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Abstract 
 

GPS PPP has found many scientific and industrial applications due to its cost-effectiveness, 

global coverage, and high accuracy for decades. However, it suffers from a few drawbacks 

which limits further applications, e.g., slow convergence and unresolved ambiguities. The 

rapid development of multi-GNSS and multi-frequency signals offers exciting prospects for 

further improvements. In this thesis, multi-frequency and multi-GNSS measurements are 

properly integrated for PPP with ambiguity resolution to achieve the state-of-the-art fast and 

accurate positioning, which provides an important contribution to GNSS precise positioning 

and applications.  

Integer ambiguity resolution is the key issue for improving PPP accuracy and 

convergence. The core of PPP ambiguity resolution is carrier phase fractional cycle biases (FCB) 

estimation. In this thesis, the characteristics of phase FCB are analyzed with recent and long-

time observation series. The results indicate that the temporal stabilities have been significantly 

improved in recent years. Taking advantage of this property, an improved FCB estimation 

method based on Kalman filter is proposed. The designed Kalman filter significantly reduces 

the dimension of the involved matrix and accelerates FCB computation, which outperforms the 

commonly used least squares method in terms of efficiency. The method is especially useful 

for real-time applications. 

With the estimated FCB products, the PPP ambiguity resolution with the current Galileo 

and BDS constellations is verified. The satellite FCB is thoroughly assessed by a comparison 

with that of GPS in terms of data usage rate, residual distribution, as well as standard deviation 

of daily estimates. Results indicate that the quality of Galileo wide-lane (WL) FCB is better than 

GPS and BDS, while the quality of Galileo narrow-lane (NL) FCB is slightly worse than that of 

GPS but better than that of BDS. Within the Galileo constellation, the performance of In-Orbit 

Validation (IOV) satellites WL-FCB is worse than that of Full Operational Capability (FOC) 

satellites as a result of a reduction in the power of the transmitted signal. The WL-FCB 

performance of the two highly eccentric satellites is comparable to the other FOC satellites. The 

NL-FCB quality of FOC, IOV (except E19), as well as the two eccentric satellites, shows no 

significant difference in terms of data usage rates and residuals. Solution of PPP ambiguity 

resolution demonstrates that the Galileo and BDS observations can bring an obvious benefit to 

GPS-only PPP ambiguity resolution. 

PPP ambiguity resolution is also extended to multi-frequency observations in this thesis. 

In order to properly integrate the multi-frequency observations, a unified uncombined PPP 

ambiguity resolution model based on raw observations is proposed. Based on the unified 

model, the FCBs generated from multi-frequency observations can be flexibly used, such as for 

dual- or triple-frequency PPP AR. Its efficiency is verified with Galileo and BeiDou triple-

frequency observations collected from globally distributed MGEX stations. The estimated FCB 

are assessed with respect to residual distributions and standard deviations, which shows a 

good consistency with the input float ambiguities. The standard deviation of linear combined 

FCB is much smaller than that of raw FCB, which indicates that linear combined FCB are more 

efficient for broadcasting in real time applications. Triple-frequency PPP ambiguity resolution 

indicates that the positional biases are significantly reduced compared with the float solutions. 

The improvements are 49.2%, 38.3%, and 29.6%, respectively, in east/north/up components for 

positioning with BDS, while the corresponding improvements are 60.0%, 29.0%, and 21.1% for 

positioning with Galileo. 

The uncombined signal processing brings new challenges for cycle slip detection. The 

most significant feature is carrier frequency identification of cycle slips. Since all carrier 

frequency observations are processed separately, it is essential to identify the carrier frequency 

of the cycle slip to avoid contaminating other observations. To provide continuous carrier 



phase measurements for the research described above, an improved approach based on a time-

differenced model for cycle slip detection and repair is proposed, which reduces false alarms 

and increases the success rate of cycle slip estimation. 

In summary, the GPS-only PPP has been extended to multi-frequency and multi-GNSS 

PPP ambiguity resolution with improved accuracy and fast convergence. This is accomplished 

by a unified model based on the uncombined PPP. The proposed model has been carefully 

studied and enriched with improved cycle slip detection and repair, fast FCB estimation 

method and ambiguity resolution.  

This article-based (cumulative) thesis consists of a detailed introductory chapter and four 

chapters associated with the following peer-reviewed publications: 

 

1) Xiao G, Li P, Gao Y, Heck B (2019a) A Unified Model for Multi-Frequency PPP 

Ambiguity Resolution and Test Results with Galileo and BeiDou Triple-Frequency 

Observations. Remote Sensing 11(2):116 doi:10.3390/rs11020116 

 

2) Xiao G, Li P, Sui L, Heck B, Schuh H (2019b) Estimating and assessing Galileo satellite 

fractional cycle bias for PPP ambiguity resolution. GPS Solutions 23:3 

doi:10.1007/s10291-018-0793-z 

 

3) Xiao G, Sui L, Heck B, Zeng T, Tian Y (2018b) Estimating satellite phase fractional cycle 

biases based on Kalman filter. GPS Solutions 22:82 doi:10.1007/s10291-018-0749-3 

 

4) Xiao G, Mayer M, Heck B, Sui L, Zeng T, Zhao D (2018a) Improved time-differenced 

cycle slip detect and repair for GNSS undifferenced observations. GPS Solutions 22:6 

doi:10.1007/s10291-017-0677-7 

 

 

https://www.mdpi.com/2072-4292/11/2/116
https://link.springer.com/article/10.1007%2Fs10291-018-0793-z
https://link.springer.com/article/10.1007%2Fs10291-018-0749-3
https://link.springer.com/article/10.1007%2Fs10291-017-0677-7


Zusammenfassung 

 

Aufgrund seiner Wirtschaftlichkeit, globalen Abdeckung und hohen Genauigkeit hat GPS 

PPP (Precise Point Positioning) seit Jahrzehnten viele Anwendungen in Wissenschaft und 

Praxis gefunden. PPP weist jedoch einige Nachteile auf, die weitere Anwendungen 

einschränken, z.B. langsame Konvergenzzeiten und ungelöste Phasenmehrdeutigkeiten. Die 

schnelle Entwicklung verschiedener GNSS und die Nutzung von Mehrfrequenz-Signalen 

bietet spannende Perspektiven für weitere Verbesserungen. In dieser Dissertation werden 

Multi-GNSS- und Mehrfrequenz-Beobachtungen für PPP mit Mehrdeutigkeitslösung 

integriert, um eine schnelle und genaue Positionsbestimmung auf dem neuesten Stand der 

Technik zu erreichen. Dies ist ein wichtiger Beitrag zur präzisen Positionsbestimmung mittels 

GNSS und deren Anwendungen. 

Die Festsetzung der Phasenmehrdeutigkeit auf ganzzahlige Werte ist von großer 

Bedeutung für die Verbesserung der PPP-Genauigkeit und -Kovergenzzeit. Der Fokus in 

diesem Zusammenhang liegt auf der Schätzung der FCB (Fractional Cycle Biases) der 

Trägerphasen. In dieser Dissertation werden die Eigenschaften der Phasen-FCB mittels 

neuerer, langer Zeitreihen analysiert. Die Ergebnisse zeigen, dass sich die zeitliche Stabilität 

der FCB in den letzten Jahren wesentlich verbessert hat. Unter Ausnutzung dieser Eigenschaft 

wird ein verbessertes FCB-Schätzverfahren mittels Kalman-Filter entwickelt. Das 

vorgeschlagene Kalman-Filter reduziert die Dimension der betroffenen Matrix und 

beschleunigt somit die Berechung der FCB. Im Vergleich dazu ist die traditionell verwendete 

Kleinste-Quadrate-Methode sehr viel weniger effizient. Diese Methdode eignet sich deshalb 

besonders für Echtzeitanwendungen. 

Mit den geschätzten FCB-Produkten wird die PPP–Mehrdeutigkeitslösung anhand der 

aktuellen Konstellation von  Galileo und BDS überprüft. Die Satelliten-FCB werden im 

Vergleich mit den aus GPS gewonnenen Werten hinsichtlich der Datennutzungsrate, der 

Verteilung der Residuen sowie der täglichen Schätzwerte der Standardabweichungen 

bewertet. Die Ergebnisse zeigen, dass die Qualität der Wide-Lane (WL) FCB für Galileo besser 

als für GPS und BDS ist, während die Qualität der Narrow-Lane (NL) FCB für Galileo ein wenig 

schlechter als für GPS, aber besser als für BDS ist. Innerhalb der Galileo-Konstellation sind die 

Ergebnisse für die IOV (In-Orbit-Validation)-Satelliten bezüglich der WL-FCB schlechter als 

für die FOC (Full Operational Capability)-Satelliten auf Grund der geringeren Energie der 

ausgestrahlten Signale. Die WL-FCB-Ergebnisse für die Satelliten mit großer Exzentrizität sind 

qualitativ vergleichbar mit den anderen FOC-Satelliten. Betrachtet man die Datennutzungsrate 

und die Residuen, so  weist die NL-FCB-Qualität von FOC-, IOV- (außer E19) und den 

Satelliten mit großer Exzentrizität keine wesentlichen Unterschiede auf. Die PPP- 

Mehrdeutigkeitslösung zeigt, dass die Verwendung von Galileo- und BDS-Beobachtungen zu 

einer deutlichen Verbesserung der GPS-only PPP-Mehrdeutigkeitlösung beitragen kann. 

In dieser Dissertation wird die PPP-Mehrdeutigkeitslösung auch auf Mehrfrequenz-

Beobachtungen erweitert. Um die Mehrfrequenz-Beobachtungen in geeigneter Weise zu 

integrieren, wird ein einheitliches, nicht-kombiniertes Modell zur Lösung der PPP-

Mehrdeutigkeiten basierend auf den Rohbeobachtungen entwickelt. Mit diesem einheitlichen 

Modell können die aus Mehrfrequenz-Beobachtungen erzeugten FCBs flexibel verwendet 

werden, beispielsweise für die PPP-Mehrdeutigkeitslösung auf zwei oder drei Frequenzen. Die 

Effizienz dieses Modells wird mit Drei-Frequenz-Beobachtungen der Galileo- und BeiDou-

Systeme geprüft, die auf global verteilten MGEX-Stationen erhalten wurden. Die geschätzten 

FCBs werden hinsichtlich der Residuenverteilung und Standardabweichungen bewertet, was 

eine gute Ü bereinstimmung mit der Float-Lösung der  Mehrdeutigkeiten zeigt. Die 

Standardabweichung der linear kombinierten FCBs ist viel geringer als die der FCBs auf den 



originalen Frequenzen. Dies bedeutet, dass linear kombinierte FCBs effizienter für die 

Verbreitung bei Echtzeitanwendungen sind. Die Drei-Frequenz-PPP-Mehrdeutigkeitslösung 

ergibt Positionsabweichungen, die im Vergleich zur Float-Lösung stark reduziert sind. Die 

Verbesserungen für die Ost-, Nord- und Höhenkomponenten bei der Positionierung mit BDS 

betragen jeweils 49.2%, 38.3% und 29.6%. Die entsprechenden Verbesserungen bei der 

Positionsbestimmung mit Galileo sind 60.0%, 29.0% und 21.1%.  

Durch die Verarbeitung der nicht-kombinierten Signale entstehen neue 

Herausforderungen für die Erkennung von Cycle-slips. Da alle Beobachtungen auf den 

einzelnen Trägerfrequenzen separat verarbeitet werden, ist es sehr wichtig die Trägerfrequenz 

des Cycle-slips zu identifizieren, damit die anderen Beobachtungen nicht davon beeinflusst 

werden. Um kontinuierliche Trägerphasenmessungen für die oben beschriebenen 

Forschungsarbeiten zu erhalten, wird ein verbesserter Ansatz entwickelt, der auf einem zeit-

differenzierten Modell für die Erkennung und Reparatur der Cycle-slips basiert. Dieses Modell 

reduziert die Gefahr für falsche Entscheidungen und erhöht die Erfolgsrate bei der Schätzung 

der Cycle-slips. 

Zusammenfassend ist als Ergebnis festzuhalten, dass die klassische PPP-Methode mittels 

GPS-only auf Mehrfrequenzen und PPP-Mehrdeutigkeitslösungen bei Multi-GNSS-

Beobachtungen mit verbesserter Genauigkeit und schneller Konvergenz erweitert wurde. Dies 

wurde durch ein einheitlichtes Modell erreicht, das auf einer nicht-kombinierten PPP-

Auswertung basiert. Das vorgeschlagene Modell wurde sorgfältig untersucht und und durch 

eine verbesserte Erkennung und Reparatur von Cycle-slips, ein schnelles FCB-Schätzverfahren 

und die  Mehrdeutigkeitslösung ergänzt.  

Diese kumulative, artikel-basierte Dissertation besteht aus einem ausführlichen 

Einführungskapitel und vier Kapiteln, die auf den folgenden Publikationen beruhen: 

 

1) Xiao G, Li P, Gao Y, Heck B (2019a) A Unified Model for Multi-Frequency PPP 

Ambiguity Resolution and Test Results with Galileo and BeiDou Triple-Frequency 

Observations. Remote Sensing 11(2):116 doi:10.3390/rs11020116 

 

2) Xiao G, Li P, Sui L, Heck B, Schuh H (2019b) Estimating and assessing Galileo satellite 

fractional cycle bias for PPP ambiguity resolution. GPS Solutions 23:3 

doi:10.1007/s10291-018-0793-z 

 

3) Xiao G, Sui L, Heck B, Zeng T, Tian Y (2018b) Estimating satellite phase fractional cycle 

biases based on Kalman filter. GPS Solutions 22:82 doi:10.1007/s10291-018-0749-3 

 

4) Xiao G, Mayer M, Heck B, Sui L, Zeng T, Zhao D (2018a) Improved time-differenced 

cycle slip detect and repair for GNSS undifferenced observations. GPS Solutions 22:6 

doi:10.1007/s10291-017-0677-7 

 

https://link.springer.com/article/10.1007%2Fs10291-018-0749-3
https://link.springer.com/article/10.1007%2Fs10291-018-0793-z
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Acronyms 
 

 

ADOP Ambiguity Dilution Of Precision 

AltBOC Alternating Binary Offset Carrier 

AR Ambiguity Resolution 

BDS BeiDou navigation satellite system, China 

C/N0 Carrier-to-noise density ratio 

CDMA Code Division Multiple Access 

DCB Differential Code Bias 

ECC Eccentric 

ENU East-North-Up 

EWL Extra-Wide-Lane 

FCB Fractional Cycle Bias 

FDMA Frequency Division Multiple Access 

FOC Full Operational Capability 

Galileo Glabal navigation satellite system, European 

GLONASS GLObal NAvigation Satellite System, Russian 

GNSS Global Navigation Satellite System 

GPS Global Positioning System, USA 

HMW Hatch-Melbourne-Wübbena combination 

IF Ionospheric-free 

IGS International GNSS Service 

IOV In Orbit Validation 

LAMBDA Least-squares AMBiguity Decorrelation Adjustment 

LSM Least Squares Method 

MGEX Multi-GNSS EXperiment 

NL Narrow-Lane 

PPP Precise Point Positioning 

RMS Root Mean Squares 

RTCM Radio Technical Commission for Maritime services 

RTK Real Time Kinematic 

SLR Satellite Laser Ranging 

SSR State Space Representation 

STD Standard Deviation 

WL Wide-Lane 
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Chapter 1  

Introductory chapter 

1. Introduction 

1.1 Motivation and background 

Satellite-based positioning has become an integral part of our modern-day society and is 

used by people all over the world (Teunissen and Montenbruck 2017). For positioning with 

satellite systems, pseudorange and carrier phase are the basic observables. Due to the low 

precision of pseudorange measurements and broadcast ephemeris, the resulting accuracy of 

standard point positioning is at several meters level (Hofmann-Wellenhof et al. 2007). For high-

accuracy positioning at centimeters level, the carrier phase measurements must be adopted. 

The carrier phase-based positioning techniques can be roughly divided as differential 

positioning, such as real time kinematic (RTK), and absolute positioning, i.e., precise point 

positioning (PPP). Differential positioning requires reference receivers to mitigate the common 

errors, while PPP is characterized by single receiver with sophisticated error models and 

precise satellite information. PPP is able to achieve centimeter to sub centimeters accuracies 

with dual-frequency carrier phase and pseudorange measurements. Due to its cost-

effectiveness, global coverage, and high accuracy, PPP has found increased applications. 

However, PPP shows a few drawbacks (Bisnath and Gao 2008), e.g., slow convergence and 

lower accuracy compared to differential positioning. The integer ambiguity resolution (AR) 

technique is expected to further enhance the accuracy and shorten the convergence time. 

Although the theory was proposed and elaborated in (Gabor and Nerem 1999; Gao and Shen 

2002), PPP AR was not practically realized and implemented until (Collins et al. 2008; Ge et al. 

2008; Laurichesse et al. 2009). It is proved that AR is able to improve the PPP accuracy, 

especially the east component, to a comparable level as that of differential positioning. Many 

applications including ionospheric modelling (Banville and Langley 2011), tropospheric 

modelling (Li et al. 2015c),  time transfer (Petit et al. 2015) , seismic displacement monitoring 

(Li et al. 2013c),low earth satellite orbit (Montenbruck et al. 2018) and navigation satellite orbit 

determination (Katsigianni et al. 2018), have further confirmed its efficiency. After ten years 

development, the technique is so impressive that the global navigation satellite system (GNSS) 

community proposed to establish a specific working group for PPP AR at the IGS Workshop 

2018.  

While remarkable progress has been made with legacy GPS observations, the ongoing 

modernization and the build-up of new GNSS constellations (shown in Table 1) offers exciting 

prospects for further improvements. The GNSS has evolved from GPS to four major global 

systems including the Russian GLONASS, Chinese BDS, and European Galileo. Specifically, 

GLONASS has restored its full orbital constellation of 24 satellites since 2011 (Revnivykh 2012). 

For BDS, the construction is planned for three steps (Yang et al. 2018). The formal establishment 

of BDS-1 was marked by the launch of the third BeiDou satellite in 2003. The second step is the 

BDS-2 regional system, which was accomplished by a constellation of 14 satellites in 2012. With 

the successful launch of BDS third generation experimental satellites in 2015, the construction 

of the BDS global system (BDS-3) starts to speed up, and is expected to be completed in 2020. 

Similarly, Galileo also witnesses remarkable achievements in recent years (Steigenberger and 

Montenbruck 2017). On 15 December 2016, Galileo started offering initial services. As of March 

2019, there are 22 satellites in orbit and 4 satellites under commissioning. The complete 

constellation with 30 satellite could be expected by 2020.  

 



 

2 

Table 1 Status of multi-GNSS as of Mar. 2019 

System GPS GLONASS Galileo BDS 

No of usable 

satellites 
31 24 22 33 

No of satellite in 

commissioning 
N/A N/A 4 6 

Full 

constellation 

and expected 

date 

24, Already 24, Already 30, 2020 35,2020 

Remark 

Launch of 

the first GPS 

III satellites 

on 23 

December 

2018 

The K series, 

which support 

CDMA signals, 

should gradually 

replace existing 

satellites from 

2018 

Early Operational 

Capability (EOC) 

on 15 December 

2016, and is 

expected to reach 

Full Operational 

Capability (FOC) in 

2019 

On 27 

December 

2018, BDS 

started to 

provide 

global 

services 

 

As can be seen from Table 1, there are 110 GNSS satellites in orbit with 10 satellites under 

commissioning at present. When all four global systems reach their full constellations, there 

will be more than 120 usable satellites. Compared with 32 GPS satellites, the fusion of multiple 

GNSS can significantly increase the number of visible satellites by a factor of nearly 4 and 

improve the spatial geometry. Fast convergence, improved accuracy and enhanced reliability 

can be expected. Under this circumstance, the contribution of multi-GNSS integration to GPS 

standalone PPP, as well as ambiguity resolution, should be investigated. 

In recent years, PPP has found new opportunity in multi-frequency observations. The 

additional signals can be used to form combinations with excellent properties, such as low 

noise and reduced ionospheric delay (Feng 2008). The additional signals are expected to further 

enhance the performance of PPP (Geng and Bock 2013). As of March 2019, triple- or multi-

frequency signals have become available from more and more GNSS satellites, as shown in 

Table 2. In the effort to modernize GPS, new L5 signals were added, and are available now on 

all satellites from GPS IIF (Tegedor and Ø vstedal 2014). The L5 signals provide secure and 

robust transmissions for life critical applications. However, there exists additional inter-

frequency clock bias (Montenbruck et al. 2012), which should be accounted for (Li et al. 2013a; 

Pan et al. 2018).  The legacy GLONASS satellites transmit on a different frequency using a 15-

channel frequency division multiple access (FDMA) technique (Glonass 2008). The 24-satellite 

constellation is accommodated with only 15 channels, as identical frequency channels can be 

used for antipodal satellite pairs which are never both in view at the same time for earth-based 

users. The FDMA technique introduces the receiver inter-frequency bias (IFB) between 

satellites, which is a problem for high-precision positioning (Reußner and Wanninger 2012; 

Wanninger 2012). To avoid the deficiency, new code division multiple access (CDMA) signals 

were researched for GLONASS since 2008. The GLONASS-K1 satellites launched in 2011 

introduced L3 CDMA signals, followed by the enhanced GLONASS-K1 and GLONASS-K2 

satellites in 2018 which introduced L1, L2 and L3 CDMA signals (IAC 2016). These CDMA 

signals may replace the FDMA signals in the future. Galileo provides an open signal in the E1 

band and a wideband signal covering the E5 a&b band (Zaminpardaz and Teunissen 2017). 

The Alternating Binary Offset Carrier (AltBOC) modulation can either be tracked as a 

composite signal or as distinct signals in the E5a and E5b sub-bands. For BDS-1 and BDS-2, 
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three signals, e.g., B1, B2, and B3, were broadcasted, while three new carrier frequencies (B1C, 

B2a, Bs) were added in BDS-3 (Yang et al. 2018).  

Table 2 Status of carrier frequency of GNSS as of Mar. 2019 [Unit: MHz] 

System GPS GLONASS Galileo BDS 

Detail of 

carrier 

frequency 

L1 (1575.42) 

L2 (1227.60) 

L5 (1176.45) 

FDMA: 

L1 1602+ n × 

0.5625 

L2 1246+n × 

0.4375 

n = (-7,-

6,…,0,…,6) 

CDMA: 

L1 

(1600.995) 

L2 (1248.06) 

L3 

(1202.025) 

E1 (1575.42)  

E5a 

(1176.45) 

E5b 

(1207.14) 

E6 (1278.75) 

B1 (1561.098) 

B1C 

(1575.42) 

B2 (1207.14) 

B2a 

(1191.795) 

B3 (1268.52) 

Bs (2492.028) 

Availability 

L5 signals 

are 

available on 

all satellites 

from GPS 

IIF 

L1, L2 and L3 CDMA signals 

are available on the enhanced 

GLONASS-K1 and K2 satellites 

All satellites 

B1, B2 and 

B3 signals 

are available 

on all BDS-2 

satellites, 

while B1C, 

B2a, Bs are 

added in 

BDS-3 

 

The multi-frequency signals are anticipated to enable rapid ambiguity resolution in 

differential positioning. Results indicate that instantaneous triple-frequency ambiguity 

resolution can be achieved with optimal combinations (Jung et al. 2000; Vollath et al. 1999). The 

underlying foundation is that combinations with reduced ionospheric delays, low noise and 

longer wavelength can be formed from multi-frequency observations (Geng and Bock 2013). 

Considering the proved efficiency in differential positioning, multi-frequency observations are 

expected to improve the performance of PPP. 

In conclusion, multi-frequency and multi-constellation GNSS observations show a clear 

advantage over standard dual-frequency GPS observations. For PPP, improved accuracy and 

fast convergence time can be expected. However, proper integration of measurements from 

multi-constellation and multi-frequency GNSS into PPP requires detail investigations, which 

motivate this research. 

1.2 Outline  

The outline of the rest of this introductory chapter is presented as follows: Section 2 

introduces the traditional dual-frequency PPP and ambiguity resolution models. Section 3 

highlights the limitations of the current model, followed by the research objectives of this 

thesis. While Section 4 summarizes the main contribution of this thesis, Section 5 provides an 

overview of the related publications as presented in Chapters 2-5. This introductory chapter 

closes with Section 6, in which an overall conclusion of the thesis including an outlook for the 

future research is presented. 

2. Foundations 

For a satellite s observed by receiver r, the corresponding raw pseudorange and carrier 

phase observation equations can be expressed as (Hofmann-Wellenhof et al. 2007; Leick et al. 

2015; Xu 2007) 
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{
𝑃𝑟,𝑓
𝑠 = 𝜌𝑟

𝑠 + 𝑑𝑡𝑟 − 𝑑𝑡
𝑠 + 𝑑𝑇 + 𝑎𝑓 ∙ 𝑑𝐼𝑟,1

𝑠 + 𝐷𝑟,𝑓 − 𝐷𝑓
𝑠 + 𝜀𝑃𝑓                        

𝛷𝑟,𝑓
𝑠 = 𝜌𝑟

𝑠 + 𝑑𝑡𝑟 − 𝑑𝑡
𝑠 + 𝑑𝑇 − 𝑎𝑓 ∙ 𝑑𝐼𝑟,1

𝑠 + 𝜆𝑓(𝑁𝑟,𝑓
𝑠 + 𝐵𝑟,𝑓 − 𝐵𝑓

𝑠) + 𝜀𝛷𝑓
           (1) 

where the subscript 𝑓 = (1,2,3,⋯ ) refers to a specific carrier frequency, superscript s refers to 

a specific satellite; 𝜌𝑟
𝑠 indicates the geometric distance between the satellite and receiver; 𝑑𝑡𝑟 

and 𝑑𝑡𝑠 are the clock errors of receiver and satellite; 𝑑𝑇 is the slant tropospheric delay; 𝑑𝐼𝑟,1
𝑠  is 

the slant ionospheric delay on the first carrier frequency and 𝑎𝑓 = 𝜆𝑓
2 𝜆1

2⁄  is the carrier 

frequency-dependent factor; 𝐷𝑟,𝑓 and 𝐷𝑓
𝑠 are the receiver and satellite specific code hardware 

delays; 𝜆𝑓 and 𝑁𝑟,𝑓
𝑠  are the wavelength in meter and integer ambiguity in cycle; 𝐵𝑟,𝑓 and 𝐵𝑓

𝑠 are 

the receiver-dependent and satellite-dependent uncalibrated phase delays; 𝜀𝑃𝑓 and 𝜀𝛷𝑓 are the 

pseudorange and carrier phase measurement noise, respectively. Note that the higher-order 

ionospheric effects are neglected, as they have limited influence on the performance of 

ambiguity resolution (Hadas et al. 2017). 

In the classic GPS dual-frequency PPP, the ionospheric-free (IF) combination is routinely 

employed to eliminate the effect of the first-order ionospheric delay(Zumberge et al. 1997). 

After multiplied by the IF coefficients, the corresponding pseudorange and carrier phase 

observation equations can be expressed as 

 {
𝑃𝑟,𝐼𝐹
𝑠 = 𝜌𝑟

𝑠 + 𝑑𝑡𝑟 − 𝑑𝑡
𝑠 + 𝑑𝑇 + 𝐷𝑟,𝐼𝐹 − 𝐷𝐼𝐹

𝑠 + 𝜀𝑃𝐼𝐹                        

𝛷𝑟,𝐼𝐹
𝑠 = 𝜌𝑟

𝑠 + 𝑑𝑡𝑟 − 𝑑𝑡
𝑠 + 𝑑𝑇 + 𝜆𝐼𝐹(𝑁𝑟,𝐼𝐹

𝑠 + 𝐵𝑟,𝐼𝐹 − 𝐵𝐼𝐹
𝑠 ) + 𝜀𝛷𝐼𝐹

   (2) 

Conventionally, precise orbit and clock products from the international GNSS service (IGS) 

analysis center are used to remove satellite orbit and clock errors. The pseudorange 

ionospheric-free hardware delay bias 𝐷𝐼𝐹
𝑠  is assimilated into the clock offset 𝑑𝑡𝑠  in accordance 

with the IGS analysis convention. Due to the fact that pseudorange measurements provide the 

reference to clock parameters, the actual receiver clock estimate would absorb the ionospheric-

free combination of the receiver pseudorange hardware delay 𝐷𝑟,𝐼𝐹. After applying the GNSS 

precise satellite clock products, equation (2) can be rewritten as 

{
𝑃𝑟,𝐼𝐹
𝑠 = 𝜌𝑟

𝑠 + 𝑑𝑇 + 𝑑𝑡𝑟 + 𝜀𝑃𝐼𝐹                     

𝛷𝑟,𝐼𝐹
𝑠 = 𝜌𝑟

𝑠 + 𝑑𝑇 + 𝑑𝑡𝑟 + 𝜆𝐼𝐹𝑁𝑟,𝐼𝐹
𝑠

+ 𝜀𝛷𝐼𝐹

    (3) 

where the receiver clock and ambiguity can be re-parameterized as 

𝑑𝑡𝑟 = (𝑑𝑡𝑟 + 𝐷𝑟,𝐼𝐹)      (4) 

𝑁𝑟,𝐼𝐹
𝑠

= 𝑁𝑟,𝐼𝐹
𝑠 + 𝑏𝑟,𝐼𝐹 − 𝑏𝐼𝐹

𝑠      (5) 

  𝑏𝑟,𝐼𝐹 = 𝐵𝑟,𝐼𝐹 − 𝐷𝑟,𝐼𝐹/𝜆𝐼𝐹                     (6) 

𝑏𝐼𝐹
𝑠 = 𝐵𝐼𝐹

𝑠 − 𝐷𝐼𝐹
𝑠 /𝜆𝐼𝐹       (7) 

With at least four satellites simultaneously observed, the equations can be integrated and 

resolved with least squares algorithm. The estimable parameters are receiver coordinates, 

tropospheric delay, receiver clock offset and ambiguities. Besides this estimation strategy, the 

state-of-the-art corrections (Kouba 2009; Zumberge et al. 1997) including the satellite and 

receiver antenna phase center offset and variation (Schmid et al. 2005), the relativistic clock 

effects (Kouba 2004), the phase wind-up (Wu et al. 1991), the site displacement effects due to 

solid earth tide and ocean loading (Petit and Luzum 2010), and the differential code biases 

(Dach et al. 2015) should be considered. Fortunately, these biases are well researched and can 

be corrected with models or external products.  

The above discussed model is referred to as standard dual-frequency PPP model. Note 

that the estimated ambiguity parameter is a combination of the integer ambiguity, the 

corresponding code hardware delays, and the uncalibrated carrier phase delays at both 

receiver and satellite ends. In this case, the integer property is lost. The fact that double-

differenced ambiguities in global or regional networks can be resolved to integer values (Dong 
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and Bock 1989) lays the foundation of integer ambiguity resolution for PPP. The resolved 

double-differenced ambiguity implies that the fractional parts of two single-differenced 

ambiguities (across satellites) must agree well with each other (Ge et al. 2008). By estimating 

the fractional parts, denoted as fractional cycle bias (FCB) in the sequel, at the server end and 

applying them to single differencing PPP at the user end, PPP integer ambiguity resolution can 

be achieved.  

For PPP ambiguity resolution, the term 𝑁𝑟,𝐼𝐹
𝑠

 is usually decomposed into the following 

combination 

𝑁𝑟,𝐼𝐹
𝑠

= (
𝑐𝑓2

𝑓1
2−𝑓2

2𝑁𝑟,𝑊𝐿
𝑠 +

𝑐

𝑓1+𝑓2
𝑁𝑟,𝑁𝐿
𝑠

)/𝜆𝐼𝐹   (8) 

where 𝑁𝑟,𝑊𝐿
𝑠  is the integer wide-lane (WL) ambiguity and 𝑁𝑟,𝑁𝐿

𝑠
 is the float narrow-lane (NL) 

ambiguity. Usually, the WL ambiguity is resolved by the Hatch-Melbourne-Wübbena (HMW) 

combination observable (Hatch 1982; Melbourne 1985; Wübbena 1985). With the fixed WL 

ambiguity, the float NL ambiguity can be derived based on (8), and tested whether it is also 

fixable. An ionospheric-free ambiguity is fixed only when both its WL and NL ambiguities are 

fixed. Now, the fixing of IF ambiguity has been transformed to fixing of WL and NL 

ambiguities. Similarly, the estimation of IF FCB has been transformed to estimation of WL and 

NL FCBs. The method of WL and NL FCB determinations is presented in the following. 

The float WL ambiguity can be derived from 

𝐻𝑀𝑊 =
𝑓1𝛷𝑟,1

𝑠 −𝑓2𝛷𝑟,2
𝑠

𝑓1−𝑓2
−

𝑓1𝑃𝑟,1
𝑠 +𝑓2𝑃𝑟,2

𝑠

𝑓1+𝑓2
= 𝜆𝑟,𝑊𝐿

𝑠 𝑁𝑟,𝑊𝐿
𝑠

   (9) 

where 𝜆𝑟,𝑊𝐿
𝑠 =

𝑐

𝑓1−𝑓2
 is the wavelength of WL ambiguity. The float WL ambiguity can be further 

decomposed as 

𝑁𝑟,𝑊𝐿
𝑠

= 𝑁𝑟,𝑊𝐿
𝑠 + 𝑑𝑟,𝑊𝐿 − 𝑑𝑊𝐿

𝑠       (10) 

      𝑑𝑟,𝑊𝐿 = 𝐵𝑟,1 − 𝐵𝑟,2 −
𝑓1𝐷𝑟,1+𝑓2𝐷𝑟,2

𝜆𝑟,𝑊𝐿
𝑠 (𝑓1+𝑓2)

          (11) 

𝑑𝑊𝐿
𝑠 = 𝐵1

𝑠 − 𝐵2
𝑠 −

𝑓1𝐷1
𝑠+𝑓2𝐷2

𝑠

𝜆𝑟,𝑊𝐿
𝑠 (𝑓1+𝑓2)

     (12) 

HMW combinations eliminate the geometric distance, satellite and receiver clock errors, as well 

as atmospheric delays. Averaging the HMW for a continuous arc results in accurate estimations 

of WL ambiguities, which can be easily fixed to integers by rounding. 

When the WL ambiguity 𝑁𝑟,𝑊𝐿
𝑠  is correctly resolved to an integer value and the float IF 

ambiguity 𝑁𝑟,𝐼𝐹
𝑠

 is obtained from PPP solution, the float NL ambiguity observable 𝑁𝑟,𝑁𝐿
𝑠

 can be 

derived based on (8) 

𝑁𝑟,𝑁𝐿
𝑠

=
𝑓1+𝑓2

𝑐
𝜆𝐼𝐹𝑁𝑟,𝐼𝐹

𝑠
−

𝑓2

𝑓1−𝑓2
𝑁𝑟,𝑊𝐿
𝑠 = 𝑁𝑟,1

𝑠 + 𝑑𝑟,𝑁𝐿 − 𝑑𝑁𝐿
𝑠   (13) 

where 

𝑑𝑟,𝑁𝐿 =
𝑓1+𝑓2

𝑐
(𝜆𝐼𝐹𝐵𝑟,𝐼𝐹 − 𝐷𝑟,𝐼𝐹)    (14) 

𝑑𝑁𝐿
𝑠 =

𝑓1+𝑓2

𝑐
(𝜆𝐼𝐹𝐵𝐼𝐹

𝑠 − 𝐷𝐼𝐹
𝑠 )     (15) 

Equations (10) and (13) serve as the basic model for estimating FCBs. Since they have the 

same structure, a general expression can be formulated as 

𝑅𝑟
𝑠 = 𝑁𝑟

𝑠
− 𝑁̂𝑟

𝑠 = 𝑑𝑟 − 𝑑
𝑠               (16) 

for WL and NL linear combinations, respectively. 𝑅𝑟
𝑠  represents the FCB measurements; 𝑁𝑟

𝑠
 

denotes the float undifferenced ambiguities; 𝑁̂𝑟
𝑠  denotes the integer part of 𝑁𝑟

𝑠
, which is the sum 

of the original integer ambiguity and the integer part of the combined code hardware delays 
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and uncalibrated phase delays from both receiver r and satellite s; 𝑑𝑟 and 𝑑𝑠 denote the receiver 

and satellite FCBs. Note that 𝑁̂𝑟
𝑠  can be determined by rounding 𝑁𝑟

𝑠  assuming the float 

ambiguities 𝑁𝑟
𝑠 are precisely estimated. 

A set of equations in the form of (16) can be generated based on a network of reference 

stations. Ge et al. (2008) proposed to resolve the system by averaging based on all involved 

float single-differenced WL and NL ambiguity estimates. The single-differencing across 

satellites within single station eliminates the receiver FCB and single-differenced satellite FCB 

can be obtained. Since the same single-differencing approach will be implemented at the user 

end when using the FCB product, it is not necessary to obtain the absolute FCB and the single-

differenced FCB would be sufficient. Based on the same principle but instead of the averaging 

process, a least squares method in an integrated adjustment was adopted to enhance the 

estimates (Li and Zhang 2012; Zhang and Li 2013). Suppose that there are n satellites tracked 

at m reference stations, the system of equations can be expressed as 

[
 
 
 
 
 
 
 
𝑅𝑟,1
𝑠,1

⋮
𝑅𝑟,1
𝑠,𝑛

⋮
𝑅𝑟,𝑚
𝑠,1

⋮
𝑅𝑟,𝑚
𝑠,𝑛
]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 𝑁𝑟,1

𝑠,1
− 𝑁̂𝑟,1

𝑠,1

⋮

𝑁𝑟,1
𝑠,𝑛
− 𝑁̂𝑟,1

𝑠,𝑛

⋮

𝑁𝑟,𝑚
𝑠,1

− 𝑁̂𝑟,𝑚
𝑠,1

⋮

𝑁𝑟,𝑚
𝑠,𝑛

− 𝑁̂𝑟,𝑚
𝑠,𝑛
]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
1 ⋯ 0 −1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 ⋯ 0 0 ⋯ −1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 1 −1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ 1 0 ⋯ −1]

 
 
 
 
 
 

[
 
 
 
 
 
𝑑𝑟,1
⋮

𝑑𝑟,𝑚
𝑑𝑠,1

⋮
𝑑𝑠,𝑛 ]

 
 
 
 
 

  (17) 

The obtained system of equations is singular. One arbitrarily selected FCB should be set to zero. 

In this way, the system of equations can be resolved with least squares algorithm(Li et al. 

2015a). Note that the above discussions are based on single epoch data. Considering the 

temporal stabilities of code hardware delays and uncalibrated carrier phase delays, the satellite 

FCBs can be estimated as constant values for specific time intervals, e.g., one day for WL FCB 

and 15 minutes for NL FCB (Ge et al. 2008). This can be accomplished by accumulating all the 

equations within the specific time intervals. In this way, the final FCB products are produced 

and broadcasted to users. Since January 1, 2015, the School of Geodesy and Geomatics at 

Wuhan University (WHU-SGG) routinely releases GPS WL and NL FCB products with open 

access (Li et al. 2015a).  

With the above-estimated FCBs, users are able to correct the satellite FCBs, and the single-

differenced PPP ambiguities are aimed to be fixed 

𝑁𝑟
𝑠,𝑚 = 𝑁𝑟

𝑠
−𝑁𝑟

𝑚
− 𝑑𝑠,𝑚     (18) 

For WL float ambiguities, they can be directly fixed by the rounding approach (Ge et al. 2008). 

For NL float ambiguities, they are fed into the Least-squares AMBiguity Decorrelation 

Adjustment (LAMBDA) algorithm (Teunissen et al. 1997). If not all the float NL ambiguities 

can be fixed by the LAMBDA method, partial ambiguity resolution can be employed (Li and 

Zhang 2015; Teunissen et al. 1999). Once the WL and NL integer ambiguities are resolved and 

validated, a tight constraint can be reconstructed and imposed on the ionospheric-free float 

ambiguities 

0 = 𝑁𝑟
𝑠
− 𝑁𝑟

𝑚
− 𝑁𝑟

𝑠,𝑚 − 𝑑𝑠,𝑚,   𝜎𝑑     (19) 

In this way, a fixed solution can be obtained at the user end. 

The above discussed model is referred as FCB based PPP AR model. Collins et al. (2008) 

developed a decoupled clock model by separating satellite clocks for code and phase 

observations. Similarly, Laurichesse et al. (2009) developed an integer phase clock model in 

which the NL FCBs were assimilated into receiver and satellite clock estimates of a network 

solution. This model has been employed to generate the precise satellite clock products by 

Groupe de Recherche de Géodésie Spatiale of the Centre National d’Etudes Spatiales (CNES-
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GRG) (Loyer et al. 2012). The only difference between the decoupled clock model and the 

integer phase clock model is the approach for determining the WL ambiguity. The integer 

phase clock model utilizes WL FCB corrections and a satellite-averaging process to fix the 

integer WL ambiguity, whereas the decoupled clock model directly estimates the integer WL 

ambiguity along with other unknowns through the functional model. The difference between 

the WL/NL FCB model and the integer phase clock model is the strategy of separating NL FCBs 

from integer ambiguities. NL FCBs are directly estimated in the WL/NL FCB model, whereas 

they are assimilated into the clock estimates in the integer phase clock model. These PPP AR 

techniques are proven to be equivalent in theory (Shi and Gao 2014). The systematic biases 

between position estimates have been demonstrated to be minimal and negligible with data 

from a global network of reference stations (Geng et al. 2010). The FCB based model can 

conveniently supplement current network solutions as an additional software module, as the 

FCB determination is compatible with current official clock-generation methods. For this 

reason, the FCB based model is adopted throughout the thesis. 

3. Problem statements and research objectives 

The PPP AR model and method described above have been proposed for decades. Due to 

the rapid development, and huge benefit, of multi-frequency and multi-GNSS measurements, 

it is required to extend the current model and method to integrate these measurements for fast 

and high precision positioning.  

3.1 Problem statements 

(1) Fast FCB estimation 

Based on the discussion in Section 2, we find that the least squares method is routinely 

utilized for FCB estimation (Li et al. 2015a; Li et al. 2017b; Liu et al. 2017; Wang et al. 2017). 

However, the least squares method can be extremely time-consuming concerning the large 

number of observations from hundreds of reference stations and thousands of epochs during 

the FCB estimation. The dimension of the involved matrix could be further enlarged by multi-

frequency and multi-GNSS observations, which also requires a lot of computation resource. 

This is unfavorable for the more and more popular real-time applications (Geng et al. 2018; Li 

et al. 2015b; Li et al. 2013c). In addition, iterations are required to deal with the one cycle 

inconsistency among FCB measurements. Since the FCB estimates are limited in the range of 

one cycle, e.g. [-0.5, 0.5] and [0, 1] for WHU-SGG and CNES-GRG products respectively, the 

one cycle inconsistency arises whenever the superposition of receiver FCB and satellite FCB 

exceeds the boundary (Xiao et al. 2018b). The additional iterations of the least squares method 

and computation of a large matrix demand a long time to finish. Therefore, a fast and efficient 

estimation method is desirable. 

(2) Extend PPP AR to multi-GNSS 

Compared with GPS, the study of other GNSS PPP AR is limited and requires more 

attentions considering the rapid developments in recent years. For GLONASS, special care has 

to be taken to deal with the receiver inter-frequency bias between satellites originating from 

the frequency division multiple access strategies. Usually, it is achieved by using a network of 

homogeneous receivers (Geng and Bock 2016; Geng and Shi 2016; Liu et al. 2017). Also, BDS-2 

code measurements suffer from the satellite induced pseudorange variations which are 

elevation- and frequency-dependent. Correction models based on multipath combination have 

been proven effective (Wanninger and Beer 2015). Unfortunately, this approach does not apply 

to geostationary orbit satellites due to the almost constant satellite elevation angle. Currently, 

only regional PPP AR or PPP AR with inclined geosynchronous orbit and medium earth orbit 

satellites is achievable for BDS (Gu et al. 2015a; Li et al. 2017a; Li et al. 2017b). Tegedor et al. 

(2016) initially assessed the Galileo PPP AR with four In-Orbit Validation satellites using 
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regional stations around Europe. Li et al. (2017b) estimate the FCBs for the four global systems 

and assess the performance of combined PPP AR. The studies of Galileo and BDS PPP AR have 

been limited by the number of available satellites. The situation has been changed, with a lot 

of new Galileo and BDS satellites in the last two years (Xiao et al. 2019b). It is of interest to 

extend PPP AR to multi-GNSS, especially with the relatively new Galileo and BDS. 

 (3) Extend PPP AR to multi-frequency 

The traditional PPP based on dual-frequency ionospheric-free combination cannot 

properly handle the additional signals, especially the functional and integer ambiguity 

resolution model. As a result, the PPP model based on uncombined measurements 

(Schönemann et al. 2011; Zhang et al. 2012), in which the individual signal of each carrier 

frequency is treated as an independent observable, has drawn increasing interest in the GNSS 

community (Gu et al. 2015b). Its efficiency has already been confirmed in terms of convergence 

time and precision for single-frequency PPP (Lou et al. 2016), multi-GNSS PPP (Chen et al. 

2015), as well as PPP-RTK (Feng et al. 2013; Odijk et al. 2016). Moreover, this approach has been 

tested effectively for ionospheric modelling (Tu et al. 2013; Zhang et al. 2012), differential code 

bias (DCB) estimation (Liu et al. 2018; Shi et al. 2015), and satellite orbit determination (Strasser 

et al. 2018; Zehentner and Mayer-Gürr 2016). Compared to the well-developed IF PPP model, 

the uncombined PPP model, called uncombined PPP in the sequel, requires more 

investigations, especially in the case of multi-frequency processing and ambiguity resolution. 

First, how to model and constrain the ionospheric delay has a crucial impact on performance 

using the uncombined PPP. For example, it has been demonstrated that a white noise model is 

not adequate to capture the characteristics of the ionospheric delay. The external constraints 

developed from the ionospheric products, such as the IGS global ionosphere maps, are also not 

accurate enough to completely separate the ionospheric effects from the ambiguity parameters 

(Gu et al. 2015b). The influence of the ionospheric effects on the ambiguity fixing therefore must 

be reduced. Second, the method to deal with the DCB errors is more problematic with the 

uncombined PPP (Guo et al. 2015) than the dual-frequency IF PPP, since the latter can cancel 

out the DCB biases (Kouba and Héroux 2001). The problem of partial assimilation of the code 

bias (DCB) into phase bias (FCB) should also be carefully considered. Third, the uncombined PPP 

approach was proposed to deal with multi-GNSS and multi-frequency signals, so a generalized 

FCB estimation and AR method (Li et al. 2018), which is extendable to dual-, triple-, and multi- 

frequency, should be proposed.  

Li et al. (2013b) verified the feasibility of the uncombined PPP AR with refined ionospheric 

models. The ionospheric delay was constrained from a priori spatial-temporal information and 

ionospheric products. The GPS dual-frequency ambiguities were fixed sequentially in the 

forms of WL/NL, which followed the convention of IF PPP AR. Gu et al. (2015a) further testified 

the uncombined PPP AR with BDS triple-frequency observations. The extra-wide-lane (EWL) 

and WL ambiguities were successfully fixed, whereas the B1 ambiguities were kept as float 

values. In addition, the performance was further limited by the satellite-induced multipath 

effects (Wanninger and Beer 2015). Li et al. (2018) proposed a unified FCB estimation and PPP 

AR method, which is extendable to multi-frequency uncombined PPP. The FCBs on each 

frequency were directly estimated from the raw float ambiguities derived from triple frequency 

observables. The model showed a great potential for multi-frequency uncombined PPP AR, 

although its DCB strategy may not be optimal (Xiao et al. 2019a). The satellite DCBs, together 

with the receiver DCB, were estimated as unknowns, and as a result the number of unknown 

parameters was increased. Given that the satellite GNSS DCB product is currently available on 

a routine basis (Wang et al. 2016), it would be beneficial to make use of these products. 

In conclusion, it is required to develop a unified modeling strategy for multi-frequency 

uncombined PPP ambiguity resolution. 

 (4) Data preprocessing in uncombined PPP 
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The uncombined signal processing brings new challenges for cycle slip detection. The 

most significant feature is carrier frequency identification of cycle slips. Since all carrier 

frequency observations are processed separately, it is essential to identify the carrier frequency 

of the cycle slips to avoid contaminating other observations (Xiao et al. 2018a). In conventional 

methods, such as TurboEdit algorithm (Cai et al. 2013; Hatch 1982; Liu 2011; Melbourne 1985; 

Wübbena 1985) and combinations of multi-frequency observations (Dai et al. 2009; de Lacy et 

al. 2012; Wu et al. 2010a; Zhao et al. 2015), a common characteristic is the forming of optimal 

combinations to mitigate the presence of geometric and ionospheric errors, which makes it 

impossible to identify the carrier frequency affected by a cycle slip. All carrier frequencies are 

flagged as containing cycle slips even if there is only one carrier frequency suffering from a 

cycle slip. Therefore, a cycle slip detection method, which is capable of carrier frequency 

identification of cycle slip and applicable to all GNSS should be proposed. 

3.2 Research objectives 

The general research objective of this thesis is to improve the performance of GPS-only 

PPP AR by multi-GNSS integration and multi-frequency observations. In detail, the following 

questions and aspects have been addressed within the thesis: 

• Is it possible to achieve PPP AR with the relatively new GNSS systems, e.g., Galileo 

and BDS? 

• How is the performance of PPP AR with the current constellation of Galileo and BDS? 

• How does PPP AR benefit from multi-GNSS integration? 

• Is it possible, and how, to achieve PPP AR with the multi-frequency observations, e.g., 

from Galileo and BDS? 

• How does PPP AR benefit from multi-frequency observations? 

• What is characteristic of FCB and how to efficiently estimate the FCB for real time PPP 

AR?  

• What is the uncombined PPP and what is the difference with regard to IF PPP? What 

influence can be expected, e.g., on data preprocessing, bias correction and parameter 

setting? 

4. Contributions 

4.1 Fast FCB estimation for PPP AR 

Estimating satellite FCBs based on the Kalman filter is proposed and demonstrated. Since 

the Kalman filter is based upon least squares methods (LSM), it is theoretically possible to 

calculate the same solution as for the commonly used LSM. In the proposed Kalman filter, the 

large number of observations is handled epoch-by-epoch, which significantly reduces the 

dimension of the involved matrix and accelerates the computation. Hence it outperforms the 

commonly used LSM in terms of efficiency. In order to avoid iterations caused by the one cycle 

inconsistency among FCB measurements, a pre-elimination method is developed based on the 

temporal stability of satellite FCBs. The pre-elimination method shows a clear advantage over 

post-residual adjustment, which further improves the efficiency (Xiao et al. 2018b). 

(1) Pre-elimination of one cycle inconsistency 

Since the FCB estimates are limited in the range of one cycle, e.g. [-0.5, 0.5] and [0, 1] for 

WHU-SGG and CNES-GRGS products respectively, the one cycle inconsistency arises 

whenever the superposition of receiver FCB and satellite FCB exceeds the boundary. A simple 

example is presented to depict the situation. Assuming there is one satellite (𝑑𝑠 = 0.2) tracked 
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at two stations ( 𝑑𝑟,1 = 0.6 and 𝑑𝑟,2 = 0.8 ), the superposition of FCBs should be (𝑅𝑟,1
𝑠 =

−0.4 and 𝑅𝑟,2
𝑠 = −0.6). However, the 𝑅𝑟,2

𝑠  would be 0.4 due to the rounding approach. As a 

consequence, the corresponding satellite FCB derived from the two stations differs by one 

cycle. The one cycle inconsistency can be detected by examining the posterior residuals, as 

employed in former works. The posterior adjustments are inefficient as iterations of the whole 

process are required. In contrast, we propose to eliminate the inconsistency in advance (shown 

in Figure 1), which shows a clear advantage over posterior adjustment. The proposed method 

consists of the following steps: 

1. For all the FCB measurements at a single station, the satellite FCBs are 

eliminated using previous estimates. The underlying assumption is that 

satellite FCBs are stable over successive epochs and can be eliminated to a large 

extent by previous estimates. 

2. The residual of each FCB measurement after the subtraction of the satellite FCB 

yields an initial estimate of the receiver FCB. A set of initial receiver FCB 

estimates could be obtained from all simultaneously observed satellites. 

3. In theory, the receiver FCBs obtained from all simultaneously observed 

satellites are expected to be consistent. Therefore, a one cycle inconsistency can 

be detected by examining the group of initial receiver FCBs. If an inconsistency 

exists, the corresponding receiver FCB will differ by ±1 cycle. 

4. To compensate the one cycle inconsistency in receiver FCBs, the corresponding 

integer ambiguity 𝑁̂𝑟
𝑠 is adjusted by ±1 cycle. 

5. The procedures described above can be performed in an iterative way until a 

consistent receiver FCB is obtained from all satellite measurements. 

In addition, stations can also be handled individually to obtain clean FCB measurements. After 

the pre-elimination of the one cycle inconsistency, the clean FCB measurements are fed into the 

Kalman filter. 

 

Figure 1 Pre-elimination of the one cycle inconsistency for station IQQE on 2016/02/26. The top 

panels represent receiver WL FCB adjustment, while the bottom ones represent that of receiver 



 

11 

NL FCB. The numbers denote GPS satellite PRNs. The left and right panels represent the raw 

and adjusted measurements, respectively. 

(2) Design of Kalman filter for FCB estimation 

The Kalman filter addresses the general problem of state estimates of discrete time 

controlled processes that are governed by a linear stochastic difference equation (Kalman 1960). 

The theory has been well studied and widely applied (Yang 2006; Yang et al. 2010). Since the 

Kalman filter is based upon the theory of least squares, it is theoretically possible to calculate 

the same solution as LSM and versa vice. However, the design and normal equation matrix 

will be huge in LSM, considering the large number of observations from hundreds of reference 

stations and thousands of epochs. Computation of the large matrix is time-consuming, which 

is inefficient and unfavorable for real-time applications. In contrast, the large number of 

observations are handled epoch-by-epoch in a Kalman filter, which significantly reduces the 

dimension of the involved matrix and accelerates the computation. One additional advantage 

of Kalman filter is its real-time capability. This is of particular interest for real-time PPP AR and 

its applications. Therefore, a Kalman filter is employed in this work. The design and flowchart 

of a Kalman filter are depicted in Figure 2. In our case, 𝑅𝑟
𝑠 is the input FCB measurement for 

the Kalman filter, while 𝑑𝑟 and 𝑑𝑠  are the output estimates. 

 

Figure 2 Flow chart of the proposed Kalman filter. The dashed blocks represent additional 

steps adopted in this thesis. 

Two additional steps are added to the standard Kalman filter (Xiao et al. 2018b). The first 

step aims at establishing the dynamic model and determining the state transition matrix by 

analyzing the temporal stability of existing FCB products. Satellite WL FCBs are stable over 

several days, which can be characterized as a constant parameter on a daily basis. Satellite NL 

FCBs are considered as constant within 15 minutes but exhibit small variations over 15-minute 

intervals. Therefore, NL FCBs are characterized as random walk processes. The second step is 

introduced to eliminate the one cycle inconsistency of FCB measurements. Only clean 

measurements are sent to the Kalman filter to avoid iterations. Note that a constraint is imposed 

on the Kalman filter to eliminate the rank deficiency. A satellite FCB is selected and set to zero, 
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which is accomplished by adding a pseudo observational error equation with zero variance 

(Yang et al. 2010). 

4.2 Multi-GNSS PPP AR 

In the context of multi-GNSS, the PPP ambiguity resolution is extended to Galileo and 

BDS. In the view of the rapid developments of these systems in recent years, the feasibility of 

Galileo and BDS PPP ambiguity resolution with the current constellation is demonstrated. The 

satellite WL/NL FCBs are estimated from globally distributed Multi-GNSS EXperiment 

(MGEX) stations and assessed by a comparison with those of GPS (Xiao et al. 2019b).  

(1) WL FCB comparison 

Results of 60 days indicate that the quality of Galileo WL FCB is better than for GPS and 

BDS in terms of data usage rate, residual distribution, as well as standard deviation (STD) of 

daily estimates (shown in Figure 3). We attribute the good quality of Galileo WL FCB to its 

advanced signal modulation, AltBOC, which significantly compresses the multipath effect for 

code measurements as shown Figure 4.  

 

Figure 3 STDs of daily satellite WL FCBs with 60 days. Averaged STDs are calculated for GPS 

and BDS, while an individual STD is calculated for each Galileo satellite. E30 is selected as the 

reference satellite for Galileo, while G01 and C09 are selected for GPS and BDS, separately. 

 

Figure 4 HMW linear combinations of GPS, Galileo, and BDS dual frequency code 

measurements at station YEL2 on DoY 160, 2017. 

Within the Galileo constellation, the quality of Full Operational Capability (FOC) satellite 

WL FCB is much better than for In-Orbit Validation (IOV) satellites. The root mean square 
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(RMS) for each satellite in Galileo are presented in Figure 5. It is found that the RMS of IOV 

satellites are significantly larger than other FOC satellites, while there is no significant 

difference between FOC and two highly eccentric (ECC) satellites. These results indicate that 

the quality of FOC WL float ambiguities is better than that of IOV satellites. The worse 

performance of IOV satellites probably stems from the reduction of signal transmission power 

for IOV satellites. ESA imposed a reduction of 1.5 dB in the signal power of all four IOV 

satellites following a payload power problem of the fourth IOV (E20) in 2014. The 1.5 dB power 

decrease results in an increase of approximately 15-20% of the thermal noise of the receiver, 

which roughly matches the observed increase in IOV WL FCB residuals.  

 

Figure 5 RMS of WL residuals after WL FCB estimations. Averaged RMSs are calculated for 

GPS and BDS, while an individual RMS is calculated for each Galileo satellite. 

 (2) NL FCB comparison 

Figure 6 depicts the usage rate of float ambiguities for each Galileo satellite (average 

94.0%), as well as the average usage rates for GPS (97.6%) and BDS (80.4%). The usage rate of 

GPS NL float ambiguities is highest while that of BDS is worst. Since the weights of carrier 

phase measurements are 10000 times larger than those of code measurements, the quality of 

the float ambiguities is dominated by the unmodeled errors in PPP. Therefore, the highest 

usage of GPS is reasonable since its precise product and models are currently the state of the 

art. All Galileo satellites except E19 show similar usage rates ranging from 91.8 to 96.9%, 

indicating a similar quality level of NL ambiguities. The usage rate of E19 is only 83.8%, which 

is much smaller than that for other Galileo satellites. Inspired by Zaminpardaz and Teunissen 

(2017) who reported that for SEPTENTRIO receivers the carrier-to-noise density ratio for E19 

lies below the value of the other two IOV satellites for elevations higher than 60 degrees, we 

further calculated the carrier-to-noise density ratio, data usage rates for three receiver groups, 

namely LEICA (37 stations), SEPTENTRIO (41 stations) and TRIMBLE (83 stations). From the 

results in Figure 7, it can be seen that the carrier-to-noise density ratio of E19 lies below the 

other satellites for all the receiver groups. In addition, the data usage rates of E19 are lower 

than for the other satellites for all the three groups and no clear relationship with receiver type 

is found. Furthermore, we notice that the STD of satellite laser ranging (SLR) residuals for E19 

(0.130 m) is larger than for E11 (0.092 m) and E12 (0.086 m) when performing SLR validation 

(Guo et al. 2017). This may indicate a poor quality of precise satellite products for E19. Based 

on the above analysis, we suspect that the lower data usage rate of E19 is caused by the joint 

effect of poorer satellite products and larger carrier phase noise. 
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Figure 6 Usage rates of float NL ambiguities for satellite NL FCB estimation. Averaged usage 

rates are calculated for GPS and BDS, while an individual usage rate is calculated for each 

Galileo satellite. 

 

Figure 7 Carrier-to-noise density ratio C/N0 of Galileo signals for three receiver groups, 

TRIMBLE (left), SEPTENTRIO (middle) and LEICA (right). 

In conclusion, the quality of Galileo NL FCB is slightly worse than that of GPS but better 

than that of BDS. Within Galileo, the NL FCB quality of FOC and IOV (except E19), as well as 

the two eccentric satellites, shows no significant difference in terms of data usage rates and 

residuals. The reason for the worse performance of E19 is still not clear. On the one hand, it 

cannot, or at least not fully, be ascribed to the signal transmission power as the power 

difference between FOC and IOV E11/E12 is larger than the difference between E11/E12 and 

E19. On the other hand, the worse quality of E19 satellite orbit, indicated by SLR residuals, 

could also degrade NL FCB estimations. This issue remains an open question and deserves 

further investigation.  

For static Galileo PPP AR with three-hour sessions, the positional biases can be reduced 

by 67, 45 and 22% for east, north and up components, respectively. In addition, PPP AR also 

improves the kinematic solutions by 59, 45 and 28% for east, north and vertical components, 

respectively. 

4.3 Multi-frequency PPP AR 

A unified model for multi-frequency PPP AR based on raw uncombined observations is 

proposed (Xiao et al. 2019a), which simplifies the concept of phase biases for AR. No 

assumption is made on the method used to determine FCB on the server end, which implies 
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that the generated FCB from multi-frequency observations could be flexibly used, such as for 

dual- or triple-frequency ones. It is demonstrated that the model is extendable to dual- and 

triple-frequency observations.  

 (1) Multi-frequency uncombined PPP AR model 

To deal with multi-frequency observations, the uncombined PPP model is adopted. In the 

uncombined PPP model, the ionospheric delay is directly estimated. Another important 

difference between the IF PPP and the uncombined PPP models is the strategy to deal with the 

DCB. The DCB is not of concern in IF PPP as the IF combination is also used for precise clock 

generation, which implies that the DCB could be fully absorbed by other parameters (Zhang et 

al. 2012) or simply cancelled out in the IF PPP (Dach et al. 2015). But this is not the case in the 

uncombined PPP, especially with multi-frequency observations. We propose estimation of the 

receiver DCB and correction of the satellite DCB with existing multi-GNSS DCB products 

(Wang et al. 2016). Taking triple-frequency observations as an example, the correction equation 

for the raw pseudorange observations can be deduced as (Guo et al. 2015)  

{
 
 

 
 𝑃𝑟,1

𝑠 = 𝜌𝑟
𝑠 + 𝑑̅𝑡𝑟 − 𝑑𝑡𝑝𝑟𝑒

𝑠 + 𝑑𝑇 + 𝑎1 ∙ 𝑑𝐼𝑟,1
𝑠 −

1

𝑎2−1
𝐷𝐶𝐵12

𝑠 + 𝜀𝑃𝑓                                 

𝑃𝑟,2
𝑠 = 𝜌𝑟

𝑠 + 𝑑̅𝑡𝑟 − 𝑑𝑡𝑝𝑟𝑒
𝑠 + 𝑑𝑇 + 𝑎2 ∙ 𝑑𝐼𝑟,1

𝑠 −
𝑎2

𝑎2−1
𝐷𝐶𝐵12

𝑠 + 𝐷𝐶𝐵𝑟,12 + 𝜀𝑃𝑓                  

𝑃𝑟,3
𝑠 = 𝜌𝑟

𝑠 + 𝑑̅𝑡𝑟 − 𝑑𝑡𝑝𝑟𝑒
𝑠 + 𝑑𝑇 + 𝑎3 ∙ 𝑑𝐼𝑟,1

𝑠 − 𝐷𝐶𝐵13
𝑠 −

1

𝑎2−1
𝐷𝐶𝐵12

𝑠 + 𝐷𝐶𝐵𝑟,13 + 𝜀𝑃𝑓

  (20) 

where 𝐷𝐶𝐵12
𝑠  = 𝐷2

𝑠 − 𝐷1
𝑠 , 𝐷𝐶𝐵𝑟,12 = 𝐷𝑟,2 − 𝐷𝑟,1, and 𝑑̅𝑡𝑟 = 𝑑𝑡𝑟 + 𝐷𝑟,1. The 𝐷𝐶𝐵12

𝑠  and 𝐷𝐶𝐵13
𝑠  can 

be obtained from multi-GNSS DCB products, while 𝐷𝐶𝐵𝑟,12 and 𝐷𝐶𝐵𝑟,13 are estimated as daily 

constant parameters. Similarly, the phase equations can be rewritten as  

𝛷𝑟,𝑓
𝑠 = 𝜌𝑟

𝑠 + 𝑑̅𝑡𝑟 − 𝑑𝑡𝑝𝑟𝑒
𝑠 + 𝑑𝑇 − 𝑎𝑓 ∙ 𝑑𝐼𝑟,1

𝑠 + 𝜆𝑓𝑁𝑟,𝑓
𝑠 + 𝜀𝛷𝑓                                     (21) 

where the ambiguity can be re-parameterized as 

{

𝑁𝑟,𝑓
𝑠
= 𝑁𝑟,𝑓

𝑠 + 𝑏𝑟,𝑓 − 𝑏𝑓
𝑠  

𝑏𝑟,𝑓 = 𝐵𝑟,𝑓 − 𝐷𝑟,1/𝜆𝑓      

𝑏𝑓
𝑠 = 𝐵𝑓

𝑠 − 𝐷𝐼𝐹
𝑠 /𝜆𝑓           

                                                                (22) 

and the estimable parameters are 

𝑋 = [𝑥 𝑦 𝑧 𝑑̅𝑡𝑟 𝑑𝑇 𝐼𝑟,1
𝑠 𝐷𝑟,12 𝐷𝑟,13 𝑁𝑟,1

𝑠
𝑁𝑟,2
𝑠

𝑁𝑟,3
𝑠
]               (23) 

The estimated ambiguity parameter is a combination of the integer ambiguity, the 

corresponding code hardware delays, and the uncalibrated carrier phase delays at both 

receiver and satellite ends. Similar to that of IF PPP, the integer property of the ambiguity 

parameter can be recovered provided FCB is corrected. In dual-frequency IF PPP, the float 

ambiguity is usually decomposed into WL/NL forms in order to recover the integer property 

(Ge et al. 2008). This is partly because the IF combination of L1/L2 ambiguities is, in essence, 

not an integer. Another reason is that the WL ambiguities possess a relatively longer 

wavelength and are less correlated, therefore can be easily fixed. For uncombined PPP AR, it is 

also important to form combinations of raw ambiguities. On the one hand, the estimated raw 

float ambiguities are strongly correlated (Li et al. 2018). On the other hand, the raw float 

ambiguities are quite sensitive to unmodeled ionospheric errors (Gu et al. 2015b). Therefore, 

the combinations with longer wavelengths and lower ionospheric delays are preferred. From 

the systematic investigation of triple-frequency combinations, it is found that the following 

combinations are a good compromise between ionospheric reduction and noise amplification. 

These combinations are used for both BDS and Galileo triple-frequency observations for 

simplicity 
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[
 
 
 𝑁𝑟,𝐿𝐶1

𝑠

𝑁𝑟,𝐿𝐶2
𝑠

𝑁𝑟,𝐿𝐶3
𝑠

]
 
 
 

= [
4 −3    0
1 −1    0
1    0 −1

]

[
 
 
 𝑁𝑟,1

𝑠

𝑁𝑟,2
𝑠

𝑁𝑟,3
𝑠
]
 
 
 

                                                     (24) 

Substituting (22) into the above system produces the basic model for estimating FCBs. Now the 

equations are quite similar to (16), which implies that the same method can be used to estimate 

FCB for these combinations, i.e., (17). 

With the obtained combined FCB, we are able to calculate the FCB of the raw L1/L2/L3 

carrier frequency 

[

𝑑1
𝑠

𝑑2
𝑠

𝑑3
𝑠
] = [

4 −3    0
1 −1    0
1    0 −1

]

−1

[

𝑑𝐿𝐶1
𝑠

𝑑𝐿𝐶2
𝑠

𝑑𝐿𝐶3
𝑠
]                                                   (25) 

The transformation from combined FCBs to raw FCBs is important, as it provides more 

flexibility to the users. With the raw FCBs, users are able to choose their own linear 

combinations of observations, formulate the corresponding combined FCB, and conduct PPP 

AR. This representation allows interoperability if the server and user sides implement different 

AR methods. In addition, the raw FCB is suitable for the State Space Representation (SSR) of 

Radio Technical Commission for Maritime services (RTCM) (Weber et al. 2005), where one 

phase bias per phase observable is broadcasted instead of making specific combinations. 

Similar to dual-frequency IF PPP AR, single differencing across satellites must be firstly 

performed in order to remove receiver FCBs. Then the single-differenced ambiguities from 

different carrier frequencies are combined, as has been done during FCB estimation 

[

𝑁𝑟,𝑖𝑗𝑘1
𝑚,𝑛

𝑁𝑟,𝑖𝑗𝑘2
𝑚,𝑛

𝑁𝑟,𝑖𝑗𝑘3
𝑚,𝑛

] = [

𝑖1 𝑗1 𝑘1
𝑖2 𝑗2 𝑘2
𝑖3 𝑗3 𝑘3

] [

𝑁𝑟,1
𝑚,𝑛

𝑁𝑟,2
𝑚,𝑛

𝑁𝑟,3
𝑚,𝑛

]                                              (26) 

where 𝑁𝑟
𝑚,𝑛 = 𝑁𝑟

𝑚
− 𝑁𝑟

𝑛
 is the single-differenced ambiguity between satellites m and n. Based 

on the coefficients (𝑖, 𝑗, 𝑘), the FCB for the specific combined ambiguity can also be formed. 

Note that the linear combinations are not necessarily to be the same as those in FCB estimation, 

although the three combinations mentioned above are strongly recommended. In our 

experiments, we have used the same combinations as in FCB generation for uncombined PPP 

AR. Usually, the EWL/WL float ambiguities can be directly fixed by the rounding approach 

after the correction of FCB (Ge et al. 2008), and the NL float ambiguities are fed into the 

LAMBDA algorithm to search for correct integers (Teunissen et al. 1997). However, in our 

study, the LAMBDA is used for each combination, regardless of its property, which simplifies 

the design of the algorithm. In addition, if not all the float ambiguities can be fixed by the 

LAMBDA method, partial ambiguity resolution can be employed (Li and Zhang 2015; 

Teunissen et al. 1999). It is found that the searching and fixing of ambiguities for the 

combination with longer wavelengths (e.g., EWL/WL) is quite fast. When the integer 

ambiguities for one combination are resolved and validated, a tight constraint can be 

reconstructed. The number of constraints accumulate as the process repeats for all linear 

combinations. Afterwards, the constraints are imposed on the raw ambiguities, and yields the 

AR solution. Note that the ambiguities in IF PPP AR must be sequentially fixed in the order of 

WL/NL. An IF ambiguity is constrained only when both its WL and NL ambiguities are fixed, 

while the linear combined ambiguities in our approach can be fixed and constrained 

independently.  

(2) Test results with Galileo and BDS triple-frequency observations 

To verify the efficiency of the proposed approach, we processed 51 days of Galileo and 

BDS triple-frequency observations collected from globally distributed MGEX stations (Xiao et 

al. 2019a). The estimated FCB shows a good consistency with the input float ambiguities. The 
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RMS of Galileo FCB residuals is 0.05 cycles, while that of BDS is 0.08 cycles. It is also observed 

that the residuals are smaller for the combinations with larger wavelengths. The results indicate 

that there may exist ionospheric errors, and combinations are required to reduce their 

influence. The average STD of combined FCB is around 0.03 cycles, while that for raw FCB is 

around 0.10 cycles, as shown in Figure 8 and Figure 9. To reduce the communication with 

servers for real time applications, it would be more efficient to broadcast linear combined FCB. 

When comparing the results from multi-GNSS, it can be seen that the STDs of Galileo EWL/WL 

FCBs are smaller than those of GPS and BDS, while that of the Galileo NL FCB is worse than 

GPS and BDS. The better quality of Galileo EWL/WL FCBs is likely attributed to the multipath 

suppression of Galileo signals, while the worse quality of Galileo NL FCB is due to the poor 

precision of satellite orbit and clock product. It is found that the STDs of Galileo raw FCBs are 

smaller than that of GPS and BDS, regardless of combinations for most of the days. 

 

Figure 8 Mean STD of the combined FCB series for all 51 days. Daily STD is calculated for each 

satellite FCB series. For each day, the mean STD of all satellite daily STDs is presented. 

 

Figure 9 Mean STD of the raw FCB series for all 51 days. Daily STD is calculated for each 

satellite FCB series. For each day, the mean STD of all satellite daily STDs is presented. 

The performance of triple-frequency PPP AR is assessed with 11 days of data in three-hour 

sessions. Compared with the float solutions, the positional biases of AR solutions are 

significantly improved, as shown in Figure 10 and Figure 11. The improvements of east, north, 

up components for positioning with BDS are 49.2%, 38.3%, and 29.6%, while those for 

positioning with Galileo are 60.0%, 29.0%, and 21.1%. These results demonstrate the efficiency 

of the proposed FCB estimation approach, and that the triple-frequency PPP AR can bring an 

obvious benefit to the float solution.  
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Figure 10 Convergence performance of BDS triple-frequency PPP float and AR solutions based 

on 804 3-h sessions under 68% confidence level. 

 

Figure 11 Convergence performance of Galileo triple-frequency PPP float and AR solutions 

based on 5805 3-h sessions under 68% confidence level. 

When comparing triple-frequency PPP AR with that of dual-frequency, it is found that the 

contribution of the third frequency observations is not remarkable. The insignificant 

improvement of the third frequency observable may be due to its limited contribution to 

satellite geometry and the narrow deployment with respect to the second carrier frequency. 

Nevertheless, adding the third frequency increases the reliability since it is observed that the 

number of successful sessions is increased. It is noted that all the experiments were conducted 

with excellent observational condition, e.g., the state-of-the-art receiver and antenna, open 

environment and static mode. Under this circumstance, the dual-frequency observations are of 

high quality and sufficient for high-precision positioning, which also limits the contribution of 

the additional signals. More obvious improvements could be expected for low cost receiver 

and antenna, restricted environment or kinematic mode (Li 2018). 

4.4 Uncombined cycle slip detection and repair 

As has been proved in the above research, the uncombined PPP is a good choice for the 

integration of multi-frequency and multi-GNSS observations. However, the uncombined signal 

processing brings new challenges for cycle slip detection, which is the carrier frequency 

identification of cycle slip (Xiao et al. 2018a). We presented an improved approach based on a 

time-differenced model for cycle slip detection and repair in uncombined PPP.  

For cycle slip detection, the proposed approach significantly reduces false alarms as 

shown in Figure 12 and Figure 13. Having access to a reliable cycle slip detection method 

greatly reduces the number of ambiguity parameters to be estimated for processing 

uncombined GNSS measurements.  
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Figure 12 Results of cycle slip detection for rover (left) and reference stations (right) using 

geometry-free combinations (1, 1, -2) and (1, -2, 1) (Wu et al. 2010b; Zhen et al. 2008). Red 

triangle, green square, and blue inverted triangle represent B1, B2 and B3 BDS carrier 

frequency observations, respectively. 

 

Figure 13 Results of cycle slip detection for rover (left) and reference (right) stations using the 

improved algorithm. 

Compared with the routine time-differenced methods (Banville and Langley 2013; Zhang 

and Li 2016), the proposed approach can not only identify the carrier frequency in which the 

cycle slip occurs, but also makes it possible to separate the observation at other frequency of 

the same satellite without cycle slip, which greatly contributes to cycle slip estimations. 

Simulation results show that the theoretical success rates increase to 99.99% for both dual and 

triple frequency observations, as shown in Figure 14. Results from a real dataset also indicate 

that much stronger model strength of cycle slip estimation can be achieved.  
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Figure 14 The ambiguity dilution of precision (ADOP) based success rates of dual-frequency 

(left) and triple-frequency (right) observations. The yellow surface represents the routine time-

differenced model, while the green one represents the improved algorithm. 

Although the results shown above are obtained with BDS triple-frequency observations, 

the method has been implemented in our software and used for all the researches conducted 

in this thesis. It is proved that the method is easily applicable to dual-frequency and multi-

frequency observations for all GNSS. 

4.5 Program development 

Program development is also an important contribution of this thesis. Two software suites, 

i.e., PPP ambiguity resolution engine and FCB estimation server. The PPP ambiguity resolution 

engine is developed based on RTKLIB (http://www.rtklib.com/), which is an open source 

program package for standard and precise positioning with GNSS written in C programming 

language. The RTKLIB package includes a portable program library and several application 

programs. The original RTKLIB provides excellent supports for GNSS data processing, e.g., 

standard data format and basic function for PPP. During my research, I have significantly 

improved the original RTKLIB software. These improvements mainly include: 

(1) Fixing bugs in the original software, for example, the stochastic model, antenna model 

and DCB corrections.  

(2) Enhancing the data pre-processing, e.g., cycle slip detection and repair, BDS-2 satellite 

induced multipath correction. 

(3) Implementing FCB- and integer phase clock-based ambiguity resolution for dual-

frequency ionospheric-free PPP, which includes reading FCB files, correcting satellite 

FCBs and fixing the ambiguity with LAMBDA method. Partial ambiguity resolution 

may be employed when not all the float ambiguities can be fixed. 

(4) Implementing multi-frequency uncombined PPP model and ambiguity resolution. 

For multi-frequency observations, uncombined PPP model is implemented, in which 

the slant ionospheric delay and receiver DCB are directly estimated. Furthermore, 

combinations of multi-frequency raw ambiguities are formed and fixed.  

In addition, an FCB estimation software is developed with Python programming 

language, accompanied by FCB analysis tool based on MATLAB programming language. The 

software supports FCB generation for both dual-frequency ionospheric-free PPP and multi-

frequency uncombined PPP models. In order to investigate the characteristic of FCB product, 

a detail report, which includes quality control information and residuals statistics, is also 

generated. Besides the two software suites, various scripts have been developed for the efficient 

processing of huge GNSS dataset, such as automatic data preparing, batch processing and 

results analysis. 

http://www.rtklib.com/
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5. Publication overview 

This thesis includes the following four peer-reviewed publications (Xiao et al. 2019a; Xiao 

et al. 2019b; Xiao et al. 2018a; Xiao et al. 2018b): 

1) Xiao G, Li P, Gao Y, Heck B (2019a) A Unified Model for Multi-Frequency PPP 

Ambiguity Resolution and Test Results with Galileo and BeiDou Triple-Frequency 

Observations. Remote Sensing 11(2):116 doi:10.3390/rs11020116 

 

Author’s contributions: The first author derived the unified model for multi-frequency 

PPP AR. The first and second author conceived and designed the experiments. The first author 

collected the data, performed the experiments, analyzed the results, and wrote the paper. All 

authors reviewed the paper. 

 

2) Xiao G, Li P, Sui L, Heck B, Schuh H (2019b) Estimating and assessing Galileo satellite 

fractional cycle bias for PPP ambiguity resolution. GPS Solutions 23:3 

doi:10.1007/s10291-018-0793-z 

 

Author’s contributions: The first author conceived the presented idea. The first and 

second author designed the experiments, worked out the technical details. The first author 

performed the numerical calculations for the experiments, analyzed the data, and wrote the 

paper. All authors reviewed the paper. 

 

3) Xiao G, Sui L, Heck B, Zeng T, Tian Y (2018b) Estimating satellite phase fractional cycle 

biases based on Kalman filter. GPS Solutions 22:82 doi:10.1007/s10291-018-0749-3 

 

Author’s contributions: The first author devised the main conceptual ideas and designed 

the proposed Kalman filter for FCB estimation. The first author performed the experiments, 

analyzed the data, and wrote the paper. All authors reviewed the paper and helped shape the 

research. 

 

4) Xiao G, Mayer M, Heck B, Sui L, Zeng T, Zhao D (2018a) Improved time-differenced 

cycle slip detect and repair for GNSS undifferenced observations. GPS Solutions 22:6 

doi:10.1007/s10291-017-0677-7 

 

Author’s contributions: The first author designed the model and the experiments. The 

first author performed the experiments, analyzed the data, and wrote the paper. All authors 

discussed the results, reviewed and contributed to the final manuscript. 

 

6. Conclusions and outlook 

6.1 Conclusions 

For decades, GPS PPP has found many scientific and industrial applications due to its cost-

effectiveness, global coverage, and high accuracy. However, it suffers from a few drawbacks 

which prevents more applications, e.g., slow convergence, availability and reliability. The rapid 

development of multi-GNSS and multi-frequency signals provides an excellent opportunity for 

improvements. In addition, the integer ambiguity resolution technique is expected to further 

enhance the accuracy and shorten the convergence time. In the framework of this thesis, multi-

frequency and multi-GNSS measurements are properly integrated for PPP with ambiguity 

resolution to achieve state-of-the-art fast and accurate positioning, which provides an 

important contribution to GNSS precise positioning and applications.  

https://link.springer.com/article/10.1007%2Fs10291-018-0749-3
https://link.springer.com/article/10.1007%2Fs10291-017-0677-7
https://www.mdpi.com/2072-4292/11/2/116
https://link.springer.com/article/10.1007%2Fs10291-018-0793-z
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Integer ambiguity resolution is the key issue to improve the PPP positioning quality. The 

core of PPP ambiguity resolution is carrier phase biases estimation. In this thesis, the 

characteristics of phase fractional cycle biases are analyzed with the updated and long time 

series. Results indicate that the stability of phase fractional cycle biases has been improved in 

recent years. Taking advantage of this property, an improved FCB estimation method based 

on Kalman filter is proposed. In the proposed Kalman filter, the large number of observations 

is handled epoch-by-epoch, which significantly reduces the dimension of the involved matrix 

and accelerates the computation. Hence it outperforms the commonly used least squares 

method in terms of efficiency. In order to avoid iterations caused by the one cycle inconsistency 

among FCB measurements, a pre-elimination method is developed based on the temporal 

stabilities of satellite FCBs. The pre-elimination method shows a clear advantage over post-

residual adjustment, which further improves the efficiency. The fast estimation of FCB is 

especially useful for real-time application. Results from about 200 IGS stations indicate that the 

determined GPS satellite FCBs show a good consistency with existing FCB products, e.g., from 

IGS analysis center CNES-GRG and Wuhan University. 

With the estimated FCB products, the PPP ambiguity resolution technique with the 

current Galileo and BDS constellation is verified. The satellite fractional cycle biases are 

thoroughly assessed by a comparison with those of GPS in terms of data usage rate, residual 

distribution, as well as standard deviation of daily estimates. Results indicate that the quality 

of Galileo WL FCB is better than for GPS and BDS. We attribute the good quality of Galileo WL 

FCB to its advanced signal modulation, AltBOC, which significantly compresses the multipath 

effect for code measurements. Within the Galileo constellation, the quality of FOC WL FCB is 

much better than for IOV satellites. The poorer performance of IOV satellites WL FCB is a result 

of a reduction in the satellite transmission signal power. The performance of the two satellites 

with highly eccentric orbits is comparable to other FOC satellites but having a smaller number 

of observations. As for NL FCB, the quality of Galileo NL FCB is slightly worse than that of 

GPS but better than that of BDS. Since the accuracy of NL FCB estimation is dominated by 

unmodeled errors in float PPP, the worse quality of Galileo NL FCB is likely caused by the 

imperfect antenna models. Within Galileo, the NL FCB quality of FOC and IOV (except E19), 

as well as the two eccentric satellites, shows no significant difference in terms of data usage 

rates and residuals. The reason for the worse performance of E19 is still not clear. On the one 

hand, it cannot, or at least not fully, be ascribed to the signal transmission power as the power 

difference between FOC and IOV E11/E12 is larger than the difference between E11/E12 and 

E19. On the other hand, the worse quality of the E19 satellite orbit, indicated by SLR residuals, 

could also degrade NL FCB estimations. This issue remains an open question and deserves 

further investigation. Galileo PPP AR solutions are conducted at 20 MGEX stations with three-

hour sessions for ten days. The positional biases of AR solutions are 0.7, 0.6 and 2.1 cm for east, 

north and up components respectively, while those for float solutions are 2.1, 1.1 and 2.7 cm, 

corresponding to improvements of 67, 45 and 22% respectively. These results demonstrate that 

the Galileo observations can bring an obvious benefit to ambiguity-fixed PPP. 

PPP ambiguity resolution is also extended to multi-frequency observations in this thesis. 

In order to properly integrate the multi-frequency observations, a unified uncombined PPP 

ambiguity resolution model based on raw observations is proposed. To verify its efficiency, we 

processed 51 days of Galileo and BDS triple-frequency observations collected from globally 

distributed MGEX stations. The estimated FCB show a good consistency with the input float 

ambiguities. The RMS of Galileo FCB residuals is 0.05 cycles, while that of BDS is 0.08 cycles. It 

is also observed that the residuals are smaller for the combinations with larger wavelengths. 

The results indicate that there may exist ionospheric errors, and linear combinations are 

required to reduce their influence. The average STD of combined FCB is around 0.03 cycles, 

while that for raw FCB is around 0.10 cycles. To reduce the communication with servers for 

real time applications, it would be more efficient to broadcast linear combined FCB. The 
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performance of triple-frequency PPP AR is assessed with 11 days of data in three-hour sessions. 

Compared with the float solutions, the positional biases of AR solutions are significantly 

improved. The improvements of ENU components for positioning with BDS are 49.2%, 38.3%, 

and 29.6%, while those for positioning with Galileo are 60.0%, 29.0%, and 21.1%. These results 

demonstrate the efficiency of the proposed FCB estimation approach, and that the triple-

frequency PPP AR can bring an obvious benefit to the float solution. When comparing triple-

frequency PPP AR with that of dual-frequency, it is found that the contribution of the third 

frequency observations is minimal. The insignificant improvement of the third frequency 

observable may be due to its limited contribution to satellite geometry and the narrow 

deployment with respect to the second carrier frequency. Nevertheless, adding the third 

frequency increases the reliability since it is observed that the number of successful sessions is 

increased. 

The uncombined signal processing brings new challenges for cycle slip detection. The 

most significant feature is carrier frequency identification of cycle slips. Since all carrier 

frequency observations are processed separately, it is essential to identify the carrier frequency 

of the cycle slips to avoid contaminating other observations. To provide continuous carrier 

phase measurements for the above research, an improved approach based on a time-

differenced model for cycle slip detection and repair is proposed, which reduces the false 

alarms and increases the success rate of cycle slip estimation. The simulation results show that 

the theoretical success rates increase to 99.99% for both dual and triple frequency observations. 

Results from a real dataset also indicate that much stronger model strength of cycle slip 

estimation can be achieved. 

In summary, the GPS only PPP AR has been extended to multi-frequency and multi-GNSS 

PPP ambiguity resolution with improved accuracy and fast convergence in this thesis. This is 

accomplished by a unified model based on the uncombined PPP. The proposed model has been 

carefully studied and enriched with improved cycle slip detection and repair, fast FCB 

estimation and ambiguity resolution methods. 

6.2 Outlook 

The outlook and perspectives of this thesis are presented as follows: 

1. Performance evaluation with full operational constellation. In the next years, Galileo 

and BDS will provide full operational service (Montenbruck et al. 2017). A significant 

increase of the number of usable satellites and signals can be expected (Tian et al. 

2019). It would be interesting to apply the model proposed in this thesis to the full 

operational GNSS and to evaluate the performance. 

2. Refinements of antenna corrections. Although the performance of Galileo PPP AR is 

still worse than that of GPS, a promising improvement can be expected in the near 

future as the Galileo FOC satellite metadata, including satellite mass, attitude law, 

PCO and PCV, are published. This information is expected to improve the precise 

orbit determination and PPP solution (Li et al. 2019).  

3. FCB broadcasting scheme. The traditional FCB scheme, which are broadcasted in WL 

and NL forms at 24-hour and 15-minute intervals (Ge et al. 2008) , respectively, needs 

to be updated. First, the stability has been improved with the advancements of error 

models (Xiao et al. 2018b). Second, it is not suitable for multi-frequency uncombined 

PPP AR (Xiao et al. 2019a). Therefore, designing a novel scheme based on the 

characteristics of the uncombined model and the current FCB is demanding.  

4. Optimal combinations for multi-frequency ambiguity resolution. Traditionally, the 

IF ambiguities are decomposed into WL and NL ambiguities, which are sequentially 

fixed in IF PPP AR (Ge et al. 2008; Li et al. 2013b). However, in multi-frequency 

uncombined PPP AR, there are maybe more suitable combinations. The LAMBDA 

method can be used to automatically search for the optimal linear combinations of 
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ambiguities (Li et al. 2018). With huge data sets, the optimal combinations can be 

found and recommended to users. 
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Abstract Phase fractional cycle biases (FCBs) originating from satellites and receivers destroy 

the integer nature of PPP carrier phase ambiguities. In order to achieve integer ambiguity 

resolution of PPP, FCBs of satellites are required. In former work, least squares methods 

(LSM) are commonly adopted to isolate FCBs from a network of reference stations. However, 

it can be extremely time-consuming concerning the large number of observations from 

hundreds of stations and thousands of epochs. In addition, iterations are required to deal with 

the one cycle inconsistency among FCB measurements. We propose to estimate the FCB based 

on a Kalman filter. The large number of observations are handled epoch by epoch, which 

significantly reduces the dimension of the involved matrix and accelerates the computation. 

In addition, it is also suitable for real-time applications. As for the one cycle inconsistency, a 

pre-elimination method is developed to avoid iterations and posterior adjustments. A 

globally distributed network consisting of about 200 IGS stations is selected to determine the 

GPS satellite FCBs. Observations recorded from DoY 52 to 61 in 2016 are processed to verify 

the proposed approach. The RMS of wide lane (WL) posterior residuals is 0.09 cycles while 

that of the narrow lane (NL) is about 0.05 cycles, which indicates a good internal accuracy. 

The estimated WL FCBs also have a good consistency with existing WL FCB products (e.g., 

CNES-GRG, WHU-SGG). The RMS of differences with respect to GRG and SGG products are 

0.03 and 0.05 cycles. For satellite NL FCB estimates, 97.9% of the differences with respect to 

SGG products are within ± 0.1 cycles. The RMS of the difference is 0.05 cycles. These results 

prove the efficiency of the proposed approach. 

Keywords Precise point positioning · Integer ambiguity resolution · Fractional cycle bias · 

Kalman filter 

1. Introduction 

Integer ambiguity resolution (AR) can significantly shorten the convergence time and 

improve the accuracy of Precise Point Positioning (PPP). Phase fractional cycle biases (FCBs) 

originating from satellites and receivers destroy the integer nature of PPP carrier phase 

ambiguities. The receiver FCB can be eliminated by single differencing across satellites or 

assimilated into the receiver clock parameter by forcing one zero difference ambiguity to its 

nearest integer, while the satellite FCBs must be estimated from a network of reference stations 

(Gabor and Nerem 1999). With the additional satellite FCB estimates, PPP users are able to 

remove satellite FCBs and recover the integer nature of ambiguities. 

https://link.springer.com/article/10.1007%2Fs10291-018-0749-3
https://link.springer.com/
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The fact that double-differenced ambiguities in global or regional networks can be 

resolved to integer values lays the foundation of integer ambiguity resolution for PPP. The 

resolved double-differenced ambiguity implies that the fractional parts of two single-

differenced ambiguities (across satellites) must agree well with each other. By estimating the 

fractional parts at the server end and applying them to single differencing PPP at the user end, 

PPP integer ambiguity resolution can be achieved. In this sense, PPP integer ambiguities are in 

fact equivalent to double-differenced ambiguities (Teunissen and Khodabandeh 2015). Ge et 

al. (2008) proposed to estimate the common fractional parts of the single-differenced 

ambiguities in wide lane (WL) and narrow lane (NL) form. The fractional parts, denoted as 

single-differenced FCB (SD-FCB), were estimated by averaging the fractional parts of all 

involved float single-differenced WL and NL ambiguity estimates. Based on the same principle 

but instead of the averaging process, a least squares method in an integrated adjustment was 

adopted to enhance the estimates (Li and Zhang 2012; Zhang and Li 2013). Since January 1, 

2015, the School of Geodesy and Geomatics at Wuhan University (WHU-SGG) routinely 

releases GPS WL and NL FCB products with open access (Li et al. 2015a). Similar approaches 

have also been applied to BDS (Li et al. 2017a; Wang et al. 2017), Galileo (Tegedor et al. 2016) 

and GLONASS (Geng and Shi 2016). In order to exploit the ionosphere characteristics, the 

model has been extended to deal with GPS L1 and L2 raw observables (Gu et al. 2015b; Li et al. 

2013a) and BDS triple-frequency observables (Gu et al. 2015a). 

Different from the above approaches, Collins et al. (2008) developed a decoupled clock 

model by separating satellite clocks for code and phase observations. Similarly, Laurichesse et 

al. (2009) developed an integer phase clock model in which the NL FCBs were assimilated into 

receiver and satellite clock estimates of a network solution. This model has been employed to 

generate the precise satellite clock products by Groupe de Recherche de Géodésie Spatiale of 

the Centre National d’Etudes Spatiales (CNES-GRG) (Loyer et al. 2012). The only difference 

between the decoupled clock model and the integer phase clock model is the approach for 

determining the WL ambiguity. The integer phase clock model utilizes WL FCB corrections 

and a satellite-averaging process to fix the integer WL ambiguity, whereas the decoupled clock 

model directly estimates the integer WL ambiguity along with other unknowns through the 

functional model. The difference between the WL/NL FCB model and the integer phase clock 

model is the strategy of separating NL FCBs from integer ambiguities. NL FCBs are directly 

estimated in the WL/NL FCB model, whereas they are assimilated into the clock estimates in 

the integer phase clock model. 

These PPP AR techniques are proven to be equivalent in theory (Shi and Gao 2014). The 

systematic biases between position estimates have been demonstrated to be minimal and 

negligible with data from a global network of reference stations (Geng et al. 2010). The WL/NL 

FCB model can conveniently supplement current network solutions as an additional software 

module, as the FCB determination is compatible with current official clock-generation 

methods. In contrast, the integer phase clock products are incompatible with current clock 

products although they may perform slightly better in practice. 

Based on the review of existing work, we find that the least squares method (LSM) is 

routinely utilized for FCB estimation. However, the LSM can be extremely time-consuming 

concerning the large number of observations from hundreds of reference stations and 

thousands of epochs during the FCB estimation. This is unfavorable for the more and more 

popular real-time applications. In addition, iterations are required to deal with the one cycle 

inconsistency among FCB measurements. Since the FCB estimates are limited in the range of 

one cycle, e.g. [-0.5, 0.5] and [0, 1] for WHU-SGG and CNES-GRG products respectively, the 

one cycle inconsistency arises whenever the superposition of receiver FCB and satellite FCB 

exceeds the boundary. The additional iterations of LSM and computation of a large matrix 

demand a long time to finish. Therefore, a fast and efficient estimation method is desirable. 
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In this contribution, a Kalman filter is employed to speed up the computation. The large 

number of observations are handled epoch by epoch, which significantly reduces the 

dimension of the involved matrix and accelerates the computation. The recursive computation 

of the Kalman filter allows real-time applications. As for the one cycle inconsistency, a pre-

elimination method is developed to avoid the posterior adjustments and iterations of the whole 

process. The following section describes the theoretical background of FCB estimations and 

Kalman filter. Then a pre-elimination method of one cycle inconsistency is proposed following 

the analysis of temporal stabilities of satellite FCBs. A set of FCB products is determined and 

evaluated by comparing with those of CNES and WHU. With the estimated FCBs, the 

improvements from PPP AR are assessed. Finally, the methodology is summarized, and an 

outlook for future research is presented. 

2. Methodology 

We start with the basic PPP float mode followed by a description of FCB estimation 

strategy. The pre-elimination method of one cycle inconsistency is elaborated as well as an 

introduction to Kalman filter. 

2.1 PPP float mode 

In GNSS dual-frequency PPP, the ionospheric-free (IF) combination is routinely employed 

to eliminate the effect of the first-order ionospheric delay. For a satellite s observed by receiver 

r, the corresponding pseudorange and carrier phase observation equation can be expressed as 

{
𝑃𝑟,𝐼𝐹
𝑠 = 𝜌𝑟

𝑠 + 𝑑𝑡𝑟 − 𝑑𝑡
𝑠 + 𝑑𝑇 + 𝐷𝑟,𝐼𝐹 − 𝐷𝐼𝐹

𝑠 + 𝜀𝑃𝐼𝐹                        

𝛷𝑟,𝐼𝐹
𝑠 = 𝜌𝑟

𝑠 + 𝑑𝑡𝑟 − 𝑑𝑡
𝑠 + 𝑑𝑇 + 𝜆𝐼𝐹(𝑁𝑟,𝐼𝐹

𝑠 + 𝐵𝑟,𝐼𝐹 − 𝐵𝐼𝐹
𝑠 ) + 𝜀𝛷𝐼𝐹

   (1) 

where 𝜌𝑟
𝑠

 indicates the geometric distance between satellite and receiver; 𝑑𝑡𝑟  and 𝑑𝑡𝑠  are the 

clock errors of receiver and satellite; 𝑑𝑇 is the slant tropospheric delay; 𝐷𝑟,𝐼𝐹  and 𝐷𝐼𝐹
𝑠  are the 

receiver and satellite specific code hardware delays; 𝜆𝐼𝐹  and 𝑁𝑟,𝐼𝐹
𝑠  are the wavelength in meters 

and ambiguity in cycles; 𝐵𝑟,𝐼𝐹  and 𝐵𝐼𝐹
𝑠  are the receiver-dependent and satellite-dependent 

uncalibrated phase delays; 𝜀𝑃𝐼𝐹  , 𝜀𝛷𝐼𝐹  are the pseudorange and carrier phase measurement 

noise. 

Conventionally, precise orbit and clock products from the IGS analysis center are used to 

remove satellite orbit and clock errors. During the generation of IGS precise products, the 

pseudorange ionospheric-free hardware delay bias 𝐷𝐼𝐹
𝑠  is assimilated into the clock offset 𝑑𝑡𝑠  

in accordance with the IGS analysis convention. Due to the fact that pseudorange 

measurements provide the reference to clock parameters, the actual receiver clock estimate 

would absorb the ionospheric-free combination of the receiver pseudorange hardware delay 

𝐷𝑟,𝐼𝐹. After applying the GNSS precise satellite clock products, equation (1) can be rewritten as 

{
𝑃𝑟,𝐼𝐹
𝑠 = 𝜌𝑟

𝑠 + 𝑑𝑇 + 𝑑𝑡𝑟 + 𝜀𝑃𝐼𝐹                     

𝛷𝑟,𝐼𝐹
𝑠 = 𝜌𝑟

𝑠 + 𝑑𝑇 + 𝑑𝑡𝑟 + 𝜆𝐼𝐹𝑁𝑟,𝐼𝐹
𝑠

+ 𝜀𝛷𝐼𝐹

    (2) 

where the receiver clock and ambiguity can be re-parameterized as 

𝑑𝑡𝑟 = (𝑑𝑡𝑟 + 𝐷𝑟,𝐼𝐹)      (3) 

𝑁𝑟,𝐼𝐹
𝑠

= 𝑁𝑟,𝐼𝐹
𝑠 + 𝑏𝑟,𝐼𝐹 − 𝑏𝐼𝐹

𝑠      (4) 

𝑏𝑟,𝐼𝐹 = 𝐵𝑟,𝐼𝐹 − 𝐷𝑟,𝐼𝐹/𝜆𝐼𝐹      (5) 

𝑏𝐼𝐹
𝑠 = 𝐵𝐼𝐹

𝑠 − 𝐷𝐼𝐹
𝑠 /𝜆𝐼𝐹       (6) 

For ambiguity-float PPP solutions, the ionospheric-free ambiguity parameter 𝑁𝑟,𝐼𝐹
𝑠

 is estimated 

as a real-value constant. Since the estimated ambiguity parameter is a combination of the 
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integer ambiguity, the corresponding code hardware delays, and the uncalibrated carrier phase 

delays at both receiver and satellite ends, the integer property is lost. 

2.2 FCB estimation 

For an ambiguity-fixed PPP solution, 𝑁𝑟,𝐼𝐹
𝑠

 is usually decomposed into the following 

combination of integer WL and float NL ambiguities for ambiguity fixing 

𝑁𝑟,𝐼𝐹
𝑠

= (
𝑐𝑓2

𝑓1
2−𝑓2

2𝑁𝑟,𝑊𝐿
𝑠 +

𝑐

𝑓1+𝑓2
𝑁𝑟,𝑁𝐿
𝑠

)/𝜆𝐼𝐹   (7) 

Note that 𝑁𝑟,𝑊𝐿
𝑠  is an integer WL ambiguity, which implies that WL FCB will not directly 

contribute to PPP. The WL ambiguity can be resolved by the Hatch–Melbourne–Wübbena 

(HMW) combination observable (Hatch 1982; Melbourne 1985b; Wübbena 1985a), 

𝐻𝑀𝑊 =
𝑓1𝛷𝑟,1

𝑠 −𝑓2𝛷𝑟,2
𝑠

𝑓1−𝑓2
−

𝑓1𝑃𝑟,1
𝑠 +𝑓2𝑃𝑟,2

𝑠

𝑓1+𝑓2
= 𝜆𝑟,𝑊𝐿

𝑠 (𝑁𝑟,𝑊𝐿
𝑠 + 𝑑𝑟,𝑊𝐿 − 𝑑𝑊𝐿

𝑠 )  (8) 

where 

𝑑𝑟,𝑊𝐿 = 𝐵𝑟,1 − 𝐵𝑟,2 −
𝑓1𝐷𝑟,1+𝑓2𝐷𝑟,2

𝜆𝑟,𝑊𝐿
𝑠 (𝑓1+𝑓2)

    (9) 

𝑑𝑊𝐿
𝑠 = 𝐵1

𝑠 − 𝐵2
𝑠 −

𝑓1𝐷1
𝑠+𝑓2𝐷2

𝑠

𝜆𝑟,𝑊𝐿
𝑠 (𝑓1+𝑓2)

     (10) 

𝑁𝑟,𝑊𝐿
𝑠

= 𝑁𝑟,𝑊𝐿
𝑠 + 𝑑𝑟,𝑊𝐿 − 𝑑𝑊𝐿

𝑠     (11) 

If the WL ambiguity is correctly resolved to an integer value based on (8), the NL ambiguity 

observable can be derived, 

𝑁𝑟,𝑁𝐿
𝑠

= 𝑁𝑟,1
𝑠 + 𝑑𝑟,𝑁𝐿 − 𝑑𝑁𝐿

𝑠      (12) 

where 

𝑑𝑟,𝑁𝐿 =
𝑓1+𝑓2

𝑐
(𝜆𝐼𝐹𝐵𝑟,𝐼𝐹 − 𝐷𝑟,𝐼𝐹)    (13) 

𝑑𝑁𝐿
𝑠 =

𝑓1+𝑓2

𝑐
(𝜆𝐼𝐹𝐵𝐼𝐹

𝑠 − 𝐷𝐼𝐹
𝑠 )     (14) 

Equations (11) and (12) serve as the basic model for estimating FCBs. Since they have the same 

structure, a general expression can be formulated as 

𝑅𝑟
𝑠 = 𝑁𝑟

𝑠
− 𝑁𝑟

𝑠 = 𝑑𝑟 − 𝑑
𝑠     (15) 

for WL and NL linear combinations, respectively. 𝑅𝑟
𝑠  represents the FCB measurements; 𝑁𝑟

𝑠
 

denotes the float undifferenced ambiguities; 𝑁𝑟
𝑠  denotes the integer part of 𝑁𝑟

𝑠
, which is the sum 

of the original integer ambiguity and the integer part of the combined code hardware delays 

and uncalibrated phase delays from both receiver r and satellite s; 𝑑𝑟and 𝑑𝑠 denote the receiver 

and satellite FCBs. 

A set of equations in the form of (15) can be integrated based on a network of reference 

stations. Suppose that there are n satellites tracked at m reference stations, the system of 

equations can be expressed as 

[
 
 
 
 
 
 
 
𝑅𝑟,1
𝑠,1

⋮
𝑅𝑟,1
𝑠,𝑛

⋮
𝑅𝑟,𝑚
𝑠,1

⋮
𝑅𝑟,𝑚
𝑠,𝑛
]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 𝑁𝑟,1

𝑠,1
− 𝑁𝑟,1

𝑠,1

⋮

𝑁𝑟,1
𝑠,𝑛
− 𝑁𝑟,1

𝑠,𝑛

⋮

𝑁𝑟,𝑚
𝑠,1

−𝑁𝑟,𝑚
𝑠,1

⋮

𝑁𝑟,𝑚
𝑠,𝑛

−𝑁𝑟,𝑚
𝑠,𝑛
]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
1 ⋯ 0 −1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 ⋯ 0 0 ⋯ −1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 1 −1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ 1 0 ⋯ −1]

 
 
 
 
 
 

[
 
 
 
 
 
𝑑𝑟,1
⋮

𝑑𝑟,𝑚
𝑑𝑠,1

⋮
𝑑𝑠,𝑛 ]

 
 
 
 
 

  (16) 
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The obtained system of equations is singular. The integer ambiguities 𝑁𝑟
𝑠  need to be determined 

for each equation on the left side, while one arbitrarily selected FCB should be set to zero on 

the right side. Assuming the float ambiguities 𝑁𝑟
𝑠 are precisely estimated, 𝑁𝑟

𝑠  can be determined 

by rounding 𝑁𝑟
𝑠. In this way, the system of equations can be resolved. However, the rounding 

approach may introduce one cycle inconsistencies. 

2.3 One cycle inconsistency 

Since the FCB estimates are limited in the range of one cycle, e.g. [-0.5, 0.5] and [0, 1] for 

WHU-SGG and CNES-GRGS products respectively, the one cycle inconsistency arises 

whenever the superposition of receiver FCB and satellite FCB exceeds the boundary. A simple 

example is presented to depict the situation. Assuming there is one satellite (𝑑𝑠 = 0.2) tracked 

at two stations ( 𝑑𝑟,1 = 0.6 and 𝑑𝑟,2 = 0.8 ), the superposition of FCBs should be (𝑅𝑟,1
𝑠 =

−0.4 and 𝑅𝑟,2
𝑠 = −0.6). However, the 𝑅𝑟,2

𝑠  would be 0.4 due to the rounding approach. As a 

consequence, the corresponding satellite FCB derived from the two stations differs one cycle. 

The one cycle inconsistency can be detected by examining the posterior residuals, as employed 

in former works. The posterior adjustments are inefficient as iterations of the whole process are 

required. In contrast, we propose to eliminate the inconsistency in advance, which shows a 

clear advantage over posterior adjustment. The proposed method consists of the following 

steps: 

(1) For all the FCB measurements at a single station, the satellite FCBs are eliminated using 

previous estimates. The underlying assumption is that satellite FCBs are stable over successive 

epochs and can be eliminated to a large extent by previous estimates, which will be proved in 

the next section. 

(2) The residual of each FCB measurement after the subtraction of the satellite FCB yields 

an initial estimate of the receiver FCB. A set of initial receiver FCB estimates could be obtained 

from all simultaneously observed satellites. 

(3) In theory, the receiver FCBs obtained from all simultaneously observed satellites are 

expected to be consistent. Therefore, a one cycle inconsistency can be detected by examining 

the group of initial receiver FCBs. If an inconsistency exists, the corresponding receiver FCB 

will differ by ±1 cycle. 

(4) To compensate the one cycle inconsistency in receiver FCBs, the corresponding integer 

ambiguity 𝑁𝑟
𝑠 is adjusted by ±1 cycle. 

(5) The procedures described above can be performed in an iterative way until a consistent 

receiver FCB is obtained from all satellite measurements. 

In addition, stations can also be handled individually to obtain clean FCB measurements. 

After the pre-elimination of the one cycle inconsistency, the clean FCB measurements are fed 

to the Kalman filter. 

2.4 Kalman filter 

The Kalman filter addresses the general problem of state estimates of discrete time 

controlled processes that are governed by a linear stochastic difference equation (Kalman 1960). 

The theory has been well studied and widely applied (Yang 2006; Yang et al. 2010). Since the 

Kalman filter is based upon the theory of least squares, it is theoretically possible to calculate 

the same solution as LSM and versa vice. However, the design and normal equation matrix 

will be huge in LSM, considering the large number of observations from hundreds of reference 

stations and thousands of epochs. Computation of the large matrix is time-consuming, which 

is inefficient and unfavorable for real-time applications. In contrast, the large number of 

observations are handled epoch-by-epoch in a Kalman filter, which significantly reduces the 

dimension of the involved matrix and accelerates the computation. One additional advantage 

of Kalman filter is its real-time capability. This is of particular interest for real-time PPP AR and 
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its applications. Therefore, a Kalman filter is employed in this work. The design and flowchart 

of a Kalman filter are depicted in Figure 1. In our case, 𝑅𝑟
𝑠 is the input FCB measurement for 

the Kalman filter, while 𝑑𝑟 and 𝑑𝑠  are the output estimates. 

 

Figure 1 Flow chart of the proposed Kalman filter. The dashed blocks represent additional 

steps adopted in this study 

Two additional steps are added to the standard Kalman filter. The first step aims at 

establishing the dynamic model and determining the state transition matrix by analyzing the 

temporal stability of existing FCB products. Satellite WL FCBs are stable over several days, 

which can be characterized as a constant parameter on a daily basis. Satellite NL FCBs are 

considered as constant within 15 minutes but exhibit small variations over 15-minute intervals. 

Therefore, NL FCBs are characterized as random walk processes. The second step is introduced 

to eliminate the one cycle inconsistency of FCB measurements. Only clean measurements are 

sent to the Kalman filter to avoid iterations. Note that a constraint is imposed on the Kalman 

filter to eliminate the rank deficiency. A satellite FCB is selected and set to zero, which is 

accomplished by adding a pseudo observational error equation with zero variance (Yang et al. 

2010). 

3. Results, comparison, and analysis 

In this section, the temporal stability of FCB is first analyzed based on existing products. 

Then, the proposed pre-elimination method of one cycle inconsistency is demonstrated. Ten 

sets of FCBs are computed and evaluated with respect to existing products. At last, with the 

estimated FCBs, the improvements from PPP AR are assessed. 

3.1 Temporal stability of FCB 

In order to study the characteristics of satellite FCBs, products from CNES GRG and WHU 

SGG are employed. Both organizations provide WL FCBs derived from the same strategy, 

while NL FCBs are only available for SGG products since they are absorbed by satellite phase 

clock offsets in GRG products. The products for entire 2016 are downloaded and analyzed in 

this study. Due to the rank deficiency of FCB equations, a receiver FCB for GRG products and 
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a satellite FCB for SGG products are selected as references. Therefore, a single differencing 

process across satellites is performed to remove the datum before comparison. The single-

differenced WL FCBs are presented in Figure 2. Note that the two products have opposite signs. 

 

Figure 2 Single-differenced WL FCBs of CNES GRG (top) and WHU SGG (bottom) products in 

2016. The lines represent individual satellite WL FCBs with respect to that of G01 

The WL FCBs of satellites are remarkably stable over days with standard deviations 

(STDs) of less than 0.08 cycles for both products. An exception is observed for G32 satellite. The 

STD of G32 is significantly larger than the others with 0.2 cycles. The reason is that a new Block 

IIF satellite (G32) was launched on 5 February 2016 and activated since 10 February. After the 

replacement, the WL FCB exhibits a similar temporal stability as the other satellites. The 

statistics further confirm the conclusion that the satellite WL FCB is stable over at least several 

days. Therefore, WL FCBs are estimated as constant on a daily basis in the proposed Kalman 

filter. 

NL FCB products are estimated with respect to specific IGS precise clock products in the 

WL/NL FCB based method. Due to the daily boundaries of precise clock products, NL FCB 

estimates are only continuous within one day. The single-differenced SGG NL FCBs on DoY 

001, 2016, are presented in Figure 3. The top panel shows the raw SD NL FCBs for each satellite 

while G01 is selected as reference. It can be seen that the datum changes frequently, which 

introduces a difference of one cycle between two consecutive epochs. After adjustments, the 

NL FCB series are continuous, as presented in the middle panel. 
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Figure 3 Raw (top) and adjusted (middle) Single-differenced NL FCBs of SGG products on DoY 

001. The bottom panel presents the histogram of all daily STDs in 2016. 

One can easily discern that satellite NL FCBs are also stable. The STDs of all single-

differenced satellite NL FCBs are within ± 0.05 cycles for DoY 001. In addition, daily STDs of 

all satellite NL FCBs for the whole year 2016 are calculated. The bottom panel depicts the 

distribution of daily STDs. 98.37% of the daily STDs are below 0.15 cycles while 97.02% are 

below 0.1 cycles. These results show that satellite NL FCBs may be more stable than reported 

in former research. Note that a small number of daily STDs may reach 0.5 cycles. These 

abnormal STDs may be caused by maneuvers during satellite eclipse or unmodeled errors. And 

we could not exclude the possibility that there may be blunders. Nevertheless, satellite NL 

FCBs are modeled as random walk processes in the proposed Kalman filter. Also note that the 
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characteristics of receiver NL FCB depend on the receiver type, environment, and other factors. 

It is hard to characterize receiver NL FCBs with a general model. Therefore, they are modeled 

as white noise. The temporal stability of satellite FCBs also implies that it can be utilized for 

pre-elimination of the one cycle inconsistency. 

3.2 Pre-elimination of the one cycle inconsistency 

For a successful pre-elimination of the one cycle inconsistency, the satellite FCBs should 

be removed in advance. The key issue is if or at what extent the satellite FCBs of the current 

epoch can be counteracted by the previous estimation. In the proposed pre-elimination 

method, the differences of satellite FCBs between two successive epochs will be absorbed by 

receiver FCB. Therefore, epoch differences of satellite FCBs should be small enough to avoid 

impacts on the detection of the one cycle inconsistency. In order to validate the hypothesis, an 

additional epoch differencing process is performed on the single-differenced FCBs. The 

histograms of epoch differences for WL FCBs in 2016 are presented in Figure 4. 

 

Figure 4 Histograms of epoch differenced WL FCBs of GRG (top) and SGG (bottom) products 

in 2016 

99.78% and 95.81% of the differences are within ± 0.05 cycles for GRG and SGG products 

respectively. The max differences, with a magnitude of 0.386 cycles, are found in SGG products. 

Since these values are much smaller than one cycle, it will scarcely affect the detection and 

elimination of the one cycle inconsistency. Note that the distribution of epoch differences for 

GRG products is more concentrated around zero than that of SGG, which may indicate better 

quality. 

The epoch differencing process is also conducted for NL FCB products, as shown in Figure 

5. 99.73% of the differences are within ± 0.05 cycles for SGG products. The result is even better 

than that of WL FCB. This can be attributed to the fact that the intervals (15 minutes) of NL FCB 

are much shorter than those of WL FCB (24 hours). 
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Figure 5 Histogram of epoch differenced NL FCBs of SGG products 

According to the above analysis of satellite FCB products, it can be concluded that the 

major parts of both WL and NL satellite FCBs can be mitigated by previous estimations. After 

the removal of satellite FCBs, the one cycle inconsistency among FCB measurements can be 

detected by examining the residuals. After the detection of inconsistency, it is eliminated by 

adjusting the corresponding integer ambiguity. An example of the process is shown in Figure 

6. One can easily observe that the one cycle inconsistencies occur on several satellite 

measurements and can be effectively eliminated by the proposed method. It should be noted 

that elimination of the one cycle inconsistency will not improve the precision of FCB estimation 

as the fractional part remains the same. In this sense, the magnitude of the epoch difference is 

less of concern as long as it is sufficient to detect potential inconsistencies. Also, note that this 

can be accomplished by posterior residuals adjustments. However, pre-elimination shows a 

clear advantage over posterior adjustment in terms of efficiency. 
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Figure 6 Pre-elimination of the one cycle inconsistency for station IQQE on 2016/02/26. The top 

panels represent receiver WL FCB adjustment, while the bottom ones represent that of receiver 

NL FCB. The left and right panels represent the raw and adjusted measurements respectively 

In this way, all epochs and all station data can be processed individually to obtain clean 

FCB measurements. For post-processing, the above procedure can be simplified. Daily WL FCB 

measurements can be adjusted simultaneously as the receiver WL FCBs are also constant 

within one day. For the initialization of the Kalman filter, a preliminary set of satellite FCBs 

should be provided for the first epoch. The initial satellite WL FCBs are taken from the 

estimations of the last day, while the initial satellite NL FCBs are determined with the route 

method (Li et al. 2015a). 

3.3 Comparison of FCB products 

A globally distributed network consisting of about 200 stations is selected from IGS 

network, as shown in Figure 7. Observations from Day of Year (DoY) 52 to 61 (2016/02/21 - 

2016/03/01) are processed to determine GPS satellite FCBs. GFZ final precise products are 

applied to remove satellite orbit and clock errors. The other errors are corrected according to 

the IGS standard error models (Kouba 2009). FCB estimations are conducted in three sequential 

steps. First, float ambiguities containing FCBs are obtained by HMW combinations and PPP 

processing from the network of reference stations. Secondly, FCB measurements are generated 

from the float ambiguities. Thirdly, the proposed Kalman filter is adopted to estimate FCBs 

from all FCB measurements. 

 

Figure 7 Geographical distribution of the selected reference stations 

The quality of FCB estimation can be indicated by the posterior residuals of FCB 

measurements. In general, a highly consistent FCB estimation is expected if the residuals are 

close to zero. Figure 8 shows the distribution of the residuals of FCB estimations for the ten 

days. It can be seen that both histograms are symmetric and nearly centered at zero. The Root 

Mean Square (RMS) of WL residuals is 0.09 cycles while the RMS of NL residuals is about 0.05 

cycles, which indicates a good consistency between the estimated FCBs and the input float 

ambiguities. The total number of input float ambiguities is 934908. Figure 9 shows the usage 

rates of WL and NL float ambiguities for each satellite. The averaged usage rate for WL is 

96.66%, while that for NL is 98.17%. We find that the quality of NL FCBs is better than that of 

WL. The possible reason is that, WL FCBs are estimated as daily invariants and easily affected 

by pseudorange noise, while the NL FCBs are updated every 15 minutes and derived from 

much more precise carrier phase measurements. 
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Figure 8 Distributions of posterior residuals after WL (top) and NL (bottom) FCB estimation 

 

Figure 9 Usage rates of the float WL and NL ambiguities 

For better visualization, the derived satellite FCBs are shifted with integer cycles, as 

presented in Figure 10. It can be seen that the derived satellite FCBs show similar temporal 

stability as in the above analysis. Satellite WL FCBs exhibit extremely small variations over the 

ten days period, while NL FCB shows a larger variation over tens of minutes. 
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Figure 10 Time series of satellite WL (top) and NL (bottom) FCBs for all the other 31 satellites 

while G01 is selected as reference 

In order to validate the external accuracy of our estimation, the derived satellite FCBs are 

also compared with those of SGG and GRG. As discussed before, WL FCB measurements are 

obtained from HMW combinations and are relatively independent of PPP processing. The 

determined WL FCBs should be consistent across all products. Figure 11 presents the 

comparison of the derived satellite WL FCBs with those of GRG and SGG products. 
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Figure 11 Histograms of the differences between our WL FCB estimation and SGG (top) and 

GRG products (bottom) 

It can be seen that our WL FCB estimates show good consistency with those of SGG and 

GRG. All of the differences are within ± 0.1 cycles. Compared with SGG products, 76.7% of the 

differences are within ± 0.05 cycles with an RMS of 0.05 cycles. Compared with GRG products, 

91.0% of the differences are within ± 0.05 cycles with an RMS of differences of 0.03 cycles. Based 

on the above analysis, we can safely conclude that there is no systematic bias between our WL 

FCB estimates and those of SGG and GRG. The differences are actually minimal and negligible. 

However, one can realize that our WL FCB estimates agree better with GRG products than 

those of SGG. Note that the RMS of differences between SGG and GRG is 0.03 cycles. We 

suspect that the GRG products may perform slightly better in practice. 

 

Figure 12 Histogram of the differences between our NL FCB estimation and SGG products 

NL FCBs are only available for SGG products. The derived satellite NL FCBs are compared 

with SGG products, as shown in Figure 12. It can be seen that our NL FCBs agree well with 

SGG NL FCB products. 97.9 % of the differences are within ± 0.1 cycles while 70.4% of the 

differences are within ± 0.05 cycles. The RMS of the differences is 0.05 cycles, corresponding to 

5.1 mm. The discrepancy between the two results may be ascribed to different PPP processing 

strategies. Since NL FCB measurements are directly derived from PPP float ambiguities, 

discrepancies between error correction models, such as tropospheric models, may introduce 

small systematic biases. Another possible reason could be the different distributions of 

reference stations. Since FCB estimates are contaminated by unknown temporally and spatially 

correlated errors, these unknown errors may change with the distribution of reference stations. 

GRG products should be employed for comparison in further investigations. Note that the 
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discrepancy will not affect PPP AR at user end if the same error model as at the server end is 

used. 

3.4 PPP AR solution 

In order to validate our FCB estimates and to assess the improvement by ambiguity 

resolution, all IGS network stations are processed in PPP float and AR mode with the obtained 

satellite FCB estimates. The 24 hours observations from over 500 stations in the ten days are 

divided into three-hour sessions. The solutions with data integrity less than 80 percent, 

wrongly fixed, and incomplete convergence are removed. After the pre-processing, there are 

22953 sessions. The performance in terms of convergence time and positional accuracy is 

evaluated under different confidence levels for the sake of reliability (Lou et al. 2016). 

  

Figure 13 Convergence performance of GPS PPP float and AR solutions based on 22953 three-

hour sessions under 95% confidence levels 

Table 1 Accuracy comparison of GPS PPP float and AR solutions based on 22953 three-hour 

sessions under different confidence level [Unit: cm] 

Time Solut. 
E N U 

50% 68% 95% 50% 68% 95% 50% 68% 95% 

One-hour 

Float 1.57 2.51 7.29 0.71 1.09 2.67 2.06 3.16 8.01 

AR 0.43 0.67 2.68 0.37 0.58 1.62 1.45 2.26 5.87 

Improv. 73% 73% 63% 48% 47% 39% 30% 28% 27% 

Two-hour 

Float 0.95 1.49 3.97 0.44 0.67 1.57 1.41 2.11 4.8 

AR 0.37 0.57 1.48 0.29 0.45 1.12 1.09 1.67 3.9 

Improv. 61% 62% 63% 34% 33% 29% 23% 21% 19% 

Three-hour 

Float 0.73 1.1 2.53 0.34 0.51 1.16 1.21 1.76 3.76 

AR 0.34 0.52 1.33 0.26 0.39 0.96 0.91 1.39 3.29 

Improv. 53% 53% 47% 24% 24% 17% 25% 21% 13% 

Figure 13 presents the positional errors of GPS PPP float and AR solutions based on the 

statistics over all the sessions. It can be seen that the convergence time is significantly shortened 

by ambiguity resolutions, especially for the east and up components. It takes 64 minutes for 

float solutions to converge to three-dimensional 10 cm accuracy, while that for AR solutions is 

only 48.5 minutes, corresponding to an improvement of 24%. In order to assess the 

improvements with respect to time length, the positional errors are calculated for one-hour, 

two-hour, and three-hour solutions, as presented in Table 1. It can be seen that PPP ambiguity 
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resolutions are able to enhance the accuracy for all the schemes. The most significant 

improvement is found for the east component. Due to the design of satellite navigation systems, 

the accuracy of the east component is worse than that of north component in mid-latitude 

because of weaker model strength. Ambiguity resolutions can improve this situation by 

imposing tight constraints on ambiguity parameters. However, the improvements decrease as 

the time length increases. The improvements of ENU components for one-hour solutions are 

(70%, 45%, 28%), while that for two-hour solutions and three-hour solutions are (62%, 32%, 

21%) and (51%, 22%, 20%), respectively. The reason is that the model strength of the float 

solution is improved with more observations. Also note that the improvements differ with 

respect to the confidence level. They are less significant under 95% level, which implies the PPP 

AR is not effective for some stations. Since FCB estimates are contaminated by temporally and 

spatially correlated errors, a small and dense network is preferred for better performance.  

4. Conclusions 

In this contribution, estimating satellite FCBs based on the Kalman filter is proposed and 

demonstrated. Since the Kalman filter is based upon least squares methods (LSM), it is 

theoretically possible to calculate the same solution as for the commonly used LSM. In the 

proposed Kalman filter, the large number of observations is handled epoch-by-epoch, which 

significantly reduces the dimension of the involved matrix and accelerates the computation. 

Hence it outperforms the commonly used LSM in terms of efficiency. In order to avoid 

iterations caused by the one cycle inconsistency among FCB measurements, a pre-elimination 

method is developed based on the temporal stability of satellite FCBs. The pre-elimination 

method shows a clear advantage over post-residual adjustment, which further improves the 

efficiency. 

A globally distributed network consisting of about 200 IGS stations has been selected to 

determine GPS satellite FCBs. The estimated WL FCBs have a good consistency with existing 

WL FCB products (e.g., CNES-GRG, WHU-SGG). The RMS of differences with respect to GRG 

and SGG products are 0.03 and 0.05 cycles, which indicates the consistency of the proposed 

approach. For satellite NL FCB estimates, 97.9% of the differences with respect to SGG products 

are within ± 0.1 cycles. The RMS of the differences is 0.05 cycles. These results prove the 

efficiency of the proposed approach. 

The state-based approach of the Kalman filter also allows for more realistic modeling of 

stochastic parameters, which will be investigated in future research. 
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Abstract: Due to the rapid deployment of the Galileo constellation, Galileo is now able to 

contribute to GNSS precise point positioning (PPP) ambiguity resolution (AR) with 17 

operational satellites as of December 2017. We estimate the satellite fractional cycle bias (FCB) 

based on globally distributed MGEX stations and assess the Galileo FCB quality by a 

comparison with that of GPS and BDS. Results of 60 days indicate that the quality of Galileo 

wide-lane (WL) FCB is better than GPS and BDS in terms of data usage rate, residual 

distribution, as well as standard deviation of daily estimates. The RMS of Galileo WL FCB 

residuals is 0.071 cycles, while that of GPS and BDS are 0.089 and 0.117 cycles respectively. 

The standard deviation of Galileo daily WL FCB is 0.010 cycles, while that of GPS and BDS 

are 0.018 and 0.043 cycles. We attribute the better quality of Galileo WL FCB to its signal 

modulation, AltBOC, which significantly compresses the multipath effect for pseudorange 

measurement. Within the Galileo constellation, the performance of In-Orbit Validation (IOV) 

satellites WL FCB is worse than that of Full Operational Capability (FOC) satellites as a result 

of a reduction in the power of the transmitted signal. The performance of the two highly 

eccentric satellites is comparable to other FOC satellites. The overall quality of Galileo narrow-

lane (NL) FCB is slightly worse than that of GPS but better than that of BDS. The RMS of 

Galileo NL FCB residuals is 0.062 cycles, while that for GPS and BDS are 0.050 and 0.086 cycles 

respectively. In addition, the NL FCB quality of FOC, IOV (except E19), as well as the two 

eccentric satellites, shows no significant difference in terms of data usage rates and residuals. 

Galileo PPP AR solutions are conducted at 20 MGEX stations with three-hour sessions for ten 

days. The positional biases of AR solutions are 0.7, 0.6 and 2.1 cm for east, north and up 

components respectively, while those for float solutions are 2.1, 1.1 and 2.7 cm, corresponding 

to improvements of 67, 45 and 22% respectively. These results demonstrate that currently 

Galileo FCB can be estimated with an accuracy comparable with GPS and BDS, and the Galileo 

observations can bring an obvious benefit to ambiguity-fixed PPP. 

Keywords: Galileo · Precise point positioning · Integer ambiguity resolution · Fractional cycle 

bias · Full Operational Capability 

1. Introduction 

The fact that double differenced ambiguities in network solutions can be resolved to 

integer values lays the foundation of integer ambiguity resolution for precise point positioning 

(PPP). By estimating the fractional cycle biases (FCB) at the server and applying them to single 

https://link.springer.com/
https://link.springer.com/article/10.1007%2Fs10291-018-0793-z
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differenced PPP at the user, the PPP integer ambiguity resolution can be achieved, convergence 

time significantly shortened, and the accuracy improved (Teunissen and Khodabandeh 2015). 

Ge et al. (2008) proposed to estimate the FCBs of the single differenced ambiguities in wide-

lane (WL) and narrow-lane (NL) form by averaging the fractional parts of all involved float 

single-differenced WL and NL ambiguity estimates. Instead of an averaging process, a least 

squares method in an integrated adjustment was adopted to enhance the FCB estimates in Li 

et al. (2015a) and Li and Zhang (2012). Different from the above WL/NL FCB approaches, 

Collins et al. (2008) developed a decoupled clock model by separating satellite clocks for code 

and phase observations. Similarly, an integer phase clock model in which the NL FCBs were 

assimilated into receiver and satellite clock estimates of a network solution was developed 

(Laurichesse et al. 2009; Loyer et al. 2012). These PPP ambiguity resolution (AR) techniques 

have been proven equivalent in theory (Shi and Gao 2014), and the positional biases have been 

demonstrated to be minimal (Geng et al. 2010). 

In addition to the development of functional models, PPP AR has been extended to 

multiple GNSSs. For GLONASS, special care has to be taken to deal with the receiver inter-

frequency bias (IFB) between satellites originating from the frequency division multiple access 

strategies. Usually, it is achieved by using a network of homogeneous receivers (Geng and Shi 

2016; Liu et al. 2017b; Yi et al. 2017). Also, BDS-2 code measurements suffer from the satellite 

induced pseudorange variations which are elevation- and frequency-dependent. Correction 

models based on multipath combination have been proven effective (Wanninger and Beer 

2015). Currently, only regional or IGSO/MEO PPP AR is achievable for BDS (Gu et al. 2015a). 

Tegedor et al. (2016) initially assessed the Galileo PPP AR with four In-Orbit Validation (IOV) 

satellites using regional stations around Europe. Li et al. (2017b) estimate the FCBs for the four 

global systems and assess the performance of combined PPP AR. 

Compared with GPS and BDS, the study of Galileo PPP AR has been limited by the 

number of available satellites. Galileo is currently at the initial service phase. After the 

decommission of Galileo In-Orbit Validation Element-A (GIOVE-A) and GIOVE-B, four IOV 

spacecraft were launched between 2011 and 2012. Two Full Operational Capability (FOC) 

Galileo satellites were launched, however, into wrong, highly eccentric orbits in 2014 (Sonica 

et al. 2017). While the two satellites are unlikely to ever become a part of the operational 

constellation, they offer proper navigation signals and broadcast navigation messages, which 

allows for real-time navigation and PPP (Montenbruck et al. 2017). In 2015 another six, in May 

2016 another two, and in Nov 2016 another four FOC Galileo satellites were successfully 

launched. The full constellation with 30 satellites is expected to be realized by 2020. As of 

December 2017, there are 17 active Galileo satellites as shown in Table 1. Note that E20 is 

excluded as it transmits only E1 signal and is not available for dual-frequency positioning. 

These satellites are separated into three groups: four IOV, two highly eccentric (ECC) and 

eleven FOC satellites. Galileo provides an open signal in the E1 band and a wideband signal 

covering the E5 a&b band. The Alternating Binary Offset Carrier (AltBOC) modulation can 

either be tracked as a composite signal or as distinct signals in the E5a and E5b sub-bands. 

Zaminpardaz and Teunissen (2017) compared the signal power, multipath performance, code 

and phase noise between IOV and FOC satellites. Results show that their characteristics differ 

significantly. It is necessary to investigate the impact on FCB estimation. In addition, it was 

found that the orbit quality of the two highly eccentric satellites is comparable with that of IOV 

and FOC satellites (Sonica et al. 2017; Steigenberger and Montenbruck 2017). Thus, it is also 

worthwhile to evaluate the performance of FCB estimation of the two eccentric satellites. 
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Table 1 List of Galileo satellites as of December 2017 (https://www.gsc-europa.eu/system-

status/Constellation-Information) 

Satellite PRN Status 

GIOVE A, B Retired 

IOV E11, E12, E19 Operational 

E20 Unavailable 

FOC E18, E14 Launched into incorrect orbit, denoted as 

“ECC” satellites 

E01, E02, E03, E04, E05, E07, E08, 

E09, E22, E24, E26, E30 

Operational 

E21, E25, E27, E31 Commissioning 

In the context of multi-GNSS PPP, the aim of this study is to extend the PPP ambiguity 

resolution to Galileo based on the globally distributed MGEX observations. Additionally, how 

FCB estimation can benefit from the advanced technique of Galileo signal modulation is 

investigated. Furthermore, within the Galileo satellite constellation, we also conduct a 

comparison among IOV, highly eccentric and FOC satellites. With the estimated FCBs, the 

improvements from Galileo PPP AR are evaluated. Finally, the methodology is summarized, 

and an outlook for future research is presented. 

2. Methodology 

We start with a presentation of the basic PPP float mode, followed by a description of PPP 

data processing for ambiguity resolution. Then our FCB estimation strategy is introduced. With 

the obtained FCB products, the PPP AR algorithm at the user end is elaborated. 

2.1 Ambiguity-float PPP mode 

In GNSS dual-frequency PPP, the ionospheric-free (IF) combination is routinely employed 

to eliminate the effect of the first-order ionospheric delay. For a satellite s observed by receiver 

r, the corresponding pseudorange and carrier phase observation equations can be expressed as 

 {
𝑃𝑟,𝐼𝐹
𝑠 = 𝜌𝑟

𝑠 + 𝑑𝑡𝑟 − 𝑑𝑡
𝑠 + 𝑑𝑇 + 𝐷𝑟,𝐼𝐹 − 𝐷𝐼𝐹

𝑠 + 𝜀𝑃𝐼𝐹                        

𝛷𝑟,𝐼𝐹
𝑠 = 𝜌𝑟

𝑠 + 𝑑𝑡𝑟 − 𝑑𝑡
𝑠 + 𝑑𝑇 + 𝜆𝐼𝐹(𝑁𝑟,𝐼𝐹

𝑠 + 𝐵𝑟,𝐼𝐹 − 𝐵𝐼𝐹
𝑠 ) + 𝜀𝛷𝐼𝐹

   (1) 

where 𝜌𝑟
𝑠

 indicates the geometric distance between satellite and receiver; 𝑑𝑡𝑟  and 𝑑𝑡𝑠  are the 

clock errors of receiver and satellite; 𝑑𝑇 is the slant tropospheric delay; 𝐷𝑟,𝐼𝐹  and 𝐷𝐼𝐹
𝑠  are the 

receiver and satellite specific code hardware delays; 𝜆𝐼𝐹  and 𝑁𝑟,𝐼𝐹
𝑠  are the wavelength in meter 

and integer ambiguity in cycle; 𝐵𝑟,𝐼𝐹  and 𝐵𝐼𝐹
𝑠  are the receiver-dependent and satellite-

dependent uncalibrated phase delays; 𝜀𝑃𝐼𝐹  , 𝜀𝛷𝐼𝐹  are the pseudorange and carrier phase 

measurement noise. 

Conventionally, precise orbit and clock products from the IGS analysis center are used to 

remove satellite orbit and clock errors. The pseudorange ionospheric-free hardware delay bias 

𝐷𝐼𝐹
𝑠  is assimilated into the clock offset 𝑑𝑡𝑠  in accordance with the IGS analysis convention. Due 

to the fact that pseudorange measurements provide the reference to clock parameters, the 

actual receiver clock estimate would absorb the ionospheric-free combination of the receiver 

pseudorange hardware delay 𝐷𝑟,𝐼𝐹. After applying the GNSS precise satellite clock products, 

equation (1) can be rewritten as 

https://www.gsc-europa.eu/system-status/Constellation-Information
https://www.gsc-europa.eu/system-status/Constellation-Information
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{
𝑃𝑟,𝐼𝐹
𝑠 = 𝜌𝑟

𝑠 + 𝑑𝑇 + 𝑑𝑡𝑟 + 𝜀𝑃𝐼𝐹                     

𝛷𝑟,𝐼𝐹
𝑠 = 𝜌𝑟

𝑠 + 𝑑𝑇 + 𝑑𝑡𝑟 + 𝜆𝐼𝐹𝑁𝑟,𝐼𝐹
𝑠

+ 𝜀𝛷𝐼𝐹

    (2) 

where the receiver clock and ambiguity can be re-parameterized as 

𝑑𝑡𝑟 = (𝑑𝑡𝑟 + 𝐷𝑟,𝐼𝐹)      (3) 

𝑁𝑟,𝐼𝐹
𝑠

= 𝑁𝑟,𝐼𝐹
𝑠 + 𝑏𝑟,𝐼𝐹 − 𝑏𝐼𝐹

𝑠      (4) 

  𝑏𝑟,𝐼𝐹 = 𝐵𝑟,𝐼𝐹 − 𝐷𝑟,𝐼𝐹/𝜆𝐼𝐹                          (5) 

𝑏𝐼𝐹
𝑠 = 𝐵𝐼𝐹

𝑠 − 𝐷𝐼𝐹
𝑠 /𝜆𝐼𝐹       (6) 

Since the estimated ambiguity parameter is a combination of the integer ambiguity, the 

corresponding code hardware delays, and the uncalibrated carrier phase delays at both 

receiver and satellite ends, the integer property is lost.  

2.2 FCB estimation 

In order to fix PPP ambiguity, the term 𝑁𝑟,𝐼𝐹
𝑠

 is usually decomposed into the following 

combination 

𝑁𝑟,𝐼𝐹
𝑠

= (
𝑐𝑓2

𝑓1
2−𝑓2

2𝑁𝑟,𝑊𝐿
𝑠 +

𝑐

𝑓1+𝑓2
𝑁𝑟,𝑁𝐿
𝑠

)/𝜆𝐼𝐹   (7) 

where 𝑁𝑟,𝑊𝐿
𝑠  is the integer WL ambiguity and 𝑁𝑟,𝑁𝐿

𝑠
 is the float NL ambiguity. Usually, the WL 

ambiguity is resolved by the Hatch-Melbourne-Wübbena (HMW) combination observable 

(Hatch 1982; Melbourne 1985b; Wübbena 1985a). With the fixed WL ambiguity, the float NL 

ambiguity can be derived and tested whether it is also fixable. An ionospheric-free ambiguity 

is fixed only when both its WL and NL ambiguities are fixed.  

The float WL ambiguity can be derived from 

𝐻𝑀𝑊 =
𝑓1𝛷𝑟,1

𝑠 −𝑓2𝛷𝑟,2
𝑠

𝑓1−𝑓2
−

𝑓1𝑃𝑟,1
𝑠 +𝑓2𝑃𝑟,2

𝑠

𝑓1+𝑓2
= 𝜆𝑟,𝑊𝐿

𝑠 𝑁𝑟,𝑊𝐿
𝑠

   (8) 

where 𝜆𝑟,𝑊𝐿
𝑠 =

𝑐

𝑓1−𝑓2
 is the wavelength of WL ambiguity. The float WL ambiguity can be further 

decomposed as 

𝑁𝑟,𝑊𝐿
𝑠

= 𝑁𝑟,𝑊𝐿
𝑠 + 𝑑𝑟,𝑊𝐿 − 𝑑𝑊𝐿

𝑠       (9) 

      𝑑𝑟,𝑊𝐿 = 𝐵𝑟,1 − 𝐵𝑟,2 −
𝑓1𝐷𝑟,1+𝑓2𝐷𝑟,2

𝜆𝑟,𝑊𝐿
𝑠 (𝑓1+𝑓2)

    (10) 

𝑑𝑊𝐿
𝑠 = 𝐵1

𝑠 − 𝐵2
𝑠 −

𝑓1𝐷1
𝑠+𝑓2𝐷2

𝑠

𝜆𝑟,𝑊𝐿
𝑠 (𝑓1+𝑓2)

     (11) 

HMW combinations eliminate the geometric distance, satellite and receiver clock errors, as well 

as atmospheric delays. The key factors that affect HMW accuracy would be code noise and 

multipath effect. The noises of code measurements will be smoothed by the more precise phase 

measurements when averaging the HMW for a continuous arc. 

If the WL ambiguity 𝑁𝑟,𝑊𝐿
𝑠  is correctly resolved to an integer value and the float IF 

ambiguity 𝑁𝑟,𝐼𝐹
𝑠

 is obtained from PPP solution, the float NL ambiguity observable 𝑁𝑟,𝑁𝐿
𝑠

 can be 

derived based on (7) 

𝑁𝑟,𝑁𝐿
𝑠

=
𝑓1+𝑓2

𝑐
𝜆𝐼𝐹𝑁𝑟,𝐼𝐹

𝑠
−

𝑓2

𝑓1−𝑓2
𝑁𝑟,𝑊𝐿
𝑠 = 𝑁𝑟,1

𝑠 + 𝑑𝑟,𝑁𝐿 − 𝑑𝑁𝐿
𝑠   (12) 

where 

𝑑𝑟,𝑁𝐿 =
𝑓1+𝑓2

𝑐
(𝜆𝐼𝐹𝐵𝑟,𝐼𝐹 − 𝐷𝑟,𝐼𝐹)    (13) 

𝑑𝑁𝐿
𝑠 =

𝑓1+𝑓2

𝑐
(𝜆𝐼𝐹𝐵𝐼𝐹

𝑠 − 𝐷𝐼𝐹
𝑠 )     (14) 
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As we can see, there are no code measurements directly involved in the calculation of NL 

ambiguities. Since the phase measurement is very accurate at millimeter level, the unmodeled 

errors in PPP will be important for the quality of NL ambiguity. 

Equations (9) and (12) serve as the basic model for estimating FCBs. Since they have the 

same structure, a general expression can be formulated as 

𝑅𝑟
𝑠 = 𝑁𝑟

𝑠
− 𝑁̂𝑟

𝑠 = 𝑑𝑟 − 𝑑
𝑠     (15) 

for WL and NL linear combinations, respectively. 𝑅𝑟
𝑠  represents the FCB measurements; 𝑁𝑟

𝑠
 

denotes the float undifferenced ambiguities; 𝑁̂𝑟
𝑠  denotes the integer part of 𝑁𝑟

𝑠
, which is the sum 

of the original integer ambiguity and the integer part of the combined code hardware delays 

and uncalibrated phase delays from both receiver r and satellite s; 𝑑𝑟 and 𝑑𝑠 denote the receiver 

and satellite FCBs. Considering the temporal stabilities of code hardware delays and 

uncalibrated carrier phase delays, the satellite FCBs can be estimated as constant values for 

specific time intervals, e.g., one day for WL FCB and 15 minutes for NL FCB (Ge et al. 2008). 

A set of equations in the form of (15) can be generated based on a network of reference 

stations. Suppose that there are n satellites tracked at m reference stations, the system of 

equations can be expressed as 

[
 
 
 
 
 
 
 
𝑅𝑟,1
𝑠,1

⋮
𝑅𝑟,1
𝑠,𝑛

⋮
𝑅𝑟,𝑚
𝑠,1

⋮
𝑅𝑟,𝑚
𝑠,𝑛
]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 𝑁𝑟,1

𝑠,1
− 𝑁̂𝑟,1

𝑠,1

⋮

𝑁𝑟,1
𝑠,𝑛
− 𝑁̂𝑟,1

𝑠,𝑛

⋮

𝑁𝑟,𝑚
𝑠,1

− 𝑁̂𝑟,𝑚
𝑠,1

⋮

𝑁𝑟,𝑚
𝑠,𝑛

− 𝑁̂𝑟,𝑚
𝑠,𝑛
]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
1 ⋯ 0 −1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 ⋯ 0 0 ⋯ −1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 1 −1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ 1 0 ⋯ −1]

 
 
 
 
 
 

[
 
 
 
 
 
𝑑𝑟,1
⋮

𝑑𝑟,𝑚
𝑑𝑠,1

⋮
𝑑𝑠,𝑛 ]

 
 
 
 
 

  (16) 

The obtained system of equations is singular. Assuming the float ambiguities 𝑁𝑟
𝑠 are precisely 

estimated, 𝑁̂𝑟
𝑠  can be determined by rounding 𝑁𝑟

𝑠 and one arbitrarily selected FCB should be 

set to zero. In this way, the system of equations can be resolved.  

2.3 PPP AR at the user end 

With the above-estimated FCBs, the satellite FCBs can be corrected, and the single-

differenced PPP ambiguities are aimed to be fixed. It is noted that, although single differencing 

operations could be conducted on raw observation equations and float ambiguities level, single 

differencing at the ambiguity level may be better in practice as it provides more flexibility of 

the choice of a reference satellite and the formation of satellite pairs. Therefore, we recommend 

performing the single differencing at ambiguity level, 

𝑁𝑟
𝑠
− 𝑁𝑟

𝑚
= 𝑁𝑟

𝑠,𝑚 + 𝑑𝑠,𝑚     (17) 

For WL float ambiguities, they can be directly fixed by the rounding approach (Ge et al. 2008). 

For NL float ambiguities, they are fed into the LAMBDA algorithm (Teunissen et al. 1997). If 

not all the float NL ambiguities can be fixed by the LAMBDA method, partial ambiguity 

resolution can be employed (Li and Zhang 2015; Teunissen et al. 1999).  

For sequential PPP AR processing realized with Kalman filter, such as real-time 

applications, there exists a discrepancy concerning whether the states of the fixed solution 

should be used for the time update of the subsequent epoch. The float and fixed solution loops 

are independent. Even though the fixed solution is obtained, the states of the floating loop do 

not change accordingly (Wang et al. 2017). We argue that the benefits of ambiguity resolution 

are not fully exploited in this approach. On the other hand, the fixed ambiguity of the current 

epoch should be tightly constrained to the succeeding epoch in a continuous arc (Takasu and 

Yasuda 2010). This approach utilizes all the states of the fixed solution to the next time update 
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of the float solution and is introduced for PPP AR here. Once the WL and NL integer 

ambiguities are resolved and validated, a tight constraint can be reconstructed and imposed on 

the ionospheric-free float ambiguities 

0 = 𝑁𝑟
𝑠
− 𝑁𝑟

𝑚
− 𝑁𝑟

𝑠 + 𝑁𝑟
𝑚 − 𝑑𝑠,𝑚,   𝜎𝑑    (18) 

In this way, a fixed solution can be obtained at the user. It is noted that only the NL FCB is used 

in the reconstructed fixed ambiguity and has direct influence on the estimated parameters. In 

this sense, the NL FCB has to be estimated as precisely as possible. 

3. Data and processing strategy 

The International GNSS Service (IGS) established the Multi-GNSS Experiment (MGEX) in 

order to prepare operational services for new and upcoming GNSS, such as the European 

Galileo, Chinese BeiDou, and regional systems, such as Japanese QZSS and Indian NAVIC 

system (Montenbruck et al. 2017). Currently, there are over 210 MGEX stations. Figure 1 shows 

the geographic distribution of all the MGEX stations. Among these stations, 208 stations 

support Galileo signal tracking, and 165 stations support BDS signal tracking. The MGEX 

stations, equipped with multiple brands of professional receivers, provide almost full and 

continuous tracking of Galileo dual-frequency signals from the 17 satellites. Therefore, all the 

data collected by the MGEX network from June 4 to August 2, 2017, in total 60 days, are 

processed. 

 

Figure 1 Geographic distribution of all the MGEX stations. Almost all stations support Galileo, 

while the number of BDS stations, represented by the red circles, is slightly smaller 

In the processing, E1/E5a are used for Galileo, while L1/L2 and B1/B2 are used for GPS 

and BDS respectively. These signals were chosen according to a high availability, and in 

accordance with the principle of orbit and clock generation (Uhlemann et al. 2016). In order to 

obtain accurate float ambiguities, a GPS/Galileo/BDS combined PPP mode is used at the server 

end. Inter-system biases are estimated per station and per system. The combination of multiple 

GNSSs increases the data usage rates of the incomplete Galileo and BDS systems, as the number 

of observable satellites for either of the two systems may be not enough for a standalone PPP 

solution (Li et al. 2017a). Figure 2 shows the global distribution of the number of observable 

Galileo satellites with a cut-off elevation of 10 degrees. It can be seen that a standalone Galileo 

PPP solution is not feasible in a few regions. It is noted that this phenomenon is temporary, 

and significant improvements can be expected when the constellation is completed. In 

addition, multi-GNSS PPP is robust against outliers and improves the precision of the float 
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ambiguities. A forward and backward filter is used to avoid the convergences of ambiguity 

parameters. For the sake of comparison, the basic settings of data edit are the same for all three 

systems: the cut-off elevation angle is set to 10 degrees; float ambiguities with an elevation 

below 30 degrees or with standard deviation (STD) larger than 0.1m are removed. It is noted 

that the BDS satellite-induced code multipath effects are corrected for IGSO and MEO satellites 

according to Wanninger and Beer (2015), while GEO satellites are excluded from the 

processing. The third generation BDS satellite, which are no longer affected by such effects (Lei 

et al. 2017), are also excluded since the data is not publicly available. 

 

Figure 2 Distribution of the number of observable Galileo satellites at DoY 160, 2017 with a cut-

off elevation of 10 degrees 

Throughout the processing, MGEX precise products, including precise satellite orbit, 

clock, and earth rotation parameters, provided by GFZ (Uhlemann et al. 2016) are used. The 

satellite phase center offsets and variations are corrected according to the IGS antenna file 

(igs14_1949.atx). As for the receiver antenna phase center offsets and variations, the correction 

values for GPS are employed for both Galileo and BDS in accordance with the principle of orbit 

and clock generation (Prange et al. 2017). The detail of our FCB estimating strategy could be 

found in Xiao et al. (2018). 

4. Results, comparisons, and discussions 

In this section, the quality of Galileo WL/NL FCB estimation is thoroughly analyzed. We 

further compared the FCB estimations with that of GPS and BDS in order to characterize the 

Galileo signal properties. The generated FCBs are used for static and kinematic PPP AR 

solutions.  

4.1 Satellite WL FCB estimation 

Figure 3 presents the time series of Galileo satellite WL FCBs during the 60 days. For better 

visualization, the derived satellite FCBs are shifted with integer cycles. It can be seen that the 

derived Galileo satellite WL FCBs are quite stable over time, with a STD of 0.010 cycles. It would 

be sufficient to broadcast daily WL FCB, which is similar to other GNSSs (Ge et al. 2008). For 

comparison, we also present the STD statistics for GPS and BDS in Figure 4. Note that BDS C07 

and C11 are excluded from the statistics as there exist jumps in the time series due to unknown 

reasons, which has been reported by Li et al. (2017a) and Li et al. (2017b). The average STDs are 

calculated for GPS and BDS, while an individual STD is calculated for each Galileo satellite. 

The STDs of WL FCB are 0.018 cycles for GPS and 0.041 cycles for BDS. This implies that Galileo 

WL FCB is less noisy than GPS and BDS. We attribute the better performance of Galileo WL 
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FCBs to its signal modulation. The advanced AltBOC modulation can significantly compress 

the multipath effect for pseudorange measurements and decrease the fluctuations of HMW 

combinations, especially for low elevations (see Figure 5). Also, we notice that there is a 

difference between FOC and IOV satellites. IOV satellites show the largest STDs with 0.013 

cycles, while that of the two eccentric satellites is at the same level as other FOC satellites with 

0.010 cycles. To further investigate the possible cause, more analyses including data usage 

rates, residual statistics are performed. 

 

Figure 3 Time series of Galileo satellite WL FCBs for all the 17 satellites while E30 is selected 

as the reference 

 

Figure 4 STDs of daily satellite WL FCBs with 60 days. Averaged STDs are calculated for GPS 

and BDS, while an individual STD is calculated for each Galileo satellite. E30 is selected as the 

reference satellite for Galileo, while G01 and C09 are selected for GPS and BDS separately 
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Figure 5 HMW linear combinations of GPS, Galileo, and BDS dual frequency code 

measurements at station YEL2 on DoY 160, 2017 

 

Figure 6 Usage rates of the float WL ambiguities. Averaged usage rates are calculated for GPS 

and BDS, while an individual usage rate is calculated for each Galileo satellite 

The float ambiguity observations, with residuals larger than 0.3 cycles, are rejected in FCB 

estimation. Figure 6 shows the usage rates of WL ambiguities for each satellite. We can see that 

almost all of the WL ambiguities are used for WL FCB estimation. The averaged usage rate is 

96.2% for Galileo, while that for GPS and BDS were 95.3% and 90.1%, respectively. This 

indicates that the number of code multipath events for Galileo is smaller than for GPS, which 

may be ascribed to the advanced signal modulation of E5a. The usage rates of the two ECC 

satellites are comparable to other FOC satellites, while that for the IOV satellites are slightly 

lower. This indicates that the quality of FOC WL float ambiguities is slightly better than that of 

IOV satellites. The averaged data usage for BDS is about 90% which is much lower than that of 

Galileo and GPS. 
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Figure 7 Distribution of posterior residuals for Galileo (left), GPS (middle) and BDS (right) after 

WL FCB estimation 

The quality of FCB estimation can also be indicated by the posterior residuals of FCB 

estimation. Figure 7 shows the distribution of the residuals of WL FCB estimations. The mean 

values are -0.001, -0.003 and -0.003 cycles for Galileo, GPS, and BDS, respectively. The 

percentages of residuals smaller than 0.1 cycles are 86.5, 77.3 and 61.5% for Galileo, GPS and 

BDS, respectively. The RMS of Galileo WL residuals is 0.071 cycles, while that for GPS and BDS 

are 0.089 and 0.117 cycles, respectively. The smaller and better distribution of Galileo residuals 

indicates a better quality of WL ambiguities. This further confirms that the code multipath 

effects of Galileo are remarkably reduced.  

In order to further compare the WL FCB quality of IOV and FOC satellites, the RMS for 

each satellite in Galileo are presented in Figure 8. The figure also presents linear averages of 

RMS for each GPS and BDS satellite. It is found that the RMS of IOV satellites are significantly 

larger than other FOC satellites, while there is no significant difference between FOC and ECC 

satellites. The average RMS of IOV satellites is 0.089 cycles, while that for FOC satellites is only 

0.066 cycles. The percentage of residuals smaller than 0.1 cycles is 76.4% and 88.9% for IOV and 

FOC satellites, respectively. These results indicate that the quality of FOC WL float ambiguities 

is better than that of IOV satellites. The worse performance of IOV satellites probably stems 

from the reduction of signal transmission power for IOV satellites. ESA imposed a reduction 

of 1.5 dB in the signal power of all four IOV satellites following a payload power problem of 

the fourth IOV (E20) in 2014. The 1.5 dB power decrease results in an increase of approximately 

15-20% of the thermal noise of the receiver, which roughly matches the observed increase in 

IOV WL FCB residuals.  
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Figure 8 RMS of WL residuals after WL FCB estimations. Averaged RMSs are calculated for 

GPS and BDS, while an individual RMS is calculated for each Galileo satellite 

From the above results, we can safely conclude that the overall performance of WL FCB 

can be expressed by the following inequality: 

FOC ≈ ECC > IOV ≈ GPS > BDS 

The WL FCB quality of the two ECC satellites is comparable to that of FOC satellites. 

Despite fewer observations acquired by receivers, the two satellites can be used for WL 

ambiguity resolution. Concerning the lower data usage rates, larger residuals and larger STDs 

of WL FCB estimations for IOV satellites, the quality of IOV WL FCB is worse than that of FOC 

satellites. Despite the difference between the Galileo IOV and FOC satellites, the overall 

performance of Galileo WL FCB is better than that of GPS and BDS.  

4.2 Satellite NL FCB estimation 

Figure 9 presents the time series of Galileo/GPS/BDS satellite NL FCBs on DoY 160 in 2017. 

For better visualization, the derived satellite FCBs are shifted with integer cycles. It can be seen 

that the derived satellite Galileo NL FCBs are only stable in tens of minutes. It is noted that the 

common mode shape of NL FCB variations is caused by the reference satellite as epoch-wise 

differencing is applied. 

   

Figure 9 Time series of satellite NL FCBs for Galileo (upper), GPS (middle) and BDS (bottom), 

while satellite PRN E30, G10, C10 are selected as the references respectively. Each line 

represents one satellite, while the lines for reference satellites are zero and excluded. 

Figure 10 depicts the usage rate of float ambiguities for each Galileo satellite (average 

94.0%), as well as the average usage rates for GPS (97.6%) and BDS (80.4%). The usage rate of 

GPS NL float ambiguities is highest while that of BDS is worst. Since the weights of carrier 

phase measurements are 10000 times larger than that of code measurements, the quality of the 

float ambiguities is dominated by the unmodeled errors in PPP. Therefore, the highest usage 

of GPS is reasonable since its precise product and models are currently state of the art. All 



 

59 

Galileo satellites except E19 show similar usage rates ranging from 91.8 to 96.9%, indicating a 

similar quality level of NL ambiguities. The usage rate of E19 is only 83.8%, which is much 

smaller than that for other Galileo satellites. Inspired by Zaminpardaz and Teunissen (2017) 

who reported that for SEPTENTRIO receivers the carrier-to-noise density ratio for E19 lies 

below the value of the other two IOV satellites for elevations higher than 60 degrees, we further 

calculated the carrier-to-noise density ratio, data usage rates for three receiver groups, namely 

LEICA (37 stations), SEPTENTRIO (41 stations) and TRIMBLE (83 stations). From the results in 

Figure 11, it can be seen that the carrier-to-noise density ratio of E19 lies below the other 

satellites for all the receiver groups. In addition, the data usage rates of E19 are lower than for 

the other satellites for all the three groups and no clear relationship with receiver type is found. 

Furthermore, we notice that the STD of satellite laser ranging (SLR) residuals for E19 (0.130 m) 

is larger than for E11 (0.092 m) and E12 (0.086 m) when performing SLR validation (Guo et al. 

2017). This may indicate poor quality of precise satellite products for E19. Based on the above 

analysis, we suspect that the lower data usage rate of E19 is caused by the joint effect of poorer 

satellite products and larger carrier phase noise. 

 

Figure 10 Usage rates of float NL ambiguities for satellite NL FCB estimation. Averaged usage 

rates are calculated for GPS and BDS, while an individual usage rate is calculated for each 

Galileo satellite 

 

Figure 11 Carrier-to-noise density ratio C/N0 of Galileo signals for three receiver groups, 

TRIMBLE (left), SEPTENTRIO (middle) and LEICA (right) 
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Figure 12 Distributions of posterior residuals for Galileo (left), GPS (middle) and BDS (right) 

after NL FCB estimation 

Figure 12 shows the distribution of the residuals of NL FCB estimations for the 60 days. 

The mean values are 0.000, 0.000 and -0.001 cycles for GPS, Galileo, and BDS, respectively. The 

percentages of residuals that are smaller than 0.1 cycles are 94.6, 91.4 and 83.6% for GPS, 

Galileo, and BDS, respectively. The RMS of Galileo is 0.062, while that for GPS and BDS are 

0.050 and 0.086 cycles, respectively. These results indicate that the quality of Galileo NL FCB 

estimations is slightly worse than that of GPS but better than that of BDS. As discussed above, 

the quality of NL FCB estimation could be affected by unmodeled errors. The lack of precise 

Galileo antenna PCO and PCV models both at satellite and user end certainly has influences 

on the PPP float ambiguities. The worst performance of BDS can be attributed to the poor 

quality of precise satellite products (Montenbruck et al. 2017), as well as the satellite-induced 

code multipath effects.  

 

Figure 13 RMS of NL residuals after NL FCB estimations. Averaged RMSs are calculated for 

GPS and BDS, while an individual RMS is calculated for each Galileo satellite  

In order to compare the NL FCB quality of IOV and FOC satellites, the RMSs for each 

Galileo satellite are presented in Figure 13. It can be found that there is no significant difference 

among FOC, IOV and ECC satellites. The average RMSs are 0.061, 0.065 and 0.058 cycles for 

FOC, IOV, and ECC, respectively. The percentages of residuals that are smaller than 0.1 cycles 

are 91.9, 90.3 and 92.7% for FOC, IOV, and ECC, respectively. These results indicate that the 

satellites in the incorrect orbital planes behave not worse than those in nominal FOC and IOV 

orbits in terms of PPP. We can further deduce that the orbit and clock quality of ECC satellites 

from MGEX precise product are at a similar level as that of FOC and IOV. The largest RMS is 

found for satellite E19 with values at about 0.069 cycles. Concerning the lower data usage of 

this satellite, the quality of its NL FCB is the worst. From the results of the usage rates of NL 
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float ambiguities and distributions of the residuals, we conclude that the overall performance 

of Galileo NL FCB is worse than that of GPS but better than BDS. It is noted that the ranking is 

temporary, and promising improvements can be expected for Galileo and BDS considering 

their rapid developments. 

4.3 PPP AR solution 

In order to validate our FCB estimates, as well as to assess the performance of PPP AR, a 

subset of MGEX network stations is processed in PPP AR mode. These test stations have been 

excluded from the FCB estimation. Due to the incomplete constellation of Galileo, the number 

of observable satellites differs with respect to geographical locations. 20 MGEX stations, as 

shown in Figure 14, with relatively higher percentage of Galileo observations are selected. GPS 

and Galileo observations from DoY 155 to 164 are processed. For static solutions, the 24 hours 

observations are divided into eight three-hour sessions. For each session, the epochs with less 

than 4 visible Galileo satellites are deleted. Then the sessions with data integrity less than 80 

percent are removed. After the pre-processing, there are 1484 sessions. For pseudo-kinematic 

solutions, the 24 hours observations are regarded as one session. Galileo-only solutions, GPS-

only solutions, as well as GPS/Galileo-combined solutions, are calculated for each session. The 

positional biases of static Galileo PPP float solutions and AR solutions on DoY 160, 2017 are 

presented in Figure 15. The statistics of all sessions in the ten days are provided in Table 2. 

 

Figure 14 Geographical distribution of the selected 20 MGEX stations 
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Figure 15 Absolute NEU biases of static Galileo PPP float and AR solutions with three-hour 

sessions on DoY 160, 2017. In total, there are 98 sessions for the 20 MGEX stations 

Table 2 Statistics of static PPP float and AR solutions with three-hour sessions for 20 stations 

in ten days [Unit: m] 

Solut. No. of successful sessions East North Up 

GAL-Float 994/1484 0.021 0.011 0.027 

GAL-AR 994/1484 0.007 0.006 0.021 

GPS-Float 1422/1484 0.015 0.007 0.020 

GPS-AR 1422/1484 0.006 0.005 0.018 

GAL/GPS-Float 1442/1484 0.012 0.007 0.018 

GAL/GPS-AR 1442/1484 0.006 0.005 0.017 

It can be seen that the accuracy of the Galileo-only PPP float solution is several centimeters 

with the current constellation. After the ambiguity resolutions, the accuracy is significantly 

improved. The most significant improvement is found for the east component, from 2.1 to 0.7 

cm, corresponding to an enhancement of 67%. For GPS, the improvement of the north 

component by PPP AR is insignificant as the accuracy of the north component in the float 

solution is relatively high. However, in Galileo, we also observe an obvious improvement for 

the north component, from 1.1 to 0.6 cm with an enhancement of 45%. This is because the 

accuracy of the north component in Galileo float solution is low due to bad geometry. The 

improvement for the vertical component is about 22%, which is less significant than for the 

horizontal components. The possible reason is that the vertical component is tightly coupled 

with receiver clock and zenith wet delay parameters, which are simultaneously estimated.  

Compared with the GPS-only solutions, both float and AR solutions of Galileo are slightly 

worse, although it has been proven that the quality of Galileo WL FCB is better than GPS. This 

can partly be ascribed to the smaller number of available satellites. It can also be ascribed to the 

worse quality of Galileo NL FCB as the accuracy of NL FCB directly affects the accuracy of PPP 

AR.  



 

63 

 

Figure 16 NEU biases of Galileo, GPS, GPS+Galileo PPP AR in static mode, at station YEL2 on 

DoY 160, 2017 

Figure 16 shows a typical example for standalone single- and combined PPP AR solutions 

in static mode. One can see that the Galileo-only solution requires more time to achieve a 

reliable accuracy, while the convergence time of GPS-only solutions is much shorter. The fastest 

convergence can be achieved in GPS/Galileo PPP AR. Although the final accuracy of the 

GPS/Galileo combined solution is almost the same as that of the GPS-only solution, integrating 

Galileo with GPS increases the fixing rate and results in a more stable solution. This is further 

confirmed by the reduction of incorrectly fixed sessions (see Table 2), where the success rate 

increases from 95.8% to 97.2% when adding Galileo to GPS.  

 

Figure 17 NEU biases of kinematic Galileo PPP float and AR solutions at station YEL2 on DoY 

160, 2017 

Figure 17 presents the kinematic positional biases for station YEL2 on DoY 160, 2017. 

Epochs with less than five valid satellites have been deleted. It can be seen that the accuracy of 
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all three components is significantly improved by ambiguity resolution. In addition, it is 

observed that the convergence time is also shortened. And yet the time to first fix (TTFF) is still 

larger than two hours as a result of the limited number of observable satellites. 

 

Figure 18 NEU biases of kinematic GPS, and GPS/Galileo PPP AR at station YEL2 on DoY 160, 

2017 

Although Galileo-only solutions are limited by the number of observable satellites, adding 

Galileo to GPS can enhance the performance of kinematic PPP solutions. Figure 18 shows a 

typical example for GPS-only and GPS/Galileo combined PPP AR solutions. As we can see, 

integrating Galileo with GPS increases the accuracy of kinematic AR solutions, especially when 

the accuracy of the GPS-only solution is bad. The combined solution can achieve an accuracy 

of 1-2 cm in horizontal and 4-6 cm in vertical components.  

Table 3 Statistics of kinematic PPP float and AR solutions for 20 stations in ten days [Unit: m] 

Solut. East North Up 

GAL-Float 0.027 0.022 0.050 

GAL-AR 0.011 0.012 0.036 

GPS-Float 0.018 0.013 0.035 

GPS-AR 0.009 0.009 0.030 

GAL/GPS-Float 0.015 0.011 0.030 

GAL/GPS-AR 0.008 0.008 0.028 

Pseudo-kinematic PPP AR solutions are conducted for each station in the ten days. The 

statistics of positional biases are presented in Table 3. For Galileo-only solutions, the RMSs of 

the east, north and up components are improved by 59%, 45%, and 28% respectively, while for 

GPS-only solutions the enhancements are 50%, 31% and 14%. Similar to the static results, the 

improvements for Galileo are more significant than for GPS. Dual-system PPP AR can further 

improve the kinematic positional accuracy.   

5. Conclusions 
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The feasibility of Galileo PPP ambiguity resolution with the current constellation has been 

demonstrated. The satellite WL/NL FCBs are estimated from globally distributed MGEX 

stations. Results indicate that the quality of Galileo WL FCB is better than for GPS and BDS in 

terms of data usage rate, residual distribution, as well as STD of daily estimates. We attribute 

the good quality of Galileo WL FCB to its advanced signal modulation, AltBOC, which 

significantly compresses the multipath effect for code measurements. Within the Galileo 

constellation, the quality of FOC WL FCB is much better than for IOV satellites. The poorer 

performance of IOV satellites WL FCB is a result of a reduction in the satellite transmit signal 

power. The performance of the two satellites with highly eccentric orbits is comparable to other 

FOC satellites but having a smaller number of observations. As for NL FCB, the quality of 

Galileo NL FCB is slightly worse than that of GPS but better than that of BDS. Since the accuracy 

of NL FCB estimation is dominated by unmodeled errors in float PPP, the worse quality of 

Galileo NL FCB is likely caused by the imperfect PCO and PCV models used in this study. 

Within Galileo, the NL FCB quality of FOC and IOV (except E19), as well as the two eccentric 

satellites, shows no significant difference in terms of data usage rates and residuals. The reason 

for the worse performance of E19 is still not clear. On the one hand, it cannot, or at least not 

fully, be ascribed to the signal transmission power as the power difference between FOC and 

IOV E11/E12 is larger than the difference between E11/E12 and E19. On the other hand, the 

worse quality of E19 satellite orbit, indicated by SLR residuals, could also degrade NL FCB 

estimations. This issue remains an open question and deserves further investigation. For static 

Galileo PPP AR with three-hour sessions, the positional biases can be reduced by 67, 45 and 

22% for east, north and up components, respectively. In addition, PPP AR also improves the 

kinematic solutions by 59, 45 and 28% for east, north and vertical components, respectively. 

Although the performance of Galileo PPP AR is still worse than that of GPS, a promising 

improvement can be expected in the near future as the Galileo FOC satellite metadata, 

including satellite mass, attitude law, PCO and PCV, are published on 2017-10-06 

(https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata). This 

information is expected to improve the precise orbit determination and PPP solution.  
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Abstract: With the modernization of Global Navigation Satellite System (GNSS), triple- or 

multi-frequency signals have become available from more and more GNSS satellites. The 

additional signals are expected to enhance the performance of precise point positioning (PPP) 

with ambiguity resolution (AR). To deal with the additional signals, we propose a unified 

modeling strategy for multi-frequency PPP AR based on raw uncombined observations. 

Based on the unified model, the fractional cycle biases (FCBs) generated from multi-frequency 

observations can be flexibly used, such as for dual- or triple- frequency PPP AR. Its efficiency 

is verified with Galileo and BeiDou triple-frequency observations collected from globally 

distributed MGEX stations. The estimated FCB are assessed with respect to residual 

distributions and standard deviations. The obtained results indicate good consistency 

between the input float ambiguities and the generated FCBs. To assess the performance of the 

triple-frequency PPP AR, 11 days of MGEX data are processed in three-hour sessions. The 

positional biases in the ambiguity-fixed solutions are significantly reduced compared with 

the float solutions. The improvements are 49.2%, 38.3%, and 29.6%, respectively, in 

east/north/up components for positioning with BDS, while the corresponding improvements 

are 60.0%, 29.0%, and 21.1% for positioning with Galileo. These results confirm the efficiency 

of the proposed approach, and that the triple-frequency PPP AR can bring an obvious benefit 

to the ambiguity-float PPP solution. 

Keywords: Galileo · BeiDou · Precise point positioning · Integer ambiguity resolution · Triple-

frequency · Fractional cycle bias 

 

1. Introduction 

Precise point positioning (PPP) has found increased applications due to its cost-

effectiveness, global coverage, and high accuracy (Kouba and Héroux 2001; Zumberge et al. 

https://www.mdpi.com/2072-4292/11/2/116
www.mdpi.com
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1997). Usually PPP is able to achieve a positional accuracy of 10 cm after a convergence time of 

30 min (Cai et al. 2015). The integer ambiguity resolution (AR) technique is expected to further 

enhance the accuracy and shorten the convergence time (Gabor and Nerem 1999; Gao and Shen 

2002). In addition, (Katsigianni et al. 2018) shows that the Galileo orbit determination could be 

improved when employing AR in multiple Global Navigation Satellite System (GNSS) data 

processing. However, the uncalibrated phase delays (UPDs) originating from satellites and 

receivers destroy the integer nature of PPP ambiguities. By determining the UPDs, to be 

estimated as fractional cycle biases (FCBs) at the server end and applying them at the user end, 

the PPP integer ambiguity resolution could become feasible (Ge et al. 2008; Li et al. 2015a; Xiao 

et al. 2018b). Similarly, the decoupled clock model (Collins et al. 2008) and the integer phase 

clock model (Laurichesse et al. 2009) were developed. These PPP AR techniques have been 

proven equivalent in theory (Shi and Gao 2014; Teunissen and Khodabandeh 2015), and the 

positional biases have been demonstrated to be minimal (Geng et al. 2010). Beside GPS, PPP 

AR has been extended to GLONASS (Geng and Shi 2016; Liu et al. 2017b; Yi et al. 2017), BeiDou 

Navigation Satellite System (BDS) (Li et al. 2017a; Liu et al. 2017a), Galileo (Tegedor et al. 2016; 

Xiao et al. 2019b), and multi-GNSS (Li et al. 2017b). 

As to the functional models used for PPP, the dual-frequency ionospheric-free (IF) 

combination is routinely employed (e.g., in the above-mentioned research). However, with 

emerging BDS and Galileo, as well as the modernization of GPS and GLONASS, various types 

of multi-frequency observables become available (Montenbruck et al. 2017). The choice of 

optimum combinations then becomes practically difficult given the diversity of equipment 

(Schönemann et al. 2011). In addition, the IF combination will amplify the measurement noise 

level by a factor of about 3, which will degrade the performance of the position solution. As a 

result, the PPP model based on uncombined measurements, in which the individual signal of 

each frequency is treated as an independent observable, has drawn increasing interest in the 

GNSS community (Gu et al. 2015b). Its efficiency has already been confirmed in terms of 

convergence time and precision for single-frequency PPP (Lou et al. 2016), multi-GNSS PPP 

(Chen et al. 2015), as well as PPP-RTK (Feng et al. 2013b; Odijk et al. 2016b). Moreover, this 

approach has been tested effectively for ionospheric modelling (Tu et al. 2013; Zhang et al. 

2012), differential code bias (DCB) estimation (Liu et al. 2018; Shi et al. 2015), and low earth 

satellite orbit determination (Zehentner and Mayer-Gürr 2016).  

Compared to the well-developed IF PPP model, the uncombined PPP model, called 

uncombined PPP in the sequel, requires more investigation, especially in the case of multi-

frequency processing and ambiguity resolution. First, how to model and constrain the 

ionospheric delay has a crucial impact on performance using the uncombined PPP. For 

example, it has been demonstrated that a white noise model is not adequate to capture the 

characteristics of the ionospheric delay. The external constraints developed from the 

ionospheric products, such as the IGS global ionosphere maps, are also not accurate enough to 

completely separate the ionospheric effects from the ambiguity parameters (Gu et al. 2015b). 

The influence of the ionospheric effects on the ambiguity fixing therefore must be reduced. 

Second, the method to deal with the DCB errors is more problematic with the uncombined PPP 

(Guo et al. 2015) than the dual-frequency IF PPP, since the latter can cancel out the DCB biases. 

The problem of partial assimilation of the code bias (DCB) into phase bias (FCB) should also be 

carefully considered. Third, the uncombined PPP approach was proposed to deal with multi-GNSS 

and multi-frequency signals, so a generalized FCB estimation and AR method (Li et al. 2018), which 

is extendable to dual-, triple-, and multi- frequency, should be proposed.  

Li et al. (2013a) verified the feasibility of the uncombined PPP AR with refined ionospheric 

models. The ionospheric delay was constrained from a priori spatial-temporal information and 

ionospheric products. The GPS dual-frequency ambiguities were fixed sequentially in the 

forms of wide-lane (WL)/narrow-lane (NL), which followed the convention of IF PPP AR. Gu 

et al. (2015a) further testified the uncombined PPP AR with BDS triple-frequency observations. 
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The extra-wide-lane (EWL) and WL ambiguities were successfully fixed, whereas the B1 

ambiguities were kept as float values. In addition, the performance was further limited by the 

satellite-induced multipath effects (Wanninger and Beer 2015). Li et al. (2018) proposed a 

unified FCB estimation and PPP AR method, which is extendable to multi-frequency 

uncombined PPP. The FCBs on each frequency were directly estimated from the raw float 

ambiguities derived from triple frequency observables. The model showed a great potential for 

multi-frequency uncombined PPP AR, although its DCB strategy may not be optimal. The 

satellite DCBs, together with the receiver DCB, were estimated as unknowns, and as a result 

the number of unknown parameters was increased. Given that the satellite GNSS DCB product 

is currently available on a routine basis (Wang et al. 2016), it would be beneficial to make use 

of these products. In addition, validating the method with Galileo observations is of interest 

considering the recent and rapid development of Galileo. 

The aim of this study is to develop a unified modeling strategy for multi-frequency and 

multi-GNSS uncombined PPP AR. The unified model is able to generate consistent FCB 

products and perform PPP AR for multi-frequency PPP. The proposed approach will be first 

described, and its effectiveness will be verified with Galileo and BDS triple-frequency 

observations collected from the globally distributed Multi-GNSS EXperiment (MGEX) stations. 

The estimated FCB are assessed with respect to residual distributions and standard deviations, 

followed by an evaluation of the performance improvements in Galileo and BDS triple-

frequency PPP AR. Finally, the results are summarized, and an outlook for future research is 

presented. 

2. Methodology 

The proposed uncombined PPP mode will be first described in this section, followed by a 

description of our FCB estimation strategy. With the obtained FCB products, the uncombined 

PPP AR algorithm at the user end is then elaborated. 

2.1. Uncombined PPP Float Ambiguity Model 

In the classic GNSS dual-frequency PPP, the first-order ionospheric delay is eliminated by 

the formation of the IF combination (Zumberge et al. 1997). In the uncombined PPP model, the 

ionospheric delay is directly estimated. For a satellite s observed by receiver r, the 

corresponding raw pseudo-range and carrier phase observation equations can be expressed as 

(Leick et al. 2015) 

{
𝑃𝑟,𝑓
𝑠 = 𝜌𝑟

𝑠 + 𝑑𝑡𝑟 − 𝑑𝑡
𝑠 + 𝑑𝑇 + 𝑎𝑓 ∙ 𝑑𝐼𝑟,1

𝑠 + 𝐷𝑟,𝑓 − 𝐷𝑓
𝑠 + 𝜀𝑃𝑓                        

𝛷𝑟,𝑓
𝑠 = 𝜌𝑟

𝑠 + 𝑑𝑡𝑟 − 𝑑𝑡
𝑠 + 𝑑𝑇 − 𝑎𝑓 ∙ 𝑑𝐼𝑟,1

𝑠 + 𝜆𝑓(𝑁𝑟,𝑓
𝑠 + 𝐵𝑟,𝑓 − 𝐵𝑓

𝑠) + 𝜀𝛷𝑓
       (1) 

where the subscript 𝑓 = (1,2,3,⋯ ) refers to a specific carrier frequency, superscript s refers to 

a specific satellite; 𝜌𝑟
𝑠 indicates the geometric distance between the satellite and receiver; 𝑑𝑡𝑟 

and 𝑑𝑡𝑠 are the clock errors of receiver and satellite; 𝑑𝑇 is the slant tropospheric delay; 𝑑𝐼𝑟,1
𝑠  is 

the slant ionospheric delay on the first carrier frequency and 𝑎𝑓 = 𝜆𝑓
2 𝜆1

2⁄  is the carrier 

frequency-dependent factor; 𝐷𝑟,𝑓 and 𝐷𝑓
𝑠 are the receiver and satellite specific code hardware 

delays; 𝜆𝑓 and 𝑁𝑟,𝑓
𝑠  are the wavelength in meter and integer ambiguity in cycle; 𝐵𝑟,𝑓 and 𝐵𝑓

𝑠 are 

the receiver-dependent and satellite-dependent uncalibrated phase delays; 𝜀𝑃𝑓 and 𝜀𝛷𝑓 are the 

pseudo-range and carrier phase measurement noise, respectively. Note that the higher-order 

ionospheric effects are neglected, as they have limited influence on the performance of 

ambiguity resolution (Hadas et al. 2017). 

Another important difference between the IF PPP and the uncombined PPP model is the 

strategy to deal with the DCB. The DCB is not of concern in IF PPP as the IF combination is also 

used for precise clock generation, which implies that the DCB could be fully absorbed by other 

parameters or simply cancelled out in the IF PPP (Dach et al. 2015). But this is not the case in 
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the uncombined PPP, especially with multi-frequency observations. Conventionally, precise 

orbit and clock products from the IGS analysis center are used to remove satellite orbit and 

clock errors. During the generation of precise clock products, the pseudo-range IF hardware 

delay bias 𝐷𝐼𝐹
𝑠 =

𝑎2

𝑎2−1
𝐷1
𝑠 −

1

𝑎2−1
𝐷2
𝑠 is assimilated into the clock offset 𝑑𝑡𝑠 in accordance with the 

IGS analysis convention. After applying the GNSS precise satellite clock products, Equation (1) 

can be rewritten as 

{
𝑃𝑟,𝑓
𝑠 = 𝜌𝑟

𝑠 + 𝑑𝑡𝑟 − 𝑑𝑡𝑝𝑟𝑒
𝑠 + 𝑑𝑇 + 𝑎𝑓 ∙ 𝑑𝐼𝑟,1

𝑠 + 𝐷𝑟,𝑓 − 𝐷𝑓
𝑠 + 𝐷𝐼𝐹

𝑠 + 𝜀𝑃𝑓                     

𝛷𝑟,𝑓
𝑠 = 𝜌𝑟

𝑠 + 𝑑𝑡𝑟 − 𝑑𝑡𝑝𝑟𝑒
𝑠 + 𝑑𝑇 − 𝑎𝑓 ∙ 𝑑𝐼𝑟,1

𝑠 + 𝜆𝑓(𝑁𝑟,𝑓
𝑠 + 𝐵𝑟,𝑓 − 𝐵𝑓

𝑠) + 𝐷𝐼𝐹
𝑠 + 𝜀𝛷𝑓

       (2) 

This linear system is rank-deficient due to the DCB parameters. For dual-frequency 

uncombined PPP processing, the singularities can be eliminated by a re-parameterization 

process. This is accomplished based on the fact that the DCB parameters can be separated into 

satellite-related, receiver-related, and frequency-related parts, and therefore can be fully 

absorbed, respectively, by satellite clock, receiver clock, and ionospheric parameters (Zhang et 

al. 2012). This method is efficient for dual-frequency processing but becomes complicated when 

facing multi-frequency observations. It is also possible to estimate these DCB parameters in 

advance. This is typically done by employing a network of receivers and imposing a zero-mean 

constraint. This option is complicated and not suitable for single receivers. In our study, we 

propose estimation of the receiver DCB and correction of the satellite DCB with existing multi-

GNSS DCB products (Wang et al. 2016). Taking triple-frequency observations as an example, 

the correction equation can be deduced as (Guo et al. 2015)  

{
 
 

 
 𝑃𝑟,1

𝑠 = 𝜌𝑟
𝑠 + 𝑑̅𝑡𝑟 − 𝑑𝑡𝑝𝑟𝑒

𝑠 + 𝑑𝑇 + 𝑎1 ∙ 𝑑𝐼𝑟,1
𝑠 −

1

𝑎2−1
𝐷𝐶𝐵12

𝑠 + 𝜀𝑃𝑓                                 

𝑃𝑟,2
𝑠 = 𝜌𝑟

𝑠 + 𝑑̅𝑡𝑟 − 𝑑𝑡𝑝𝑟𝑒
𝑠 + 𝑑𝑇 + 𝑎2 ∙ 𝑑𝐼𝑟,1

𝑠 −
𝑎2

𝑎2−1
𝐷𝐶𝐵12

𝑠 + 𝐷𝐶𝐵𝑟,12 + 𝜀𝑃𝑓                  

𝑃𝑟,3
𝑠 = 𝜌𝑟

𝑠 + 𝑑̅𝑡𝑟 − 𝑑𝑡𝑝𝑟𝑒
𝑠 + 𝑑𝑇 + 𝑎3 ∙ 𝑑𝐼𝑟,1

𝑠 − 𝐷𝐶𝐵13
𝑠 −

1

𝑎2−1
𝐷𝐶𝐵12

𝑠 + 𝐷𝐶𝐵𝑟,13 + 𝜀𝑃𝑓

     (3) 

where 𝐷𝐶𝐵12
𝑠  = 𝐷2

𝑠 − 𝐷1
𝑠 , 𝐷𝐶𝐵𝑟,12 = 𝐷𝑟,2 − 𝐷𝑟,1, and 𝑑̅𝑡𝑟 = 𝑑𝑡𝑟 + 𝐷𝑟,1. The 𝐷𝐶𝐵12

𝑠  and 𝐷𝐶𝐵13
𝑠  can 

be obtained from multi-GNSS DCB products, while 𝐷𝐶𝐵𝑟,12 and 𝐷𝐶𝐵𝑟,13 are estimated as daily 

constant parameters. Similarly, the phase equations can be rewritten as  

𝛷𝑟,𝑓
𝑠 = 𝜌𝑟

𝑠 + 𝑑̅𝑡𝑟 − 𝑑𝑡𝑝𝑟𝑒
𝑠 + 𝑑𝑇 − 𝑎𝑓 ∙ 𝑑𝐼𝑟,1

𝑠 + 𝜆𝑓𝑁𝑟,𝑓
𝑠 + 𝜀𝛷𝑓                  (4) 

where the ambiguity can be re-parameterized as 

{

𝑁𝑟,𝑓
𝑠
= 𝑁𝑟,𝑓

𝑠 + 𝑏𝑟,𝑓 − 𝑏𝑓
𝑠  

𝑏𝑟,𝑓 = 𝐵𝑟,𝑓 − 𝐷𝑟,1/𝜆𝑓      

𝑏𝑓
𝑠 = 𝐵𝑓

𝑠 − 𝐷𝐼𝐹
𝑠 /𝜆𝑓           

                                                       (5) 

and the estimable parameters are 

𝑋 = [𝑥 𝑦 𝑧 𝑑̅𝑡𝑟 𝑑𝑇 𝐼𝑟,1
𝑠 𝐷𝑟,12 𝐷𝑟,13 𝑁𝑟,1

𝑠
𝑁𝑟,2
𝑠

𝑁𝑟,3
𝑠
]          (6) 

Compared with the model in Li et al. (2018), the structure of the unknown parameters, except 

(𝑥, 𝑦, 𝑧), is different, due to the different strategies of DCB correction. In Li et al. (2018), the 

dual-frequency DCBs are absorbed by other parameters, whereas the third frequency DCBs are 

estimated. In this study, the satellite DCBs for all the three frequencies are corrected with 

existing DCB products (Wang et al. 2016) and the receiver DCBs are estimated. Consequently, 

our ionospheric parameters will not be biased by DCBs, which is beneficial for ionospheric 

modelling. In addition, for single stations with n observable satellites, the number of DCB 

parameters to be estimated in their model is n, while it is 2 in our model. The degree of freedom 

of our model is larger, which could increase the redundancy and robustness of the positioning 

solutions. The estimated ambiguity parameter is a combination of the integer ambiguity, the 

corresponding code hardware delays, and the uncalibrated carrier phase delays at both 
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receiver and satellite ends. In order to recover its integer property, these biases, i.e., satellite 

FCB 𝑏𝑓
𝑠  and receiver FCB 𝑏𝑟,𝑓 , must be accounted for. Normally, the receiver FCB is not of 

concern as it can be eliminated when performing single differences of observations between 

satellites. The satellite FCB, however, must be estimated at the server end and broadcasted to 

the users. 

2.2. FCB Estimation Strategy 

In dual-frequency IF PPP, the float ambiguity is usually decomposed into WL/NL forms 

in order to recover the integer property (Ge et al. 2008). This is partly because the IF 

combination of L1/L2 ambiguities is, in essence, not an integer. Another reason is that the WL 

ambiguities possess a relatively longer wavelength and are less correlated, therefore can be 

easily fixed. For uncombined PPP AR, it is also important to form combinations of raw 

ambiguities. On the one hand, the estimated raw float ambiguities are strongly correlated. On 

the other hand, the raw float ambiguities are quite sensitive to unmodeled ionospheric errors 

(Gu et al. 2015b). Therefore, the combinations with longer wavelengths and lower ionospheric 

delays are preferred. The coefficients must be integers in order to preserve the integer nature 

of ambiguities. In addition, these combinations should be independent to avoid rank-

deficiency. While the Least‐squares AMBiguity Decorrelation Adjustment (LAMBDA) method 

can be used to automatically search for the optimal linear combinations of ambiguities (Li et al. 

2018; Teunissen et al. 1997), the classic extra-/wide-lane ambiguities (EWL/WL) were found to 

perform equally well and were used in our work to simplify the algorithm. For triple-frequency 

observations, it is easy to find two optimal combinations, e.g., one EWL and one WL 

combination or two WL combinations. The searching of the third combination, however, is 

much more difficult. From the systematic investigation of triple-frequency combinations, it is 

found that (4, −3, 0) is a good compromise between ionospheric reduction and noise 

amplification (Li et al. 2018). Concerning the properties of the above combinations shown in 

Table 1, they are denoted as NL/WL/EWL without specific explanation herein. In addition, they 

are used for both BDS and Galileo triple-frequency observations for simplicity 

[
 
 
 𝑁𝑟,𝐿𝐶1

𝑠

𝑁𝑟,𝐿𝐶2
𝑠

𝑁𝑟,𝐿𝐶3
𝑠

]
 
 
 

= [
4 −3    0
1 −1    0
1    0 −1

]

[
 
 
 𝑁𝑟,1

𝑠

𝑁𝑟,2
𝑠

𝑁𝑟,3
𝑠
]
 
 
 

                                               (7) 

Substituting (5) into the above system produces the basic model for estimating FCBs. Since they 

have the same structure, a general expression can be formulated as 

𝑅𝑟,𝐿𝐶
𝑠 = 𝑁𝑟,𝐿𝐶

𝑠
− 𝑁̂𝑟,𝐿𝐶

𝑠 = 𝑑𝑟,𝐿𝐶 − 𝑑𝐿𝐶
𝑠                                          (8) 

for all linear combinations, 𝑁𝑟,𝐿𝐶
𝑠

 denotes the float combined ambiguities; 𝑁̂𝑟
𝑠  denotes the 

integer part of 𝑁𝑟,𝐿𝐶
𝑠

; 𝑑𝑟,𝐿𝐶 and 𝑑𝐿𝐶
𝑠  denotes the receiver and satellite FCBs; 𝑅𝑟,𝐿𝐶

𝑠  represents the 

FCB measurements. For each linear combination, a set of equations in the form of (8) can be 

generated, based on a network of reference stations. Suppose that there are n satellites tracked 

by m reference stations, the system of equations can be expressed as 

[
 
 
 
 
 
 
 
𝑅1,𝐿𝐶
1

⋮
𝑅1,𝐿𝐶
𝑛

⋮
𝑅𝑚,𝐿𝐶
1

⋮
𝑅𝑚,𝐿𝐶
𝑛 ]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 𝑁1,𝐿𝐶

1
− 𝑁̂1,𝐿𝐶

1

⋮

𝑁1,𝐿𝐶
𝑛

− 𝑁̂1,𝐿𝐶
𝑛

⋮

𝑁𝑚,𝐿𝐶
1

− 𝑁̂𝑚,𝐿𝐶
1

⋮

𝑁𝑚,𝐿𝐶
𝑛

− 𝑁̂𝑚,𝐿𝐶
𝑛 ]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
1 ⋯ 0 −1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 ⋯ 0 0 ⋯ −1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 1 −1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ 1 0 ⋯ −1]

 
 
 
 
 
 

[
 
 
 
 
 
𝑑1,𝐿𝐶
⋮

𝑑𝑚,𝐿𝐶
𝑑𝐿𝐶
1

⋮
𝑑𝐿𝐶
𝑛 ]
 
 
 
 
 

            (9) 



 

75 

where LC stand for the linear combinations (𝐿𝐶1, 𝐿𝐶2, 𝐿𝐶3,⋯ ). The obtained system is singular 

on both sides of the equations. For the left side, 𝑁̂𝑟,𝐿𝐶
𝑠  can be determined by rounding 𝑁𝑟,𝐿𝐶

𝑠 , 

assuming that the float ambiguities are precisely estimated. For the right side, one arbitrarily 

combined FCB should be set to zero. For all the linear combinations, we always set the 

combined FCB of the last satellite to zero, i.e., G32/E30/C14. Note that the FCB measurements 

𝑅𝑟,𝐿𝐶
𝑠  from different stations may differ with ±1 cycle. This is due to the rounding process and 

can be adjusted with the strategy described in Xiao et al. (2018b). In this way, the system of 

equations can be solved. With the obtained combined FCB, we are able to calculate the FCB of 

the raw L1/L2/L3 carrier frequency 

[

𝑑1
𝑠

𝑑2
𝑠

𝑑3
𝑠
] = [

4 −3    0
1 −1    0
1    0 −1

]

−1

[

𝑑𝐿𝐶1
𝑠

𝑑𝐿𝐶2
𝑠

𝑑𝐿𝐶3
𝑠
]                                                   (10) 

The transformation from combined FCBs to raw FCBs is important, as it provides more 

flexibility to the users. With the raw FCBs, users are able to choose their own linear 

combinations of observations, formulate the corresponding combined FCB, and conduct PPP 

AR. This representation allows interoperability if the server and user sides implement different 

AR methods. In addition, the raw FCB is suitable for the State Space Representation (SSR) of 

Radio Technical Commission for Maritime services (RTCM) (Weber et al. 2005), where one 

phase bias per phase observable is broadcasted instead of making specific combinations. 

Table 1 Properties of GPS, Galileo, and BDS triple-frequency linear combinations. 

GNSS Coefficients Wavelength [meter] Ionospheric Delay [cycle] Noise [cycle] 

GPS 

(4, −3, 0) 0.114 0.150 5.0 

(1, −1, 0) 0.862 −0.283 1.414 

(1, 0, −1) 0.751 −0.339 1.414 

Galileo 

(4, −3, 0) 0.108 −0.017 5.0 

(1, −1, 0) 0.751 −0.339 1.414 

(1, 0, −1) 0.814 −0.305 1.414 

BDS 

(4, −3, 0) 0.114 0.120 5.0 

(1, −1, 0) 0.847 −0.293 1.414 

(1, 0, −1) 1.025 −0.231 1.414 

2.3. Uncombined PPP AR at the User End 

Similar to dual-frequency IF PPP AR, single differencing across satellites must be firstly 

performed in order to remove receiver FCBs. Then the single-differenced ambiguities from 

different carrier frequencies are combined, as has been done during FCB estimation 

[

𝑁𝑟,𝑖𝑗𝑘1
𝑚,𝑛

𝑁𝑟,𝑖𝑗𝑘2
𝑚,𝑛

𝑁𝑟,𝑖𝑗𝑘3
𝑚,𝑛

] = [

𝑖1 𝑗1 𝑘1
𝑖2 𝑗2 𝑘2
𝑖3 𝑗3 𝑘3

] [

𝑁𝑟,1
𝑚,𝑛

𝑁𝑟,2
𝑚,𝑛

𝑁𝑟,3
𝑚,𝑛

]                                                (11) 

where 𝑁𝑟
𝑚,𝑛 = 𝑁𝑟

𝑚
− 𝑁𝑟

𝑛
 is the single-differenced ambiguity between satellites m and n. Based 

on the coefficients (𝑖, 𝑗, 𝑘), the FCB for the specific combined ambiguity can also be formed. 

Note that the linear combinations are not necessary to be the same as that in FCB estimation, 

although the three combinations mentioned above are strongly recommended. In our 

experiments, we have used the same combinations as in FCB generation for uncombined PPP 

AR.  

Usually, the EWL/WL float ambiguities can be directly fixed by the rounding approach 

after the correction of FCB (Ge et al. 2008), and the NL float ambiguities are fed into the 

LAMBDA algorithm to search for correct integers (Teunissen et al. 1997). However, in our 
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study, the LAMBDA is used for each combination, regardless of its property, which simplifies 

the design of the algorithm. In addition, if not all the float ambiguities can be fixed by the 

LAMBDA method, partial ambiguity resolution can be employed (Li and Zhang 2015; 

Teunissen et al. 1999). It is found that the searching and fixing of ambiguities for the 

combination with longer wavelengths (e.g., EWL/WL) is quite fast. When the integer 

ambiguities for one combination are resolved and validated, a tight constraint can be 

reconstructed. The number of constraints accumulate as the process repeats for all linear 

combinations. Afterwards, the constraints are imposed on the raw ambiguities, and yields the 

AR solution. Note that the ambiguities in IF PPP AR must be sequentially fixed in the order of 

WL/NL. An IF ambiguity is constrained only when both its WL and NL ambiguities are fixed, 

while the linear combined ambiguities in our study can be fixed and constrained 

independently.  

3. Results and Discussion 

In this section, the data and processing strategy is described, followed by an analysis of 

the quality of triple-frequency FCB estimation. We further convert the combined FCB to raw 

FCB on each carrier frequency in order to characterize their properties. The generated FCBs are 

used to evaluate the performance of triple-frequency PPP AR solutions. 

3.1. Data and Processing Strategy 

The International GNSS Service (IGS) established the MGEX in order to prepare 

operational services for new and upcoming GNSS (Montenbruck et al. 2017). The MGEX 

network comprises over 220 MGEX stations, as of October 2017. The daily observations from 

September 7–October 27, 2017—in total 51 days—were collected. About 200 stations were used 

for Galileo FCB estimation, of which 160 stations provide E1/E5a/E5b triple-frequency 

observations. About 150 stations were used for BDS FCB estimation, of which 60 stations 

provide B1/B2/B3 triple-frequency observations. Figure 1 shows the geographic distribution of 

the MGEX stations with Galileo and BDS triple-frequency observations. These data provide 

almost full and continuous tracking of Galileo and BDS signals. 

 

Figure 1 Geographic distribution of the selected MGEX stations with Galileo (represented by 

empty circles) and BDS (represented by solid triangles) triple-frequency observations. 

In the processing, the E1/E5a/E5b were used for Galileo, while B1/B2/B3 were used for 

BDS. Data from GPS L1/L2 was also used to test the efficiency of the proposed approach in the 

case of dual-frequency observations, while the L3 was excluded due to inter-frequency clock 

bias (Pan et al. 2018). The cut-off elevation angle was set to 10°, while the float ambiguities with 

an elevation below 30° or with standard deviation (STD) larger than 0.1 m were removed for 

FCB estimation. It is noted that the BDS satellite-induced code multipath effects were corrected 
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for inclined geosynchronous orbit (IGSO) and medium earth orbit (MEO) satellites, according 

to Wanninger and Beer (2015), while geostationary orbit (GEO) satellites were excluded from 

the processing. The third-generation BDS satellites, which were no longer affected by such 

effects (Lei et al. 2017), were also excluded due to no public data. Throughout the processing, 

MGEX precise products provided by Deutsches GeoForschungsZentrum (GFZ) (Uhlemann et 

al. 2016) were used. The satellite phase center offsets and variations were corrected according 

to the IGS antenna file. Since the antenna correction values for the third frequency, i.e., E5b and 

B3, were not available, we simply used that of the second frequency, i.e., E5a/B2. It is 

demonstrated that the satellite antenna characteristics of the third carrier frequency were quite 

similar to those of the second carrier frequency (Schönemann et al. 2011). However, it is a 

compromised strategy considering the precision of phase measurements. We have 

downweighed the observations of the third frequency by a factor of 4, compared with that of 

the first and the second carrier frequency. As for the receiver antenna phase center offsets and 

variations, the correction values for GPS were employed for both Galileo and BDS, in 

accordance with the principle of orbit and clock generation (Prange et al. 2017). For the 

combined GPS, Galileo, and BDS processing, the system related weighting ratio of GPS, Galileo, 

and BDS code observations was assumed to be 1:1:3, while the precision of the phase 

observations was assumed to be at the same level (Kazmierski et al. 2018). The detail of the 

used software and processing standards can be found in (Xiao et al. 2019b) and (Xiao et al. 

2018b). 

3.2. FCB Residual Distributions 

The performance of PPP AR depends on the quality of the FCBs, which can be indicated 

by the posterior residuals. In general, a highly consistent FCB estimation can be expected if the 

residuals are close to zero. Figures 2–4 present the distributions of the posterior residuals after 

FCB estimation for Galileo, BDS, and GPS, respectively. The subfigures refer to the different 

linear combinations.  

 

Figure 2 Distributions of posterior residuals of Galileo FCB for different linear combinations. 
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Figure 3 Distributions of posterior residuals of BDS FCB for different linear combinations. 

 

Figure 4 Distributions of posterior residuals of GPS FCB for different linear combinations. 

In general, all the histograms are symmetric and nearly centered at zero, following 

Gaussian distributions. These results indicate a good consistency between the input float 

ambiguities and the generated FCBs, which prove the efficiency of the proposed FCB 

estimation strategy. However, the characteristics of residuals differ with respect to the 

combinations and systems. 

For all the systems, the residuals of linear combinations with larger wavelengths are 

smaller. For example, the residuals of the NL combination with wavelength of around 10 cm, 

are larger than those of the other two combinations, i.e., WL/EWL. The reason is that the 

combination with smaller wavelength is susceptible to errors. An exception is that the BDS WL 

residuals are larger than that of NL. The reason is not clear, and we suspect that it may be 

related to the satellite induced multipath effect (Wanninger and Beer 2015). 

When comparing the residuals from multi-GNSS, it is found that the Galileo WL/EWL 

outperformed those of GPS and BDS. As discussed in Xiao et al. (2019b), the signal of Galileo 

possesses a better performance of multipath suppression, which may explain the results. For 

the NL, the residuals of GPS are the smallest, which is reasonable as the accuracy of the GPS 

PPP float solution is the highest.   

Furthermore, the results are also different from that of IF PPP, in which the performance 

of WL is worse than that of the NL. The residuals of WL/NL in the uncombined PPP model are 

almost comparable in terms of root mean square (RMS) and distributions. The possible reason 

is that the WL ambiguities are directly formed from raw ambiguities in uncombined PPP, while 

it is derived from MW combinations in IF PPP. The noise of MW combinations is larger as code 
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measurements are employed. In addition, the sample rate of WL FCB is 15 min in uncombined 

PPP, while that of IF PPP is 24 h. The larger sample interval may also increase the residuals.  

3.3. FCB Time Series 

For real time applications, another question of interest is the temporal stability of the FCB 

estimates.  It would be possible to predict the FCB if they are stable over time. Figures 5–7 

present the time series of FCBs for Galileo, BDS, and GPS, respectively.  

 

Figure 5 Time series of the combined (upper) and raw (bottom) Galileo FCB in each 15 min 

session on DoY 255, 2017. 

 

Figure 6 Time series of the combined (upper) and raw (bottom) BDS FCB in each 15 min session 

on DoY 255, 2017. 
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Figure 7 Time series of the combined (upper) and raw (bottom) GPS FCB in each 15 min session 

on DoY 255, 2017. 

In general, all the time series of FCB are quite stable over time. The fluctuations between 

adjacent sessions are smaller than 0.05 cycles, which indicates that the 15 min interval is 

sufficient for FCB estimation. When comparing the results from different linear combinations, 

it is found that the time series of NL FCB are noisier than those of WL/EWL FCB. The NL FCBs, 

possessing a smaller wavelength of about 10 cm, are susceptible to errors. The EWL shows 

extremely small variations over time, with a standard deviation of 0.01 cycles, as presented in 

Figure 8. For all the three systems, the raw FCBs are much noisier than that of the combined 

FCB (Figure 9). The raw FCBs, also having smaller wavelengths around 20 cm, are susceptible 

to ionospheric residuals, while it is eliminated or decreased by linear combinations in 

combined FCB. The average STD of combined FCB is around 0.03 cycles, while that for raw 

FCB is around 0.10 cycles. It is easier to predict the combined FCB, especially for the EWL/WL 

FCB. A lower update rate could be used to reduce the burden of communication. In this 

manner, it would be more efficient to broadcast combined FCB for real time applications. 

 

Figure 8 Mean STD of the combined FCB series for all the 51 days. Daily STD is calculated for 

each satellite FCB series. For each day, the mean STD of all satellite daily STDs is presented. 
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Figure 9 Mean STD of the raw FCB series for all the 51 days. Daily STD is calculated for each 

satellite FCB series. For each day, the mean STD of all satellite daily STDs is presented. 

When comparing the results from multi-GNSS, it can be seen that the STDs of Galileo 

EWL/WL FCBs are smaller than those of GPS and BDS, while that of the Galileo NL FCB is 

worse than GPS and BDS. The better quality of Galileo EWL/WL FCBs is likely attributed to 

the multipath suppression of Galileo signals, while the worse quality of Galileo NL FCB is due 

to the poor precision of satellite orbit and clock product. From Figure 9, it is found that the 

STDs of Galileo raw FCBs are smaller than that of GPS and BDS, regardless of combinations 

for most of the days. The smaller STDs facilitate the prediction of FCBs, which indicates a 

promising future for real time applications. 

3.4. Triple-Frequency PPP AR 

In order to validate our FCB estimates, as well as to assess the performance of triple-

frequency PPP AR, 11 days from DoY 250 to 260 in 2017 of MGEX network stations were 

processed in static PPP AR mode. The 24 h observations were divided into eight three-hour 

sessions. The positional biases of BDS-only and Galileo-only PPP float solutions and AR 

solutions are presented in Figure 10 and 11. The positional biases are calculated with respect to 

the 24-h static GPS, Galileo, and BDS combined PPP solutions. The statistics of all the sessions 

in the 11 days are provided in Table 2. Note that the number of sessions for BDS is smaller than 

that of Galileo due to the regional BDS IGSO/MEO constellation.  

 

Figure 10 Convergence performance of BDS triple-frequency PPP float and AR solutions based 

on 804 3-h sessions under 68% confidence level. 
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Figure 11 Convergence performance of Galileo triple-frequency PPP float and AR solutions 

based on 5805 3-h sessions under 68% confidence level. 

It can be seen that the convergence time is significantly shortened by ambiguity resolution, 

especially for the east component. For Galileo triple-frequency observations, it takes 64.5 min 

for float solutions to converge to three-dimensional 10 cm accuracy, while that for AR solutions 

is only 56.0 min, corresponding to an improvement of 13.2%. For BDS triple-frequency 

observations, the corresponding numbers are 121.5 min, 97.0 min, and 20.2%, respectively. In 

addition, it can be seen that with the current constellation, the performance of Galileo already 

outperforms that of BDS, both in terms of float PPP and PPP AR.  

From Table 2, it can be seen that PPP ambiguity resolution was able to enhance the 

accuracy for all the three components. The improvements of (east, north, up) components for 

positioning with BDS are (49.2%, 38.3%, and 29.6%), while that for positioning with Galileo are 

(60.0%, 29.0%, and 21.1%). The performance of BDS is worse than that of Galileo for both float 

and AR solutions. The worse performance of the BDS solution is likely ascribed to the 

incomplete convergence, which is due to the IGSO/MEO constellation and the limited number 

of observable satellites.  

Table 2 Accuracy comparison of Galileo and BDS triple-frequency float and AR solutions (Unit: 

cm). 

System No. Solution East North Up 

BDS 804 

float 3.70 1.83 6.12 

AR 1.88 1.13 4.31 

Improv. 49.2% 38.3% 29.6% 

Galileo 5805 

float 2.15 1.00 2.99 

AR 0.86 0.71 2.36 

Improv. 60.0% 29.0% 21.1% 

The additional signals are expected to further enhance the performance of PPP AR, as has 

been discussed in previous research (Geng and Bock 2013; Gu et al. 2015a; Li et al. 2018). 

Therefore, we also conduct an experiment to investigate the benefit of the third frequency 

observations in addition to dual-frequency ones. The strategy is that the ambiguities of the 

dual-frequency observations, i.e., B1/B2 and E1/E5a, are resolved to integers, while the 

ambiguities from the third frequency observations are kept as float values. This is 

accomplished by deleting the third column and row of the matrix in Equation (10). Then the 

results are compared to that of resolving the ambiguities of all the three-carrier frequencies. It 

is found that the improvements of positional error and convergence time are minimal. The 

positional improvements for Galileo are 1.8%, 2.3%, and 1.7%, while that of BDS are 8.0%, 5.0%, 

and 7.8%, for east, north, and up components, respectively. The possible reason could be: (1) 

the third frequency observations coming from the same satellites as the dual-frequency 

observations, will not improve the geometry of satellites, i.e., the DOP value. Compared with 
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new observations from new satellites or other GNSS, its contribution to the model strength is 

insignificant; (2) the third carrier frequency E5b of Galileo is very close to the second one E5a, 

which implies the contribution of E5b is almost negligible when E1/E5a WL ambiguities are 

resolved. For BDS, the contribution of B3 is slightly larger than that of E5b, as its carrier 

frequency difference with respect to the B2 is larger; (3) the third frequency observations have 

been down-weighted due to lack of antenna corrections, which may also degrade the 

contribution of the third frequency.  

4. Conclusions 

A unified model for multi-frequency PPP AR based on raw uncombined observations is 

proposed, which simplifies the concept of phase biases for AR. No assumption is made on the 

method used to determine FCB on the server end, which implies that the generated FCB from 

multi-frequency observations could be flexibly used, such as for dual- or triple-frequency ones. 

It is demonstrated that the model is extendable to dual- and triple-frequency observations.  

To verify its efficiency, we processed 51 days of Galileo and BDS triple-frequency 

observations collected from globally distributed MGEX stations. The estimated FCB shows a 

good consistency with the input float ambiguities. The RMS of Galileo FCB residuals is 0.05 

cycles, while that of BDS is 0.08 cycles. It is also observed that the residuals are smaller for the 

combinations with larger wavelengths. The results indicate that there may exist ionospheric 

errors, and combinations are required to reduce its influence. The average STD of combined 

FCB is around 0.03 cycles, while that for raw FCB is around 0.10 cycles. To reduce the 

communication with servers for real time applications, it would be more efficient to broadcast 

linear combined FCB. The performance of triple-frequency PPP AR is assessed with 11 days of 

data in three-hour sessions. Compared with the float solutions, the positional biases of AR 

solutions are significantly improved. The improvements of ENU components for positioning 

with BDS are 49.2%, 38.3%, and 29.6%, while those for positioning with Galileo are 60.0%, 

29.0%, and 21.1%. These results demonstrate the efficiency of the proposed FCB estimation 

approach, and that the triple-frequency PPP AR can bring an obvious benefit to the float 

solution.  

When comparing triple-frequency PPP AR with that of dual-frequency, it is found that the 

contribution of the third frequency observations is minimal. The insignificant improvement of 

the third frequency observable may be due to its limited contribution to satellite geometry and 

the narrow deployment with respect to the second carrier frequency. Nevertheless, adding the 

third frequency increases the reliability since it is observed that the number of successful 

sessions is increased. The proposed model is also applicable to GPS triple-frequency 

observations, provided that the inter-frequency clock biases are accounted for, which will be 

investigated in the future. 
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Abstract GNSS undifferenced signal processing, in which the individual signal of each 

frequency is treated as independent observable, has drawn increasing interest in GNSS 

community. However, undifferenced signal processing brings new challenges for cycle slip 

detection and repair. One important feature is the carrier frequency identification of cycle 

slips since observations are processed separately. An analysis of real cycle slips in a BDS 

triple-frequency baseline dataset illustrates the deficiencies in the cycle slip detection process 

commonly implemented, in the case when cycle slips occur in just one specific carrier 

frequency. Hence, we propose an improved cycle slip detection and repair approach based 

on a time-differenced model. Two major advantages characterize this proposed approach. The 

first one is a significant reduction of false alarms due to carrier frequency identification of 

cycle slips. Having access to a reliable cycle slip detection method significantly reduces the 

number of ambiguity parameters to be estimated. The second advantage is the benefit of 

separating the OSS (Observation at the other frequency of Same Satellite without cycle slip) 

and OSE (Observation at the Same Epoch from other satellites without cycle slip) from the 

OCS (Observation with Cycle Slip). The simulation results indicate that separation of the OSS 

and OSE can significantly improve the model strength of cycle slip estimation, especially OSS. 

The proposed approach is validated by cycle slip estimation with a real data set. Smaller 

biases and larger ratio values jointly demonstrate that a much stronger model strength can be 

achieved. Finally, the cycle slip repair procedure is applied to triple-frequency PPP. The stable 

and fast convergence, as well as the reduction of standard deviations, proves the efficiency of 

the proposed approach.  

Keywords Cycle slip detection and repair · BDS triple-frequency measurements · Time-

differenced model · PPP 

1. Introduction 

Carrier phase measurements are essential for high-precision GNSS positioning, such as 

real-time kinematic (RTK) and precise point positioning (PPP), since they are much more 

accurate than pseudoranges. However, carrier phase measurements often suffer from cycle 

slips, which are discontinuities of phase ambiguity by an integer number of cycles. Such 

unexpected slips should be detected and repaired, if possible, before carrier phases are used as 

high-precision measurements.  

https://link.springer.com/article/10.1007%2Fs10291-017-0677-7
https://link.springer.com/
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In the past decades, the ionospheric-free (IF) combination is routinely employed in GNSS 

precise positioning. However, with emerging BDS and Galileo, as well as the modernization of 

GPS and GLONASS, various types of multi-frequency observables are available. Hence, the 

choice of optimum combinations becomes practically difficult given the diversity of equipment 

(Schönemann et al. 2011). Furthermore, the progress in ionospheric environment studies offers 

a priori knowledge on the ionospheric delay, notably accurate ionosphere correction models. 

This information cannot be employed due to the elimination of the ionospheric delay in the IF 

combination. In addition, the IF combination also amplifies the measurement noise by a factor 

of approx. 3, which degrades the performance of precise applications. As a result, a uniform 

solution, in which the individual signal of each frequency is treated as independent observable, 

has drawn increasing interest in the GNSS community. The efficiency of undifferenced signal 

processing has already been confirmed in terms of convergence and precision with multi-

system PPP (Chen et al. 2015), as well as PPP-RTK (Feng et al. 2013a; Odijk et al. 2016a). 

Moreover, this new approach has been tested effectively for ionospheric modelling (Tu et al. 

2013), Differential Code Bias estimation (Shi et al. 2016), and LEO orbit determination 

(Zehentner and Mayer-Gürr 2015).  

However, undifferenced signal processing brings new challenges for cycle slip detection. 

The most significant feature is carrier frequency identification of cycle slips. Since all carrier 

frequency observations are processed separately, it is essential to identify the carrier frequency 

of the cycle slips to avoid contaminating other observations. Figure 1 provides a picture of the 

problem at hand. In a conventional method, such as TurboEdit algorithm, all carrier 

frequencies are flagged as containing cycle slips even if there is only one carrier frequency 

suffering from a cycle slip.  

 

Figure 1 Ambiguities of B1, B2 and B3 carrier frequencies from PPP for rover (left) and 

reference station (right). The jumps indicate cycle slips, which clearly do not occur 

simultaneously on all carrier frequencies. 

Some algorithms dedicated to cycle slip detection/correction have been developed and 

implemented, which can be classified into three categories.  

The first category contains methods based on time series analysis of GNSS observations. 

Cycle slips can be characterized as discontinuities in a smooth signal, i.e. in a signal that can be 

reasonably modeled by a multiple polynomial regression. A typical example for dual-

frequency approaches is the TurboEdit algorithm, which makes use of the HMW linear 

combination (Hatch 1983; Melbourne 1985a; Wübbena 1985b) together with ionospheric 

residual combinations. A few modifications to the TurboEdit algorithm have been studied to 

further strengthen the cycle slip detection/correction under high sampling rate data (Cai et al. 

2013b) and high ionospheric activity (Liu 2011b). Bayesian theory is also applied for the 

detection of cycle slips and outliers ((de Lacy et al. 2008). To deal with the small cycle slips in 



 

89 

BDS GEO observations, Ju et al. (2017) propose a robust polynomial fit algorithm to provide an 

adaptive detection threshold. However, these methods require several minutes of continuous 

phase data before and after a cycle slip in order to satisfy the criteria for phase connection 

(Huang et al. 2016). Thus, they are not suitable for real-time applications.  

The second category includes methods based on optimal combinations of multi-frequency 

observations. The most popular approach is to form linear combinations of observations or 

parameters to mitigate the presence of some error sources, such as geometric or ionospheric 

errors. (Dai et al. 2009) employed two geometry-free combinations of triple-frequency carrier 

phase measurements to detect and determine cycle slips. (Wu et al. 2010b) also used triple-

frequency carrier phase combinations to detect and repair cycle slips. (de Lacy et al. 2012) 

defined more than five types of linear combinations of triple-frequency GNSS observations to 

detect and correct cycle slips in real time. (Zhao et al. 2015a) presented a real-time cycle slip 

detection and repair method based on independent linear combinations of undifferenced 

triple-frequency GNSS observations. However, a common characteristic of the above-

mentioned triple-frequency methods is the forming of optimal combinations to mitigate the 

presence of geometric and ionospheric errors, which makes it impossible to identify the carrier 

frequency affected by a cycle slip. 

The third category consists of methods relying on geometry-based and time-differenced 

models. The dual-frequency cycle slip correction method based on a time-differenced model 

has been investigated by (Banville and Langley 2013) and (Xiaohong and Xingxing 2012). 

(Zhang and Li 2015) extended this method to deal with triple-frequency observations and 

analyzed the benefit of a third frequency. In their model, time difference observation equations 

are formed between two consecutive epochs and all satellite equations are processed in an 

integrated adjustment showing great potential for carrier frequency identification of cycle slips. 

However, the routine process is to flag all carrier frequencies as containing cycle slips when a 

discontinuity is detected for one satellite (Banville and Langley 2013). None of the above 

publications have exploited the carrier frequency identification of cycle slips and analyzed the 

benefit. 

The review of existing cycle slip detection and repair methods reveals that most 

approaches lack proper handling of carrier frequency identification of cycle slips. Given the 

characteristics of GNSS positioning based on undifferenced measurements, a sophisticated 

cycle slip detection and repair approach should possess the following properties: (1) Practical 

for both real-time and post-processing applications. (2) Applicable to all GNSS and flexible 

with respect to frequency (dual frequency, triple frequency, even single-frequency). (3) Capable 

of frequency identification of cycle slip. (4) Robust against measurement noise. Taking these 

aspects into account, we extend the time-differenced model, with an emphasis on carrier 

frequency identification of cycle slips and the benefit for cycle slip estimation. 

The following section describes the mathematical model used to detect and estimate cycle 

slips. Then the benefit of carrier frequency identification for cycle slip correction is analyzed 

based on a simulation study and numerical experiments. The cycle slips in a real baseline 

dataset are analyzed. In addition, the performance of different methods is assessed based on 

triple-frequency uncombined PPP. Finally, the methodology described in this study is 

summarized, and an outlook for future research is presented. 

2. Methodology 

As pointed out in the introduction, most existing cycle slip detection approaches for 

undifferenced observations assume that cycle slips occur on all frequencies simultaneously. 

When not all frequencies are affected by cycle slips simultaneously, such approaches may lead 

to numerous false alarms. Although the results presented here are based on BDS, this 
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phenomenon also exists in other GNSS (e.g., GPS, GLONASS). For this reason, a general 

improved algorithm is described in detail.  

2.1 Time-differenced model for cycle slip detection 

The functional model of pseudorange and carrier phase observation can be formulated as 

follows (Banville and Langley 2013; Zhang and Li 2015): 

{
𝑃𝑖
𝑗
= 𝜌 + 𝑎𝑖𝐼1

𝑗
+ 𝑑𝑡𝑟 − 𝑑𝑡

𝑗 + 𝐷𝑖 − 𝐷
𝑗 + 𝑑𝑇 + 𝜀𝑃               

𝛷𝑖
𝑗
= 𝜌 − 𝑎𝑖𝐼1

𝑗
+ 𝑑𝑡𝑟 − 𝑑𝑡

𝑗 + 𝑑𝑇 + 𝜆𝑖(𝑁𝑖
𝑗
+ 𝑏𝑖 − 𝑏

𝑗)+𝜀𝛷
                  (1) 

where the subscript 𝑖 = (1,2,3) refers to a specific frequency, superscript 𝑗 refers to a specific 

satellite; 𝜌  denotes the range between receiver antenna and the phase center of satellite, 

including displacements due to earth tides, ocean loading, and relativistic effects; 𝑑𝑡𝑗 and 𝑑𝑡𝑟 

are the clock offsets of satellite 𝑗 and receiver r respectively; 𝑎𝑖 is a constant= 𝑓1
2 𝑓𝑖

2⁄ ; 𝐼1
𝑗
 is the 

slant ionospheric delay on the 𝐵1  frequency of satellite 𝑗 ; 𝐷𝑖  is the receiver hardware code 

delay; 𝐷𝑗  is satellite hardware code delay; 𝑑𝑇 is the slant tropospheric delay; 𝜆𝑖 and 𝑁𝑖
𝑗 are the 

wavelength of the signal and the integer ambiguity in cycles; 𝑏𝑖  and 𝑏𝑗are the receiver and 

satellite uncalibrated hardware phase delays at frequency 𝑖  and satellite 𝑗 ; 𝜀𝑃 , 𝜀𝛷  are the 

pseudorange and carrier phase measurement noise. Among the errors in (1), the effects of phase 

center offsets (PCO) and phase center variations (PCV) at satellite and receiver antenna, as well 

as phase windup, can be calculated using existing correction models. The corrections 𝑑𝑡𝑗 and 

𝑑𝑇 can be modeled using external information such as precise clock products and tropospheric 

models. Differencing the observations with respect to time, which eliminates the effects of 

constant or slowly varying parameters, i.e. code instrumental biases, uncalibrated phase delays 

and wet component of tropospheric delay, a geometry-based and time-differenced model is 

formulated as： 

{
∆𝑃̌𝑖

𝑗
= ∆𝜌 + ∆𝑑𝑡𝑟 + 𝑎𝑖∆𝐼1

𝑗
+ ∆𝜀𝑃               

∆𝛷̌𝑖
𝑗
= ∆𝜌 + ∆𝑑𝑡𝑟 − 𝑎𝑖∆𝐼1

𝑗
+𝜆𝑖∆𝑁𝑖

𝑗
+ ∆𝜀𝛷

                                         (2) 

where ∆𝑃̌𝑖
𝑗  and ∆𝛷̌𝑖

𝑗  refer to the time-differenced pseudorange and phase observations 

corrected for the above mentioned errors. ∆𝜌  denotes the change in distance between two 

adjacent epochs. ∆𝑑𝑡𝑟 is the receiver clock offset variation and ∆𝐼1
𝑗 is the slant ionospheric delay 

variation on the 𝐵1 frequency of satellite 𝑗. 

The variation of the ambiguity parameter ∆𝑁𝑖
𝑗 is zero for continuous observations, while 

it is an integer number when a cycle slip occurs. With the application of elevation-dependent 

weighting methods, a least-squares adjustment using observations from multiple satellites 

allows an estimation of the parameters above (Zhang and Li 2015). Assuming there are  𝑘 

observable satellites with 𝑚  frequency signals tracked by a GNSS receiver, the system of 

equations involved can be defined as: 

𝐸{𝐿} = 𝐴𝑥𝑛𝑜𝑛_𝑑𝑖𝑠 + 𝐵𝑥𝑖𝑜𝑛  , 𝐷{𝐿} = 𝑄𝐿                                               (3) 

where  𝑥𝑛𝑜𝑛_𝑑𝑖𝑠 = [∆𝑑𝑡𝑟]
𝑇 in the case of a static receiver and 𝑥𝑛𝑜𝑛_𝑑𝑖𝑠 = [∆𝑥 ∆𝑦 ∆𝑧 ∆𝑑𝑡𝑟]

𝑇 in 

case of a moving receiver,  𝑥𝑖𝑜𝑛 = [∆𝐼1
1 ⋯ ∆𝐼1

𝑘] , and  𝐿 =

[∆𝑃̌1
1 ∆𝛷̌1

1 ⋯ ∆𝑃̌𝑚
1 ∆𝛷̌𝑚

1 ⋯ ∆𝑃̌𝑚
𝑘 ∆𝛷̌𝑚

𝑘 ]𝑇. The parameters in (3) have been divided into 

two groups representing non-dispersive 𝑥𝑛𝑜𝑛_𝑑𝑖𝑠 and dispersive effects 𝑥𝑖𝑜𝑛 . The design matrix 

𝐴 and 𝐵 can easily be obtained by computing the partial derivatives of (2) with respect to the 

estimated parameters.  𝑄𝐿  is a diagonal elevation-dependent weight matrix assuming that 

temporal correlations between related epochs have been neglected. If external information 

regarding the ionosphere is available, a vector of pseudo-observations can be added to the 

system (Banville and Langley 2013). 



 

91 

Cycle slips can be detected by assessing the consistency of this solution and examining the 

residuals of the adjustment. Testing of the residuals can be accomplished by computing the 

normalized residuals and verifying if they exceed a predefined threshold (Baarda 1968): 

𝑉 =
|𝑣𝑖𝑗|

𝜎𝑣𝑖𝑗
> 𝜂                                                                                (4) 

where 𝑣𝑖𝑗  represents the estimated residual of the 𝑖𝑡ℎ  measurement of satellite 𝑗 ; 𝜎𝑣𝑖𝑗  is its 

precision and 𝜂 is the threshold value from the standard normal distribution. The observation 

with the largest normalized residual exceeding the threshold is then discarded from the 

adjustment and iterations are performed until the test of (4) is passed for all observations or 

there is no further redundancy. Readers are kindly referred to Teunissen (2010) for details. 

In contrast, the most popular approaches to cycle slip detection are to form linear 

combinations of observations to mitigate the presence of some error sources, such as geometric 

errors (e.g. 𝑥𝑛𝑜𝑛_𝑑𝑖𝑠) or ionospheric errors (e.g. 𝑥𝑖𝑜𝑛). Then cycle slip detection can be achieved 

by examining the continuities of new combinations. The time-differenced model constitutes 

two clear advantages over combination-dependent methods. First, the time-differenced model 

allows identification of the exact carrier frequency at which the cycle slip occurs since it treats 

the signals of each carrier frequency as independent observables. Identifying cycle slips with 

combination-dependent approaches, however, entails that all frequencies are tagged even if 

only one frequency suffers from cycle slip event. This property is beneficial for precise GNSS 

positioning based on undifferenced measurements. For example, in the “detect-reset” model, 

only the ambiguity parameters from a specific carrier frequency are reset instead of resetting 

all ambiguity parameters. The reduction of ambiguity parameters can result in a faster and 

more stable solution. Second, using the time-differenced model allows separating the OSS 

(Observation at other frequency of Same Satellite without cycle slip) and OSE (Observation of 

Same Epoch from other satellites without cycle slip) from the OCS (Observation with Cycle 

Slip), thus the benefits of OSSs and OSEs can be fully exploited for the estimation of cycle slip. 

2.2 Improved model for cycle slip estimation 

Compared to the “detect-reset” model, a more ambitious approach of handling cycle slips 

is to estimate and correct the discontinuities in carrier phase, denoted as “detect-repair” model 

in this study. In order to take full advantage of the precision of carrier phase observations, once 

cycle slips are detected, the next step consists of estimating the size of the discontinuities. In 

the combination-dependent method, three independent combinations are employed to resolve 

the cycle slip parameters. This is typically done by a transformation matrix. It can be 

demonstrated, however, that those transformations will not improve the cycle slip estimation. 

Hence, using linear combinations, such as the Extra-Wide-Lane and Wide-Lane, will have no 

impact on the cycle slip estimation process (Banville and Langley 2013). In our approach, the 

float estimates are derived by the solution of the equations： 

𝐸{𝐿} = 𝐴𝑥𝑛𝑜𝑛_𝑑𝑖𝑠 + 𝐵𝑥𝑖𝑜𝑛 + 𝐶∆𝑁 , 𝐷{𝐿} = 𝑄𝐿                                           (5) 

where ∆𝑁  refers to the cycle slip parameters. Based on the analysis in the above sections, 

equation (5) can also be divided into three groups:   

{

𝑂𝐶𝑆: 𝐿𝑂𝐶𝑆 = 𝐴1𝑥𝑛𝑜𝑛_𝑑𝑖𝑠 + 𝐵1𝑥𝑖𝑜𝑛
1 + 𝐶∆𝑁

𝑂𝑆𝑆: 𝐿𝑂𝑆𝑆 = 𝐴2𝑥𝑛𝑜𝑛_𝑑𝑖𝑠 + 𝐵2𝑥𝑖𝑜𝑛
1

𝑂𝑆𝐸: 𝐿𝑂𝑆𝐸 = 𝐴3𝑥𝑛𝑜𝑛_𝑑𝑖𝑠                  + 𝐵3𝑥𝑖𝑜𝑛
2

                                             (6) 

For simplification, assuming there is a cycle slip detected at B1 frequency of the first satellite at 

a static receiver, the improved model for cycle slip estimation can be formulated as: 
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𝐸{𝐿} =

[
 
 
 
 
 
 
 
 
 
 
 𝑂𝐶𝑆 {
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1

𝑂𝑆𝑆 {
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1
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0
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𝑎1
−𝑎1
⋮
⋮
𝑎𝑚
−𝑎𝑚

|

|

|

0
1
0
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
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∆𝑑𝑡𝑟
∆𝐼1

1

⋮
∆𝐼1

𝑘

∆𝑁 ]
 
 
 
 

 ,  𝐷{𝐿} = 𝑄𝐿                (7) 

It can be seen that the unbiased float estimates of ∆𝑁 can only be achieved through careful 

modeling and estimation of the two parameter groups (𝑥𝑛𝑜𝑛_𝑑𝑖𝑠  and 𝑥𝑖𝑜𝑛
1 ). For estimating 

𝑥𝑛𝑜𝑛_𝑑𝑖𝑠, both OSS and OSE equations are beneficial since they have the parameter 𝑥𝑛𝑜𝑛_𝑑𝑖𝑠 in 

common with the OCS equations. When a receiver maintains lock on most satellites between 

the epochs, this parameter typically can be modeled with a precision of a few millimeters for 

static receivers or centimeters for moving receivers (Banville and Langley 2013). This 

advantage is not available for combination-dependent methods because the non-dispersive 

effect has been removed by forming linear combinations. 

While 𝑥𝑛𝑜𝑛_𝑑𝑖𝑠 is shared by all satellite observations (OSSs, OSEs), the parameter 𝑥𝑖𝑜𝑛
1  in the 

OCS equation is only shared in the observations of the same satellite (OSSs). This characteristic 

makes OSSs more critical than OSEs. If the OSS equations can be precisely solved, 𝑥𝑖𝑜𝑛
1  can be 

achieved with phase-noise level precision, then the only parameter left in the OCS equations is 

the cycle slip parameter. With the precise modeling of 𝑥𝑛𝑜𝑛_𝑑𝑖𝑠 and 𝑥𝑖𝑜𝑛
1 , it is easy to obtain cycle 

slip parameters with high precision. This procedure of obtaining the precise ionospheric delay 

variation constitutes a clear advantage over a priori constraints (Banville and Langley 2013; 

Zhang and Li 2015). Due to the capability of carrier frequency identification of cycle slips, the 

promising benefits of separating the OSS and OSE will motive high accuracy in cycle slip 

estimation. The benefits of OSSs and OSEs on the model strength are demonstrated in the 

following section. 

Once the integer cycle slips are computed, they need to be validated before the repair 

procedure. The ambiguity dilution of precision (ADOP) based success rate provides a good 

approximation to the integer least-squares (ILS) success rate (Verhagen 2005). Therefore, the 

following approximation is applied (Zhang and Li 2015): 

𝑃𝐼𝐿𝑆 ≈ 𝑃𝐴𝐷𝑂𝑃 = [2𝛷 (
1

2𝐴𝐷𝑂𝑃
) − 1]

𝑛

                                              (8) 

where 𝐴𝐷𝑂𝑃 = √|𝑄𝑎̂|
2n

，𝛷(𝑥) =
1

√2𝜋
∫ 𝑒𝑥𝑝 {−

1

2
𝑣2} 𝑑𝑣

𝑥

−∞
，|∙| is the determinant operator，𝑄𝑎̂ is 

the variance-covariance matrix, and 𝑛 is the dimension of 𝑄𝑎̂. For practical applications, the 

ratio test is frequently applied to assess the closeness of the float solution to its nearest integer 

vector (Frei and Beutler 1990). Therefore, the ratio test is also applied to validate the integer 

cycle slip estimation. 

3. Benefits of OSS and OSE 

In this section, we investigate the impacts of OSSs and OSEs on the model strength of cycle 

slip estimation by a simulation study. For the purpose of simulations, the following geometry-

weighted model (Banville and Langley 2013; Zhang and Li 2015) is used. A few modifications, 

e.g. excluding the external constraints regarding the range and ionosphere, have been made to 

draw a clear distinction between internal and external information: 
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𝐸{𝑦} = 𝐸

{
 
 

 
 
∆𝑃1
⋮

∆𝑃𝑚
∆𝛷1
⋮

∆𝛷𝑚}
 
 

 
 

=

[
 
 
 
 
 
1 𝑎1 0 ⋯ 0
⋮ ⋮ ⋮ ⋯ ⋮
1 𝑎𝑚 0 ⋯ 0
1 −𝑎1 1 ⋯ 0
⋮ ⋮ 0 ⋯ 0
1 −𝑎𝑚 0 ⋯ 1]

 
 
 
 
 

[
 
 
 
 
∆𝜌
∆𝐼1
∆𝑁1
⋮

∆𝑁𝑚]
 
 
 
 

 , 𝐷{𝑦} = 𝑄𝑦                     (9) 

where 𝑚 = 2,3  indicates dual- and triple-frequency observations. 𝑄𝑦  is a diagonal matrix 

reflecting pseudorange noise 𝜎𝑃 and phase noise 𝜎𝛷. The parameter ∆𝜌 which absorbs ∆𝑑𝑡𝑟 is 

estimated rather than the receiver displacement. Denoting the coefficient matrix in (9) by A, 

the covariance matrix 𝑄𝑥 is given as: 

𝑄𝑥 = [𝐴𝑇𝑄𝑦
−1𝐴]

−1
                                                                  (10) 

The variance-covariance matrix of the cycle slip estimates 𝑄𝑁̂  can be derived from 𝑄𝑥 . In 

combination with (8), the ADOP-based success rate as function of a priori standard deviation 

in pseudorange and phase is investigated. Different cases are taken into consideration in case 

of potential poor quality of measurements. 

3.1 Benefits of OSS 

To investigate the impact of OSSs on the model strength, we assume that a cycle slip occurs 

only in the first carrier frequency for single satellite processing. This assumption implies that 

there are one and two OSS for the dual- and triple-frequency models, respectively. Figure 2 

illustrates the ADOP-based success rate of dual- and triple-frequency models as function of a 

priori standard deviation in pseudorange and phase. Note that the phase standard deviation 

𝜎𝛷 varies from 1 mm to 1 dm while the code standard deviation 𝜎𝑃 varies from 1 dm to 3.0 m. 

And “routine model” denotes the time-differenced model presented by Banville and Langley 

2013; Zhang and Li 2015, while the “improved model” represents our proposed approach. 

 

Figure 2 ADOP-based success rates of dual-frequency (left) and triple-frequency (right) 

models. The yellow surface represents the routine time-differenced model, while the blue and 

green ones represent the improved models for dual- and triple-frequency, respectively. 

Figure 2 shows that the OSS has a significant impact on the ADOP-based success rate of 

dual and triple-frequency cycle slip estimation. The average success rate increases from 1.4 to 

36.9% for dual-frequency and from 3.8 to 58.4% for triple-frequency models. When the standard 

deviations of code and phase observations are set to 3 dm and 1 mm respectively, the specific 

success rate increases from 8.1 to 95.8% for the dual-frequency model. The enormous increase 

shows that the OSS makes a significant contribution to improving the model strength of cycle 

slip estimation. It can be ascribed to the tight constraint for the ionospheric delay variation 

using precise OSS equations, while the constraint in the routine model is stemming from code 
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measurements or previous epochs. In contrast to dual-frequency observations, the 

improvement for the triple-frequency model is only 7.3% (from 92.6 to 99.9%). This is 

reasonable since adding the third frequency already significantly improves the model strength. 

Thus the original success rate is relatively high and leaves narrow space for improvement.  

In addition, it should be mentioned that the success rate decreases rapidly as code and 

phase noise increases for both models. Reliable cycle slip estimation (defined here as success 

rate > 99%) would be quickly impossible, which indicates that both code and phase noise are 

crucial for the cycle slip estimation. However, a better performance of the improved algorithm 

can still be observed. The gradient of decrease is much smaller, which indicates that the 

improved method is more efficient when pseudorange and phase noise are high. Therefore, it 

is possible to tolerate a larger uncertainty in the measurement noise, especially the code noise. 

3.2 Benefits of OSE 

To investigate the impact of OSEs on the model strength and to avoid the impact of OSSs, 

we assume that cycle slips occur in all carrier frequencies of one satellite. If (n+1) satellites are 

observed in one epoch, then 2n and 3n OSEs are available for dual- and triple-frequency cycle 

slip estimation, respectively.  

 

Figure 3 ADOP-based success rates of dual-frequency (left) and triple-frequency (right) 

observations. The yellow surface represents satellite-by-satellite processing, while the blue and 

red ones represent the usage of 2 and 10 satellites, respectively. 

From Figure 3, we can see that the OSE also has a clear impact on the ADOP-based success 

rate. The average success rate in the dual-frequency case increases by 15.4% when adding an 

extra OSE. However, the gradient of increment would decrease rapidly when more OSEs are 

applied, for example an increase of only 5.2% is observed for 8 additional OSE. The same 

phenomenon can be observed for triple-frequency observations. The possible reason is: OSEs 

and OCSs share only one common parameter ∆𝜌. Only by improving the estimation of ∆𝜌, can 

a OSE improve the cycle slip estimation. Thus, a remarkable improvement for ∆𝜌 estimation 

can be achieved when adding the first OSE. However, when a highly precise estimation of ∆𝜌 

is already available, the contribution of adding more OSEs would not be as significant as the 

first one. 

Note that the benefit of OSEs is not as significant as that of OSSs. Precise OSSs could not 

only improve the estimation of ∆𝜌 but also of ∆𝐼. Therefore, OSSs affect the cycle slip estimation 

more than OSEs.  

3.3 Joint benefits of OSS and OSE 
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The joint benefits of OSSs and OSEs are presented under the assumption that only the first 

carrier frequency from the first satellite suffers from a cycle slip among all 10 observable 

satellites.  

 

Figure 4 ADOP-based success rates of dual-frequency (left) and triple-frequency (right) 

observations. The yellow surface represents the routine time-differenced model, while the 

green one represents the improved algorithm with joint application of OSSs and OSEs. 

Table 1 Average ADOP-based success rates of all noise conditions and the normal noise 

conditions  

Nos. of satellites 

Nos. of frequencies 

Average (𝜎𝛷 =1 mm,  𝜎𝑃 =3 dm) 

1 2 10 1 2 10 

Dual-frequency 1.4 77.8 84.6 8.1 99.9 99.9 

Triple-frequency 3.8 80.8 86.4 92.6 99.9 99.9 

From Figure 4 and Table 1 we can see that the joint application of OSSs and OSEs has the 

strongest contribution to cycle slip estimation, especially for dual-frequency data. When 

routine methods are applied, it is practically impossible to reliably fix cycle slips for dual-

frequency observations, while the success rate increases to 99.99% when the improved method 

is applied, even comparable with the triple-frequency. It is worth mentioning that the success 

rate decreases very slowly as the code noise increases, which indicates that the improved 

method is capable of handling noisy code measurements. 

4. Results, comparison, and analysis 

A static baseline dataset was collected by two dual-system (GPS/BDS) penta-frequency 

(GPS-L1/L2, BDS-B1/B2/B3) receivers from Beijing Unicore Communications Incorporation on 

November 20, 2013. The observations were collected from 02:56:47 to 06:56:51 for the rover 

station and from 02:49:50 to 10:20:57 for the reference station with a distance of 5 m. It should 

be noted that we processed the data of the two stations separately with PPP although they were 

collected for RTK solution. The original observations with 1 s interval were resampled to 30 s 

in accordance withcommon practice. Totally, 480 epochs were inspected from 02:57:00 to 

06:56:30. Frequent cycle slips occur in this dataset. The BDS satellite elevations are shown in 

Figure 5. It can be seen that the elevation of the C04 satellite is relatively low (about 25 degrees) 

and a quick increment of the C12 satellite elevation from 15 to 52 degrees appears in two hours. 

The low elevation may introduce noisy measurements, which is an unfavorable situation for 

cycle slip detection and correction.  
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Figure 5 Satellite elevations of the baseline dataset 

4.1 Cycle slip detection  

Comparing Figure 6 and Figure 7, one can easily note that a significant reduction of false 

alarms is achieved by the improved algorithm, particularly during the low-elevation part of 

C12 satellite for both stations. There are only 40 and 44 epochs detected with cycle slips by the 

improved algorithm for the rover and reference station respectively, compared with 127 and 

138 epochs in the combination-dependent method. Most of the false alarms can be ascribed to 

the noisy measurements, for example due to the low satellite elevation of C12 at the start of the 

time series. In contrast, the improved algorithm can mitigate the impact of noisy measurements 

by applying elevation-dependent weighting when processing all satellite observations 

together. 

 

Figure 6 Results of cycle slip detection for rover (left) and reference stations (right) using 

geometry-free combinations (1, 1, -2) and (1, -2, 1) (Wu et al. 2010b; Zhen et al. 2008). Red 

triangle, green square, and blue inverted triangle represent B1, B2 and B3 carrier frequency 

observations, respectively. 
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Figure 7 Results of cycle slip detection for rover (left) and reference (right) stations using the 

improved algorithm. 

Furthermore, among the 40 and 44 epochs which suffer from cycle slips, only one epoch 

is affected by cycle slips in two satellites simultaneously. None of the other epochs suffers from 

cycle slips on more than one satellite, which clearly illustrates the benefit which can be achieved 

by OSEs. It is suboptimal to form linear combinations of observations and processing the data 

on a satellite-by-satellite basis. Among all epochs with detected cycle slips, only two epochs for 

the rover station and one epoch for the reference station suffer from cycle slips for all three 

carrier frequencies, which indicates that the benefit of OSSs could be achieved for most 

situations.  

Besides, cycle slips are detected using both methods at five consecutive epochs from 

3:36:30 to 3:38:30 of C02 for both rover and reference stations. After a detailed quality check of 

these observations, the discontinuities were attributed to system errors. This also provides a 

good opportunity to test the effectiveness of the validation procedure. Due to the capability of 

carrier frequency identification of cycle slips, the promising results of separating the OSS and 

OSE will motivate the high accuracy of cycle slip estimation, which is described in the next 

subsection. 

4.2 Cycle slip estimation 

As stated in the second section, instead of flagging all frequencies as containing cycle slips, 

only cycle slip parameters on the affected frequency are estimated to fully exploit the 

advantage of OSSs and OSEs. Figure 8 presents the estimated magnitude of cycle slips for rover 

and reference stations, respectively.  
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Figure 8 Magnitude of real cycle slips in rover (left) and reference (right) station data. 

It can be seen that all cycle slip estimations are close to integer values. Besides, the 

improved algorithm shows great potential in dealing with various kinds of cycle slips: small 

cycle slips (e.g. one cycle), cycle slips occurring on two satellites simultaneously, and successive 

cycle slips at adjacent epochs. 

In order to demonstrate the improvement, the routine time-difference method denoted as 

scheme 1 and the improved algorithm denoted as scheme 2 are implemented. Figure 9 and 

Figure 10 present the estimated biases with respect to the true amplitudes and ratio values for 

the above two schemes.  

 

Figure 9 Biases of cycle slip estimations for rover (left) and reference (left) station. Blue and red 

lines represent Scheme 1 (routine time-difference method) and Scheme 2 (improved 

algorithm), while the green line denotes the epochs with false alarms.  
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Figure 10 Ratio values for rover (left) and reference (left) station. 

Compared with the true amplitudes, the estimated biases of the improved algorithm are 

usually below 0.025 cycles, while they are about 0.05 cycles for the routine time-difference 

method. The closeness of the float solution makes it easier to fix the correct integers. This can 

be further illustrated by the ratio values (Figure 10). The mean values of the ratios derived by 

the improved algorithm are 202935 and 926307 for rover and reference stations respectively, 

while the values are 903 and 1530 derived from the routine time-differenced method. Ratio 

values related to the improved algorithm are much larger, which indicates a more reliable cycle 

slip resolution.  

The epochs with false alarms can easily be distinguished since all ratio values are below 

the threshold of 3. These false alarms in return proved the correctness of the developed cycle 

slip validation procedure. An exception can be seen at 5:02:30 at the reference station where the 

bias of Scheme 2 is larger compared to Scheme 1. As mentioned before, a quick elevation 

increment can be observed at C12 and this cycle slip occurred immediately at the beginning of 

the observation period of C12. Noisy measurements introduced by low satellite elevations may 

contaminate the estimation. Nevertheless, the magnitude of the bias is too small to affect 

achieving correct cycle slip integer values.  

It is worth mentioning that the cycle slip estimations of the two methods are the same at 

epochs where all three frequencies suffer from cycle slips, for example at 5:35:30 and 6:36:00 for 

rover station, 5:35:30 for reference station. The reason is that there is no OSS if all carrier 

frequencies suffer from cycle slips, under this situation the improved algorithm is equivalent 

to the routine time-difference method, but still shows a clear advantage over the combination-

dependent method. 

These results show that much stronger model strength of cycle slip estimation can be 

achieved by separating OCS from OSS and OSE, which is consistent with the theoretical 

simulation.  

4.3 Cycle slip repair for PPP 

The dataset is processed by a modified version of RTKLIB (Takasu 2010) to test the 

effectiveness of the improved algorithm. The modifications comprise PPP processing based on 

undifferenced triple-frequency observations, the proposed algorithm, the multi-frequency 

combination method (Wu et al. 2010b; Zhen et al. 2008), as well as the time-difference method 

(Banville and Langley 2013; Zhang and Li 2015). 

Errors are corrected using the IGS standard error model (Kouba 2009), except for 

differential code bias (DCB) and PCO/PCV. Triple-frequency DCB biases are corrected by 

employing the CODE MEGX-DCB products (Guo et al. 2015). Second, empirical values are used 

for BDS satellite PCO corrections. Since the receiver PCO and PCV are not available, they are 
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neglected. Considering that these terms are stable over short time interval, the proposed time-

difference solution cancels their effects. The estimation of cycle slips could, therefore, be carried 

out without loss of performance. For BDS-PPP data processing, the precise products of satellite 

orbits and clocks are employed (Zhao et al. 2013). The observations are weighted according to 

the satellite elevation, with cutoff angle set to 15 degrees. The parameters including position, 

tropospheric zenith wet delay, receiver clock and ambiguities are estimated in a Kalman filter. 

The critical ratio values and ADOP-based success rates are chosen to be 3.0 and 0.99, 

respectively. 

Three schemes are applied to the PPP software to investigate the positioning accuracy. 

The “MF detect” and “New detect” schemes represent cycle slip detection methods using 

multi-frequency combinations and the improved algorithm described in this study 

respectively, where no cycle slip repair procedure is attempted to emphasize the benefit of the 

proposed detection procedure. In the “Repair” scheme, the cycle slip estimation and correction 

procedure is applied. 

 

Figure 11 Time series of NEU coordinate biases of three schemes for rover (left) and reference 

(right) station 

 

Figure 12 NEU coordinate standard deviations of three schemes for rover (left) and reference 

(right) stations 
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As shown in Figure 11, the time series of NEU coordinate biases derived by the “New 

Detect” approach exhibit smaller variations and faster convergence than those obtained by “MF 

Detect”. The advantage can also be seen from Figure 12, where the standard deviations of NEU 

coordinate biases derived by the “New Detect” approach decreased by 43%, 35%, 40% for the 

rover station, and 20%, 28%, 38% for the reference station, respectively. The better performance 

can be ascribed to the significant reduction in the number of ambiguity parameters achieved 

by the new algorithm. Based on the results of cycle slip detection, 252 ambiguity parameters 

need to be reset in the combination-dependent method while the number is reduced by 

approximately 64%, to only 91 for the “New Detect” approach. Having access to a reliable cycle 

slip detection method greatly reduces the number of ambiguity parameters to be estimated 

when processing GNSS undifferenced observations. 

It should be noted that the improvement in convergence for the reference station is more 

remarkable than for the rover station. This can be ascribed to the larger occurrence rate of cycle 

slips for the reference station at the start time compared with rare cycle slips for the rover 

station (Figure 7). As the number of cycle slips increases, more false alarms appeared in the 

“MF Detect” scheme, while the “New Detect” approach can robustly identify the carrier 

frequency of the cycle slip. 

The best performance of the three schemes can be achieved by cycle slip correction. After 

repairing cycle slips, the standard deviations decreased by 48%, 49%, 54% for rover station, and 

by 43%, 41%, 40% for reference station respectively, compared with the “MF detect” scheme. 

With the precise estimation of cycle slips and a rigorous ratio test, cycle slips are carefully 

repaired, and the stability of the NEU coordinate bias proved the correctness of cycle slip 

estimation in return. 

5. Conclusions 

The analysis of real cycle slips in observed data clearly illustrates the deficiencies in the 

cycle slip detection process commonly implemented. In the dataset collected by two receivers, 

most cycle slips occur in just one specific carrier frequency. Under this circumstance the 

commonly applied combination-dependent methods of cycle slip detection, which are 

incapable of carrier frequency identification of cycle slips, flag all frequencies as containing 

cycle slips. Hence, we presented an improved approach based on a time-differenced model for 

cycle slip detection and repair. For cycle slip detection, the proposed approach significantly 

reduces false alarms. Having access to a reliable cycle slip detection method greatly reduces 

the number of ambiguity parameters to be estimated for processing undifferenced GNSS 

measurements. Compared with the routine time-differenced methods, the proposed approach 

can not only identify the carrier frequency in which the cycle slip occurs, but also makes it 

possible to separate the OSSs and OSEs, which greatly contribute to cycle slip estimations. The 

simulation results show that the theoretical success rates increase to 99.99% for both dual and 

triple frequency observations. Results from a real dataset also indicate that much stronger 

model strength of cycle slip estimation can be achieved.  

Although the method is mainly applied to and validated with BDS triple-frequency 

observations, it is easily applicable to dual-frequency and even single-frequency observations 

for all GNSS, as long as phase redundancy is available. It is also applicable to GNSS positioning 

based on both combinations and undifferenced measurements. Further analysis on the 

occurrence and types of cycle slips in GNSS observations in the IGS network will be 

investigated in future. 
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