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Abstract
The industrialization of automated driving functions according to level 3 requires an efficient test and calibration concept to 
deal with an increased complexity, growing customer demands, and a larger vehicle fleet offered. Therefore, a method for 
a complexity reduction of the calibration parameter space is presented. In the two-step approach, a qualitative sensitivity 
analysis is used to identify valid regions in the search space and subsequently decrease dimensionality based on the parameter-
specific global influences. The reduced parameter space and sensitivity information can then serve as a starting point for 
an efficient calibration process on the target hardware. To examine the method’s potential, our approach is applied to the 
parameter space of an automated driving function. The results expose clear dependencies between parameters and driving 
scenarios and allow an exclusion of parameter space dimensions based on sensitivity values. The predefined search space 
can be narrowed down to valid regions using the parameter range identification approach. Finally, the findings are validated 
with a quantitative variance-based sensitivity analysis. The validation confirms that our method provides equivalent results 
with a comparably smaller number of system evaluations.

Keywords  Sensitivity analysis · Complexity reduction · Automated driving

1  Introduction

The upcoming market introduction of highly automated 
driving functions increases the requirements for the cus-
tomer-orientated calibration of these systems. To deal with 
increased complexity, virtual testing tools (e.g., software in 
the loop and hardware in the loop) are used to lower the ratio 
of vehicle tests and, therefore, save costs and resources. For 
the parameterization of automated driving functions, optimi-
zation algorithms can be applied to obtain a certain system 

behaviour in dedicated driving situations using a closed-loop 
simulation environment. A reduction and improved system 
understanding of the high-dimensional parameter space 
previous to the simulative optimization can be valuable to 
enable a fast convergence towards the global optimum [14]. 
Moreover, it can serve as a valuable input for the manual 
calibration on the target hardware.

One commonly used approach to enable a more efficient 
optimization is the combination of optimization algorithms 
with sensitivity analyses (see for example [14, 15, 28]. The 
knowledge about the influence of a parameter on the objec-
tive function enables a fast converging optimization proce-
dure and even offers chances to neglect parameters if their 
sensitivity value is small enough [23]. An objective func-
tion is used to evaluate the system behaviour in an optimi-
zation problem. Whereas sensitivity analyses were earlier 
mainly of mathematical interest to analyse the influence of 
the variables in differential equations, their field of appli-
cation became larger nowadays [12]. The development of 
complex control systems and high-dimensional, nonlinear 
models motivated the usage of sensitivity analyses in the 
vehicle systems area to increase model understanding. In 
the contributions of Suarez et al. [25] and Wang [27], they 
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use sensitivity analyses to evaluate the influence of design 
parameters of a vehicle body on the driving behaviour. 
Another popular area for sensitivity analyses and virtual 
optimizations is the calibration of powertrain components 
such as engines and transmissions. Due to its isolated test-
ability on a test bench or as an X-in-the-loop model, sensi-
tivity measures are calculated to understand the impact of 
certain design parameters on the powertrain performance 
(see, for example, [19], Chiang and Stefanoupoulou [7, 18]. 
A comparative review of different sensitivity analysis meth-
ods and their applications is provided in Hamby [10] as well 
as Iooss et al. [12].

Next to the chance to reduce dimensionality by neglecting 
parameters with small sensitivities, the optimization space 
is further bounded by parameter-specific ranges. Due to its 
potential to increase the effectiveness of optimization algo-
rithms, several bounding approaches have been introduced 
in the context of system identification. The term ‘bounding’ 
therein stands for the process of confining parameters of 
a system, so that the input–output error remains below a 
certain threshold [16]. Bijan et al. [2] analytically derive 
valid ranges for input parameters of a genetic algorithm 
and observed an improved convergence behaviour. The 
approaches described by Cerone and Regruto [5, 6] enable 
an identification of valid parameter bounds for nonlinear 
dynamic control systems by modelling the nonlinear block 
as a linear combination of polynomials given a bounded 
output error. A comparative review of further bounding 
approaches is given by Milanese et al. [16].

The definition of valid parameter bounds is especially 
important prior to the application of sensitivity analyses. If 
invalid parameter values are considered, they might lead to 
an erroneous system behaviour that falsifies resulting sen-
sitivity metrics [22]. However, factor bounds are usually 
defined empirically if an analytical derivation is not pos-
sible. The reason for that is mostly a too high computational 
effort needed to ascertain exact bounds [16].

In this contribution, we introduce an integrated method 
for an efficient analytical identification of valid parameter 
bounds and calculation of sensitivity values for the calibra-
tion problem of an automated driving function. By apply-
ing a qualitative sensitivity analysis to different regions in 
the parameter space, we aim to identify invalid areas that 
would lead to distorted results in the subsequent influence 
analysis and optimization. The usage of synergies in the 
sampling plan and the efficiency of the applied sensitivity 
analysis enable a reasonably small number of system evalu-
ations needed to provide reliable results. Whereas simulative 
parameter analyses are already established in various areas 
(e.g., powertrain calibration), parameterizations of auto-
mated driving functions are nowadays mostly obtained on 
the target hardware. The hereafter described method offers 
a first step towards virtual parameterizations by providing 

an increased system understanding of the search space and 
redefining a subspace with the most influential parameters 
and validated domains.

The remainder of this paper is organized as follows. Sec-
tion 2 provides the theoretical background for our work 
including applied sensitivity analyses and related con-
vergence measures. Based on that, Sect. 3 introduces our 
method for the combined dimensionality reduction and 
parameter range identification. In Sect. 4, we apply the 
approach to reduce complexity of the parameter space of 
a level 3 automated driving function [20]. The results of 
Sect. 4 are thereafter validated with a comprehensive quan-
titative sensitivity analysis (Sect. 5), where we cross-check 
the impact of different parameter regions. Section 6 finally 
concludes the paper.

2 � Theoretical background

As already mentioned, we use a qualitative sensitivity 
analysis to examine different regions of the search space 
and derive valid parameter ranges or influence measures. 
The findings provided by that are thereafter validated with 
a quantitative variance-based method with a distinctly larger 
sampling plan. Finally, we introduce convergence measures 
to evaluate sufficiency of the sampling size.

In general, sensitivity analyses can be classified into 
local and global approaches and further into quantitative 
and qualitative methods [22]. Whereas local analyses are 
usually only valid in the respective point, global approaches 
aim for universal validity within the parameter space. The 
difference between qualitative and quantitative methods 
is the interpretability of sensitivity measures. Qualitative 
measures allow only a relative comparison between influ-
ence values, but no direct conclusion on quantitative impacts 
on the objective function, although the advantage is a much 
smaller sampling plan needed to achieve convergence [23]. 
In the following, the objective function F(P) with respect to 
the parameter space P and the number of parameters np is 
defined as follows:

2.1 � Elementary effects method

Due to its successful application in various fields related to 
vehicle control systems (c.f. [7, 10, 18, 19] and its compu-
tational efficiency, we use the elementary effects method 
(EEM) for our analyses. The EEM is a global qualitative 
analysis and was first introduced by Morris [17] and fur-
ther developed by Campolongo et al. [3]. The calculation 
of sensitivity measures is based on a one-factor-at-a-time 

(1)F(P) = F
(
P1,… ,Pnp

)
with P ∈ ℝ

np , F(P) ∈ ℝ.
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(OAT) sampling plan characterised by a variation in 
only one dimension between two consecutive samples. 
Among various sampling strategies, the radial approach 
as described by Campolongo et al. [4] offers the most uni-
form distribution of points in the parameter space. Starting 
from a quasi-random plan (e.g., latin hypercube sampling) 
containing r samples, each point is thereafter varied radi-
ally along all nP dimensions one at a time, as exemplarily 
illustrated in Fig. 1. The number of samples nEEM can be 
calculated with

For every radial sample group (c.f. Fig. 1), the relative 
change of the objective function F(P) with regard to the 
respective parameter change Δ is calculated. The so-called 
elementary effect EEj

i
 for parameter i at the jth sample 

group is thus defined as follows:

After calculating all r elementary effects for each 
parameter, the mean �i and standard deviation �i serve as 
sensitivity metrics for this method [17]:

When summing up elementary effects, as described in 
Eq. (4) some effects may neutralize each other if the model 

(2)nEEM = r ⋅
(
nP + 1

)
.

(3)
EE

j

i
=

F
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P
j
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j
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,…P

j
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+ Δ,… ,P
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)
− F

(
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j
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Δ
.

(4)�i =
1

r
⋅

r∑

j=1

EE
j

i
,

(5)�i =

√√√√ 1

r − 1
⋅

r∑

j=1

(
EE

j

i
− �i

)2

.

is non-monotonic and causes negative effects. Thus, a modi-
fied calculation of �i is proposed in Campolongo et al. [3]:

Whereas Eq. (6) solves the problem of effects neutralizing 
each other, the mean �∗

i
 loses information about the direction 

of impact compared to �i . It is, therefore, recommended to 
calculate both metrics.

The information about the global influence of a parameter 
can be extracted by plotting the results of Eqs. (5) and (6) in 
a �∗ − �-plane (c.f. Fig. 2). The metric �∗ is defined as the 
mean change in F(P) with regard to the respective parameter 
change. The �∗-intercept can, therefore, be interpreted as a 
measure for main effects of the parameter on F(P). For the 
calculation of � , the variance of the elementary effects is 
analysed. A widespread distribution of the relative influ-
ences (or elementary effects) towards F(P) can be explained 
by a nonlinear relationship between F(P) and the respective 
parameter or interdependencies to remaining parameters. 
The �-value in Fig. 2 thus serves as an indicator for nonlin-
earities and interdependencies to other parameters [3].

Parameters laying in the upper right corner of the plot 
are thus more influential than in the lower left corner. As 
mentioned above, the sensitivity metrics are qualitative, i.e., 
they can be used to compare parameter impacts among each 
other, but do not allow a direct conclusion about the absolute 
influence on F(P).

2.2 � Variance‑based sensitivity analysis

The variance-based sensitivity analysis (VBSA) as described 
by Saltelli et al. [21–23] is based on the decomposition of 
the output variance into fractions that can be attributed to 

(6)�
∗
i
=

1

r
⋅

r∑

j=1

|||EE
j

i

|||.

P
1

P
2

P
3

Fig. 1   Radial sampling scheme for the elementary effects method 
( r = 3 , np = 3)
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Nonlinearities and
interdependencies

Fig. 2   Exemplarily illustration of the �∗ − �-plane for the elementary 
effects method
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input variables or groups of inputs. In contrast to the EEM, 
the VBSA provides sensitivity values that are interpretable 
as ratios on the output variance and, therefore, normalized 
between zero and one. The calculation of the main effect Si 
for parameter i is described in Eq. (7) following the notation 
in Saltelli et al. [21]:

The symbol V stands for the variance and E stands for the 
mean of the argument. The indices Pi and P ∼ i implicate to 
perform respective operations over the factor i or all factors 
except i. Si , therefore, represents the ratio of the input variance 
of i with regard to the output variance and is called the first 
order effect on F(P). Effects of higher order (total effect) STi 
can be calculated using Eq. (8):

In analogy to � for the EEM, total effects can be interpreted 
as interdependencies [4]. Since the calculation of Eqs. (7) and 
(8) requires an unreasonably large number of system evalua-
tions, many approximation techniques were developed. In this 
contribution, we use the approximation as described by Saltelli 
et al. [21, 22] and Jansen [13]. For the variance in Eq. (7), they 
propose to use an estimator as follows:

For Eq. (8), the following estimator is proposed:

Given the sample size N, two independent sampling matri-
ces A and B each consisting of N rows and np columns are 
generated. These matrices are used to create a third matrix Ai

B
 

which is equal to A except that the ith column is replaced by 
the ith column of B. The differences of the newly generated 
matrix and A or B are then used to approximate the numerator 
in Eqs. (7) and (8). The number of system evaluations nVBSA 
for the variance-based approach is given by Eq. (11).

2.3 � Convergence measures for sensitivity analyses

The number of samples nEEM and nVBSA is decisive for 
the validity of sensitivity measures obtained by the previ-
ously described analyses. If the sampling plan is too small, 

(7)Si =
VPi

(
EP∼i(F(P)|Pi

)

V(F(P))
.

(8)
STi =

EP∼i

(
VPi

(F(P)|P∼i

)

V(F(P)
= 1 −

VP∼i

(
EPi(F(P)|P∼i

)

V(F(P))
.

(9)

VPi

(
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)
≈ V(F(P)) −

1

2N

N∑

j=1

(
F(B)j − F

(
Ai
B

)
j

)2

.

(10)EP∼i

(
VPi

(F(P)|P∼i

)
≈

1

2N

N∑

j=1

(
F(A)j − F

(
Ai
B

)
j

)2

.

(11)nVBSA = N ⋅

(
nP + 2

)
.

problem-specific nonlinear effects or interdependencies 
between parameters might be neglected [26]. Thus, several 
qualitative and quantitative convergence methods exist. In a 
qualitative analysis, we need to perform the proposed meth-
ods with different sampling sizes and compare the sensitivity 
values with regard to nVBSA or nEEM . Unchanged results with 
increasing number of samples indicate convergence [11]. 
Quantitative approaches involve the calculation of the devia-
tion of sensitivity values between two consecutive calcula-
tion steps. If the relative change falls below a predefined 
tolerance threshold, convergence is achieved [26]. However, 
two adjacent calculation steps could coincidentally lead to 
same sensitivity values, while the distribution changes again 
with a larger number of samples. Therefore, Sarrazin et al. 
[24] suggest the repeated calculation of sensitivities with 
different samples but constant sample size. Confidence inter-
vals then allow a comparison based on a statistical basis. For 
the determination of confidence bounds, the bootstrapping 
method is applied which is commonly used in statistics to 
evaluate estimation techniques [9]. The idea of bootstrap-
ping in our context is to repeatedly generate new sampling 
plans from the initial plan and calculate sensitivity metrics. 
The number of sampling plans used for the determination 
of confidence bounds is denoted by nB . Therefore, n ran-
dom samples (or nVBSA and nEEM in our case) are pulled 
with replacement from the initial sample set of dimension 
( n × 1). For each of the nB sampling matrices, the sensitiv-
ity analysis is applied resulting to nB sensitivity metrics for 
each parameter to a given sample size. Commonly known 
percentile methods then enable the provision of confidence 
intervals to a defined confidence level �Conf . After perform-
ing the bootstrapping method for different sample sizes, 
we can compare the width of the confidence intervals with 
respect to n and thus analyse convergence. The width RCI,i 
is hereafter defined as follows:

The variables Sub
i

 and Slb
i

 describe upper and lower bounds 
of the confidence interval for a sensitivity measure to a given 
confidence level �Conf.

3 � Combined method for the complexity 
reduction of the calibration problem 
for automated driving functions

Our approach intends to support the parameterization pro-
cess of automated driving functions by narrowing down the 
search space to valid regions with regard to the objective 
function. To do so, we follow a two-step process that com-
prises a reduction of initial parameter bounds to valid ranges 
and a calculation of scenario-specific sensitivities. The out-
put of the analyses is an increased system understanding on 

(12)RCI,i = Sub
i
− Slb

i
.
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one hand and a decreased search space with smaller param-
eter bounds and less dimensions on the other hand. Figure 3 
illustrates the structure of the method.

The input block of the chart comprises a simulation envi-
ronment as the means to evaluate performance of the driving 
function in a representative scenario catalogue measured by 
the objective function. The parameters enable an optimiza-
tion of the driving behaviour and are the main subject of 
our analysis.

3.1 � Sampling approach

As a first step, we need to generate a sampling plan that 
enables both a derivation of valid parameter bounds and a 
sensitivity analysis. Since every sampling point requires one 
simulation run of the whole scenario catalogue, we intend to 
keep the number of samples as small as possible while still 
keeping a good coverage of the parameter space. Moreover, 
we aim to use synergies within the design for both analyses.

To examine the influence range of a parameter i, we intend 
to divide the initially defined domain defined by the upper 
bound ubi and lower bound lbi into smaller subregions. There-
after, we perform sensitivity analyses in the reduced sub-
spaces. The sensitivity value of the factor then provides infor-
mation about the impact in the respective subrange. Due to its 

computational efficiency, we use the qualitative elementary 
effects method (EEM) to locally perform influence analyses. 
Based on that, we derive a valid search space and calculate 
global sensitivity metrics based on those radial samples that 
lay in permitted areas. A more detailed description of the 
approach is given in Sects. 3.2 and 3.3.

As a first step of the parameter range identification for 
the factor Pi , we divide the initial parameter range into nInt 
even intervals. Within the reduced search space defined by 
two consecutive bounds with respect to the parameter under 
test a Morris sampling, as described in Sect. 2.1, can be per-
formed. The corresponding bounds lb∗

i
 and ub∗

i
 for the interval 

k ∈
[
1,… , nInt

]
 can be calculated as follows:

With otherwise unchanged bounds, we can create a local 
Morris plan for the examination of the influence of param-
eter Pi in the interval k:

(13)lb∗
i
(k) = lbi + (k − 1) ⋅

ubi − lbi

nInt
,

(14)ub∗
i
(k) = lbi + k ⋅

ubi − lbi

nInt
.

(15)XMorris
i,k

∈ ℝ
r(np+1)×np .

Fig. 3   Structural overview of 
the method

Input

Method

Generation of a Sampling Sequence (Sec. 3.1)

Evaluation of the objective function for all samples

Output

Dimensionality Reduction

Derivation of valid parameter
bounds (Sec. 3.2)

Calculation of scenario specific
sensitivites (Sec. 3.3)

Plausibility check

Decreased parameter ranges

Simulation
Scenario 
catalogue Parameters

Objective
function

Increased system understanding

Evaluation

Measurement of the complexity reduction (Sec. 3.4)
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For the examination of domains of all np parameters, a 
total number of nPB system evaluations are needed:

Figure  4a shows an exemplarily local Morris plan 
within the parameter space for the first interval of param-
eter P1 for a two-dimensional example.

For the subsequent calculation of the global sensitivity 
indices, we aim to use those radial sampling groups that 
lay within valid areas of the search space. We, therefore, 
check all elementary effects in the sampling plans and 
concatenate them if all of their OAT variations are located 
in valid areas. Figure 4b illustrates the filtering of radial 
sampling groups based on their location in the parameter 
space and the updated valid parameter bounds. Points lay-
ing on the dashed lines in Fig. 4b are not considered for 
the global sensitivity analysis. Since the evaluation of the 
objective function has already been performed for the first 
part of the analysis and the sample plans were generated 
independently, we can use these results without further 
computational effort.

(16)nPB = np ⋅ nInt ⋅ r ⋅
(
np + 1

)
.

3.2 � Derivation of valid parameter bounds

As already pointed out in Sect. 1, the validity of parameter 
bounds is crucial for the applicability of sensitivity analy-
sis. We consequently intend to first identify valid parameter 
ranges and thereafter perform the Morris sensitivity analysis 
using only valid samples.

Based on the sampling approach for the examination of 
intervals as presented in Sect. 3.1 and objective function 
values for each sample, we can perform the EEM locally in 
different regions of the parameter space. The number of dis-
crete intervals per parameter is defined by nInt (c.f. Sect. 3.1). 
For every subrange of the initial domain from parameter Pi , 
we compute the sensitivity metrics �∗

i
 and �i . If the search 

space was sufficiently sampled and none of the measures in 
the respective interval k are greater than a predefined thresh-
old, the parameter Pi does not have an influence between 
lb∗

i
(k) and ub∗

i
(k) . The validity of this statement has to be 

confirmed with convergence analyses for the number of 
samples nPB or r , respectively. Since high values of �∗

i
 and 

�i both indicate higher influences we aim to combine the 
two metrics to a single sensitivity value. The qualitative 
character of the EEM allows only a comparison among fac-
tors. We thus suggest to subsequently normalize sensitivity 
metrics with respect to the most influential parameter. The 

Valid rangelb1
* (1) ub1

* (1)
Invalid 
range

Invalid 
range

(a) Exemplarily Morris sampling for
the examination of the first interval
for P1. The area left of the dotted
line represents the subspace for the
parameter range analysis

(b) Sampling plan for the derivation
of the global sensitivity metrics. The
invalid ranges originate from the
parameter range analysis. Dashed
lines indicate samples that need to
be excluded.

Fig. 4   Sampling plans for the parameter range identification and dimensionality reduction for a two-dimensional example
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graphical equivalent in the �∗ − �-plane to the extreme case 
that all elementary effects are zero would be that the respec-
tive parameter lays in the point of origin. We, therefore, first 
calculate a single sensitivity measure that is defined as the 
Euclidean distance between the sensitivity point and zero. 
The formula for si is defined as follows:

Figure 5 illustrates sensitivity vectors, whose distances 
we define as sensitivity measures [c.f. Eq. (17)].

To normalize the values, we perform a MinMax-Scaling 
afterwards to calculate a relative sensitivity srel

i
 [8]:

With respect to the defined intervals, the variable srel
i,k

 denotes 
the sensitivity value of parameter Pi in the interval k. As 
pointed out in Sect. 2.1 that the main effect and degree of 
interdependencies and nonlinearities is highest in the upper 
right corner, we rate those parameters as most important.

For the identification of the valid parameter range, we 
suggest to make a conservative estimate for the initial bounds 
lbi and ubi and use the herein presented approach to narrow 
them down to valid regions ( lbvalid

i
 and ubvalid

i
 ). While the 

identification of influential intervals throughout the whole 
domain is theoretically possible with this approach, we thus 
assume a negligible influence mainly at outer areas of the 
parameter range. We analyse in Sect. 4 if this assumption 
holds for the considered use case. Therefore, we propose to 
examine sensitivities starting from the lowest interval with 
ascending k or the largest interval with descending k and 
identify valid lower and upper bounds lbvalid

i
 and ubvalid

i
 of 

(17)si =

√
�
∗2
i

+ �
2
i
.

(18)srel
i

=
si −minl=1,…,np

sl

maxl=1,…np
sl −minl=1,…,np

sl
.

the respective parameter Pi . For the lower bound, starting 
from k = 1, we examine following intervals with rising val-
ues for k as long as the sensitivity value srel

i,k
 exceeds a lower 

sensitivity threshold srel
min,PB

 or all intervals were considered. 
The renewed lower bound is then obtained with Eq. (13). 
The upper bound identification works similar. An in-depth 
description of the suggested approach is given by the flow-
chart in Fig. 6. Elementary effects for parameter Pi in the 
interval k are herein given by EEi,k.

3.3 � Calculation of scenario‑specific sensitivities

The aforementioned parameter range identification serves as 
a necessary process step to ensure the validity of global sen-
sitivity measures computed in the second step of our method 
(c.f. Fig. 1). More importantly, the same sampling plan was 
used as for the hereafter described analysis, which enables 
a reuse of radial sampling groups (c.f. Sect. 3.1). The goal 
of the method presented in the following is to improve sys-
tem understanding for the manual calibration process and 
potentially exclude parameter space dimensions based on 
their global influence.

Given the reordered sampling plan as exemplarily illus-
trated in Fig. 4b, the sensitivity metrics �∗

i
 and �i for the 

valid search space can be calculated following the Morris 
method, as described in Sect. 2.1. To enable a comparison of 
parameter influences among scenarios, we use the normali-
zation approach as introduced in Eqs. (17) and (18). Since 
the simulation environment and the objective function may 
contain inaccuracies that complicate the transferability to 
the real world, the quantitative effect on F(P) would not be 
of big interest. Even if the absolute influence might change 
between manoeuvres, the relative sensitivity still provides 
valuable information about the order of magnitude param-
eters have in respective scenarios.

Similar to the method in Sect. 3.2, we have the opportu-
nity to exclude unimportant factors from the optimization 
problem if the respective sensitivity value falls below a pre-
viously defined threshold srel

min
 . Note that the threshold for the 

dimensionality reduction does not necessarily have to be the 
same as for the parameter range reduction ( srel

min,PB
).

3.4 � Evaluation of the complexity reduction

The two-step method described above provides a reduced 
valid parameter region based on newly identified bounds 
on one hand and scenario-specific sensitivities on the other 
hand. The normalization of influences allows the dimension-
ality reduction if the parameter’s sensitivity lays below the 
predefined threshold srel

min
.

Main effects

Nonlinearities and
interdependencies

Fig. 5   Exemplarily �∗ − �-plot and sensitivity vectors for the normal-
ization of influence values
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In the following, we introduce metrics for an overall 
complexity reduction to measure the potential of our 
approach. Since the volume of an np-dimensional hyper-
space can only serve as a comparison measure for equal 
dimensions, we introduce two independent metrics for the 
dimensionality reduction and parameter space reduction. 
The dimensionality reduction DR is defined as the relative 
decrease of the number of parameters through the 

sensitivity analysis. The variable n∗
p
 defines the number of 

parameters after the dimensionality reduction:

(19)DR = 1 −
n∗
P

nP
.

Initial parameter
bounds ubi and

lbi

Local sampling
sequences
Xi ,k
Morris

Function values
for all samples

F(Xi ,k
Morris )

Parameter range identification

Identification of
upper or lower

bound ?

Lower Bound Upper Bound

k = 0 k =nInt + 1

Compute si,k
rel

Compute EEi,k

No Yes

k ≥ 1?

k = k − 1

Compute si,k
rel

lbi
valid = lbi

∗(k) = lbi + (k − 1)⋅
ubi − lbi

nInt

Compute EEi,k

NoYes

k ≤ nInt ?

k = k + 1

ubi
valid = ubi

∗(k) = lbi + k⋅
ubi − lbi

nInt

Yes

lbi
valid= lbi ubi

valid= ubi

No No

Yes

si,k
rel > smin ,PB

rel ? si,k
rel > smin ,PB

rel ?

Fig. 6   Flow chart of the parameter range identification method for parameter P
i
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Similarly, the parameter space reduction PSR is defined 
as the relative decrease of the search space caused by the 
identification of the new bounds:

The higher the above-mentioned metrics (DR and PSR), 
the more the parameter space could be confined. It needs 
to be noted that the metrics serve as a means to compare 
the complexity reduction among scenarios and do not allow 
any conclusion to the actual reduction of computational 
resources or calibration time.

4 � Complexity reduction for the calibration 
of an automated driving function

In this paragraph, we apply the previously presented method 
to reduce complexity of the calibration problem of an auto-
mated driving function. Therefore, we first describe the 
underlying optimization problem (Sect. 4.1) before pre-
senting results in Sect. 4.2. Finally, in Sect. 4.3, we discuss 
our approach critically and perform convergence analyses 
(Sect. 4.4).

4.1 � Problem description

The calibration of automated driving functions can be 
understood as an optimization problem that involves tuning 
parameters of the system, so that it provides a customer-
friendly driving behaviour in relevant driving situations. 
Whereas optimization criteria can vary based on the func-
tion under test, the automated driving function of SAE auto-
mation level 3 (c.f. SAE [20] analysed in this work should 
be mainly optimized for driving comfort. The calibration is 
usually performed with a representative scenario catalogue 
aiming for an overall optimized performance. As pointed out 
before, we aim to virtualize the process and thus perform 
the complexity reduction within a closed-loop simulation. 
Without claiming an exact transferability to the target hard-
ware, we can provide qualitative sensitivity information and 
promising regions in the parameter space for further simu-
lative optimizations or manual calibrations in the vehicle. 
The objective function used in this contribution is defined 
as follows:

The function evaluates oscillations of the vehicle in the 
driving lane using the velocity v as well as the amplitude 
A� and frequency f� of the curvature � . The higher F(P) 
the better the system behaviour is assessed by the driver. 

(20)PSR = 1 −

n∗
p∏

i=1

√√√√√
(
ubvalid

i
− lbvalid

i

ubi − lbi

)2

.

(21)F(P) = C1 + C2 ⋅ v + C3 ⋅ A� + C4 ⋅ f� ,F(P) ∈ [0, 1].

The regression coefficients C1,… ,C4 ∈ ℝ were identified 
previously in comprehensive driving studies. For the calibra-
tion of the driving function, eight parameters are considered. 
The variable P is, therefore, defined as P ∈ ℝ

8 , i.e., nP = 8 . 
The parameters serve as calibration factors for the trajec-
tory-planning module of the driving function. They define 
maximally allowed lateral and longitudinal accelerations as 
well as weight factors for a cost function that evaluates the 
suitability of planned trajectories. The manoeuvre catalogue 
can be arbitrarily large, but due to restricted computation 
resources, we define it just as comprehensive as necessary. 
The manoeuvre catalogue considered is defined based on 
examinations from [1]:

•	 Keep lane on a curvy road (M1).
•	 Lane change on the highway (M2).
•	 Acceleration (M3).
•	 Deceleration (M4).
•	 Overtake slower vehicle on the highway (M5).
•	 Lane change and stop (M6).

4.2 � Complexity reduction

For an overall complexity reduction of the calibration 
problem, we apply the methods, as shown in Sects. 3.2 and 
3.3, for all manoeuvres individually and provide a reduced 
parameter space with regard to the respective scenario. In a 
next step, conclusions valid for the whole scenario catalogue 
can be drawn. Since the method works similar for all sce-
narios, we only describe the analysis of the first manoeuvre 
(“Keep Lane on a curvy road”) in detail and provide results 
for remaining scenarios without further explanation. The 
initial ranges for all parameters are normalized and limited 
by 0 and 1, which leads to common bounds lbi and ubi for 
all factors:

According to the overall method, we need to derive valid 
parameter bounds before applying the global sensitivity 
analysis. Therefore, we follow the algorithm introduced in 
Sect. 3.2 to analyse sensitivities along each parameter range 
and derive valid parameter bounds. The development of srel

i,k
 

for parameter i with regard to the interval k is plotted in 
Fig. 7 for all parameters for scenario M1. We divided each 
parameter range into nInt = 10 even intervals. The minimum 
sensitivity threshold was defined to srel

min,PB
= 0.01 = 1%.

For the derivation of valid bounds, we follow the algo-
rithm, as described in Fig. 6, and obtain a renewed lower 
bound for P1 of lbvalid

1
= 0.6 ( ubvalid

1
 remains unchanged). 

Moreover, the upper bound of P2 can be redefined to 
ubvalid

2
= 0.6 ( lbvalid

2
 remains unchanged). Parameters P3 and 

(22)lbi = 0 ∀i ∈ [1,… , 8],

(23)ubi = 1 ∀i ∈ [1,… , 8].
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P4 seem to have no influence on F(P), since si,k remains 
zero over the whole domain. Parameters P5–P8 on the other 
hand seem to be sensitive towards F(P). However, the final 
clarification of these assumptions can only be provided by 
a global sensitivity analysis in the valid parameter space 
region.

For the calculation of the sensitivity metrics as defined in 
Eqs. (5) and (6), we first concatenate a new Morris plan from 
those radial sampling groups laying in permitted areas of the 
parameter space (c.f. Sect. 3.1). The corresponding �∗ − �

-plot for this scenario is shown in Fig. 8. The scaling of 
both axes is identical to avoid any plotting distortions of the 
results. Since the Morris method only allows a comparison 

among the parameters but no direct conclusion about the 
impact on F(P), we refrain from specifying axes intercepts.

It can be seen that parameters P1–P4 have comparably 
small values for the main effect ( �∗ ) and low nonlineari-
ties and interdependencies to other parameters ( �-value). 
Parameters P5–P8 on the other hand lay further in the top 
right, which implicates higher interdependencies and non-
linearities. Parameter P8 seems to be mostly influential due 
to its position in the upper right corner. By comparing these 
findings with the plots in Fig. 7, we notice that the results 
confirm observations based on the parameter range analysis. 
The dimensionality reduction and parameter range identifi-
cation can, therefore, be used as mutual plausibility checks.

0 2 4 6 8 10

Interval k

0

0.5

1

s
1re

l

0 2 4 6 8 10

Interval k

0

0.5

1

s
2re

l

0 2 4 6 8 10

Interval k

0

0.5

1

s
3re

l

0 2 4 6 8 10

Interval k

0

0.5

1

s
4re

l

0 2 4 6 8 10

Interval k

0

0.5

1

s
5re

l

0 2 4 6 8 10

Interval k

0

0.5

1

s
6re

l

0 2 4 6 8 10

Interval k

0

0.5

1

s
7re

l

0 2 4 6 8 10

Interval k

0

0.5

1

s
8re

l

Fig. 7   Relative sensitivities srel
i

 plotted versus the intervals for each parameter i for manoeuvre M1
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In the following, we calculate normalized sensitivities 
using Eqs. (17) and (18) to get a single sensitivity measure 
and enable the comparison among different manoeuvres. 
To reduce the dimensionality of the parameter space for 
the optimization problem, we need to define a minimum 
threshold smin

rel
 (c.f. Sect. 3.3). Since the EEM is a qualita-

tive method, we suggest to define values close to zero but 
not exactly zero. For our problem, we choose srel

min
= 0.01 . 

Table 1 comprises results of the global sensitivity analy-
sis and subsequent dimensionality reduction, while Table 2 
gives an overview of newly found bounds for each scenario.

When analysing the results in Table 1, it becomes obvious 
that the impact of many parameters changes with regard to 
the scenario. Whereas scenarios M3–M5 can be optimized 
solely by parameter P2 , the distribution of influential param-
eters changes for the remaining scenarios. Since these sce-
narios mainly consist of longitudinal changes of the driving 
state with low curvature changes, while the others contain 

*

P
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P
2

P
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P
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P
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P
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P
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P
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Main effects

Nonlinearities and
interdependencies

Fig. 8   �∗ − �-plot for scenario “Keep Lane on a curvy road” (M1) 
towards F(P)

Table 1   Results of the 
sensitivity analysis and 
dimensionality reduction 
method

M1 M2 M3 M4 M5 M6

P
1

s
1rel

0.0258 0 0 0 0 1
P
2

s
2rel

0.0651 0.582 1 1 1 0.889
P
3

s
3rel

0 0.874 0 0 0 0
P
4

s
4rel

0 1 0 0 0 0
P
5

s
5rel

0.433 0.449 0 0 0 0
P
6

s
6rel

0.549 0.96 0 0 0 0
P
7

s
7rel

0.825 0.681 0 0 0 0
P
8

s
8rel

1 0.698 0 0 0 0
DR 0.25 0.125 0.875 0.875 0.875 0.25

Table 2   Results of the 
parameter range identification 
method

M1 M2 M3 M4 M5 M6

P
1 lb

valid

1
0.6 0 0 0 0 0.4

ub
valid

1
1 1 1 1 1 0.6

P
2 lb

valid

2
0 0.2 0.3 0.3 0 0

ub
valid

2
0.6 1 0.5 0.5 0.5 0.4

P
3 lb

valid

3
0 0 0 0 0 0

ub
valid

3
1 1 1 1 1 1

P
4 lb

valid

4
0 0 0 0 0 0

ub
valid

4
1 1 1 1 1 1

P
5 lb

valid

5
0 0 0 0 0 0

ub
valid

5
1 1 1 1 1 1

P
6 lb

valid

6
0 0 0 0 0 0

ub
valid

6
1 1 1 1 1 1

P
7 lb

valid

7
0 0 0 0 0 0

ub
valid

7
1 1 1 1 1 1

P
8 lb

valid

8
0 0 0 0 0 0

ub
valid

8
1 1 1 1 1 1

PSR 0.76 0.2 0.8 0.8 0.5 0.88
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larger lateral requirements, the parameter P2 might be espe-
cially influential towards the optimization of the longitudinal 
driving behaviour. Moreover, it becomes clear that some of 
the parameters (e.g., P3 and P4 ) have an exclusive influence 
on only one manoeuvre, whereas other parameters (e.g., P1 , 
P2 , and P5–P8 ) seem to affect more manoeuvres. The differ-
ent parameter bounds per manoeuvre (c.f. Table 2) finally 
confirm the potential of the scenario-specific analysis, since 
influence ranges change depending on the driving situation.

The different values for DR and PSR with respect to the 
manoeuvre represent the characteristics of our optimization 
problem. Parameters are not all equally influential and do 
not have a fixed influence range, instead the valid parameter 
space for the optimization varies heavily depending on the 
scenario. The exposition of these findings with our analysis, 
therefore, simplifies the parameter tuning, since the search 
space and thus the number of possible parameter combina-
tions can be reduced compared to the initial setup. It should 
be noted that high values for PSR and DR indicate a reduc-
tion of the parameter space, but do not necessarily improve 
subsequent optimizations. If the relevance threshold is too 
small, optimization algorithms might still search areas with 
negligible influences and get stuck in local optima.

4.3 � Discussion of the results

The results, as illustrated in Sect. 4.2, imply a grouping of 
the variables with regard to scenario specifications and a 
change of parameter influences within different domains. 
To analyse our findings, we need to look into the chain of 
effects and understand the structure of the function mod-
ules. Many of the tuneable parameters for automated driving 
functions are located in the control systems of the actua-
tors (e.g., steering system). Alternatively, they are located 
inside motion-planning modules and serve as, e.g., weight-
ing factors in the cost function of an optimization problem, 
which is the case for our problem (c.f. Sect. 4.1). Since the 
implementation of the analysed trajectory-planning module 
separates longitudinal and lateral strategies, there may also 
exist varying sensitivities of the corresponding parameters 
per scenario. Manoeuvres 3 and 4 are mainly longitudinal 
manoeuvres, whereas M1 and M2 mostly contain lateral 
parts. The results expose a larger influence of parameter P2 
on longitudinal scenarios, whereas parameters P3–P8 seem 
to show a sensitive behaviour towards lateral scenarios. As 
described before (Sect. 3.2), we chose a very large initial 
range to make sure that the actual valid range lays in between 
those initial bounds. The tendency of some parameters to 
loose impact at outer areas of the ranges can be explained 
when looking into more detail to the function modules. Very 
high absolute values for a weighting factor within a cost 
function could, for example, cause an overcompensation of 
all remaining factors and thus the planning of unrealistic 

driving states, which is caught by further constraints of the 
system. Alternatively, the switch to a fall back emergency 
mode for an unrealistic planning behaviour is possible. On 
the other hand, a small value of such a factor would lead to 
a decreased influence and, therefore, an overcompensation 
by other factors. Next to the findings in cost functions, a 
similar behaviour can be observed in control systems when 
a parameter serves as a gain factor or the affected signal runs 
into a limiter, so that its influence does not change anymore 
below or above a certain threshold.

The findings described before confirm the applicability of 
our approach to the parameter space of an automated driving 
function. For further driver assistance systems (e.g., adaptive 
cruise control, lane keeping assistant), a similar performance 
can be expected, since the structure of the chain of effects 
is comparable. It mostly comprises control systems and 
motion-planning modules with tuneable parameters affecting 
the closed-loop-driving behaviour. Internal safety modules 
preventing undesired driving behaviour caused by invalid 
parameterizations of the driving function are mostly required 
by law, so that fall back layers may limit the influential 
regions as exposed above. The transferability of this concept 
to other problems with large parameter spaces is generally 
given. However, the effectiveness strongly depends on the 
characteristics of the optimization problem. If the objective 
function is not limited by any constraints, the method might 
not allow a reduction of the parameter space. Since the chain 
of effects for many vehicle control systems (e.g., powertrain 
and suspension system) is similar to automated driving func-
tions with respect to safety restrictions, we may be able to 
reduce parameter space complexity for these cases.

4.4 � Convergence analysis

The validity of the results strongly depends on the suffi-
ciency of our sampling plan. Therefore, we finally apply a 
quantitative convergence analysis, as described in Sect. 2.3. 
Following the bootstrapping approach, we apply the pre-
sented methods nB = 500 times for respective sample sizes 
nEEM or nPB and thereafter calculate the mean as well as the 
5% and 95% confidence interval. Based on that, we plot the 
mean of the resulting sensitivities si as well as lbvalid and 
ubvalid against the corresponding number of system evalua-
tions. In addition, the width of the confidence interval RCI is 
analysed. Figures 9 and 10 show the results for the parameter 
range identification for scenario M1 as a representative for 
the whole scenario catalogue.

The results show that valid parameter ranges can already 
be achieved with a relatively small number of system evalu-
ations. The width of the confidence interval reaches a value 
of zero after nPB ≈ 10000 which is equivalent to r = 14 as 
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Fig. 9   Convergence plot for the 
lower bounds for manoeuvre 
M1

Fig. 10   Convergence plots for 
the upper bounds for manoeuvre 
M1
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the number of elementary effects in the respective subspace 
[c.f. Eq. (16)].

We examine the validity of the results of the dimensional-
ity reduction by analysing convergence of the combined sen-
sitivity si [c.f. Eq. (17)], since the normalization as applied 
for srel

i
 prohibits the calculation of confidence bounds. While 

the final prioritization of the parameters already becomes 
apparent with a small sample size, the confidence interval 
only decreases with larger values for nEEM . As shown in 
Fig. 11, after approx. nEEM ≈ 1000 , the width of the confi-
dence interval is so small ( RCI < 45) that a clear distinction 
of parameters P7 and P8 is possible. Parameters P5 and P6 
lay so close together that the confidence intervals still over-
lap slightly. The same applies for P1 and P2 . However, with 
respect to the order of magnitude of the combined sensitivi-
ties, we can accept small overlaps between two parameters. 
Since the measures are qualitative and we compute the rela-
tive sensitivity with regard to the most influential parameter, 
the deviations in srel

i
 would be negligibly small, so that we 

can assume similar influences for both parameters based on 
the method.

It is noticeable that the parameter range identification 
requires a distinctly larger sampling size than the dimen-
sionality reduction method. These findings align with our 
method, since we reuse valid radial samples from the ini-
tial plan for the global sensitivity analysis. However, the 
risk is high that due to a great reduction of initial parameter 

ranges, the number of radial samples for the second part of 
our method is too small to provide reliable results. Since 
optimal values for nEEM and nPB are problem-specific, it 
is always recommended to perform a convergence analy-
sis after applying the method to ensure the validity of the 
results. If nEEM turns out to be too small, one can generate 
more OAT samples within the reduced parameter space fol-
lowing the sampling method, as shown in Sect. 2.1.

5 � Validation of the results

To validate our findings, we finally apply the quantitative 
variance-based sensitivity analysis to our problem. Simi-
lar to Sect. 4, we use the manoeuvre M1 as a representa-
tive for the scenario catalogue. We, therefore, divide the 
search space into a valid region and an invalid region. The 
valid region is defined through the bounds lbvalid

i
 and ubvalid

i
 , 

whereas the invalid space represents the regions in the 
parameter space outside permitted bounds. To evaluate our 
findings of the global sensitivity analysis, we compute the 
main (ME) and total effects (TE) with the variance-based 
sensitivity analysis (c.f. Sect. 2.2) in the permitted subspace 
and compare them to the relative sensitivities srel

i
 provided 

by the EEM. In a second step, another quantitative VBSA is 
performed inside invalid regions of the parameter space. The 
comparison of sensitivity metrics in the valid and invalid 

Fig. 11   Convergence plots for 
the dimensionality reduction
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space finally allows the validation of the complexity reduc-
tion approach.

The results are illustrated through bar plots in Fig. 12. 
The error bars symbolize the 5% and 95% confidence 
interval. A sufficient convergence was achieved with 
nVBSA = 16400 system evaluations. The results in Fig. 12a 
indicate small main effects and total effects for parameters 
P1–P4 and comparably high values for parameters P5–P8 . 
Compared to the �∗ − � plot in Fig. 8, these findings gen-
erally align with the qualitative sensitivity results. How-
ever, the results of the VBSA do not allow an exclusion 
of parameters P3 and P4 with a threshold of 0.01 , since it 
estimates higher influences. Previous examinations (e.g. 
[26] already exposed the risk of the EEM to be too con-
servative and rate parameters as non-sensitive that turn 
out to be important. However, in our case, the VBSA 
provides results in a similarly small order of magnitude 
( ME3 = 0.047, TE3 = 0.061, ME4 = 0.047, TE4 = 0.061 ), 
so that the exclusion of P3 and P4 by the EEM can be justi-
fied. Moreover, the influence results for P1 , P2 , and P5–P8 
indicate the same factor ranking, as outlined in Sect. 4 and 
thus confirms the applicability of the qualitative approach.

When comparing the distributions of main and total 
effects between Fig. 12a, b, we observe an average decrease 
of the main effect for P1–P4 of approximately 50% and a 

reduction of the total effect by approx. 30%. The distinct 
reduction of these sensitivity metrics outside of the valid 
bounds and increase of the influences for P5–P8 confirm 
the findings of the parameter range reduction. The fact that 
the sensitivities of P1 and P2 are not closer to zero might 
be caused by the less conservative VBSA approach (see 
above) and the variance and mean computation technique 
(c.f. Sect. 2.2) applied in this work. The computation based 
on a combined matrix Ai

B
 out of two independent matri-

ces A and B might cause small approximation errors [13]. 
The results suggest that by applying the elementary effects 
method locally in certain regions of the parameter space, we 
can reliably reduce domains, so that non-influential areas are 
neglected. The validity of the findings could be confirmed 
qualitatively with the VBSA. The comparably high number 
of system evaluations needed ( nVBSA = 16400 ) to achieve 
convergence underlines the computational efficiency of our 
approach ( nEEM ≈ 1000).

6 � Conclusion

In this contribution, we introduced a two-step method for a 
combined complexity reduction of the parameter space for 
the calibration of automated driving functions. To reduce the 

Fig. 12   Results of the variance-
based sensitivity analysis for 
scenario S1. Error bars indicate 
the 95% confidence interval

 Valid parameter space

(b)

(a)

 Invalid parameter space
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search space with a minimum number of system evaluations, 
we locally apply the qualitative Morris analysis to examine 
the respective subspaces. Thereafter, we reuse valid sam-
ples to perform a global influence analysis. Our approach 
thus offers the opportunity to first narrow down individual 
domains of parameters and second exclude calibration fac-
tors based on their global influence on the objective func-
tion. The potential of the method is evaluated by performing 
a complexity reduction for the parameter space of an auto-
mated driving function. We, therefore, formulate a repre-
sentative scenario catalogue containing six manoeuvres and 
apply the method to every scenario individually. The results 
expose a clear dependency of the parameter’s impact and 
influence range on the characteristics of the scenario. The 
analysis enables us to reduce the dimensionality by 47.5% 
and redefine an up to 65.7% smaller parameter space on aver-
age with regard to the respective scenario. Next to the dis-
tinct reduction of complexity, the sensitivity values provide 
an improved system understanding and can help to derive 
a calibration strategy based on a ranked parameter list. The 
relatively small number of system evaluations ( nPB ≈ 10000 
or nEEM ≈ 1000 ) compared to a variance-based approach 
( nVBSA ≈ 16400) underlines the potential of the analysis as 
a preceding step to the actual parameterization. The appli-
cation of the method to the problem presented in this work 
shows that it can save expensive calibration time especially 
worthwhile on the target hardware.

In further investigations, we intend to evaluate the poten-
tial of this approach in combination with an optimization 
algorithm and the transferability to the vehicle. Moreover, 
the presented method should be applied to further vehicle 
control systems and large parameter spaces of other areas 
(e.g., scenario creation for the validation of automated driv-
ing functions) to evaluate its transferability. Additional 
investigations could concentrate on developing this method 
further, so that invalid regions not only in the outer areas 
of the parameter ranges can be derived but over the whole 
domain.
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