KIT | KIT-Bibliothek | Impressum | Datenschutz

Toward a Unifying Framework Blending Real-Time Optimization and Economic Model Predictive Control

Faulwasser, Timm 1; Pannocchia, Gabriele
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Nowadays, real-time optimization (RTO) and nonlinear as well as linear model predictive control (MPC) are standard methods in operation and process control systems. Hence there exists a good understanding of how to combine RTO and set point tracking MPC schemes. However, recently, there has been substantial progress in analyzing the properties of so-called economic MPC schemes. This paper proposes a conceptual framework to blend ideas from (output) modifier adaptation and offset-free economic MPC with recent results on economic MPC without terminal constraints. Specifically, we leverage recent insights into economic MPC based on turnpike and dissipativity properties of the underlying optimal control problem. Interestingly, the proposed scheme alleviates the need for a dedicated computation of steady-state targets by exploiting the turnpike property in the open-loop predictions. Two detailed simulation examples show that the proposed schemes deliver excellent performance, while being conceptually much simpler.


Download
Originalveröffentlichung
DOI: 10.1021/acs.iecr.9b00782
Scopus
Zitationen: 19
Web of Science
Zitationen: 16
Dimensions
Zitationen: 23
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2019
Sprache Englisch
Identifikator ISSN: 0888-5885, 1520-5045
KITopen-ID: 1000096446
HGF-Programm 37.06.01 (POF III, LK 01) Networks and Storage Integration
Erschienen in Industrial & engineering chemistry research
Verlag American Chemical Society (ACS)
Band 58
Heft 30
Seiten 13583–13598
Vorab online veröffentlicht am 13.05.2019
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page