenzene-based nanoporous polymer which is 

called Azo-COP-2 (COP stands for Covalent Organic Polymers). This material has been 

previously synthesized through a metal-catalyst-free method and reported to have a 

superior CO2/N2 separation performance compared with the rest of the azo-based 

COPs.5, 10 To further explore the utilization of this promising COP, in the first part of this 
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study, we investigated the photo-responsive property of Azo-COP-2 during CO2 

adsorption. This property renders it to be a potential candidate as a low-energy CO2 

adsorbent by utilizing UV light as one of the main sustainable sources during material 

regeneration as previously observed in azobenzene-based MOF.11, 12  

Several investigations regarding the photo-responsive property of nanoporous polymers 

have been conducted. For instance, an anthracene-based COF (Ph-An-COF) has been 

studied for its potential as a smart material.13 After irradiation with UV light, changes in 

the COF luminescence and porosity were observed. Investigations have also been made 

in the azobenzene-based nanoporous polymers. Various approaches, apart from change 

in UV-Vis spectra,14 can then be employed to highlight the impact of azobenzene photo-

isomerization to the material property. Liu and co-workers observed this phenomenon 

through reversible structural deformation induced by photo-isomerization in an 

azobenzene-based nanoporous polymers after UV light irradiation.15 The deformed 

framework could be brought back to its initial condition by heating. Azobenzene 

photoisomerization has also been proven able to affect the gas adsorption property of 

nanoporous polymers. A study in a star-shaped azobenzene porous molecular crystal 

showed the ability of the material to undergo reversible phase change in crystallinity and 

CO2 uptake upon UV irradiation and heat treatment.16 Another investigation has also 

been made with porous organic polymers (POP) with a pendant azobenzene group 

called UCBZ.17 The authors showed that after the irradiation with UV light, the CO2 

uptake of UCBZ could be increased which was due to the isomerization of the 

azobenzene from trans to cis state resulting in more pore opening and increase in gas 

uptake. However, to the best of our knowledge, there has not been any study of the 

photo-responsive property of nanoporous polymers which are applicable for low-energy 

CO2 capture. Through this work we fill this gap and help expand the applications of photo-

responsive nanoporous polymers.  

As an advanced adsorbent, we also investigated the utilization of Azo-COP-2 as a filler 

in mixed matrix membranes (MMM). MMMs are prepared from at least two different 

materials acting as a discrete phase (fillers) and a continuous matrix. MMMs have been 

proposed as a promising approach to improve gas separation performance in 

conventional polymeric membranes because of their ability to synergistically combine 

different materials properties.18 Up to now, there are a variety of fillers that have been 

successfully incorporated into different polymeric matrices such as carbon nanotube,19, 

20 graphene oxide,21 zeolites,22, 23 MOFs24-27 and COFs.28  
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Good interaction between the fillers and polymer matrices is required in MMMs so the 

fillers can improve the gas separation performance of the bare polymeric membrane. 

Differing from most other fillers, nanoporous polymers are entirely built from organic-

organic covalent bonds which have the potential to fulfil this requirement.17 This property 

is expected to bring a benefit during MMMs fabrication. This is because they can have 

better affinity with organic polymers than classical inorganic particles, making it more 

likely that the two components are compatible.29 Therefore, the non-selective voids issue 

usually observed in MMMs could also be minimized. In addition, as stated previously, 

Azo-COP-2 has also been shown to have a superior CO2/N2 separation performance. 

Our previous studies have also shown the ability of azobenzene-based MOFs to improve 

the CO2/N2 separation performance in MMMs.30 Thus, improvement in CO2/N2 gas 

separation performance in Azo-COP-2 based MMMs could also be expected which is 

applicable for post-combustion CO2 capture.  

2. Experimental Section 
2.1 Synthesis of tetrakisnitrophenylmethane.  

Tetraphenylmethane (1g) was slowly added to 7ml fuming nitric acid at 0oC in a conical 

flask with vigorous magnetic stirring for about 10 minutes. The solution was then further 

stirred for another 20 minutes at this condition. This was followed by bringing the solution 

to ambient temperature and stirred for another 20 minutes before being brought back to 

the ice bath and stirred for another 20 minutes. A mixture of acetic anhydride (2ml) and 

acetic acid (4ml) was then added to the previous solution with constant stirring for 

another 15 minutes. 8ml acetic acid was then poured into the mixture to dilute the 

reaction mixture. The precipitate was filtered off under vacuum and further washed with 

acetic acid (10ml). The obtained yellow crude product was around 0.7g. The yield was 

around 44.2%. The crude product was then recrystallized from tetrahydrofuran (THF) by 

firstly dissolving the crude product in 40mL of hot THF in a conical flask. Once the THF 

was brought to room temperature, pure crystals formed at the bottom of the conical flask 

and the solution was left overnight. The following day, the yellow crystalline product was 

obtained by filtration under reduced pressure. 

2.2 Synthesis of Azo-COP-2.  

Azo-COP-2 was synthesized through a metal catalyst-free method that has been 

previously reported using tetranitrophenyl methane as the starting material.5 The 

synthesis procedure is depicted in Figure 1.  
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Figure 1. Synthesis route of Azo-COP-2 

In brief, tetrakisnitrophenyl methane (0.2g) and p-phenylenediamine (0.086g) were 

dissolved in DMF (25ml) in a three-necked round flask with strong magnetic stirring. 

Potassium hydroxide (0.22g) was added to the solution while stirring. The reaction was 

kept under N2 atmosphere and the temperature was slowly increased to 150 °C . A reflux 

condenser was used to condense the vapour during the reaction. The mixture was stirred 

for 24 hours. The colour of the reaction mixture changed from light yellow to dark purple, 

which was followed by the formation of brown precipitates. After cooling down to the 

room temperature, de-ionized water (250 mL) was added to the mixture and it was stirred 

for half an hour subsequently. The obtained precipitate was then filtered under reduced 

pressure. Excess de-ionized water, acetone and THF were used to wash the precipitant 

until the filtrate became clear and colourless. The precipitant was further dried under 

vacuum at 110 °C overnight. Finally, the brown powder with around 58.9% yield was 

obtained.     

2.3 Fabrication of mixed matrix membranes.  

Three different polymers were used in this study: Matrimid, polysulfone and PIM-1. The 

structures of the polymers are given in Figure 2.  
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Figure 2. The structure of the polymers used in this study: Matrimid (A), polysulfone 

(B) and PIM-1 (C) 

Matrimid and polysulfone was kindly supplied from Huntsman and BASF, respectively. 

Meanwhile, PIM-1 was synthesized according to the published procedure.31 The 

fabrication processes of mixed matrix membranes are similar regardless of the polymers 

used. In general, a certain amount of Azo-COP-2 particles were dispersed in THF. About 

50 wt% of the polymer was then added into the COF suspension. The solution was then 

kept stirred overnight to do the priming of Azo-COP-2 with the polymer. Afterwards, the 

rest of the polymer was added and the final suspension was kept stirred overnight. The 

obtained homogeneous suspension was then cast on a petri dish covered with perforated 

aluminium foil. The suspension was left to dry at atmosphere condition in a fume 

cupboard overnight. This was followed by another 12 hours drying in an oven at 100oC. 

Three different loadings of MMMs were studied for each polymer: 5, 10 and 15wt%. 
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Meanwhile, for the pure polymeric membranes, each polymer was directly dissolved in 

THF which was followed by casting and drying at the same condition as in MMMs. 

2.4 Gas permeation testing.  

Gas permeation performance of MMMs was evaluated by using the constant-volume 

variable-pressure method. A complete description of the equipment has been described 

elsewhere.32 The membranes were cut from the casted films with certain surface areas 

and mounted onto the membrane cell. Two pure gas species (CO2 and N2) were 

introduced as testing gases to study their permeabilities through the membranes. During 

the test, the upstream pressure of both CO2 and N2 were maintained at 30psia, 22psia 

and 14psia for Polysulfone, Matrimid and PIM-1 based MMMs, respectively, considering 

the strength of membranes. The temperature was kept at 35oC during the whole 

experiment. The thickness of all membranes and MMMs was measured by using a digital 

micrometer. For the pure polymeric membranes, the thickness varied in the range of 50 

to 70 μm while the thickness of MMMs varied between 80 to 120 μm.  

The gas permeability is calculated using equation (1): 

                             P = #$%.'(×'*+,×-.

$/*×0×1×234×
56
+7.58

(:;
:<

)                                       (1) 

Where P is the permeability of gases through membranes in Barrer (1 Barrer = 1×10-10 

cm3 (STP) cm/cm2 s cmHg). l is the thickness of the membranes (cm). V is the constant 

volume of the designed chamber at permeate side (cm3). T is the operating temperature 

(K). A is the effective surface area of membranes (cm2). Po is the feed pressure (psia). 

At steady state, a pressure transmitter was used to measure the increase of downstream 

pressure in the chamber against time (:;
:<

) (mmHg/s).  

Meanwhile, the CO2/N2 selectivity (α) is calculated by applying equation (2)  

                                                            α = 3>?@
3A@

                                                         (2) 

A time-lag method was used to evaluate the diffusivity (D) and solubility coefficient (S) 

of pure CO2 and N2 gases through the membranes [25]. The relationship between these 

two parameters and the membrane permeability is given in Equation (3) while Equation 

(4) is used to calculate the D value.  

                                                                   𝑃 = 𝐷 × 𝑆                                               (3)           
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                                                     (4) 

where 𝜃 refers to the time lag.  

2.5 Various characterization techniques 
2.5.1 Powder X-Ray Diffraction (PXRD). PXRD diffractograms were collected using 

a PANalytical X’Pert Pro diffractometer. During the measurement, 40 kV generator 

voltage, 20 mA tube current and Cu Kα radiation (λ = 1.54184 Å) at 298 K were used to 

record the data. The scan step size used in the measurement was 0.016711 2θ degrees 

and the scan range was from 5 to 70 2θ degree. Powder X-ray diffraction patterns of 

Azo-COP-2 indicated clearly the formation of amorphous polymer. 

2.5.2 Fourier transform infrared spectroscopy (FTIR). The FTIR spectra of the 

samples were obtained using an Agilent Cary 630 FTIR Spectrometer. The scanning 

range was set between 4000–650 cm−1 with a resolution of 2 cm−1. 

2.5.3 Nitrogen sorption analysis. A Micromeritics Tristar instrument was used to 

collect the N2 isotherm of Azo-COP-2 at 77 K. Sample mass for each measurement was 

approximate 50 mg. Prior to the measurement, the Azo-COP-2 particles were degassed 

at 110 °C overnight. 

2.5.4 Azo-COP-2 CO2 uptake and CO2 dynamic photo-switching. Both CO2 

uptake and CO2 dynamic photo-switching of Azo-COP-2 was measured at 273 K and 

298 K according to the published procedure.33, 34 About 50 mg of sample was used in 

this study. Prior to the measurement, the Azo-COP-2 was degassed overnight under 

vacuum at 110oC.  

2.5.5 Scanning Electron Microscopy (SEM). The SEM micrographs of gold-

sputtered membrane cross-sections were obtained by using a field emission gun 

scanning electron microscope (FEGSEM) SIGMA 300 operated in secondary electron 

imaging mode at 20kV accelerating voltage.  
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3 Results and Discussion 

3.1 Characterization and light-responsive property of Azo-COP-
2 
The successful synthesis of Azo-COP-2 was proven through various characterization 

techniques such as PXRD, FTIR, N2 and CO2 adsorption. These results are presented 

in Figure 3. As can be seen, the PXRD pattern of Azo-COP-2 resembles a formation of 

an amorphous structure with a broadening peak at around 17o. This is also in agreement 

with the previously reported result for this material [5]. The FTIR spectrum (Figure 3 (B))  

confirms the successful synthesis of the Azo-COP-2. Despite the relatively weak FTIR 

signal that might be caused by the favourable trans-state condition of the azo framework 

in Azo-COP-2,35 there is a clear indication of the presence of the azobenzene 

functionality. This could be seen from N=N stretching vibration in azobenzene that gives 

rise to the FTIR bands located at 1507 and 1467 cm-1. Meanwhile, the peaks at 1608 

cm-1 corresponds to aromatic C=C and the peak at 1280 cm-1 corresponds to the -C-N- 

bond between the aromatic ring and the azobenzene group.  
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Figure 3. Characterizations of Azo-COP-2: PXRD (A), FTIR (B), N2 physisorption (C) and 

CO2 adsorption (D, inset: CO2 heat of adsorption) 

The porosity of the Azo-COP-2 was also confirmed through gas uptake. Nitrogen 

physisorption of the Azo-COP-2 was then measured at 77K and the result is presented 

in Figure 3 (C). The typical type-I reversible sorption curves were observed during the 

measurement showing a steep gas uptake curve at relatively low pressure followed by 

saturation at higher relative pressure. By applying the Brunauer–Emmet–Teller (BET) 

model, the surface area (SBET) of Azo-COP-2 was found to be around 554 m2 g-1 and is 

comparable to the previously reported value (729 m2 g-1)5 and similar to some emerging 

COFs, like SNW-1.28 Meanwhile, the micropore volume was found to be around 0.175 

cm³ g-1. Apart from nitrogen physisorption, the porous structure of Azo-COP-2 was also 

confirmed through CO2 uptake study as can be seen in Figure 3 (D). The figure shows 

the Azo-COP-2 adsorption isotherms of CO2 at 273 and 298K. The CO2 adsorption value 

was found to be around 2.70 and 1.54 mmol g-1 at 273 K and 298 K, respectively. As in 

surface area analysis, the CO2 uptake of the Azo-COP-2 synthesised in this study was 

also comparable with the previously reported Azo-COP-2 which was around 2.5 and 1.5 

mmol g-1 at 273 and 298 K, respectively.5 The slight difference in surface area and CO2 

uptake of the synthesised Azo-COP-2 in this study might then be caused by some factors 

such as impurities during materials preparation and trapped moisture during materials 

activation. Despite this, these results have shown the successful reproduction of Azo-

COP-2 used in this study.  

Finally, based on the CO2 uptake data, the CO2 isosteric heat of adsorption (Qst) was 

also calculated using the Clausius-Clapeyron equation and the result is presented in the 

inset of Figure 3 (D). At low coverage, the Qst was found to be around 31.3 kJ mol-1 and 

plateauing at around 28 kJ mol-1 at high coverage. This value is comparable with other 

porous frameworks candidate for CO2 capture such as NaX from zeolite family,36 

functionalized conjugated nanoporous polymers (CMP),37 and Cu-BTC from MOF 

family36 and thus could be considered within an ideal range to balance the favourable 

CO2-framework interaction and energy demand for material regeneration. The 

favourable interaction between the Azo-COP-2 framework and the CO2 molecules could 

then be attributed to the presence of the azobenzene moiety and was also previously 

observed in azo-based MOF.32, 38 In conclusion, through various characterizations and 

data analysis, we have shown that the Azo-COP-2 has been successfully synthesized 

for this study.  
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Due to the existence of the azobenzene moiety which is responsive towards light, we are 

also interested in investigating the photo-switching property in Azo-COP-2 particles. 

Investigation on the potential of azobenzene functionality in this material has been 

previously attempted.10 However, differing from previous investigation in Azo-COP-2, we 

are more focused on the potential application of Azo-COP-2 as low-energy CO2 

adsorbent that uses UV light as one of the main sources for material regeneration.11 This 

then also complements the main application of the Azo-COP-2 as a highly-selective 

adsorbent for post-combustion CO2 capture application.  

The CO2 light-responsive property of Azo-COP-2 was then investigated both in the static 

and dynamic condition and the result is presented in Figure 4. In both conditions, we then 

compared the CO2 uptake of Azo-COP-2 between the normal and the UV-irradiated 

condition. During the static experiment, we observed that the CO2 adsorption capacity of 

Azo-COP-2 significantly decreased from 2.12 mmol g-1 to be around 1.66 mmol g-1 at 

273 K and from 1.28 mmol g-1 to be around 1.05 mmol g-1 at 298 K once exposed to UV-

light. This decrease of CO2 uptake was then found to be around 22% and 16% at 273 K 

and 298 K, respectively, compared with the values at the normal condition. The reduction 

of CO2 uptake was not only observed in static condition but also in dynamic condition. 

As can also be seen, during the dynamic photo-switching experiment, when the UV light 

was on, the CO2 uptake of Azo-COP-2 could instantaneously decrease to the value 

corresponded in the static condition experiment. This then shows the consistency 

between the dynamic and static conditions as previously observed in azobenzene-

containing MOFs.12, 38, 39  
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Figure 4. CO2 photo-switching experiment of Azo-COP-2 at 273 K (A) and 298 K (B) 

and its CO2 heat of adsorption (C) 
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In azobenzene-containing compounds, the light-responsive property is attributed to the 

photo-isomerization of the azobenzene moiety that isomerizes from its 

thermodynamically stable trans-state to less stable cis-state. Meanwhile, in Azo-COP-2 

the azobenzene isomerization process might be hindered because of the rigid three-

dimensional structure of the framework. As a result of this inhibited isomerization, the 

CO2 adsorbed could be instantaneously released when the UV light was switched on 

resulting in excellent agreement of the CO2 uptake in the static and dynamic experiment. 

This phenomenon was also previously observed in generation-3 light-responsive MOFs 

where hindered isomerization of the azobenzene framework also leads to instantaneous 

release of adsorbed CO2 from the framework.12, 33, 39 This is also evident from the CO2 

heat of adsorption profile of Azo-COP-2 between its normal and UV-irradiated condition. 

As can be seen in Figure 4 (C), under UV light irradiation, the Qst of Azo-COP-2 was 

found to be around 20 kJ mol-1 which is about 30% lower compared with the Qst in normal 

condition which was around 28 kJ mol-1. This then indicates that under UV-light 

irradiation, the Azo-COP-2 framework that is experiencing inhibited isomerization has 

lower affinity towards CO2 than in normal condition resulting in instantaneous release of 

CO2 as also previously observed in JUC-62 MOF.33  

Although the CO2 uptake decrease in the presence of UV-light was not as high as some 

previously reported light-responsive MOFs which could fall in the range between 33-

50 %,34, 39, 40 to the best of our knowledge, this is the first instance of dynamic CO2 photo-

switching observed in nanoporous polymers since previous investigations were limited 

to highly-crystalline MOFs. This then shows that in the amorphous porous polymers with 

excellent CO2/N2 selectivity and contain photo-active functionality like Azo-COP-2, the 

restricted movement of the photo-active framework could be further utilized to design a 

photo-responsive CO2 adsorbent applicable for a low-energy and more sustainable post-

combustion CO2 capture. This is because such an adsorbent could exploit abundant UV 

light as a sustainable energy source to release the adsorbed CO2 from its framework 

during the regeneration process. In practice, this could be accomplished by 

concentrating UV light on a quartz-column which is packed with UV-responsive 

adsorbent.11 However, more research is still required to make this advanced process 

feasible and thus enabling them to replace the current post-combustion CO2 capture and 

separation that still rely on non-sustainable resources during their regeneration process.  
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3.2 Azo-COP-2 Mixed Matrix Membranes (MMMs) 
Apart from investigating the novel feature of Azo-COP-2 as a UV light-responsive 

adsorbent for low-energy CO2 capture, we also expanded the investigation to study the 

potential of Azo-COP-2 as a porous filler in mixed matrix membranes (MMMs). This is 

based on our previous investigations in azobenzene-containing MOF MMMs showing 

the possibility to improve the membrane performance for CO2/N2 separation30, 32 and the 

previous investigation on Azo-COP-2 has also shown satisfactory performance of the 

material for having high CO2/N2 selectivity.5 Therefore, this study also aims to broaden 

the applicability of Azo-COP-2 in post-combustion CO2 separation field not only as a 

candidate for low-energy adsorbent but can also be beneficial in a continuous 

membrane-based process. 

Three different polymers were then chosen in this study to fabricate the MMMs: Matrimid, 

polysulfone and PIM-1. The particle loading was varied from 5 to 15 wt% for each type 

of polymer. During the MMMs fabrication, it was observed that the highest particle 

loading that could be obtained was 15wt% for all the three polymers. Higher particle 

loading led to structural brittleness of the resulting membranes and thus rendered them 

not suitable for testing. This phenomenon is quite common in composite membrane 

fabrication, in particular if the particle size of the filler is not small enough to be evenly 

distributed across the membrane. In our case, higher particle agglomeration and uneven 

distribution might cause this phenomenon as we observed the tendency of particle 

sedimentation and agglomeration when preparing the membrane dope solution. Apart 

from structural brittleness, this phenomenon could also lead to the formation of non-

selective voids and a defective membrane. Because of this consideration, the particle 

loading in all MMMs was limited to 15 wt%. The resulting MMMs were then characterized 

using FTIR and SEM.  

From the FTIR spectra (Figure S1), the presence of Azo-COP-2 in all the polymer 

matrices could be confirmed. First, although relatively weak, the stretching vibration of 

C=C from azo-phenyl group that occurs around 1600 cm−1 could be observed in all the 

three different MMMs used in this study. This value is slightly shifted in polysulfone-

based MMMs which might be caused by the particle-polymer interaction. As previously 

explained, the relatively weak FTIR signal in the MMMs might be caused by the 

symmetrically substituted trans-state azo compounds resulting in weaker transmittance 

in FTIR spectrum.35 The indication of Azo-COP-2 is more pronounced by the additional 

peak appearing at around 808 cm-1 which can be assigned to N=N bonding in 
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azobenzene. In case of both Matrimid and PIM-1, the additional peak leads to peak 

broadening of the adjacent peak. However, the signal could not be clearly observed in 

polysulfone-based MMMs, which might be caused by some overlapping with the 

polysulfone peaks. These results then give an indication of the existence of the Azo-

COP-2 inside the polymeric matrices. 

The presence and impact of the Azo-COP-2 incorporation on the microstructure of the 

three different polymers were then investigated through SEM imaging of the MMMs 

cross-section and the result is presented in Figure 5. Compared with the bare polymeric 

membranes (Figure S2), it could be seen that the microstructure of the MMMs are less 

continuous because of the presence of Azo-COP-2. This condition was more 

pronounced with MMMs at higher particle loading. At the macroscale level, this resulted 

in all the MMMs becoming more brittle and were prone to cracking during handling. 

Therefore, the particle loading in this study was capped at 15 wt%. From the SEM result, 

it could also be observed that the Azo-COP-2 particles could be uniformly dispersed 

inside the polymeric matrix although some particle agglomerations leading to the 

formation of particle aggregates could still be observed, in particular with MMMs with the 

highest particle loading. In addition, we also did not observe any obvious defects at the 

Azo-COP-2 – polymer interface for all the polymers used in this study. This might be 

attributed to the entirely organic framework of Azo-COP-2 which enables it to build good 

interaction at the interface with the polymer matrices.  
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Figure 5. SEM micrographs of the Azo-COP-2 MMM. Top to bottom: Matrimid-based, 

polysulfone-based, and PIM-1-based MMMs. Left to right: 5 wt%, 10 wt% and 15 

wt% particle loading. 

The performance of the resulting Azo-COP-2 based MMMs were then evaluated for 

CO2/N2 separation. The result for the membranes permeability and selectivity is 

presented in Figure 6.   
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Figure 6. CO2/N2 gas separation performance of Matrimid (A), polysulfone (B) and 

PIM-1 (C) mixed matrix membranes 

First of all, it could be seen for Matrimid-based MMMs that the CO2 permeability could 

be increased at higher loading. The CO2 permeability of bare Matrimid was found to be 

around 10 Barrer which is close to other reports for Matrimid membrane.41-43 This value 

could be increased to 14.9 Barrer and 17.1 Barrer for 5 wt% and 10 wt% MMMs, 

respectively. As the Azo-COP-2 loading reached to 15 wt%, CO2 permeability further 

increased to 27.1 Barrer, which is 171% higher than the CO2 permeability of pure 

Matrimid membrane. The incorporated Azo-COP-2 nanoparticles might enhance the free 

volume in the membrane resulting in higher membrane permeability [22]. Meanwhile for 

the membrane selectivity, the bare Matrimid membrane CO2/N2 selectivity was found to 

be around 23 and comparable with other findings.44, 45 It slightly increased to 24.6 and 

26.3 at 5 wt% and 10wt% loading, respectively. A slightly lower CO2/N2 selectivity of 22.2 
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was observed upon 15 wt% Azo-COP-2 loading which is comparable with the selectivity 

of the bare Matrimid. Higher loading of particles may result in the generation of non-

selective interfacial defects that is due to the poor adhesion at the interface of filler and 

polymer which leads to a lower CO2/N2 selectivity. The presence of this non-selective 

void might contribute in enhancing both CO2 and N2 permeability and thus reducing the 

CO2/N2 ideal selectivity. 

The second polymer investigated in this study was polysulfone. Polysulfone is used as 

a membrane material for gas separation because of its resistance to chemicals and high 

temperatures and also commercial availability.46, 47 As in Matrimid, the CO2 permeability 

of the polysulfone-based MMMs could be increased at higher particle loading, the 

permeability of CO2 increases from 5.7 for the bare membrane to be around 14.8 Barrer 

for the MMMs with the highest loading. The additional transport pathways provided by 

Azo-COP-2 are likely to account for the improvement in permeability. Meanwhile, the 

selectivity for the bare Polysulfone membrane was found to be around 13.7. Although 

this value differs from some other findings in polysulfone based membrane, it is still 

comparable with other findings when THF was used as one of the solvents to prepare 

the membrane.48 Interestingly, differing from Matrimid, the ideal selectivity of the 

polysulfone-based MMMs could be continuously increased to be 15.7, 22.1 and 22.8 for 

5 wt%, 10 wt% and 15 wt% particle loading, respectively. This indicates the absence of 

non-selective voids at the particle-polymer interface as previously observed in Matrimid. 

Once the good polymer-particle interface could be established, the N2-phobic and CO2-

philic property of the azo group in Azo-COP-2 could then contribute to enhancing CO2/N2 

selectivity in the MMMs. 

Lastly, we also studied the MMMs by using PIM-1 as the polymer matrix. PIM-1 is a new 

type of high free volume polymers with potential applications in gas storage and 

membrane for gas separation because of its high permeability and moderate selectivity.49 

In this study, it is expected that the incorporation of Azo-COP-2 into PIM-1 could improve 

the separation performance of PIM-1. Firstly, it was observed that the CO2 permeability 

for the bare PIM-1 membrane is around 4500 Barrer with selectivity around 14. This 

value is comparable with other findings in PIM-1 membrane.50, 51 Upon incorporation of 

Azo-COP-2, the permeability could be further increased to be around 5500, 7000 and 

10500 Barrer for 5, 10 and 15 wt% loading, respectively. However the selectivity did not 

likewise increase with loading. The selectivity for 5 wt% PIM-1 MMM could be slightly 

increased to be around 16. However, at higher particle loading, the selectivity decreased 
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and its value was comparable with the bare PIM-1. The selectivity was found to be 

around 14.3 and 12 for 10 wt% and 15 wt% particle loading, respectively. This 

phenomenon might be attributed to the creation of non-selective voids at the particle-

polymer interface resulting in higher gas permeability but lower selectivity. As can also 

be seen from SEM micrographs, the particle agglomerations for PIM-1 at higher particle 

loading was more serious than at lower loading which could lead to the building of the 

non-selective voids.  

Diffusivity and solubility coefficient are then calculated to gain a better understanding of 

the gas transport in the MMMs. The result is presented in Figure 7 (A) and (B) both for 

diffusion and solubility calculation, respectively. From Figure 7 (A), a simultaneous 

enhancement of diffusivity values for CO2 and N2 for MMMs could be observed. This 

could be attributed to the additional free volume by incorporating Azo-COP-2 in any 

polymer matrix [23]. However, it could also be seen that the diffusivity selectivity of all 

the MMMs in this study remains almost constant. This then indicates that the additional 

pathways built from the Azo-COP-2 is not particularly selective towards CO2. Apart from 

the similarities in CO2 and N2 kinetic diameter, this could also be attributed by the 

presence of the non-selective void at the particle-polymer interface as indicated by the 

slight decrease in diffusivity selectivity for MMMs at higher loading.  
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Figure 7. Normalized diffusivity (A) and solubility (B) coefficient and selectivity for 

mixed matrix membranes used in this study 

A different trend, however, was observed for solubility coefficient of the MMMs as can 

be seen in Figure 7 (B). First, it was observed that there was a decreasing trend for both 

CO2 and N2 solubility that could be caused by lower sorption volume provided by the 

MMMs as previously observed in other MMMs.52, 53 Despite this, the solubility selectivity 

could be increased for the MMMs used in this study. Since solubility is related to a 
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thermodynamic property of the membranes,46 this then highlights the advantage of 

incorporating Azo-COP-2 inside the membranes since it contributes to alter the 

thermodynamic behaviour of the resulting MMMs to be more favourable towards CO2 

rather than N2. 

However, it should be noted that in order to enhance the overall MMMs selectivity, the 

increase in solubility selectivity must be accompanied by relatively constant diffusivity 

selectivity. Although this case could be observed for most of the MMMs used in this study, 

a couple of non-ideal scenarios did also occur. For instance, as observed in 10 wt% PIM-

1 and 15 wt% Matrimid MMMs, although the solubility selectivity could be increased, this 

was also accompanied by significant reduction in the diffusivity selectivity resulting in 

bare enhancement in overall selectivity. Furthermore, in case of PIM-1, once the particle 

loading was further increased to 15 wt%, the interaction between Azo-COP-2 and the 

PIM-1 might not be well established resulting in reduction of both diffusivity and solubility 

selectivity. In these cases, the Azo-COP-2 was then no longer able to significantly 

enhance the separation performance of the polymer and thus only contributes in 

enhancing gas transport across the membrane. Therefore, the defects at the polymer-

particles interface must be avoided to obtain an ideal MMM behaviour since the presence 

of such defects contribute in disabling the molecular sieving aspect of the resulting 

MMMs resulting in lower selectivity. This is the ideal scenario which was observed on 

Polysuflone-based MMMs used in this study. As can be seen, both permeability and 

selectivity of the MMMs could be increased as the particle Azo-COP-2 particle loading 

was increased and thus indicating the absence of polymer-particle interfacial defects. 

Two things then could explain this behaviour which was not observed in Matrimid and 

PIM-1 based MMMs. First, this could be attributed to the hydrophobic interaction  

between the azobenzene functionality and polysulfone since both of them are inherently 

hydrophobic.54-56 A similar scenario was also previously observed with zeolite-

polysulfone MMMs.57 Second, this could be related to polymer chain flexibility. Since 

polysulfone has a lower glass transition temperature (Tg) than Matrimid and PIM-1,58-60 

it should have a more flexible polymer chain. This flexibility could then contribute in 

establishing a better interaction with the particles and thus avoiding the building up of 

defective sites at the polymer-particle interface. This could happen particularly during the 

membrane drying period at elevated temperature.  

Finally, we also evaluate the performance of the MMMs fabricated in this study with other 

COF-based MMMs for CO2/N2 separation. The result is presented in Figure 8 (A) and 
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(B) showing the membrane performance against the 2008 Robeson Upper Bound61 and 

their relative performance improvement from the bare polymeric membranes, 

respectively.  

 

Figure 8. COF mixed matrix membranes for CO2/N2 gas separation performance 

against 2008 Robeson Upper Bound (A) and its corresponding permeability and 

selectivity improvement (B) 
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First of all, it could be seen that from the MMMs used in this study, the Azo-COP-2 – 

PIM-1 composite membranes showed the most satisfying performance regarding the 

permeability-selectivity trade-off. This phenomenon is expected since although both 

Matrimid and polysulfone have relatively high selectivity, their permeability is relatively 

low. Therefore, higher particle loading is necessary to further increase the polymeric 

membrane permeability. However, this approach does pose a risk to make the 

membrane more defective and eventually sacrificing the selectivity as what we observed 

with the 15 wt% Azo-COP-2 – Matrimid MMM. Meanwhile the CO2 permeability in PIM-

1 is relatively high with a moderate selectivity. Thus, incorporation of nanoporous 

polymers at low loading could be expected to significantly improve the membrane 

permeability without sacrificing the selectivity. As observed in this study, although at the 

highest loading the Azo-COP-2 was barely able to significantly improve the composite 

membrane selectivity, they could still enhance the composite membrane permeability 

resulting in the composite membrane performance to be close to the 2008 Robeson 

Upper Bound. A similar condition was also observed in SNW-1 nanoporous polymers 

when incorporation of the particles into PIM-1 could push the composite membrane 

performance to surpass the 2008 Robeson Upper Bound.28  

The membranes performance could also be further evaluated based on the permeability 

and selectivity improvement. As can be seen in Figure 8 (B), for Azo-COP-2 based 

MMMs, the permeability improvement was found to be in the range of 140-160% at the 

highest loading which is slightly higher than most of the COF-based MMMs used for 

CO2/N2 separation. Thus, Azo-COP-2 is beneficial in improving membrane productivity. 

Meanwhile for gas selectivity, Azo-COP-2 was able to improve this property up to 67% 

in the most ideal scenario where polysulfone was used as the polymer matrix. In this 

case, both MMMs permeability and selectivity could be simultaneously improved 

resulting in enhancement of both membrane productivity and effectiveness. In this ideal 

scenario, the polysulfone-based MMMs could then move towards the upper right corner 

of the Q1 region where both membrane permeability and selectivity could be improved 

simultaneously. Together with Azo-COP-2, ACOF-1,62 SNW-128 and TpPA-1-nc63 

nanoporous polymers are reportedly able to push the bare polymeric membranes into 

this region. Apart from better interaction between the polymer and the particles, this 

phenomenon might also be caused by the nitrogen-rich framework possessed by the 

nanoporous polymers which imparts satisfactory CO2/N2 ideal selectivity as an adsorbent. 

For instance, TpPA-1 nanoporous polymers are rich in amide groups which were 

reported to have CO2/N2 selectivity at around 7063. Meanwhile for Matrimid and PIM-1 
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based MMMs, non-ideal behaviour was observed at higher particle loading resulting in 

loss in membrane selectivity and the resulting MMMs fall between the Q1 and Q4.  

4 Conclusions 
In this study, Azo-COP-2 has been successfully synthesized and fully characterized 

using different techniques including PXRD, FTIR, N2 physisorption and CO2 adsorption. 

Since Azo-COP-2 is built from azobenzene framework, a novel investigation was then 

conducted on this material to study its potential for low-energy CO2 adsorbent through 

the CO2 photo-switching adsorption both in static and dynamic condition. It was observed 

that Azo-COP-2 could experience a highly efficient CO2 photo-switching with up to 25% 

instantaneous release of adsorbed CO2 once irradiated with UV light. To the best of our 

knowledge, this is the first investigation on CO2 dynamic photo-switching on nanoporous 

polymers which enables them to be applied in a low-energy CO2 capture.  

As an advanced CO2 adsorbent with superior CO2/N2 separation and light-responsive 

property, a further investigation was made to incorporate Azo-COP-2 as nanoporous 

filler in polymer matrix through mixed matrix membranes (MMMs) fabrication for CO2/N2 

separation. Three different polymers were used in this study: Matrimid, polysulfone and 

PIM-1. In all cases, MMMs had higher CO2 permeability compared with their bare 

polymers indicating the beneficial impact of incorporating Azo-COP-2 to enhance the 

CO2 transport. Within the range of particle loading used in this study, the polysulfone-

based MMMs showed an increasing trend on both permeability and selectivity. The CO2 

permeability and CO2/N2 ideal selectivity increased from 5.7 Barrer and 13.8, 

respectively, for the bare Polysulfone membrane to 14.8 Barrer and 22.8, respectively, 

for MMM with 15 wt% particle loading. Meanwhile in terms of permeability-selectivity 

trade-off, PIM-1 based MMMs showed the best performance. Although the CO2/N2 ideal 

selectivity was relatively constant, a significant improvement in CO2 permeability pushed 

the PIM-1 based MMMs performance for getting close to the 2008 Robeson Upper 

Bound.  

In conclusion, this study has successfully advanced the application of Azo-COP-2 

nanoporous polymer. The CO2 photo-responsive nature of Azo-COP-2 makes them a 

promising potential material for advanced low-energy CO2 separation. Meanwhile, Azo-

COP-2 also acts as a good filler candidate for mixed matrix membranes which may be 

applicable for post combustion CO2 capture 
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