
Quality-driven Reuse of Model-based
So�ware Architecture Elements

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Axel Busch

aus Pirmasens

Tag der mündlichen Prüfung: 13. Juni 2019

Erster Gutachter: Prof. Dr.-Ing. Anne Koziolek

Zweiter Gutachter: Prof. Dr. Sebastian Abeck

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 Inter-

national License (CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

https://creativecommons.org/licenses/by-sa/4.0/deed.en

Abstract

In modern software development processes, existing components or libraries are increas-

ingly being used for the implementation of standard functionalities. Functionalities that

can be widely used in di�erent systems do not have to be re-developed from scratch.

Reuse of functionalities through software components or even complex partial systems,

i.e. subsystems, leads to e�cient development and higher-quality software.

Due to a multitude of similar solutions for the same functionality, however, software

architects often have to decide which solutions they should select and how the con�gura-

tion in the architecture to be designed best �ts the requirements of the whole software

system. Subsystems often provide a multitude of higher level functions, i.e. the software

features that lead to unclear e�ects on the quality attributes (e.g. performance) of the target

software architecture. Particularly at design time or when new functionality is required, it

is unclear whether the quality requirements of the overall system can be met by using a

certain feature.

Quality requirements are often operationalized by functions aiming at improving quality.

Such operationalized requirements usually have the goal of improving one or more quality

attributes, such as security or usability. These quality attributes, however, are often

in con�ict or in�uence each other, such as performance and security. At the same time,

however, some of these quality attributes are di�cult to quantify because suitable functions

are often not su�ciently scienti�cally researched, e.g. security. For others, the evaluation

would be too time-consuming or costly, such as for usability user studies. In practice,

quality requirements that are di�cult to quantify are often neglected or only insu�ciently

systematically taken into account in the planning of the software system.

Software models can be used to weigh design alternatives at an early stage of the software

design process in order to analyse and evaluate the expected quality properties in the

software development process. When software architects want to evaluate the e�ects on

the quality attributes of their software architecture due to the use of complex subsystems,

many architecture candidates must be evaluated. Through a multitude of combinations and

con�gurations in practice, several thousand architecture candidates have to be evaluated,

due to naturally given degrees of freedom in component-based software architectures. A

single evaluation of such an amount of candidates is usually not possible due to time and

cost constraints. Thus, reusing complex subsystems during software architecture design

requires automatic decision support to optimize the quality attributes of the software

architecture. In addition, many quality attributes cannot be taken into account in existing

automatic decision support processes due to missing quantitative evaluation functions.

Thus, by the use of existing approaches questions on quality attributes without quantitative

evaluation functions cannot be meaningfully studied. The approach presented in this

dissertation, CompARE, enables software architects to automatically evaluate e�ects on

the quality attributes of a software architecture resulting from the reuse of models. The

i

Abstract

approach supports optimization of quality attributes without a quantitative evaluation

function by modelling existing informal knowledge by using a qualitative representation.

This knowledge can then be used to optimize software architectures together with existing

quantitative evaluation functions. Such a method helps software architects to decide

i) whether the use of certain features justi�es the e�ects on quality attributes and which

interactions are to be expected, ii) which of the possible subsystems and its con�guration

represents the best choice and iii) whether the given technical implementations ful�ls the

project requirements.

This dissertation presents the following contributions: First, we present a preliminary

study that shows how to develop a quantitative evaluation functions using the example

of the quality attribute security in component-based software architectures and discuss

required e�ort. Second, we design a meta model that enables to model subsystems for

later reuse. Further, this can be used for automatic model integration. Software architects

can then integrate models of subsystems automatically so that they can be evaluated and

optimized automatically. Using this method, software architects can automatically reuse

desired features in various target architecture models with comparatively low modelling

e�ort. Finally, we show how informal knowledge can be modelled to be analysed and

evaluated together with quantitative evaluation functions.

The evaluation is carried out on the basis of two classes of subsystems, each with two

di�erent concrete solutions. Each solution provides its own set of features. Further, each

solution has its own software architecture and thus in�uences the quality attributes of

the target architecture in which the subsystem will be used. We reuse the subsystems in

three target systems to show how architecture design decisions can be optimized by the

use of CompARE. Two of the target models represent real-world systems that are used

in industry, while the other is a community case study that is considered representative

in the component-based software architecture modelling community. On the basis of

these systems, 11 scenarios are used to demonstrate the analysis of relevant questions

regarding software architecture design, decisions on software quality attributes, and

software requirement prioritization through a structured process. The evaluation shows

the applicability and bene�ts of CompARE and discusses conclusions to be drawn from the

results.

ii

Zusammenfassung

In modernen Software-Entwicklungsprozessen werden, insbesondere zur Implementierung

von Standardfunktionalitäten, immer häu�ger bestehende Komponenten oder Bibliotheken

wiederverwendet. So müssen Funktionalitäten, die breite Anwendung in unterschiedlichen

Systemen �nden können, nicht für jede Verwendung von Grund auf neuentwickelt werden.

Wiederverwendung von Funktionalitäten durch Software-Komponenten oder gar von

komplexen Teilsystemen, den Subsystemen, die höherwertige Funktionalitäten, die Featu-

res, anbieten, führt so zu kostene�zienterer Entwicklung und qualitativ hochwertigerer

Software.

Durch eine Vielzahl ähnlicher Lösungen für die gleiche Standardfunktionalität stehen

Software-Architekten allerdings häu�g vor der Frage, welche Lösungen sie auswählen

sollten und wie deren Kon�guration in der Zielarchitektur optimal zu den Anforderungen

an das Software-System passen. Subsysteme bieten häu�g eine Vielzahl an Features an,

die zu unklaren E�ekten auf die Qualitätsattribute der Software-Architektur, wie z.B. auf

die Performance, führt. Insbesondere zur Entwurfszeit oder wenn Software-Systeme um

Funktionalität erweitert werden soll ist unklar, ob durch die Verwendung eines bestimmten

Features eines bestimmten Subsystems die Qualitätsanforderungen an das Gesamtsystem

haltbar sind. Neue Qualitätsanforderungen werden zumeist durch Funktionen operationa-

lisiert. Operationalisierte Qualitätsanforderungen haben meist zum Ziel eine oder mehrere

Qualitätsattribute, wie z.B. Sicherheit oder Bedienbarkeit, zu verbessern. Gerade diese

Qualitätsattribute stehen jedoch häu�g gegenseitig oder mit anderen Qualitätsattributen,

wie z.B. Performance, in Kon�ikt oder beein�ussen sich gegenseitig. Gleichzeitig sind

diese allerdings schwierig quanti�zierbar, weil Funktionen zur quantitativen Evaluation

dieser Qualitätsattribute häu�g nicht ausreichend wissenschaftlich erforscht sind, wie

beispielsweise für das Qualitätsattribut Sicherheit. Die Evaluation selbst kann auch einen

zu großen zeitlichen und �nanziellen Aufwand erfordern, wie dies beispielsweise bei

Nutzerstudien zur Evaluation der Bedienbarkeit der Fall wäre. In der Praxis werden ent-

sprechend schwierig quanti�zierbare Qualitätsanforderungen nicht oder nur unzureichend

systematisch in der Planung des Software-Systems berücksichtigt.

Zur Analyse von Entwurfsalternativen können Software-Modelle genutzt werden, um

möglichst früh im Software-Entwicklungsprozess die zu erwartende Qualität zu analy-

sieren und zu evaluieren. Möchten Software-Architekten die Auswirkungen auf die Qua-

litätsattribute ihrer Software-Architektur durch die Verwendung von Features realisiert

durch komplexe Subsysteme evaluieren, müssen, durch eine Vielzahl an Kombinationen

und Kon�gurationen, schnell sehr viele Architekturkandidaten evaluiert werden. In der

Praxis können, durch natürlich gegebene Freiheitsgrade komponentenbasierter Software-

Architekturen, schnell mehrere tausend Architekturkandidaten entstehen. Eine einzelne

und manuelle Evaluation einer solch großen Anzahl an Kandidaten ist durch die damit

entstehenden Zeit- und somit Kostenaufwände meist nicht möglich. Neben einer Vielzahl

iii

Zusammenfassung

an zu evaluierenden Architekturkandidaten können, aufgrund fehlender quantitativer

Evaluationsfunktionen, viele Qualitätsattribute nicht in bestehenden automatischen Ent-

scheidungsunterstützungsverfahren berücksichtigt werden. Dadurch zeichnet sich entspre-

chend ein unvollständiges Bild bei der Suche nach den optimalen Architekturkandidaten.

Der in dieser Dissertation vorgestellte Ansatz CompARE ermöglicht Software-Architekten,

E�ekte auf die Qualitätsattribute einer Software-Architektur, die durch die Verwendung

von Features entstehen, automatisch zu evaluieren. Auch die Optimierung von Qualitätsan-

forderungen ohne quantitative Evaluationsfunktion wird unterstützt, indem bestehendes

informell vorliegendes Wissen über Architekturentscheidungen modelliert und dadurch

zusammen mit bestehenden quantitativen Evaluationsfunktionen optimiert wird. Das

Ergebnis soll Software-Architekten dabei unterstützen, zu entscheiden, i) inwiefern die

Verwendung von bestimmten Features auf Qualitätsattribute Auswirkungen hat und

welche Wechselwirkungen untereinander zu erwarten sind, ii) welches der möglichen

Subsysteme und seiner Kon�guration die beste Wahl darstellt und iii) ob die gegebenen

technischen Umsetzungen mit den Projektanforderungen vereinbart werden können.

Daraus ergeben sich folgende Beiträge der Arbeit: Zunächst wird eine Vorstudie vorge-

stellt, die den Aufwand der Erstellung von quantitativen Evaluationsfunktionen, am Bei-

spiel des Qualitätsattributs Sicherheit in komponentenbasierten Software-Architekturen,

zeigt. Die Modellierung von wiederverwendbaren Subsystemen zur Verwendung in auto-

matischen Entscheidungsunterstützungsprozessen stellt den ersten Beitrag des CompARE
Ansatzes dar. Es wird ein Meta-Modell entworfen, das die Modellierung von Subsystemen

zur einfachen Wiederverwendung unterstützt und dadurch zur automatischen Modellinte-

gration verwendbar macht. Die automatische Modellintegration von Teilmodellen ist der

nächste Beitrag der Arbeit. Hierbei werden Teilmodelle automatisch integriert, so dass

diese automatisch evaluiert und optimiert werden können. Durch diese Methode können

Software-Architekten Features mit vergleichsweise geringem Modellierungsaufwand au-

tomatisiert in die Zielarchitektur einbauen. Schließlich zeigt die Arbeit wie informelles

Wissen modelliert werden kann, um es gemeinsam mit quantitativen Funktionen zur

Bestimmung von Qualitätseigenschaften zu analysieren und zu evaluieren.

Die Evaluation wird anhand zweier Klassen von Subsystemen mit jeweils zwei unter-

schiedlich modellierten Lösungen durchgeführt. Jede Lösung bietet verschiedene Features.

Dabei hält jede Lösung seine eigene Software-Architektur und beein�usst dadurch indivi-

duell die Qualitätsattribute der Zielarchitektur, in der das Subsystem zum Einsatz gebracht

werden wird. Die Wiederverwendung der Subsysteme und die aus dem vorgestellten An-

satz resultierende Architekturoptimierung wird anhand dreier Zielsysteme durchgeführt.

Bei diesen Zielsystemen handelt es sich um zwei Realweltsysteme, die in der Industrie

zur Anwendung kommen und um eine Community Fallstudie, die in der Community der

komponentenbasierten Software-Architekturmodellierung als repräsentativ gilt. Anhand

dieser Systeme werden insgesamt 11 Szenarien durchgeführt, die die Analyse relevan-

ter Fragestellungen zu den Themen Software-Architekturentwurf, Entscheidungen mit

Bezug auf Software-Qualitätsattribute und Software-Anforderungspriorisierung durch

einen strukturierten Prozess analysierbar machen. Dabei wird die Anwendbarkeit und der

Nutzen von CompARE gezeigt und die aus den Ergebnissen ableitbaren Schlussfolgerungen

diskutiert.

iv

Danksagungen

Viele Menschen haben mich inspiriert und unterstützt diese Dissertation zu schreiben.

Ihnen möchte ich an dieser Stelle danken.

Zuerst möchte ich meiner Doktormutter Frau Professorin Anne Koziolek danken. In

unzähligen Gesprächen hat sie mich stets durch Ihre Ideen und fachlichen Input hervorra-

gend unterstützt und gefördert. Außerdem möchte ich sehr herzlich Herrn Professor Ralf

Reussner danken, der schon in meiner Studienzeit mein Interesse für die Wissenschaft

geweckt hat. Auch auf sein wertvolles Feedback in Diskussionsrunden konnte ich stets

zählen, das mir immer einen wertvollen zweiten Blick auf meine Forschung und Ergeb-

nisse gegeben hat. Weiter möchte ich mich sehr herzlich bei beiden bedanken, dass sie

lehrstuhlübergreifend eine tolle Arbeitsatmosphäre scha�en und stets ihre Mitarbeiter

unterstützen. Bei Herrn Professor Sebastian Abeck möchte ich mich herzlich bedanken für

die übernahme meines Zweitgutachtens und das tolle, informative Gespräch zu meiner

Arbeit. Ich möchte mich auch bei den Professoren Oberweis, Böhm und Beckert bedanken,

die Interesse für mein Thema gezeigt und mich zum Professorengespräch eingeladen

haben.

Ein ganz besonderer und herzlicher Dank geht an meine beste Freundin und Ehefrau

Kiana, auf die ich mich immer verlassen kann. Sie hat mich unzählige Male motiviert,

unterstützt und mir die Kraft gegeben dieses Werk zu schreiben und schließlich zu vollen-

den. Von den unzähligen Diskussionen über unsere Forschung konnte ich viel lernen

und neue Ideen einbringen. Ebenfalls ein ganz besonderer und herzlicher Dank geht an

meine liebe Familie, insbesondere an meine Eltern Vera und Gerhard Busch. Ich kann mich

wirklich glücklich schätzen auf ihre Unterstützung mein Leben lang zählen zu dürfen.

Sowohl emotional, als auch �nanziell konnte und kann ich mich immer auf sie verlassen.

Ich emp�nde dies als großes Glück.

Weiter möchte ich mich bei meinen lieben Kollegen der beiden Lehrstühle ARE und SDQ

bedanken, ihren fachlichen Input bei Gesprächen, für ihre Freundlichkeit, Ihr Verständnis

und ihr freundschaftliches Miteinander.

Ein besonderer Dank geht ebenfalls an Maximilian Eckert, Dominik Fuchß, Jan Keim,

Max Scheerer, Yves Schneider und Dominik Werle. Ich möchte mich sehr herzlich für die

tolle Zusammenarbeit bei Abschlussarbeiten, Forschung, Implementierungstätigkeiten

und Publikationsprojekten bedanken. Es freut mich zu sehen, dass ich bei Yves Schneider,

Max Scheerer und Jan Keim das Interesse an der Wissenschaft wecken und sie für eine

Promotion begeistern konnte. Ebenfalls herzlich bedanken möchte ich mich bei Professor

Jörg Hettel, der mich gerade in den Anfängen als Informatikstudent besonders unterstützt

hat und motiviert hat den höchsten akademischen Grad anzustreben.

Solche Eltern, Freunde und Kollegen zu haben macht mich stolz und glücklich.

v

Danksagungen

Preliminary remark

Use of "we"

In this dissertation, for a better �ow of reading I use the term “we” instead of the use of “I”.

However, I would like to emphasize that the work is my own contribution and any parts

that have been created in cooperation with third parties have been explicitly marked.

vi

Contents

Abstract . i

Zusammenfassung . iii

Danksagungen . v

1. Introduction . 1

1.1. Motivation . 1

1.2. Challenges . 1

1.3. Approach & Contributions . 3

1.4. Motivating Scenario . 4

1.5. Outline . 6

2. Example Systems . 9

2.1. Prerequisites for the Example Systems 9

2.1.1. Base System . 9

2.1.2. Extending system . 10

2.2. Base system: Media Store . 11

2.2.1. Media Store’s Use Cases . 11

2.2.2. System components . 12

2.2.3. System Architecture . 13

2.2.4. Internal Process . 15

2.2.5. Quality of Service Attributes . 16

2.2.6. Degrees of Freedom . 18

2.2.7. Expanding Points . 18

2.3. Extending system: Logging System log4j 18

2.3.1. log4jv2 Use Cases . 19

2.3.2. System components . 20

2.3.3. System Architecture . 21

2.3.4. Quality of Service Attributes . 21

2.3.5. Realization of Requirements . 21

2.3.6. Concerns . 22

vii

Contents

I. Foundations, RelatedWork and Preliminary Study 23

3. Foundations . 25

3.1. Software-Architecture and Software Architecture Models 25

3.1.1. Model-driven Software Development 25

3.1.2. (Component-based) Software Architecture 28

3.1.3. Component Type Hierarchy . 33

3.1.4. Reference Architecture . 34

3.1.5. Feature Models . 34

3.2. Software Quality and Modelling Knowledge 35

3.2.1. Software Quality and Quality Attributes 35

3.2.2. Model-based Quality Prediction 39

3.2.3. Quality of Service Modelling Language 40

3.2.4. Modelling Quality in Palladio 41

3.2.5. Qualitative Reasoning . 41

3.3. Optimizing Software-Architecture Models 43

3.3.1. Multiple Criteria . 43

3.3.2. Software-Architecture Optimization 45

3.4. Component-based Software Development Process (CBSE) 48

3.4.1. Quality Analysis in the CBSE . 50

3.4.2. Quality Exploration in the CBSE 51

4. RelatedWork . 53

4.1. Modelling and Representing Knowledge 53

4.1.1. Knowledge for Decision Making 53

4.2. Automated Model Generation and Model Variability 58

4.2.1. Reuse model artefacts by completions 58

4.2.2. Variability Models . 59

4.3. Support for Software-Architecture optimization 60

4.3.1. Automatic and semi-automatic approaches 61

4.3.2. Manual approaches . 63

5. Quantifying the Quality Attribute Security . 67

5.1. Motivation . 67

5.2. Quanti�cation Approach . 69

5.3. De�nition of Security Relevant Properties 69

5.3.1. Application Example . 70

5.3.2. Attacker Model . 71

5.3.3. Attacker & Scenarios . 73

5.3.4. Component Security . 74

5.3.5. Mutual Security Interference . 76

5.4. Security Modelling using SMP . 78

5.4.1. Base Model . 78

5.4.2. Component Security . 79

5.4.3. Composing Component and Attacker Model 79

viii

Contents

5.4.4. Attacker Scenario . 79

5.4.5. Combining the Sub-Models . 80

5.5. Evaluation . 81

5.5.1. Reference Scenario . 81

5.5.2. Component Variation Scenario 83

5.5.3. Deployment Variation Scenario 83

5.6. Applying the approach to the Palladio Component Model 84

5.6.1. PCM Security Extension . 84

5.6.2. Transformation to SMP . 84

5.7. Related Approaches . 86

5.8. Limitations . 87

5.8.1. Data Streams . 87

5.8.2. Getting the Data . 87

5.8.3. Meaningful values . 87

5.9. Cost Analysis . 87

5.10. Discussion . 88

II. Quality-driven reuse of so�waremodels 89

6. Automated Feature-Driven Extension of So�ware Architectures 91

6.1. Terms, De�nitions and Roles . 92

6.1.1. Features . 92

6.1.2. Subsystem . 92

6.1.3. Subsystem Solution . 94

6.2. CompARE Prerequisites . 94

6.3. Goal of Feature-Driven Software Architecture Extension 95

6.4. CompARE in a Nutshell . 96

6.4.1. Domain Analysis . 97

6.4.2. Solution Analysis . 99

6.4.3. Reuse Process . 100

6.4.4. Design Space Optimization . 101

6.5. CompARE in the Component-based Software Engineering Process . . . 101

6.5.1. Component-based Development Process 102

6.5.2. Roles of the extended CBSE . 103

6.5.3. Requirements Work�ow . 104

6.5.4. Speci�cation Work�ow . 104

6.5.5. Quality Analysis Work�ow . 108

6.5.6. Decision Making . 109

6.6. Further Scenarios . 112

6.7. Assumptions & Limitations . 113

6.8. Summary . 114

ix

Contents

7. Formalising the Entities of Reuse . 115

7.1. Roles and Requirements . 116

7.1.1. Roles . 116

7.1.2. Requirements for the Reuse and Automated Decision Process . 118

7.2. Feature Completion Meta Model . 118

7.2.1. Feature Completion . 119

7.2.2. Feature Objectives . 121

7.2.3. Reuse Architecture . 124

7.2.4. Architecture Constraints . 129

7.2.5. Feature Completion Component 131

7.2.6. Feature Completion Extension Mechanism 135

7.2.7. Feature Completion Solution . 141

7.3. Applying the Reference Architecture to Solutions 144

7.3.1. Identify features . 145

7.3.2. Components annotation . 145

7.3.3. Annotate perimeter interfaces 146

7.4. Multi Type Hierarchy . 147

7.4.1. Types . 148

7.5. Assumptions and Limitations . 150

7.6. Summary . 151

8. Model Weaving using Feature-driven Degrees of Freedom 153

8.1. Extending Software Architecture Models 154

8.2. Model Transformation using Triple-Graph-Grammars 155

8.2.1. Model Transformation . 155

8.2.2. Weaving component-based Software-Architecture Models . . . 156

8.3. Adapter Extension . 156

8.3.1. Adapter Generation . 157

8.3.2. Adapter Assembly . 158

8.4. Abstract Behaviour Extension . 159

8.4.1. Extending the Control Flow . 160

8.5. Formal Mechanism for PCM Transformation 161

8.5.1. Adapter Extension . 162

8.5.2. Abstract Behaviour Extension 164

8.5.3. Weaving PCM Models . 166

8.6. Architecture constraints . 167

8.7. Feature-driven Architecture Degrees of Freedom 169

8.7.1. Subsystem Selection Degree . 170

8.7.2. Feature Selection Degree . 171

8.7.3. Multiple Inclusion Degree . 172

8.7.4. Optional Choice Degree . 173

8.8. Assumptions and Limitations . 173

8.9. Summary . 174

x

Contents

9. Modelling and Analysis of Architecture Knowledge 175

9.1. Extending the Quality Evaluation Space 176

9.1.1. Qualitatively-valued Quality Attributes 176

9.1.2. Modelling Dimensions for Not-quanti�ed Quality Attributes . . 177

9.1.3. Quality Annotation Model . 181

9.2. Quality Analysis using Qualitative Reasoning 183

9.2.1. Quality Rule Speci�cation . 184

9.2.2. Quality Knowledge Analysis . 188

9.3. Candidate Evaluation . 193

9.4. Assumptions and Limitations . 193

9.5. Summary . 194

III. Evaluation and Conclusion . 195

10. Evaluation & Case Study Systems . 197

10.1. Levels of Validation for the CompARE Approach 198

10.1.1. Level I: Validation of Accuracy 198

10.1.2. Level II: Validation of Applicability 198

10.1.3. Level III: Validation of Bene�ts 199

10.2. Evaluation Concept . 199

10.2.1. Hypothesis I: Automated model weaving 200

10.2.2. Hypothesis II: Reuse informal knowledge for architecture

optimization . 201

10.2.3. Hypothesis III: Automated model generation and optimization . 202

10.2.4. Achieved Levels of Validation 202

10.3. CompARE Implementation . 203

10.3.1. Weaving Engine . 203

10.3.2. Qualitative Knowledge Analysis 205

10.3.3. Integration in PerOpteryx . 205

10.4. Subsystem Case Study Systems . 207

10.4.1. Apache’s log4j . 207

10.4.2. Features of the Logging Systems 212

10.4.3. Intrusion Detection Systems . 214

10.4.4. Features of the Intrusion Detection Systems 218

10.5. Modelling the Feature Completions . 219

10.5.1. Logging Feature Completion . 219

10.5.2. IDS Feature Completion . 221

10.5.3. Discussion . 225

10.6. Base System Case Study Systems . 225

10.6.1. Business Reporting System . 225

10.6.2. Remote Diagnostic Solution . 227

10.6.3. Modular Rice University Bidding System 229

xi

Contents

11. Evaluation Part I: Including Features into So�ware Architectures 233

11.1. Preliminaries . 233

11.1.1. Requirements . 233

11.1.2. Pointcuts . 234

11.1.3. Models . 235

11.2. Preliminary Scenario: E�ects on quality attributes 235

11.3. Scenario I: Evaluation of di�erent realizations 238

11.4. Scenario II: Using multiple inclusion . 240

11.5. Scenario III.a: Annotating features at di�erent components 242

11.6. Scenario III.b: Increasing the number of annotated components 246

11.7. Scenario IV: Annotating the abstract control �ow 247

11.8. Scenario V: Evaluation of feature alternatives with �xed features set . . 249

11.9. Scenario VI: Evaluation of feature alternatives considering optional

features . 252

11.10. Accuracy of the Optimization . 254

11.11. Discussion . 255

12. Evaluation Part II: Qualitative Modelled Knowledge 257

12.1. Evaluation process . 257

12.2. Combining both types of knowledge . 257

12.2.1. Scenario VII: Combination of usability and security 258

12.2.2. Scenario VIII: Security . 262

12.3. Using qualitative reasoning . 264

12.3.1. Scenario IX: E�ects between quality dimensions when using

di�erent implementations . 264

12.3.2. Scenario X: E�ects between quality dimensions when using

di�erent features . 267

12.4. Accuracy of Evaluating Qualitative Modelled Knowledge 269

12.5. Discussion . 270

13. Evaluation Part III: Optimizing Annotation Positions and Solution Selection . . . 271

14. Concluding Discussion . 277

14.1. Threats to validity . 277

14.2. Evaluation results . 277

14.3. Summary . 278

15. Future Work & Conclusion . 281

15.1. Future Work . 281

15.1.1. Change operations for modifying software architectures 281

15.1.2. Reference Architecture . 281

15.1.3. Architecture constraints . 281

15.1.4. Architecture patterns and styles 282

15.1.5. Empirical validation . 282

15.1.6. Usability study . 282

xii

Contents

15.2. Conclusion . 283

A. Approach . 285

B. Meta Models & Profiles Overview . 287

B.1. Meta Models . 287

B.2. UML Pro�les . 288

C. Publications that dissertation bases on . 289

Bibliography . 290

xiii

1. Introduction

1.1. Motivation

In the recent years, it has been shown that software systems has become more and more

complex. Software systems take over tasks which have previously been taken over by

human actors. As a result, software systems are given real responsibilities, such as pro-

cessing payments, surveillance of critical infrastructures, or handling claims in insurance

companies. Such kinds of responsibilities are no longer tasks that play any subordinate

role. Rather, these are critical activities that can be crucial for the success of modern

business models. Although the success of modern business models depends on the func-

tionality of the software system, non-functional attributes are no less important. However,

designing a system with many features satisfying high quality and cost constraints is often

challenging, since achieving higher quality often requires more resources. In modern

software development approaches reuse has been established as common practice. To

avoid errors and build software more cost-e�ciently software architects reuse (third-party)

libraries or use repositories containing ready to be used COTS-components (Commercial

O� The Self).

Today, software architects have to cope with highly complex software systems, high

demands on functionality, quality and cost boundaries. To meet the requirements on

functionality, high quality, and costs, more and more solutions for functions or even

solutions for whole subsystems are taken from COTS-repositories and integrated in the

system under development.

1.2. Challenges

When reusing functions or subsystems, there are often many solutions on the market

that ful�l a similar set of functionalities but have di�erent quality and costs. A growing

market of COTS components leads to many products that are potentially suitable for the

implementation of requirements [Com+02]. The high number of di�erent similar solutions

makes the product selection complex, time-consuming, costly and increases the risk of

selecting the wrong product. In order to evaluate possible solutions, they must usually

be purchased, installed, and executed using typical scenarios. The high e�ort of such

evaluations often leads to the fact that possible solutions are not carried out or carried

out only to a limited extent. This makes a software development process less e�cient and

increases the risk to not achieve the necessary quality and cost compliance.

Using model-driven techniques helps to predict quality and costs for a given software

architecture at design time and provide the (Pareto-)optimal solutions as feedback. How-

ever, previously existing solutions only provide support if the product to be used has

1

1. Introduction

already been selected, but lack the support for selecting the best matching product from

all products on the market. Even if software architects are already familiar with the class

of products, they still have to integrate all models of the products on the market into

their existing software architecture models. With many solutions and many variation

possibilities, this is a time-consuming and possibly error-prone task.

Subsystems for monitoring system services rather contribute to the actual business

requirements. They often belong to the class of quality improvement activities. In existing

decision support processes it is often only possible to either evaluate quanti�ed knowledge

or qualitatively modelled knowledge.

However, many quality attributes cannot be modelled quantitatively, e.g. due to non

existing quantitative functions or too high quantitative modelling e�ort. They are often

too time-consuming and cost-intensive, e.g. for studies on the usability of graphical user

interfaces. Usability tests that have to be performed with many participants can quickly

result in high costs, starting at under 10.000 $ up to more than 100.000 $ [Jef; Nie97].

Budget constraints often make it di�cult to conduct such investigations systematically.

However, experienced software architects often have an implicit understanding of the

quality properties of software architectures. The implicit understanding often cannot be

represented by quantitative functions. On the basis of their implicit understanding they

can reason on quality attributes of a given software architecture. Such reasoning remains

unconsidered in previous model-driven approaches.

In this work, we develop novel approaches to improve the software development process

in order to cope with complex software systems. In particular, the approaches provide

automated decision support for software architects at design time and functional extension

scenarios whenever complex subsystems are subject to reuse and the resulting quality

plays an important role.

To this end, we formulated three main challenges for supporting the decision support

process that are considered in this dissertation. In the following, we describe challenges

and solution ideas in more detail:

1. Reusing Models of Subsystems: Software architecture models represent an ab-

straction of the software architecture of a particular software system. Such models

are essential artefacts in model-driven prediction approaches. Reusing models of

subsystems for typical problem domains, e.g. intrusion detection, and data logging is

often hard. Often, functional similar solutions of the subsystem have inhomogeneous

software architectures and several degrees of freedom manually. The inhomoge-

neous architecture comes from di�erent design decisions and di�erent levels of

abstraction that were made by di�erent architects. For example, a database manage-

ment system and the corresponding data access interface may be modelled by one or

several components. Both results may be well-designed models – depending on the

pragmatism of the model. Di�erent degrees of freedom come from their provided

functionalities and possibilities to be integrated in another software architecture.

Reusing such complex models in automated decision support processes cannot be

carried out by related approaches.

To reuse models of di�erent subsystem solution alternatives in di�erent contexts

in automated decision support approaches, a formalism is required to uni�cation.

2

1.3. Approach & Contributions

As a result, such a uniform formalism can be applied to several subsystem solution

alternatives and can �nally be used in systematic processes for automated analysis.

2. Model Weaving: Reusing features of a subsystem in a base architecture model re-

quires integration of the software components of the particular subsystem solution.

Automated decision support for di�erent solutions of a subsystem needs automatic

integration of the software components of a subsystem solution in the base architec-

ture. Otherwise, software architects may have to integrate each subsystem solution

into the base software architecture and their individual degrees of freedom manually.

Manual generation of many model candidates can be very time-consuming and error

prone. Therefore, a mechanism is required to automatically integrate models of

subsystem solutions into the base software architecture model. This would allow

comparing the e�ects on quality attributes when reusing features broken down

according to the di�erent subsystem solutions on the market automatically.

Supporting architects at making design decisions without the need of manual appli-

cation requires an approach for automated model weaving according to a formal

description.

3. Quality Reasoning: Subsystems are often reused in another system, i.e. base

systems, to ful�l functional or quality requirements and the base system’s quality

attributes. Often, they in�uence quality attributes that cannot be evaluated model-

based by quantitative functions, due to a lack of suitable functions. Let us assume

we reuse the subsystem intrusion detection system that allows detecting attacks

on system components, and the subsystem solution OWASP AppSensor [Mel15].

Software architects may include such a system to ful�l or improve security attributes

of the system. Even though, there is no quantitative function to assess the security

quality properties. Also, other important quality attributes like usability cannot be

evaluated by functions. Nevertheless, software architects may have an experience

based reasoning on the security and usability. In typical quantitative decision support

approaches such knowledge cannot be adequately analysed and therefore remains

unconsidered. The experience and implicit knowledge of developers, however, a�ects

the design decisions they make. Omitting such knowledge from decision support

processes would degrade the results due to a lack of information.

To support software architects in the quality reasoning process requires represen-

tations and analysis techniques for such informal knowledge and a method for

evaluating them together with quantitative functions.

1.3. Approach & Contributions

The contributions of this dissertation extend automatic methods for the improvement of

component-based software architectures based on model-based quality predictions. The

proposed methods focus on reuse of complex models of third-party solutions considering

recurring problems, such as payment processing, logging, intrusion detection, or access

control. The developed approach allows optimization methods to apply and evaluate new

3

1. Introduction

degrees of freedom during the software architecture design. Software architects should

be able to create the con�guration of the models to be evaluated with comparatively low

e�ort.

The method automatically explores solutions of the same interest, e.g. Logging, and

evaluates them on the basis of the con�gured quality attributes. The method extends the set

of usually (quantitatively determined) quality attributes, such as performance, reliability

and costs, by any (not quantitatively determined) quality attributes, such as security and

usability. The result is a set of optimal architecture candidates, i.e. the Pareto-optimal

architecture candidates, that have been determined based on several quality criteria within

the design space. On the basis of these criteria, software architects get i) the optimal

selection of functionalities to reuse in their base system, ii) which concrete solution is

optimal from the large number of products, and iii) how the selected features in�uence

the quality attributes of the overall system. These results can be used to select the optimal

software architecture and can be used as basis to discuss the requirements together with

stakeholders on a well-founded data basis. Thus, software requirements can be iteratively

improved and prioritized. The contribution considers the following four major aspects:

• We analyze the e�ort required to design a quantitative method for evaluating quality

attributes using the example of the quality attribute security in component-based

software architectures. We show how such a method can be developed to analyse

the required e�ort for its development.

• We extend a process model for the design of component-based systems by a new

method presented to evaluate the e�ects on quality attributes when reusing models

of complex subsystems. In addition, we examine further scenarios in which our

method can be applied and discuss its possible bene�ts.

• We describe a meta model that structures models of complex systems despite in-

homogeneous software architecture to automatically integrate into a base system.

In addition, our meta models abstract from the particular implementations of the

subsystem solutions. Thus, their reuse in any base system becomes possible without

knowledge of the architecture of each individual subsystem solution.

• We design a method for modelling and analysing non-quantitative quality attributes

based on qualitative reasoning. We combine this method with quantitative evalua-

tion methods. Finally, we use the combination to extend trade-o� analysis between

quality attributes, optimization of software architectures, and requirements prioriti-

zation.

1.4. Motivating Scenario

Reuse of functionality encapsulated in software components has long been common

practice in component-based software development processes. When user tra�c should

be recorded in a web shop scenario in order to improve the customer experience and thus

increase the number of sales, experienced software architects use existing solutions.

4

1.4. Motivating Scenario

Software architects rely on their experience to select the best solution for the given

scenario. They are familiar with the existing products, that we call solutions in the

following, on the market in the system’s domain. They select a suitable solution based on

both functional requirements and quality requirements and integrate this solution at the

appropriate positions in the base system.

However, this requires in-depth expertise in various areas: Software architects must have

expert knowledge in the system’s domain and be familiar with the relevant functionalities

and quality attributes and solutions on the market. Without the support of model-based

simulations they can often only estimate the impact of the solution on quality attributes

such as performance, reliability or other quality attributes. In addition, they must have

detailed knowledge of the internal architecture and functionalities of both the architecture

of the target system and the subsystem to be integrated.

In order to include solutions in the base system properly, software architects often

�rst have to learn about the domains. However, this is a very lengthy, time-consuming

and therefore costly process. Only a subset of the di�erent solutions on the market can

usually be evaluated. Promising solutions may therefore be missed through time and cost

constraints.

In addition to selecting the appropriate solution, the best possible placement in the

base architecture is unclear. In the scenario previously outlined, the naive assessment

of the best possible placement of sensors to capture user tra�c would be simple: at all

points in the software architecture user tra�c should be recorded. Such a realization

would have the assumption in mind collecting as many data as possible has a positive

e�ect on the correct evaluation of user tra�c. However, frequently capturing data causes a

correspondingly frequent call to the routine responsible for recording data. The more data

is recorded, the better is the results of the analysis. At the same time, however, the latency

of the actual user request increases due to higher resource utilization of CPU, HDD, and

LAN. Further, it worsens the maintainability of the software code parts that implement the

actual business requirements. Amazon has found that 100 ms longer response time leads

to approximately 1 % less successful purchases in its web shop [Nat19]. In 2006, Marissa

Mayer, then vice president of Google, reported a 20 % reduction in search queries if the

search engine’s response time was extended by 0.5 seconds [Mar06; Gre06]. Considering

that response time has a direct impact, for example, on purchases in an online store, a

negative impact on system performance is a critical quality attribute. Such critical quality

attributes, having direct impact on the company’s sales, performance and competitiveness,

must be evaluated at design time for each design decisions.

In this case, the relentless record of user tra�c would harm two other requirements,

namely ensuring high performance of the overall system and good maintainability for

later extension of business requirements. Finding good trade-o� decisions when reusing

features with higher complexity, such as record user tra�c is the challenge supported by

the CompARE approach.

CompARE should enable software architects making good decisions considering func-

tional requirements and quality requirements of the software project. In-depth knowledge

of the requirement’s domain, solutions and knowledge about potential e�ects of di�erent

placement positions in the software architecture is not required for automated analysis on

the quality attributes of the whole software system. This allows critical wrong decisions

5

1. Introduction

on software architecture or requirements to be identi�ed before the actual implementation.

Boehm and Basili estimated [BB01] every phase of the software development process

that has to be repeated due to errors causing an increase in costs by a factor of 10. Early

avoidance of wrong decisions, especially errors in the early phases, is therefore particularly

important.

1.5. Outline

The overview of this work can be described as follows:

Chapter 1 introduces and motivates this dissertation. Section 1.1 introduces a general

motivation. Section 1.2 starts with the introduction of challenges. In Section 1.3, we

brie�y introduce the approach and contributions of this work. Finally, in Section 1.4, we

introduce a motivating scenario that brie�y introduces problems and typical cases this

work considers.

Chapter 2 introduces our example systems. In Section 2.1, we brie�y describe the

requirements for example systems and then introduce use cases, and their software ar-

chitectures. Altogether in section 2.2 we introduce two systems, while the �rst system

represents the base system, and in Section 2.3 the second system represents a subsystem

to be built into the base system. Based on these two systems, the concepts introduced in

the following chapters will be explained and applied to several examples.

Part I comprises basic concepts, related work, and introduces our preliminary study

on modelling a quantitative function to evaluate the quality attribute security. Chapter 3

introduces foundation this dissertation is basing on. Section 3.1 introduces software

architectures and software architecture models. Section 3.2 introduces the terminology

about software quality, quality attributes, and basic knowledge on modelling architecture

knowledge. In Section 3.3, we introduce basic concepts about the optimization of software

architecture models. This is followed by an introduction to component-based software

development and model-based software development in Section 3.4

Chapter 4 describes related work. Section 4.1 introduces approaches considering mod-

elling knowledge and the use of such models in decision-making approaches. Section 4.2

provides an overview of approaches for automatic model generation and variability mod-

elling. Finally, Section 4.3 we give an overview of automatic, semi-automatic, and manual

approaches to optimize or improve software architectures regarding quality attributes.

Chapter 5 introduces our preliminary study on quantitative modelling of quality at-

tributes. This chapter shows required steps to develop such an evaluation function for

quality attributes and to evaluate the e�ort we used for the development. We conduct this

preliminary study developing an evaluation function for security in component-based soft-

ware architecture models. After the motivation in Section 5.1, in Section 5.2 we introduce

the overview of the approach for quantifying security in component-based software archi-

tectures. In Section 5.3, we describe the basic concepts and then formalize in Section 5.4

the concepts using a Semi-Markov process. We then evaluate the approach in Section 5.5

using an example system. Section 5.6 applies the approach to a component-based software

architecture model, the Palladio Component Model (PCM). In Section 5.7, we brie�y discuss

related approaches, while Section 5.8 describes limitations of the approach. Section 5.9

6

1.5. Outline

discusses the e�ort that is required to develop the approach. Finally, we summarize the

approach in Section 5.10.

Part II of this dissertation considers the quality-driven reuse of software architecture

models. Chapter 6 describes our approach, namely the Component-based Architecture

and Requirements Evaluation (CompARE) approach. Section 6.1 introduces terms, de�-

nitions and roles in the context of CompARE. In Section 6.2, we introduce prerequisites

for the approach, while in Section 6.3 we introduce the goals of CompARE. Section 6.4

introduces the big picture of CompARE. In Section 6.5 we introduce the integration of

CompARE into the Component-Based Software Engineering process (CBSE). Finally, in

Section 6.6, we introduce possible scenarios in which the CBSE extended by CompARE
can be used, discuss in Section 6.7 assumptions and limitations, and close in Section 6.8

with a summary.

Chapter 7 describes all entities that are necessary for reusing subsystems and the

solution of subsystems. In Section 7.1, we introduce relevant roles and requirements for

the entities. In Section 7.2, we explain the formalization of the entities with regard to

modelling, use, and automatic weaving of models. In Section 7.3, we brie�y introduce how

the formalized entities could be applied to software architecture models. Subsequently, in

Section 7.4, we structure all formalisms in a hierarchical model to separate the concerns

according to role and process of use, discuss in Section 7.5 assumptions and limitations,

and close in Section 7.6 with a summary.

Chapter 8 introduces formalisms and mechanisms of weaving sub model and intro-

duces new degrees of freedom resulting from the previous formalisms. We introduce the

chapter in Section 8.1 with a brief discussion how to extend software architecture models.

Afterwards, in Section 8.2 we describe the model synchronization and change propagation

in order to extend software architecture models. Section 8.3 and Section 8.4 describes

how to extend software architecture models using adapters and the abstract behaviour

respectively. In Section 8.5, we demonstrate the concepts and mechanisms using the

Palladio Component Model as an example. Several concepts of architecture constraints are

proposed in Section 8.6. Section 8.7 introduces software architecture degrees of freedom

arising from adapter extension and abstract behaviour extension, discuss in Section 8.8

assumptions and limitations, and close in Section 8.9 with a summary.

Chapter 9 introduces the modelling and analysis of architectural knowledge. First, in

Section 9.1, we extend existing mechanisms and thus make it possible to model informal

knowledge qualitatively. In Section 9.2, we then use these model concepts to carry out

analyses using qualitative reasoning. In Section 9.3, we then describe how the newly

de�ned models can then be used to evaluate qualitative knowledge together with quanti-

tatively modelled knowledge, discuss in Section 9.4 assumptions and limitations, and close

in Section 9.5 with a summary.

Part III of this dissertation considers the evaluation of the CompARE approach and

discusses �ndings from the results.

Chapter 10 introduces the evaluation and the case study systems. Section 10.1 in-

troduces validation levels and evaluation questions relevant for the evaluation, while

Section 10.2 describes our evaluation concept. Section 10.3 introduces how CompARE
has been integrated into a tool, namely the design decision support tool PerOpteryx, to

evaluate CompARE. For the evaluation we use two subsystems, each with two subsystem

7

1. Introduction

solutions, and three base systems. We introduce the subsystem solutions in Section 10.4,

the alignment to our meta model in Section 10.5 and the base systems in Section 10.6 in

detail.

Chapter 11 introduces the �rst part of our evaluation, regarding the model inclusion of

features into software architectures. Six scenarios and several sub scenarios demonstrate

how models of software systems can be extended by subsystems.

Chapter 12 introduces the second part of our evaluation, the combination of qualitative

and quantitative knowledge. Using four scenarios, we provide insights on the modelling

of quantitative knowledge and the evaluation in combination with quantitative modelled

knowledge. Overall, we show the applicability and possible bene�ts of model weaving for

the component-based software engineering process on the example of several scenarios

related on real-world decisions. In addition, we discuss possible bene�ts of the combination

of qualitative and quanti�ed knowledge in automated decision support processes.

Chapter 13 introduces an additional scenario showing how requirements and quality

attributes can be systematically evaluated. The scenario considers subsystem positions

and subsystem solutions in a setting that is related to realistic environments and design

questions, while Chapter 14 gives a summary of the scenarios and further concludes the

evaluation.

Chapter 15 discusses future work in Section 15.1 and gives �nal conclusions in Sec-

tion 15.2.

8

2. Example Systems

This chapter is intentionally used to introduce the concepts of the approach discussed in

this thesis using example systems. On the basis of the running example, the concepts of

this dissertation are motivated and applied in the following chapters. We use a UML-like

representation to make it easier to understand. Our approach aims at evaluating design

decisions that introduces new functionality by features within the design of an application.

Several design entities should already exist so that they can be used as a basis. However,

this existing software architecture can also be in an early design phase and does not have

to be completed yet. Existing systems and systems extending others by functionalities are

de�ned as follows:

• Base system: The base system is a software system ful�lling several functionali-

ties. The system should be open for extensions by additional functionalities, as

provided by subsystems. We call the software architecture of the base system the

base (software) architecture.

• Extending system: An extending system ful�ls functionalities that are usually used

as service providers, such as subsystems, for other systems. They intent to be used

in a broader context, but not as stand-alone systems.

2.1. Prerequisites for the Example Systems

This section describes the prerequisites of all example systems for the applicability of all

concept presented in this dissertation.

2.1.1. Base System

In this subsection, we will introduce the prerequisites for the system used as base system

in order apply the concepts and mechanisms of CompARE.

• Type of system: The kind of systems must be information-processing. The system

should not initiate an action for itself, but should be dependent on being activated

by a human actor or another external system.

• Component-based system: The example systems used as base system must have a

component-based structure, or it must be possible to identify individual concerns in

the system. In other words, the system must not be constructed monolithically. A

reasonable separation of interests must be given in the architecture model.

9

2. Example Systems

• Task distribution concept: Highly scalable, modern systems are designed to allow

distributed processing of data. The use of this work focuses on this type of distributed

systems. The running example systems should therefore also allow distributed

processing of the tasks.

• Quality concerns: Modern software systems often consist of di�erent requirements

from di�erent stakeholders involved in the project. Often, many quality attributes

have to be taken into account in order to meet the requirements of the stakeholders.

However, often not all quality attributes can be improved by an optimization at the

same time, i.e. the improvement of one quality attribute results in a degradation

of another quality attribute. Therefore, trade-o� decisions often have to be made

between several quality attributes. In particular, functionality can be reused for the

purpose of improving one or more quality attributes of the base system: for example,

the use of an access control system has the purpose of increasing the overall security

of the system by restricting access to certain groups of people. At the same time,

this decision has an impact on other quality attributes such as the maintainability of

the system. Since the optimization of software architectures regarding its quality

attributes is the focus of this work, the model of the running example must support

several quality attributes, such as performance, costs, security and usability.

• Degrees of freedom: The optimization of software architecture models requires

several possibilities to (automatically) adapt the architecture model to improve the

software architecture (according to the requirements). In this work, current degrees

of freedom such as component exchange, allocation con�guration and hardware

selection described in the foundations are extended by further degrees of freedom.

We focus on optimizing the software architecture when reusing functionality repre-

sented by features and their di�erent possibilities of integration into the existing

base software architecture. Simultaneously we consider their e�ects on the qual-

ity attributes (such as performance). The current example must therefore contain

possibilities for exchanging components, allocation con�guration and hardware

selection. It must support extensions for additional degrees of freedom coming from

automated feature-driven extension of the software architecture models.

• Extendability: In order to realize the additional degree of freedom, it must be possible

to extend an existing software architecture with additional components and their

interdependencies. The base system must be open for extending the corresponding

software architecture model with new components and thus new functionality.

2.1.2. Extending system

In this subsection, we introduce the prerequisites of the system, which we use to extend

the base system by additional features to demonstrate the concepts and mechanisms of

CompARE.

Several requirements of the extending system correspond as far as possible to those of the

base system:

10

2.2. Base system: Media Store

• Type of system: The system must process information to allow the integration into

the base system.

• Task distribution concept: The system must be able to be distributed among several

resource containers to span degrees of freedom.

• Quality concerns: To evaluate quality attributes, the system must have appropriate

quality annotations. As before, these are quality annotations for performance and

cost.

In addition to the prerequisites that correspond to the prerequisites of the application

context, the design decision objective must ful�l the following prerequisites:

• Realization of requirements: The system must implement requirements driven by

reusable features and worth to be integrated into the base system.

• Separated concerns: The software architecture of the system must comprise several

concerns. These concerns must be possible to divide in separated parts.

2.2. Base system: Media Store

The Media Store system is introduced in [Reu+16; SK16]. The main concepts presented

here are based on this design. We have extended the original PCM software architecture

of the Media Store to better demonstrate several concepts of our approaches.

The Media Store system implements a system to store audio �les. Users can upload audio

�les to make them available to other users and also download audio �les for their own use.

Before uploading, a user can specify the metadata of an audio �le. To make it easier to

�nd �les, there is a catalogue that lists all available audio �les. The user can then select

the audio �le for download. Before downloading the audio �les, users can con�gure their

preferred bit rate. A user can also select multiple audio �les for simultaneous downloads.

For easier download, all selected �les are bundled in one download archive.

2.2.1. Media Store’s Use Cases

The Media Store system supports use cases considered by two actors namely the customer
and the service engineer. Customers represent the primary actors, while service engineers

represents the secondary actors. Customer use the business functions of the system while

service engineers processes service functions such as processing incorrect entries in the

user database. All users of the system call functions with certain probabilities. Figure 2.1

illustrates the use cases of Media Store.

Customers create new user accounts for 0.5 % and logs on the system in 1 % of all cases.

In 38.5 %, they search the media library while uploading or downloading media �les for

20 % of all cases each.

Service employees create a new user in 20 % of all cases. In 60 % of all cases they modify

user data, while they delete a user in 20 % of the cases.

11

2. Example Systems

Customer

Create User

Download
Media File

Service
Engineer

Modify User

Upload Media
File

Media Store

Log-in User

Browse
Media List

Delete User

System

Legend:

Use Case

Actor

probability: 0.5%

probability: 20%

probability: 38.5%

probability: 60%

probability: 20%

probability: 1%

probability: 20%

probability: 20%

QoS property

Annotation

population: 100
think time: 5s

population: 3
think time: 5s

Figure 2.1.: Use-case diagram of the Media Store system enriched with a usage scenario.

The de�nition of our business scenario workload is 100 concurrent users in the system

at the same time. In addition to the users, three service engineers are simultaneously using

the system.

The main task of the system is therefore to transfer information. The system can

represent a typical business information system.

2.2.2. System components

Media Store is internally designed as a component-based software architecture. Compo-

nents and interfaces are represented in the repository. Figure 2.2 illustrates the repository

and the provided and required interfaces of the components. The Media Store comprises

eleven components:

The WebGUI component delivers the user interface (web page) to the user and handles

session management. The MediaManagement component coordinates the communication

between the WebGUI and other components of the system. Its main task is to process the

individual steps required for downloading and uploading audio �les in the correct order.

The TagWatermarking component encodes a digital watermark on top of the actual audio

�le. The watermark allows to uniquely associate a downloaded audio �le with a user. The

ReEncoder component is responsible for decoding an audio �le at a user de�ned bit rate.

The Packaging component bundles several user-selected audio �les into a single archive.

The MediaAccess component coordinates access to audio �les, such as downloading or

uploading a �le when a user is searching for a �le in the audio catalogue or when a user

12

2.2. Base system: Media Store

WebGUI

Data
StorageDBUserDB User

Management
UserDB
Adapter

Media
Management

Tag
Watermarking

Media
Access

ReEncoder

Packaging

User
DBService

Legend:

Component
Type

interface relation

Attributes

IWebGUI

Attributes

IUserDB

Attributes

IMedia
Management

Attributes

ITag
Watermarking

Attributes

IPackaging

Attributes

IReEncoder

Attributes

IMediaAccess

Attributes

IUser
Management

Attributes

IUserDBAdapter

Attributes

IDataStorageDB

Attributes

IUserDBService

signatures

Interface

<<provides>>

<<provides>>

<<provides>>
<<provides>> <<provides>> <<provides>>

<<provides>>
<<provides>>

<<provides>><<provides>><<provides>>
<<requires>>

<<requires>>
<<requires>> <<requires>>

<<requires>><<requires>>
<<requires>><<requires>>

<<requires>>

<<requires>>

Figure 2.2.: Illustration of the Media Store system repository model.

requests a download or upload of a �le. In addition, the component supports to edit

metadata. The DataStorage component contains the metadata for existing audio �les.

The raw data is stored directly in the �le system of the operating system and can be

accessed using the metadata. The UserManagement component handles requests for the

initial user registration and authentication. It forwards the requests to the database using

the UserDBAdapter. The authentication data is salted and hashed by the user management

component. The UserDBAdapter receives requests from the UserManagement component

and generates JDBC statements for user data requests in the database with the user data

database. User data for user authentication is stored in the UserDB component. This

component answers queries from the UserDBAadapter. Finally, for maintenance purposes,

the UserDBService can be used to manage the users in the UserDB.

2.2.3. System Architecture

As the client-server architecture of the Media Store system, we use a three-tier architecture

that comprise presentation, application and data management functions. We have decided

to model a three-tier architecture for a realistic scenario that is a common pattern of

multi-tier architectures [Fow02]. Often, three tier-architectures comprises three layers,

namely presentation, domain, and data source layer. A graphical illustration of the system

architecture is shown in Figure 2.3.

The Media Store system is distributed across three server systems: the front-end server,

the middleware server and the back end server. The WebGUI component is deployed on

the frontend server, while the two database components and DataStorage are deployed on

13

2. Example Systems

WebGUI

Data
StorageDB

UserDB
Backend-Server

Frontend-Server

User
Management

UserDB
Adapter

Media
Management

Tag
Watermarking

Media
Access

ReEncoder
Packaging

Middleware-Server

User
DBService

Customer

Service
Employee

Legend:

Resource
Container

Media Store

System

Actor

Component

Required role

Provided role

Delegate

QoS property

Annotation

CPU proc: 2E+9 instr./sec
CPU proc: 2E+9 instr./sec

CPU proc: 2E+9 instr./sec

Figure 2.3.: Component-based software architecture and example deployment of the Media

Store system.

the back end server. Further, the service interface UserDBService that is used to manage

user data is deployed on the back-end server. All other components of the business logic

are deployed on the middleware server. An overview of the distribution of the components

among the resources is shown in Table 2.1.

In addition, the resource containers are annotated with QoS annotations that represent

the performance of the hardware. The Media Store System focuses on modelling CPU

resource requirements. Therefore, the resource containers are only annotated with the

CPU hardware con�guration. Each of the three resource containers is equipped with a

2 GHz processor.

The system architecture of the components can be divided into two areas for easier

comprehensibility: Access to media �les and access to user data. Each customer demands

the Media Store system’s service by the WebGUI component. The WebGUI component

requires two other components to provide its service: The MediaManagement component,

which is responsible for accessing media �les, and the UserManagement component, which

provides user login and session handling. Access to media �les works as follows: For

media management purposes, the MediaManagement component accesses services of the

TagWatermarking component, the MediaAccess component and the Packaging component.

The TagWatermarking component must re-encode the video stream using the ReEncoder

to add a watermark. The ReEncoder requires corresponding access to the raw data, which

it also receives from the MediaAccess component. The Media access component �nally

obtains the raw data by accessing the DataStorageDB component.

14

2.2. Base system: Media Store

Layer Resource

Container

Component System provides

interfaces

Presentation Frontend WebGUI IWebGUI

Application Middleware

MediaManagement

TagWatermarking

ReEncoder

Packaging

MediaAccess

UserManagement

UserDBAdapter

Data

Management
Backend

UserDB

UserDBService IUserDBService

DataStorageDB

Table 2.1.: Allocation of Media Store components to architecture layers, resource contain-

ers, and system provides interfaces.

The second area, namely access to user data, is provided by the UserManagement

component: It �rst calls the UserDBAdapter, which can query the corresponding user

data from the UserDB. Alternatively, the service engineer can directly access the data

of the UserDB by bypassing the UserManagament with the help of the UserDBService

component.

On the basis of the previously introduced system architecture two external system

interfaces can be derived that the actors can use to demand the system services. The

customer demands the services via the IWebGUI interface while the service engineer uses

the IUserDBService interface for managing user data (see section 2.2.1).

2.2.4. Internal Process

Representing the internal processes of the Media Store system, we show a concrete

process, namely the process of the processFile service of the MediaManagement component.

Figure 2.4 shows the internal process. The process begins with an internal action that

causes a CPU resource demand of 40.000 units. Then the control �ow is distributed,

depending on the state of the �le: If the �le is not encoded yet, an external action is called,

where the �le is encoded (namely by the service encode of the component ReEncoder).

This encoding process depends on the bit rate passed by an InputVariableUsage. If the �le

is already encoded, it is decoded. This is done via an external call action to the service

decode of the ReEncoder component.

15

2. Example Systems

MediaManagement.processFile

ResourceDemand

40000 <CPU>

<<internalAction>>
action

<<Branch>>
branch

Cond: !isEncoded

Cond: isEncoded

InputVariableUsage
bitrate

VALUE = bitrate.VALUE

<<ExternalCallAction>>
action

ReEncoder.encode

InputVariableUsage

<<ExternalCallAction>>
action

ReEncoder.decode

Figure 2.4.: Internal process (SEFF) of the service processFile of the MediaManagament

component.

2.2.5. Quality of Service Attributes

The models of the hardware and software components of the Media Store system come

with di�erent QoS annotations, that model di�erent quality properties and can be used to

evaluate di�erent quality attributes by using objective functions. Three types of annota-

tions are used: annotations for performance, modelling the Service E�ect Speci�cation

(SEFFs) and the cost of the system. To explain the concepts of CompARE, presented in this

dissertation, we focus on the performance annotations.

To model the QoS annotations for performance, the PCM uses an abstract description of

the behaviour of the internal processes of system components, the (resource demanding)

Service E�ect Speci�cation (RD-SEFF). For introducing the example, the concepts of SEFF

and RD-SEFF is only brie�y introduced. Section 3.1.2.1 and Section 3.2.4 introduce the

concepts in detail. The component developer models the behaviour of the components

and between the components using the SEFF. Internal actions abstract from instructions

executed within the component. Internal actions therefore represent code blocks or calls

of further methods. If components require additional services of other components to

provide its own service, the external call actions within the SEFF can be used to access the

required services of other components.

16

2.2. Base system: Media Store

Call
IReEncoder.reencode

Resource Demand:
12660240 CPU Instr.Prepare

Watermarking

<<RDSEFF>>
ITagWatermarking.watermark

Add Watermark

Resource Demand:
4E+10 CPU Instr.

Prepare Gathering
List of Data

<<RDSEFF>>
IUserDBService.getUserStats(UserList)

AggregateData
Resource Demand:
8E+10 CPU Instr.

Resource Demand:
1225433 CPU Instr.

Iterations:
UserList.SIZE.VALUE

Legend:

Start Action

Stop Action
Internal Action

Call
IUserDB.getUserData

<<LoopAction>>

External Call
ActionControll flow

Figure 2.5.: RD-SEFF of the services watermark of the ITagWatermarking interface and

getUserStats of the IUserDBService interface of the Media Store PCM model.

For a full-featured description of the QoS attribute performance, only modelling the

abstract control-�ow is not su�cient. In addition, we must model resource demands

at hardware level that are caused by internal actions. The resource demand service

e�ect speci�cation (RD-SEFF) extends the SEFF by hardware resource demands of the

components. That could be milliseconds or CPU instructions required per internal action.

These values can be derived, for example, from pro�ling or performance measurement

tools.

Figure 2.5 shows a UML-like representation of the RD-SEFFs for the service watermark

(left-hand side) of the ITagWatermarking interface and the service getUserStats (right-

hand side) of the IUserDBService interface.

The RD-SEFF watermark begins with an internal action, namely the preparation of

adding the watermark to the video (and audio) stream. This operation results in a resource

demand of 12660240 CPU instructions. After the preparation, the re-encoding of the

corresponding component is called. The control �ow is passed on to the component (not

shown in the picture) that actually process the encoding. The watermark RD-SEFF is

�nally continued with the internal action Add Watermark. Add Watermark adds the actual

watermark (by an internal action) and thus creates a resource demand of 4 · 1010 CPU

instructions.

The second RD-SEFF, getUserStats of the IUserDBService interface prepares the re-

quest of the list of user data (i.e. Prepare Gathering List of Data) by an internal action.

This results in a resource demand of 1225433 CPU instructions. In the next step, the

RD-SEFF demands the external call action getUserData of the IUserDB interface within a

17

2. Example Systems

loop until all users in the UserList have been successfully queried. At the end, the user

data is aggregated using an internal action. The aggregation function of the internal action

requires 8 · 1010 CPU instructions.

In addition to the two RD-SEFFs described in detail, the Media Store model comprises

several other RD-SEFFs. We have, however, omitted them from this example description

because their more detailed description is not relevant for the explaining and applying

CompARE.

2.2.6. Degrees of Freedom

The Media Store has several degrees of freedom given by its component-based structure,

namely component exchange, resource scaling and deployment con�guration.

• Component exchange: The Media Store comes with interface equivalent alternatives

for several components. These components provide the same functionality but di�er

in quality and thus in�uence the overall quality of the system. For example, in the

Media Store system both watermarking components can be used as alternatives to

each other.

• Resource selection: The resources of the three resource containers of the Media

Store system can selected. On the basis of 2 GHz clock frequency, the frequency can

be adjusted at design time. Higher frequency corresponds to higher costs and vice

versa.

• Allocation con�guration: The allocation con�guration shown in Figure 2.3 and

summarized in Table 2.1 can be changed. The components de�ned in the system can

be distributed over the three available resource containers. If the resource demand

is low to use less than three servers would make the system cheaper. In each case,

di�erences in the overall performance of the services can be expected.

2.2.7. Expanding Points

Due to its component-based structure, the Media Store system o�ers expanding points on

every component of the system. All provided and required interfaces can be expanded

with additional features or functionality (e.g. by adding additional components). This

results in a total of 13 possible expansion points in the media store system.

2.3. Extending system: Logging System log4j

Log4j version 2.0
1
(in the following referred to as log4jv2) is a system widely used. Log4jv2

is a java-based
2

framework for logging data. log4jv2 is a system that can be reused in any

application, is complex in its architecture due to its 6 components, and is always used in

the context of other systems. It provides several services in the area of logging, that can

1
https://logging.apache.org/log4j/2.x/

2
There are already ports to various other programming languages, such as C, C++, C#, Python, etc.

18

2.3. Extending system: Logging System log4j

Logging to
Console

Layout to
JSON

Layout as
Pattern

Logging to
SQL Database

log4j

Logging to
File

Logging to
NoSQL

Database

Layout to
CSV

System

Legend:

Use Case
Application

Context

Actor

Layout to
XML

Figure 2.6.: Use case diagram of the log4jv2 system.

be reused in base systems. Log4jv2 is �exibly con�gurable and supports di�erent modes

for formatting the recorded data. In addition, log4jv2 o�ers various options for storing the

data, such as saving it in a database, outputting the data to the console or to a �le.

2.3.1. log4jv2 Use Cases

A extending system is usually not accessed by human actors, as shown in the Media Store

system example. Its provided services are used by delegation triggered by other systems,

such as the base system Media Store. Accordingly, there is only one actor, namely the base

system. Therefore, the Media Store would demand the services of log4j. For the running

example we have selected and modelled a subset of the implemented features, which are

representative for log4j on the one hand and are suitable for explaining the mechanisms

of the presented approach on the other hand.

Log4j supports two categories of use cases: It supports functions for logging data and

persisting them at a selected destination and to select a certain logging format.

In the �rst category, the logging of data can be con�gured as follows: Logging to the

console, logging to a �le, logging to an SQL database, and logging to a NoSQL database. In

the second category di�erent types of layouts can be selected. We can select the types CSV,

JSON format, XML and formatting according to a certain pattern. In contrast to the base

19

2. Example Systems

log()

ILogging

Logging

append()

IAppend

Database
Appending

format()

IFormat

Console
Appending

File
Appending

CSV
Formatting

Pattern
Formatting

<<provides>> <<provides>><<provides>> <<provides>>

<<provides>><<provides>>

Legend:

Component
Type

interface relation
signatures

Interface

<<requires>> <<requires>>

<<requires>>

<<requires>>

Figure 2.7.: Simpli�ed repository diagram of the extending system log4j 2.0.

system, it does not make sense to build a usage model for the extending system. In this

context the user pro�le depends in particular on the execution pro�le of the base system.

2.3.2. System components

Like the Media Store system, log4jv2 comes with a component-based software architec-

ture. Thus, both systems are compatible with each other at model level. As before, the

components and interfaces are organized in the repository model. Figure 2.7 shows the

provided and required interfaces of log4j as well as the corresponding components.

For the running example, we have chosen an abstraction of the log4jv2 system that is

mainly comprising 6 components: The Logging component is the main access point of

log4jv2. With the associated interface it provides methods for logging data. Additional

components are required to process and write back the data: ConsoleApplication is

responsible for data output on the system console, while FileAppending and Database-

Appending are responsible for writing data back to a �le or database system. The appender

components require some other components. The data can be converted into di�erent

formats, for which the formatter components provide their services. CSVFormatting

formats the data into CSV format, while the component PatternFormatting is responsible

for the conversion according to a certain pattern.

20

2.3. Extending system: Logging System log4j

Legend:

Actor

log4j

System Component

Required role

Provided role

Delegate

Logging

File
Appender

Console
Appender

Database
Appender

Pattern
Formatter

CSV
Formatter

Application
Context

Figure 2.8.: System model of log4jv2.

2.3.3. System Architecture

Since log4jv2 always run in the context of another system, there is no need for modelling

a resource environment. Therefore, we concentrate on the description of the interaction of

the components. Figure 2.8 shows a model of the log4jv2 system. The logger component

provides the external provided interface that can be used by the application context to

demand the logger services. The logger itself demands the three appender components,

which then call the corresponding formatter that depends on the service that the application

context actually demanded. However, the components of log4jv2 can be distributed to all

resource containers.

2.3.4. Quality of Service Attributes

The log4jv2 architecture model provides QoS annotations for performance and cost. The

RD-SEFFs are modelled similarly as the RD-SEFFs of the Media Store system.

2.3.5. Realization of Requirements

A logger provides functionalities that aim at improving the quality attributes of the base

system. The recorded data could be used, for example, to long term performance bottleneck

identi�cation by recording the average number of accesses. Such data could also be used

21

2. Example Systems

to improve the user interface to increase the usability by the analysis of the number of

cancelled purchases. Usually, however, no business requirements are achieved by the

logging functionality. However, logging also in�uences other quality attributes, such

as performance or maintainability. Usually, performance decreases due to calculation

overhead. Maintainability might also decrease, due to additional components in the system

that do not support the actual business requirements.

2.3.6. Concerns

We identi�ed three functional concerns in the architecture of logging systems and log4jv2

particularly:

• Collector

• Appender

• Formatter

The Collector realizes the access point of the incoming data to the logging engine, while

the components of the Appender write the data back to the corresponding interface (console,

database,. . .). Components of the Formatter format the data into the corresponding output

format.

A more detailed introduction to the concerns, that we call a reference architecture for a

certain subsystem and its concepts can be found in Section 7.2.5.1.

22

Part I.

Foundations, RelatedWork and
Preliminary Study

23

3. Foundations

This chapter presents the concepts this dissertation bases on. We �rst start in Section 3.1

with the concepts of the �eld of mode-driven software development. Then, we introduce

in Section 3.2 concepts and terms about software quality and knowledge modelling. In

Section 3.3, we introduce basics on the optimization of software architecture models.

Finally, in Section 3.4, we introduce the component-based software engineering process.

3.1. So�ware-Architecture and So�ware Architecture Models

3.1.1. Model-driven So�ware Development

There are several de�nitions in the area of model-driven approaches in the �eld of software

architecture models. Brambilla et al. categorize them in [BCW12] as follows [Kla14]:

• Model-driven Architecture (MDA): MDA de�nes models and languages for mod-

elling software architectures.

• Model-driven Development (MDD): MDD is on top of the de�nition of mod-

els and languages to automatically generate software models that can be used to

implement the system.

• Model-based Engineering (MBE): MBE uses models to plan and design the soft-

ware system. However, the implementation itself is not supported and is imple-

mented later or in parallel.

• Model-driven Engineering (MDE): MDE uses models for design, planning, anal-

ysis and implementation of the software system.

The approach presented in this dissertation uses models for design, planning and

analysis. Later, the models support the implementation process. Therefore, the approach

presented in this dissertation can be attributed to the �eld of Model-driven Engineering.

3.1.1.1. Models and Model Levels

According to Becker [Bec08] (based on the de�nition of Stachowiak [Sta73]), a formal

model can be de�ned as a formal representation of entities and relationships in the real

world (abstraction) with a certain correspondence (isomorphism) for a certain purpose

(pragmatics). On the basis of the concept of a model, Koziolek [Koz11] (based on Stahl and

Völter [SV06]) derives the concept of the meta model, which de�nes the set of all models

of a certain domain.

25

3. Foundations

Domain

Metamodel Abstract
Syntax

Static
Syntax

DSLConcrete
Syntax

Semantics

Meta-
Metamodel

instance of

specified
based on

describes
concepts of

Model
instance of

Figure 3.1.: Modelling concepts and their relation [SV06].

De�nition 3.1.1 Meta model (from Koziolek [Koz11, p. 24] , based on Stahl and Völter
[SV06]):
A meta model is a formal model that describes the possible models for a domain by de�ning
the constructs of a modelling language and their relationships (abstract syntax) as well as
constraints and modelling rules (static semantics).

A meta model therefore describes all entities and their (structural) relationships to represent

all possible models of its domain. Models are therefore instances of their corresponding

meta models. Figure 3.1 shows the relations between the modelling concepts according to

[SV06]. The meta model describes relevant concepts of the domain. Entities and structure

are de�ned by the abstract syntax and concrete syntax. The static syntax is based on the

abstract syntax and the concrete syntax is itself an abstract syntax. Semantics is �nally

realized by the domain-speci�c language (DSL) for a certain meta model and its associated

concrete syntax.

The Object Management Group (OMG) de�ned the Meta Object Facility (MOF) that

speci�es several modelling concepts at di�erent abstraction levels [Man17]. Figure 3.2

shows the individual levels of the levels by Völter et al.[SV06] Level M0 corresponds to

data objects in run times of programs, such as runtime objects of classes. Analogously

to objects, level M1 describes the classes the runtime objects from level M0. Level M0

and M1 correspond to the models that software developers usually use in object-oriented

programming languages. All higher abstraction levels are usually not covered by standard

programming languages. The next higher level M2 describes meta models used to describe

models. In software architecture design, software architects often come into contact with

the Uni�ed Modelling Language (UML), which is very often used to specify models in

level M1. Accordingly, the UML is based on the meta model level M2. The level with the

largest abstraction M3 de�nes meta meta models, which allow de�ning new modelling

languages and meta models. Concepts on this level describe themselves and can therefore

be used universally.

26

3.1. Software-Architecture and Software Architecture Models

Figure 3.2.: Levels of abstraction in models [SV06]. Graphic from [Kla14].

3.1.1.2. (Essential) Meta Object Facility

Component-based software architectures often use the Essential Meta Object Facility

(EMOF). It is based on the MOF, but is speci�cally designed for modelling object-oriented

systems. For example, classes, attributes, data types, references between classes, enumer-

ations and operations are de�ned. In analogy to programming languages, each class is

of a certain type. A class contains a set of properties that are also typed elements. Each

property is described either by data types, such as primitive data types, or by abstract data

types, such as classes.

3.1.1.3. Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [Ecl19a] allows designing and editing structured

data models and meta models. EMF is fully integrated with Eclipse and provides the

ecore notation for modelling meta models. In addition to the meta model, EMF provides

generators that allow modelling entities to be used as runtime objects in Java. On the basis

of EMF, Xtext [Ecl19c] was developed, which allows creating DSLs with textual syntax.

Xtext provides a grammar whose syntax is similar to the extended Backus-Naur-Form

(EBNF). It also comes with generators that allow to automatically transfer the textually

de�ned models into runtime object models.

3.1.1.4. Model Transformation using Triple-Graph-Grammars

In this section, we describe model transformation using triple-graph-grammars (TGG).

We use graphs as formalism to represent meta models and TGGs as formalism for graph

27

3. Foundations

transformations. The model transformation transforms a source model S according to a

set of rules to a target model T . Both models share a corresponding structure.

Hermann et al. de�ne in [Her+11] forward and backward operations for model trans-

formation based on graph modi�cations. Let us de�ne a triple graph G. TG is a typed

triple graph, following the graph morphism typeG : G → TG . TG is the typed triple graph

of G. Let us denote a typed triple graph TG := (TGS ← TGC → TGT), while TGS is the

source typed triple graph, i.e. the source model, TGC is triple graph of the correspondence

structure GC
, and TGT is the target typed triple graph. The CompARE approach relies

on additive operations. Thus, we focus on forward-propagating operations, hereinafter

de�ned as f f w .

The function δ : G → G′ can be de�ned by a graph modi�cation. In more precise terms,

δ : G
i1
← I

i2
→ G′ can be derived, where i1 and i2 are two graph morphisms, i.e. mapping

between two graphs according to their structure, while I contains the elements that are

preserved during model transformation. The graph morphism i1 : I → G enables to derive

the elements in G that are deleted, while the elements that are added to the model are

de�ned with i2 : I → G′. Based on the model transformation δ , Hermann [Her+11] enables

to derive the forward propagation operation as follows:

f f w : (R ⊗ ∆S) → (R × ∆T)

∆S := {δS : G
S → G′S |GS,G′S ∈ VL(TGS)}

∆T := {δT : GT → G′T |GT ,G′T ∈ VL(TGT)}

(R ⊗ ∆S) := {(r × δS) ∈ (R × ∆S)|r : G
S ←→ GT ,

δS : G
S → G′S }, δS and r coincide with GS,

while R is the set of correspondence relations, ∆S the set of graph modi�cations of the

source graph GS
and ∆T the set of graph modi�cations of the target graph GT

. More

precisely, a forward propagation contains a speci�c correspondence relation r1 ∈ R and

a graph modi�cation δS . VL(M) determines all model instances from a meta model M
(formulated as a graph). The result is the correspondence relation r2 ∈ R and the graph

modi�cation δT , which enables to derive the target model G′T .

GS r1
←→ GT

δS
y ↘ f f w δT

y
G′S

r2
←→ G′T

δS and r coincide with GS
restricts the set of rules that correspond to the same source

model. Otherwise, all correspondence rules would be considered due to the Cartesian

product of correspondence relations and source graphs.

3.1.2. (Component-based) So�ware Architecture

According to Reussner et al. [Reu+16], architecture decisions that are made when designing

a software architecture play a particularly critical role.

28

3.1. Software-Architecture and Software Architecture Models

De�nition 3.1.2 Software Architecture (from Reussner [Reu+16, p. 37]):
A software architecture is the result of a set of design decisions relating to the structure
of a system with components and their relationships as well as their mapping to execution
environment.

However, design decisions that in�uence the software architecture are made not only in

the design phase, but also in the development or evolution process, and in the process

of reusing systems. This is because each building block, the software component, that is

reused, each relation between elements changes the structure of the architecture. In later

phases of the design process, design decisions are being changed, removed, or added due

to new or changed requirements. However, design decisions are made not only during

design, but also when deploying the implemented system to hardware resources: The

hardware environment in�uences the architecture due to the hardware con�guration.

Relevant factors are CPU, disk, and network resources. All these structural properties

ultimately in�uence the software architecture.

Reussner et al. describes in [Reu+16] the previously mentioned software components,

which are essential parts of component-based software architectures, as follows:

De�nition 3.1.3 Software Component (from Reussner [Reu+16, p. 47]):
A software component is a contractually speci�ed building block for software, which can be
composed, deployed, and adapted without understanding its internals.

Contractually speci�ed means that preconditions and subsequent conditions are speci�ed.

If the software architecture in which the software component is used complies with the

precondition, the software component ful�ls its speci�ed postcondition. The contractual

speci�cation enables reuse of software components in any component-based software

architecture without having any knowledge of the internals of the component. Software

components comply with the contractual speci�cations by means of interfaces.

De�nition 3.1.4 Interface (from Reussner [Reu+16, p. 45]):
Interfaces are abstract descriptions of units of software. They can be used as points of inter-
action between components.

The contract consists of two types of interfaces, the roles, namely the provided and required

roles. The interaction between components is done by a pair of two compatible required

and provided roles. Interfaces with provided roles are often called provided interfaces.

This applies analogously to interfaces with required roles. Provided interfaces de�ne the

services provided by a component, while required interfaces de�ne services a component

requires for realizing the provided services.

3.1.2.1. Palladio Component Model

The Palladio Component Model (PCM) is part of the Palladio approach [Reu+16] from

Reussner et al. PCM is a domain-speci�c modelling language for software architectures

that focusses on modelling and analysis of software quality. Palladio and the PCM support

the software architect in designing component-based software architectures. Palladio

29

3. Foundations

implements and extends the component-based software engineering process by Cheesman

and Daniels [CD00].

The PCM is based on the previously introduced concepts of component-based software

architectures, such as contractually speci�ed components, interfaces, and roles. It re�nes

interfaces internally with a list of signatures that corresponds to the provided and required

services of a component using the interface. A signature corresponds to an operation, a

name, a parameter list, and a return parameter. This corresponds to concepts of methods in

programming languages. PCM also uses the concept of roles for the two types of interfaces

mentioned above, the providing and requiring roles. The interface itself is de�ned neutrally.

A speci�c role is assigned when assigned to a component. The role determines whether

the component provides (providing role) the services speci�ed in the role itself or requires

(requiring role) them to realize its services.

The PCM divides the various requirements of a software architecture into di�erent

parts, namely the architecture view type, as de�ned in the ISO 42010 standard.

De�nition 3.1.5 View type (from Reussner [Reu+16, p. 42]):
A view-type de�nes the set of meta-classes whose instances a view can display and comprises
a de�nition of a concrete syntax plus a mapping to the abstract meta model syntax.

View-types divide the meta classes of a meta model (such as the PCM) into di�erent parts

in order to reduce the complexity of use.

The PCM de�nes three viewpoints representing classes of view-types, namely the

structural viewpoint, the behavioural viewpoint, and the deployment viewpoint.

Structural Viewpoint

The structural viewpoint represents the dependency structure and the components, inter-

faces, etc. of systems. It comprises two view-types, namely the repository view-type and

the assembly view-type.

PCM components and interfaces are stored in a repository. The repository contains

further elements that are not central for the concepts of this dissertation and are therefore

not considered further. An example of a repository is shown in Figure 2.7. It shows the

components and interfaces of our running example, the log4jv2 system. The repository

is the central base used by component developers to make new components available

for (re-)use, as well as by software architects that can use the available components to

design their software architecture. The design of the software architecture is carried out

by assemble components to composites.

The assembly is represented by the assembly view type. Assembly contexts connect

components with interfaces using the two types of roles. Let us take the FileAppender com-

ponent shown in Figure 3.3 as an example. FileAppender provides the IAppend interface,

while it requires the IFormat interface to provide the services from IAppend.

The connection between two corresponding roles (requiring role and corresponding

providing role) and thus between two assembly contexts is realized via the assembly

connector PCM::AssemblyConnector. In Figure 3.3, assembly connectors are graphically

illustrated by the dashed arrows between matching interface roles. Assembly connectors

30

3.1. Software-Architecture and Software Architecture Models

Legend:

log4j

System Component

Required role

Provided role

Assembly
connector

Logging

File
Appender

Console
Appender

Database
Appender

Pattern
Formatter

CSV
Formatter

<<providing>>

ILogging
<<requiring>>

IAppend

System
provides
interface

Figure 3.3.: Assembly view type of log4jv2.

themselves do not provide any functionality, but merely serve as connecting entities

between interfaces.

In addition to assembly connectors, systems have system provides interfaces. They are

used to providing services of the system to users or other systems. Analogously there can

be system requiring interfaces.

Behavioural Viewpoint

The behavioural viewpoint focussed on the behaviour of the internals of components and

behaviour between components. The main concept of internal behaviour is the service

e�ect speci�cation (SEFF).

De�nition 3.1.6 Service E�ect Speci�cation (from Reussner [Reu+16, p. 53]):
A service e�ect speci�cation (SEFF) describes the intracomponent behaviour of a component
operation on a highly abstract level by specifying the relationship between provided and
required services of a component.

SEFFs abstract from the individual program statements of components. Code is reduced

to control structures such as branches, loops or forks (and several others). Statements

are abstracted with internal actions. The call of external methods is abstracted with

external call actions. Internal actions represent one or more program statements, such as

variable assignments, or complex algorithmic calculations. This depends on the degree of

abstraction of the model.

31

3. Foundations

<<ResourceContainer>> <<ResourceContainer>>
:DatabaseServer:ApplicationServer

<<AllocationContext>>

MediaAccess

<<AllocationContext>>

DB

<<LinkingResource>>

Processor Disk Processor Disk

processingResourceType = CPU

processingRate = 3.5*10^9

processingResourceType = HDD

processingRate = 55.7

processingResourceType = CPU

processingRate = 2*10^9

processingResourceType = HDD

processingRate = 34.3

Figure 3.4.: Example of a resource environment and component allocation [Reu+16].

The intercomponent behaviour (via interfaces and connectors) is done by the SEFF of a

component via the external call action. The external call action creates links to services

of other components in the system. If an external service must be called to ful�l the

component’s own service, this is realized via this link. If an external call action is required

by a SEFF of a component, this implies an additional interface in the requiring role with

which the component must be associated.

Deployment Viewpoint

In the resource environment the physical or virtual nodes are de�ned, as well as their

resources regarding CPU and hardware equipment, the processing resource types. For

example, the clock rate of the processor or the I/O throughput of hard disks can be de�ned.

Networks between nodes and their throughput can also be de�ned. The allocation to

resources is �nally done in the allocation view type. The previously modelled assembly

contexts are assigned to the hardware resources modelled in the resource environment

view type. Figure 3.4 shows both resource environment and component allocation.

Usage Profile

The usage pro�le de�nes the protocol of typical actors accessing the system. For this

purpose, externally exposed services of the system (provided interfaces of the system) can

be used. The usage pro�le is modelled using an activity diagram, which can be enhanced

with information on parameters or input data. Similar to SEFFs, loops or control structures

for modelling alternative paths can also be de�ned in the usage pro�le.

32

3.1. Software-Architecture and Software Architecture Models

Provides
Component Type

Complete
Component Type

conforms

Impl.
Component Type

conforms

A
bs

tr
ac

t T
yp

es
Im

pl
em

en
ta

tio
n

Ty
pe

s

Figure 3.5.: Component type hierarchy [Reu+16].

3.1.3. Component Type Hierarchy

PCM de�nes a type hierarchy [Reu+16] for components that abstracts components to

di�erent levels. Thus, they limit the information content required for the respective

development stage or usage process to reduce complexity. The di�erent levels of abstraction

and the information displayed in each case are chosen such that the necessary information

is available in the current process as precisely as possible in order to keep complexity

as low as possible. Figure 3.5 shows the component type hierarchy. The hierarchy is

divided into two parts: abstract types and implementation types. The most abstract type is

the Provided Component Type. Whenever software architects need new components, they

specify them using the provided interfaces with the services required for their system.

Optionally, they can also de�ne required services. However, this can often not yet be

speci�ed at this design level, which is why required interfaces are only modelled optionally.

These components speci�ed on the provided type can now be submitted to the component

developer for implementation.

The Complete Component Type is still abstract, but enriched with additional information.

At this level, the component developer de�nes (if necessary) or re�nes further provided

interfaces and adds the necessary required interfaces. The speci�cation can now be used

by the software architect to extend his system.

The abstract behaviour is introduced in the Implementation Component Type. At this

level the internal behaviour of components is speci�ed using the SEFF. Several components

usually exist, with the same interfaces, but di�erent internal behaviour that does not a�ect

functionality. That is, all components with the same interface speci�cations are treated

as functionally equivalent. However, they di�er in the resulting quality attributes (as

introduced in more detail below).

33

3. Foundations

3.1.4. Reference Architecture

Complex systems often contain many software components including the appropriate

interfaces. These are in relations to each other to ful�l the function of the system. Due

to this high number of components and relationships between the components, the com-

plexity of the overall system easily increases and quickly becomes di�cult to manage. In

particular, reusing such systems as subsystems in a base system becomes more di�cult

due to this complexity.

De�nition 3.1.7 Reference Architecture (fromReussner [Reu+16, p. 85], inspired by [TMD09]):
A reference architecture is the set of principal design decisions that are simultaneously appli-
cable to multiple related systems, typical within a single application domain, with implicitly
de�ned points of variation, such as the presence or absence of a component.

A reference architecture helps to make this growing complexity of systems more manage-

able and to simplify reuse. They contain architecture knowledge of the domain and the

experts who designed this system and allow this architecture knowledge to be reused when

reusing these systems. This easier reuse can be achieved by grouping software components

from software architectures and standardizing them for a speci�c domain. The result is a

template that is made available for the design of other systems and determines the main

design of the systems. Structural elements, types and their relationships to each other are

modelled in such a template. Such a template is designed that many similar systems of the

same domain can be applied [Reu+16].

3.1.5. Feature Models

Feature Models are a graphical notation to represent hierarchical structures of parent and

child features according to Kang et al. [Kan+90]. In this dissertation, we use features as

de�ned in De�nition 3.1.8.

De�nition 3.1.8 Feature (from Bosch [Bos00, p. 194]):
Features are logical units of behaviour speci�ed by a set of functional and quality require-
ments.

Feature models are often associated with variability within models, but can also be used to

represent complex functionalities. Child features usually complement the parent feature or

each serves as an alternative to other child features. There are di�erent types of variability.

For example, it is possible to de�ne features as exclusive alternatives to each other (XOR),

as an alternative (OR) or in combination (and).

The types di�er in the graphical notation. An OR relation is modelled with a �lled circle,

while XOR is modelled with an un�lled circle. It is also possible to model di�erent features

either as optional (marked by an un�lled circle) or as mandatory (represented by a �lled

circle). This is also illustrated by the feature model of the log4jv2
1

logging framework

Figure 3.6.

For this dissertation we use the EMF feature model [Ecl19b] from EMF. This ecore-based

speci�cation implements the feature model, together with a graphical editor according

1https://logging.apache.org/log4j/2.x/

34

https://logging.apache.org/log4j/2.x/

3.2. Software Quality and Modelling Knowledge

Logger
optional
mandatory

alternative
(xor)

or

Legend

DatabaseConsole

SQL NoSQL

Message
Queue

Figure 3.6.: Simpli�ed feature model of the logging system log4jv2.

to Czarnecki and Eisenacker [CE00]. Figure 3.7 shows the meta model graphically. In

the following, we will introduce the main classes and properties of the meta model.

FeatureObjective, Feature, FeatureGroup, and Constraint are the main classes of the

meta model. FeatureObjective is the container of the features. Feature de�nes if a

feature is a mandatory feature, an optional feature. A feature can have sub features by the

ChildRelation. Children can be mandatory or optional child features. Child features are

contained in a feature group. On features and feature groups constraints can be de�ned by

the Constraint class. Features can either exclude other features (ProhibitsConstraint)

or require other features (RequiredConstraint).

3.2. So�ware Quality and Modelling Knowledge

3.2.1. So�ware Quality and Quality Attributes

De�nition 3.2.1 Software Quality (from ISO/IEC 25030:2007(E) [Int07]):
Software quality is the capability of software product to satisfy stated and implied needs
when used under speci�ed conditions.

According to De�nition 3.2.1, software quality depends on the requirements of the software

system and its environment (such as the usage pro�le).

Requirements can be distinguished by two terms, namely functional requirements and

quality requirements.

De�nition 3.2.2 Quality Attribute (from ISO/IEC 25030:2007(E) [Int07]):
A quality attribute is an inherent property or characteristic of an entity that can be distin-
guished quantitatively or qualitatively by human or automated means.

Therefore, quality attributes can be either quantitative or qualitative. The type depends

on the formulation of the appertaining requirement. For quantitatively described quality

requirements, various further terms can be derived. Figure 3.8 shows relevant terms

35

3. Foundations

Figure 3.7.: Graphic showing the meta classes of the ecore-based meta model for de�ning

features.

36

3.2. Software Quality and Modelling Knowledge

Figure 3.8.: Terms in the �eld of quantitative quality requirements [Reu+16; Koz11].

regarding quantitative quality requirements. The term quality attributes can be divided

into two parts, namely quality characteristics and quality measures. For example, quality

characteristics can be instantiated by the term performance, reliability, and safety. Quality

measures, on the other hand, are the dimensions of these characteristics, such as mean

response time (for performance), probability of failure (for reliability), or mean time to

security failure (for security). both quality attributes are system independent.

In contrast, the quality scenario, the quality property, and the quality requirement are

dependent on the system under study. The quality scenario de�nes a particular service

and environment for a particular quality measure. This means, that the quality scenario

speci�es the average response time for a particular service provided by the system and a

particular hardware context. In turn, a quality property represents the observed value for

the quality scenario, such as the mean response time of 4.5 seconds. The (quantitative)

quality requirements, on the other hand, �nally determine whether the observed quality

characteristic within the scenario meets the required quality requirements. An upper limit

for the response time can be de�ned, for example an average response time of less than 5

seconds (for the given scenario).

3.2.1.1. Performance

Performance is one of the critical quality attributes of software systems. In the case

of web shops, performance can even have a direct impact on a company’s sales if, for

example, purchases cannot be �nished due to poor performance or if purchases can be

made particularly quickly due to good performance. Another aspect of performance is

real-time systems, which must have completed their function by a certain deadline in

order to ensure their required usefulness. Quantitative metrics can be used deriving the

three quality measures [Reu+16]:

37

3. Foundations

• Response Time: Response time is the time a system requires to perform the service,

from receiving the user request to sending the �nal response to the user.

• Throughput: Throughput can be measured by the number of requests the system

can process within a given time unit.

• Utilization: Utilization describes the resource utilization of hardware resources in

percent within a given time period.

3.2.1.2. Cost

Costs can also be regarded as a quality attribute. They usually depend directly on other

quality attributes, such as higher performance or higher security, which are usually

associated with higher costs. Di�erent types of costs can be distinguished, such as the

following three types (adapted from [Reu+16]):

• Component costs: Component costs describe the costs of components within

their life-cycle for in-house developed or licenced components. These costs include

requirements engineering, development process, customization, evolution, testing,

maintenance and care. Licensing costs may also arise.

• Hardware costs: Hardware costs arise from the processing of software components

on hardware. These costs are subdivided into acquisition costs for hardware, such

as server systems or networks, and also into run time costs, such as the costs arising

from the use of cloud services.

• System costs: System costs refer to costs of the overall system that cannot be

attributed to individual components. Such costs are usually incurred through the

use of middleware systems, such as application servers, operating systems or load

balancers.

3.2.1.3. Security

There are di�erent de�nitions for security in software systems. This work focuses on

information security, which can be represented by the CIA-triad of con�dentiality, integrity

and availability.

De�nition 3.2.3 Information Security (from Cherdantseva and Hilton [CH15]:
Information Security is a multidisciplinary area of study and professional activity which is
concerned with the development and implementation of security mechanisms of all available
types (technical, organizational, human-oriented and legal) in order to keep information in
all its locations (within and outside the organization’s perimeter) and, consequently, infor-
mation systems, where information is created, processed, stored, transmitted and destroyed,
free from threats.[..]

CIA represents the core of information security, which can be de�ned as follows:

38

3.2. Software Quality and Modelling Knowledge

Software architecture
model

Software system

Predicted / Reasoned
quality properties

Actual quality
properties

Abstraction /
Correspondence /
Pragmatism

deduce

has / will have

accuracy

Figure 3.9.: Model-based quality prediction after [Koz11].

• Con�dentiality: Con�dentiality is the property, that information is not made avail-
able or disclosed to unauthorized individuals, entities, or processes [Bec15]. Con�den-

tiality guarantees that sensitive information is only accessible by authorized persons

or systems.

• Integrity: Integrity guarantees that transmitted information is unchanged during

transmission. This means that the information that arrives at the receiver equals to

the information submitted by the sender.

• Availability: Availability guarantees that (saved) information and resources are

available for authorized persons or systems. Their availability should not be re-

stricted by attackers.

3.2.2. Model-based Quality Prediction

De�nition 3.2.4 Quality Models (from ISO/IEC 25030:2007(E) [Int07]):
Quality models de�ne a set of characteristics, and of relationships between them, which
provides a framework for specifying quality requirements and evaluating quality.

With this de�nition, together with the de�nition of software models, the core of the

model-based quality prediction can be described:

We show an overview in Figure 3.9. A given software system has (or will have), due

to its given design, certain quality properties. A software architecture model in turn is

an abstraction of this software system. Various quality attributes can be predicted on its

basis. Which quality attributes and in which level of detail can be predicted depend on the

attributes of the model, i.e. on the abstraction, the correspondence, and the pragmatism

of the model. If software performance should be predicted, information on the quality

properties for the quality attribute performance must be included, so that performance

can be predicted on the basis of this model. The capability and accuracy to predict the

performance of the software system depends on the software architecture’s meta model.

These predicted quality characteristics then have a certain accuracy compared to the actual

(or future) quality characteristics of the software system.

Furthermore, the accuracy also depends on the type of modelling. Quantitatively

modelled quality attributes tend to achieve higher accuracies than qualitatively modelled

39

3. Foundations

quality attributes. Which type is used depends on two factors: importance of the quality

attribute for project success and available budget. Generally, quantitative models are more

complex and thus more time-consuming in development than qualitative estimates.

3.2.3. Quality of Service Modelling Language

The Quality of Service Modelling Language (QML) allows modelling quality attributes,

quality dimensions and quality requirements. QML has been de�ned by [FK98] in the

EBNF and extended by Noorshams et al. [NMR10]. The extension de�nes the language

as a meta model and enables use in automatic analysis procedures based on software

architecture models. The language itself consists of three parts, namely the Contract Type,
the Contract and the Pro�le.

• Contract type: The contract type de�nes quality attributes such as performance,

reliability, security, and re�nes these quality attributes with dimensions, as intro-

duced in Section 3.2.1.1. For the performance quality attribute, possible dimensions

might be mean response time and throughput. The contract type de�nes a name, a

domain, and the semantics of ascending and descending values for each dimension.

In the case of response time, ascending values mean worse quality, while in the case

of throughput, this corresponds to an improvement in quality. Each dimension has

a corresponding numeric domain, which values are de�ned in the contract type. For

example, an interval is possible in which possible values can range. Alternatively,

we can de�ne individual (single) values on which an order relation is de�ned.

• Contract: The contract is derived from the contract type and can be seen as an

instance of the contract type. While the contract type determines which quality

dimensions are possible for a particular quality attribute and which values are valid

within the dimension, the contract speci�es which quality attribute is to be examined

and which quality dimension is to be examined. Quality requirements can also be

de�ned here. From the set of all possible values of the contract type, a subset of

valid values is de�ned that are derived directly from the requirements. In the case of

performance, for example, a response time from zero to in�nite is possible. Realistic

values from a requirement could be in the range of 200 - 1000 ms, for example. All

resulting quality properties that do not lie within the de�ned range would be invalid.

• Pro�le: The pro�le assigns elements of the software architecture, such as com-

ponents or services, to the de�ned contract. Using this information, an automatic

analysis approach can determine which quality attributes and dimensions are to be

analysed for a particular service and in which range the resulting values must lie in

order to be valid.

We use QML as a basis for modelling and analysis of qualitative quality attributes, for later

common analysis with quantitative modelled quality attributes.

40

3.2. Software Quality and Modelling Knowledge

3.2.4. Modelling Quality in Palladio

Palladio is an approach for modelling software architectures, and enables the evaluation of

quality attributes at design time. Palladio focuses mainly on the evaluation of the quality

attribute performance, but can also analyse reliability, cost and maintainability of software

architectures. Thus, it enables predictions of quality attributes long before the actual

implementation. Thus, already during the software design phase, the modelled software

architecture regarding its quality attributes. Palladio combines model-driven software

architecture design techniques with quality modelling, including the simulation of quality

attributes based on these models.

To model and later analyse performance, Palladio uses the SEFF concept shown in

De�nition 3.1.6 and extends it to include resource demands, the resource demanding SEFFs

(RD-SEFF). An active resource, such as a component running on hardware, naturally

consumes a certain amount of processing resources on that hardware. These processing

resources can be, for example, clock cycles of the CPU or input/output operations of

a hard disk. A SEFF models the abstract behaviour of the processing steps within a

component. As mentioned earlier, these processing steps are the internal actions. In an

implementation, these internal actions correspond, for example, to a speci�c calculation

step that requires hardware resources. This set of hardware resources is modelled using

the resource demands.

Together with the modelled processor clock rate or throughput of a hard disk and the

underlying usage pro�le, the resulting response time can be calculated for a speci�c service.

As with software models in general, RD-SEFFs can be modelled with di�erent levels of

granularity. A constant value up to parametrized probability density functions can be

modelled. Thus, complex modelling possibilities are given, which enable a higher accuracy

of the predicted response times with the corresponding additional modelling cost.

3.2.5. Qualitative Reasoning

Qualitative reasoning comes from the �eld of arti�cial intelligence and allows the expres-

sion of conceptual knowledge. We use its concepts for modellig architecture knowledge

such as de�ned in De�nition 3.2.5.

De�nition 3.2.5 Architecture Knowledge (derived from Kruchten [KLV06]):
Architecture knowledge is the result of architecture design decisions and the design of a
software architecture.

Qualitative reasoning is often used to describe physical relationships such as quantity,

space and time. It supports reasoning about these continuous aspects, even if only lit-

tle information is contained. Qualitative reasoning is also used to model and simulate

knowledge in industry or science and other engineering domains. Simulations based on

models are also possible. Continuous aspects describing the dynamic characteristics of a

system are qualitatively modelled. For example, the mapping consists of the current size

of a characteristic and the direction of possible changes (such as increase or decrease). In

most cases, an ordinal scale is used as a basis on which an order relation is de�ned. All

values within this scale are characteristic values that a system can assume. This is also

41

3. Foundations

max

zero

+

-

{++,-} = +
{+,--} = -

Figure 3.10.: Vessel example for qualitative reasoning: water �owing in is marked with +

sign, while water �owing o� is marked with -. {++,-} = {+} means more water

�owing in than out, what means vessel over�ows, while {+, --} = {-} means

the opposite.

referred to as quantity space. Another property of qualitative reasoning is that it becomes

possible to model coarse granular or very �ne granular. This enables trade-o� decisions

regarding the e�ort required to represent knowledge and the accuracy of the achievable

results. Of course, it also plays a role whether su�cient information is available to model

the desired granularity.

Central to qualitative reasoning is the way in which a system is described, e.g. when

the state changes over time. Although the system changes in reality, this change does not

necessarily have to be re�ected in the model. This is because an objective change in the

state of the system does not necessarily have to be relevant to modelling the behaviour of

the system. An example of this is a water vessel, as shown in Figure 3.10. The water vessel

has an in�ow and an out�ow and according to the strength of the in�ow and the amount

of water �owing out a certain water level results. When designing a system that describes

the state water empty, contains water and vessel at the over�ow, then the intermediate

change of state (for example litre amount of water) is not relevant. Rather, the future state

of the vessel is determined by whether the quantity of water �owing o� is greater than

the quantity of water �owing in, is exactly the same, or whether the quantity of water

�owing in is greater than the quantity of water �owing o�. All states in between remain

unknown. Therefore, no statement can be made about the quantity of water at a certain

point in time, but only about the state that will arise in the future when behaviour remains

constant. However, no physical connections between in�ow and out�ow velocity, size of

the vessel, gravity, etc. need to be known in order to determine the future state. This is

related to the trade-o� decisions aforementioned. Not all correlations need not be known,

but can be derived by mere observation and this observed knowledge can be captured in a

structured process and formal model. Thus, observed knowledge or informally available

knowledge can be formally modelled and, for example, made machine-processable. On the

other hand, the recorded knowledge and the possibilities of analysis are limited and the

state cannot be determined by a quantitative objective function at any given point in time

[Bre+09].

42

3.3. Optimizing Software-Architecture Models

The water level of the vessel can therefore be de�ned by the amount of water �owing

in and out. Water level and quantity change can be described for example by the quantity

space {++,+,0,-,--}. Whereby 0 means no change and +,++ as well as -,-- a corresponding

positive change or negative change. If a larger amount of water �ows into the vessel (++)

than out (-), the total amount of water in the vessel (+) increases. If as much water �ows

into the vessel (+) as out (-), the resulting total change is 0.

With this method, architecture knowledge and informal knowledge can be formally

modelled, automatically processed and therefore automatically analysed.

3.3. Optimizing So�ware-Architecture Models

Optimization determines the best solution in a given context. The available solutions

correspond to a set of decisions that include a set of possible alternative choices. The

better solution can be determined by an objective function that must either be minimized

or maximized. An example of such a function is the performance analysis of a software

architecture model. When analysing the response time of a service, the associated objective

function must be minimized. If throughput should be analysed, the objective function

must be maximized.

Every possible decision is contained within a design space that must be searched for

optimization. Searching the design space for the optimal solution is also called design
space exploration.

If several objectives are considered simultaneously, i.e. several objective functions that

must be minimized or maximized at the same time, a multi-objective optimization must be

carried out [Koz11].

3.3.1. Multiple Criteria

In real-world scenarios it is often necessary to consider several quality criteria at the same

time. For example, the response time and also the reliability of a given software service

can be simultaneously relevant for optimization. Multiple criteria and articulation for

preferences can be treated in three ways: a Priori, a Posteriori and interactive (cf. [VL00;

Bra+08]).

3.3.1.1. Preference Articulations

For a priori preference articulation, all criteria are �rst reduced to one objective function.

This objective function can be examined individually after evaluation (a priori).

The a Posteriori preference articulation �rst determines the optimal solutions based on

all relevant objective functions. The search for optimal solutions on the basis of several

objective functions results in several trade-o� solutions (Pareto-optimal solutions), which,

based on the available information, are in themselves all optimal solutions. Compares

two solutions with each other, one solution is only objectively better if it outperforms (or

is equal to) the other solution in all the considered objectives. If one of the considered

objectives is better in the �rst solution and another objective is better in the second

43

3. Foundations

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

0.05

0.10

0.15

0.20

0e+00 2e+05 4e+05 6e+05
Cost

R
es

po
ns

e
ti
m

e
[m

s]

Solutions ● ●dominated solutions Pareto−optimal solutions

Figure 3.11.: Example showing Pareto-optimal and dominated solutions

solution, then both solutions are not directly comparable. Both solutions are then treated

as Pareto-optimal solutions. Decisions on the optimal solution is made later (a posteriori)

for example due to analysing the requirements or reasoning of software architects.

The interactive preference articulation allows decision makers to adjust their preferences

interactively during the search process. Usually, this method iteratively processes a

posteriori methods. After each iteration the decision makers review the resulting solution

and adapts their preferences. The adapted preferences are then used for further iterations.

This dissertation focuses on a posteriori preference articulation. An a posteriori analysis

of the Pareto-optimal solutions allows decisions on alternatives and prioritization of the

requirements regarding the results of the objective functions. No preferences have to be

de�ned in advance. The preferences can be weighted against each other on the basis of

reviewing the set of Pareto-optimal solutions. [Koz11]

3.3.1.2. Pareto-Optimality

A multi-objective optimization problem is described by a vector comprising n objective

functions to be optimized. Each function in this vector results in a property for an objective.

Each vector describes the speci�c properties of a solution. Objectively optimal, a solution is

exactly when each property is greater or equals of another solution, i.e. Pareto-dominance. If

solutions are not comparable, neither dominates the other, they are Pareto-non-dominance.
If one solution is greater or equal in all properties of the vectors of all other solutions in the

search space, the solution is globally Pareto-optimal. The set of Pareto-optimal solutions

comprises all globally Pareto-optimal solutions of the search space that are non-dominated

[Koz11].

Figure 3.11 shows an example of Pareto-optimal solutions (green) and dominated solu-

tions (red). The plot shows two objective functions, response time and cost. Both functions

must be minimized to �nd the optimal solutions. A pair consisting of a response time and

44

3.3. Optimizing Software-Architecture Models

a cost amount, such as (0.25 ms, 2000 monetary units), characterizes a solution. The green

Pareto-optimal candidates form the Pareto-front. From these candidates, decision makers

will then select a solution. The red solutions are rejected and not pursued further.

3.3.2. So�ware-Architecture Optimization

The PerOpteryx approach proposed by A. Koziolek [Koz11] optimizes software architec-

tures on the basis of software architecture models. The optimization requires a design

space describing all possible architecture candidates. The design space is described by

software architecture degrees of freedom (DoF). They are part of the basis for the au-

tomated generation of alternative architecture candidates. Architecture candidates are

automatically generated using an evolutionary algorithm. The generated architecture can-

didates serve as input for the objective functions, such as the performance analysis or cost

evaluation of Palladio. Their results are used to generate new, improved candidates and to

�nd the Pareto-optimal architecture candidates in the search space. The Pareto-optimal

candidates can then be used as a basis for implementing the software system.

3.3.2.1. Evolutionary Algorithms

Evolutionary algorithms originate from the �eld of biological processes of evolution

and were originally introduced by Holland [Hol92]. They belong to the class of meta

heuristics, i.e. approximate search-based optimization strategies independent of the search

problem. The principle of evolutionary algorithms is based on creating new o�spring from

an existing population. Survivable o�spring of each population are selected by natural

selection.

Each o�spring is described by its genotype and its phenotype. The genotype describes

possible properties, the alleles. In organisms, an allele determines possible manifestations

during reproduction, such as hair colour, e.g. brown hair or blonde hair. The genotype

encodes genetic dispositions for all possible hair colours of the organism. One of the allele

is the one that prevails in reproduction, such as brown hair and determines the phenotype.

PerOpteryx uses evolutionary algorithms creating new, promising architecture candi-

dates. We introduce the basic algorithm of this class of algorithms in the following.

Figure 3.12 shows the basic algorithm. The basic algorithm consists of three parts,

namely evaluation of the new candidates, i.e. new solutions of the population, selection

of candidates, i.e. solutions for the next generation, and generation of new candidates,

i.e. solutions of the population. To generate a new population, the population size n is

required as input. Another input parameter is the number of parents of each generation

µ, as well as the number of o�spring λ in each iteration. The initial input consists of a

number of random candidates.

In step a, the evaluation step, all unevaluated solutions are evaluated. The evaluation

of the solutions is calculated using the objective functions. All evaluated and survivable

solutions, i.e. the initial solutions and the surviving new solutions, are used in the next

step.

45

3. Foundations

Figure 3.12.: Basic Evolutionary Process [Koz11].

In step b, the candidate selection step, the population is �rst reduced to n solutions.

The weakest candidates, according to results of the objective function, are removed. In

addition, a set of solutions µ is de�ned which represent the parents for the next iteration.

In step c, the reproduction step, new candidates are generated with the help of cross-over

and mutation operations. The parents from the previous step are used as a basis. The set

of solutions from the previous step and the newly created candidates are �nally passed

back to step a. This process continues until a de�ned stop criterion is reached. The result

is a set of optimal solutions.

The two operations cross-over and mutation are used for reproduction. Cross-over

generates new solutions from the characteristics of two or more parents. All parents

come from the set of promising solutions. The assumption here is that by combining

their bene�cial properties, these are propagated to their o�spring. The genotypes of two

promising solutions are merged into one new solution.

The mutation operator searches for new candidates in the neighbourhood of given,

promising input candidates. This is based on the assumption that good or better candidates

can be found in the neighbourhood of good candidates. The basis for the mutation

operator is one promising parent candidate. To generate candidates by mutation, a number

of genes from the parent candidate are selected and mutated. All other genes are inherited

unchanged.

3.3.2.2. Design Space of So�ware-Architecture Models

The design space of software architecture models describes the set of all possible valid

architecture candidates. The meta model used for de�ning the software architecture

models and the meta model’s DoFs de�ne the set of architecture candidates. Several DoFs

can be identi�ed for the PCM: Component selection, component allocation and resource

selection [Koz11].

The component selection DoF can be spanned due to the component-based nature of

PCM. Software components encapsulate the implementation of functions. Interfaces are

decoupled from software components. If several components exist with the same interfaces,

these components are interchangeable. Functionally, the software architecture remains

46

3.3. Optimizing Software-Architecture Models

3. Present results

Set of candidates

Se
t o

f c
an

di
da

te
s w

ith
 q

ua
lit

y
pr

op
er

tie
s

 n
ew

 o
ne

s

Crossover Mutation
Reproduction: Generate new candidates

c

a

b

Performance Reliability Cost

Selection: Choose candidates for next generation

 Evaluation of new candidates

Set of candidates
with quality properties,

2. Evolutionary Optimisation

Tactics

Initial
candidate Degrees of freedom (DoF)

D
eg

re
e

of
 fr

ee
do

m
 in

st
an

ce
s (

D
oF

I)

1. Search problem instantiation

Initial and
 random
candidates

 promising ones are marked

with quality properties

Resulting optimal candidates with quality properties

Figure 3.13.: Software Architecture Optimization Process (based on [Koz11]).

equivalent, but will di�er in the quality attributes. These di�erences can be evaluated by

the objective function for performance.

The component allocation DoF can be spanned when the software architecture model

provides choices for allocating software components. Several options are available in

multi-tier systems, where software components are distributed on several server systems.

In a three-tier server system, each component can be distributed on each server. Due to

di�erent hardware con�guration and network latency, the type of allocation in�uences

the objective function for determining performance.

Possible hardware con�gurations of each server system span another DoF, namely the

hardware selection DoF. Processing resources in Palladio are described by the CPU clock

rate and hard disk throughput. The resource selection DoF span the con�gured values of

clock rate and hard disk throughput. For example, the design space can span clock rate

values from 1 to 3 GHz. In general, DoFs can span continuous values, such as values in

intervals, or by discrete values.

Let us consider the Media Store example to demonstrate the concepts: Media Store

consists of eleven software components and three hardware resources. For each of the three

hardware resources, the clock rate can be selected between one and three GHz. Figure 2.3

shows schematically several degree of freedom instances for each of the three DoFs. One

instance of the DoF allocation determines the allocation of the WebGUI component on the

frontend server. An instance of resource selection de�nes the clock rate of 2 GHz for the

frontend server. The allocation DoF spans discrete values, while resource selection spans

continuous values.

47

3. Foundations

3.3.2.3. So�ware Architecture Optimization Process

The PerOpteryx approach supports software architects at improving component-based soft-

ware architectures by searching the design space using the evolutionary algorithm NSGA-

II [Deb+02] and several objective functions for quality attribute evaluation. Figure 3.13

shows the software architecture optimization process that is based on the evolutionary

process introduced in Section 3.3.2.1.

PerOpteryx uses the three steps of the evolutionary algorithm as a basis to generate,

select and evaluate new software architecture candidates. One of the input parameters for

evolutionary algorithms is the base population. Usually, however, software architects only

model one initial candidate that serves as the basis. Therefore, PerOpteryx instantiates

in step 1 random, new candidates to set up the base population. The base population is

created on the basis of the initial candidate and the con�gured degrees of freedom. It is

later used in the evolutionary optimization process.

PerOpteryx evaluates (step 2.a) the candidates with the help of a set of objective functions.

The objective functions correspond to the quality attributes to be evaluated, such as

performance. Their results are the basis for selecting promising candidates.

The evaluated architecture candidates are then passed into the selection step (step 2.b):

the weakest candidates are removed from the population. For example, weak candidates

are Pareto-dominated candidates. The Pareto-optimal candidates are kept in the base

populations for the reproduction step.

In the reproduction step (step 2.c), the promising candidates are used as a basis for

the generation of new candidates with the help of cross-over or mutation operators.

In addition, PerOpteryx introduces the tactics operator. The tactics operator has been

optimized for software architecture models and models architecture knowledge to improve

the performance of newly generated candidates.

PerOpteryx repeats the three steps until the stop criterion is reached. This is for example

a con�gured number of iterations or a convergence criterion of the Pareto-front. After

the stop criterion has been reached, the Pareto-optimal candidates are returned (step 3).

Based on the results, decision makers can select the best suitable architecture candidate.

3.4. Component-based So�ware Development Process
(CBSE)

The component-based software development process (CBSE) by Cheesman and Daniels

is based on the object-oriented design of classical software engineering. CBSE divides

individual work steps according to di�erent roles of a structured development process.

During the process, the phases (work�ows) are carried out known from the Rational

Uni�ed Process (RUP). The process starts with the collection of requirements, speci�cation,

provisioning, assembly, test and �nally deployment. Each phase can be repeated such as

in the RUP and thus requirements and system can be improved step by step. The tasks of

the individual work�ows are as follows:

• Requirements: In the �rst step, the main task is to determine the business require-

ments of the system. The result is a business concept model with use cases that

48

3.4. Component-based Software Development Process (CBSE)

Figure 3.14.: Component-based Development Process after Cheesman and Daniels, 2000

[CD00]. Graphic from [KH06b].

Figure 3.15.: Quality analysis work�ow of extended CBSE after Koziolek and Happe, 2006

[KH06b].

49

3. Foundations

play an important role in the business model. In addition, a concept model of the

business domain and a shared understanding of the vocabulary used between all

stakeholders involved is created.

• Speci�cation: The software architecture is designed in the speci�cation. The

business concept model and the use cases de�ned in the previous work�ow are used

as the basis. If technical restrictions exist, they are also de�ned in the speci�cation.

The system architect �rst identi�es components and de�nes their interaction with

each other. This speci�cation of the software components is then passed on to the

component developer for implementation. Finally, the system architect performs an

interoperability check on the components.

• Provisioning: In this work�ow, either components are selected from existing

repositories or 3rd party components are purchased. The repository also contains

components that were designed in the previous work�ow and passed on to the

component developer. If necessary, these components are implemented. Technical

restrictions are also analysed and applied.

• Assembly: In this step, the components provisioned in the previous step are assem-

bled to the system. The component architecture and the use cases de�ned in the

requirements work�ow serve as the basis.

• Test: In the test work�ow, the application created in the previous work�ow is tested

by using the use case model. Test development also takes place in this work�ow.

• Deployment: In the deployment work�ow, the application is installed on the

physical hardware resources. The hardware environment may also have to be

adapted and employee training carried out.

3.4.1. Quality Analysis in the CBSE

The component-based software development process was revised and extended by H. Kozi-

olek and J. Happe [KH06b] to enable the prediction of quantitative quality properties using

software architecture models. For this reason, they introduce a new work�ow into the

process, namely the Quality Analysis work�ow. It is arranged between speci�cation and

provisioning. The quality analysis is performed on the basis of the component speci�cation

and software architecture, as well as the use case models and technical constraints. The

resulting (predicted) quality properties are fed back into the speci�cation and validated. If

they do not meet the requirements, the speci�cation is adapted accordingly.

The quality analysis work�ow internally consists of three parts, which are carried out

by three di�erent roles. Domain expert analyse use cases and extract relevant properties

for the quality prediction. On their basis, they adapt the usage model so that quality

predictions become possible. Deployers provide the system architect additional informa-

tion about the resource environment of the system. System architects �nally integrate

all information, execute the system model transformation work�ow that automatically

generates the integrated models. Finally, they perform the quality prediction in the QoS
Evaluation work�ow based on the integrated models.

50

3.4. Component-based Software Development Process (CBSE)

Figure 3.16.: Component-based Development Process with quality exploration after

A. Koziolek, 2011 [Koz11].

3.4.2. Quality Exploration in the CBSE

Based on the quality prediction of the quality analysis, software architectures can be

optimized.

Quality analysis inputs are requirements, represented by use cases, the software archi-

tecture, represented by software components and their relationships to each other. Further,

it uses information about the resource environment describing the intended hardware

speci�cation, and the usage context of the system. At this point, however, it is unclear

whether the existing speci�cation works together, i.e. the hardware environment, selected

components and usage pro�le can meet the business requirements. The quality analysis

itself provides information at the end whether requirements are being met or whether they

need to be adapted. However, it remains unclear whether, for example, hardware resources

or components and their allocation to the resources must be changed. System architects

would now use either their existing domain knowledge or their experience to adapt the

aforementioned parameters until they �t the requirements. In such cases, it would re-

main unclear whether the con�guration found matches the requirements optimally. In

addition, manual adaptation of the models and evaluation of the quality properties is

time-consuming. Therefore, the quality exploration extension by A. Koziolek replaces the

system model transformation work�ow and the QoS evaluation work�ow with the archi-

tecture exploration work�ow. This allows to automatically optimize software architectures

according to its quality attributes.

Figure 3.17 illustrates the automated exploration work�ow replacing the QoS evaluation.

The work�ow for automated architecture exploration uses the software architecture with

all quality-relevant information as input. The information depends on the quality attribute

that is to be examined. Based on the system architecture, degrees of freedom can be

identi�ed automatically. Degrees of freedom correspond to the parameters that had

to be manually adjusted in the original QoS evaluation work�ow, namely allocation of

components, hardware selection, and selection of software components. The automatically

51

3. Foundations

Figure 3.17.: Automated exploration work�ow after A. Koziolek, 2011 [Koz11].

derived degrees of freedom can be revised by the software architect. For example, additional

hardware resources can be made available that cannot be automatically derived from

the existing software architecture models. In addition, exploration restrictions can be

de�ned, such as restrictions for certain hardware con�gurations. Finally, the architecture

is automatically optimized with the revised degrees of freedom and the Pareto-optimal

architecture candidates with the quality properties can be used in the decision-making

step.

The result of the exploration can be used in the two work�ows requirements and spec-
i�cations for the decision making. The Pareto-optimal architecture candidates obtained

from the quality analysis serve as the basis for further decisions. Now, costs for quality

attributes, such as increasing or decreasing performance or reliability are known. On this

basis, requirements engineers and system architects together with other stakeholders can

now decide on the individual quality attributes and weight them against each other. A

suitable candidate can now be selected on the basis of quantitative data. If none of the

candidates matches the requirements, requirements can be prioritized or revised.

52

4. RelatedWork

This chapter presents related work to the CompARE approach. We discuss related work

and approaches that are relevant to the challenges of automatic optimization of software

architecture models when reusing complex subsystems and are within the scope of the

contributions of this dissertation. All discussed approaches in the foundations from the

previous chapters will not be discussed again.

Figure 4.1 illustrates the main groups of related work that correspond to the main phases

of the CompARE approach: The �rst part considers modelling and evaluation of knowledge

for the optimization of software architectures. The second part is about automated model

generation, variability and automated reuse of software architecture models and software

artefacts. Finally, the third part considers supporting software architects in the design of

component-based software architectures.

4.1. Modelling and Representing Knowledge

Related work in this category is divided into knowledge modelling for decision-making

and general knowledge representation. However, both categories are not selective, but

overlap in each case.

4.1.1. Knowledge for Decision Making

Gordon et al. present in [GKN15] their QuABaseBD approach, a knowledge base containing

the major architecture characteristics of distributed databases. The knowledge base is

enriched by semantics such that analysis by queries can be carried out. The approach aims

Base
Model

Reuse
Model

Subsystem
Model

Model generation

Qualitative
Modelled

Knowledge

Quantitative
Modelled

Knowledge

Knowledge Representation

Software-Architecture
optimization

3

2
1

Figure 4.1.: Groups of related work in context of the CompARE approach.

53

4. Related Work

at the high challenges of software architects whenever they design distributed systems

and need to make decisions on the database technology. Often, challenges arise in terms

of quality attributes and architecture design since the database technology chosen has

direct in�uences on the software architecture and the quality attributes. QuABAseBD

should help software architects in that decisions by using the knowledge base. They use a

feature based taxonomy modelling software and data architectures. On the basis of the

taxonomy knowledge about database systems can be captured, queried and visualized. The

knowledge model comprises two parts: The �rst part considers concepts related to quality

attributes, quality attribute scenarios, and architecture tactics. They support the signi�cant

architecture requirements, helping to identify the architecture trade-o�. The second part

represents a feature taxonomy: For the feature taxonomy, they introduce three categories

considering the data architecture, namely data model, query languages, and consistency.

Further, they introduce three categories considering the software architecture:

• Scalability: The architecture design of a database in�uences the overall performance

and scalability of the application. Replication, load balancing or locking strategies

can have major in�uence on the performance.

• Data Distribution: Strategies about the distribution of data has in�uences on the

software architecture and by this on the quality attributes. In case of higher data

distribution on several nodes, the data management overhead increases, can have a

positive in�uence on performance, but the data reliability may decrease.

• Data Replication: Replicating data on di�erent nodes in�uences the software

architecture. Replication could be achieved for instance by physical replication.

However, the replication and consistency overhead increases, performance may be

in�uenced negatively, but the data availability may increase.

• Security: The main consideration of security is data integrity and preventing unau-

thorized access. Features such as client authentication, database encryption, and

logging increase the quality attribute security, in�uence the software architecture

and by this other quality attributes.

These two sections are linked to each other. By this relationship, software architects

can reason about architecture qualities resulting from architecture decisions considering

distributed databases.

Liu et al. present in [LG03] the i-Mate process that is similar to QuABaseBD. In contrast,

they focus on COTS-middleware components providing core software infrastructure.

They argue, that due to a growing COTS market, the product selection became complex

what increases the risk of selecting the wrong product that does not �t the requirements.

Middleware products become increasingly complex, larger, and o�er thousands of features

that strongly a�ect the behaviour in the user application. In addition, many competing

middleware products appear to contain similar or identical features, but di�er in quality

attributes, prices, and their actual implementation. Thus, i-Mate de�nes a knowledge

base containing data on middleware systems. As in QuABaseBD, i-Mate’s knowledge base

includes categories containing the products. It also includes evaluations of middleware

products on a scale from one to �ve.

54

4.1. Modelling and Representing Knowledge

Figure 4.2.: The i-Mate middleware selection process [LG03].

The i-Mate selection process is shown in Figure 4.2. The selection process for the appro-

priate middleware component requires information about the stakeholders’ requirements

as input. These are �rst formalized and initially prioritized. The resulting ranking is then

used for product evaluation (using the i-Mate knowledge base). If the identi�ed product

meets the requirements, it is used, for example, to develop a prototype; if not, requirements

are re-prioritized.

Both approaches are similar to the approach presented in this dissertation. It is about

supporting architecture decisions regarding quality attributes when using features. In

contrast to the approaches from Gorton and Liu, the CompARE follows a generalized

method of subsystem reuse (such as the database and middleware systems). In addition,

CompARE supports the optimization of software architectures and is based on software

architecture models.

4.1.1.1. Knowledge Representation

Glinz demonstrates in [Gli08] a risk-based, value-oriented approach to represent knowl-

edge instead of the quanti�cation of quality attributes. He focuses on the representation of

quality requirements so that they deliver the greatest bene�t. In other words, this means

identifying the risk of developing the wrong system and reducing those risks with counter-

measures. To achieve this, di�erent risk assessments, namely stakeholder importance and

impact must be performed for all requirements. He also assesses whether a requirement

55

4. Related Work

is di�cult to quantify or easy to quantify. The result is a table showing the importance,

risk and quanti�ability of each requirement. In case of an easy quanti�able requirement

with high risk, the requirement should be quanti�ed. If a quality requirement is not

quanti�able or di�cult to quantify but has high risk and importance, countermeasures are

operationalised.

The value-oriented approach of Glinz is similar to the modelling approach of informal

knowledge introduced in this dissertation. However, in this dissertation, the formally

represented knowledge (by a formalized meta model) can be evaluated automatically.

Furthermore, the knowledge can be used together with quantitative methods for automatic

evaluation and optimization.

Lenhard and Wirtz combine in [LW13] quanti�ed knowledge with quality-valued knowl-

edge to model the portability of executable service-oriented processes. They reuse process

de�nitions in an XML based format and de�ne metrics that consider characteristics of

process-oriented programs. They enrich the metrics with domain knowledge of the lan-

guages and environments of the programs. Further, they use empirical data on language

support in current run times. Portability of a program depends on the runtime of each

program. Each runtime has its own supported set of language elements. For their analysis

they de�ne a degree of portability for each language element. The fewer languages support

a particular element, the lower is the degree of portability for the particular element.

Lenhard and Wirtz combine quanti�ed and qualitative modelling techniques to evaluate

the portability of service-oriented processes. The approach results in a value that gives

an initial assessment of portability. However, the procedure is strongly tailored to the

quality attribute portability and incorporates platform-speci�c characteristics. For software

models, we abstract from the platform and the available language constructs.

Bredeweg et al. describe in [Bre+09] the Garp3 workbench allowing modelling, simula-

tion, and analysis of qualitative models of system behaviour. Garp3 is based on qualitative

reasoning. Since qualitative reasoning is a powerful approach that can be quite complex

to use, they limit the method enabling domain experts a user-friendly approach to rep-

resent their conceptual knowledge. Garp3 comprises two parts, namely the knowledge

representation model, and the reasoning engine.

The knowledge representation model is divided into two parts. It consists of the basic

model ingredients and aggregates. Aggregates internally consists of basic model ingredi-

ents. The aggregates consist of two parts, the scenarios and the model fragments. Scenarios

are the input elements of the qualitative reasoning simulator. The simulator generates

initial states from the scenario, which are used as a basis for generating the remaining be-

haviour graph. The behaviour graph represents the possible behaviour of systems. Model

fragments model the architecture and behaviour of systems. Internally, model fragments

consist either of conditions or consequences. Conditions de�ne when fragments can be

applied, while consequences de�ne the knowledge that is introduced when a condition

applies. Therefore, they can be understood as a kind of rules. They are stored in a library,

which are used by the scenario, to perform the simulation. Further, proportionalities,

i.e. direct relations between quantities, can be modelled.

Garp3 has similarities with the analysis of quality-valued quality attributes of the ap-

proach presented in this dissertation. We also use scenarios, such as the evaluation of a

speci�c service with respect to speci�c quality attributes. We also de�ne conditions and

56

4.1. Modelling and Representing Knowledge

consequences in the form of quality values of individual quality attributes per component

and e�ects across the boundaries of multiple quality attributes. In contrast, we developed

the approach speci�cally for evaluating quality attributes in component-based software

architecture models. Furthermore, the result of the analysis can be used to automatically

optimize software architectures. A common consideration of the results from the qualita-

tive reasoning analysis and the result of quantitative objective functions by this becomes

possible.

Chung, Mylopoulos et al. present in [Chu+12; MCN92] their NFR framework for repre-

senting non-functional requirements. The framework consists of �ve components: namely

goals, link types, goal re�nement methods, correlation rules, and labelling positions.

• Goals: A set of goals de�nes the non-functional requirements, design decisions,

and arguments that support or oppose goals. NFR de�nes di�erent classes of goals.

These goals are later organized in a graph structure.

• Link Types: Link types allow linking of goals to each other. For example parent

goals can be de�ned together with a set of sub goals.

• Goal re�nement methods: Goal re�nement methods can be used by the designer

to re�ne goals in one or more o�spring or satisfying goals.

• Correlation Rules: Correlation rules de�ne possible con�icting interactions across

goal boundaries.

• Labelling Procedure: Labelling positions model the degree of ful�lment of a design

decision with respect to non-functional requirements.

Similar to the approach described here, the NFR framework de�nes elements for modelling

informal knowledge. Our form of knowledge representation allows performing qualita-

tive reasoning analysis and automatically evaluate and optimize software architectures

according to its results.

Supakkul et al. describe in [SC12] the RE-tools. The basis of the RE tools is StarUML
1
,

a UML modelling tool. The RE tools extend StarUML by a UML pro�le that allows

annotating values to UML entities using stereotypes. The RE tools are based on the

qualitative reasoning of the NFR framework, but extend it with quantitative, weight-based

trade-o� analysis. This annotates weights to entities, such as 1.0 for high, 0.5 for medium,

or 0.2 for low. By mapping them to weights, further analyses can be performed on the

basis of the values.

The approach presented in this dissertation also uses stereotypes to annotate values or

multi-value functions to UML entities. However, we do not annotate numerical values, but

remain in a qualitative notation as long as possible and run aggregation analyses directly

on these qualitative values.

1
http://staruml.sourceforge.net

57

4. Related Work

Figure 4.3.: The variation, customization and usage interface reuse approach [Kie+16c].

4.2. Automated Model Generation and Model Variability

Related work in this category is divided into reusing model artefacts by completions and

modelling variability in software architecture models. Related work in both categories is

described in detail in the following.

4.2.1. Reusemodel artefacts by completions

Lehrig et al. present in [LHB18] the architecture templates. Architecture templates can be

used to reuse architecture styles and architecture patterns in component-based software

architectures and to apply them to a base software architecture model. The approach

de�nes a formal language for modelling architecture styles on Palladio’s software compo-

nent model. They use model transformations in the QVT-O transformation language to

incorporate architecture elements into the PCM model. The approach provides templates

to automatically implement architecture styles, such as multi-tier architectures. Each

template also contains a set of quality annotations that can be evaluated after the model

transformation with the other quality properties of the software architecture.

However, Lehrig’s approach does not allow new functionality to be introduced into the

architecture in the form of subsystems. It is limited to the implementation of architecture

styles. Furthermore, it is not possible to evaluate qualitative modelled quality attributes.

Kienzle et al. present in [Kie+16b] their approach to Concern Oriented Reuse (CORE).

It is based on aspect oriented extension techniques and has been adapted for software

architecture models and software product lines. The goal of CORE is to extend software

architecture models and code through functionalities as well as to evaluate the expected

quality attributes [AKM13]. The reuse unit is represented by the Concern, which provides

multiple interfaces to reuse, adapt, and model variations [Kie+16c]. The reusable aspect

model [KAK09] can be used for modelling variants as aspects. By using this model,

architects can de�ne the architecture and the behaviour. Variability is modelled by using

feature models. E�ects of the functionalities on the quality requirements of the overall

system are modelled by using goal models. CORE de�nes three interfaces (see Figure 4.3)

mentioned above:

• Usage: The usage interface de�nes how to use the concern from outside and what

functionality is provided by the concern.

• Customization: The customization interface is related to the software product line

paradigm. Customization is achieved by leaving elements open at the design time of

58

4.2. Automated Model Generation and Model Variability

the concern needed to be complemented later. Software architects must complement

the models in the reuse process.

• Variation: The variation interface is responsible for the variants provided by the

concern. Functionality is described by feature models, while e�ects on quality are

described by goal models.

Although CORE has similarities to the presented approach, especially in the representation

of the interfaces, with CORE it is not possible to integrate variable functionalities of

subsystems. Further, no implementation alternatives of subsystems in a base system can

be automatically exchanged, evaluated and optimized. The description of the quality

requirements with the help of goal models further represents a comparatively coarse

granular estimation of the quality attributes than a simulation with subsequent software

architecture optimization.

J. Happe [Hap09] and L. Happe [Hap11] introduce con�gurable completion, which

complements software architecture models (more precisely Palladio software architecture

models) on the infrastructure layer. The goal is to explicitly represent performance e�ects

of middleware systems, such as the Java Messaging Service, in models. L.Happe extended

the middleware approach by architecture patterns, such as concurrency patterns, thread

pools, and pipe and �lter architectures.

Becker also concentrates in [Bec08] on middleware completions, which for example

integrate the overhead of di�erent protocols into software architecture models by annota-

tions. The approach extends software architecture models to re�ne performance-relevant

information for design time predictions. Becker also uses the concept of completion

components, which, however, introduces quality e�ects at the infrastructure layer.

The mentioned approaches focus on the extension of software architecture models

regarding lower-level infrastructure services, whose main purpose is the re�nement of the

performance model. We focus on the introduction of new functionality, e.g. to implement

or re�ne requirements.

4.2.2. Variability Models

Beuche et al. describe in [BPS04] how feature models can be used for managing variability

in software development processes by using CONSUL. CONSUL uses feature models from

Kang et al. [Kan+90] to describe the modelled external functionalities. The feature models

are then re�ned by the family model. The family model de�nes a kind of architecture

for a family of components and links it to the parts model. In the case of C/C++, for

example, the parts model consist of header �les or C++ source code �les. However, build

instructions can also be included. In total, a part contains all instructions and artefacts

that are necessary to generate executable code.

CONSUL comprises two languages: Prolog is used to model the relations between

di�erent features. The selection of components and their adaptation is also modelled with

Prolog. The XML-based language XMLTrans is used to describe the transformation to code.

XMLTrans is used to model all the steps necessary to transform from feature selection

to executable code. Information about the platform itself is also contained, for example

whether �le links are available on the target platform.

59

4. Related Work

CompARE also uses feature models to describe the externally visible functionalities.

However, we concentrate on the assembly of software models and their variability of

features within the base architecture in which the feature functionality is to be integrated.

In addition, another main feature of CompARE is that design decisions of the software

architecture regarding the expected quality can be evaluated before implementation.

Deursen and Klint introduce in [DK01] their Feature Description Language (FDL), a

domain-speci�c language to describe features formally. The FDL expresses all relationships

between features, as is also possible in graphical notation. The advantage of the FDL,

however, is its formal de�nition, on which automatic analyses can then be performed:

On the FDL, analyses can be performed on the FDL using a feature diagram algebra. For

example, it is possible to query whether the feature model contains a con�guration to

meet a speci�c requirement. Such queries are not possible on pure graphically represented

feature models. The FDL can also be used to automatically build UML diagrams or Java

code skeletons that match the design of the feature model. Such a process potentially

increases the e�ciency of the software development process by transforming models into

code artefacts.

Krueger present in [Kru02; Kru08] the GEARS approach, a commercial tool, allowing

managing variability. They use feature models to de�ne product line feature diversity for

the software product life cycle. By using the product con�gurator, software architects

con�gure the product line and its instances by selecting features from the feature model.

The product con�guration is then used as a basis to instantiate all products with its

individual features.

In contrast, CompARE combines features from feature models with software architecture

models that can be used for further analysis. The purpose of this combination is that the

analysis and knowledge representation is not bundled in the features, but is contained

in the linked software architecture models. This has the advantage that any knowledge

can be mapped and analysed later. In other words, features are used to de�ne variability

points in the base architecture and to generate di�erent model instances at these variability

points that can be used for further analysis.

4.3. Support for So�ware-Architecture optimization

In this section, we introduce several automatic, semi-automatic and manual approaches to

optimize or improve software architectures regarding quality attributes.

Falessi et al. survey in [Fal+11] decision-making techniques for software architecture

design. They compare 15 decision-making techniques considering 4 categories, namely

solution selection, stakeholder disagreement, attribute meaning and solution property.

They �nd that no decision-making technique is best, but all have their strength and

weaknesses.

None of the approaches considers a combination of quantitative and qualitative evalu-

ated quality attributes or allows to automatically include new requirements by integrating

subsystems into a base software architecture, to evaluate di�erent solutions and to auto-

matically analyze their e�ects on the quality attributes.

60

4.3. Support for Software-Architecture optimization

Figure 4.4.: Illustration of the ArcheOpteryx architecture [Ale+09].

4.3.1. Automatic and semi-automatic approaches

Aleti et al. describe in [Ale+09] their ArcheOpteryx approach, a framework implementing

evaluation techniques and optimization heuristics for software architecture models. They

base on the architecture analysis and description language (AADL) MetaH [Bin+96]. It

represents an automated approach for software architecture optimization considering

quality attributes. ArcheOpteryx comprises three major modules as illustrated in Figure 4.4:

• AADLmodel parser: The AADL model parser reads the models speci�ed in MetaH

into ArcheOpteryx for further processing. The software architecture is built with

respect to processors, processes, networks, etc. This input model is the basis for the

architecture analysis module.

• Architecture analysis module: In the architecture analysis module, the parame-

ters of the model and the application domain are stored in an abstract representation.

On this basis, the quality evaluation of an architecture is carried out using di�erent

evaluation techniques. The evaluation itself is analyzed by the attribute evaluators.

In addition, constraints are checked on the software architecture models. For this

purpose there is a set of constraint evaluators.

• Architecture optimization interface: The architecture optimization interface

uses the results of the architecture evaluation and the architecture constraint checker.

From these results, Pareto-optimal or almost Pareto-optimal architecture candidates

are derived and used for later analysis or for further iterations. The architecture

candidates resulting as Pareto-optimal can then be transformed back into MetaH.

ArcheOpteryx uses evolutionary algorithms for the generation of new architecture

candidates. These can be fed back to the attribute evaluators and constraint checkers

for re-evaluation.

61

4. Related Work

ArcheOpteryx enables varying the deployment of components and allows to evaluate the

quality attributes data transmission reliability and communication overhead. However, it

can be extended by other quality attributes. ArcheOpteryx focused on constraints within

software architecture models. Quality attributes, such as performance, can be analyzed,

but in a much more limited scope than is possible with the method used in CompARE. In

addition, no arbitrary quality attributes can be considered, for example by a qualitative

evaluation on the basis of qualitative reasoning. An evaluation of the use of complex

subsystems and the comparison of implementation alternatives is also not possible.

In [Wal+13], Walker et al. describe their automatic, multi-objective approach for opti-

mization of system architectures. They base on EAST-ADL, an architecture description

language in the automotive domain. Their approach allows optimizing software architec-

tures according to several quality attributes, such as dependability, timing/performance

and cost. They use the NSGA-II genetic algorithms to explore the design space of software

architecture models. They use a variability model to de�ne variability in the automotive

domain, such as the optional inclusion of a rain sensor. The variability is then used as

degree of freedom. In total, the approach can optimize architecture candidates using

substitution of components, functions or subsystems for others with di�erent quality

properties, replication of components to improve reliability, and allocation to balance load.

The approach has similarities to the CompARE approach with regard to the variability

of software models. Walker’s approach, however, is limited to the exchange of already

integrated components, whereby either single components or entire subsystems can be

exchanged. However, it is not possible to automatically integrate functionalities that do

not exist in the architecture, to evaluate di�erent positions of the subsystem and to analyze

their e�ects on the quality attributes. Furthermore, the possibility of evaluating quality

attributes is limited. A detailed performance evaluation or an examination of any quality

attributes is not possible.

Abdeen et al. present in [Abd+14] a rule based optimization approach. They use the

NSGA-II evolutionary algorithm to process the rule-based design space exploration. The

basis is an initial model on which they apply a sequence of rules to �nd alternative

candidate models. To make sure generating valid models, they apply a set of constraints.

The rules are represented by graph transformation rules, coming with input and output

parameters to pass information between rules when processing rules in a sequence. As

quality attributes, the approach considers server utilization and cost.

Abdeen’s rule-based approach to optimizing software architectures calculates compara-

tively simple quality attributes. Furthermore, the initial candidate is particularly important,

since it is used as the basis for the application of the rules. If the initial candidate is chosen

suboptimally, the optimal candidates are not necessarily found, depending on the rule set.

With ArcheE, Bachman et al. describe in [Bac+05] their approach for supporting soft-

ware architects to weight against quality requirements in the design phase. It supports the

architect in creating the software architecture model and collecting suitable requirements.

The optimization of the software architecture is carried out based on rules. Rules are pro-

vided for the modi�ability of the system. In addition to the modi�ability, the performance

analysis is supported as a further quality attribute to be analyzed. The modi�ability is

analyzed based on the model from Bohner and Arnold [BA96], while for performance

analysis the rate monotonic analysis method from Klein et al. [Kle+93] is used.

62

4.3. Support for Software-Architecture optimization

Figure 4.5.: Illustration of the decision support process from Svahnberg et al. [Sva+03].

ArcheE is a semi-automated approach to improve software architectures. The approach

requires the interaction with the user and consultation with the stakeholders. This inter-

action implies that search space cannot be searched automatically, but is derived from the

interactions with the user and the rules.

Xu introduced in [Xu12; Xu08] Performance Booster, a rule-based approach for auto-

matic software performance diagnosis and improvement. Performance Booster focuses

on improving the performance of software architectures. Performance data is obtained

from annotated UML models and evaluated using layered queuing networks (LQN). The

approach can identify performance bottlenecks or long execution paths. If found, rules

can be applied to improve the response time or throughput of the service. Performance

Booster provides rules for redistributing components, reduction of component resource

demands, or introduction of asynchronous processing. This results in recommendations

for software architectures that do not necessarily have to be functionally equivalent to the

base architecture.

Performance Booster is limited to improving performance and cannot analyze any other

quality attributes. As with the rule-based approach of Abdeen, the selection of the initial

candidate is important. In addition, bottlenecks can only be recognized if the performance

properties are modelled in detail. The CompARE approach has similarities in that func-

tionally equivalent software architectures do not necessarily result after optimization.

However, the software architect explicitly chooses to use certain functionalities that result

directly from the requirements.

4.3.2. Manual approaches

Svahnberg et al. showed in [SW05; Sva+03] a method basing on an analytical hierarchy

process (AHP) enabling the (pair-wise) evaluation of software architecture candidates

considering quality attributes. They use a multi-criteria decision method. Their approach

comprises six steps (as shown in Figure 4.5) to identify the best architecture candidate

according to the considered requirements:

• Identify candidates and quality attributes: In the �rst step, potentially fruitful

architecture candidates and relevant quality attributes are selected. Architecture

63

4. Related Work

candidates can, for example, be created using various design methods such as

the uni�ed software development process by Jacobson et al. [JBR99]. Standard

requirements engineering methods such as the NFR framework [Chu+12] can be

used to collect the relevant quality attributes. Depending on the importance of

the individual aspects of the architecture candidate, these are modelled in di�erent

modelling granularity. The resulting model of the architecture candidates and the

selection of relevant quality attributes serve as input parameters for the process.

• Framework: During the use of the framework, architecture candidates are com-

pared in pairs. It aims at getting the understanding on the degree of ful�lment of

a software architecture candidate regarding quality attributes. For the pairwise

comparison, they use the AHP method from Saaty and Vargas [SV12]. The result of

the analysis is two vectors: A vector describes the relative support of the quality

attributes between architecture candidates. The second vector describes the reverse

case, namely a comparison of di�erent quality attributes for each of the considered

software architecture candidates.

• Prioritize quality attributes: In the third step, quality attributes are prioritized

according to the system requirements. The approach is based on the AHP process.

As a result, the prioritized quality attributes are mapped in a vector.

• Suggest architecture candidate: This step analyses the most suitable software

architecture candidate. The best candidate is determined with the help of the vectors

from the second step. The analysis is carried out with the help of value compar-

isons between vectors. The architecture candidate with the values closest to the

expectation vector dominates the comparison.

• Determine uncertainty: In step �ve, the degree of uncertainty is determined. For

this, the variance of the architecture candidates is determined. If the uncertainty

is high, this means that the quality attributes of the architecture candidate are not

su�ciently well understood or investigated and deeper analyses are necessary.

• Consensus discussion: In the discussion, the selected architecture candidate and

various possible architecture alternatives with their respective quality attributes are

discussed. The main goal is to work out disagreements between the participants of

the discussion. These will then be discussed and problems worked out. The result is

a list of problems that need to be analysed in more detail and a solution worked out

so that the project can be carried out successfully.

The process of Svahnberg et al. is based on AHP and is therefore a manual process

that requires strong interaction between stakeholders to lead to promising results. Only

comparatively few architecture candidates can be evaluated. This is because AHP requires

pairwise comparisons. The number of comparisons increases exponentially with the

increase in the number of architecture candidates considered. Therefore, in practice

only few architecture candidates can be considered and the initially selected architecture

candidates, which are to be analysed, are particularly important. Promising candidates that

have not been considered in this phase are not considered. The approach presented in this

64

4.3. Support for Software-Architecture optimization

Figure 4.6.: Process phases of the Architecture Trade-o� Analysis Method

(ATAM) [Kaz+98].

dissertation is based on the search for promising architecture candidates using evolutionary

algorithms. It allows many candidates to be automatically generated, evaluated and

dominant candidates selected without manual e�ort.

Regnell et al. propose in [RSO08] their QUPER approach that analyses software architec-

ture trade-o� decisions regarding quality attributes, such as performance and cost. They

developed QUPER to be robust to uncertainties, easy to use and domain relevant. QUPER’s

main concept is the relation between bene�t and quality level. Therefore, the authors

de�ne four levels, namely useless, useful, competitive and excessive. Additionally, they

de�ne breakpoints between these levels, namely the utility breakpoint, di�erentiation

breakpoint and saturation breakpoint. Depending on the market position and budget, it

has to be decided which breakpoint should be reached. Further, each quality level has

cost barriers. The application of QUPER requires four main steps: First, the quality indica-

tors are determined. Second, for each quality indicator users of QUPER must determine

breakpoints and barriers. Third, users of QUPER must determine the current quality of

the product. Fourth, users of QUPER must estimate current targets and candidate targets

considering quality attributes and costs.

Kazman et al. propose in [Kaz+98] their architecture trade-o� analysis method (ATAM).

They build on the Software Architecture Analysis Method (SAAM) [Kaz+96]. Similar

to approaches described before, ATAM analyses software architectures with respect to

quality attributes. ATAM is a system design and analysis method that introduces technical

aspects considering collecting and the analysis of relevant data, as well as social aspects

65

4. Related Work

considering the communication between stakeholders. The method is designed as a spiral

model, where each iteration aims at improving understanding, design, and reducing risks.

The process is divided in four major parts with 6 steps as shown in Figure 4.6.

The �rst step and the second step of ATAM collects usage scenarios and requirements as

well as constraints and environment details. The purpose of this part is to operationalize

functional and quality requirements. This collection facilitates communication between

stakeholders. The third step describes the architecture candidates. This includes the

software architecture and its entities, as well as properties of the relevant quality attributes.

Mostly, several architecture candidates are created that can be compared with each other.

After the speci�cation of scenarios, requirements and an initial set of architecture candi-

dates, the quality attributes of each individual architecture candidate are evaluated in step

four. This results in quantitative values, such as response times for the performance quality

attribute in milliseconds or the average failure rate in days. In step �ve, a sensitivity anal-

ysis of a given software architecture is performed. If the software architecture is changed,

the resulting quality characteristics changes. The sensitivity analysis determines which

changes to the architecture result in the largest changes in quality. Step six evaluates the

previously created architecture models. Trade-o� points in the architecture are evaluated

using the previously identi�ed sensitivity points. The results of the six phases are then

compared with the requirements. If the results do not match the requirements, the phases

can be repeated until convergence. Each iteration takes the result of the last iteration as

input.

Like the process by Svahnberg, the QUPER approach and the ATAM are manual pro-

cesses. Architecture candidates cannot be found, evaluated and optimized by automatic

support.

66

5. Quantifying the Quality Attribute
Security

Many approaches to design time prediction of quality attributes rely objective functions

resulting in quantitative values. Such an objective function is the basis of Palladio’s

performance evaluation. The throughput and response time of a software model service

is calculated by functions that provide quantitative results. While quantitative objective

functions for predicting performance, reliability and costs have already been scienti�cally

considered, there are no objective functions for many other quality attributes. One example

is the quality attribute security in component-based software architectures.

However, creating a quantitative objective function according to scienti�c criteria

requires a high degree of domain knowledge, is time-consuming and often has many

limitations. In this chapter, we create a quantitative objective function for the quality

attribute security. We discuss the approach, apply it to an example system, discuss its

limitations and the time required for its development.

In the following sections, we show how an objective function and a meta model for the

analysis of the quality attribute security can be de�ned in the context of component-based

software architectures. For demonstration purposes, we combine several aspects that are

typical for security estimation approaches (cf. [Mad+04]): i) the skill of attackers or groups

of attackers, ii) a speci�c target of the attack, iii) security properties of the components

of the system and iv) mutual security in�uences between components. We divide the

evaluation problem into several sub-models to keep the approach open for extensions.

We combine the resulting sub-models and represent them in a mathematical model

using a semi-Markov process. This results in an integrated model that o�ers a metric,

namely the mean time to security failure (MTTSF). The metric allows comparing di�erent

architecture candidates of component-based software architectures with respect to security

quality attributes, but keeps the model su�ciently modular for extensions. To apply the

approach to an already existing approach, we extend the PCM by security annotations.

For the integration into Palladio and its component model, we create a transformation

that transforms the annotated architecture model into a semi-Markov process. As a result,

our objective function represents a stochastic model for estimating the security quality

attribute of component-based systems.

5.1. Motivation

Security is becoming increasingly important due to the increasing network-demand of

services. Attacks on such services are becoming more likely due to a growing variety of

highly connected services and increasing expected pro�ts. In the years 2010 - 2013, the

67

5. Quantifying the Quality Attribute Security

AttacksStory

Attacker
Model

Attacker
Scenario

Component
Security

Influencing
Factors

Mutual Security
Interference

SMP Model

Low/High
Skilled Attacker Entry/Goal

- Vulnerability
- Attack Failure
- Time to Find
 Vulnerability

Interfering
components

- Exp. Dist. Param
- Endurance
- MToA

Starting /
Absorbing States

- SMP transition
probabilities

- Sojourn Time
SMP state fusion

+
MTTSF

SystemAttacker

(1)

(2)

(3)

(4)

Figure 5.1.: Overview of the software architecture security evaluation approach.

number of incidents involving personal data theft has increased by more than 40% [Ver13].

It is therefore necessary to consider security attributes in software architectures.

Especially for the design of component-based software architectures, it seems appropri-

ate to use the quality of the individual components as a basis for estimating the security

quality of the overall system. The quality properties of the individual components then

allow conclusions to be drawn about the quality properties of the overall system.

Our approach assesses the security by systematically evaluating security attributes of

software systems in component-based systems. The objective function helps to systemati-

cally compare di�erent software architecture candidates and to support trade-o� decisions

on other quality attributes.

To assess the security performance of software systems, we take into account a number

of factors that in�uence security. Typical attacks involves i) an attacker with speci�c

attacker skills, ii) a possible start and target (component) in the system, iii) the component

design itself, iv) the e�ort that was spent in security considerations, v) the deployment

of software components to hardware, and �nally vi) possible mutual in�uences between

components with respect to their security strength.

For this purpose, we have developed a hierarchical model that takes into account the

aforementioned security factors. The main concepts and results of this chapter appeared

in our publication Busch et al. , [BSK15].

68

5.2. Quanti�cation Approach

5.2. Quantification Approach

Figure 5.1 shows an overview of the approach. Our model takes into account four in�u-

encing factors: the attacker, the attack scenario, security attributes of system components

and mutual in�uences of the system components. For a formalized representation of the

aforementioned factors, we use a semi-Markov process (SMP) model. The SMP provides

appropriate mechanisms, such as states, transitions and sojourn times. This allows mod-

elling di�erent phases of an attack, the probability of success of an attack and the time

required to execute the attack itself. The SMP model results in the Mean Time to Security

Failure (MTTSF), which represents the system’s security of the overall system. The MTTSF

metric was introduced by Madan et al. in [Mad+04; Mad+02; GMT05]. In our approach,

we consider system components, their attributes and deployment con�gurations.

The story (Figure 5.1: (1)) of a system attack involves several entities. The attacker who

attacks the system and the system under attack. These entities are in�uenced by several

in�uencing factors (Figure 5.1: (2)):

The �rst factor that determines the attacker’s skill models the general knowledge of

an attacker about how to attack systems. The target represents the current purpose of

the attack (for example, obtaining data access). The third factor is component security,

which represents the probability of observing hidden vulnerabilities to certain components.

Further, it describes the time required to observe this vulnerability. Mutual security inter-

ference a�ects possible security interferences between components that can potentially be

exploited by attackers. We use the SMP (Figure 5.1: (2)) to mathematically represent the

aforementioned factors.

As before, the mathematical SMP model represents the four parts that model the four

in�uencing factors: the attacker’s skill is modelled by an exponential density function (as

suggested by [JO97]) and the Mean Time of Attack (MToA). The second part de�nes the

starting points and the end points of the Markov process. Related to the Markov process,

the starting point de�nes the entry states, while the end point is represented by the

absorbing state. The third part de�nes the transition probabilities of certain states and the

e�ort that was spent on security considerations (by the software architects and developers)

for each component. In the SMP model, this is represented by the sojourn time. The fourth

part combines states that allow a simple state transition according to the architecture’s

component interferences. Finally, the model results in the MTTSF (Figure 5.1: (4)), which

should represent the degree of security of a software architecture. This value can be used

to compare di�erent architecture alternatives on a particular hardware con�guration at

an ordinal scale level.

5.3. Definition of Security Relevant Properties

Each of the in�uencing factors is represented by a sub-model, which is introduced in the

following from a high-level perspective. For the introduction of the models we use our

running example, for a better understanding of the model and its sub-models.

69

5. Quantifying the Quality Attribute Security

WebGUI

Data
StorageDB

UserDB

Backend-Server

Frontend-Server

User
Management

UserDB
Adapter

Media
Management

Tag
Watermarking

Media
Access

ReEncoder
Packaging

Middleware-Server

Mallory

Media Store System

path

path

path

Target

CompSecCompSec

CompSec

CompSec

Figure 5.2.: Architecture overview of the running example Media Store with schematic

illustration of security annotations.

5.3.1. Application Example

For the introduction and exemplary application of the model elements, we use the archi-

tecture of our running example from Section 2.2.

The 3-tier system is structured as follows: the frontend server is physically connected

to the middleware server (through a LAN). The middleware server is physically connected

to the back-end server. The frontend server is not physically connected to the back-end

server. In order to get to the UserDB, the attacker must in any case take the path from the

frontend server via the middleware server to the back-end server.

Figure 5.2 shows an abstract depiction of the model elements of the security assessment

approach applied to our running example.

5.3.1.1. Attacker

Di�erent classes of attackers are represented by di�erent attacker models. Usually, a

system is subject to di�erent classes of attackers. The e�ort attackers spend on the attack

depend on the expected pro�t attackers expect from a successful attack. To demonstrate

attacker models, we de�ne two types of models, namely the model of a comparatively

weak and the model of a comparatively high-skilled attacker.

70

5.3. De�nition of Security Relevant Properties

5.3.1.2. Scenario

We simplify uur running example to provide one entry point: The WebGUI component.

Usually, the user would demand the system to upload and download music �les. However,

this component is also available to an attacker to gain access to the system’s internal

architecture via its external interfaces.

As a target for the scenario, we de�ne the access to the data of the DataStorageDB

component as the target of the attacker.

5.3.1.3. Control flow

The control �ow depends on the attacker scenario. In the previous section, we have de�ned

the DataStorage component as the target of the scenario. This results in the following

control �ow:

An attacker must access from the external interface of the WebGUI component. From

the WebGUI, the only possible way is the transition to the MediaManagement component.

Then, there are two possible paths: The �rst path leads via the TagWatermarking com-

ponent, and via the ReEncoder component, to the MediaAccess component. The second

possibility is to get access to the MediaAccess component directly from the MediaMan-

agement component. From the MediaAccess component the attacker �nally reaches its

destination, namely the DataStorageDB.

5.3.2. Attacker Model

5.3.2.1. Rationale

The attacker model represents the behaviour of di�erent attackers. Verizon’s data breach

investigations report [Ver13] reports that intrusions into systems are mainly committed

by parties outside the company. In 2013, approximately 92% of all security breaches were

caused by this group. For this reason, we focus on attacks from outside.

Attackers have a certain probability of success, which depends on their skill. During

the attack on a system, attackers pass through three phases: First, they learn about the

architecture of the system. Then they start attacking the system with their standard

repertoire of attacks. If this fails, they try �nding new methods to successfully attack the

system. In addition, each attacker has a certain degree of tenacity that measures how

much e�ort he invests in attacking the system. We represent this value by the average

time the attacker tries to successfully attack the system.

The result of the model is the average probability of an attacker to detect a potentially

exploitable system vulnerability within a certain time.

5.3.2.2. Model

The attacker model comprises two parts: the phase of carrying out an attack and the

attacker’s skill.

71

5. Quantifying the Quality Attribute Security

An attack typically consists of three phases: the learning phase, the standard attack

phase and the innovative attack phase. Several of the following terms are derived from

[JO97]:

• Learning phase: The attacker learns strategies to attack the system and learns about

the system itself to increase the probability of successful attacks. In this phase, the

number of successful attacks is comparatively low due to a lack of experience with

the system and possible attacks. An attacker with low skill would need more time

than an attacker with higher skill.

• Standard Attack Phase: In the standard attack phase, the attacker uses his knowl-

edge and repertoire of attack techniques to attack the system. In this phase, most

successful attacks are expected.

• Innovative Attack Phase: In the innovative attack phase, the repertoire of possible

attacks by the attackers is exhausted. They must develop new methods and strategies

to successfully attack the system. In comparison to the standard attack phase, the

execution of a successful attack typically takes longer.

• Skill: The ability to detect a potential vulnerability of the system within a certain

period.

• Endurance: Endurance is the average time an attacker spends on searching for

vulnerabilities of the system.

We de�ne a modi�ed cumulative density function of the exponential distribution, which

models the phase of an attack as well as the attacker’s skill and his speci�c endurance:

ϕλ,∆(x) =

{
1 − exp(−λ · (x − ∆)), 0 ≤ x − ∆

0 x − ∆ < 0,
(5.1)

where λ is the parameter that models the attacker’s ability in the standard attack phase

and the innovative attack phase. ∆ represents the duration of the learning phase. In our

attack model, x is the input that represents the average time an attacker with a certain skill

requires to attack the system. Accordingly, the attacker model will be parametrized by the

parameters (λ, ∆). The skill of certain attackers is described by a random variable. For all

parameters of the models, we assume that the values can be estimated or determined by

the domain expert.

5.3.2.3. Example

Figure 5.3 shows two examples of parametrized attacker models. In both examples we

parametrize the attacker models to get a lower skilled and a higher skilled attacker. For

the attacker with lower skill, we use (λ = 0.007, ∆ = 150), while the higher skilled attacker

is represented by the following values (λ = 0.01, ∆ = 100). Both parameters, lambda and

delta, could be extracted from log �les.

72

5.3. De�nition of Security Relevant Properties

0.00

0.25

0.50

0.75

1.00

0 200 400 600
Time

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

0.00

0.25

0.50

0.75

1.00

0 200 400 600
Time

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

Figure 5.3.: Lower skilled (left) and higher skilled (right) attacker model.

5.3.3. Attacker & Scenarios

5.3.3.1. Rationale

An attacker typically has a speci�c target when attacking a system. The system includes a

starting point and the actual destination: the exit point or goal point. Depending on the

target, the attacker takes various actions that are helpful in achieving the target. In our

approach, we focus on component access to copy or modify data in order to gain higher

system privileges. Another possible target would be an attack on the availability of the

system. The attacker may have the goal of making the system unavailable. Our model

focuses on the goal of obtaining higher privileges, whereby the scenario of unavailability

could potentially also be covered.

5.3.3.2. Model

We use a semi-Markov process to model the attacker scenario. The entities of the attacker

are shown in Figure 5.4. It comprises the attacker’s entry point and goal point:

• Entry point: The entry points, i.e. interfaces in component-based systems, are the

�rst entities that get in contact with the attacker during an attack. Here the attacker

tries to access the system. In practice an entry point is an open port or certain web

interfaces that can be accessed from outside. In component-based systems, these

correspond to the external interfaces of systems.

• Exit/Goal Point: The goal point is the component an attacker in the system architec-

ture attacks. This corresponds to the state of the Semi-Markov process. We focus on

exactly one exit/goal point.

In our SMP model, we map the entry point and exit/goal points to the starting state and

the absorbing state of the SMP. The SMP achieves a data breach in the target component

by reaching the absorbing state.

73

5. Quantifying the Quality Attribute Security

Entry State Exit/Goal States

Tag
Water-
mark

Media
MgmntWebGUI

(a)

Re-
Encoder

Media
Access

Data
Storage

DB
(b)

Alternative Paths

Figure 5.4.: Attacker Scenario: Entry states, alternative paths and goal state.

Our approach focuses on attacks that lead into the system architecture via the external

provided interfaces of systems. The path through the system is determined by the external

provided interfaces, the attacker’s goal point, and the inner architecture of the system.

Attacking a speci�c component forces the attacker to follow the control �ow de�ned by the

architecture. We assume that an attacker cannot take abbreviations within the architecture

to change or shorten the control �ow. Further, we assume the attacker accesses the system

via the de�ned interfaces. More precisely, he cannot enter via any component, but must

begin the attack with the external provided interfaces of systems.

The SMP model can be �exibly adapted to support other objectives besides data breaches.

Scenarios that can be modelled with the help of sojourn times, state transitions and certain

probabilities can thus become potentially modelled by the SMP process.

5.3.3.3. Example

Figure 5.4 shows the states and possible state transitions according to the control �ow,

which is determined by the component-based software architecture of our running example.

The architecture of the running example provides access to the system architecture via

one component. Therefore, we de�ne the WebGUI component as the entry point which

is represented as a state in the SMP. As the goal scenario, we de�ne a data breach in the

DataStorageDB component. Therefore, we de�ne the DataStorageDB component as the

goal point and introduce the DataStorageDB state in the SMP model accordingly.

The DataStorageDB component is only accessible by two paths: First, either the

control �ow WebGUI-MediaManagement-TagWatermarking-ReEncoder-MediaAccess-

DataStorageDB or second, WebGUI-MediaManagement-MediaAccess-DataStorageDB is

taken by the attacker. We assume that the attacker has no speci�c knowledge of the

internal system architecture. Thus, both possible ways are equally taken by attackers.

5.3.4. Component Security

5.3.4.1. Rationale

The component security considers the speci�c security of a component in the system

architecture. For our model we adapt several concepts from [Mad+04].

Depending on the e�ort invested in security considerations by the developers, the

likelihood of hidden vulnerability in a particular component is a�ected. We assume

that the more e�ort invested in security considerations, the lower the probability of

74

5.3. De�nition of Security Relevant Properties

0.00

0.25

0.50

0.75

1.00

0 200 400 600
Time

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

Sojourn time

Pr
ob

ab
ili

ty
 o

f
so

jo
ur

n
tm

e
Transition
probability

Figure 5.5.: Schematic �gure of the component security model.

hidden vulnerability and vice versa. In addition to probability, we introduce the aspect

time: revealing a vulnerability requires a certain amount of e�ort. This e�ort is incurred,

although a vulnerability can be found, and even if this was not successfully. The probability

of �nding a vulnerability and the time needed to �nd the vulnerability is based on the

following rationale:

Developers invest a certain amount of time and use common quality assurance tech-

niques while testing and �xing issues in components. This in�uences the number of hidden

vulnerabilities of a component that are easy to obtain in a positive sense. Nevertheless, it

is possible that the internal architecture of the system may make it easily possible to �nd

remaining vulnerabilities. The time to �nd a possible vulnerability would therefore be

comparatively short. If no time aspect would be taken into account, this would put other

components at a disadvantage whose number of hidden vulnerabilities is higher, but more

di�cult to discover.

5.3.4.2. Model

The model for the component security is schematically depicted in Figure 5.5. It can be

represented by the following pair:

CompSec(c) = (TTDV , PoCoB), (5.2)

while TTDV is the Time to Discover a Vulnerability, while PoCoB is the Probability of
Component Breakability:

• TTDV: The Time to Discover a Vulnerability is the average time required to discover

a potential vulnerability of a particular component. The TTDV does not make a

statement about whether the observed vulnerability can actually be exploited for

the execution of an attack. The unit of the metric is time units.

75

5. Quantifying the Quality Attribute Security

• PoCoB: The Probability of Component Breakability is represented by the probability of

actually use a potentially exploitable vulnerability in the component for performing

an attack successfully. The metrics therefore represent the probability that an

attacker can actually exploit the vulnerability to attack a component to gain higher

privileges on the system.

The model results in the Mean Time to Break Component (MTTBC) of a given component

c . This value represents the time an attacker requires to successfully attack the component

c . MTTBC is calculated as follows:

MTTBCc =
TTDVc
PoCoBc

(5.3)

An attacker needs a mean time, denoted by TTDV, to discover a component’s vulnerability.

The probability of successfully exploiting this vulnerability for breaking the component is

represented by PoCoB. This means that the higher the values for TTDV and PoCoB, the

longer the mean time for a component to be broken successfully.

5.3.4.3. Example

Let us assume that the components MediaManagement and MediaManagement’ have the

following security properties:

CompSec(MediaManaдement) = (20, 0.25) (5.4)

CompSec(MediaManaдement ′) = (30, 0.3) (5.5)

Therefore, the following MTTBC values result:

MTTBCMediaManaдement =
20

0.25
[time units] = 80 [time units] (5.6)

MTTBCMediaManaдement ′ =
30

0.3
[time units] = 100 [time units] (5.7)

In other words, an average skilled attacker for the component MediaManagement would

require 20 time units to �nd a vulnerability in the component that is potentially harmful.

The probability that the discovered vulnerability is actually harmful is 25%. Component

MediaManagement’, on the other hand, has slightly weaker values, namely a TTDV of 30

and a PoCoB of 30%. According to formula 5.3, the MTTBCMediaManaдement = 80 time units.

The alternative component MediaManagement’, has MTTBCMediaManaдement ′ = 100 time

units. Component security can be derived, for example, from the experience of developers,

the development process, the technology and platform used, the source code size of the

component and its maturity.

5.3.5. Mutual Security Interference

5.3.5.1. Rationale

Mutual security interference describes the security e�ects of several components that

in�uence each other. A possible scenario is shown in Figure 5.6. Such mutual in�uences

76

5.3. De�nition of Security Relevant Properties

Media
Mngmnt

Media
AccessApplication Layer

Resource Layer Shared Resource (e.g. log file)

inter-
communicate

Figure 5.6.: Mutual Security Interference illustration.

exist if, for example, resources or permissions are shared across several components. A

shared resource is, for example, when access to the same data is shared (e.g. reading from or

writing to a shared �le) or exchanging information about shared memory accesses. Other

reasons can be shared access permissions across multiple components. Two components

that work with shared user permissions would potentially interfere with each other. In

the worst case, all components that share the same privileges could be compromised by

successfully attacking only one single component (from the set of components that share

the same privilege).

5.3.5.2. Model

Mutual security interferences create additional paths and possible transitions, in addition

to the paths already de�ned by the architecture. These can potentially be used by an

attacker to move through the architecture of the system. Figure 5.6 shows an example in

which component MediaManagement communicates with component MediaAccess, while

both use a shared resource, namely a log �le. When an attacker would have successfully

compromised the component MediaManagement, the attacker may be able to use the shared

resource to compromise component MediaAccess.

To include the mutual security interference in our model, additional transitions and

transition probabilities are added to the associated SMP model. To do so, we use a trans-

formation described in Section 5.6.2.

5.3.5.3. Example

Figure 5.7 shows an application of the mutual security interference on our running exam-

ple. We assume that component ReEncoder and component MediaAccess run in a shared

memory environment. This means that a security breach of one component can potentially

lead to a security breach of the other component. For a worst case estimation it is therefore

necessary to assume that there exists a mutual security interference between components

ReEncoder and MediaAccess.

77

5. Quantifying the Quality Attribute Security

Entry State Exit/Goal States

Tag
Water-
mark

Media
MgmntWebGUI

0.5

Re-
Encoder

Media
Access

Data
Storage

DB
0.5

Alternative Paths

pij pij

pij pij1 1

hshs hs

hshs

hs

Figure 5.7.: SMP model representation with sojourn times, transition probabilities, alterna-

tive paths, and mutual security interference applied to the example scenario

for the Media Store system.

5.4. Security Modelling using SMP

In order to represent our hierarchical model mathematically we use a semi-Markov process.

The SMP process is suitable to represent our sub-models with their model elements. In the

following, we describe the requirements for our mathematical representation:

• An attacker must be able to be modelled separately from the other model elements.

However, component security should not be mixed with attacker properties. Fur-

thermore, the mathematical models require a mechanism to represent the attacker’s

skills.

• An attacker must access the system via de�ned interfaces and adhere to de�ned

paths. Furthermore, a state must be selectable as target point.

• In a component-based software architecture, the software components are inter-

connected via their interfaces and interact with each other. Each di�ers in security

properties. These connections, interactions and properties must be represented in

mathematical models.

• A particular service is realized by a certain combination of software components

and their corresponding control �ow.

• Software components in�uence each other in terms of security. This in�uence must

be modelled in the mathematical representation.

An SMP comes with elements to model all the aforementioned security modelling require-

ments of a component-based software architecture.

The states and transitions of an SMP’s embedded discrete time Markov chain (DTMC)

allow modelling attackers and its control �ow in a software architecture. The sojourn time

of the SMP in each state represents the temporal aspect of the component security of each

component (see Section 5.3.4). An overview of the model elements is shown in Figure 5.7.

5.4.1. Base Model

Let us de�ne the underlying stochastic process as

{X (t) : t ≥ 0, t ∈ N+
0
}. (5.8)

78

5.4. Security Modelling using SMP

Let us consider a system that contains k components. If each component is represented

by an individual state, then Sk,k ∈ N
+
0

is de�ned as the set of all k states representing the

presence of an attack within a given component, in the considered system. In addition, a

Ω success state is added. The discrete state space of the stochastic model is represented by

S . The transition probabilities pij are determined by the control �ow of the system and the

selected attack scenario. The sojourn time of the DTMC is de�ned as hk .

5.4.2. Component Security

Our CompSec component security model from Section 5.3.4 has been designed to be easily

mapped to an SMP representation. We de�ne

pij = PoCoBi (5.9)

hi = TTDVi, (5.10)

while i, j ∈ Xt .

5.4.3. Composing Component and Attacker Model

Combining the component security model and attacker model together requires several

extensions of the previously introduced mapping of the component security model to the

SMP. The attacker model a�ects two parts of the SMP:

1. It in�uences the probability of the state transition probability pij of the embedded

DTMC. In other words, it in�uences the probability of a successful attack (PoCoB)

of a given component depending on the skill of a particular group of attackers.

2. It a�ects the average time an attacker spends on attacking a particular component.

Both the aforementioned properties lead to an adaptation of the basic models as follows:

PoCoB
ϕ
i = ϕλ,∆(x) · PoCoBi (5.11)

MTTBC
ϕ
i =

TTDVi

PoCoB
ϕ
i

, (5.12)

while i ∈ I := {0, . . . ,k − 1}. PoCoBϕ . PoCoBϕ represents the adapted PoCoB, which

includes the skill of the attacker group and the adapted MTTBC namely MTTBCϕ , which

contains the resulting mean time to break component for a particular attacker group.

5.4.4. Attacker Scenario

The attacker scenario de�nes the entry points and exit/goal points of the attack. This

results in entry states and absorbing states of the embedded DTMC. Se ⊆ S represents

the set of all input states and Sa ⊆ S represents the absorbing state of the attacker model.

79

5. Quantifying the Quality Attribute Security

In addition to the input states and the initial states of the attack scenario, we de�ne the

control �ow of the software architecture. Let Θ be an S × S array:

Θ :=

©­­­­«
θ00 θ01 . . . θ0k
θ10 θ11 . . . θ1k
...

...
. . .

...
θk0 θk1 . . . θkk

ª®®®®¬
= (θij), (5.13)

while (θij) ∈ N
+
0

depends on the probabilities of changing from state i to state j (while

i, j ∈ Xt). The values also depend on the number of possible visits resulting from the

control �ow of the architecture: If a transition between two states (i.e. components) is

possible, it applies θij > 0, if not θij = 0 is used. Using Θ, the number of relevant requested

services of a component can be calculated:

Ξ = (ξi)i∈I =
∑

l∈{j∈J |θi j>0}

1, (5.14)

while j ∈ J := {0, . . . ,k}.

5.4.5. Combining the Sub-Models

The assembling of our sub-models to a hierarchical model enables estimating the overall

security of a software system. The inclusion of the attacker model, which represents the

attacker’s skill, is optional. Therefore, we start by combining the component security

model with the attack scenario model:

MTTSF =
∑
i−1

1

ξi · (θij + 1) − ξi · θij

∑
j

TTDVi
PoCoBi

· θij (5.15)

=
∑
i−1

1

ξi · (θij + 1) − ξi · θij

∑
j

MTTBCi · θij (5.16)

while i, j ∈ Xt . Similarly, we include the skill of the attacker group (if desired) to calculate

the MTTSF:

MTTSFϕ =
∑
i−1

1

ξi · (θij + 1) − ξi · θij

∑
j

TTDVi
PoCoBi · ϕλ,∆(x)

· θij (5.17)

=
∑
i−1

1

ξi · (θij + 1) − ξi · θij

∑
j

MTTBC
ϕ
i · θij (5.18)

The resulting MTTSFϕ value represents the result of the model. The value can now be

used to compare two or more software architecture alternatives. This can be used as

an objective function in automatic design decision support process when automatically

selecting subsystems (as illustrated in this thesis) to include security properties in the

decision process.

80

5.5. Evaluation

Parser

Service
Engineer
Website

RDS
Connection Point

Data
Access

Device
Data

Data
Mining

& Prediction

Application Server

Database

Database ServerDMZ Server

Legend:

Resource
Container

System

Actor

Component

Required role

Provided role

Delegate

Remote Diagnostic Solutions

Remote
Plants

Service
Engineer

Figure 5.8.: System model of the Remote Diagnostic Solutions (after [BK16]).

5.5. Evaluation

To demonstrate the application of the approach, we use a software architecture model

from a real-world software system, the Remote Diagnostic Solutions (RDS) that was

used in [Goo+12]. The system is used in an industrial context and receives status data

from power plants, processes them, stores it and displays aggregated data. The software

architecture of the system is shown in Figure 5.8. A detailed description of the system

can be found in Section 10.6.2. We apply our approach to three di�erent scenarios in the

context of the RDS system. First, we demonstrate the security assessment on the original

software architecture model, our original architecture, that was de�ned in [Goo+12]. The

second scenario shows how the model behaves in a components exchange scenario. In the

third scenario, we change the con�guration of the architecture, i.e. we remove components,

change the hardware con�guration and introduce mutual security interferences between

components.

5.5.1. Reference Scenario

The software system of the �rst scenario contains 5 software components. This results in

the following system topology:

RDS = (Access,Web, Pars,DA,DB)

81

5. Quantifying the Quality Attribute Security

Based on this system topology, we de�ne the security properties according to our secu-

rity model for each of the architecture elements. In the example, we assume that the

components are well tested and that several security mechanisms have been applied. For

the Access, DA and DB components we set the PoCoB value for a medium skilled attacker

to 20%
1
. We consider the components Web and Parser to be less mature and less secure,

which is why their PoCoBs were given higher values of 30 % and 40 %, respectively. We

set the TTDV of the access component to 200, since historical data might show that the

selected architecture structure of this component has resulted in an average retention time

of 200 time units for attackers. We de�ne the TTDV of the web component to 250, pars to

125, DA to150 and DB to 300 time units.

This results in the following values:

CompSec(RDS) = ((200, 0.2), (250, 0.3), (125, 0.4), (150, 0.2), (300, 0.2))

We de�ne the states for the SMP model together with the �nal state Ω:

S(RDS) = {Access,Web, Pars,DA,DB,Ω}

The system contains two interfaces that are available as entry points for accessing the

software architecture. We de�ne an attack on the DB component as our attack scenario.

This results in the DB component as the target point:

Se(RDS) = {Access,Web}

Sa(RDS) = DB

The control �ow of the system is de�ned by the following SxS matrix:

Θ =

©­­­­­­­«

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 2 0

0 0 0 0 0 2

0 0 0 0 0 0

ª®®®®®®®¬
We use Formula 5.14 to calculate Ξ:

Ξ = {1, 1, 1, 1, 1, 0}

Finally we de�ne an attacker. We use the attacker with higher knowledge from Section 5.3.3:

atthiдh = (λ = 0.01,∆ = 100) ⇒

ϕλ=0.01,∆=100(200) ≈ 0.632

We combine the previously de�ned sub-models to calculate the MTTSF of the architecture

with the previously de�ned attacker model:

MTTSFϕ ≈ 4070.29 [time units]
1
Note that the architecture model was originally created for performance assessment and does not neces-

sarily re�ect the actual security attributes of this system. In fact, most security-related design decisions

of this system are unknown to us. We only use the information published in [Goo+12] here and add our

own assumptions where needed

82

5.5. Evaluation

5.5.2. Component Variation Scenario

In the component variation scenario, components from a system architecture are replaced

by alternative, functionally equivalent components. Interchangeable components provide

the same functionalities as the components already in use. They provide and require the

same interfaces, but di�er in their implementation in particular. This di�erence is re�ected

in the security properties.

In the example scenario, we replace the Access component with an implementation

with improved security properties and the DA component with a weaker implementation

(for example, due to performance aspects):

CompSec(Access′) = (150, 0.15)

CompSec(DA′) = (50, 0.4)

S′(RDS) = {Access′,Web, Pars,DA′,DB,Ω}

The MTTSF metric results as follows:

MTTSF ′ϕ ≈ 3608.88 [time units]

We replace the Access component with a slightly more secure implementation compared to

the original component. At the same time, we replace a comparably secure BA component

with a component of lower security quality. The overall quality of the modi�ed architecture

should be intuitively lowered in terms of security. This assumption is supported by the

MTTSF’s results. Comparing the original architecture with the architecture of this scenario,

the comparison is in favour of the original architecture.

5.5.3. Deployment Variation Scenario

We change the con�guration of our original architecture again and introduce a mutual

security in�uence between components. First, we remove the DMZ server and deploy the

Access component on the application server. Secondly, we introduce a mutual security

in�uence between Access and the DA component: as described in Section 5.3.5, the mutual

security interference changes the security attributes of the overall system. This applies if

the interfering components are deployed on the same hardware container. The introduced

in�uence results in an additional path through the software architecture. This results in a

modi�ed Θ and Ξ:

Θ′′ =

©­­­­­­­«

0 0 1 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 3 0

0 0 0 0 0 3

0 0 0 0 0 0

ª®®®®®®®¬
We use Θ′′ to calculate Ξ′′:

Ξ′′ = {2, 1, 1, 1, 1, 0}

83

5. Quantifying the Quality Attribute Security

Based on our adapted models, we calculate the result of the metric as follows:

MTTSF ′′ϕ ≈ 3707.76 [time units]

Intuitively, a mutual security in�uence of components has a negative impact on the

software architecture in terms of security. This enables additional paths to be chosen by

the attacker on the way to his target. These paths may be shorter than the paths de�ned

by the system architecture. In addition, security mechanisms could be circumvented.

This expectation is supported by the results of MTTSF. In a comparison with the original

architecture, the choice of MTTSF is in favour of the original architecture.

5.6. Applying the approach to the Palladio Component Model

Based on the security properties of the elements of a component-based software architec-

ture, we design a function in our approach to compare architecture candidates with each

other. This procedure is applied to the Palladio Component Model (PCM). We extend the

PCM so that we can annotate security properties to the model elements (i.e. the compo-

nents) already de�ned in PCM. Annotated PCM model instances can then be transformed

into our SMP model to perform the security analysis. In combination with decision-making

tools, such as PerOpteryx that was intruduced in Section 4.3, trade-o� decisions can be

made between security and other quality attributes such as performance, and cost. How-

ever, the approach is not limited to PCM, but can be applied to other component-based

software architecture models.

5.6.1. PCM Security Extension

To use PCM models as input for our analysis, we extend the meta model of the PCM

to include several new attributes. Relevant for the security extension is the Repository

view-type and the Resource Environment.

We extend the components in the repository by adding two attributes: the time to
discover a vulnerability and the probability of component breakability. When a component

is used in the system, all its instances inherit the values of these attributes. In addition, the

mutual security interference must be introduced by introducing new relations between

components.

In addition, we need two new meta-models, namely the attacker model and the at-

tacker scenario. Both models are modelled separately to allow the attacker model to be

used optionally. Furthermore, the separation of concerns makes the models better to be

extended.

5.6.2. Transformation to SMP

We transform the architecture model, which has been extended by security annotations,

into an SMP model, which is further analysed in a subsequent step. This transformation is

speci�ed in pseudo code, as shown in Algorithmic 1.

84

5.6. Applying the approach to the Palladio Component Model

The resulting model contains a start state and a target state. A separate state is gener-

ated for each component in the architecture. The getComp helper function receives the

component to which an external provided interface of the system is connected through

a delegation connector. The MTTBC is then calculated according to Formula 5.3. Then,

we create the transitions from the start state to the state of the components connected

to the external provided interfaces of the system. In the SMP representation, the state

representing the target component �nally transits to the �nal target state. Transitions

are also added for each state representing the assembly connector. The toTrans helper

function generates a transition between the states of the connected components connected.

Mutual security interference is only relevant for components that are deployed on the

same resource containers. The onSameContainer helper function checks that condition.

It returns true if two a�ected components are deployed on the same resource container.

Within a resource container, a mutual security interference leads to merging several states

in the SMP. This, in the case of components are directly connected to each other. The

unifyStates helper function modi�es the states and transition quantities. One of the two

a�ected states is �rst marked for deletion (m). All incoming and outgoing transitions are

transferred to other states a�ected bym. At the end the marked state is removed.

Algorithm 1 Transformation from software architecture model to SMP representation.

1: Input:

2: K ← Component instances

3: д← Goal components (д ∈ K)

4: C ← Connectors

5: I ← System interfaces

6: M ←Mutual security interference

7: Output:

8: C . States

9: T ⊆ C ×C . Transitions

10:

11: Algorithm:

12: C ← {start, end} . (1)

13: C ← C ∪ K . (2)

14: for i ∈ I do
15: T ← T ∪ {(start,дetComp(i))} . (3)

16: end for
17: T ← T ∪ {(д, end)} . (4)

18: for c ∈ C do
19: T ← T ∪ {toTrans(c)} . (5)

20: end for
21: form ∈ M do
22: if onSameContainer (m) then . (6)

23: (C,T) ← uni f yStates(m,C,T) . (7)

24: end if
25: end for

85

5. Quantifying the Quality Attribute Security

5.7. Related Approaches

There are several approaches for estimating security properties: Sharma et al. show in

[ST07] a hierarchical model for the estimation of several quality attributes, such as security,

in component-based software architectures. They also use discrete time Markov chains to

model the software architecture of the system. The model is based on the assumption that

the security of the system depends on the number of accesses to components. We do not

take into account the number of accesses that occur, for example, as a result of loops in a

component. Further, the system is considered to have been successfully broken once a

vulnerability has been discovered in a component. We decided against this assumption

because modern systems typically run on several machines and a breakdown of a single

component often does not gain access to the entire system. Consequently, we use the

control �ow of the system as a basis.

Madan et al. developed in [Mad+04] a model for the quanti�cation of security properties

of intrusion tolerant systems using a semi-Markov process. They de�ned two di�erent

state transition models that models the scenario of denial-of-service attacks with the goal

of compromising the system. Both models describe the behaviour of such a system during

an ongoing attack. The models describe a DTMC steady-state probability using state

transition probabilities. Finally, they calculate the mean time to security failure, which

allows to quantify the security of the system as a whole. By contrast, our approach allows

the evaluation of security properties in component-based architectures and is not limited

to monolithic systems. For this purpose, we assign states to each component to estimate

the properties in component-based systems. In addition, we consider the skills of attackers.

Jonsson uses in [JO97] empirical data to develop an attacker model that represents

the process of an attack. The approach comprises three phases: learning phase, standard

attack phase and the innovative attack phase. This behaviour is approximated using an

exponential distribution function. In our approach, we use a similar model for the attacker

behaviour. We use the cumulative density function of an exponential distribution and

the probability of a particular group of attackers to successfully model a component’s

vulnerability within a given time to discover.

Several other related approaches consider the quanti�cation of security or the develop-

ment of security models: Wang et al. show in [WSJ07] a framework for the measurement

of security properties to estimate security aspects in networks using attack graphs.

Dacier et al. use in [DDK02] Markov chains to model attacker scenarios. The model takes

into account the time and e�ort required by an attacker to attack a system successfully.

For this purpose they use privilege graphs. For larger systems, such a graph can quickly

contain many elements and is therefore complex to understand. Furthermore, this requires

vulnerability models at a very high level of detail.

Schechter showed in [Sch02] the cost to break metric to estimate the costs required for

a successful attack. From a cost point of view, the metric is supposed to provide a �rst

idea of the di�culty of attacking a monolithic system.

McQueen et al. show in [McQ+06] a model for estimating the time that is required to

attack a certain externally visible system component.

86

5.8. Limitations

5.8. Limitations

5.8.1. Data Streams

The model focuses mainly on the control �ow of the software architecture and the as-

sumption of its compliance. It remains unclear how data �ows would a�ect the quality of

security properties. It might be possible that data could pass unhindered through com-

ponents (without the need to break them) and cause damage only in a component later

in the control �ow. In such cases, attackers would no longer have to follow a speci�ed

control �ow (and thus break each component on that control �ow).

5.8.2. Getting the Data

To use the approach in practice, it is necessary to estimate for the DTMC quite a lot of

values, namely the transition probabilities between the states and the sojourn times in the

states. Three di�erent approaches to the collection of data are discussed in the following:

• The experience of developers: Component developers could determine the values

on the basis of their experience about the development process of the component.

Accurate values, however, are di�cult to deduce from the developer’s experience.

• Log-�les: Log-�les are probably the most reliable type of the presented data sources.

Log �les are a veri�able source and a human independent source. However, data

from logs is only a fragment and depends on the type of system (and its value for

attackers). Furthermore, it is unclear how to distinguish between regular access by

users and attacks.

• Historical data: Historical data from comparable attacks and systems is often sparse.

Historical data has similar problems than log �les: Many attacks tend to be classi�ed

incorrectly (e.g. as regular behaviour) and vice versa.

A further di�culty for all those three data sources in general is that the boundary between

transition probability and sojourn time is di�cult to deduce from the data source.

5.8.3. Meaningful values

The validity of the results remains unclear. It is also not clear whether a comparatively

simple estimation of the security quality properties (based on architecture knowledge) with

subsequent qualitative modelling would lead to comparable results. It should therefore

�rst be shown whether quantitative modelling would have advantages over qualitative

modelling and would not lead to similar results, for example in the analysis of trade-o�

decisions between the quality attribute safety and other quality attributes.

5.9. Cost Analysis

This section provides an overview of the costs used for the development of the method pre-

sented here for the quantitative evaluation of the quality attribute security in component-

based software architectures. From the �rst considerations, elaboration of the method,

87

5. Quantifying the Quality Attribute Security

implementation, evaluation and scienti�c publication we spend about 7.5 man-months of

a post graduate. This time span includes familiarization with the topic, literature research

and identi�cation of state-of-the-art, �rst drafts for a modular model, concept discussions

in scienti�c exchange meetings, discussions in pairs with individual security specialists,

implementation, scienti�c elaboration, publication at the international conference for

quality, reliability, and security (QRS) and presentation to an international audience.

With appropriate domain knowledge of the quality attribute to be developed, the time

required for the development could certainly be shortened. However, our result serves as an

upper barrier to the cost of developing an objective function for a previously unquanti�able

quality attribute. However, as the detailed description of the method shows, it can only

be seen as a basis for further re�nements and does not claim to be a scienti�cally fully

reliable method for quantifying security properties.

5.10. Discussion

In this chapter we show how to model the quality attribute security in component-based

software architectures and how to develop a quantitative objective function. We have

oriented to state-of-the-art research in this area and re�ned the models and analyses so

that they can be applied to component-based software models. The model is hierarchically

and can therefore be parametrized in its use. Therefore, it is also possible to add new

modules or exchange modules to change or re�ne the analysis.

The procedure of developing the procedure has taken a total of 7.5 man-months of

post graduates and still has many assumptions and limitations that limit its practical

applicability. This means for practice, quantitative objective functions can neither be

created for general cases nor for special cases with low e�ort. When applying the model

to a scenario many values (in this case probabilities) must be determined (as in the model

presented here) requiring a non-negligible e�ort. In particular, if values must be estimated

�ne-granularly, the application of the procedure becomes quickly complex. The more

complex the procedure, the more critical the analysed quality attribute must be for the

project success, so that the e�ort is justi�ed. However, this is often the problem: due to

time and cost constraints, quality attributes are not or only insu�ciently considered and

therefore risks are accepted. Therefore, there is a need to include already existing (informal)

knowledge in the evaluation of other quantitatively determined quality attributes to have

a simple procedure for analysing such quality attributes.

88

Part II.

Quality-driven reuse of so�waremodels

89

6. Automated Feature-Driven Extension of
So�ware Architectures

This chapter introduces the CompARE approach. CompARE is a structured process fo-

cussing on feature-driven reuse of software models of complex subsystems and to evaluate

di�erent implementations, i.e. di�erent subsystem solutions. By using CompARE, features,

and thus complex functionality can be rapidly included in a base software architecture

model. CompARE focuses on reusing models of complex subsystems such as libraries,

packages or frameworks that can be used in many application contexts.

Using CompARE, software architects do not require domain knowledge of the subsys-

tems to be reused nor any need to review the software architectures of the solutions

realizing the subsystems. Reusing models often requires adaptations due to incompatible

interfaces. CompARE abstracts from component interfaces so that software architects

do not need to consider interface compatibility. By using CompARE, software architects

select features from a repository and annotate them to possible desired positions in the

base software architecture. Afterwards, CompARE automatically generates the extended

software architecture models and evaluates the desired positions of the features according

to their impact on the quality attributes of the software architecture automatically. As a

result, software architects could evaluate design-decisions regarding the use of features

on the quality attributes of the software system without knowledge about the underlying

software architecture of the subsystem and its solutions. In summary, CompARE provides

the following advantages to software architects:

• CompARE automatically evaluates how the use of features of complex subsystems

a�ects the quality attributes of the overall software architecture.

• CompARE automatically evaluates subsystem solution alternatives in the context of

the base system.

• CompARE supports software architects to �nd optimal positions for including fea-

tures in the base software architecture according to quality attributes, such as

performance and costs.

Section 6.1 introduces terms, de�nitions and roles in the context of the CompARE ap-

proach. In Section 6.2, we introduce prerequisites required for the use of CompARE. In

Section 6.3, we present goals and requirements for an automatic feature-driven extension

of component-based software architectures. Section 6.4 presents the big picture of Com-
pARE. Section 6.5 describes how CompARE can be integrated into the CBSE process of

Cheesman and Daniels [CD00] and the extensions considering quality attribute evaluation

and optimization by Heiko Koziolek, Jens Happe [KH06a], and Anne Koziolek [Koz11].

91

6. Automated Feature-Driven Extension of Software Architectures

Section 6.6 presents scenarios, CompARE supports software architects in the software

architecture design. Section 6.7 presents assumptions and limitations of the approach.

Finally, in Section 6.8, we conclude with a summary.

6.1. Terms, Definitions and Roles

In this section, we introduce terms and de�nitions in the context ofCompARE. We introduce

the concept of features, subsystems and subsystem solutions. Further, we introduce several

roles involved when using CompARE as software development process. In the selection

and description of roles, we base on the roles of the component-based software engineering

approach.

6.1.1. Features

According to the de�nition for features by Bosch (see De�nition 3.1.8) and the de�nition

by Svahnberg [SGB05] is "features [...] may be implemented as a set of collaborating

components", features represent units of logical behaviour that are realized by several

software components. Each function block ful�ls a functional requirement or quality

requirement of a software system. Requirements and features are therefore linked to each

other. For example, the requirement with the concern data logging can be implemented

by the feature log to �le system of a logging system. Due to its high level of abstraction, a

feature can also be realized through various implementations.

6.1.2. Subsystem

De�nition 6.1.1 Subsystem (from Melvin Conway [Con68]):
Any system of consequence is structured from smaller subsystems which are interconnected.
A description of a system, if it is to describe what goes on inside that system, must describe
the system’s connections to the outside world, and it must delineate each of the subsystems
and how they are interconnected. Dropping down one level, we can say the same for each of
the subsystems, viewing it as a system.[..]]

In De�nition 6.1.1, Conway describes subsystems as entities that build systems as building

blocks. They describe their internal architecture, and the connection to the system in

which the subsystem takes part. From a higher level view, subsystems can be used as

systems.

Due to the higher level abstraction, subsystems provide higher level functions to the

outside world, that we describe and formalize by features. They abstract from concrete

functions such as sorting or other calculations, that are often represented by software

components. In contrast to software components, subsystems are more coarse-grain

entities.

The subsystem’s internal architecture can be partitioned into several functional concerns.

Each functional concern describes functions at a higher level such as data persistence

or intrusion detection. Subsystems de�ne an internal architecture comprising several

92

6.1. Terms, De�nitions and Roles

Subsystem

Component A

Component B

Component C

Feature

Figure 6.1.: Schematic illustration of a subsystem.

functional concerns and relationships between them, i.e. the subsystem architecture.

Subsystems therefore de�ne a reference architecture for a certain class of systems to be

reused. Therefore, we use the term subsystem as de�ned in De�nition 6.1.2.

De�nition 6.1.2 Subsystem: A subsystem is a self-contained entity and abstracts functions
by features. Internally, they de�ne an architecture comprising functional concerns and their
relationship to each other. Each subsystem represents its own class of software systems. The
internal functional concerns and their relationships de�ne a reference architecture for the
domain of the subsystem.

Examples of subsystems are loggers, intrusion detection systems, authentication systems,

and database systems.

An illustration of a subsystem is shown in Figure 6.1. A subsystem ful�ls one or more

functional or operationalized quality requirements. Subsystems are self-contained entities.

The self-contained nature of subsystems means that they do not require further external

services to ful�l its inherent function. However, they can access the infrastructure of the

base system by requiring components for instance to get access to a common database

system or other operating system infrastructure. Subsystems therefore provide one or

more features at their system boundaries, and can also require external (infrastructure)

services.

Let us consider a vendor speci�c implementation of a logging subsystem as the logger

from the running example. A logger monitors systems or single components of a system

in order to store interesting or important data for later analysis. Its major components are

shown in Figure 6.2 together with the example feature Console Logging. In this simpli�ed

description, the logger ful�ls one feature namely the monitoring of various data for console

analysis. Internally, the logger comprises three concerns, namely gathering data, persisting

data and formatting data to the required format.

There are di�erent logger realizations from di�erent vendors at the market, while they

often ful�l a similar set of features. Due to di�erent architecture decisions and other factors

such as Conway’s law [Con68] of di�erent software architects and company structures,

each logger realization and internal architecture di�ers to a certain extent. The reference

architecture of subsystems de�nes the basic structure and the interrelationships of the

93

6. Automated Feature-Driven Extension of Software Architectures

Logger

Data Monitor

Console
Appender

Console
Formatter

Console
Logging
Feature

Figure 6.2.: Simpli�ed representation of a Logger subsystem with feature Console Logging.

internals of each vendor speci�c solution on the market. The reference architecture later

enables automatic evaluation of all vendor speci�c solutions that apply to the reference

architecture. This without the need to review and adapt the models’ architecture of the

vendor speci�c solutions.

6.1.3. Subsystem Solution

A subsystem solution is a vendor speci�c software architecture model that applies to the

domain of a subsystem. It ful�ls the features of the subsystem, or at least a subset (the core

features) of a subsystem. Furthermore, the software architecture of the solution applies to

the reference architecture of the subsystem. A subsystem solution usually represents the

model of an implementation of a library or a framework.

6.2. CompARE Prerequisites

In this section, we describe several prerequisites that are necessary for the application of

CompARE.

As prerequisites, several basic project-relevant quality attributes must be known be-

forehand and a certain base software architecture model must exist. CompARE allows the

analysis of quantitative or qualitative modelled quality attributes. Although the approach

supports qualitatively modelled quality attributes in isolation, these should be analysed to-

gether with quantitatively modelled quality attributes, such as performance. Qualitatively

determined quality attributes are usually based on estimations or experience of software

architects and therefore tend to be inaccurate compared to quantitative determined values.

In addition to the base software architecture model, quality annotations, and a pre-

selection of architecture degrees of freedom is necessary. Component selection, allocation

con�guration, or resource selection (see Section 3.3.2.2) are common degrees of freedom

in component-based software architecture models. In addition to these degrees of freedom,

CompARE provides additional degrees of freedom, such as required or optional features

and dimensions, with feature con�guration options.

94

6.3. Goal of Feature-Driven Software Architecture Extension

6.3. Goal of Feature-Driven So�ware Architecture Extension

The goal of CompARE is to support software architects in optimizing architecture decisions

when using software features and analysing their impact on the quality attributes of the

software architecture. The approach can be used in new design scenarios, as well as

evolutionary scenarios.

Using CompARE, software architects could evaluate design decisions regarding the

implementation of features during the design phases, before the actual implementation.

Software architects only need to select possible, meaningful target positions of the feature

implementing the requirements in the base software architecture model. No in-depth

knowledge of the architecture or implementation of the features, nor the e�ects on the

quality attributes of the base software architecture is required. Lightweight reuse could

enable a more cost-e�cient evaluation of design decisions in early phases of development.

There is no need for an initial review of documentations or code artefacts of many solutions

or technologies that implement the required features. In addition, barriers could be reduced

to evaluate a larger number of design decisions and thus potentially makes it easier to �nd

better candidates.

In addition to select a solution, the approach should also support software architects in

applying the feature in the base architecture and keeping critical quality requirements

in mind. In a logging scenario, for example, the trade-o� between the number of data

collected (measurement points) and the resulting e�ects on other quality attributes (such as

performance) must be met. In component-based architectures with a variety of components,

interfaces and abstract control �ows, there are thousands of combinations how features

could be applied. Each instance of these combinations corresponds to an architecture

candidate, all of which have di�erent and, without analysis, unclear e�ects on the quality

attributes of the overall system. The result of the analysis could help software architects to

make decisions on favourable positions and number of positions having certain features in

consideration of the resulting quality properties of the project-relevant quality attributes,

supported by a systematic and automatic process.

In early design phases, the e�ects of design decisions could by this been evaluated at

design time. E�ects of the feature selection on project-relevant quality attributes could be

evaluated automatically. Costs could thus be displayed on non-monetary metrics, such

as the cost of a feature on performance or other quality attributes. Such results could

be used as a basis for discussions with stakeholders on the e�ects of features on quality

attributes of the system and prioritization of requirements. Using CompARE enables

a sound basis for discussions with stakeholders that are not familiar with architecture

design. In addition, requirements could be reassessed: If the implementation of requirement

desired by the stakeholders not only causes monetary costs but also a visible in�uence

on quality attributes, such as security or usability, the priority of the requirement could

be reassessed on the basis of these results. In a data-supported analysis of the e�ects on

quality requirements, priorities could be re-evaluated on a solid basis.

CompARE could also contribute in evolutionary scenarios: When new functionalities

should be integrated in the software architecture this could be implemented by using

features of third-party subsystems. Another interesting evolution scenario might be

when software architects have to decide between di�erent versions of the same solution.

95

6. Automated Feature-Driven Extension of Software Architectures

When a new version of a product is released it is unclear what e�ects on the quality

attributes come from the evolved software architecture of the product and its new features.

Software architects could be interested in, whether the migration to the newer version

with its changed set of features ful�ls the project’s needs in terms of functionality and the

quality attributes. Without automatic analysis, the software architecture models must be

adapted and evaluated manually. The automatic analysis of CompARE could automatically

re-evaluate of subsystem’s alternative solutions when new alternatives become available.

6.4. CompARE in a Nutshell

Domain
Analysis

Solution
Analysis

Software Architect

Solution &
Configuration
Application

Design Space
Optimization

Requirements
Analysis

Reference
Architecture

Libraries

Required
Features

Base Software
Architecture

Reusable
Solution(s)

Feature
Extended
Software

Architecture

Pareto-
optimal
Software

Architectures

Solution Developer

Subsystem
Domain Expert

CompARE

Affected
Quality

Attributes

Model creation

Reuse

Feature
Configuration

Feature
Analysis

Architecture
Knowledge
Analysis

Architecture
Knowledge

Role

Activity Optional
Activity Artefact

Flow of Artefact

Result of Activity

Change of Activity

Legend

Figure 6.3.: Overview of the CompARE approach showing the roles, phases, process steps

and artefacts.

Figure 6.3 gives an overview of the phases of CompARE. CompARE essentially consists

of two main phases: The modelling phase and the model reuse phase. The result of

the modelling phase are models of the subsystem, comprising features and reference

architecture, as well as solutions that are annotated to the reference architecture. Creating

the models can be a time-consuming task. However, model creation is only carried out

once. They can then be reused in any context.

96

6.4. CompARE in a Nutshell

The model creation phase consists of two parts: The �rst part considers the analysis of

the subsystem’s domain. During the domain analysis, subsystem domain experts de�ne

the reference architecture to structure the subsystem. Further, they de�ne the set of

quality attributes the subsystem potentially a�ects. The reference architecture models

the structure each subsystem solution applies to. The structure abstracts the internal

architecture of the vendor speci�c solutions. Further, they abstract from provided services

by features, dependencies between the individual functional concerns and dependencies

of the subsystem to the base system. Such a structure is required to enable an automated

exchange of di�erent solutions realizing the same subsystem and features. In addition to

the structure, domain experts de�ne the quality attributes a�ected by the subsystem and

their related dimensions.

In the second part, solution developers use the reference architecture and the prede�ned

a�ected quality attributes to apply them to the subsystem solutions. In addition, they

analyse and model architecture knowledge for each subsystem solution on the basis of

qualitative reasoning. They consider the a�ected quality attributes that have been modelled

by the subsystem domain expert. This step allows software architects in reuse scenarios

to automatically analyse the e�ects of the subsystem and the solutions on the quality

attributes of the system. Qualitative reasoning annotations allow considering quality

attributes without quantitative objective functions.

In the reuse phase, software architects reuse the models that have been created by the

subsystem domain expert and the solution developers. They review the features required

for the base system that should be realized by reusing subsystems. Later, they de�ne the

feature con�guration. In the feature con�guration, they �rst select desired features. Then,

they de�ne possible positions of the features in the base architecture model. Features can

be set to be included mandatory or optional. Selecting optional spans a degree of freedom

of including the feature or not including the feature in the base software architecture. The

con�gurations are then used to automatically extend the base architecture. The result

is software architecture models of the base software architecture extended by features.

These models are the basis for an automatic analysis of the resulting quality properties.

Using the models, CompARE explores the design space and evaluates and optimizes the

quality attributes. The result of the process is Pareto-optimal software architecture models.

On the basis of the results, software architects evaluate the design alternatives for the

software architecture and use the results as a basis for improving their design decisions.

Further, the results can be used to discuss requirements with the stakeholders. If the result

is a software architecture that meets all requirements, the system can be implemented.

6.4.1. Domain Analysis

The reference architecture and the in�uenced quality attributes depends on the domain of

the subsystem. Subsystem domain experts analyse the domain and model the reference

architecture and the a�ected quality attributes.

97

6. Automated Feature-Driven Extension of Software Architectures

6.4.1.1. Reference Architecture

The reference architecture de�nes a uniform structure for all subsystem solutions. Such

a uniform structure allows to automatically apply and exchange di�erent subsystem

solutions in the base software architecture. Although each subsystem solution di�ers in

their software architecture and implementation, the internal functional concerns remain

the same. We use these similarities to include and exchange di�erent subsystem solutions

automatically. Software architects do not require detailed knowledge of the software

architecture or even implementation of the subsystem solutions. By abstracting from the

complex internal architecture, modelling e�ort should be reduced and the reuse process

made more e�cient. Without such a reference architecture that allows generating models

automatically, many models including the desired features on all optional positions in the

base architecture model software architects would have to create manually.

6.4.1.2. A�ected Quality Attributes

Adding new functionality a�ects the software architecture and thus, the quality attributes

of the system. They in�uence for example the response time, reliability, security and other

quality attributes of the system.

Let us take our running examples for a more detailed explanation, namely the Media

Store system and the reuse of a subsystem that monitors user activity to increase customer

satisfaction. The software architect might estimate that the user satisfaction correlates

positively with the number of successful business transactions, e.g. successfully concluded

purchases in online shops. High user satisfaction therefore supports the business re-

quirement aiming at improving the relationship between users who add items to the

shopping cart and successfully complete the purchase. At the same time, however, the

implementation of this requirement can have negative e�ects on other quality attributes,

such as the performance and maintainability of the system. The performance of the entire

system is in�uenced, since the same resource con�guration, i.e. same CPU, same network

throughput and same read and write throughput of the HDD, must now process the ad-

ditional e�ort of the function for monitoring the user tra�c. The overall performance

of the system would therefore tend to be negatively a�ected by the implementation of

this requirement. Logging user tra�c is no necessary function that ensures the business

operation of the online shop. However, the implementation of the function in both the

software architecture and the subsequent program code causes additional routines that

increase the resource demand.

The a�ected quality attributes depend on the domain. During domain analysis, the

subsystem domain expert models the a�ected quality attributes. This set of a�ected quality

attributes is used as basis for a later solution-speci�c re�nement during the architecture

knowledge analysis. In the optimization step, the re�ned a�ected quality attributes are

used to evaluate and optimize the quality of the architecture decision, regarding selection

of the solution and con�guration. Due to qualitative modelled architecture knowledge,

the analysis is not limited to quality attributes with quantitative objective functions.

98

6.4. CompARE in a Nutshell

6.4.2. Solution Analysis

Solution developers analyse solutions and applies them to the reference architecture of the

subsystem. They are the functional and technical experts for a certain subsystem solution.

They apply the reference architecture, that has been de�ned in the domain analysis, to the

solution. They determine the solution speci�c extension mechanism and re�ne the a�ected

quality attributes. The extension mechanism automatically includes architecture models

of subsystem solutions into the base architecture. Applying the reference architecture to

solutions and the selection of the extension mechanism is done in the structuring solution

phase. Re�ning the a�ected quality attributes is done in the architecture knowledge

analysis phase.

6.4.2.1. Application to the Reference Architecture

Solution developers apply the reference architecture to the subsystem solutions. Each

solution might di�er in their internal architecture and the implemented features. The

solution developers �rst identify the functional concerns of the reference architecture and

aligns them to the software components of the subsystem solutions.

Each subsystem de�nes a set of features to be ful�lled by the solutions. The solution

developer identi�es the component interfaces responsible for ful�lling the features. In

addition, they model dependencies of the subsystem solution to the base system, such as

a common database. The dependencies to the base architecture is modelled by abstract

entities that are substituted by concrete interfaces when reusing the subsystem models.

CompARE is based on the assumption that the individual solutions have already been

modelled component-based. The model requires components that abstract from meaningful

classes of the implementation and make them available or use the services by explicit

interfaces. These tasks require experts who are familiar with the architecture and its

degree of abstraction, the implementation and the actually implemented features of the

subsystem solutions. This has the advantage that every model already created does not

require any detailed knowledge at the time of use.

6.4.2.2. Extensionmechanism

When selecting the extension mechanism, the solution developer determines for each

solution individually, how the solution should be (automatically) integrated into the

base architecture. CompARE supports two di�erent strategies. The selection of the right

strategy depends on the internal software architecture of the subsystem solution. The

solution developer must have detailed architecture knowledge of the solution to select

the appropriate extension mechanism. CompARE supports the following two extension

strategies: Non-intrusive extension by adaptation of interfaces and intrusive extension of

the abstract control �ow of components.

6.4.2.3. Architecture Knowledge Analysis

Qualitative modelling has advantages if either no quantitative objective function exists,

if it has not yet been well researched scienti�cally or if modelling would be too complex

99

6. Automated Feature-Driven Extension of Software Architectures

or time-consuming. For component-based software architectures the quality attribute

security is an example, which has not yet been su�ciently researched scienti�cally to

quantify security of a component-based software architecture. Usability can be measured

quantitatively but requires a high amount of time and money due to necessary user studies.

Nevertheless, experienced architects can often estimate trends in the quality properties of

software architectures or parts of the software architecture due to their experience.

Such informal knowledge and architecture reasoning initially is modelled by solution

developers. Thus, architecture knowledge can be reused later and optimized together with

quanti�ed quality attributes. Solution developers concentrate on modelling knowledge

that is reusable in general. An example for general reusable knowledge could be e�ects

on the general in�uence on the overall data backup usability of a system a�ected by the

reliability of the backup process of a certain database management system.

CompARE uses the method of qualitative reasoning, which we have extended to model

and analyse mutual e�ects between components and their quality attributes. The result

of the analysis is an architecture knowledge model that can be reused together with the

previously modelled reference architecture and software architecture of the subsystem

solutions.

6.4.3. Reuse Process

In the reuse process, software architects use the models previously created by the subsys-

tem domain expert and solution developers to evaluate the e�ect on quality attributes of

the system by using features. For this purpose, during the requirement analysis software

architects analyse the requirements of the software system in advance. Using the require-

ments as a basis, the software architect derives required features. Finally, the software

architects review the provided features for the subsystems and select a suitable subsystem

ful�lling the requirements.

6.4.3.1. Feature Analysis

In the requirement analysis phase, software architects create the feature con�guration

based on the required features and the base software architecture in which the features

should be integrated. The feature con�guration must be created or adapted individually

for each base software architecture.

In the feature con�guration, software architects determine which features are intended

for use in the base software architecture and de�nes their application in detail. Features

can either be selected as mandatory or optional. In addition to the selection of features,

the feature con�guration is used to model the later positions of the features in the base

architecture. The software architect can either select the exact (mandatory or optional)

positions in the software architecture or de�ne classes of required positions. Optional

features and positions can later be used as a degree of freedom to allow CompARE to

automatically optimize the given set of desired features. Modelling them as degrees of

freedom the optimal set of features and positions considering the quality attributes of the

software architecture can be analysed.

100

6.5. CompARE in the Component-based Software Engineering Process

6.4.3.2. Subsystem Application

In a �rst step, CompARE generates degrees of freedom, consisting of base architecture,

features and their con�guration. The subsystem solution architecture model and con�gu-

ration application is an automatic step. CompARE analyses the subsystem and its solutions

together with the optionally modelled architecture knowledge and the feature con�gura-

tion modelled in the previous step. On their basis, CompARE generates the architecture

model comprising the base software architecture and the software architecture elements

of the extending system at the desired positions in the base architecture. The result is

software models of the base software architecture with features.

6.4.4. Design Space Optimization

The design space optimization process is based on the PerOpteryx approach introduced in

Section 4.3. CompARE extends the design space exploration and design space analysis of

PerOpteryx by additional subsystem related degrees of freedom, as well as a joint analysis

of qualitative and quantitative modelled knowledge.

The result of the optimization is a set of Pareto-optimal architecture candidates from

which the software architect can select the most suitable candidate according to his

requirements for the base system. In comparison to the PerOpteryx approach, the software

architect can also use CompARE to decide more easily whether i) the use of a particular

feature is worth the impact on the quality attributes of the base software architecture,

i.e. requirements prioritization, ii) which subsystem solution would be most suitable and

iii) how its placement in the base software architecture should be used to best meet the

requirements of the overall system. The process allows trade-o� decisions to be made on

the basis of analysis results.

6.5. CompARE in the Component-based So�ware Engineering
Process

This section introduces how CompARE can be integrated to the quality-driven component-

based software engineering (CBSE) process.

The CBSE was originally introduced by Cheesman and Daniels [CD00], extended by

Heiko Koziolek and Jens Happe [KH06a] to evaluate quality attributes, and �nally re�ned

by Anne Koziolek to optimize software architectures to automatically improve their quality

attributes [Koz11]. The activities of the approach introduced in Section 6.4 are adapted

and included into the CBSE process and in its work�ows.

This section is organized as follows: Section 6.5.1 shows the extension of the process

for quality-driven optimization of component-based software architectures. Section 6.5.2

introduces roles involved in the CBSE. Section 6.5.3 shows the extension of the requirement

elicitation work�ow, while Section 6.5.4 describes the extension of the (model) speci�-

cation work�ow. Section 6.5.5 describes our extension of the quality analysis work�ow.

Section 6.5.6 �nally describes the decision making process that bases on the results of the

work�ows.

101

6. Automated Feature-Driven Extension of Software Architectures

6.5.1. Component-based Development Process

The process re�ned by Anne Koziolek to automatically optimize quality-driven component-

based software architectures supports the automatic exploration of software architectures

according to several architecture degrees of freedom. The main degrees of freedom enable

software architects to exchange components, change the allocation of components to

hardware resources and change the setup of hardware resources. In principle, however,

further degrees of freedom can be included. The process uses the results of the evaluation

of the architecture models, which are automatically created on the basis of these degrees

of freedoms. The iterative process improves the software architecture to achieve better

quality attributes.

In this process, however, software architects have already pre-selected software compo-

nents to be used in the software architecture. They are already familiar with functionality

implemented by the software components and have learned how these individual compo-

nents can be integrated into the software architecture. The assembly itself must be carried

out manually. In addition, software components whose interfaces are not compatible or

even require additional services for their function cannot be exchanged automatically.

Figure 6.4 shows the extended process that enables feature-driven integration of subsys-

tems into software architectures without pre-selection and manual assembly of software

components and optimization by the use of subsystem solutions and their con�guration

in the base software architecture. The extension of the process contributes the process of

building a software architecture from components by the selection of features. Features are

higher level abstraction of functionality, compared to component interfaces. This reduces

the complexity when reusing complex subsystem models.

CompARE extends the CBSE process mainly within the three work�ows Requirements,
Speci�cation and Quality Analysis. The CompARE extensions are bold marked.

The initial requirements work�ow consists of transforming business requirements to

functions. Based on the results of the quality analysis, these functional business require-

ments can then be improved by re�ning them in the decision-making work�ow. We

initially extend the work�ow to include the process of selecting subsystems that support

the business requirements , i.e. supports the functional requirements and the quality

requirements. In this step, the requirements engineers decide whether a requirement

should be implemented by the reuse of software components, subsystems or whether the

requirements should be realized by an individual implementation. This results in a set of

requirements supporting features.

In the initial speci�cation work�ow, the focus is on the de�nition of component inter-

faces, system interfaces and associated components. The work�ow returns the Pareto-

optimal architecture candidates supporting the requirements on the basis of the decision-

making work�ow.

Based on the set of features supporting the requirements, subsystem solutions can now

be pre-selected. All pre-selected solutions are used in the optimization process as a degree

of freedom. Each feature is ful�lled by several (but not necessarily every) subsystem

solutions. For each feature, there is a con�guration determining desired positions in the

base software architecture model. Based on the selected features, subsystem solutions,

and feature con�guration, the decision-making work�ow is extended to allow subsystem

102

6.5. CompARE in the Component-based Software Engineering Process

Interfaces

Quality Analysis

Requirements

Functional
Requirements Subsystems

Business Requirements

Decision Making

Specification

Quality
Requirements

Components

Subsystem
Features
Reference

Architecture

Decision Making

Quantitative Quality
Attributes Analysis

Qualitative
Quality Attributes

Analysis

Provisioning Assembly

Test

Deployment

Optimal Candidates with Features

A
pplications

Tested
A

pplications

Component Specs &
Architecture with Features

Deployment
Diagrams

Components

Quantitative and Qualitative
Quality Properties

(Q
ua

lit
y

Pr
ef

er
en

ce
s)

Business Concept
Model & Use Case

Models with Quality
Criteria

Technical & Solution
 Specific Constraints

Existing Assets: Components, Libraries

Optimal Candidates with Features &
Quantitative and Qualitative Quality Properties

Use Case Model with Quality Criteria

Legend:

Workflow

Detailed Workflow

Flow of Artefact

Interfaces

Quality Analysis

Requirements
supporting
Features

Solutions

Architecture
Optimization

Figure 6.4.: Component-based software development process with feature-driven integra-

tion of subsystems and quality optimization of software architectures (based

on ([KH06b; Koz11])). Bold terms/work�ows were introduced by CompARE.

solutions to be used as a degree of freedom for automatic exploration in addition to the

de�nition of degrees of freedom based on interfaces and components.

The quality analysis work�ow initially consists of the quantitative analysis of the

software architecture’s quality attributes. We extend the work�ow by the exploration

of qualitatively modelled informal architecture knowledge, together with quantitative

knowledge. The combination allows trade-o� decisions with a broader data basis.

6.5.2. Roles of the extended CBSE

In the extended CBSE, three main roles are involved in creating the models: the subsys-

tem domain expert, the solution developer and the software architect. When additional

subsystem solutions are required, the role of the component developer is also involved.

The activities of the roles can be described as follows.

6.5.2.1. Subsystem Domain Expert

Subsystem domain experts are familiar with the domain of the subsystem. They have a

broad overview of the subsystem solutions available on the market and have knowledge

on features that these solutions must realise in order to meet the requirements of the

domain. In addition, they identify the functional concerns in the software architecture of

103

6. Automated Feature-Driven Extension of Software Architectures

subsystem solutions and analyse their relationships. They use the functional concerns and

relationships as basis for creating the reference architecture of the subsystem. Additionally,

the subsystem domain experts model the dependencies of the subsystems to the base

architecture. In the case of a�ected quality attributes, they make suggestions for the

a�ected quality attributes and dimensions.

6.5.2.2. Solution Developer

Solution developers use the models created by the subsystem domain experts. They are

the technical experts for the subsystem solutions. They are familiar with the solution in

detail, i.e. its architecture, the provided features and the services required by the solution

(from the base system later including the subsystem solution). They create the relations

between the features and the component interfaces or signatures of the solutions. In

addition, solution developers optionally model their informal knowledge for automatic

quality attribute reasoning.

6.5.2.3. So�ware Architect

Software architects reuse the models created by subsystem domain experts and the so-

lution developers. Together with requirements engineers, they decide whether software

components should be used to implement the requirements, should be implemented from

scratch, or whether subsystems should be reused. When deciding on subsystems, software

architects determine the features and potentially suitable positions in the base system.

6.5.3. Requirements Workflow

In the requirements work�ow, stakeholders �rst de�ne relevant functional and quality

requirements. A software architect or a requirements engineer can provide assistance.

When requirements should be implemented by subsystems, a suitable subsystem is

selected. Let us consider our running example, the logging system, for demonstration:

Improving the user experience of the media store, visitor’s movements in the
systems shall be recorded. For further processing with analysis software, it is
important to store the data of the movements in a database management system.

This requirement as a basis, features can be derived which could be realized using the

subsystem logging and for instance the subsystem solution log4jv2.

6.5.4. Specification Workflow

Three roles are involved in the speci�cation work�ow: The software architect, solution

developer and subsystem domain expert. Figure 6.5 shows the work�ow from the software

architect point of view and the input artefacts of the work�ow. We show also the interaction

to the component developer. The artefacts modelled by the component developer are

particularly important for the work�ows of the solution developer. Figure 6.6 shows

work�ow and artefacts for the roles of the solution developer and subsystem domain expert.

104

6.5. CompARE in the Component-based Software Engineering Process

Component Developer

Component Requirements
Analysis

Functional Property
Specification

Quality Property
Specification

Component
Implementation

Requirements

Requirements

Interfaces

Interfaces &
Internal

Dependencies

Binary Components
& Specification

QoS
Annotations

Service Effect
Specifications &

Interface
Protocols

Software Architect

Component Identification

Component & Feature
Interaction

Component Specification

Interoperability Check

Initial Component
Specs & Architecture

Initial
Interfaces

Initial
Feature
Selection

Feature Analysis

Initial
Feature
Selection

Business Type
Model

Initial Component
Specs & Architecture

Feature Configuration
Initial
Feature
Selection

Requirements Supporting Features
Business Concept

Model
Use Case
Model

Technical
Constraints

QoS
Metrics

Service Effect
Specification

Service Effect
Specifications &

Interface
Protocols

Existing Interfaces
& Assets

Service Effect
Specifications &

Interface
Protocols

Initial Component
Specs & Architecture

Business Requirements
Fulfilling Architecture

& Specs

Sp
ec

ifi
ca

tio
n

Component Specs &
ArchitectureComponent Repository/

COTS Market

Component Specs &
Architecture with Features,

solution specific constraints

Decision Making

Quantitative and Qualitative
Quality Properties

& Optimal Candidates
with Features

Figure 6.5.: Speci�cation work�ow from the software architect’s and the component de-

veloper’s perspective (based on ([KH06a])). Bold terms/work�ows were intro-

duced by CompARE.

Software architects �rst analyse features to preselect the suitable subsystem solutions.

Several solutions could be excluded in advance. In our running example and according to

the requirement of Section 6.5.3, the database logging feature of the subsystem logging,

together with the subsystem solution log4jv2 could be preselected.

In the second step, the interaction between components and features in the next work-

�ow, the Components & Feature Interaction work�ow, together with the initial interfaces

of the software components and the initial component speci�cation and component archi-

tecture. This interaction includes dependencies of the features to and from the software

components of the base system. Based on this interaction model, software architects

con�gure the positions of the features in the Feature Con�guration work�ow. Alterna-

tively they con�gure a set of (optional) positions that can be used by the optimization

as a degree of freedom. In the Media Store system, three assembly connectors with the

database logging feature could be selected as optional. This would result in a combination

of all possibilities corresponding to 2
4 = 16 architecture candidates.

The models are then evaluated and optimized in the decision making work�ow. The

speci�cation work�ow results in the component speci�cation and software architecture

105

6. Automated Feature-Driven Extension of Software Architectures

with features. Each subsystem solution has its own constraints that are also contained

in the model. As in the original CBSE process, missing components can be sent to the

developer component for commission.

Figure 6.6 shows work�ow and artefacts for the roles of the solution developer and

subsystem domain expert. The subsystem domain experts analyse the domain of the

requirement for the de�nition of the subsystem and its reference architecture (see Sec-

tion 6.4.1). In the Domain Analysis work�ow, they �rst analyse the domain of the require-

ment to model the subsystem, its reference architecture and features. On the basis of the

domain analysis, the domain experts model in the Feature Speci�cation work�ow features

of a subsystem for a certain domain. Applied to the running example, for the subsystem

logging subsystem domain experts could de�ne the features, namely database logging and

�le logging.

Feature Identification

Interfaces Annotation

Domain Analysis

Architecture Knowledge
Specification

Requirement
Supporting

Subsystems &
Solutions

Subsystem Domain Expert

Interaction &
Dependency Specification

Feature Specification

Affected Quality
Specification

Solution Developer

Requirement Domain

Subsystem Identification

Component Specs &
Architecture

Provided
Features

Feature Providing
& Requiring
Specification

Feature to Interface & Quality
Effect Specification Annotated Subsystems & Solutions

Affected Quality
Dimensions

Subsystem

Supported
Features

Component to
Higher Level Functions
Annotated Architecture

Interfaces Reference Architecture
SpecificationComponent Annotation

Functional Concerns &
Dependencies

Subsystem
Domain

Feature to Interface
Relation

Domain Specific
Features

Functional Concerns &
Dependencies & Solution

Constraints

Sp
ec

ifi
ca

tio
n

Requirements

Interfaces

Subsystem

Figure 6.6.: Speci�cation work�ow from solution developer’s and subsystem domain ex-

pert’s perspective (based on ([KH06a])). Bold terms/work�ows were introduced

by CompARE.

106

6.5. CompARE in the Component-based Software Engineering Process

The work�ow Reference Architecture Speci�cation considers modelling the reference

architecture of the subsystem. They model the functional concerns of a subsystem and

create the relationship between them, i.e. dependencies between the functional concerns.

The resulting functional concerns, internal dependencies and solution constraints are then

addressed in the next work�ow, the Interaction and Dependency Speci�cation. In the logger

example, the functional concerns correspond to the three functions Collector, Appender and

Formatter. They have several dependencies to each other, namely that Collector requires

Appender and Appender requires Formatter. Collector realizes both features, namely

database logging and �le logging. Further, Appender requires a database system of the

base architecture to store the data.

The previously de�ned reference architecture is then used in the next work�ow to

de�ne the Interaction and Dependencies Speci�cation used to get the relation to the base

architecture the subsystems should be later integrated. The following shows an example of

the interaction and dependencies: The database logging feature is provided by Collector. In

addition, Appender is dependent on the base architecture, since the recorded data must be

written to the database management system. This database management system provides

services required by the logger.

Finally, the subsystem domain experts model the quality attributes involved in the

A�ected Quality Speci�cation work�ow, which are in�uenced by the use of the subsys-

tem. For example, the subsystem domain expert could de�ne in�uences on the quality

attribute usability and maintainability of the software architecture since the �rst tends to

be increased, while the other would be decreased at the same time.

The resulting subsystem is stored in the repository and can then be used by software

architects for reuse to build their software architectures containing the subsystem.

Before software architects can use the subsystem like software components, subsystem

solutions must be applied to the subsystem and its reference architecture. This step is

carried out by solution developers (see section Section 6.4.2). In the �rst work�ow, the

Subsystem Identi�cation, the solution developer selects the subsystem for applying the

solution. In addition, solution developers use the component speci�cation and component

architecture of the solution, as well as the requirements from the Component Requirements
Analysis work�ow of the component developer. The solution developer can then select

each feature that ful�ls the requirements and interfaces of the solution components. These

features then correspond to the provided features of the subsystem de�ned in the feature

speci�cation work�ow. In the Components Annotation work�ow, solution developers

annotate the software components of the subsystem solution with the functional concerns

of the subsystem. Then, they model the abstract dependencies to the base architecture

from a component interface point of view. As a basis they use the required interfaces of

the solution’s software architecture. The result of this work�ow is a model of the relation

between abstractly modelled functional concerns and concrete software components.

In the Interface Annotations work�ow, this model is �nally complemented by a relation

between the provided features, required services (of the base system) and the concrete

software interfaces of the software components of the subsystem solutions implementing

these features. Both dependencies must be resolved by the software architect when the

subsystem is reused. In the work�ow Architecture Knowledge Speci�cation, the solution

developer re�nes the a�ected quality dimensions de�ned by the subsystem domain expert.

107

6. Automated Feature-Driven Extension of Software Architectures

Software Architect

Quality Requirement
Annotation

Quantitative Quality
Model Integration

Qualitative Quality
Model Integration

System Model
Transformation

Annotated System
Architecture

Quantitative Quality
Enriched System

Architecture

Fully Quality
Enriched System
Architecture &

Solutions

Deployer

System Environment Specs
(& Quality Properties)

Allocation

Component Specs &
Architecture with Solutions

Use Case
Models

Q
ua

lit
y

A
na

ly
sis

System
Environment

Deployment
Diagrams

Quality Evaluation &
Optimization

Fully Quality Annotated
System Architecture with

Quality Properties

Domain Expert

Use Case Analysis

Usage Model Specification

Annotated
Deployment
Diagrams

Quality
Criteria

Usage
Model

Scenarios
(Activity Charts)

Use Case
Models

Component
Architecture

Business
Requirements

Component Quality
Specification

Component
Developer

Solution
Expert

System Architecture
 & Quality Evaluation

Model

Quality Effect
Specification

Optimal Candidates
with Features

Figure 6.7.: Quality Analysis work�ow from deployer’s, software architect’s, and domain

expert’s perspective (based on ([Koz11; Reu+16]). Bold terms/work�ows were

introduced by CompARE into the process.

If the dimension should be modelled quantitatively, quantitative functions can be used

to evaluate the quality attribute. In case of qualitative modelling, the quality properties

and other e�ects between quality attributes can be determined using qualitative reasoning

annotations. Therefore, the solution developer analyzes artefacts of the solution, such as

program code, documentation, but also postings in discussion groups, bug trackers or other

sources. This is used as basis to model properties related to the a�ected quality attributes of

the individual components and, through their interaction, to other components. This model

is then reused by the software architect and can be annotated together with quantitatively

modelled quality attributes to the corresponding software components. As mentioned

before, in this step only e�ects on quality attributes that a�ects quality attributes in general

can be modelled to be reused.

6.5.5. Quality Analysis Workflow

The Quality Analysis work�ow evaluates the quality of the software architecture and

optimizes the software architecture according to the results. In Figure 6.7, we show the

work�ow in detail.

We split the quality analysis work�ow into three parts: quantitative quality model in-
tegration work�ow, qualitative quality model integration and architecture optimization. In

108

6.5. CompARE in the Component-based Software Engineering Process

the �rst work�ow, software architects use the component quality speci�cation modelled

by the component developer and integrate them into the system architecture. In the

qualitative quality model integration, they use the system architecture model with quan-

titative model entities. The model can be re�ned by the software architect to increase

the precision due to e�ects that are speci�c for the base software architecture. In prac-

tice, this is done in one step when annotating the features to the desired positions of

the base architecture. In the System Transformation work�ow, the resulting annotated

software architecture model with the annotated features is transformed automatically in a

component-based software architecture model. During the transformation, the degrees of

freedom are instantiated and the annotated features are resolved and replaced by software

components. The transformation result in a software architecture model including the soft-

ware components implementing the required features. Finally, in the Quality Evaluation &
Optimization work�ow, the software architecture model and the quality evaluation models

are analysed and the resulting quality properties of the quality attributes are determined.

CompARE uses analysis engines to determine the quality properties, such as described in

Section 3.2.4. The optimization of the software architecture according to the considered

quality attributes is automatically carried out by the evolutionary algorithm NSGA-II.

We reuse the concepts introduced in Section 3.3. The resulting quality properties and

optimized software architecture candidates are then fed back into the requirements and

speci�cation work�ow in order to re�ne decisions and prioritize requirements.

6.5.6. Decision Making

The decision-making work�ow considers both work�ows, the requirements work�ow,

and the speci�cation work�ow. From the overall process, the decision makers select the

optimal candidates from the results of the quality analysis work�ow to select the optimal

architecture candidate. This step is not always straightforward or clear, as requirements

can con�ict with each other.

Let us consider the quality attribute security and usability. Higher security properties

could be achieved by querying authentication credentials more frequently. However, the

usability decreases due to additional queries. Therefore, often trade-o� decisions are

necessary, which, at least on the basis of quantitative quality attributes, can already be

made with the CBSE process extended by Anne Koziolek [Koz11].

Security properties of software architectures cannot yet be calculated using quantitative

functions. Nevertheless, experienced software architects can qualitatively assess the

security properties of di�erent components. With our extension, decisions can now be

made which also include qualitative knowledge. For example, stakeholders can consider

whether the project requires features improving security by reducing the performance.

Figure 6.8 shows an example of trade-o� decisions between dimensions of three quality

attributes: Response time for performance, Euro for costs and authentication for security

using a value chart. The value chart contains the aforementioned three dimensions, as

well as three architecture candidates with di�erent resulting quality properties. All three

candidates are Pareto-optimal candidates. From the resulting response time, the resulting

costs and the resulting level of authentication, we can determine which candidate is

optimal for the project according to the requirements. The width of a box represents the

109

6. Automated Feature-Driven Extension of Software Architectures

Authentification

Candidate A

Candidate B

Candidate C

Response Time Euro

0.5 ms (avg)

0.3 ms (avg)

0.7 ms (avg)

2500

3000

5000

poor

medium

high

Candidate A

Candidate B

Candidate C

0.5 ms (avg)

0.3 ms (avg)

0.7 ms (avg)

2500

3000

5000

poor

medium

high

Figure 6.8.: Modi�ed value chart example based on Rohrberg showing results of the deci-

sion making work�ow. The chart considers quanti�ed quality attributes such

as the performance dimension response time and the cost dimension euro, and

the qualitative values quality attribute of the security dimension authenti�ca-
tion (based on ([Koz11])). The width of a box represents the utility of a quality

property.

utility of a quality property. The weight can be adjusted to correspond to the priorities of

the requirements. We have also assigned a weight of the qualitatively determined quality

attribute security. The second part of the graphic shows the resulting ranking of the

individual candidates. In the example, Candidate B would be selected and used for the

next step in the CBSE process. The value chart represents one example of many possible

weights and thus resulting charts. The weights of the quality attributes in the value chart

in practice depend on the requirements and how stakeholders set the priorities.

Decisions that in�uence the requirements work�ow can also be analysed: We can

analyse the degree of requirements ful�lment by using the features and how their use

would a�ect the quality attributes of the software architecture. In other words, e�ects of

individual features on the quality attributes of the software architecture could be estimated

at design time. The upper area of Figure 6.9 shows this in an example. The authentication
feature either increases the response time by an average of 0.3 ms or leads to higher costs

of 1000 Euros. Based on this data, stakeholders could now decide whether the feature

justi�es reducing the properties of these quality attributes.

In addition, requirement prioritization becomes possible: Based on the results, stake-

holders can decide whether a feature can implement the desired requirements at all in

the available environment or whether individual quality requirements would no longer

be feasible if they were applied. Adjustment or prioritization of the requirements (both

functional and quality requirements) would be necessary. This is shown in the lower part

of Figure 6.9. The average response time must be 0.6 ms or lower (less is better) and the

costs must be 3000 euros or lower (less is better). However, the authentication feature

110

6.5. CompARE in the Component-based Software Engineering Process

Authentification

Candidate A

Candidate B

Candidate C

Response Time Euro

0.5 ms (avg)

0.5 ms (avg)

0.8 ms (avg)

2500

3500

2500

no

yes

yes

Authentification

Candidate A

Candidate B

Candidate C

Response Time Euro

0.5 ms (avg)

0.5 ms (avg)

0.8 ms (avg)

2500

3500

2500

no

yes

yes

Legend:

Quality property

acceptablenot acceptable

0.6 ms 3000 Euro

Figure 6.9.: In the upper part of the picture, we show the quality in�uence of the authenti�-
cation feature on response time and cost (Euro). In the lower part of the picture

we show the acceptable and not acceptable properties of quality attributes. If a

property is in an unacceptable range, requirements must be prioritized.

a�ects both quality attributes. The results show, ful�lling both requirements would no

longer be possible by using the feature. Requirements must therefore be prioritized: Either

the requirements must be adjusted to the average response time or costs. Alternatively,

the desired feature could be removed.

The decision-making work�ow can also support the speci�cation work�ow. It helps

to determine the speci�cation of the �nal software architecture model: due to several

subsystem solutions the same feature can be realized by di�erent solutions. To �nd the

optimal solution implementing the feature is a challenging process without a systematic

and automatic process. The automatic process helps to �nd the best subsystem solution

in the speci�c usage context. This considerably simpli�es the model creation for later

evaluation and �nally the optimal selection of the subsystem solution.

In summary, the decision-making work�ow supports the following areas:

• Requirements prioritization: Prioritization of requirements on the basis of analysing

quantitative and qualitative modelled quality attributes.

111

6. Automated Feature-Driven Extension of Software Architectures

• Speci�cation of software design: Selection of the optimal software architecture candi-

date to realize the business requirements and analysing e�ects of features by reusing

subsystems and subsystem solutions.

6.6. Further Scenarios

There are several further scenarios for which CompARE can be used. When new solutions

realizing an already designed subsystem appear on the market, CompARE can be used to

re-evaluate design decisions. Additionally, the e�ect on the quality attributes by migration

from one subsystem solution to another can be evaluated upfront. CompARE therefore

can evaluate scenarios at the design time as well as to quickly evaluate new requirements

in later phases of the design process or to learn about bene�ts of releases of new solutions.

New Alternative Solutions Over Time

Over time, new solutions with similar features may appear on the market. New solutions

could support quality requirements better or may provide new features that better support

the business requirements. It may therefore be worth to re-evaluate new releases. It may

be possible to �nd solutions that did not yet exist and could have the potential to further

improve quality attributes.

Evolving Solutions

If a later version of the solution used, such as log4j version 3, instead of version 2, is

available and should be used, potential e�ects on the quality attributes can be quickly

evaluated by using CompARE. To do this, software architects could re-evaluate the new

set of subsystem solutions by applying them to the initial architecture. If all models are

already available, the exploration can be repeated without additional e�ort. While the

selected features remain unchanged, changes in quality requirements may become visible.

This makes it clear even before the actual implementation of the evolution whether the

expected quality requirements can be ful�lled or whether individual quality requirements

will be improved or worsened.

Trade-o� decisions using Qualitative Knowledge

Even without reusing solutions, CompARE supports trade-o� decisions between quality

attributes of quanti�ed modelled quality attributes and qualitative modelled quality at-

tributes. To do so, software components can be annotated by qualitative knowledge and

then evaluated and optimized together with quantitatively modelled quality attributes.

This allows CompARE to evaluate and optimize design decisions considering a combination

of quantitative and qualitative knowledge without the need of using subsystems.

112

6.7. Assumptions & Limitations

6.7. Assumptions & Limitations

We make the following assumptions for applying CompARE:

• Relevant quality attributes: We assume the relevant quality attributes have already

been identi�ed by the stakeholders. In addition, there must be an idea about required

quality properties. However, due to the evolutionary search and the a posteriori

evaluation of architecture candidates determining quality bounds before analysis is

not required.

• Quality annotated models: We assume component-based architecture models are

already annotated with the quality attributes that should be quantitatively evaluated.

This applies to both reused subsystem and software components of the base system.

• Recurring nature of subsystems: CompARE focusses on reuse of subsystems that

realize features that could potentially used in a wide range of applications. Individual

solutions such as GUIs or special algorithms should be modelled as standard software

component models. They are often solutions tailored to one system and their utility

to reuse is limited.

• Qualitative modelled knowledge: We assume that the evaluation of the qualitatively

modelled knowledge should not be explored alone, but in combination with quanti-

�ed quality attributes for the analysis of trade-o� decisions between the relevant

quality attributes. It is unclear what signi�cance and reliability the resulting values

of the analysis would have when relying on qualitative modelled quality attributes

alone. This is, because the values are often determined by the reasoning of architects

or developers.

We identi�ed the following limitations of CompARE:

• Reference architecture: CompARE relies on the solutions of a subsystem sharing

the same reference architecture: All solutions used as alternative solution of the

subsystem apply to the reference architecture and support a similar set of features.

If the software architecture of a solution does not apply to the reference architecture,

the solution cannot be used in the automatic exploration.

• Additive extension of software architectures: CompARE enables the additive exten-

sion of architecture elements. CompARE does not support removing components or

functions from the system model or to perform modi�cations to the architecture in

the sense of subtracting a set of components with subsequent addition. The applica-

tion of architecture patterns, such layering, pipes-and-�lters, etc. is not possible by

the use of CompARE.

In addition to the assumptions and limitations, all assumptions and limitations of the

method on which CompARE is based are inherited, namely PerOpteryx (see [Koz11]) and

the underlying quality analysis methods, as for instance Palladio for performance quality

(see [Reu+16]).

113

6. Automated Feature-Driven Extension of Software Architectures

6.8. Summary

In this chapter, we showed how requirements could be implemented by reusing subsystems

and the software architecture could be optimized. We showed how qualitative knowledge

and quantitative knowledge could be used in combination to make trade-o� decisions

between quality attributes. Further, we showed how CompARE could help to support

the software design process. We showed how our extensions could be applied to the

CBSE process that was initially designed by Cheesman and Daniels, and re�ned by Heiko

Koziolek, Jens Happe and Anne Koziolek.

By the extended process, when reusing features by subsystems, architecture decisions

could be evaluated and optimized with comparatively low modelling e�ort. Software

architects should require less e�ort and knowledge when reusing the features, while they

do not require deep insight into the software architecture of the individual subsystem

solutions.

114

7. Formalising the Entities of Reuse

This chapter formalizes the entities that are necessary for reusing subsystems and the solu-

tion of subsystems in automatic analysis approaches. In Section 7.1, we introduce relevant

roles and requirements for the meta model. In Section 7.2, we explain the formalization of

the entities with regard to modelling, use, and automatic weaving of models. In Section 7.3,

we brie�y introduce how the formalized entities could be applied to software architecture

models. Subsequently, in Section 7.4, we structure all formalisms in a hierarchical model

to separate the concerns according to role and phase of use.

The formalization presented in this chapter describes meta models to de�ne subsystems

and subsystem solutions to be reused by software architects. Reuse is done by selecting

features supporting the requirements. Such a formalization allows to automatically com-

pare several solutions and con�gurations in terms of placement and selection of features

according to the requirements. At the end, software architects should be able to choose

the optimal software architecture candidate that best ful�ls the requirements. However,

often the solutions are complex in their internal architecture what makes it complex

for the software architect to evaluate di�erent solutions by hand. Thus, by using our

formalization abstracts from the internal complexity of di�erent solutions and allows them

to be evaluated and optimized automatically.

The basis for an automated decision support of subsystem solutions is a formalized rep-

resentation, i.e. a meta model that formalizes the entities, relationships and the architecture

of such entities of reuse.

We propose a meta model de�ning all required entities for an automated decision

support for architecture design decisions with the focus on reuse of complex models such

as models of subsystems. The meta model requires entities that allows a software architect

to reuse architecture elements in a context that is open at their design time. To design

the models the meta model follows a process that is aligned to component-based software

development processes and therefore supports to separate the process of model design

over di�erent roles. Thus, we formulate the leading question for this chapter:

Which entities, relations between the entities, and reference architecture a

formalization requires modelling di�erent non-uniform solutions of one class

of subsystems in order to optimize design decision automatically?

In this chapter, we de�ne the formalized model that contains the information about

architecture, relations, and solution speci�c information of several non-uniform solutions

of subsystems such that it can be used to support the software architect to evaluate the

best solution and its con�guration automatically. We call such entities feature completions.
The remainder of this chapter is organized as follows: Section 7.1 introduces roles

involved in the design process and requirements on a model to make entities reusable

115

7. Formalising the Entities of Reuse

Features

Feature Completion Model

FC
 M

od
eli

ng
 P

ro
ce

ss

conforms toFeature
Completion

Extension
Model

Subsystem
Domain Expert

models

Feature Completion Solutions

Solution
Developer

models

Solution
Models

Transformation
Description

Reference
Architecture

Figure 7.1.: High level description of roles and their tasks for de�ning feature completions

and their solutions

and to be used in automated decision support processes. In Section 7.2, we introduce the

meta model of the entities of reuse. Section 7.3 introduces how to apply the meta model to

subsystem solutions. Section 7.4 introduces the multi-level structure of our formalization.

We discuss in Section 7.5 assumptions and limitations, and close in Section 7.6 with a

summary.

7.1. Roles and Requirements

7.1.1. Roles

Our approach is designed to support developers in di�erent roles and phases the develop-

ment. We de�ne three di�erent roles.

7.1.1.1. Subsystem Domain Expert

Subsystem domain experts are responsible for the analysis of the domain of the subsystem.

They model the features (cf. Section 6.1.1), the functional concerns, the internal architecture,

interactions to the base system, as well as for de�ning the a�ected quality dimensions.

Overall, subsystem domain experts are considered with three processes:

• Feature modelling: Modelling the features of a subsystem requires deep knowledge

about required, domain speci�c functionality. The set of features of a subsystem

could be the union of the features provided by the subsystem solutions on the market.

• Reference Architecture: Domain experts model the reference architecture of subsys-

tem, namely the functional concerns and their relationships to each other. The

116

7.1. Roles and Requirements

functional concerns de�ne functional parts to be found in each subsystem solution.

They assign the provided features to each of these functional concerns. In addition,

they model internal dependencies between the functions and functional dependen-

cies, e.g. shared resources, to the base system in which the subsystem is to be used

later.

• A�ected Quality Attributes: Subsystems can support functional requirements and

quality requirements. While functional requirements are implemented through

features, the quality attributes of the overall system depend on the quality attributes

and its dimensions in�uenced by the subsystem. The subsystem domain expert

therefore de�nes the in�uenced quality dimensions on an abstract level. These are

later re�ned by the solution developer.

In practice, for de�ning that models, subsystem domain experts rely on their knowledge

about the domain and public knowledge databases, such as manuals, discussions, or other

databases for knowledge management, to extract the features of subsystems. Additionally,

they review implementations or architecture models to extract the reference architectures.

7.1.1.2. Solution Developer

For each class of subsystems there are several possible subsystem solutions. Internally, each

subsystem solution comprises software components and corresponding provided/required

interfaces. All solutions realize a similar set of features that is a subset of the features of

the subsystem. Further, the subsystem solutions di�er in their software architecture, but

comply to the reference architecture of the subsystem.

Solution developers are experts for a certain subsystem solution. They are familiar with

features that can be used by its provided interfaces and its internal software architecture.

They have deep insight into the technical realization of a solution and therefore de�ne all

models and description that are speci�c for a solution. Further, they align the software

components to the functional concerns of the subsystem. Overall, they are considered

with three processes:

• Annotating reference architecture: Solution developers align the reference archi-

tecture of the subsystem to the subsystem solution. Therefore, they identify the

functional concerns of the subsystem in the subsystem solution and annotate them

to the software components of the solution.

• Annotating features: They identify features provided by the solution and annotate

them to the corresponding interfaces of the subsystem solution. In addition, they

resolve dependencies to services of the base system and annotate them to the required

interfaces of the solution.

• Modelling Quality E�ects: They model architecture knowledge regarding quality

e�ects on the solution, i.e. they model e�ects on the overall quality attributes on the

base architecture by the use of the subsystem (solution).

117

7. Formalising the Entities of Reuse

7.1.1.3. So�ware Architect

From the set of available subsystems, software architects select the suitable subsystem.

The procedure is based on the features: They concentrate on the features provided by

the subsystem. Further, they select possible positions in the base architecture that might

be suitable positions for including the feature. Overall, the software architect uses the

de�ned subsystems and subsystem solutions in software design and evolution processes.

7.1.2. Requirements for the Reuse and Automated Decision Process

This section de�nes a meta model that contains all the entities needed to make models

of subsystems and subsystem solutions reusable. At design time the context of reuse are

not �xed. They are designed to be reused with comparatively low e�ort by the software

architect. At the same time, the resulting models can be used for quality prediction of

di�erent quality attributes as well as for optimizing the software architecture in automated

decision support processes.

Reusing models allows reuse of design knowledge and design considerations without

the need of repeating the whole design process. Such a reuse process requires a formalized

model to be used in automated processes such as an automated decision support process.

We assume the need of reusing entities follows a certain requirement in the software

design process. The meta model focuses on subsystems that consider functional require-

ments and quality requirements. We do not consider requirements that necessitate changes

a�ecting the software architecture as a whole, i.e. architecture patterns. This is in contrast

to similar approaches such as architecture template method by Lehrig [LHB18]. The

functional requirements and quality requirements supported by CompARE at least include

new functionalities, but never reduce or limit functionality.

The formalization should support di�erent roles and di�erent modelling and usage

times. The modelling step should be divided into tasks performed by the subsystem domain

expert and tasks performed by the solution developer. The subsystem domain expert has

the main overview of the domain and can thus model domain related entities. The solution

developer applies this common structure to individual solutions. The software architect

�nally uses the model in software design or evolution processes.

In addition to di�erent roles, the formalism should be applicable independently of a

speci�c component meta model. The formalism should therefore be �exibly so that it can

be applied to existing, component-based meta models.

7.2. Feature Completion Meta Model

In this section, we introduce the formalism for de�ning and reusing subsystems and

subsystem solutions, that we call feature completions. We base on the meta model that has

been demonstrated in the Bachelor’s thesis of Schneider [Sch16], supervised by me. We

describe the activities of the di�erent roles and give a detailed description of the models

and their meta models.

118

7.2. Feature Completion Meta Model

7.2.1. Feature Completion

In this section, we de�ne the feature completions and its related entities. First, we introduce

general terms. Second, we de�ne concepts and terminology that are important for the

use of feature completions by the software architect. Due to the feature-driven use of the

approach, we describe the structure of the features and their use in reuse processes. In the

next step, we describe the actual de�nition of the feature completions.

7.2.1.1. Definition & Model

A feature completion is an abstract representation of a subsystem, such as a logging

system. Subsystem solutions represent vendor speci�c implementations of subsystems,

e.g. logging systems. Reusing a subsystem by the abstract entity feature completion, allows

software architects to reuse the features of di�erent implementations of subsystems, i.e. the

subsystem solutions, by a uniform interface without coming in touch with the vendor

speci�c internal architecture. To achieve this, the feature completion is designed for the

following concerns:

C1a: The feature completion represents a high level abstraction from the implementations

of subsystems and subsystem solutions.

C2a: The feature completion models the functionalities as features of a particular subsys-

tem.

C3a: The feature completion determines an extension mechanism that de�nes how a

subsystem solution applies in the base software architecture.

Focus of a feature completion therefore is i) the abstraction from vendor speci�c character-

istics of subsystem solutions, ii) the modelling of the provided features of the subsystem,

iii) the selection of the extension strategy of the base software architecture and iv) pro-

viding a uniform interface in reuse processes. Therefore, a feature completion comprises

three elements, namely the supported features, i.e. feature objectives FO , functional con-

cerns, i.e. the feature completion components FCC , reuse model Complementum C , and the

architecture constraints AC . We de�ne the feature completion as follows:

De�nition 7.2.1 Feature Completion: A Feature Completion FC is an abstract de�nition
of a subsystem that ful�ls certain requirements. Internally, a feature completion comprises
feature completion components that correspond to the functional concerns that realize the
provided features on an abstract level. For the software architecture while reusing, imple-
mentation and the �ne-grain architecture is hidden (C1a). The feature completion models
solutions for both the functional or quality requirements as features, i.e. the feature objec-
tives (C2a), and instructions to automatically include instances of the feature completion,
i.e. the subsystem solutions, into a base software architecture model (C3).

The feature objectives FO are comprised of core (required) featuresCF and optional features

OF . Together with feature completion components FCCs, the reuse model Complementum

119

7. Formalising the Entities of Reuse

C and optional architecture constraints AC de�ne the feature completion FC . FO and FA
are de�ned as follows:

FO := CF ∪OF (7.1)

f c := (FCC, FO,C,AC), (7.2)

while CF = {cf1, . . . , cfa}, OF = {of1, . . . , ofb} and a,b, c ∈ N ≥ 1. Finally, the feature

completions are organized in a feature completion repository FC:

FC = {fc1, . . . , fcc} (7.3)

7.2.1.2. Feature Completion Abstract Syntax

The feature completion de�nes the main entity for the reuse of subsystems. We have

de�ned an abstract syntax, de�ning the language concepts and how they can be combines,

covering the following parts:

• Feature objectives, i.e. provided features (see Section 7.2.2)

• Feature completion reuse architecture, i.e. the complementum (see Section 7.2.3)

• Feature completion architecture constraints (see Section 7.2.4)

• Feature completion architecture, i.e. the feature completion components that de�ne

the reference architecture (see Section 7.2.5)

• Feature completion extension mechanisms (see Section 7.2.6)

• Feature completion solutions, i.e. the association between abstract feature comple-

tions and concrete solutions (see Section 7.2.7)

The abstract syntax of the above-mentioned parts are described in detail in the corre-

sponding sections. An overview of the abstract syntax of the feature completion is shown

in Figure 7.2.

The feature completions are managed in a repository by using the entity Feature-

CompletionRepository. The feature completion repository contains the feature comple-

tions from which the software architect can choose. It models the �ne architecture by an

arbitrary number of components representing the functional concerns, that we call the

FeatureCompletionComponents. Feature completion components are individually designed

by the domain expert and therefore assigned to exactly one feature completion.

In addition to the feature completion components, the feature completion contains

a description of the realized feature objectives, i.e. the supported features. A feature

completion can realize any number of features, whereby a feature is assigned to exactly

one feature completion.

The rationale of a feature completion is as follows: a feature completion contains all

entities and information for integrating subsystem solution models in a base software archi-

tecture model automatically. The entities for integration is modelled by the Complementum

120

7.2. Feature Completion Meta Model

FeatureCompletion
Repository

FeatureCompletionFeatureCompletion
Component

Complementum

+components

+completions

+complementum

ArchitectureConstraint

+constraints

FeatureObjectives+features

0..1

0..*

0..1 1..*

1..*

1..* 0..1

0..*

0..1 0..1

InclusionMechanism

0..1

1
+inclusion Mechanism

Figure 7.2.: Main entities of the feature completion meta model with the focus on the

feature completions and its related entities.

and the Complementum Visnetis entity, that is a sub entity of complementum. The com-

plementum extends the base software architecture so that it can be automatically extended

by features. Each complementum is assigned to a particular feature completion.

Finally, a feature completion contains the entity ArchitectureConstraint. The archi-

tecture constraint models restrictions in the degrees of freedom when extending base

software architecture models. Accordingly, each architecture constraint is assigned to

exactly one feature completion.

7.2.2. Feature Objectives

As mentioned before, each feature completion has a speci�c purpose such as logging. The

feature completion’s features describe the functionalities of the feature completion more

formally in comparison to natural language (C2a). The purpose in turn is derived from the

requirements that are ful�lled by the feature completion.

7.2.2.1. Feature Objectives Model

The provided features of feature completions are represented by the feature objectives

in the meta model. Similar to the interfaces of components, feature completions can

be described by their provided features and services required from the base software

architecture. In terms of software components, this corresponds to the provided and

required interfaces. A feature objective comprises one or more features. The set of all

features F of a feature completion corresponds to the union of all features of the feature

objectives.

F :=

n⋃
i=1

FOi, (7.4)

while n is the number of all feature objectives. Subsystem domain experts can derive the

core features and optional features from the subsystem solutions or rely on their domain

121

7. Formalising the Entities of Reuse

knowledge to de�ne the relevant sets of features. Let FCSol := {fcsol1, fcsol2, . . . , fcsolo} be

the set of all solutions (hereinafter referred to as feature completion solutions) that realize

the functionalities of a feature completion f c ∈ FC . o represents the number of possible

solutions. We de�ne the realize relation on the sets FCSol and FC .

realize : FCsol → FC, f csol 7→ fc i� (7.5)

the solution developer associates the subsystem solution fcsol ∈ FCSol to the feature

completion fc ∈ FC , if the subsystem solution fcsol realizes the feature completion f c .

Each fcsol ∈ FCSol can support a set of features that can be included in di�erent sets of

feature objectives.

The features are comprised of two types of features, namely the core features and the

optional features:

1. Core features: The core featuresCF describe mandatory features that must be ful�lled

by a subsystem solution.

2. Optional features: The optional featuresOF describe features that are not mandatory

for a particular subsystem solution, but extend the feature completion by meaningful

features to increase the bene�t of a subsystem solution.

Therefore, we de�ne CF as the set of core features, and OF as the set of optional features.

Features can also be assigned to feature groups as sub-features. Sub-features of feature

groups are uniquely assigned to a feature group. These sub-features can include core

features and optional features. In addition, features can require other features.

7.2.2.2. Constraints Model

Two types of constraints can be de�ned on a set of features:

• Required constraints: A feature may require one or several other features for its

function.

• Exclusion constraint: A feature cannot be implemented with one or several other

features at the same time.

We de�ne the requires_const and excludes_const relations on the set F . requires_const
associates feature x ∈ F to feature y ∈ F , if the feature x requires feature y. This relation

results in the set of all pairs (x,y) for which the feature x needs feature y rule applies.

excludes_const associates feature x ∈ F to feature y ∈ F , if feature x excludes feature y.

Similarly, it results in the set of all pairs (x,y) for which feature x excludes feature y to be

feasible.

7.2.2.3. Meta Model: Abstract Syntax

The abstract syntax describes the entities for the core features, optional features and their

assignment to feature completions. The entities for de�ning features, their dependencies

and constraints are omitted here, but they were introduced in Section 3.1.5.

Our meta model for the description of the abstract syntax mainly consists of three parts:

122

7.2. Feature Completion Meta Model

Logger
optional
mandatory

alternative
(xor)

or

Legend

DatabaseConsole

SQL NoSQL

Message
Queue

Figure 7.3.: Example feature model for the logging system log4j.

1. Meta classes that de�ne the superset of features namely the feature objectives of a

feature completion.

2. Meta classes that de�ne the core features.

3. Meta classes that de�ne relations between features, such as required relations or

exclusion relations.

The con�gurations model can be automatically derived from the structure of the feature

completion meta model.

7.2.2.4. Example

Let us consider the logger subsystem from the running example to reuse the logger in

a base software architecture. Such a logger usually provides the features of logging at

di�erent points in the base system to record data. In addition, the logger can record data

in di�erent formats. Figure 7.3 shows a simpli�ed feature model of a logger with several

features.

A typical feature of such a logger would be the output of data on the console. Less

common, but possible, would be, the output to di�erent databases or to a message queue.

From this, three main features can be derived namely logging to the Console, the Database,

and the Message Queue.

The console logging feature is modelled as required, while the database logging is

modelled as optional feature group. If SQL database logging is selected, NoSQL cannot be

selected and vice versa. Both features are therefore exclude each other (XOR). Message

Queue logging is modelled as optional feature. The database logging feature group com-

123

7. Formalising the Entities of Reuse

prises the feature SQLDBLogging that is required, while the other feature NoSQLDBLogging

is optional. We therefore derive the following sets:

CF = {ConsoleLoддinд} (7.6)

Database = {SQLDBLoддinд,NoSQLDBLoддinд} (7.7)

OF = {Database,MessaдeQueueLoддinд} (7.8)

⇒ F := {ConsoleLoддinд,Database,MessaдeQueueLoддinд} (7.9)

In this example, we derive one core feature and three optional features.

7.2.3. Reuse Architecture

The reuse architecture must be designed for the meta model of the base architecture.

Individual application is required, because each meta model has individual concepts for

the entities to be extended. The following reuse architecture is introduced using the PCM

as example.

7.2.3.1. Rationale

Reusing existing subsystems requires changes of the base software architecture (C3a).

How exactly this changes must be made depends on the subsystem to be integrated, on the

base architecture, and on the meta model used by the base architecture. In addition, it may

be necessary for the subsystem to access services or infrastructure of the base architecture.

This information is modelled by our reuse model Complementum. The subsystem

domain expert de�ne the models, while the software architect reuses the models. We �rst

introduce how a software architect reuses the models, while we will later introduce, in

Section 7.2.5.1, how the other roles de�ne the models.

The complementum is a concept that allows lightweight reuse of models or model

elements in component-based software architectures. We have de�ned the complementum

using UML pro�les that leave the original meta models and its instances untouched, but

o�er additional model entities that enriches them with additional entities. UML pro�les are

a generic extension mechanism that adds entities to meta models. The standard semantic

of the meta model is not contradicted.

In reuse processes, a complementum extends a model (of the base architecture) by two

elements. The kind of extension is dependent on two di�erent processes:

• Feature application: In the feature application, the software architect de�nes the

positions in the base architecture that should be extended by the features. This part is

applied by the complementum visnetis part of the reuse model. The complementum

visnetis de�nes the positions in the base system where the feature f ∈ F of the

subsystem could apply.

• Dependency resolution: All services the subsystem requires from the base architec-

ture are annotated by the complementum entity.

In component-based software architectures di�erent annotation positions become pos-

sible to be annotated in the base architecture:

124

7.2. Feature Completion Meta Model

• Assembly Connector

• Signature

• Interface

• Component

When applying a complementum using Signature means the subsystem requires a

certain signature of an interface of the base architecture so that the subsystem solution

can realize its function. Similarly, Interface means that a component interface of the base

architecture is required. If Component is de�ned, all interfaces provided by a component

of the base architecture are required.

In this step, when modelling subsystems, the complementum visnetis can only be applied

to assembly connectors. This selects the position for a corresponding feature in the system

view-type of the base software architecture model. This selection is used later in the

weaving step to include the subsystem at the desired positions.

To reuse features, the software architect preselects the relevant positions in the software

architecture using the complementum visnetis. When reusing the modelled subsystem,

a complementum visnetis can be applied to signature, interface, and component. This

determines To de�ne a feature as optional or mandatory, software architectures can

con�gure the complementum visnetis accordingly. Optional later span a degree of freedom.

The feature later can apply in the architecture optionally.

A complementum visnetis can introduce dependencies from services of the base software

architecture. The software architects resolve these dependencies by selecting the required

entities with the complementum. However, the concrete entities that correspond to that

four di�erent annotation positions depend on the meta model in which the mechanism

should be applied. For each meta model to which CompARE should be applied, other

relations between the concept assembly connector, signature, interface and component

must therefore be created.

7.2.3.2. Meta Model: Abstract Syntax

The abstract syntax of the reuse meta model consists of two parts. The �rst part consists

of the de�nition of the model entities. The second part consists of the UML pro�le, the

non-intrusive extension of the meta model of the component-based software architecture,

which is to be extended by the model entities. The �rst part is used by the subsystem

domain expert. The pro�le is used by the software architect in reuse scenarios.

Meta Model

Figure 7.4 shows the meta model and the elements of the complementum meta model.

The abstract syntax of the meta model required for the automated extension of software

architectures by a subsystem, comprises the Complementum and the ComplementumVisnetis

entities.

At the meta model level, complementum and complementum visnetis are related since

the complementum is the super class of the complementum visnetis. The complementum

125

7. Formalising the Entities of Reuse

FeatureObjective

Feature
1..*+features

1

Complementum
Visnetis1 1

+complementary
Feature

+requires
Complementum

0..*

1..*

visnetum: Visnetum

Complementum

SIGNATURE
INTERFACE
COMPONENT

«enumeration»
Visnetum

placement: Policy

mandatory
optional

«enumeration»
Policy

FeatureCompletion

Figure 7.4.: Overview of the Complementum meta model FC. The arrow links of another

meta model (not shown).

visnetis combines the desired feature from the set of possible feature objectives, the

desired later positions of the feature in the base architecture and the required services and

infrastructure provided by the base architecture. The complementum visnetis has several

attributes in addition to the attributes of the complementum: The feature represented

by the complementum visnetis is modelled by the role complementaryFeature. Each

complementum visnetis refers to exactly one feature from the corresponding feature

objective.

The role requiresComplementum models the services required by the base architecture.

Each complementum visnetis can (optionally) reference any number of required comple-

mentum. Instances of the complementum are modelled if the acquired services of the

reused features require services of the base architecture in order to provide their service.

The complementum includes the Visnetis attribute. The enum Visnetis de�nes the

entity on which the complementum should apply. This information is important for

the subsequent step namely the automatic inclusion of the subsystem solutions into the

base architecture model. The automatic weaving mechanism varies the type of weaving

according to the selected Visnetum. There are three di�erent strategies: signature applies

the complementum visnetis to a speci�c signature, while interface applies to all signatures

of the entity to be extended.

The enum Policy is used to de�ne a complementum visnetis either as required manda-

tory or optional.

126

7.2. Feature Completion Meta Model

Feature Completion Reuse Profile

FC::Complementum

<<Stereotype>>
complementumTarget

PCM::Operation
Signature

PCM::Operation
Interface

PCM::Repository
Component

+requiredBy1..1

0..*0..* 0..*

+extendedBy

<<Stereotype>>
featureTarget

FC::Complementum
Visnetis

PCM::Assembly
Connector

1..1

0..*

<<Stereotype>>
featureCompletion

Solution

PCM::System
0..*

+solutionRepositories1..*

Legend:

meta class
reference

extends meta model element

Figure 7.5.: Illustration of the feature completion reuse pro�le: stereotypes, entities, rela-

tions. The arrow links to the System view-type of PCM.

UML Pro�le

We use UML pro�les for the non-intrusive extension of meta models of component-based

software architectures. Figure 7.5 shows the feature completion reuse pro�le that is used

to de�ne the extension of component-based software architectures in a feature comple-

tion reuse scenario with the focus on PCM. The featureTarget stereotype using the role

extendedBy aligns the complementum visnetis with the desired position in the base system

where the feature should apply. In PCM, the assembly connector PCM::AssemblyConnector

connects two interfaces with the corresponding provided and required roles. A comple-

mentum visnetis applies to the assembly connector to select it as desired position to be

extended by the feature. Any number of complementum visnetis can be annotated to an

assembly connector.

The second stereotype complementumTarget determines services in the base architec-

ture required by the feature. Whether a complementumTarget is determined by the se-

lected complementum visnetis. A complementum visnetis contains the information if

complementumTarget are required for realizing a certain feature. The weaving mecha-

nism later uses this annotation to automatically associate services the feature completion

requires from the base architecture.

In the context of PCM, there are three possible entities that can be required by the

subsystem: PCM::OperationSignature, PCM::OperationInterface, and PCM::Repository-

Component. The role requiredBy allows to annotate each of the three entities a comple-

mentum.

By using the stereotype featureCompletionSolution software architects can select

the solutions to be considered by the design space exploration. By the role solution-

Repositories, software architects can assign a list of repository components bundling

127

7. Formalising the Entities of Reuse

Complementum

LogToConsole:CV LogToSQL:CV

Database:
Complementum

LogToNoSQL:CV LogToMessage
Queue:CV

MessageQueue:
Complementum

Figure 7.6.: Complementum and complementum visnetis of a logger derived from the

logger feature objectives. CV is abbreviation for complementum visnetis.

components each representing a subsystem solution to the base system. Later, these

solutions will be considered in the design space exploration.

7.2.3.3. Example

Let us consider the logger example again. Figure 7.6 shows four complementum visnetis

instances with two corresponding instances of the complementum. Both are derived from

the features that we have introduced before. We derived the complementum visnetis

LogToConsole from the core feature console logging. Further, we have derived two comple-

mentum visnetis that represent the database logging features that depend on both �avours

namely SQL database logging (i.e. LogToSQL) and NoSQL database logging (i.e. LogToNoSQL).

Both require the Database complementum. To allow message queue logging, we have mod-

elled the complementum visnetis LogToMessageQueue that requires the complementum

MessageQueue.

Let us consider the base system from the running example, the Media Store system,

in that we want to include the logger. We have simpli�ed the software architecture to

demonstrate how to use the reuse model.

Figure 7.7a shows the simpli�ed view on the system model of Media Store’s PCM

software architecture.

Let us assume the requirements engineering process of developing the Media Store

comes up with new requirements namely logging the customer’s process of buying media.

More precisely, the transition from user management to media management should be

recorded. The recorded data should be stored in an existing central SQL database system.

Two positions in the software architecture are essential for extending the media store to

include the new requirement: The transition from the UserManagement component to the

MediaManagement component and the ISQL interface of the database.

The aforementioned requirement can be satis�ed by the feature completion logger.

For annotating suitable positions, we use the complementum visnetis mechanism by

annotating the stereotypes featureTarget and complementumTarget to desired positions

in the media store architecture model. In practice, both stereotypes must be set by the

software architect.

128

7.2. Feature Completion Meta Model

User
Management

GUI

Media Store

Database

Media
Management

(a) Simpli�ed system model view of Media Store’s

software architecture model,

User
Management

GUI

Media Store

Database

Media
Management

<<complementumVisnetis>>

LogToSQL

<<complementum>>

Database

<<interface>>

ISQL

(b) Complementum visnetis and corresponding comple-

mentum annotated to Media Store system model to

ful�l the feature console logging

Figure 7.7.: Application of complementum visnetis to Media Store’s system view of the

software architecture model.

For including the requirement in the Media Store architecture, we use the complementum

visnetis LogToSQL, that realizes the requirements by the SQL database logging feature.

Figure 7.7b shows an example of this step using our running example.

In our Media Store PCM model, we annotate the appropriate assembly connector with

the featureTarget stereotype to select the SQL database logging feature to be included

at the particular position. The conducted complementum visnetis requires additional

services from the base architecture to provide its function. More precisely the subsystem

requires an SQL database from the base architecture. The required SQL database is

therefore annotated by using the corresponding complementum Database. For this, we

use the complementumTarget stereotype to annotate the complementum Database to the

SQL interface of the database component in the base architecture.

In a later step, the modelled knowledge enables the weaving mechanism to automatically

generate software architecture models of the Media Store, extended by the SQL database

logging feature.

7.2.4. Architecture Constraints

A feature completion can optionally de�ne architecture constraints. Such mechanisms are

important to ensure or support certain quality attributes and architecture restrictions of

the solutions. Such constraints can be used, for example, to de�ne security properties for

compliance, such as the de�nition of perimeter networks (also known as DMZ) [Mic09a].

7.2.4.1. Rationale

Architecture constraints are de�ned if the subsystem to be integrated into the base archi-

tecture has requirements on the deployment context. The architecture constraints require

entities with speci�c properties to be de�ned, the constrainable elements. Constrainable

elements are feature completion components or complementum visnetis entities. Entities

129

7. Formalising the Entities of Reuse

FeatureCompletionFeatureCompletion
Component

Complementum

+complementa

constraint: Constraint

ArchitectureConstraint

+constraints

1..*

1..* 0..1
0..1 0..1

0..*
Constrainable

Element
1..* 1..*

+constrained
Elements

Complementum
Visnetis

+requiresComplementum
0..*

1..*

INDIFFERENT
TOGETHER
ISOLATED
SEPARATED

«enumeration»
Constraint

Figure 7.8.: Meta classes and relations for the architecture constraints.

of foreign meta models are excluded, otherwise semantic independence to the meta model

would no longer be guaranteed, but could be extended by another stereotype.

We have de�ned several possible modes for the architecture constraints:

• Indi�erent: No constraint de�ned.

• Together: The constrained elements must be deployed on the same physical con-

tainer.

• Isolated: The constrained elements must be deployed in isolation from any other

components of the system.

• Separated: Each constrained element must be deployed on another physical con-

tainer.

Several constrainable elements can be selected for modelling the constraints together

and separated. Isolation can also be applied to one single entity. On the basis of that

constraints the weaving mechanism ensures compliance when generating the resulting

feature enriched software architecture.

7.2.4.2. Meta Model: Abstract Syntax

Figure 7.8 shows the meta model of our architecture constraints meta classes and its rela-

tions. The main relevant meta classes are ConstrainableElement, ArchitectureConstraint

and the enum Constraint. For better illustration, we have also shown the related context

classes that are in�uenced by the aforementioned meta classes. Relevant context classes are

130

7.2. Feature Completion Meta Model

the FeatureCompletionComponent, and the ComplementumVisnetis that are both contained

by the FeatureCompletion.

ComplementumVisnetis and FeatureCompletionComponent both are Constrainable-

Elements. The meta class ArchitectureConstraint serves as a container for constrainable

elements and de�nes the type of constraint. One of the four elements can be selected

from the enum Constraint that later de�ne the type of constraint. A feature completion

can de�ne any number of architecture constraints. The enum contains the four possible

constraints, as explained in the previous section, namely indi�erent, together, isolated,

and separated.

7.2.4.3. Example

Let us consider a perimeter network as an example of an architecture constraint. Basically,

a perimeter network is used to protect services from attacks. Technically, an additional

hardware layer is inserted between users (and potential attackers) and systems worthy of

protection, which is particularly hardened against attacks. Thus, a perimeter network can

be simpli�ed by providing additional hardware containers. Critical software components

should then be deployed exclusively on that containers. The inclusion of architecture

constraints in quality prediction models is important, as many design decisions, especially

those with safety relevance, require such restrictions.

Let us again use the Media Store example system, we could de�ne an architecture

constraint for the WebGUI with the constraint characteristic isolated1
. This would mean

that the WebGUI component would always be allocated on a hardware container alone.

Since the WebGUI also o�ers external interfaces, it would ensure that it always represents

the interface between the user and the back end system. A perimeter network would

therefore be guaranteed for the external interfaces of the frontend.

Another requirement is the deployment of all database systems together on one hardware

container. To achieve this, the architecture constraint together can be de�ned for the two

components UserDB and DataStorageDB.

7.2.5. Feature Completion Component

Implemented solutions of complex subsystems (e.g. log4j for the subsystem logger) usually

have inhomogeneous software architectures. Inhomogeneous architecture means that

they di�er in components, interfaces and how they are connected to each other. Due

to the inhomogeneous architecture, it is very time-consuming to model and analyse

architecture candidates by hand. Automatic decision support processes, however, are not

fully capable of automatically exchanging complex subsystems with their inhomogeneous

architectures using existing formalisms. To overcome that issue, we have introduced the

feature completion components.

1
Note: The component entity of PCM would have to be extended by the class ConstrainableElement by

another UML pro�le.

131

7. Formalising the Entities of Reuse

7.2.5.1. Definition & Model

Each feature completion FC comprises a set of feature completion components FCC . A

set of feature completion components de�nes the coarse-grain software architecture of a

feature completion. They break a complex feature completion down into its elementary

components representing the functional concerns of a feature completion. Together with

the relationships between the FCCs, they build the reference architecture of a subsystem.

Feature completion components de�ne which other feature completions are required in

order to provide their service. Further, they de�ne external services required by feature

completions from the base system. These external service de�nition extends the concepts

of the complementum meta model that was introduced in Section 7.2.3. Feature completion

components therefore regard the following concerns:

C1b: They de�ne a reference architecture that represents the architecture design of the

subsystem solutions.

C2b: They de�ne the functional concerns each concrete instance of a particular feature

completion has to ful�l.

C3b: They de�ne a set of perimeter interfaces that de�ne the boundaries, i.e. the external

interfaces required by the subsystem solution.

Therefore, a feature completion component is determined by a triple namely the required

feature completion components of a feature completion component, and the provided and

required perimeter interfaces:

FCC := (FCreq, Piprov, Pireq) (7.10)

Feature Completion Reference Architecture

The architecture of a feature completion is de�ned by its feature completion components

and their relationships to each other. These feature completion components thus represent

the reference architecture and their dependencies of the subsystem solutions of a feature

completion (see concern C1b). Further, each feature completion component implements

a subset of all features of the feature objectives de�ned by the feature completion (see

concern C2b) and their perimeter interfaces (see concern C3b).

The feature completion reference architecture de�nes the functional concerns of a

subsystem. By the reference architecture the abstract functional concerns are instantiated

by a set of software components of subsystem solutions. Feature completion components

can have dependencies to each other. This reference architecture ensures that concrete fea-

ture completion solutions can be exchanged automatically. Automatic exchange becomes

possible, because the analysis engine knows by the use of the reference architecture and

its application to the subsystem solutions how to exchange whole solutions.

When modelling the reference architecture of a feature completion by feature completion

components, we assume that the feature completion components corresponding to the

feature completions have been modelled for the speci�c purpose of a particular feature

completion. Therefore, we assume that feature completion components cannot be used

132

7.2. Feature Completion Meta Model

FeatureCompletion
FeatureCompletion

Component
+components

+required
FCComponents

FeatureObjective

+featureObjective

0..1

1

1..* 0..10..*

0..*

FM::Feature

1..* +features

1
PerimeterProviding

1..*

1..*

+providedFeatures

PerimeterRequiring

1..*
+providing+requiring

0..1 0..10..*

Complementum

+complementum 0..*

1..*

Figure 7.9.: Overview of the feature completion meta model with the focus on the feature

completion reference architecture.

for more than one feature completion and therefore feature completion components are

uniquely assigned to one feature completion.

Perimeter Interfaces

The interfaces de�ne transitions at the boundaries of the subsystem to the base system.

Subsystem solutions provide their functionalities at their external interfaces and are

integrated into the base software architecture at meta level.

As mentioned before, the concept of the feature completion component creates relations

to concrete components and their interfaces of the solution. Perimeter interfaces model

the relationship between features that a feature completion ful�ls and concrete interfaces

of solutions that implement these features. In case of provided perimeter interfaces,

they connect the concrete interfaces of solutions with the corresponding complementum

visnetis. The required perimeter interfaces realize, analogously to the provided perimeter

interfaces, the relation between complementum and actually required interfaces of the

solution (see concern C3b).

In contrast to software components, not all provided perimeter interfaces or required

perimeter interfaces of a feature completion must be integrated into the base architecture.

It is su�cient to integrate the corresponding interfaces of the desired features.

7.2.5.2. Feature Completion Meta Model: Abstract Syntax

Figure 7.9 shows the meta model of the feature completion reference architecture to

describe the relationships between feature completion, its components, their interrelation-

ship and the relationship to the features of the feature objectives. The feature completion

contains all its components namely the feature completion components, which are re-

quired to ful�l the features de�ned in the feature objective. Each of the referenced feature

completion contains any number of other feature completion components, by the role

133

7. Formalising the Entities of Reuse

<<FCC>>

Collector
<<FCC>>

Appender

<<FC>>
Logger

<<FCC>>

Formatter

<<Perimeter Providing>>

ConsoleLogging
SQLLogging

NoSQLLogging
MessageQueueLogging

<<Perimeter Requiring>>

Database
<<Perimeter Requiring>>

MessageQueue

Figure 7.10.: Reference architecture of the feature completion Logger derived from the

log4j subsystem solution.

requiredFCComponents. The referenced feature completion components thus de�ne the

reference architecture of the feature completion. In addition to the required feature comple-

tion components, the perimeter interfaces are de�ned here. Providing perimeter interfaces

reference features from the feature objectives referenced by the feature completion. In

other words, provided perimeter interfaces de�ne which signature, interface, or component

as a whole, i.e. all provided interfaces of a component, are responsible for a certain feature.

Required perimeter interfaces in turn reference instances of the complementum de�ned

by the feature completion. More precisely, we de�ne services of a certain type that are

required by the subsystem from the base architecture.

Feature completion components, however, are no entities to be reused in other feature

completions. Therefore, explicit interfaces for the de�nition of required relationships

between feature completion components are not necessarily.

Each feature completion component references models of software components of

subsystem solutions. The underlying meta model of the referenced software components

de�nes concepts for de�ning dependencies between its components.

Reference Architecture Example

Let us consider log4jv1 and log4jv2, both solutions for the feature completion Logger as

described for log4jv2 in the running example section. We use both systems as a basis for

building the feature completion that serves the logging feature completion. The reference

architecture of the feature completion Logger is shown in Figure 7.10.

By analysing the log4j architecture that was introduced in Section 2.3.2, the domain

expert can derive three di�erent concerns: log4j contains the logging component that

is responsible for capturing and collecting raw data required by the logger. Further,

the PatternFormatter and CSVFormatter are responsible for formatting the raw data

134

7.2. Feature Completion Meta Model

into the corresponding output format. Finally, there are several components namely the

FileAppender, the DatabaseAppender, and the ConsoleAppender that transfer the processed

data to the corresponding resources. Let us assume, our domain expert extracts these three

feature completion components, the Collector, the Appender, and the Formatter.

In the next step, the domain expert analyses the dependencies between the components:

The collector components always demands services from appender components, while

the Appender components always uses logic from the formatter components. This results

in an architecture that requires the feature completion component collector to demand

services from the appender feature completion component. Meanwhile, Appender requires

services from the feature completion componentformatter.
When considering other logging subsystems, such as LogBack

2
, an additional feature

completion component may be required to process the raw data. For the simplicity of the

example, we did not consider this component.

Perimeter Interface Example

To illustrate the perimeter interfaces, we use the Logger feature completion. In Figure 7.10,

we show an illustration of their perimeter interfaces. We modelled three perimeter inter-

faces that can be derived from Section 2.3.2 and the software architecture from log4jv2.

These include one provided perimeter interface and two required perimeter interfaces. In

log4j, the Logging component is mainly responsible for realizing the feature completion

component Logger. The Logging component provides the ILogging interface, which imple-

ments the individual features. The ILogging interface provides the following signatures:

• consoleOutput(): The consoleOutput signature performs logging of data and subse-

quent output to the console. It ful�ls the feature console logging.

• �leWrite(): The �leWriter signature is responsible for writing the data to the console.

It ful�ls the feature �le logging.

• databaseWrite(): The signature databaseWrite initiates a connection to the database

and stores the data in a relational representation. It ful�ls the feature sql database
logging.

The realization of the database logging feature using the databaseWrite() signature requires

a connection to a database system. Therefore, this feature uses a required perimeter

interface to connect to the database. For this example we omitted how signatures or

interfaces are included in the base architecture model.

7.2.6. Feature Completion Extension Mechanism

Basically, there are two possibilities of extending component-based software architecture

models by features: The extension by modifying the control �ow between components

and the extension by changing the abstract control �ow, modelling the behaviour (see

Section 3.1.2.1). In the following, we will introduce both mechanisms. Further we will

introduce the relevant meta model elements and use of the mechanisms.

2
https://logback.qos.ch/

135

7. Formalising the Entities of Reuse

7.2.6.1. Adapter Extension Mechanism

The adapter extension is, from the component point of view, a non-intrusive extension

of base architecture models by new features. It modi�es the sequence of calls of the

system. We modify the delegation process of calls between components and interfaces

by additional functions. At the model level, we connect the functionality provided by the

base system and the features of the subsystem through adapters. The adapter is required

for the integration at system model level, since the base software architecture and external

interfaces of the subsystem usually have incompatible interfaces.

Model

Essentially, the adapter enables incompatible interfaces to be made compatible at the

model level. This step is necessary to automatically include of features, implemented by

components with various interfaces , as otherwise the creation or adaptation of interfaces

would have to be carried out manually or semi-automatically. Considering two compatible

interfaces Iprov and Ireq , that are connected by an assembly connector in the base system.

The required feature freq is provided by Iincompprov interface, which is incompatible to Iprov .

To make them compatible, an adapter is created that has the interfaces I ′prov , I ′req , and

I ′incompprov
and models the abstract control �ow accordingly. Details on the abstract control

�ow is introduced in Section 8.4.1, but is not relevant for introducing this formalism. The

interfaces Iprov and I ′req , as well as I ′incompr eq
and Iincompprov , and �nally I ′prov and Ireq are

compatible in pairs. This allows new assembly connectors to be created between I ′prov and

Ireq (assembly′), as well as between I ′incompr eq
and Iincompprov) (assembly′′), and �nally Iprov

and I ′req (assembly′′′). Based on the newly created assembly connectors, the following call

sequences are meaningful:

• Before: The option before calls the feature providing interface Iincompprov before Iprov .

The call sequence of the assembly contexts therefore corresponds to �rst call to

assembly′, then to assembly′′, and �nally to assembly′′′.

• Afterwards: The option afterwards calls the feature providing interface Iincompprov

after Iprov . The call sequence of the assembly contexts therefore corresponds to

assembly′, then assembly′′′ and �nally to assembly′′.

• Surrounding: The option surrounding calls the feature providing interface Iincompprov

before and after Iprov . The call sequence of the assembly contexts therefore corre-

sponds to assembly′, than to assembly′′′, afterwards to assembly′′, and �nally to

assembly′′′.

To ensure the three call sequences mentioned above, we reduce the transitive closure to

the corresponding transitive reduction.

Besides the call sequence, we de�ne how many instances we need of the components

implementing the features. Each pair of adapters and adapted components of the feature

that a�ects the abstract control �ow can be built into the system model. It can be con�gured

to be instantiated either once or several times (automatically). If it is instantiated once,

the same pair is used for each delegation of the requesting components. With multiple

136

7.2. Feature Completion Meta Model

User
Management

Media
ManagementAdapter

Logger

correspond to

correspond to

Figure 7.11.: Simpli�ed example of Media Store with logger feature included by an adapter.

User
Mngmt Adapt. Logger Adapt. Media

Mngmt

User
Mngmt Adapt. Media

Mngmt Adapt.

User
Mngmt Adapt. Logger Adapt. Media

Mngmt

Before

After

Around

Logger

Legend:
transitionstart

state
state of

control flow
end
state

Adapt. Logger

Figure 7.12.: Illustration of before, after, and around call sequences of the logger in context

of UserManagement component and MediaManagement component of the

Media Store.

instantiation, a separate pair is used for the assembly for each weaving operation. This

type of modelling can be relevant to ensure assurances of certain quality attributes, such

as safety or reliability.

Example

Figure 7.11 shows schematically how the feature logger can be included in the Media Store

system architecture. For simpli�cation of the example, the logger feature is represented as

one single component namely Logger.

We have chosen the delegation between UserManagement component and MediaManagement

component as the target point in the system model. An adapter connects the three inter-

acting components. Figure 7.12 shows the possible interaction through the three possible

call sequences of the abstract control �ow. Using Before, �rst calls UserManagement. The

137

7. Formalising the Entities of Reuse

control �ow is then passed on to the adapter, which then calls the logger. The control �ow

returns to the logger, which then calls MediaManagement.

Using After, also calls UserManagement �rst. As before, the control �ow is passed to the

adapter, which calls MediaManagement �rst. Afterwards the adapter calls the Logger.

Using Around, UserManagement is called �rst. The adapter then calls the Logger for the

�rst time. MediaManagement is called afterwards. In contrast to Before and After, the logger

is now called a second time.

Please note that the example presented here has been simpli�ed. Instead of components,

services are called in the components, since only services can be called by delegation. To

simplify the example, we abstracted from the services and their respective abstract control

�ows.

7.2.6.2. Abstract Control FlowMechanism

The abstract control �ow extension mechanism intercepts the internal sequence of the

processes in software components. The mechanism is not dependent on compatible

interfaces, but instead extends components by additional interfaces, which generally

assume the requiring role. Main concepts have been introduced in the master’s thesis by

Maximilian Eckert [Eck18], supervised by me.

Abstract Control Flow Language

For better usability and easier design, we have created declarative language constructs

within a domain-speci�c language. This allows software architects to specify a set of

weaving positions using domain speci�c constructs. The description e�ort should be kept

as low as possible. As already introduced in previous sections, the abstract control �ow

is a sequence of control structures, internal actions, and external calls. These concepts

correspond to the concepts of common programming languages: Control structures apply

to (e.g. branches or loops), internal actions (e.g. mathematical calculations) and external

calls (e.g. method calls). We can extend at the beginning and end of the abstract control

�ow of a service. Analogous to the appearance de�nition of the adapter extension, the

change can be applied to the three named positions before, after, or both before and after

the statement.

• Internal Action Extension: the strategy for extending internal actions extends

the internal behaviour of components without violating the black box principle.

This allows software architects to extend internals of services with features without

having concrete insights into the process.

• Control structure extension: The control structure extension strategy extends

the abstract behaviour of loops and other control structures. With the help of a

before/after indicator, the insertion of the new model elements can be con�gured at

the beginning or at the end of the control �ow behaviour. The exact process paths

do not have to be known by the software architect.

• External calls extension: All external calls to a certain interface (or signature/ser-

vice) can be extended without the software architect necessarily having to know

138

7.2. Feature Completion Meta Model

the concrete positions of the calls within the abstract control �ows of the entire

software architecture.

For all extension strategies, the software architect de�nes classes of positions to be extended.

The grammar of the abstract control �ow mechanism can be described by the following

formalism:

ACFE := (V ,T , P, S), (7.11)

whileV represents the vocabulary of the domain speci�c language,T is the set of terminal

symbols, P the production rules and S the start symbol. The production rules can be

divided into the four subsets PExtensionMechanism, PFeatureSelection, PPointCut , and PAdvice . Ex-
tensionMechanism corresponds to the start symbol, while terminal symbols are displayed

in magenta.

PExtensionMechanism = { ExtensionMechanism → (Imports) ∗Multiple ExtensionInclusion
Name ID Description FeatureSelection

PointCuts (PointCut) ∗ Advices (Advice)∗
Imports → import (Strinд)∗
Multiple → [multiple]

Name → Strinд

ID → Strinд

Description → Description Strinд

Strinд→ [a-zA-Z_.:/]∗}

The P_ExtensionMechanism rule derives a name, ID, description, any number of imports,

the multiple inclusion option (see Section 7.2.6.1), the selection of features, point cuts,

and advices. Name, ID, description and import are derived to a string, while the multiple

option is optional. A string is alphanumeric.

PFeatureSelection = { FeatureSelection → FeatureCompletion FeatureList (FeatureList)∗
FeatureList → ((optional)? ComplementumVisnetis)∗

ComplementumVisnetis → Name

FeatureCompletion → FeatureCompletion Name

Name → Strinд

Strinд→ [a-zA-Z_.:/]∗}

The P_FeatureSelection rule de�nes the selected features. The feature selection de�nes

the feature completion and a list of features to be used. The list of features again refers to

complementum visnetis that can be marked as mandatory or as optional. The complemen-

139

7. Formalising the Entities of Reuse

tum visnetis and the feature completion are de�ned as a name that are later translated

into a concrete meta model element.

PPointCut = { PointCut → PointCut Name PlacementStrateдy

PlacementStrateдy → PlacementStrategy
ExternalCallPlacementStrateдy |

InternalActionPlacementStrateдy |

ControlFlowPlacementStrateдy

ExternalCallPlacementStrateдy → ExternalCallPlacementStrategy Siдnature

InternalActionPlacementStrateдy → InternalCallPlacementStrategy Component

ControlFlowPlacementStrateдy → ControlFlowPlacementStrategy Component

Siдnature → MatchingSignature Name

Component → MatchingComponent Name

Name → Strinд

Strinд→ [a-zA-Z_.:/]∗}

The P_PointCut rule shows how software architects describe the actual placement strategy

of the feature to be included into the base software architecture model. The placement

strategy is selected and the architecture element matching the placement strategy is

speci�ed. For external calls, signatures can be de�ned as application elements, while for

internal actions and control structures, control �ows of entire components can be de�ned.

Signature and components are again de�ned as name and later transformed to meta model

elements.

PAdvice = { Advice Advice → Appearance PointCut PlacementPolicy

Appearance → Appearance BEFORE | AFTER | AROUND
PlacementPolicy → PlacementPolicy OPTIONAL | MANDATORY}

Finally, we de�ne the advice. By the advice, software architects can de�ne the previously

introduced options (Section 7.2.6.1). Advices are always de�ned for exactly one PointCut.

Additionally, the placement policy can be set, which allows to de�ne an advice and thus

the later use in the base software architecture model as optional or mandatory.

Example

Figure 7.13 shows an example instance of the grammar in a derivation tree. First, we

de�ne the base system and the feature completion model to be included. In the exam-

ple, we include the feature completion Logging. The alternative features PatternLayout

and JSONLayout are evaluated against each other. The ConsoleLogging and FileLogging

features are declared mandatory and must therefore always be included. The feature JSON-

Layout was declared as optional, i.e. the feature can, but does not have to be included in

the architecture (this remains a degree of freedom). The example also shows the PointCut

allDBCalls. The grammar allows to reference the signature getDB via the external call

extension strategy as well as an advice, which processes the desired feature before the call

of allDBCalls (BEFORE). This advice is declared as optional.

140

7.2. Feature Completion Meta Model

ExtensionMechanism

Imports

default
Logging

Feature-

Selection

Feature-

Completion

Logging

FeatureList

Console File Pa�ern
optional JSON

Name

LoggingBM

PointCuts

PointCut

Name

allDB-
Calls

PlacementStrategy

ExternalCall-

PlacementStrategy

Matching-

Signature

getDB

ID

ID_EXAMPLE

Description

EXAMPLE

Advices

Advice

Appearance

BEFORE

PointCut

allUserDB-
Calls

Placement-

Policy

OPTIONAL

Figure 7.13.: Derivation tree of an example instance of the grammar for de�ning the

abstract control �ow extension on the example of the Media Store as base

system and logger as feature completion to be included. Purple items have

been set by the software architect in a reuse process.

7.2.6.3. Meta Model: Abstract Syntax

Figure 7.14 shows the meta model of the extension mechanism. Each feature completion

has an extension mechanism assigned by the role ExtensionMechanism. Both extension

mechanisms, AdapterExtensionMechanism and FCLExtensionMechanism, have the same

superclass namely the abstract class ExtensionMechanism.

The adapter mechanism uses the following elements: The enum Replication of Exten-

sionMechanism de�nes whether the pair of adapters and components of the subsystem is

instantiated once (ONCE) or several times (MANY). AdapterExtensionMechanism also has

the enum Appearance, which models the corresponding call sequence. We can model the

call sequences from section 7.2.6.1.

7.2.7. Feature Completion Solution

In this Section, we describe the feature completion solution model to design the solution

speci�c part that is individual for every subsystem solution. We describe the application of

the reference architecture to solutions of feature completions from the solution developer’s

perspective. To do this, we will �rst introduce several concepts that are necessary for the

application. Several concepts are similar to the feature completion reuse pro�le described in

Section 7.2.3.2, but di�er in detail in their semantics. At the beginning, we introduce several

model concepts and their rationale. Again we use UML pro�les for non-intrusive extension

of meta models. As before, this ensures meta model independence of the demonstrated

approach. Pleas note that the feature completion solutions must be modelled using the

same meta model than the later base architecture.

141

7. Formalising the Entities of Reuse

FeatureCompletion

ONCE
MANY

«enumeration»
Replication

replication: Replication

ExtensionMechanism

appears: Appearance

AdapterExtension
Mechanism

FCLExtension
Mechanism

BEFORE
AFTER
AROUND

«enumeration»
Appearance+extensionMechanism

0..1

1

Figure 7.14.: View of the feature completion meta model from the perspective of the

extension mechanisms (relevant part for the de�nition process). FCLExten-

sionMechanism is omitted.

7.2.7.1. Model & Rationale

For the de�nition of the solution speci�c parts several concepts and entities can be reused

from the previous sections. However, semantic di�erences and re�nements arise from the

perspective of use, which are described in the following.

The focus of the creation of the solution-speci�c part requires the annotations between

corresponding elements of the reference architecture and the components of the subsystem

solutions. This annotation steps are carried out by the solution developer. To model the

relations between the reference architecture and the components of the solutions is distinct

by two di�erent types:

• Ful�ls complementum visnetis annotation: Using the ful�ls complementum visnetis,

we relate abstract features to concrete entities of the subsystem solution. Interfaces

of software components of the solution come in relation with the abstract features

of feature completions. This allows the desired feature to be built into the base

architecture automatically.

• Requires complementum annotation: The requires complementum annotations

relates the abstract concept of required services of feature completions to the concrete

entities of the subsystem solution that requires services from the base architecture.

Such entities might be required interfaces of software components.

Both enable an extension of the following three model entities of component-based

software architectures:

• Signature

142

7.2. Feature Completion Meta Model

• Interface

• Component

The semantics of the extension depends on the type of annotation: In the case of the

ful�ls complementum visnetis annotation, the three entities mentioned above are con�g-

ured in the complementum visnetis: Signature means that the feature of the subsystem

contained in the complementum visnetis is reused in the base system by integrating a

single signature of an interface. In the case of Interface, the entire interface is responsible

for realizing the particular feature. Similarly, Component de�nes that all provided interfaces

of a subsystem are responsible to ful�l the feature. The distinction is necessary because

some features are used by a single signature in an interface, others by an entire interface,

and others by all interfaces of a component.

In the case of the requires complementum role, Signature de�nes a single signature

of an interface is required in the base architecture. Similarly, Interface means an entire

interface, with all its signatures, is required. If Component is modelled, all interfaces of a

component is required to be included into the base architecture.

7.2.7.2. UML Profile

The solution pro�le extends component-based software architecture models with entities

that creates relationships between the reference architecture elements of the feature com-

pletion and the concrete model elements of subsystems corresponding to these reference

architecture elements. The reuse pro�le extends the base architecture model to include

entities for the de�ned placement of the model elements of the subsystem. In other words,

the model elements of the solution pro�le and reuse pro�le each form a pairwise counter-

part to each other. Figure 7.15 show the stereotypes, entities and relations of the feature

completion solution pro�le.

The feature completion solution pro�le de�nes �ve di�erent stereotypes: The stereotype

extension assigns the concrete extension mechanism to the repository containing the

components of the subsystem solution. The stereotype cost assigns a cost model (a cost

repository) to the repository containing the components of the subsystem solution. This

is based on the assumption that each subsystem solution is stored in its own repository. If

all subsystem solutions are in a common repository, only one annotation is required.

The stereotype isSolutionFor assigns the functional concerns of the reference archi-

tecture to components of the subsystem solutions. More concrete, by the stereotype, the

solution developer assigns a feature completion component to a corresponding component

of the subsystem architecture model. This step is necessary to enable a transparent ex-

change of di�erent feature completion solutions when automatically including the features.

In the PCM, component corresponds to the entity PCM::RepositoryComponent.

Using the fulfillsComplementumVisnetis stereotype, a solution developer uses the

ful�lment role to assign a speci�c feature to concrete model elements that are instances of

the three meta classes. In a subsequent step, the weaving mechanism uses the annotations

to automatically resolve the relationship between the feature and the model element that

actually implements the feature.

143

7. Formalising the Entities of Reuse

FC::FeatureCompletion
Component

<<Stereotype>>
isSolutionFor

FeatureCompletion Solution Profile

1..1+realizes

0..*

FC::Complementum

<<Stereotype>>
requiresComplementum

<<Stereotype>>
fulfillsComplementumVisnetis

PCM::Operation
Signature

PCM::Operation
Interface

PCM::Repository
Component

FC::Complementum
Visnetis

+requires

+fulfills

1..1

0..*

0..*0..*0..*

0..* 0..*

1..1

<<Stereotype>>
extension

<<Stereotype>>
costPCM::Repository

FCS::ExtensionMechanism

+extensionMechanism

Cost::CostRepository

+costRepositories

1..1

1..*

0..*

0..*

Legend:

meta class
reference

extends meta model element

Figure 7.15.: Illustration of the feature completion solution pro�le: Stereotypes, entities,

relations.

The stereotype requiresComplementum de�nes the model elements that a complemen-

tum visnetis requires from the base architecture to provide its service. The requires-

Complementum stereotype attaches the entity FC::Complementum from the FeatureComple-

tion meta model to any referenced model elements of other meta models. In the case

of the PCM, the appropriate model elements correspond to PCM::OperationSignature,

PCM::OperationInterface, and PCM::RepositoryComponent. As before, the domain expert

selects concrete signatures, interfaces or components of the model of the solution that

require services or infrastructure of the base architecture.

7.3. Applying the Reference Architecture to Solutions

This section introduces how solution developers apply the reference architecture to solu-

tions of a feature completion. Let us consider again the logging example with the concrete

subsystem solution log4jv2. We assume, a reference architecture for the feature completion

logger has already been developed (see example of section 7.2.5). Thus, suitable feature

completion components and corresponding relationships, i.e. requiredFeatureCompletion-
Components, have already been modelled. In addition, we assume the software architecture

models of the subsystem architecture has already been analysed and suitable UML pro�les

have been created for the corresponding meta model.

The solution developer carries out three steps to apply a feature completion solution to

the reference architecture:

1. Identify features: Identi�cation and annotation of the features provided by the sub-

system.

144

7.3. Applying the Reference Architecture to Solutions

2. Components annotation: In this step, the reference architecture is aligned to the soft-

ware architecture of the subsystem solution. Solution developers identify software

components that correspond to the feature completion components. They using the

stereotype isSolutionFor for the annotation.

3. Annotate perimeter interfaces: The solution developer uses the stereotype fulfills-

ComplementumVisnetis to annotate features to concrete elements of the subsystem

solutions that ful�l the feature (provided perimeter interface). If a feature requires

services of the base architecture, the corresponding requiring model elements of the

subsystem solution are annotated by using the stereotype requiresComplementum.

(required perimeter interface).

The steps are introduced and applied in the following sections.

7.3.1. Identify features

The solution developer analyses the features de�ned for the subsystem and aligns them

to the features provided by the solution to be modelled. Features can be derived from

di�erent sources: Experienced domain experts can use their knowledge deriving features.

Alternatively, documents or a review of the source code can be done.

To identify the features of log4jv2 we have reviewed both source code and documen-

tation. Figure 7.3 shows the extracted features. Log4jv2 supports logging to console

LogToConsole, SQL database logging LogToSQL, NoSQL database logging LogToNoSQL, �le

logging LogToFile, and message queue logging LogToMessageQ. For this application exam-

ple, we concentrate on the SQL database logging feature.

7.3.2. Components annotation

The solution developer analyses the software architecture of the subsystem solution that

should be applied to the reference architecture of the feature completion logger. To apply

the meta model the solution developer can either review the source code or use the

documentation of the subsystem solution.

For modelling the subsystem solution log4jv2 with its components and relationships,

we mainly considered the documentation and the source code. The software architecture

of the subsystem solution is described in Section 2.3.3. Figure 2.8 shows an overview

of the components and the simpli�ed system model of log4jv2. We have identi�ed 6

components, that solution developers aligns to the FCCs of the FC Logging. They use

the feature completion solution pro�le to connect components and their corresponding

feature completion component using the isSolutionFor stereotype.

Table 7.1 shows an overview of the components of log4jv2 and the corresponding feature

completion components. The feature completion component Collector is responsible

for collecting the data from the base system for processing and logging. In log4jv2 the

component Logger represents the feature completion component Collector. It performs

all operations that collects the raw log data.

145

7. Formalising the Entities of Reuse

Feature Completion Component Subsystem Component

Collector Logging

Appender FileAppender, DatabaseAppender

ConsoleAppender

Formatter PatternFormatter, CSVFormatter

Table 7.1.: Feature completion component to log4jv2 software component relation.

FCC Software Interfaces FCC Perimeter Interfaces

provided required

Collector ILogging IAppend, ILogging

Appender IAppend IFormat ISQL

ISQL

Formatter IFormat

Table 7.2.: Relation between software interfaces, FCC, and perimeter interfaces of log4jv2
(simpli�ed).

The feature completion component appender is realized by several components: FileAppender

provides services for writing to a �le. The DatabaseAppender provides services for logging

to SQL databases. Finally, the ConsoleAppender writes the log data back to the console.

The feature completion component Formatter is realized by two components: The

PatternFormatter and the CSVFormatter. Both provide several services for formatting

the output to the required format that is suitable for the intended appender.

7.3.3. Annotate perimeter interfaces

7.3.3.1. Identification

The perimeter interfaces of the feature completion components can be identi�ed by the use

of the architecture model of the subsystem. Table 7.2 gives an overview of the interfaces

of the log4jv2 components that make up the individual feature completion components.

In addition, the corresponding perimeter interfaces are shown. The components of the

Collector comprises the interface ILogging that provides operations for recording the

raw data coming from the base system. ILogging provides the signature logToSQL to store

the data to an SQL database. For the actual data recording, the collector components

require additional services from the Appender via the interface IAppending. The Appender

of log4jv2 is particularly versatile and therefore comparatively complex. To simplify the

demonstration and simplify the example, we use a coarse-grain abstraction of the system.

146

7.4. Multi Type Hierarchy

The signature console() of IAppender is responsible for writing the data to the console.

For writing the data to the database we use the signature persistToSQLDB(Data).

The interface IAppender represents the provided services of the Appender. The Appen-

der itself requires external services from the subsystem solution by the IFormat interface

and from the base architecture. These services are required using the interfaces IFormat

and ISQL. ISQL has the signature persistToDB(Data) for requiring services of an SQL

database.

The Formatter �nally processes the layout for the corresponding service of the Appender.

To simplify the example, we only show an excerpt from the signatures of both interfaces.

The responsibility of the provided interface IFormat is to change the format of the log data

into text for processing the data to the console by using the signature formatToText(Data).

If the log data should be stored in a database system, the signature formatToSQL(Data)

processes the log data to JDBC database instructions.

In total, two types of interfaces are important for using log4jv2:

• Interfaces that provide log4jv2 services (i.e. the provided system provides interfaces).

• Interfaces that log4jv2 requires from the base system in order to realize its own

services.

7.3.3.2. Application

The aforementioned two types of interfaces represent the perimeter interfaces. Table 7.2

shows the perimeter interfaces for the individual feature completion components of log4jv2.

As a result of the analysis of the log4jv2 architecture, ILogging represents the provided

perimeter interface, while ISQL is the required perimeter interface. The complementum

visnetis connects features of the feature objectives with the requires complementum,

i.e. services required from the base architecture. The feature LogToSQL requires the

database. Thus, the complementum visnetis connects the provided perimeter interface

with the required complementum. The required complementum database includes the ISQL
interface. The solution developer then assigns the complementum and complementum

visnetis to the requiring and providing roles of the corresponding feature completion

components. The perimeter providing including the feature LogToSQL is assigned to the

providing role of Collector, while Appender gets the perimeter providing including the

complementum database.

For annotating the complementum visnetis the solution developer uses the stereo-

type fulfillsComplementumVisnetis. For the requires complementum, the stereotype

requiresComplementum is used. To do so, the stereotype fulfillsComplementumVisnetis

is assigned to the signature logToSQL(Data of the ILogging interface. This ful�ls the

Feature LogToSQL. The stereotype requiresComplementum is assigned to the signature

persistToDB(Data) of the ISQL interface. This ful�ls the Complementum database.

7.4. Multi Type Hierarchy

In accordance with the component hierarchy (see Section 3.1.3), we de�ne a multi type

hierarchical model that we use for the classi�cation of the feature completion model and

147

7. Formalising the Entities of Reuse

process. The multi type hierarchy is designed to be in accordance with common roles

of typical software engineering processes and is oriented at its phases. The multi type

hierarchy has been already published in one of our publications Busch et al. [Bus+16]. The

separation into di�erent phases and roles helps in the following two considerations:

First, it clearly separates and structures responsibilities in the development process.

A clear separation and structure helps the individuals involved to understand which

phase of the development they are currently in and to undertake the necessary tasks

at the right time. In the feature completion development process there are three roles

involved namely the subsystem domain expert, the solution developer and the software

architect. The subsystem domain expert de�nes the feature completions, the features

provided and dependencies to the base architecture, as well as for the de�nition of the

reference architecture of each feature completion. The solution developer is responsible

for annotating the abstract feature completion model de�ned by the domain expert to the

concrete subsystem comprising software components. Finally, the software architect is

responsible for reuse and integration into the desired base architecture. The temporal

aspect of the creation of the individual parts can be divided as follows: Subsystem domain

experts start by de�ning possible features and reuse mechanisms. They model them in

detail on the basis of the reference architecture. Based on the resulting model, solution

developers can then apply the reference architecture to their subsystems. In parallel,

already modelled solutions can be reused from software architects in their individual

contexts.

Second, automatic processes need a representation of the entities and formalized in-

structions to be processed and analysed. A clear separation helps to clearly separate

the formalized entities between design phase and reuse phase and thus to increase the

comprehensibility of the meta model on the one hand and to improve the extensibility

and maintainability on the other hand.

7.4.1. Types

The main structure of the feature completion model is de�ned by three types. A high level

overview of the multi type hierarchy and its types is depicted in Figure 7.16.

7.4.1.1. Definition Type

The De�nition type is the most abstract part of the hierarchy. This part in the previously

introduced meta model is re�ected in the features, feature objectives and required services

of a subsystem. The de�nition itself is created by the solution domain expert who has

speci�c knowledge from the feature completion domain. Features and Complementum

represent the elements that are visible externally. They are especially necessary for the

reuse of feature completions. The software architect who reuses the feature completion

relies on this part in particular. Knowledge of deeper layers of the hierarchy is not necessary

for reuse.

The features provided by the feature completion are particularly important for later

reuse. The dependencies of feature completion to the base architecture are also of central

importance since this are the dependencies to the base architecture.

148

7.4. Multi Type Hierarchy

Feature
Completion

Feature Completion
Component A

Feature Completion
Component B

Feature Completion
Component C

Definition type

Refinement type

Solution type

abstract
concrete

A B

C

D E F G

H

concretises

concretises

realises realises realises

Features

equ
als

to

realises

Complementum

Provided PI Required PI

equals to

realises

Subsystem

Figure 7.16.: Schema of the multi type model showing the types and how they are related

to each other

The architecture of a particular solution as well as the solution speci�c parts are omitted

on the de�nition type. Neither the particular solution developer nor solution-speci�c parts

are necessary for the initial modelling of the features that are provided by the feature com-

pletion and the dependencies to the base architecture. This accidental complexity [Bro87]

is hidden by abstracting from the reference architecture and the solution speci�c parts.

7.4.1.2. Refinement Type

The Re�nement type extends the de�nition type with the coarse-grain reference architec-

ture of a feature completion. This re�nement is basically done by the subsystem domain

expert who has de�ned the feature completion. This part mainly re�ects in the previously

introduced meta model in the feature completion, feature completion component and

their relationships. The reference architecture of a feature completion comprises the

feature completion components, their interfaces and relationships to each other. All model

elements de�ned at this level are used to re�ne and enrich the elements of the de�nition

type. The feature completion from the de�nition type is extended to have a reference

architecture subsystem solutions (on the solution type) can be applied to.

The features of the feature completion are re�ned by the provided perimeter interfaces.

The features required from the base architecture correspond to the required perimeter

interfaces. The functionality of the features result from several logical concerns, i.e. the

feature completion components and their interaction with each other. The feature comple-

tion components de�ne the structure on which the solution developer must adhere when

applying the reference architecture to solutions.

On this level no solution speci�c parts have to be modelled. We decided to abstract from

the solution speci�c part to avoid the need of taking knowledge of particular solutions into

149

7. Formalising the Entities of Reuse

account when de�ning the reference architecture. This process allows to model feature

completions detached from solution speci�c considerations.

7.4.1.3. Solution type

The Solution type de�nes the solution speci�c parts. It is used to enrich the re�nement type

by solution-speci�c elements. This part is mainly re�ected in the previously introduced

meta model in the solution pro�le. Solution developers annotate the abstract feature

completion components with the software components actually realising their features. In

addition, they annotate the abstract perimeter interfaces with the component interfaces.

The solution type therefore addresses concrete components and their association to the

abstract elements from the other types. The solution developer does not need to know the

domain in detail to model the solution-speci�c parts, but can concentrate on the particular

characteristics of the solution to be added to the reference architecture. As in the de�nition

type, this reduces complexity and thus the number of possible errors.

7.5. Assumptions and Limitations

Architecture constraints: the current version of the meta model allows the de�-

nition of simple architecture constraints, such as together, isolation and separation

constraints for software components. A concatenation of the constraints, as required

by conditions such as

if CompA together with CompB then isolate CompC

is currently not possible. In principle, however, OCL constraints or a domain-speci�c

language might be used to describe more complex architecture constraints.

Application of solutions: Only solutions that correspond to the reference architec-

ture de�ned by the feature completion can be applied to the meta model. If solutions

di�er greatly in their architecture, i.e. no relation can be found between the abstract

feature completion component together with its required feature completion compo-

nents and the actual software architecture of the solution, it is not possible to apply

the solutions to the feature completion reference architecture. Such solutions then

cannot be used in the optimization process.

Component-based software architecture model: We assume the subsystem so-

lutions base on a meta model providing entities to model the software components

and their relationships. For now, the meta model requires concepts such as com-

ponents, interfaces (required and provided), as well as their connection through

an assembly connector. For the architecture constraints, additional entities for the

deployment of the components to hardware resources is required. In principle,

however, the use of our meta model would also be possible with �xed wiring (in

contrast to loose coupling using interfaces of software components). The referenced

meta model elements would have to be adapted accordingly to the concepts. This

would be possible by using the UML pro�les non-intrusively.

150

7.6. Summary

Restrictions for change operations: The meta model allows the de�nition of

additive modi�cations on software architecture models. Modifying architecture

models by reducing software components or make changes according to a given

pattern is not possible. The meta model therefore does not support to enforce cross-

architecture changes, such as required for architecture patterns or architecture styles.

However, this restriction should be sound and su�cient for modelling and reusing

of existing (implemented) subsystem solutions.

7.6. Summary

The main purpose of this chapter is the development of a meta model that allows modelling

and lightweight reuse of subsystems and subsystem solutions. To achieve this, we have

developed a meta model de�ning entities for modelling subsystems to realize requirements

that can be used in di�erent contexts. We have developed the meta model hierarchically,

so that modelling the subsystems can be done step by step. The subsystem domain expert

builds an abstract model that is re�ned by the solution developer and �nally used by

software architects. Furthermore, the models can be used in an automated process to

evaluate solutions against each other due to their di�erent degrees of abstraction. Degrees

of freedom of software architectures coming from the new concepts can span a space for

automatic exploration of di�erent solutions of a subsystem and its con�guration in the

base architecture. For this purpose, in Section 8.7, we present di�erent degrees of freedom,

which model the di�erent characteristics of the supported features, solutions and their

con�gurations. Finally, in Chapter 8, we use the degrees of freedom instances to generate

the architecture candidates to be evaluated and optimized.

151

8. Model Weaving using Feature-driven
Degrees of Freedom

In this chapter, we describe how to include models by weaving mechanisms. We extend

the base architecture models by subsystem solution models depending on the desired

features. Our weaving mechanism combines the base software architecture model and

the subsystem solution, its software components respectively when software architects

annotate a certain feature to the system view-type of the base architecture. Several parts of

the concepts have been published in one of our publications [SBK17]. Concepts to extend

abstract control �ow have been published in the Master’s thesis from Eckert [Eck18],

supervised by me.

To weave models, we consider two methods, namely the integration using adapters and

the integration by changing the abstract control �ow such as loops, and branches. Both

inclusion mechanisms use the meta model presented in Chapter 7. The model instances

of the meta models are used by the weaving mechanism as instructions to generate the

necessary architecture elements and place the subsystem solutions at the desired positions

in the software architecture model.

Automated model weaving reduces the modelling e�ort for the software architects.

Especially with many modelling options, automatic generation of models is important to

simplify the time-consuming and error-prone step. The quality attributes of generated

models can then be evaluated, on this basis. These results of the evaluation can be used in

the optimization step creating and evaluate new architecture candidates, with respect to

the requirements. Finally, suggestions can be o�ered to the software architect to support

the selection of the right candidate to be implemented. Automatic generation of the models

therefore makes it easier to quickly evaluate many architecture models and �nd better

candidates. This with less manual e�ort and all the possibilities o�ered by optimization

approaches for software architectures.

The chapter is structured as follows: First, in Section 8.1, we present the process of

weaving software architecture models. This includes the general process as well as the

model extension by adapters and the abstract control �ow. Section 8.2 abstracts the

weaving process to a higher level, the level of meta meta models. We show the general

extension of meta models based on triple graph grammars. Section 8.3 shows the weaving

process when using adapter extension, while Section 8.4 introduces the process using

the extension by the abstract control �ow. Section 8.5 applies the weaving mechanism to

the PCM. Section 8.6 introduces how we apply the architecture constraints. By the meta

model, several new architecture degrees of freedom become applicable, that we introduce

in Section 8.7. The chapter concludes with assumptions, limitations in Section 8.8 and

�nally the summary in Section 8.9.

153

8. Model Weaving using Feature-driven Degrees of Freedom

Base Model A Extending Model B

Legend:

Component

Required Role
Provided Role

Control Flow

Integrated Model

Figure 8.1.: General extension process of base model and extending model into one in-

tegrated model with changed control �ow. The red marked component and

control �ow was added to the control �ow of the base model A to integrate

the functionality of the extending model B.

8.1. Extending So�ware Architecture Models

Assembled software architecture models can only be extended with new functionality by

interrupting existing control �ows. When two components are connected by assembly

connectors, this connection could be interrupted and extended by a certain service. We

have shown the general extension process in Figure 8.1. The control �ow of the base

architecture model is interrupted to process the service of the subsystem. The integrated

model interrupts the originally intended control �ow of the base model by integrating the

red marked component of the base model B and changes the control �ow (red marked

control �ow). Afterwards, the previous control �ow is continued.

In component-based software architectures, however, new functionality cannot be

integrated at any position and requires architecture changes: usually, the interfaces

(provided or required) for the service to be integrated are not compatible with the interfaces

that are contained in the base architecture.

The extension of a base architecture by features can be carried out by two strategies:

extension by adapters to make interfaces compatible and the invasive extension of the

abstract control �ow. The extension by adapters is a comparatively lightweight extension

154

8.2. Model Transformation using Triple-Graph-Grammars

strategy and is based on manual annotation by the software architect of the desired features

in the base architecture. This extension should be used whenever software architects want

to evaluate the impact of features on a few positions in the base architecture. In addition,

the extended positions in the base architecture are explicitly modelled by annotations and

are therefore well comprehensible.

Software architects should use the extension by the abstract control �ow when either

elements of the abstract control �ow should be extended or when whole classes of positions

should be evaluated. By de�ning classes of positions software architects can determine

to extend the system by features wherever a certain signature is called. In such cases, it

may not be exactly clear which exact positions are relevant in the base architecture. The

extension mechanism automatically �nds all desired positions of such a class. This reduces

the modelling e�ort. In contrast to extension using adapters, however, the positions that

are extended are modelled implicitly.

8.2. Model Transformation using Triple-Graph-Grammars

Extending models requires operations for adding or deleting model elements and propa-

gating these changes to a�ected model elements. The following sections therefore de�ne

concepts for additive model transformation based on TGGs and the propagation of changes

to model elements a�ected by the transformation. TGGs are suitable for describing model

transformations between models. The transformation itself consists of a set of rules. The

basic concepts of TGGs have been introduced in Section 3.1.1.4.

8.2.1. Model Transformation

The model transformation considers the e�ects on model elements in the model that are

in�uenced due to addition operations when applying rules. This model transformation

starts from a central entry point that is used as the seed.

A model change of element ME1 can therefore have an e�ect on model element ME2.

Consequently, the elements of ME2 are inconsistent relative to the meta model and its

rules for consistency.

Let us consider the assembly context and the allocation context of the PCM. An additive

operation considering the assembly contexts in the system model leads to inconsistencies

of the allocation model. The allocation model is inconsistent since there are unallocated

assembly contexts in the allocation context model. This also applies in the opposite

case. If an allocation context is removed, the corresponding assembly context must also

be removed. The analysis and correction of this inconsistency is �xed by the model

transformation.

Let us consider the view-typeVTi that comprises the initial additive model modi�cation.

This modi�cation could a�ect other view types VTj,i .
More formally this can be expressed as follows: let us de�ne MVT as the set of all model

elements of a given view type. Let Gmod := (V , E, s, t) be an out-tree, while V are the

vertices of a graph, E the edges of a graph. The function s : E → V results the source

vertex, while the function t : E → V results in the target vertex given a speci�c edge. A

155

8. Model Weaving using Feature-driven Degrees of Freedom

path in a graph can be de�ned as a sequence, such as (v0, ...,vi,vi+1, ...,vn). Gmod represents

an out-tree containing the vertex v0. v0 represents the root of the tree. For all remaining

verticesvi there is exactly one path fromv0 tovi . In the model transformation, the vertices

V ⊆ MVT represent the meta model elements of the view type that are a�ected by a model

change of the primary model element v0. An edge e ∈ E indicates that a change of a model

element s(e) ∈ V implies that another model element t(e) ∈ V is a�ected, which must also

be modi�ed accordingly [SBK17].

8.2.2. Weaving component-based So�ware-Architecture Models

To weave two component-based software-architecture models, i.e. a base architecture

model and an extending model, i.e. subsystem solution model, we require the components

and the corresponding dependencies between the components (via their interfaces) to be

included. We assume that the underlying software architecture model relies on concepts

of interfaces, assembly contexts between interfaces and component allocation to hardware

resources.

In the �rst step, the new components must be included into the system model. Further the

corresponding assembly contexts between the components must be transformed. Several

assembly contexts must be generated, others must be transformed due to new control

�ows introduced by the subsystem solution. Note that there is a dependency between

assembly contexts and allocation contexts. Therefore, the model transformation must

be analysed and applied based on the changed assembly contexts for the corresponding

allocation contexts.

Based on TGGs and the concepts of model transformation, we de�ne the problem in the

context of the component-based software architecture model PCM.

In the following, we refer to Gmod as a transformation tree that speci�es the model

transformation according to a given view-type model element v0. Given the out-tree

Gmod with V ⊆ MVT and v0 := m0 ∈ MVT . m0 corresponds to the model elements that

triggers the �rst model change. We assume the set SGmod contains all paths of Gmod ,

starting with v0 and ending with vn. Here vn denotes the vertex which is subject to

@e ∈ E : s(e) = vn. Beginning with v0 the model change propagates to vn for all paths

p ∈ SGmod . The corresponding operation for forward propagation must be applied to each

pair (vi,vi+1) in the path. This results in the corresponding forward propagation operation

fvi−>vi+1 . The forward propagation performs the model to preserve consistency between

model vi+1 =m1 ∈ MVT and vi =m2 ∈ MVT . If the a�ected pair (vi,vi+1) has already been

included in another path, it no longer needs to be transformed [SBK17].

To make models compatible, two strategies can be applied, namely the extension by

adapting the relevant interfaces and the extension of the abstract control �ow of the

component intended for extension. Both strategies are presented in the following sections.

8.3. Adapter Extension

Extending a software architecture model using adapters essentially integrates two or

several models. The adapter adapts the corresponding interfaces to make them compati-

156

8.3. Adapter Extension

Extending Model B
Base Model A

MediaAccess Media
Management

IMediaAccess

Logger

ILog

Figure 8.2.: Excerpt from initial architecture model Media Store: Incompatible interfaces

IMediaAccess and ILog.

ble. In a meta model explicitly modelling provided and required interfaces, the adapter

encapsulates all required and provided interfaces required for integration.

The extension by adapters provides the following advantages:

• Non-intrusive extension: Adapter extension is a non-intrusive extension strategy

for component-based software architectures. Non-intrusive integration means that

the involved models remain unchanged, but additional model elements are used in

order integrate to them.

• Lightweight assembly between models: Models are lightweight coupled with

each other. Only the caller sequence is changed, but no internal behaviour of the

components.

• Multiple delegation: Once an adapter has been created and assembled, it can be

used by the system as often as required by delegation.

• Quality attributes through model integration: By integrating subsystem by

adapters allows analysing the quality attributes of the overall software architecture

comprising base architecture and services of the subsystem.

Integration using adapters consists of two parts, namely the generation of the appropri-

ate adapter and its connection to the base software architecture model.

8.3.1. Adapter Generation

8.3.1.1. Rationale

To make interfaces compatible by adapters, the adapter must include the interface(s) of

the service to be included and the interface of the assembly connector to be extended.

Figure 8.2 shows an excerpt from our running example (see Chapter 2) showing the

initial condition at time t0. The UserManagement component provides the IMediaAccess

interface, which is also required by the MediaManagement component. At the same time, the

Logger component provides the ILog interface. However, this interface is incompatible to

IMediaAccess. If the control �ow between UserManagement and MediaManagement should

be monitored by a logging mechanism, the logger functionality must be included at the

157

8. Model Weaving using Feature-driven Degrees of Freedom

IMediaAccess
ToILogAdapter

IMediaAccess

ILog

IMediaAccess

Figure 8.3.: Resulting adapter for IMediaAccess and ILog, with roles.

assembly connector between these two components. However, without an adapter the

interface IMediaAccess and ILog are not compatible and therefore can not be assembled

by an assembly connector. The �rst step is therefore to generate an adapter that makes

these interfaces compatible to each other.

8.3.1.2. Adapter Construction

Two aspects are relevant when generating the adapter: First, the relevant interfaces the

adapter requires is determined. Each of the interfaces needs its corresponding role. Second,

we need to generate the appropriate control �ow in the adapter. In addition to including

adapters and new components of the subsystem solution in an architecture, they must be

integrated in the control �ow of the base architecture. This could be compared with using

libraries when implementing software. Libraries have to be included in the workspace.

Then they must be called on the desired positions in the source code.

The result of generating the suitable interfaces and roles for the adapter is shown in

Figure 8.3. The adapter component IMediaAccessToILogAdapter combines the interfaces

with the corresponding roles that are necessary to make the two interfaces IMediaAccess

and ILog compatible.

The adapter provides the interface IMediaAccess in the providing role for later assembly

of the corresponding requiring role of the MediaManagement and component. Further it

comprises the same interface in the requiring role for assembly of the corresponding

providing role of the MediaAccess component. Finally, the adapter requires the ILog

interface for the assembly of the corresponding providing role of the Logger.

When assembling the control �ow of the adapter, its construction is de�ned by the

parameters that we have introduced in detail in Section 7.2.6.1. Accordingly, one of the

three options before, after and around can be chosen. These options control whether the

control �ow �rst calls the service ILog (before), �rst the service of IMediaAccess (after)

or �rst ILog, then IMediaAccess and again ILog (around).

8.3.2. Adapter Assembly

The adapter of the extending system B is integrated into a base system A as follows:

1. Remove the original assembly connector of the base system model A to be extended.

158

8.4. Abstract Behaviour Extension

Integrated Model

MediaAccess

IMedia
Access

Logger

ILog

IMediaAccess
ToILogAdapter

IMediaAccess

ILog
IMediaAccess

Media
Management

Figure 8.4.: Resulting integrated model using an adapter.

2. Create the assembly connector for the two previously assembled components from

base model A to the adapter.

3. Create the assembly connector for the service to be included from the extending

model B to the adapter.

Figure 8.4 shows the result of the assembly for an excerpt from our running example:

The IMediaAccessToILogAdapter comprises the interface IMediaAccess to be connected

with MediaAccess and MediaManagement. Further, it comprises ILog to connect to the

ILog interface of Logger. To assemble base system and subsystem, we �rst, remove

the assembly connector between MediaAccess and MediaManagement. Then, we use an

assembly connector to connect the IMediaAccess (providing) of MediaAccess with IMedia-

Access of the adapter (requiring). Second, we use an assembly connector to connect

the IMediaAccess (requiring) of MediaManagement with IMediaAccess (providing) of the

adapter. Finally, we connect ILog (requiring) of the adapter with ILog (providing) of Logger.

After making the interfaces compatible, we need to create the SEFF for the adapter to

call the services accordingly. This is done by external call actions in the adapter’s for the

provided services of IMediaAccess. Depending on the selected options before, after and

around, the external call actions are created accordingly. For each required signature an

external call action is included in the control �ow. If all signatures of an interface need to

be included, for each signature an external call action is generated.

8.4. Abstract Behaviour Extension

Similar to the adapter extension, the abstract control �ow extension integrates incompatible

models. By extending the abstract control �ow of the base system the services of subsystems

159

8. Model Weaving using Feature-driven Degrees of Freedom

internal
action

internal
action

external
call action

<<FeatureCompletion>>

Figure 8.5.: Illustration of the extension on internal actions (according to the Master’s

thesis [Eck18], supervised by me).

can be integrated without the need of generating adapters. In contrast to the adapter

extension, no interfaces have to be made compatible when the abstract control �ow is

extended. There is no need to make interfaces compatible, since the control �ow of the

base model is modi�ed directly. Here, the SEFF of the base architecture is extended by

external call actions to the subsystem’s services. This results in the following advantages:

• Simplicity: the software architecture models do not contain any additional com-

ponents for making models compatible. The models already contain all needed

interfaces and components for implementing the functionality.

• Granularity: the extension can be implemented more �ne-granularly by extending

the control �ow. We can extend the behaviour of base system’s services on the level

of statements and control �ow elements, such as branches or loops.

• Classes of extension points: through more-�ne granular modelling, whole classes

of positions to be extended can be de�ned. By de�ning classes software architects

can de�ne many positions where features should apply in the base system without

annotating all positions by hand. Such a �ne-granular annotation would not be

possible by using adapters.

For de�ning classes of positions, we use our DSL that we introduced in Section 7.2.6.2.

8.4.1. Extending the Control Flow

Three di�erent abstract control �ow elements can build a SEFF: Internal actions, external

call actions, and control structures, such as loops, branches, or forks. All these elements

can be extended by using the abstract behaviour extension. How to extend these elements

is described in the following.

8.4.1.1. Internal Action Extension

Internal actions abstract from calculation operations such as sorting a list. Figure 8.5

shows how to include a service after am internal action of the SEFF. This strategy allows

to extend all internal actions of a certain SEFF of a signature.

By this, the software architect does not need to have detailed knowledge of the internal

control �ow of a service or component to instrument at instruction level.

160

8.5. Formal Mechanism for PCM Transformation

external
call action

<<Interface>>

external
call action

external
call action

<<FeatureCompletion>> <<Interface>>

Figure 8.6.: Illustration of the extension on external calls actions (according to [Eck18]).

8.4.1.2. External Call Extension

The external call extension is shown schematically in Figure 8.6. Software architects can

use this strategy to extend all calls to a particular signature. This strategy can be used, if

all external calls to a particular signature within an architecture should be extended.

External calls to a certain signature could potentially be distributed in many SEFFs

of the base system. By using the external call extension, software architects can extend

the base model black-box, i.e. software architects do not need to know SEFFs calling a

signature that should be extended.

The new functionality is introduced by the additional use of external calls. According

to the selected option, the external call action is extended before, after or around by the

services of the subsystem.

8.4.1.3. Control Structure Extension

The control structure extension strategy is shown schematically in Figure 8.7. It extends

all constructs that in�uence the behaviour of a component, such as loops, branches, and

forks. The BEFORE and AFTER options refer to the insertion at the beginning or end of

the behaviour of the control structure. With this extension strategy, it is possible to extend

the internal control �ow, for example certain control structures such as loops, as before,

without knowing the internal process in detail.

Similar to the other extension strategies, control structure elements of certain SEFFs can

be extended by de�ning whole classes. Thus, software architects can extend black box.

An application example for the extension of loops would be the recording of user

behaviour or the detection of performance problems in the system. A second example

could be the detection of performance problems in certain branches by including loggers.

A further application example would be the extension of loops by services of intrusion

detection systems. Malicious behaviour or intentional overloading of the system by users

could be detected by including sensors.

8.5. Formal Mechanism for PCM Transformation

This section describes the formal mechanisms for PCM model transformation for the

extension of models. Section 8.5.1 describes the model transformation using the adapter

extension method, while Section 8.5.2 describes the method for model transformation by

the abstract control �ow.

161

8. Model Weaving using Feature-driven Degrees of Freedom

branch
internal
action

internal
action

branch
internal
action

internal
action

external
call action

<<FeatureCompletion>>

external
call action

<<FeatureCompletion>>

Figure 8.7.: Illustration of the extension on control structures (according to [Eck18]).

8.5.1. Adapter Extension

The transformation for the PCM adapter extension considers the four PCM view-types,

repository, assembly, allocation and usage pro�le. In the following, we introduce the

transformation of the models on the basis of the TGG model transformation introduced in

Section 8.2.

The transformations are based on the following notation:

• Model Θ corresponds to a set of model elements θ ∈ Θ.

• Roles refer to interfaces that they either provide or require. The function fp : R →
P(P) inputs a required role r ∈ R of the set of all required roles R, and outputs a

set of provided roles p ∈ P(P) in which each provided role provides exactly the

interface r requires. P is the set of provided roles and P(P) denotes the power set of

P .

• T : M → M is an in place transformation, where M represents the set of all

possible instances of a given meta model. The result is a model m2 ∈ M , with

m1 ∈ M ,m2 ∈ M .

• Function fϕ : (AC × AC) → P(Φ) requires a tuple of assembly contexts as input

parameters and outputs a set of connectors that connect the two assembly contexts.

Φ is de�ned as the set of all available connectors. fϕ can result in a set of several

connectors. AC is the set of all available assembly connectors.

Example: Let us assume we have the assembly contexts ac1 and ac2, which bind the

required roles r1 and r2 in the context of component c1. Additionally, we have component

c2, which binds the complementary provided rolesp1 andp2, while applies: p1 ∈ fp(r1),p2 ∈
fp(r2). Therefore: given ac1 and ac2, | fϕ(ac1,ac2)| = 2.

8.5.1.1. Adapter Generation & Repository Transformation

The integration process of two models starts with adding the adapter to the repository

model R ∈ MVT that is created by the graph morphism δR . The adapter is �rst generated

and placed in the repository for later integration into the system model. The adapter

requires the complementary roles of the interfaces that should be assembled. cadapter

162

8.5. Formal Mechanism for PCM Transformation

describes all roles the adapter requires for making compatible the relevant interfaces of

the base architecture model and the extending architecture model:

cadapter = {c
base
roler equired

, cbaseroleprovided
, c

subsystem
roleprovided

} (8.1)

cbase
roler equired

corresponds to the required role of the base system, while cbase
roleprovided

corresponds

to the provided role of the base system. c
subsystem
roleprovided

corresponds to the provided role of the

subsystem to be included. In addition to the roles of the interfaces, the abstract control

�ow must be modelled: the three options before, after and around can be used. The control

�ow for the options is de�ned as follows: The before option results in a control �ow that

�rst calls the services of the adapter and then the services of the base system. The after
option passes the control �ow to the base system components �rst. After returning, the

control �ow is passed to the subsystem components. The around option �rst passes the

control �ow to the components of the subsystem, then to the components of the base

system and �nally again to the components of the subsystem.

Together with the roles, interfaces, and the control �ow, the adapter becomes part of

the main component repository.

T(R) = {c0, c1, . . . , cm−1}, (8.2)

whileC represents all components in the repository, cadapter ∈ C , and {csubsystem0
, csubsystem1

,
. . . , csubsystemo−1} ⊂ C and o is the number of components of the subsystem solution to be

included.

8.5.1.2. Assembly Transformation

The assembly transformation again starts from the out-tree Gmod (see Section 3.1.1.4) after

the initial model change δR has been carried out. To extend the base system by features of

the subsystem, the assembly view-type must be adapted accordingly. In the following, we

de�ne the forward propagation operation fR→S :

The assembly view-type S contains several assembly contexts and assembly connectors.

Given the already transformed repository model T(R), the sets with the assembly con-

texts AC and connectors Φ, which are already contained in the assembly model S to be

transformed.

First, we create an assembly context acadapter for the adapter and for each component of

the subsystem. The corresponding interfaces, the corresponding roles of the interfaces

(providing and requiring) are assembled by the adapter. Let acc0 , acc1 be the assembly

contexts for both components that should be extended. The transformation results in the

following notation, while AC′ represents the set of assembly contexts after applyingT (S)1:

∃=1acadapter ∈ AC
′
: | fΦ(acc0,acadapter)| = 1 ∧ | fϕ(acadapter ,acc1)| = 1

In addition to the adapter, all other components and connectors that are necessary for

the service of the subsystem must now be assembled by the corresponding connectors.

1∃=1a ∈ X means it exists exactly one element a in the set X

163

8. Model Weaving using Feature-driven Degrees of Freedom

8.5.1.3. Allocation Transformation

The forward propagation operation fAss→All transforms the allocation context. The assem-

bly of the subsystem components and the adapter results in additional components that

have to be allocated to the hardware. The transformation results in:

|All′| = |All | + |(AC′ \AC)|,All′ = T(All)

AC′ corresponds to the previously created assembly contexts.

8.5.2. Abstract Behaviour Extension

The transformation of the PCM abstract control �ow extension considers the PCM view-

types, abstract control �ow (SEFF), assembly and allocation.

8.5.2.1. Behaviour Transformation

The internal behaviour description is transformed so that the corresponding calls are dele-

gated to the feature completion. First, the required positions are determined according to

the placement strategies and then the corresponding calls are woven into the base software

architecture model. According to the placement strategies, three possibilities to call the

service representing the feature are conceivable: the strategy before (Appearance.BEFORE)

the base system control �ow sequence is called, after (Appearance.AFTER) the base system

control �ow sequence, or before and after in combination (Appearance.AROUND). How

the actual transformation looks like mainly depends on the chosen strategy.

Internal Action Placement

To extend internal actions, the transformation �rst searches for the relevant component in

the base system. In this component, the SEFFs are then extended by external call actions to

the service of the subsystem to be included. To do so, the transformation �rst identi�es the

appropriate SEFF. Within this SEFF, extensions are made to all internal actions. Depending

on the placement policy before, after or around the internal action is extended accordingly.

An extension of all internal actions is relevant for logging or IDS concerns, for example.

Figure 8.8 shows an example of the internal action strategy.

Control Structure Placement

For the extension of control structures, the transformation proceeds similar as for the

extension of internal actions. First, the appropriate SEFF is determined and the control

structure to be extended is determined. If branches are to be extended, then branches are

searched and extended to the subsystem by external call actions according to the placement

policy. This is done analogously for loops and forks. Figure 8.9 shows an example of the

control structure strategy.

164

8.5. Formal Mechanism for PCM Transformation

MediaManagement.processFile

<<internalAction>>
action

<<ExternalCallAction>>
action

ReEncode.encode

MediaManagement.processFile

<<internalAction>>
action

<<ExternalCallAction>>
action

ReEncode.encode

<<ExternalCallAction>>
log

Logger.log

Figure 8.8.: Internal action weaving (AFTER appearance) on the example of MediaMan-

agement SEFF of Media Store and Logger (after [Eck18]).

MediaManagement.processFile

40000 <CPU>

ResourceDemand

<<internalAction>>
action

<<Branch>>
branch

Cond: isCodec.VALUE

Cond: isCodec.VALUE

InputVariableUsage
bitrate

VALUE = bitrate.VALUE

<<ExternalCallAction>>
action

ReEncoder.encode

InputVariableUsage

<<ExternalCallAction>>
action

PaymentSystem.
ReEncode.decode

InputVariableUsage

<<ExternalCallAction>>
log

Logger.log

InputVariableUsage

<<ExternalCallAction>>
log

Logger.log

MediaManagement.processFile

ResourceDemand

40000 <CPU>

<<internalAction>>
action

<<Branch>>
branch

Cond: isCodec.VALUE

Cond: isCodec.VALUE

InputVariableUsage
bitrate

VALUE = bitrate.VALUE

<<ExternalCallAction>>
action

ReEncoder.encode

InputVariableUsage

<<ExternalCallAction>>
action

ReEncode.decode

Figure 8.9.: Control �ow weaving (AFTER appearance) on the example of MediaManage-

ment SEFF of Media Store and Logger (after [Eck18]).

165

8. Model Weaving using Feature-driven Degrees of Freedom

MediaManagement.processFile

<<internalAction>>
action

<<ExternalCallAction>>
action

ReEncode.encode

MediaManagement.processFile

<<internalAction>>
action

<<ExternalCallAction>>
action

ReEncode.encode

<<ExternalCallAction>>
log

Logger.log

Figure 8.10.: External call action weaving (AFTER appearance) on the example of Media-

Management SEFF of Media Store and Logger (after [Eck18]).

External Call Action Placement

Extending external call actions by external call actions to the subsystem works analogously

to the two previously introduced strategies. The appropriate SEFF is determined. Its

external call actions are extended by external call actions to the subsystem according to

the placement policy. Figure 8.10 shows an example of the external call action strategy.

8.5.3. Weaving PCMModels

The actual transformation is realized by generating and applying the necessary weaving

instructions. Various instructions determine the position in the model the functionality of

the subsystem should be placed. Depending on the chosen weaving strategy, the actual

weaving instructions are generated and placed. Each weaving instruction de�nes one of

the previously de�ned abstract operations of the model transformation, which are then

executed.

In terms of the adapter extension, the �rst weaving instruction depends on the annota-

tions applied to the components in the system model, the complementum visnetis. Then

the necessary changes are propagated through the model according to the model transfor-

mation. The complementum visnetis annotated by the software architect determines the

assembly connectors of the system to be extended by a certain feature of the subsystem.

To extend the system by adapters, the �rst step is to �nd the complementum visnetis

annotated to assembly connectors by software architects. Then, the existing connection

between the two existing assembly contexts must be resolved in order to include additional

components, such as the corresponding adapter and components required for the new

functionality.

166

8.6. Architecture constraints

After extracting the weaving locations, the necessary model elements can be created and

woven. The necessary interfaces and the roles that the adapter must provide are analysed

and the adapter is generated accordingly. The necessary assembly contexts can then be

created, woven and the components required for the actual service are extracted from

the feature completion component’s structure. The necessary subsystem solution and its

components are �nally woven into the base architecture model to the desired positions.

For the abstract behaviour extension the later position(s) (i.e. weaving locations) of

the feature must be deduced from the abstract control �ow de�nition, modelled by the

DSL introduced in Section 7.2.6.2. First, the de�ned advices are considered and the corre-

sponding weaving locations are aggregated in the system model. The extracted weaving

locations are then mapped to a corresponding weaving instruction. Therefore, we take the

three di�erent placement strategies into account. In addition, we determine the signatures

relevant for realizing the selected features. We determine the relevant perimeter providing

and requiring interfaces with the corresponding feature completion component.

To determine the components and interfaces of a subsystem solution to be included

in the base software architecture model, the signature or interface to be included is the

starting point. The signature or interface to be included is part of the perimeter interface

of an FCC that is part of the subsystem’s reference architecture. The reference architecture

de�nes what other FCCs a certain FCC requires. By this, we can determine all FCCs

that are required for realizing a certain perimeter interface and thus realizing a certain

feature. Knowing all required FCCs allows us determining all software components of

subsystem solutions required for realizing a certain feature. This is, because abstract FCCs

and concrete software components are set in relation due to the isSolutionFor annotation

of the reuse pro�le (see Section 7.2.7.2). As a result, we determined all interfaces and

software components to be included into the base software architecture model for realizing

a certain feature. Knowing the desired positions a feature should be included, the concrete

software components and interfaces allows to determine the weaving instructions.

The determination of the weaving instructions is an upfront process which is necessary

for the actual weaving process. The weaving instructions serve as rules used by the

weaving engine to �nally extend the models.

8.6. Architecture constraints

As already introduced in Section 7.2.4, architecture constraints can be used to enforce

restrictions on the allocation of feature completion components in the base architecture

model, and thus of the individual feature completions of a subsystem. This main con-

cepts of the architecture constraints have been published in the Master’s thesis from

Scheerer [Sch17], supervised by me. Three con�gurations of constraints are supported,

namely together, isolated, and separated. In this section, we focus on deployment con-

straints. Compliance with the constraints is automatically checked after the inclusion step

has been performed.

The meta model for de�ning the constraints is shown in Figure 8.11. Its architecture

makes it comparatively easy to add new constraints. The interface IDesignSpaceConstraint

represents the main element that must be implemented to add a new type of constraint.

167

8. Model Weaving using Feature-driven Degrees of Freedom

<<Interface>>
IDesignSpaceConstraint

<<abstract>>
FCDeploymentConstraint

<<abstract>>
FeatureTargetConstraint

IsolatedDeployment
Constraint

TogetherDeployment
Constraint

SeparatedDeployment
Constraint

Figure 8.11.: Meta Model for the management and usage of architecture constraints (ac-

cording to [Sch17])

We distinguish between two di�erent deployment constraints, namely constraints

that are parametrized using the featureTarget annotations (FeatureTargetConstraint),

namely together (TogetherDeploymentConstraint) and separated (SeparatedDeployment-

Constraint). The second group is directly bound to a feature completion component,

namely the isolated constraint. Constraints can be checked for entities that implement the

meta class ConstrainableElement (see Section 7.2.4).

The previously introduced weaving instructions are generated based on the results of

the Design Space Exploration (DSE). The result of the DSE is a phenotype that represents

the characteristics of a concrete architecture candidate, i.e. a concrete software architecture

model. The software architecture is later generated from the phenotype (see Section 3.3.2.1).

The actual constraint checking is performed on the phenotype.

To check the design decision, we denote DDд the set of a design decision of a design

decision genotype д with a certain con�guration of selected design options. Let us assume

a deployment constraint was de�ned for a given feature completion component fcc to be

allocated in isolation. DDalloc
д ⊆ DDд is a subset that contains only the design decision with

the allocation degrees of freedom. choice : DDalloc
д → RS returns the selected resource

container of a design decision d ∈ DDalloc
д . RS represents the set of all resource containers.

The given con�guration is only valid if the following applies:

@d ∈ (DDalloc
д /d f cc) : choice(d) = choice(d f cc) (8.3)

Equation (8.3) is true if the selected resource container of the degree of freedom d f cc ∈
DDalloc

д does not appear more than once.

168

8.7. Feature-driven Architecture Degrees of Freedom

The veri�cation of the two remaining constraints, together and separated, is carried

out similarly. The basis is the actual selected allocation. The selected allocation is then

compared to the existing constraints for veri�cation. If there are two or more FCCs with

together constraints, but are not deployed at the same resource container, the architecture

is marked as invalid. If two or more feature completion components allocated on the same

resource container are allocated and a separate constraint exists at the same time, the

architecture is marked as invalid. Invalid candidates are discarded and not used for later

analysis.

An alternative to invalidating and subsequently regenerating architecture candidates

is to try healing the candidate. In the case of a violated together constraint, one of the

FCCs can be selected as the primary FCC. As a result, all remaining FCCs de�ned in the

constraint are regarded as secondary FCCs. The allocation of all secondary FCCs is then

changed so that all secondary FCCs are allocated to the resource container of the primary

FCC. Thus, the architecture candidate would be healed and would not have to be discarded.

When the constraint separate is violated, the following procedure can be used for healing

the candidate: if two or more FCCs violate the same separate constraint, one of these

candidates is marked as the primary FCC. The remaining secondary FCCs are then re-

allocated. Note: for many constraints, such a simple procedure could result in an in�nite

loop. For example, if not enough resource containers are available to implement the

constraint.

8.7. Feature-driven Architecture Degrees of Freedom

Subsystems, their reference architecture, subsystem solutions that implement the reference

architecture, di�erent features and options for including them into base architecture models

allow spanning new degrees of freedom in software architecture models. These degrees

of freedom can be used for an automatic model generation and optimization of software

architectures. The following new degrees of freedom become possible:

• Implementation-speci�c subsystem con�guration: Feature completions rep-

resent abstract elements with the purpose of uniform structuring of subsystem

solutions. The purpose of uniform structuring is that a weaving mechanism can

also exchange non-uniform architecture models of di�erent solutions of the feature

completion and in particular without manual e�ort by the software architect. Thus

the exchange mechanisms from Koziolek [Koz11] introduced in Section 3.3 for soft-

ware components are extended. By extending the exchange of complex structures,

subsystems with an internal complex structure can now be automatically exchanged.

• Multiple inclusion con�guration: If subsystems should be included several times

in the base architecture with simultaneous multiple instantiation of software com-

ponents, this degree of freedom o�ers to integrate components of the subsystem

solutions several times. The underlying components are not included in the base

architecture by multiple delegation, but by multiple instantiation and assembly.

• Optional con�guration: Software architects can de�nes features as optional. This

means that the optimization instantiates and evaluates both possibilities, namely a

169

8. Model Weaving using Feature-driven Degrees of Freedom

software architecture with included feature and without the inclusion of the feature.

The software architect can directly observe the e�ects of the presence of the feature

(without additional modelling e�ort).

• Feature con�guration: Features linked by XOR can be exchanged to evaluate the

impact of di�erent features on quality attributes in the base architecture against

each other.

ClassChoice BoolChoice

chosenValue

Choice

primaryChanged

DegreeOfFreedom

classDesignOptions

ClassDegree

ClassAsReferenceDegree

ComplementumVisnetis
Degree

SolutionDegree

IndicatorDegree

MultipleInclusionDegree OptionalPlacementDegree

+degreeOfFreedom
Instance1

*

Figure 8.12.: Meta model for the de�nition of the newly introduced architecture degrees

of freedom (derived from [Eck18]). Entities marked with asterisk are newly

introduced.

Figure 8.12 shows our meta model showing the degrees of freedom.

8.7.1. Subsystem Selection Degree

8.7.1.1. Rationale

As already outlined in the previous chapters, a feature can be realized by di�erent imple-

mentations. Each of these di�erent realizations, however, ful�ls the same function. Each

realization ful�ls a feature in a very similarly (functional equivalent) way, while the quality

requirements can di�er greatly due to di�erences in architecture and implementation.

Without model-based analyses and simulations, however, e�ects on the quality attributes

cannot be observed at design time. To determine at design time whether a particular solu-

tion meets the quality requirements is hard without any model-based, automated analysis.

Therefore, the degree of freedom to subsystem selection automatically exchanges di�erent

170

8.7. Feature-driven Architecture Degrees of Freedom

solutions, creates the corresponding model and prepares the model for analytical quality

attribute analysis or quality attribute simulations. In addition, the black box principle is

adhered to, which means that the software architect does not need to know about the

internal structures of the individual solutions. On the basis of the results of the analyses,

design decisions can be analysed, the best ones selected and �nally implemented.

8.7.1.2. Realization

The selection of the actual subsystem is represented by the SolutionsDegree (�g. 8.12). The

design alternatives (ClassChoices) of the degree of freedom contain all components required

for the implementation of the selected feature by all subsystem solutions implementing the

feature. A subsystem selection degree determines a certain subsystem solution ful�lling

the desired feature to be included into the base architecture model. This step is required,

because there might be features that are not realized by every subsystem solution (see

core features and optional features in Section 7.2.2).

8.7.2. Feature Selection Degree

8.7.2.1. Rationale

Features can be linked by XOR to be modelled as alternative features. Features modelled

as alternatives can be exchanged to each other. These features usually ful�l very similar

functionalities, but are not completely equivalent to each other. In addition, they cannot

be integrated together into the base architecture. Using our running example, the logging

system, we could compare two alternative features to each other, namely the sql database

logging and �le logging features. However, if software architects want to evaluate both

(technical) realizations against each other, this degree of freedom can be used.

8.7.2.2. Realization

The feature selection degree is created by using the entity ComplementumVisnetisDegree,

whose value range (ClassChoice) corresponds exactly to the set of alternatively available

features (see Algorithm 2).

The algorithm �rst iterates over the available alternative features and creates a comple-

mentum visnetis degree. The new complementum visnetis degree is then added to the list

of design options D.

171

8. Model Weaving using Feature-driven Degrees of Freedom

Algorithm 2 Generating the Complementum Visnetis Degree (according to [Eck18]).

FeatureSelection and FeatureList have been de�ned by using the DSL introduced in Sec-

tion 7.2.6.2.

1: function addCVDegree(featureSelection)

2: for all featureList in featureSelection.featureLists do
3: DCV ← new ComplementumVisnetisDegree(featureList)

4: for all cv in featureList.features do
5: DCV .classDesignOptions← DCV .classDesignOptions ∪ cv

6: end for
7: D← D ∪ DCV

8: end for
9: end function

It is required to check which of the available solutions (de�ned via the SolutionDegree)

actually support the currently selected features, since not every solution realizes the

features of the subsystem. If a feature is not supported by a speci�c subsystem solution,

the generated instance is discarded
2
.

8.7.3. Multiple Inclusion Degree

8.7.3.1. Rationale

The software architect selects the degree of freedom multiple inclusion whenever is un-

clear whether a feature should be implemented once and used with the help of multiple

delegation or whether it should be instantiated separately for each call and addressed by

delegation.

Whether a feature is instantiated once or several times can in�uence the resulting costs

(e.g. due to licence costs) or other attributes such as the reliability of the base system.

8.7.3.2. Realization

To de�ne the MultipleInclusionDegree, we use the corresponding entity of the meta

model (�g. 8.12). The corresponding Choice is the BoolChoice, which determines whether

a feature completion is instantiated and included once or multiple instantiated and included.

The attribute multiple = false causes an initial lookup for adapters and/or feature imple-

menting components that are already included in the software architecture model, and

then to use them again by delegation. The attribute multiple = true again creates adapters,

assembly connectors and allocates components and �nally delegates the call to the newly

created instances. Once again, weaving instructions are generated from phenotype, which

is converted by the weaving mechanism into the architecture candidates.

2
Another solution might to heal the model. Healing the model would be particularly relevant if very often

randomly invalid models were generated (for example, if there are many features that are implemented

by only a few solutions).

172

8.8. Assumptions and Limitations

8.7.4. Optional Choice Degree

8.7.4.1. Rationale

Using the degree of freedom feature selection the software architect can determine a

certain feature to be optionally included in the base software architecture. If features are

marked as optional, for each of the optional features a degree of freedom is spanned, which

allows creating the generated software architectures both with the feature and without the

feature included. Which of the both options is selected is determined by the DSE. Thus,

for all cases (and all combinations of these cases) the quality properties of the resulting

architecture candidates can be determined and optimized.

8.7.4.2. Realization

To de�ne the degree of freedom for the optional selection of features, the software architect

uses the entity OptionalPlacementDegree (shown in Figure 8.12). The possible value range

lies within the BoolChoice, i.e. if a feature is included optionally, the BoolChoice is selected

with the value true, or as false in the opposite case. During candidate generation, the

optimization for BoolChoice = true selects between presence and non-presence of the

feature, while BoolChoice = false selects mandatory presence for the feature.

8.8. Assumptions and Limitations

The previously presented weaving mechanism realizes its function within the following

assumptions and has the following limitations:

• Cohesion of meta model elements: We assume that all model elements are

de�ned or referenced within a meta model so that all necessary model elements are

accessible by traversing. If necessary model elements cannot be achieved by model

traversing, the meta model of base model and subsystem solution models must be

adapted.

• Additive operations: the weaving mechanism de�ned operations for model trans-

formation for the additive transformation of models. Operations for removing model

elements are not supported. This means that operations that require the removal of

model elements, such as components, cannot be performed.

• Architecture re-modelling: The model weaving mechanism does not support

extensive changes in the software architecture. For example, the described operations

cannot be used to implement layering if, for example, a rich client is present.

• Changes to the call sequence: The model weaving focuses on the change of the

call sequence of services between component boundaries. Other call sequences or

changes are not supported.

173

8. Model Weaving using Feature-driven Degrees of Freedom

8.9. Summary

In this chapter, we have shown how models can be assembled automatically. With the help

of two extension mechanisms, we have shown how features can be extended on desired

positions in software architecture models automatically. The desired positions can be

de�ned either by annotations or a domain-speci�c language for de�ning desired positions

in a base architecture. On the basis of the meta model presented in the previous chapter, new

degrees of freedom can be spanned. Using the degrees of freedom as a basis architecture

candidates can be generated. The architecture candidates can �nally be instantiated to

software architecture models by the model weaver. The automatically generated models

include the desired features at di�erent positions in the software architecture and can

be used for further automatic analysis such as quality attribute analysis. The weaving

mechanism is used byCompARE to instantiate the architecture models by using the relevant

degrees of freedom and to evaluate them according to the quality attributes relevant for

the requirements of the software system.

174

9. Modelling and Analysis of Architecture
Knowledge

Most methods for evaluating quality attributes can either quantify the resulting properties

or determine them in a qualitative manor. Both approaches have their respective advan-

tages: quanti�ed objective functions are usually more precise and return their results

based on a mathematical basis. They represent knowledge about correlations concerning a

quality attribute, for example in simulations or mathematical constructs such as Petri nets.

Qualitative determining approaches have their strength in evaluating quality attributes

di�cult to quantify. Quality attributes are considered di�cult to quantify or unquanti�able

if their evaluation causes too high cost or if there is no suitable objective function or the

objective function has not been su�ciently well researched.

The usability quality attribute is an example for quality attributes di�cult to quantify.

For the quantitative determination of usability, user studies must usually be carried out,

which are considered costly and therefore cost-intensive. An example of a non-quanti�able

quality attribute is determining security properties in component-based software architec-

tures. By now, there is no su�ciently evaluated function or simulation for determining the

quality properties of safety or security, on the level of the quality attribute performance.

The method we have proposed in Chapter 5 has many limitations and requires a high

modelling e�ort.

Nevertheless, when designing their individual components or system, software archi-

tects often have an idea of the usability of individual software components or of the

expected security level. However, this knowledge cannot yet be used in methods for the

quantitative determination of quality properties and thus remains an unused resource.

Especially in the selection and optimization of quality-supporting requirements, i.e. reuse

of subsystems, it is often necessary to consider quality attributes that are di�cult to

quantify or not quanti�able at all.

In this chapter, we therefore present our quality e�ect speci�cation, based on qualitative
reasoning to enrich approaches for the quantitative determination of quality attributes

with qualitatively modelled architecture knowledge. Thus, we can jointly evaluate and

optimize them and, as a result, improve architecture decisions by using a broader knowl-

edge base. The extension enables the software architect to answer previously unevaluated

questions, such as determining the costs with regard to (quanti�able) quality attributes,

as performance or monetary costs resulting from an improvement of a not-quanti�ed,

i.e. qualitatively-valued quality attribute, such as security. Questions arising from con�ict-

ing quality attributes can also be considered.

The chapter is structured as follows: In Section 9.1, we extend the evaluation space of

quality properties, which was previously intended for quantitative evaluation procedures.

We introduce elements necessary for qualitative evaluation and describe a method for

175

9. Modelling and Analysis of Architecture Knowledge

attaching and evaluating these values to components. In Section 9.2, we describe how

to carry out quality analyses for component-based software architectures using qualita-

tive reasoning. To this end, we �rst introduce a model and describe how the knowledge

contained in the models can be evaluated. In Section 9.3, we explain how architecture can-

didates can be evaluated on the basis of these models, describe in Section 9.4 assumptions

and limitations, and close the chapter in Section 9.5 with a summary.

9.1. Extending the Quality Evaluation Space

Section 3.2.3 describes the Quality Modelling Language (QML), which, among other things,

makes it possible to model dimensions and their possible characteristics. The QML is

essentially designed to model dimensions and their characteristics with regard to quan-

ti�able values. It is also possible to de�ne any elements as values within dimensions, but

very limited and not su�cient for more complex expressions. We therefore extended the

QML to include a model for declaring not-quanti�ed quality attributes and the qualitative

knowledge annotation model for extending software components to include qualitatively

modelled quality properties. As a result quantitative and qualitative determined values

can be de�ned, evaluated and optimized together. Main conceptional parts have already

published in our paper Busch et al. [BK16]. We de�ne two di�erent models:

• Qualitative Knowledge Declaration Model: The qualitative knowledge declara-

tion model speci�es dimensions of quality attributes and their possible characteristics.

It is used to model quality attributes by using qualitative representations in arbitrary

dimensions.

• Qualitative Knowledge Annotation Model: The qualitative knowledge annota-

tion model annotates quality attributes and their properties or a qualitative reasoning-

based model to describe the quality attributes and their properties on software

components.

9.1.1. Qualitatively-valued Quality Attributes

In contrast to quanti�ed quality attributes, qualitatively-valued quality attributes do not

base on objective functions evaluated by simulations. Rather, the quality properties

can be derived from informally available architecture knowledge. Although di�erent,

even nominal scale levels are generally possible, the more frequent modelling variant

is the ordinal scale level. Between the individual possible values of the dimension, the

absolute values are less important than their order relation. The values, on the other

hand, have a subordinate role or play no role for the calculation itself, but are used for

the actual modelling process by the software architect or solution developer. Thus, no

evaluation in the sense of Solution A is twice as powerful as solution B is possible, but the

natural considerations by experts can be modelled, automatically evaluated and made

more comprehensive. This also can be used for the documentation of informally available

176

9.1. Extending the Quality Evaluation Space

architecture knowledge. The knowledge can be reused, automatically evaluated and

automatically optimized, together with quantitatively available knowledge.

The decision whether quality attributes should be modelled quanti�ed or qualitatively-

valued depends on several reasons:

• Signi�cance: Each quality attribute has to be evaluated for its importance. The

importance must be high enough to justify the costs to apply a quantitative method.

However, it may make sense to model the quality attribute qualitatively. This might

be useful if the quality attribute ful�ls a secondary purpose: secondary purpose

ful�ls the quality attribute when quality-supporting activities lead to side e�ects on

the quality attribute, the reduction in its property might be not critical, but should

be kept in mind.

• E�ort: A method or metric may be available, but the expected bene�t of evaluation

and analysis of the quality attribute is dominated by the time and cost involved in

carrying out the quanti�ed analysis and would therefore not be taken into account.

This is consistent to the previously mentioned quality attribute usability: A user

study could be performed and would return quantitative results, but would be very

time-consuming and cost-intensive and would possibly not su�ciently ful�l the

expected bene�t. Note: this is of course particularly dependent on the project

requirements and must be decided on a case-by-case basis.

• Missingmetric: No method or metric exists for the quality attribute to be evaluated

to quantify or method and metric are not applicable to the underlying scenario. For

example, safety or security is often a particularly important requirement, but is not

taken into account due to a lack of applicable methods for quantifying the quality

attribute.

9.1.2. Modelling Dimensions for Not-quantified Quality Attributes

QML as a language for specifying quality requirements and quality attributes already

o�ers many entities for modelling not-quanti�ed quality attributes and their dimensions.

However, QML lacks in entities for typed instantiation of elements within a dimension

and the possibility of modelling the values at di�erent scale levels. Therefore, we extend

QML’s Dimensions meta model and the Contract meta model with entities to express

these constructs.

9.1.2.1. Dimension

Figure 9.1 shows our extension of the QML dimensions meta model. QML has been

introduced in Section 3.2.3. A quality attribute can consist of several quality dimensions.

Several dimensions could be de�ned for the quality attribute monetary costs: Initial costs,
maintenance costs and operation costs would be three examples. Each of them could model

a common unit, namely the unit monetary units.
Within the dimension, its possible values that can be used by a property, the unit, and

the semantics of larger or smaller values must be modelled.

177

9. Modelling and Analysis of Architecture Knowledge

decreasing
increasing

«enumeration»
ERelation
Semantics

name: EString

«eClass»
Dimension

«eClass»
Dimension

Enum

«eClass»
Dimension

Set

«eClass»
Order

name: EString

«eClass»
Element

*

*

1 1

1 11 1

*

*

+bigger
Element

+smaller
Element

+elements
+order

+order

1..*

nominal
ordinal
ratio

«enumeration»
EScale

domain: Enum
NumericDomain

«eClass»
Dimension
Numeric

lowerLimit: EDouble
upperLimit: EDouble

«eClass»
NumericRange

1

0..1
+range

name: EString

«eClass»
Unit

1 0..1

+unit

relSem: ERelationSemantics

«eClass»
RelationSemantics

«eClass»
DimensionScale

<T extends ENumber>

value: T

«eClass»
ScaleElement

<T extends ENumber>

+scale
Elements

1
1..*

+order *

1

java.lang.Number

«eDataType»
ENumber

1 1

+relation
Semantics

1 1

+scale«abstract»
ScalableDimension

SoM: EScale

«eClass»
ScaleLevel

Figure 9.1.: Extension of the quality evaluation space on the basis of QML. Own extensions

are marked with asterisk (based on [NMR10]).

In the original QML there are concepts to express values of dimensions. However,

these focus on numerical values with the usual semantic such as two is twice as good as

one, or four is twice as good as two, as would be suitable for the quality attribute costs.

However, to model qualitatively-valued quality attributes, a numerical dimension is less

suitable. More suitable are dimensions that can be individually de�ned. To do so, we

introduced a new dimension, the DimensionScale. This type of dimension allows either to

model any element of type String within the dimension or to assume typed values based

on numerical elements. All types of Enum ENumber can be instantiated, namely integer,

short, double, �oat or byte. The chosen type depends on the quality attribute. Each of the

possible values is represented by the ScaleElement. In contrast to numerical dimensions,

each individual element must be de�ned upfront. Then an order can be assigned to the

elements of the dimension. This makes it possible to distinguish between smaller and

larger, i.e. better or less good properties.

178

9.1. Extending the Quality Evaluation Space

The scale level of the dimension can be modelled using the ScaleLevel entity. Ordinal,

nominal or ratio scale levels are possible. When modelling qualitatively-valued quality

attributes, for example, an ordinal scale level might be appropriate. The ScaleLevel can

also be used by the DimensionEnum and the DimensionSet that allow de�ning enums or

sets of values. DimensionNumeric is implicitly on ratio scale level.

9.1.2.2. Contract

The contract and our extensions are shown in Figure 9.2. The contract speci�es quality

requirements or quality constraints of valid architectures based on the dimensions using

the Criterion. Constraints can be de�ned by de�ning upper and lower limits for a

dimension. All valid architecture candidates must meet these restrictions, i.e. the quality

properties are within the de�ned range. When no constraints should be determined in

advance, software architects model the dimensions as objective. Thus, according to the

considered quality attributes, the best possible candidate would result without taking

constraints into account. In other words, an objective improves the dimension as good as

possible.

One or more evaluation aspects can be de�ned by the Criterion entity. The criterion can

be used to determine possible valid values of the evaluation result. We extend the existing

ValueLiteral of the evaluation aspect StochasticEvaluationAspect by the ScaleLiteral,

which de�nes a set of possible ScaleElements previously de�ned in the dimension. This

allows determining valid values from the set of ScaleElements for the given requirements.

9.1.2.3. Example

With the aforementioned extensions, quanti�ed and qualitatively-valued quality attributes

can be modelled. Dimensions can be speci�ed in the suitable kind and can then be applied

to software architectures, evaluated and �nally optimized.

As an example, we consider performance as a quanti�ed quality attribute and usability

and security as a qualitatively-valued quality attribute. Figure 9.3 shows an example of

the three quality attributes. We model one dimension for each of the quality attributes.

We model the system’s response time as a dimension representing the quality attribute

performance. Response time is represented as a numerical dimension with the unit

milliseconds and a descending relation semantic, i.e. smaller values are preferred in favour

of larger values. The contract belonging to the performance can be modelled either as

constraint or objective within the optimization. For performance, we use a constraint,

namely an average response time of less than 500 ms for a particular service.

For the qualitatively-valued quality attribute Usability we de�ne the dimension User-
Satisfaction. Let us consider the subsystem Logger from our running example. The user

satisfaction of di�erent logging systems result in di�erent quality properties of the software

architecture’s quality attributes. For example, each system has its strength and weaknesses

in processing or displaying the recorded data. This results in di�erences in user satisfaction.

The dimension user satisfaction may have the values {{low}, {medium}, {hiдh}}. This

de�nes the dimension space. In addition, we de�ne an order relation. We de�ne the

179

9. Modelling and Analysis of Architecture Knowledge

name: EString

«eClass»

Criterion

«eClass»

EvaluationAspect

1
1..*+aspects

name: EString

«eClass»

QMLContractType::
Dimension

«eClass»

AspectRequirement

«eClass»

Deterministic
EvaluationAspect

«eClass»

Stochastic
EvaluationAspect

operator: EnumOperator

«eClass»

Restriction
«eClass»

Goal

«eClass»

Value
«eClass»

Frequency
«eClass»

PointEstimator

percentile: EDouble

«eClass»

Percentile
«eClass»

Mean
«eClass»

Variance

type: ENumRangeValueType

«eClass»

RangeValue

«eClass»

ValueLiteral

«eClass»

EnumLiteral
«eClass»

SetLiteral

name: EString

«eClass»

Element

value: EDouble

«eClass»

NumericLiteral

value: T

«eClass»

ScaleLiteral
<T extends
ENumber>

+lowerLimit

+rangeLimitLiteral

+dimension

+requirement

+aspectRequirementLiteral

1

1

1

1

1 0..1

+upperLimit
1 1

0..10..1

*

1 1..*

*

+values+value

«eClass»

Objective

«eClass»

Constraint

SoM: EScaleOfMeasure

«eClass»

QMLContractType::
ScaleOfMeasure 1

1

+levelOfMeasurement

«eClass»

QMLContract

less
greater
equal
lessOrEqual
greaterOrEqual

«enumeration»

EnumOperator

inclusive
exclusive

«enumeration»

EnumRangeValueType

1*

1

*

*

*

+dimensions

Figure 9.2.: Extensions of the contract on the basis of QML. Own extensions are marked

with asterisk (based on [NMR10]).

order relation {low} < {medium} < {hiдh} (not shown in Figure 9.3). We de�ne the

relation semantics as increasing in order to express greater values of user satisfaction to

be better values. Furthermore, we model the dimension user satisfaction as an objective.

We model the scale level as ordinal, since we are not familiar with the improvement of

the value medium in comparison to low or high in comparison to medium in terms of user

satisfaction. As measurement unit we have chosen the unit satisfaction. However, the unit

is not crucial for the optimization, but rather for the �nal review by software architects.

The quality attribute FunctionalFul�llment describes how well a system ful�ls its actual

task. In FunctionalFul�llment several quality dimensions are combined. However, it should

express the informal reasoning of software architects. A suitable dimension for the quality

attribute FunctionalFul�llment is LoggingCapability. This dimension should de�ne the

utility of the subsystem’s main function logging. The de�nition of such a dimension is

180

9.1. Extending the Quality Evaluation Space

unit = satisfaction
relSem = increasing

«eClass»
UserSatisfaction:
DimensionEnum

«eClass»
:Mean

operator = less
NumericLiteral = 500

«eClass»
:Restriction

ElementName =
{low, middle, high}

«eClass»
:Element

Integer: value =
{1, 2, 3, 4, 5}

«eClass»
:ScaleElement

unit = fulfilment level
relSem = increasing

«eClass»
LoggingCapability:

DimensionScale
<Integer>

«eClass»
PerformanceContract:
SimpleQMLContract

«eClass»
UsabilityContract:

SimpleQMLContract

«eClass»
FulfillmentContract:
SimpleQMLContract

unit = milliseconds
relSem = decreasing

«eClass»
ResponseTime:

DimensionNumeric

«eClass»
:Constraint

«eClass»
:Objective

«eClass»
:Value

SoM = ordinal

«eClass»
:ScaleLevel

«eClass»
:Objective

«eClass»
:Value

Figure 9.3.: Instance of extended QML dimensions and contract by using performance,

usability, and security as quality attributes each with appropriate dimensions.

Each element low, middle, high, and 1, 2, 3, 4, 5 would be represented in its

own class. For space reasons, we have represented this in a set notation.

necessary, since without its consideration the use of such a system would not bring any

additional bene�t for the optimization, but might lead to additional performance e�ort.

The dimension LoggingCapability is di�cult to quantify. Thus, we have decided to de�ne

it as qualitatively-valued. We de�ne the following numerical values for the dimension:

{1, 2, 3, 4, 5}. As before, we use an increasing relation, and the scale level ordinal. As with

user satisfaction, the dimension should be optimized as good as possible. Thus, we select

objective. The unit is de�ned as ful�lment level.

9.1.3. Quality Annotation Model

The quality annotation model (QAM) assigns the quality speci�cation to components

of software architectures. Let us consider the Logger system from our running example.

The user satisfaction of the CSVLogging component might be moderate, which is why

181

9. Modelling and Analysis of Architecture Knowledge

we choose the value medium. The Logging component can be assigned the value 4 to

the quality attribute with the dimension logging capability. Alternatively, more complex

constructs, such as instances of the quality de�nition language are possible, as presented

in the following sections.

Figure 9.4 shows the meta model of our quality annotation model. The QARepository

name: EString

«eClass»
QA

«eClass»
PCM::Repository

Component

1

1

«eClass»
QARepository

+quality
specification

«abstract»
QualitySpecification

1

1
+annotatedElement

1..*

1
+qualityAnnotation

«eClass»
QMLDimension::

Dimension

1

1
+dimension

«eClass»
QMLContract::

ValueLiteral

Quality Rule
Specification

Figure 9.4.: Quality annotations meta model for the reference between software compo-

nents, quality dimensions, and quality speci�cations. QMLDimension:: refers

to the QML dimensions. QMLContract:: refers to the QML contract.

serves as a container for the quality annotations (QA). The relation of a quality annotation

always contains several elements:

• the component to be annotated, the PCM::RepositoryComponent.

• the dimension in which the value ranges, the QMLContractType::Dimension

• the quality speci�cation.

The quality speci�cation is either the QualitySpecification that can be a single value

by using the QMLContract::ValueLiteral or an instance of the Quality Rule Speci�cation

that we introduce in the next section.

A simpli�ed instance of such an annotation of two dimensions on two components

with di�erent values is shown in Figure 9.5. The quality repository contains two quality

182

9.2. Quality Analysis using Qualitative Reasoning

«eClass»
:QA

Repository

unit = “functional
fulfillment“
relSem = increasing

«eClass»
LoggingCapability

:QMLContract
::Dimension

unit = “satisfaction“
relSem = increasing

«eClass»
UserSatisfaction
:QMLContract
::Dimension

Integer: value = 4

«eClass»
:QMLContract
::EnumLiteral

name: “middle“

«eClass»
:QMLContract
::ScaleLiteral

annotatedElement =
“Logging“

«eClass»
Logging

:QA

annotatedElement =
“CSVLogging“

«eClass»
CSVLogging

:QA

Figure 9.5.: Example instance of quality annotations with two dimensions and correspond-

ing values.

annotations, each annotating a value of a speci�c dimension to a software component of

the Logger subsystem. Simpli�ed, we assume the logging component is solely responsible

for ful�lling the logging functionality. The EnumLiteral 4 is assigned to the Logging

component as a value from the dimension LoggingCapability. The second annotation

assigns the ScaleLiteral middle from the dimension space of UserSatisfaction to the

component CSVLogging, which represents the quality attribute usability.

These two annotations can be used in a later step, the candidate evaluation, together

with quanti�ed quality attributes to jointly evaluate the speci�ed qualitatively-valued

quality attributes. The evaluation allows making design decisions regarding the software

architecture based on the Pareto-optimal results.

9.2. Quality Analysis using Qualitative Reasoning

The quality analysis using qualitative reasoning can be used to evaluate informal modelled

architecture knowledge. Such informal knowledge could be based on experience by

software architects or other experts. Another source for informal knowledge may be

knowledge bases or other documents. For representing informal knowledge, we use

the previously de�ned qualitatively-valued quality dimensions. We combine them with

qualitative reasoning from the �eld of arti�cial intelligence. This enables analysis of more

complex dependencies between informal modelled quality attributes than annotating

values to components (as shown in the previous section). The concepts of the quality

analysis using qualitative reasoning have already been published in one of our publications

in Schneider et al. [SBK18].

The quality knowledge speci�cation and analysis is divided into three parts: i) entities for

modelling knowledge (that was already introduced in Section 9.1.2), ii) rules encapsulating

183

9. Modelling and Analysis of Architecture Knowledge

more complex relationships between the knowledge, and iii) an analysis engine considering

the knowledge and rules for evaluating the quality attributes of the software architecture.

The rules for evaluating the knowledge will be introduced in Section 9.2.1 in more detail.

Afterwards, in Section 9.2.2, we introduce the knowledge analysis on the basis of the rules.

«abstract»
QualitySpecification

«eClass»
QMLDimension::

Dimension

«eClass»
QualityRule
Specification

«eClass»
MappingRuleSet

«eClass»
MappingRule

«eClass»
MappingEntry

«eClass»
QMLDimension::

Element

+affectingProperty

+resulting
Property

11..*
*
*

1..*

1..*

1..*

1

1

1

+ruleSet

+rule

+ruleEntry

+affecting
Dimension

+affected
Dimension

1

*

1..*

*

Figure 9.6.: Schematic representation of the quality rule meta model with its meta classes

and references between meta classes. QMLDimension:: refers to the QML meta

model.

9.2.1. Quality Rule Specification

A service of a system is realized by several components, which are connected with each

other by connectors. Together, they realize services. The quality property of a certain

service depends on these components and their properties. This characteristic is used

by the qualitative rule speci�cation and the analysis. The analysis determines the rele-

vant components for the service, calculates their dependencies and the resulting quality

properties.

Figure 9.6 shows a schematic representation of our meta model of the quality rule

speci�cation. The speci�cation of the rules consists of three parts, namely the mapping

184

9.2. Quality Analysis using Qualitative Reasoning

entries (ME), the mapping rules (MR) and the mapping rule set (MRS). The mapping

rule set consists of mapping rules, while a mapping rule consists of mapping entries. A

mapping entry can be compared to a set with key(s) and value elements. The mapping

entry de�nes two kinds of quality properties, namely the quality property that is a�ecting

(a�ectingProperty) and quality attributes that are a�ected (resultingProperty). A mapping

entry can be seen as mapping speci�cation from an a�ecting property to an a�ected

property.

As introduced before, the quality property of a certain service depends on the quality

properties of all components that are part of the service. When analysing the resulting

quality property for a certain component of the service, we need to consider the quality

properties of the components connected to that component. Thus, the connected com-

ponents can have in�uence on the quality attributes of the component whose quality

attributes are calculated. To evaluate the quality attribute of a component that depends on

another component, we need the mapping rule. The mapping rule de�nes the mapping

entries for a certain quality dimension. In other words it describes what value results

if a quality property of another component needs to be taken into account. A quality

dimension can also be in�uenced by other quality dimensions. Thus, there can be several

a�ecting properties resulting in one value. The mapping rule set in combination with the

mapping rule describes how a quality dimension of a component is in�uenced by several

other quality dimensions of connected components.

The result always corresponds to a particular component that is currently calculated.

At the end the results of all components of the service are reduced to a single value,

representing the quality property of the service.

The interrelationships and semantics of the entities are introduced in the following in

more detail.

9.2.1.1. Mapping Entry

Model

A mapping entry E represents the pair E B ((kn)n∈o ,v), while n is the number of input

values mapping to one v , o ⊂ N+, and o is a �nite set. (kn) represents the sequence of

all input elements, i.e. QMLDimension:Element, used for the mapping and v represents the

resulting quality property of a quality dimension considered. A mapping entry contains a

sequence of input elements, because several quality attributes, i.e. the �rst element of the

pair E, can a�ect the resulting quality property (the result) of another quality attribute.

More precisely, on the basis of the mapping entry E the resulting quality property v
of another dimension based on the sequence of elements of several input dimensions

(kn), i.e. E : (kn) → v is calculated. All elements kn and v of a mapping entry must

be de�ned within the same dimension space D, i.e. (kn) ,v ∈ D. D contains all valid

elements de�ned in ScaleLiteral. If only one dimension, e.g. privacy is considered, there

is only one input sequence. If several dimensions, e.g. privacy and accessibility should

be considered there are two input sequences mapping on one resulting value v . The size

and order of the sequences must agree to each other, so that a mapping can be calculated.

185

9. Modelling and Analysis of Architecture Knowledge

MR: Privacy

IN: ++ + 0 -

OUT: + 0 - --

Table 9.1.: One-dimensional mapping rule with a sequence of mapping entries using the

example dimension privacy (according to [SBK18]). The mapping rule speci�es

the in�uence of privacy on another dimension to be determined.

MR Accessibility

IN ++ + - --

P
r
i
v
a
c
y

++ ++ ++ + 0

+ + + - 0

0 0 + - -

- - 0 -- --

-- - - -- --

Table 9.2.: Multi-dimensional mapping rule with sequences of mapping entries using

the example dimension privacy and accessibility (according to [SBK18]). The

mapping rule speci�es the in�uence of privacy and accessibility on another

dimension to be determined.

Therefore, consistency de�ned when two input sequences are equally in length and order:(
k1n

)
=

(
k2m

)
⇔ n =m ∧ ∀ (i)ni=1

(
k1i = k

2

i

)
.

It makes sure that two sequences are equal in length n,m, and equally in the dimension

space.

Example

A mapping entry �rst requires a dimension to model the values of the dimension space

used as input and output values. Let us assume the dimension Privacy may have the

dimension space {−−,−, 0,+,++}.
Let as assume the mapping entry ((a,b), c), while the input value a and b is mapped to

the output value c . An example mapping maps the input value ++ of the quality attribute

privacy to the output value + (cf. second column of Table 9.1). Semantically the property

of privacy with the value ++ leads to the resulting value + (what in turn could mean very

high security anywhere in the system can not improve the security strength since there is

a weak link in the system).

9.2.1.2. Mapping Rule

Model

A mapping rule R results in a quality property of a quality dimension by a given quality

property of another quality dimension. A mapping rule consists of quality dimensions

qn and a set of mapping entries {em}, i.e. R B (qn, {((kn) ,v)m}), while n is the number of

quality dimensions, and m is the number of mapping entries. Each mapping entry em ∈ R
of a mapping rule must be uniquely assigned to a resulting output value of the dimension.

186

9.2. Quality Analysis using Qualitative Reasoning

MRS: Reliability

MR: Fault tolerance

IN: ++ + - --

OUT: ++ + -- --

MR: Recoverability

IN: ++ + 0 - --

OUT: ++ + - - --

Table 9.3.: Mapping rule set showing the in�uence of the mapping rules for fault toler-

ance and recoverability on the reliability of the currently analysed component

(according to [SBK18]).

The mapping rule can only process de�ned input values. Unde�ned pairs between input

element and output value do not have any e�ect on the resulting result. This reduces

the initial modelling e�ort, because rules can be de�ned coarse-grain �rst and can then

re�ned as needed.

Example

A mapping rule comprises the mapping entries de�ned above. Table 9.1 shows a mapping

rule for the one-dimensional case of the privacy dimension.

The two lines correspond to the sequence of the mapping entries, whereby one mapping

entry corresponds to one column. Semantically, the mapping rule is based on the previously

introduced example for the mapping entries.

Table 9.2 shows a mapping rule for the multi-dimensional case. First, a further dimension,

accessibility, is de�ned. For a better understanding, we have assigned the same dimension

space of privacy to accessibility. However, the two spaces may di�er as long as the

conditions de�ned in the previous section are satis�ed.

In the multi-dimensional cases, for example, several values from di�erent dimensions

can be mapped to a result value of another dimension considered. The approach is designed

to analyse the resulting quality of a certain system or service. Thus, the quality attribute

privacy is in�uenced by the privacy and accessibility of another component in the system.

The mapping entry for this relationship might be modelled as follows: Privacy = ++,

Accessibility = + leads to Privacy = ++. Semantically, this mapping entry expresses that

the privacy of another component with the value ++ in combination with the accessibility

+ at the end results in the value ++. The dimension of the value ++ gets semantic in

combination with the mapping rule set.

Similarly, this can be extended to any number of dimensions. It should be noted that

the modelling e�ort per dimension increases accordingly.

9.2.1.3. Mapping Rule Set

Model

The MRS comprises the mapping rules de�ning the in�uence between di�erent quality

attributes. Further, it de�nes how a particular quality attribute of a component is in�uenced

187

9. Modelling and Analysis of Architecture Knowledge

by quality attributes of another component. The MRS comprises several mapping rules rn

Algorithm 3 Function for the quality knowledge analysis of a software architecture

(according to [SBK18]).

1: function KnowledgeEvaluation(so�wareArchitecture, QARepository)

2: qualityValues← []
3: (componentsn) ← TopologicalSort(so�wareArchitecture)
4: for all component in (componentsn) do
5: qualityValues ⊕�alitativeReasoning(component, QARepository)

6: end for
7: return Aggregate(qualityValue)
8: end function

and a quality dimension d that is a�ected by the rules, i.e. MRS B (d, rn). Values that are

included in the rules and values that are derived from the result of the rules must always

correspond to the values that occur within the dimension.

Example

Table 9.3 shows an example of a mapping rule set for the quality dimension reliability.

In addition, we de�ne the two dimensions of fault tolerance and recoverability with the

dimension space that we have already used in the previous examples. The mapping rule

set results in the output value that de�nes the in�uence of the mapping rules for the

dimension fault tolerance and recoverability of in�uencing components on the reliability

of the component under consideration. According to Table 9.3, Recoverability = 0 of a

component if the service results in Reliability = −. If values of several dimensions have

to be aggregated to one value, mean or a mapping rule can be used for aggregating the

values.

In practice, usually several components in�uence the quality of the components under

consideration. Details of the evaluation are introduced in the following section.

9.2.2. Quality Knowledge Analysis

The quality knowledge analysis evaluates the quality properties of a software architecture.

The software architecture, the modelled architecture knowledge and the rules modelling

the in�uences are required as inputs. The process of knowledge analysis is represented

by four algorithms that are introduced in the following. The← symbol describes the

assignment of a value to a variable. The ⊕ symbol describes the operation of adding an

element to a list.

The evaluation of informally modelled architecture knowledge of a software architecture

essentially consists of three parts:

• Topological sorting: Topological sorting arranges all components of a system

hierarchically so that calculations that are dependent on other components of the

system can be analysed linearly, i.e. no returns or recursions are necessary for the

analysis.

188

9.2. Quality Analysis using Qualitative Reasoning

WebGUI Media
Mngmt

TagWater
marking

Re
Encoder

Media
Access

Data
Storage

DB

UserDB

User
Manage-

ment

UserDB
Service

Packaging

UserDB
Adapter

Legend:
dependencyComponent

Figure 9.7.: Acyclic graph of Media Store’s system view-type.

• Qualitative reasoning: Qualitative reasoning evaluates the architecture knowl-

edge annotated to software components of a system and the rules that relate this

knowledge and results in one or more result values.

• Value aggregation: In value aggregation, several result values are combined to one

total result, which can then be processed or optimized in further steps.

Algorithm 3 de�nes the main function of the quality knowledge analysis. The function

KnowledgeEvaluation requires the software architecture and the QARepository that con-

tains the quality attribute annotation of the software components as input parameters.

The software architecture includes the architecture of the system, with interfaces and

connectors, as well as dependencies between the services. This information is necessary

for the topological sort and qualitative reasoning analysis.

Algorithm 3 �rst generates a list containing all results of the qualitative reasoning func-

tion. All evaluated values belonging to the software architecture model are subsequently

added to this list. In the second step, all components of the software architecture model

are topologically sorted. Subsequently, the qualitative reasoning function evaluates the

quality properties of the given components. In the last step, if there are several values,

these values are aggregated and �nally returned.

189

9. Modelling and Analysis of Architecture Knowledge

9.2.2.1. Topological Sorting

To evaluate the quality properties of software architectures, all other components that

in�uence the component under consideration must be included in the analysis in addi-

tion to the component that is examined. Each of these components can also depend on

other components. This requires all components from which a considered component is

dependent have already been evaluated. However, dependency can nest itself theoretically

arbitrarily deep. Based on the assumption that a software architecture does not contain

cycle dependencies, we use an acyclic graph from the components and their connectors,

which in turn ful�ls the assumption that all nodes in a dependency have already been

evaluated.

With the help of topological sorting, we generate a linear order of a directed acyclic

graph. For topological sorting we take the nodes of a graph as components and its edges

as connectors between the required and provided services of two components. When all

components of a system are topologically sorted, an evaluation of the quality attributes

can be performed linearly.

Let us consider our running example from Chapter 2, the Media Store system. The

acyclic graph of the system view-type is shown in Figure 9.7. Let us calculate the re-

sulting quality property of a dimension of the MediaManagement component. Thanks to

the topological sorting the dependencies can be derived: Media management depends

on TagWaterMarking, Packaging and MediaAccess. TagWatermarking in turn depends on

ReEncoder. ReEncoder depends on MediaAccess and MediaAccess on DataStorageDB. If

the MediaManagement quality properties should be calculated, the quality property of

MediaAccess is calculated �rst. Once this has been calculated, the ReEncoder quality

property can be calculated. The quality property of TagWatermarking can be calculated

next. Packaging has no dependencies, so all MediaManagement dependencies are already

calculated. On this basis, the resulting quality property of MediaMmanagement can now be

calculated.

9.2.2.2. Qualitative Reasoning

The qualitative reasoning function evaluates the given component and returns the resulting

quality property. The function uses the mapping rule set of a particular component to

calculate the in�uences of other components on the quality attributes of the component

under consideration. Algorithm 4 shows the procedure of qualitative reasoning for one

component of the system.

First, the algorithm determines all components that in�uence the considered compo-

nent. To do this, the Required function returns all components that provide the services

the considered component requires by its required interfaces from other components.

These required components then in�uence the resulting quality properties of the quality

attributes through their provided services. The topological sorting ensures that every

required mapping rule set of the components ful�lling the required services has already

been evaluated and its results can be used for the evaluation of the component under con-

sideration. The GetQualVals is a getter function for the values of a component previously

calculated. In the case of multi-value results, i.e. when the function returns several values

190

9.2. Quality Analysis using Qualitative Reasoning

Algorithm 4 Function for quality reasoning on one component (according to [SBK18]).

1: function �alitativeReasoning(component , QARepository)

2: qualityValues← []
3: (componentsn) ← Reqired(component)
4: for all c in (componentsn) do
5: qualityValues ⊕ Get�alVals(c)

6: end for
7: req← Aggregate(qualityValues)
8: for allmrs in GetMRSs(component,QARepository) do
9: qualityValues ⊕ CalculateQP(mrs , req)

10: end for
11: qualityValues ⊕ Get�alVals(comp)

12: qualityValues← Aggregate(qualityValues)
13: Update�alityValues(component, qualityValues,QARepository)

14: return qualityValues
15: end function

as a result, the algorithm aggregates the values for each quality dimension to a single value

result. This result is then included in the evaluation on the basis of the mapping rule set.

The GetMRS function returns the mapping rule set of the component under consideration.

The actual evaluation of the mapping rule set takes place in the CalculateQP function that

is shown in Algorithm 5 in detail. The CalculateQP function returns the resulting quality

property on the basis of the mapping rule set and the quality property. This result can be

comprised of multiple values and must therefore be aggregated. Before the quality proper-

ties, i.e. qualityValues are �nally returned, the mapping rule set matching the component

is updated with the newly calculated values (ready to be used in the next calculation

step). UpdateQualityValues assigns the calculated qualityValues to the corresponding

component.

Algorithm 5 shows the CalculateQP function in detail. Using a mapping rule set, which

contains the in�uenced quality dimensions and mapping rules as well as the quality

properties resulting the qualitative reasoning, the algorithm calculates the in�uence of the

rules on these quality properties.

In lines 3 – 18 the relevant rules to be applied are determined. To do so, every rule

is analysed for relevant quality dimensions. The Dimensions helper function extracts all

dimensions of a mapping rule. Dimension extracts the dimension of qualityVal. If the

dimension of qualityVal matches in the process relevant quality dimension, the value of

the dimension is added to the set evaluatedVals.

In lines 13 – 17 the resulting properties of a dimension on the basis of mapping rules

are calculated. Several mapping rules and mapping rule sets can result in several resulting

quality properties, the evaluatedVals. GetKey is a helper function to get the sequence of a

mapping entry, The function GetME is a helper function to get the resulting quality property

of a mapping entry me . keyElement is a temporary variable that is used to store values

relevant for the calculation of the resulting quality attributes.

191

9. Modelling and Analysis of Architecture Knowledge

Algorithm 5 Calculation of the quality property for a dimension using a mapping rule

set (according to [SBK18]).

1: function CalculateQP(mrs , qualityValues)
2: evaluatedVals← []
3: for allmr inmrs do
4: keyElement ← []
5: (qn) ← Dimensions(mr)

6: for all q in (qn) do
7: for all qualityVal in qualityValues do
8: if Dimension(qualityVal) == q then
9: keyElement ⊕ qualityVal

10: end if
11: end for
12: end for
13: for allme inmr do
14: if GetKey(me) == keyElement then
15: evaluatedVals ⊕ GetME(me)

16: end if
17: end for
18: end for
19: resultingVal← Average(evaluatedVals)
20: return (Dimension(mrs), resultingVal)
21: end function

Depending on the scale level, we calculate the arithmetic mean or the median using

the Average function. Alternatively, another mapping rule could be applied. The resulting

quality property can then be used as result or can be stored to be used for calculating the

quality property of the next component in the topology.

9.2.2.3. Value Aggregation

The Aggregate function combines several quality property values into one result value.

The function therefore inputs a list of values and combines them to one result value. The

values that belong to the same dimension can be aggregated to one value for further

processing or serve as �nal result.

Algorithm 6 shows the process of the aggregation function. In lines 3 – 5, the quality

properties are grouped by dimension. In the next step, lines 7 – 10, depending on the

scale level, the mean value (by the Average function) is determined either by arithmetic

mean or median, the dimensions are summarized and �nally returned so that they can

be further processed in the calling function. The valueForDimension function returns the

valueLiteral from the qualityValue.

192

9.3. Candidate Evaluation

Algorithm 6 Function to the aggregation of multiple quality results.

1: function Aggregate(qualityValues)
2: dimensionToValue← [][]
3: for all qualityValue in qualityValues do
4: dimensionToValue[Dimension(qualityValue)] ⊕ valueForDimen-

sion(qualityValue)

5: end for
6: aggregated�alityValPerDimension← []
7: for all dimension in dimensionToValue do
8: aggregated�alityVal← Average(dimensionToValue[dimension])
9: aggregated�alityValPerDimension ⊕ (dimension, aggregated�alityVal)

10: end for
11: return aggregated�alityValPerDimension
12: end function

9.3. Candidate Evaluation

Using the aforementioned models, namely the simple assignment of values from the

QML to software components or the quality speci�cation model based on qualitative

reasoning, quality dimensions of qualitatively-valued quality attributes can be annotated

on components of software architectures. Quality properties for a speci�c service of the

software architecture can then be calculated. This section has already been described in

one of our publications Busch et al. [BK16].

Let d be a quality dimension (such as user satisfaction) and let vd(m) be the quality

value resulting from the qualitative reasoning analysis or an annotated value to a software

component (such as the value 4 in Figure 9.5) in a candidate modelm. Further, let us de�ne

a simple objective function Φd from the set of valid PCM instances M to the set of possible

values Vd of the quality dimension d (from the QML dimensions model in Figure 9.1)

as Φd : M → Vd . Φd(m) is the resulting quality property for a particular service of the

software architecture for a candidate modelm: Φd(m) = vd(m).

We can now use the objective function Φd to include the corresponding dimension as

objective in the design space exploration process to optimize quality attributes for speci�c

services. This also enables a joint consideration of quanti�ed and not-quanti�ed quality

attributes with their respective dimensions [BK16].

9.4. Assumptions and Limitations

• Annotation of values (from the QML) to software components: When soft-

ware architects annotate values directly to software components without using the

quality speci�cation model, only exactly one value can be assigned to one software

component per system for each dimension. This restriction results from the lack of

a function for composing several values of the same dimension that are annotated

to individual components.

193

9. Modelling and Analysis of Architecture Knowledge

• Order on values of dimensions: Without an order on the values within qualitatively-

valued dimensions with nominal scale level, the objective based automated analysis

and optimization is no longer possible. However, it can be used to de�ne constraints

or goals that should be achieved by the architecture candidates.

• Cyclic Software Architectures: Software architectures in which components are

assembled that require each other are not supported. Topological sorting is based

on a graph structure that requires a directional and acyclic graph. However, the

de�nition of cyclic dependencies is an anti-pattern for good modelling of software

architectures according to [Pag88]. Nevertheless, such architectures can always be

converted into a �at structure by combining cyclic components into one and can be

computed with this method after the transformation.

9.5. Summary

This chapter introduces the quality e�ect speci�cation. The modelling concepts can be

used to qualitatively model informal knowledge, applied to component-based software

architecture models, and (automatically) evaluated by using qualitative reasoning mecha-

nisms. The models and analyses can be combined with quantitative objective functions.

The combined models and analyses can be used in automated processes such as CompARE
to analyze and optimize software architectures. The focus can be extended from quality at-

tributes with quantitatively determinable quality attributes to the analysis of qualitatively

modelled knowledge.

194

Part III.

Evaluation and Conclusion

195

10. Evaluation & Case Study Systems

This chapter describes the evaluation of CompARE. As described in Chapter 6, CompARE
can be integrated in the existing component-based software engineering process (CBSE).

One of the goals of the evaluation is to show possible bene�ts when using CompARE in

CBSE.

Software architects should have a tool-supported approach to make better and well-

informed design decisions that a�ect the software architecture and its quality attributes.

The two main goals can be formulated as follows: (1) CompARE should support software

architects in reusing complex subsystems to support software requirements by features,

systematically making better architecture decisions and at the same time reducing the

manual analysis e�ort. (2) In addition to quanti�ed quality attributes, the analysis should

allow expressing informally available architecture knowledge to include additional aspects

not previously speci�ed in quantitative terms for improving the optimization.

For the evaluation of the two main goals, we consider di�erent validation levels sug-

gested by Böhme and Reussner [BR08] covered by a goal-question-metric (GQM) plan

([Sol+02]). To do so, we incorporate new features intro three base systems. We model two

subsystems as reusable systems realizing features. They are represented by two di�erent

feature completions, each with two di�erent real-world subsystem solutions. Each system

is either used in real application contexts or is based on real applications. All systems

and their models should therefore represent realistic settings and should support relevant

business requirements.

The remainder of the evaluation is as follows: In Section 10.1, we introduce the validation

questions and apply them to the levels of validations. Section 10.2 shows our evaluation

concept and the GQM plan. Section 10.3 describes the implementation of CompARE in

the automated design space optimization framework PerOpteryx1
. In Section 10.4, we

introduce the systems we use as our extending systems, namely the subsystem solutions.

Section 10.5 introduces the feature completions for the subsystem solutions. The base

systems, used for including the features are explained in detail in Section 10.6.

Chapter 11 introduces the �rst part of the evaluation. We demonstrate how features

can be included into a base architecture using real-word systems and introduce the ques-

tions to be answered by using CompARE in typical design decision scenarios regarding

the introduction of new features. Chapter 12 demonstrates how qualitatively modelled

knowledge can be used to answer evaluation questions in the context of di�erent real-word

systems. We demonstrate how qualitative knowledge can be combined with quantitative

objective functions and discuss possible evaluation questions on software architecture de-

sign. Finally, Chapter 13 introduces an additional scenario demonstrating how annotation

positions of features and di�erent solutions can be evaluated automatically to support the

1
https://sdqweb.ipd.kit.edu/wiki/PerOpteryx

197

10. Evaluation & Case Study Systems

product selection. We use a base system that is loosely based on a real system and two

real-world subsystem solutions to be included in the base system.

In our three part evaluation, we apply 11 scenarios and several sub scenarios to demon-

strate the use and possible bene�ts of CompARE.

10.1. Levels of Validation for the CompARE Approach

CompARE is a model-based approach for reuse and analysis of features in software archi-

tecture models. Reuse allows automatic model generation with subsequent evaluation and

optimization of di�erent degrees of freedom. The three validation levels of Böhme and

Reussner have been adapted according to the validation requirements.

10.1.1. Level I: Validation of Accuracy

Level I considers the accuracy of predictions. The accuracy of predictions is concerned

with the comparison of predicted values and real values actually determined at the systems

to be evaluated. First of all, metrics are required to evaluate the accuracy. Then values are

collected, for example by measurements, interviews or plausible derivation (comparison

to the gold standard), then represented using the metrics and �nally the predicted values

are compared with the collected values. Two types are relevant:

1. The accuracy of predictions based on simulations or analytical models compared to

observed (measured) values of the actual system represented by the model.

2. The accuracy of qualitatively valued quality attributes represented by modelling

informal architecture knowledge using qualitative reasoning.

Prediction Accuracy: The prediction model must output accurate predictions for

typical quanti�ed quality attributes, such as performance. CompARE must also provide

accurate results after the variation of the models when applying feature completions and

their degrees of freedom.

Qualitative Analysis Accuracy: The results of the estimation of qualitatively valued

quality attributes must result in the same orientation as the actual value of the system. This

means if a design decision in�uences the quality attributes of the actually implemented

system positively, the positive in�uences must also be visible in the estimation and vice

versa. We discussed the validation of accuracy in the appropriate sections.

10.1.2. Level II: Validation of Applicability

Level II is considered with the applicability of CompARE. Model-driven approaches require

information derived from the actual system and its artefacts, such as documentation,

source code, and speci�ed requirements. On the basis of this data, analyses can be carried

out which estimates quality attributes, without the presence of source code or the necessity

of its execution.

198

10.2. Evaluation Concept

For automatic analysis and processing, however, data must not only be collected, but

must also be able to be represented by a model. By using models the analysis and optimiza-

tion can be processed automatically. Automated optimization and result derivation allows

�nding better architecture candidates that have been unknown to software architects.

CompARE focuses in particular on the feature-driven integration of new functionalities

in existing base systems (or systems under development), as well as the modelling of

informally available architecture knowledge for the joint evaluation and optimization of

quality attributes. The modelling and reuse of the subsystems has the following advantages:

Subsystems should be easier reusable by software architects, at the same time hiding the

architecture complexity of complex subsystems, so that the e�ort for reusing the models

should remain low. Several subsystem solutions should be automatically exchanged to

�nd the optimal solutions and make the product selection easier.

A further relevant aspect, besides reuse and automatic usage in automatic processes,

is the role-separated modelling of the necessary data. In contrast to the classical CBSE

process, new roles are necessary especially for modelling and reuse of subsystems.

In summary, the level II validation of applicability is considered with the ability to

apply models to real systems within the CBSE process taking into account di�erent roles,

i.e. to create models for automatic weaving, evaluation and optimization. In addition to

modelling of subsystems, the reuse of models is particularly relevant to enable software

architects to con�gure previously generated models for the time-e�cient evaluation of

design decisions of certain base systems.

10.1.3. Level III: Validation of Benefits

Validation level III is concerned with the bene�ts of the approach. Applied to CompARE, the

original CBSE process could be compared with the extended CBSE process. The comparison

includes both the additional models required by CompARE and their modelling e�ort as

well as new insights that cannot be derived without CompARE or can only be derived with

great e�ort.

Level III validation could be carried out by comparing the results in terms of cost,

time, and compliance with quality requirements to other processes. Such a comparison,

however, causes high costs. Comparing two processes has a lot of threats to validity: The

project success is dependant to several factors. Due to di�erences in the experiences of

the participants, challenges regarding the complexity of the project and the willingness of

the involved stakeholders to cooperate, the outcome is highly in�uenced.

Due to the high e�ort and costs involved in level III validation, we do not carry out this

level, but extend level II in order to have a look on potential bene�ts by using CompARE.

10.2. Evaluation Concept

This section describes the evaluation concept for the CompARE approach. The concept is

based on challenges described in Section 1.2. We are guided by a Goal Question Metric

(GQM) plan as suggested by Basili and Weiss [Sol+02]. The goal is to validate the hypothe-

ses and thus validate the concepts of the CompARE approach. First, evaluation questions

199

10. Evaluation & Case Study Systems

Problem Statement I:
Reuse of models is hard

Problem Statement II:
Qualitative knowledge unconsidered

Hypothesis I.I:
Subsystem Architecture Model

Hypothesis I.II:
Feature-driven reuse

Hypothesis III:
Automated model generation and optimization

Hypothesis II.I:
Qualitative Reasoning

Hypothesis II.II:
Knowledge Combination

Hypothesis I:
Automated model weaving

Hypothesis II:
Reuse informal knowledge

EQ I.I.1: Reference
Architecture

EQ I.I.2: Application of
Inhomogeneous
Model

EQ I.II.1: Uniform
Model Reuse

EQ II.I.2: Analysing
Qualitative
Knowledge

EQ II.I.1: Modelling
Qualitative
Knowledge

EQ I.II.2: Automated
Solution
Evaluation

EQ II.II: Combined
Analysis

Problem
 Statements

Hypotheses

Evaluation
Questions

EQ III.2: Requirements
Prioritization

EQ III.1: Architecture
Design
Decisions

Figure 10.1.: Overview of the evaluation structure.

are de�ned that support the hypotheses. Then we describe metrics in the form of scenarios

and their meaning, which should explain and demonstrate the questions and bene�ts.

10.2.1. Hypothesis I: Automatedmodel weaving

Hypothesis I states that “by using CompARE, automatic model generation in software

architecture design enables reuse of subsystems.” The hypothesis is divided into two

sub-hypotheses. The associated contributions of the respective sub-hypotheses are inter-

related that the hypothesis above is ful�lled. Two parts are required for automatic model

generation using model weaving, namely the reuse model and the ability to reuse models in

a feature-driven way. Sub-hypothesis I.I considers the reuse model, while sub-hypothesis

I.II considers reuse by features.

10.2.1.1. Hypothesis I.I: Subsystem architecture model

Hypothesis I.I proposes “a reference architecture can be applied to a set of (functionally)

similar software architecture models, so that they have a common structure and can be

reused by automatic model generation.” For the hypothesis, two evaluation questions

must be answered: First, we must clarify whether a reference architecture can be found

for di�erent software architecture models that implement similar features. Secondly, it

must be clari�ed whether inhomogeneous software architecture models can be applied to

this reference architecture so that they can be automatically included into base software

architecture models. These evaluation goals are re�ned into two evaluation questions:

Evaluation Question I.I.1: Reference Architecture
Can a reference architecture be found for a class of reusable subsystem solutions

that re�ects the internal architecture of di�erent solutions?

200

10.2. Evaluation Concept

Evaluation Question I.I.2: Application of Inhomogeneous Models
Can inhomogeneous software architecture models, i.e. subsystem solutions, corre-

sponding to the same subsystem be applied to the reference architecture to enable

automatic model weaving?

10.2.1.2. Hypothesis I.II: Feature-driven reuse

Hypothesis I.II states “a subsystem modelled with the reference architecture and several

subsystem solutions can be reused by annotating features and can be automatically included

by using CompARE in a software architecture model.” In addition, the software architect

reusing the subsystem should receive suggestions on the product selection. Both evaluation

goals are answered by two evaluation questions:

Evaluation Question I.II.1: Uniform Model Reuse
Can software architecture models that are structured using the reference architecture

be reused in another software architecture model by the annotation of features?

Evaluation Question I.II.2: Automated Solution Evaluation
Can models of subsystem solutions that are structured using the reference architec-

ture be automatically included in a base architecture model and optimized, so that

software architects get suggestions on the optimal product selection?

10.2.2. Hypothesis II: Reuse informal knowledge for architecture
optimization

Hypothesis II states that we can “reuse informal architecture knowledge in automated

design space exploration approaches”. Even informally available architecture knowledge

can be analysed without quantitative measures. Informally modelled knowledge can

be used together with quantitatively modelled knowledge. The combination of these

two knowledge representations can then be used to automatically optimize software

architecture models according to quality attributes. The hypothesis is divided into two sub-

hypotheses, namely sub-hypothesis II.I, which considers qualitative reasoning that can be

used to represent qualitative knowledge. Sub-hypothesis II.II refers to the combination of

both modelling types of representation and proposes how to analyse them in combination.

10.2.2.1. Hypothesis II.I: Qualitative Reasoning

Hypothesis II.I considers modelling and analysis of informal architecture knowledge. This

type of architecture knowledge is either based on expert experience or refers to documented

knowledge that can also be available in natural language. We model this knowledge, so

that it can be used for analyses or optimizations. Informal architecture knowledge can be

modelled and automatically analysed by qualitative reasoning techniques. The following

two evaluation questions re�ne the two evaluation goals:

Evaluation Question II.I.1: Modelling Qualitative Knowledge
Can informal knowledge such as expert knowledge or knowledge from documents

be modelled so that it can be used for automatic analyses?

201

10. Evaluation & Case Study Systems

Evaluation Question II.I.2: Analysing Qualitative Knowledge
Can qualitatively modelled knowledge be analysed so that complex relationships be-

tween quality attributes can be observed in component-based software architecture

models?

10.2.2.2. Hypothesis II.II: Knowledge Combination

Hypothesis II.II considers the combination of two types of knowledge representation. The

hypothesis considers qualitatively modelled knowledge can be combined with quantita-

tively modelled knowledge to support new trade-o� decisions. The following evaluation

question analyse the hypothesis:

Evaluation Question II.II: Combined Analysis
Can qualitatively represented and quantitatively represented architecture knowledge

be combined to derive meaningful results from the analysis?

10.2.3. Hypothesis III: Automatedmodel generation and optimization

Hypothesis III is based on the two previous hypotheses and considers additional value of

the models and analyses in combination. Hypothesis III proposes by “de�ning a reference

architecture for structuring subsystems and their di�erent solutions, new architecture

decisions, such as feature-driven use can be evaluated and requirements can be prioritized

according to both qualitatively modelled and quantitatively modelled quality attributes.”

The hypothesis is examined by the following two evaluation questions:

Evaluation Question III.1: Architecture Design Decisions
Which architecture design decisions considering quality attributes can be evaluated

when reusing subsystem solutions which are applied to the subsystem’s reference

architecture?

Evaluation Question III.2: Requirements Prioritization
Can requirements be prioritized on the basis of the results of the proposed method?

10.2.4. Achieved Levels of Validation

On the basis of the aforementioned levels of validation of Böhme and Reussner, we

classify the implemented contributions. We implemented CompARE in PerOpteryx to

validate the results of automatic model weaving and the qualitatively modelled quality

attributes, as well as their combination with quantitative objective functions. We base

on the optimization of models that was proposed by A. Koziolek [KH06b] and evaluated

in various case studies such as in Gooijer et al. [Goo+12]. On this basis, we discuss the

accuracy in Section 11.10 and Section 12.4 (level 1).

Using di�erent case study systems, comprising real existing systems and scienti�c

systems, we applied di�erent real world scenarios and showed which scenarios and

questions can be answered by using CompARE (level 2). We were not able to conduct a

study on the economic bene�ts of the overall approach. This was not possible due to the

202

10.3. CompARE Implementation

No. Evaluation Question Section Level

EQ I.I.1 Uniform Software Architecture

10.5 2

EQ I.I.2 Inhomogeneous Model Application

EQ I.II.1 Uniform Model Reuse 11, 13 2

EQ I.II.2 Automated Solution Evaluation 11.3, 13 2

EQ II.I.1 Modelling Qualitative Knowledge

12.2, 12.3 2

EQ II.I.2 Analysing Qualitative Knowledge

EQ II.II Combined Analysis 12.2, 12.3 3

EQ III.1 Architecture Design Decisions 11.4, 11.5, 11.7, 11.8, 11.9, 13 3

EQ III.2 Requirements Prioritization 11.5, 11.7, 12.2.1, 12.3.2, 13 3

Table 10.1.: Evaluation questions, section where to �nd the in-depth description and

achieved evaluation levels. Several sections are cross cutting, and several

questions are considered in several sections. The overview shows the main

sections evaluating the questions.

lack of available scenarios in real industry context and the absence of a realistic, accessible

setups. Nevertheless, one of CompARE’s main goals is reducing the manual e�ort required

for modelling, simulating and evaluating results. The reduction of e�ort can therefore

serve as estimation of economic bene�ts (level 3). An overview of the achieved levels and

the corresponding evaluation scenarios is shown in Table 10.1.

10.3. CompARE Implementation

CompARE extends PerOpteryx by two units, namely the weaving engine and the evaluation

of qualitatively modelled knowledge. The weaving engine integrates the subsystems and

its solutions that include the selected features in the base architecture. The evaluation of

qualitatively modelled knowledge evaluates quality attributes on the basis of qualitative

reasoning.

10.3.1. Weaving Engine

Figure 10.2 shows an overview of the concepts of the CompARE weaving engine. The

weaving engine consists of seven steps. Three input models are used, namely the base soft-

ware architecture, the feature annotations and the reference architecture of the subsystem,

together with the software architecture of the subsystem solutions.

In the �rst step, the Identify Complementum Visnetis step, the selected positions are

determined to apply the features. the these positions, the desired features are included

later and connected to the base architecture.

203

10. Evaluation & Case Study Systems

Identify Complementum Visnetis

Extract Features

Identify Solutions

Adapter Inclusion

Create
Req./Prov.
Interfaces

Modify
Abstract
Behaviour

Abstract Behaviour Inclusion

Create Assembly Connectors

Deploy FCCs on Resources

Modify
View-Types

Integrate
Subsystem

Analyis of Deployment Constraints

Derive
Weaving
Locations

Software Architecture Feature Annotations

Weaving Engine

Subsystems

Create
Adapters

Figure 10.2.: Conceptual overview on CompARE’s weaving engine.

The desired features are extracted in the second step, the Extract Features step. The

features annotated in the software architecture are then compared with the selected

features.

In the third step, the Identify Solutions step, all solution alternatives are identi�ed that

support the previously selected features. Depending on the selected inclusion mechanism

(adapter or extension of the abstract behaviour), the corresponding mechanism is selected.

For the Adapter Inclusion, all necessary interfaces (required and provided) must �rst be

determined, generated and assigned to the adapter component. Depending on the selected

appearance (i.e. before, after, around), the required abstract behaviour of the adapter is

generated. In addition, in�uenced view-types are modi�ed.

For the extension of the Abstract Behaviour, we �rst derive all a�ected weaving locations.

On the basis of the abstract control �ow de�nition language, the weaving locations are

not explicitly modelled, but must be derived �rst. In the second step, call sequences to the

subsystem are generated at the corresponding derived locations. Similar to the extension

204

10.3. CompARE Implementation

using adapters, the appearance must be considered and the call sequences generated

accordingly.

In the next step, the Create Assembly Connectors, the components must be assembled.

The new assembly connectors a�ects both subsystem software components and generated

adapters.

In the sixth step, the Deployment of FCCs on Resources, CompARE deploys the com-

ponents of the FCCs to hardware resources. Finally, in the last step, the Analysis of
Deployment Constraints, CompARE analysis whether the deployment ful�ls the de�ned

architecture constraints.

10.3.2. Qualitative Knowledge Analysis

The qualitative knowledge analysis consists of two parts, namely the topological sorting

of the software components of the system and the qualitative reasoning analysis for the

qualitative evaluation of quality attributes.

Topological sorting sorts the software components of a system sequentially. The correct

order can be derived by analysing all outgoing external calls or required interfaces from

each component. These external calls reference interfaces arranged in the component

repository. There, each interface is assigned to a corresponding software component.

This assignment can be derived from the system model. If all externally called interfaces

are assigned to a component and their call sequences are determined, the determined

dependencies and their sequence are stored. Subsequently, the next component in the

sequence is then considered. This analysis process is continued until there are no more

required interfaces (from the view of the component currently being considered). For the

analysis of the topological sorting we use the Java implementation of the algorithm from

Keith Schwarz [Sch10] as basis.

Based on the typologically sorted sequence of the software components of the system,

we can apply the qualitative reasoning analysis. For the analysis of the topologically sorted

software architecture, CompARE requires quality annotations. The quality annotations

are technically implemented as ecore-based models.

First, the quality annotations model is used and the corresponding static quality proper-

ties for each modelled quality attribute is assigned to the software components. In the next

step, the quality e�ects from the components involved in realizing the service considered

are evaluated. The �rst considered component is corresponding to the �rst component

of the called service in the topological sorted software components sequence. When all

e�ects on quality attributes have been analysed, the next component is evaluated. The

analysis is performed until the e�ects on quality attributes of all dependent components

have been evaluated .

10.3.3. Integration in PerOpteryx

The process steps described in the previous section have been integrated into the Per-

Opteryx software architecture optimization process as follows. We have extended both the

input models and the optimization process. An overview of the re�ned process is shown

in Figure 10.3. Our extended version PerOpteryx has been presented in [BFK19].

205

10. Evaluation & Case Study Systems

Optimization

Quality
Annotations

Software
Architecture

Feature
Configuration

Input Models

 Pareto-
Optimal

Architecture
Candidates

Generating
SA Candidates

Component
Selection

Generating SA
Models

Evaluating
SA Candidate

Automated Feedback Loop

Result

Quantified
Knowledge
Evaluation

Qualitative
Knowledge
Evaluation

Allocation
Selection
Resource
Selection

Feature
Selection

Apply Choices
Component

Allocation

Resource

Features

SA DoF
Configuration

Figure 10.3.: PerOpteryx with extended SA model generation and qualitative knowledge

analysis (derived from [BFK19]).

10.3.3.1. Input Models

The previous version of PerOpteryx requires three types of input models, namely the

software architecture, the degrees of freedom con�guration, describing the component

selection, component allocation, and resource con�guration. To annotate cost information,

PerOpteryx requires the cost annotation model, which annotates costs to components

and resource containers. We extend the input models by a feature con�guration that

extends the software architecture model and additional degrees of freedom in the degrees

of freedom con�guration. To evaluate more complex qualitative modelled quality attributes

with qualitative reasoning, we extend the quality annotation model (originally consisting

only of cost annotations) with our description language for arbitrary quality attributes.

10.3.3.2. Optimization

The optimization consists of three parts, namely generating the software architecture

candidates, generating the models from the candidate description, as well as the evaluation

of the generated software architecture candidate regarding its quality attributes.

In the �rst step, the generation of the software architecture candidate, an architecture

candidate is generated from the degree of freedom space. If certain features should be

included into the architecture, the desired positions for the feature completion components

of the features are added to the model. These are then allocated to hardware.

In the next step, the generation of the concrete software architecture model, the PCM

model instance is generated from the previously generated architecture candidate. In this

step, components are assembled, allocated and resource con�gurations adapted. If features

are required, an additional step is necessary. From the component repository, the concrete

components matching the feature, the FCCs and the software components of the selected

solution must be determined. Once all the necessary components have been determined,

the interfaces required for functionality must be made compatible. In case of selecting

206

10.4. Subsystem Case Study Systems

the adapter extension as strategy, adapters are generated and the corresponding assembly

connectors are generated. The components required for feature implementation are then

allocated according to the architecture candidate.

In the �nal step of the optimization, the evaluation of the software architecture candidate

model, the two modules, quantitative evaluation and qualitative evaluation, are carried

out. After the quantitative evaluation, the qualitative reasoning mechanisms are executed

on the software architecture model.

The results of both evaluation procedures are then combined and reused in a feedback

loop to generate new, improved architecture candidates. This loop is continued until a

scheduling criterion is met. The end of the optimization run �nally results in a set of Pareto-

optimal architecture candidates regarding the modelled degree of freedom con�guration.

10.4. Subsystem Case Study Systems

This section describes the architecture, models of several subsystems, subsystem solutions

and shows how they can be applied in the context of CompARE. First, several subsystems

are introduced, their architectures described and modelled, and �nally applied to the

feature completion meta model. As a result, we obtain models that can be used for the

integration into base systems to evaluate di�erent design decisions at design time. Overall,

we have examined four subsystem solutions applied on two subsystems: Logging systems

log4j version 1 and log4j version 2 in Section 10.4.1. In Section 10.4.2, we introduce features

of the logging subsystem. Further, we consider the intrusion detection systems AppSensor

and OSSEC HIDS in Section 10.4.3. In Section 10.4.4, we introduce features of the intrusion

detection subsystems.

10.4.1. Apache’s log4j

Apache’s log4j was developed out of the fact that every major application has had its own

logging or tracing API. This increased the need to develop a reusable framework to allow

lightweight reuse of the logging functionality without having to rethink and properly

make all the design decisions of this subsystem.

Log4j was originally developed for Java, but later ported to many other programming

languages, such as C, C++, C#, Perl, and several others. By acquiring logging statements in

program code, low-level logging is possible. Thus, logging calls can be used for debugging

or for measuring local performance bottlenecks. These functionalities are also supported

by debugger and performance tracing frameworks. However, Brian W. Kernighan and

Rob Pike describes the following in [KP99, p. 119]: “As personal choice, we tend not to

use debuggers beyond getting a stack trace or the value of a variable or two. One reason

is that it is easy to get lost in details of complicated data structures and control �ow; we

�nd stepping through a program less productive than thinking harder and adding output

statements and self-checking code at critical places. Clicking over statements takes longer

than scanning the output of judiciously-placed displays. It takes less time to decide where

to put print statements than to single-step to the critical section of code, even assuming

207

10. Evaluation & Case Study Systems

toConsole()
toFile(File)
toSQL()
locationInfoLog()

ILogging

Logging

append()

IAppend

Database
Appending

format()

IFormat

Console
Appending

File
Appending

CSV
Formatting

Pattern
Formatting

<<provides>>
<<provides>><<provides>> <<provides>>

<<provides>>

<<provides>>

Legend:

Component
Type

interface relation
signatures

Interface

<<requires>> <<requires>>

<<requires>>

<<requires>>

JSON
Formatting

XML
Formatting

<<provides>>

ISQL
<<requires>>

formLog(Form)

IFormLog

<<provides>>

PATTERN
JSON
XML
CSV

<<enum>>
Form

Figure 10.4.: Extended repository model of Apache log4j version 1.

we know where that is. More important, debugging statements stay with the program;

debugging sessions are transient.”

In addition, logging can be integrated into the base architecture with comparatively low

e�ort. In contrast to debugger outputs, logging can also be used in parallel to long-term

recording in real operation of the application to obtain context information about the

application or to identify errors that are di�cult to observe.

10.4.1.1. log4j Version 1

A detailed documentation about architecture and functionality of log4j version 1 (in the

following called log4jv1) was described by Ceki Gülcü in [Gül03].

The main functional concerns of log4jv1 can essentially be divided into several parts.

The �rst part contains the external interfaces, providing all services that can be demanded

by the base system. Further several modes for logging can be selected, such as error, warn,

info, debug, to use di�erent log levels. The collected data is then processed in the next

part.

The next part forwards the recorded data to the con�gured output medium. Possible

output targets are console, �les, graphical components, remote sockets and NT event

logger. This output can then be processed to di�erent formats. Pattern layout formats the

output according to a certain pattern. The pattern is based on the formatting pattern of

the Printf function, which is known from the C language. Beyond pattern layouting, we

can format the data into a CSV format, a JSON layout or a customizable XML layout. The

repository of log4jv1 that was previously used in the running example has been extended

and is shown in Figure 10.4. The repository diagram represents an abstraction of the

software architecture.

208

10.4. Subsystem Case Study Systems

Component Internal Action Resource Demand Init. cost

Logging log internal 2.4 · 10−3 100.0

Console append internal 2.2 · 10−3 100.0

Appending

FileAppending append internal 2.3 · 10−3 100.0

write to �le 5 · 10−8 · DoublePMF [(8025; 0.99996)
(3210000; 0.00003)(6420000; 0.00001)]

Database append internal 2.4 · 10−3 500.0

Appending db write overhead 5 · 10−8 · DoubPMF [
(2210000.0; 0.56551)(5420000.0; 0.40035)

(8630000.0; 0.01181)[..]]

Table 10.2.: Excerpt of RD-SEFFs and costs of log4jv1 services/components.

The main functionality of log4jv1 is addressed via the ILogging interface and imple-

mented by the Logging component. The recorded raw data is then processed further

by calling the services of the IAppend interface. IAppend is implemented either by the

components ConsoleAppending, FileAppending or DatabaseAppending, depending on the

output medium selected. All three components require the IFormat interface to apply to

the correct output format. The IFormat interface is converted accordingly by the four for-

matting implementations, namely CSVFormatting, PatternFormatting, JSONFormatting

and XMLFormatting. The DatabaseAppending component also requires an SQL interface

ISQL to write the data to the database. Whether the formatter is used depends on whether

the interface IFormLog is called with parameters of the enum Form.

For performance analysis we have modelled the abstract behaviour and RD-SEFFs for the

processor resource demand of the components implementing the features console logging,

�le logging, SQL logging and pattern formatting. Further, we derived a cost model that

describes the initial costs of the components. An overview of the RD-SEFFs with focus on

internal actions and initial costs of several components are shown in Table 10.2. External

calls are not shown in the table and can be derived from the architecture description.

10.4.1.2. Apache’s log4j Version 2

Apache’s log4j version 2 (called log4jv2 in the following) is the next generation of log4jv1

and comes with several new appendings and layouts. This also results in new features.

The internal architecture di�ers from the previous version as a result from new features.

In addition, new log levels are supported such as all, trace, warn, fatal. The architecture

of log4jv2 is shown in Figure 10.5. The repository diagram represents an abstraction of

the software architecture.

Data can now be captured and written asynchronously, i.e. it is not necessary to wait

for the commit of the respective output medium and the user workload can be continued

before write process on the medium is �nished.

209

10. Evaluation & Case Study Systems

filter(Filter)

IFiltLog

Logging

append()
filteredAppend()
formattedAppend()

IAppend

SQL
Appending

format()

IFormat

Console
Appending

File
Appending

CSV
Formatting

Pattern
Formatting

<<provides>>

<<provides>> <<provides>>
<<provides>>

<<provides>>

<<provides>>

Legend:

Component
Type

interface relation

signatures

Interface

<<requires>>

<<requires>>

<<requires>>

<<requires>>

Async
Logging

<<provides>>

NoSQL
Appending

<<requires>>

JSON
Formatting

XML
Formatting

<<provides>>

filtering()

IFilter

<<requires>>
Threshold
Filtering

Time
Filtering <<provides>>

<<provides>>

<<provides>>

<<requires>>

ISQLINoSQL

<<requires>> <<requires>>

<<requires>>

asyncLog()
locationInfoAsyncLog()

IAsyncLogging
toConsole()
toFile(File)
toSQL()
toNoSQL()
toMessageQueue()
locationInfoLog()

ILogging

format(Form)

IFormLog

<<provides>>

PATTERN
JSON
XML
CSV

<<enum>>

Form

Message
Queue

Appending

IMessageQueue

<<requires>>

<<provides>>
<<requires>>

TIME
THRES

<<enum>>

Filter

Figure 10.5.: Repository model of Apache log4j version 2.

Appending now allows extended write operations to di�erent database systems, such as

SQL, but also NoSQL databases (such as MongoDB in di�erent versions and CouchDB) or

to transfer data to the Java Persistence API (JPA). In addition to extended connections to

databases, extended network functions such as writing to streams, sockets, SSL encrypted

connections, writing to the distributed streaming platform Apache Kafka, or the Java

Messaging Service (JMS) are available.

In appending, various logging events can be �ltered to evaluate the recorded data later

in a more focused manner and not to oversee essential information due to the excessive

amount of data that is actually not relevant.

Further, there are �lter options included, such as �ltering over certain threshold values

or �ltering over certain points in time.

Layouts known from log4jv1 like Pattern, CSV, JSON and XML are also available in

log4jv2. The described appendings, �lterings and layoutings are only a small part of the

possibilities o�ered by log4jv2. Altogether log4jv2 supports 29 appendings, 11 �lterings,

and 11 layouting options.

The services of log4jv2 are accessed via its interfaces. The interface provides logging

using ILogging that can be optionally set as asynchronous logging by using IAsyncLogging.

In addition, the �lters for the selection of the actually written data can be addressed via

the IFiltLog interface. Synchronous logging is implemented by the Logging components

and asynchronous logging via the AsyncLogging component. As log4jv1, writing to the

output medium is carried out via the IAppend interface and the associated components,

ConsoleAppending, FileAppending, SQLAppending, NoSQLAppending, and MessageQueue-

Appending for using the respective appenders. All appender components can �lter log data

210

10.4. Subsystem Case Study Systems

C
o

m
p

o
n

e
n

t
I
n

t
e
r
n

a
l

A
c
t
i
o

n
R

e
s
o

u
r
c
e

D
e
m

a
n

d
I
n

i
t
i
a
l

c
o

s
t

L
o

g
g
e
r

l
o

g
i
n

t
e
r
n

a
l

1
.6
·
1
0
−
3

5
0

C
o

n
s
o

l
e

a
p

p
e
n

d
i
n

t
e
r
n

a
l

6
.4
·
1
0
−
3

5
0

A
p

p
e
n

d
i
n

g
w

r
i
t
e

t
o

c
o

n
s
o

l
e

5
E
−
8
·
D
ou
bl
eP

M
F
[(
2
8
8
9
0
;
0
.9
9
9
9
6
4
)

(3
2
1
E
4
;
3
,5
E
−
5
)(
6
4
2
E
3
;
E
−
6
)]

F
i
l
e

a
p

p
e
n

d
i
n

t
e
r
n

a
l

2
.4
·
1
0
−
3

5
0

A
p

p
e
n

d
i
n

g
w

r
i
t
e

t
o

�
l
e

5
·
1
0
−
8
·
D
ou
bl
eP

M
F
[

(2
8
8
9
0
;
0
.9
9
9
9
5
2
)(
3
2
1
E
4
;
0
.0
0
0
0
3
2
)

(6
4
2
E
4
;
0
.0
0
0
0
1
5
)(
9
6
3
E
4
;
E
−
6
)]

N
o

S
Q

L
a
p

p
e
n

d
i
n

t
e
r
n

a
l

6
.4
·
1
0
−
3

5
0
0

A
p

p
e
n

d
i
n

g

S
Q

L
a
p

p
e
n

d
i
n

t
e
r
n

a
l

6
.4
·
1
0
−
3

5
0
0

A
p

p
e
n

d
i
n

g
d

b
w

r
i
t
e

o
v
e
r
h

e
a
d

5
·
1
0
−
8
·
D
ou
b
P
M
F
[[
(2
2
1
0
0
0
0
.0
;
0
.1
4
7
6
)(
5
4
2
0
0
0
0
.0
;
0
.7
7
6
5
)(
8
6
3
0
0
0
0
.0
;
0
.0
2
8
1
)[
..
]]

P
a
t
t
e
r
n

f
o

r
m

a
t

p
a
t
t
e
r
n

5
·
1
0
−
8
·
D
ou
bl
eP

M
F
[

5
0

F
o

r
m

a
t
t
i
n

g
l
a
y

o
u

t
(2
0
5
4
4
0
;
0
.9
9
9
7
6
9
)(
3
2
1
E
4
;
0
.0
0
0
2
1
3
)

(6
4
2
E
4
;
1
2
E
−
6
)(
9
6
3
E
4
;
3
E
−
5
)

(1
.2
8
4
E
7
;
2
E
−
5
)(
1
.6
0
5
E
7
;
E
−
6
)]

X
M

L
f
o

r
m

a
t

X
M

L
5
·
1
0
−
8
·
D
ou
bl
eP

M
F
[(
3
8
5
2
0
0
.0
;
0
.9
9
9
9
5
9
)

5
0

F
o

r
m

a
t
t
i
n

g
l
a
y

o
u

t
(9
6
3
E
4
;
0
.0
0
0
0
3
)(
1
.6
0
5
E
7
;
0
.0
0
0
0
0
8
)(
2
.5
6
8
E
7
;
0
.0
0
0
0
0
2
)]

C
S
V

F
o

r
m

a
t
t
i
n

g
f
o

r
m

a
t

C
S
V

5
·
1
0
−
8
·
D
ou
bl
eP

M
F
[(
5
1
3
6
E
2
;
0
.9
9
8
3
)(
1
6
0
5
E
3
;
0
.0
0
1
1
)

5
0

F
o

r
m

a
t
t
i
n

g
l
a
y

o
u

t
(3
2
1
E
4
;
0
.0
0
0
4
4
)(
6
4
2
E
4
;
0
.0
0
0
1
3
)(
9
6
3
E
4
;
0
.0
0
0
0
2
)(
1
.2
8
4
E
7
;
0
.0
0
0
0
1
)]

J
S
O

N
F
o

r
m

a
t
t
i
n

g
f
o

r
m

a
t

J
S
O

N
5
·
1
0
−
8
·
D
ou
bl
eP

M
F
[(
3
5
3
1
0
0
.0
;
0
.9
9
9
9
3
9
)

5
0

F
o

r
m

a
t
t
i
n

g
l
a
y

o
u

t
(6
4
2
E
4
;
0
.0
0
0
0
4
7
)(
1
.6
0
5
E
7
;
0
.0
0
0
0
1
1
)(
2
.2
4
7
E
7
;
0
.0
0
0
0
0
2
)(
3
.2
1
E
7
;
0
.0
0
0
0
0
1
)]

T
a
b
l
e

1
0
.3

.:
E

x
c
e
r
p

t
o

f
R

D
-
S
E

F
F
s

a
n

d
c
o

s
t
s

o
f

l
o

g
4
j
v
2

s
e
r
v
i
c
e
s
/
c
o

m
p

o
n

e
n

t
s
.

211

10. Evaluation & Case Study Systems

and therefore require the IFilter interface. Filtering is realized via the two components

ThresholdFiltering and TimeFiltering (not all components are shown in the �gure).

The interfaces ISQL, INoSQL, and IMessageQueue are required from the base system by

log4jv2 if the corresponding appender should be used. Whether the formatter is used

depends on whether the interface IFormLog is called with parameters of the enum Form.

Additionally, two �ltering options can be selected by using the Filter enum.

For the performance analysis of log4jv2 we have modelled the abstract behaviour of

the components and thus the services of the framework. In addition, we have determined

the RD-SEFFs and can perform performance analyses based on both. We also added cost

annotations for the initial cost of components to the model. Table 10.3 shows a summary.

For the following features, which are implemented by components, we have modelled the

abstract behaviour with associated RD-SEFFs: console logging, �le logging, NoSQL logging,

SQL logging, pattern layouting, XML layouting, CSV layouting and JSON layouting.

10.4.2. Features of the Logging Systems

Several features can be derived from the previous two sections, which describe the archi-

tecture of the two subsystem solution systems. The modelled features correspond to a

meaningful subset of the features that can be derived from the architecture and that are

actually provided by the two logging solutions.

Table 10.4 shows an overview of the features provided by both logging solutions. Basing

on this, we derive a set of core features and a set of optional features. Core features

correspond to the features with numbers 1-3 and 9-12 in Table 10.4. Optional features

correspond to features 4-8. However, not all combinations of features can be con�gured

at the same time. For example, it is not possible to use SQL database logging and NoSQL

database logging at the same time. Further, only one formatting option and one �ltering

option can be selected at the same time. Furthermore, either synchronous or asynchronous

logging can be used.

Con�gurable options and limitations of features are shown in the feature model in

Figure 10.6. All features are grouped by feature groups on which restrictions can be

de�ned. A total of three main groups and two subgroups can be derived. The main groups

de�ne features regarding the categories appending, formatting and �ltering.

With appending, the four appending options File, Database, MessageQueue, and Console
are available as alternatives. One subgroup considers synchronous and asynchronous �le

logging, while the other subgroup de�nes alternatives for the selected database technology.

Synchronous �le logging and asynchronous �le logging as features can only be selected

alternatively. Database appending can be used as a subgroup in which we can alternatively

select (XOR) SQL or NoSQL database appending. The appending group has the special

feature that at least one of its features must be selected and that several (OR) can be

selected.

The second group is optionally selectable and contains the four formatting features,

namely Pattern, CSV, XML and JSON. All four features are alternatives (XOR).

The fourth group concerns �ltering. Their features are optionally selectable. Threshold
value and �ltering by time is possible.

212

10.4. Subsystem Case Study Systems

No. Feature Solution Core Optional

log4jv1 log4jv2 Feature Feature

(1) ConsoleLogging 3 3 3 7

(2) FileLogging 3 3 3 7

(3) SQLDatabaseLogging 3 3 3 7

(4) NoSQLDatabaseLogging 7 3 7 3

(5) MessageQueueLogging 7 3 7 3

(6) AsyncFileLogging 7 3 7 3

(7) ThresholdFiltering 7 3 7 3

(8) TimeFiltering 7 3 7 3

(9) PatternFormatting (3) 3 3 7

(10) JSONFormatting 3 3 3 7

(11) XMLFormatting 3 3 3 7

(12) CSVFormatting 3 3 3 7

Table 10.4.: Features of Apache log4jv1 and log4jv2. Features in brackets mean that features

are partially implemented.

Appending

optional
mandatory

alternative
(xor)

or

Legend

ConsoleDatabase

SQL NoSQL

Message
QueueFile

Logging

Synchron Asynchron

Formatting

Pattern

Filtering

CSV XML JSON

Threshold Time

Figure 10.6.: Feature model of the Logging systems.

213

10. Evaluation & Case Study Systems

10.4.3. Intrusion Detection Systems

Logging can be used as a passive instrument for attacker detection and is particularly useful

for the subsequent detection of attacks in computer forensics. However, if attacks have

already been successfully carried out, they can only be detected retrospectively. In this

case, company assets such as personal customer data, credit card information or strategic

material such as company secrets, patents or technology information have already been

stolen. At best, data loss can lead to customer loss or, at worst, to criminal investigation and

threat to a company’s existence. Facebook su�ered a slowdown in growth, presumably due

to the consequences of the Cambridge Analytica (cf. [Theb]) data scandal. This slowdown

cost Facebook a market capitalization of $ 119 billion (the total market capitalization of

McDonald’s at the time) [Thea].

It therefore makes sense to intervene even before the loss of data and to detect attacks

that are actively in progress and take countermeasures. Intrusion detection and prevention

systems provide functions and measures for the preventive detection of attacks and the

application of countermeasures to prevent them.

The actions mentioned concern the detection (and possibly prevention) of external

attackers. A distinction is made between di�erent groups of attackers. Less skilled attackers

usually carry out direct, obvious and less planned pre-emptive attacks, while advanced

attackers or professional groups carry out attacks with large �nancial capacity targeted

and planned in advance. Intrusion detection systems focus on attacks that are carried

out by less skilled attackers. High skilled attacks are usually not detected by intrusion

detection systems.

If software architects wants to use such a system, they must be aware that this type of

system cannot detect hidden attacks, but only react to rule-based modelled patterns that

have been speci�ed beforehand. These rules can, for example, be created by the security

engineer speci�cally for the system to be used and pre-con�gured actions. However,

such systems usually o�er a number of pre-con�gured rules that can be used as a basis

for customization. A certain degree of reuse of knowledge is therefore nevertheless

given [WJ15].

From a technological point of view, there are two types of systems: the �rst class

analyses log �les generated by Linux daemons such as sshs, imapd, etc. (OSSEC) while the

second class considers network tra�c (Snort) and application behaviour (AppSensor).

For the evaluation of CompARE, we use two systems, namely AppSensor and OSSEC.

AppSensor analyses network tra�c and analyses application behaviour, while OSSEC

works on the basis of log �le analysis.

10.4.3.1. AppSensor

AppSensor version 2 is an implementation of an IDS from OWASP. The OWASP o�ers a

detailed architecture documentation and feature description in the AppSensor reference

manual [WJ15], which we use together with the source code creating the following

architecture models. Figure 10.7 shows an abstraction of the AppSensor’s repository

with its components and interfaces. The architecture of AppSensor was initially created

automatically using the reverse engineering tool SoMoX [Kro12] to automatically generate

214

10.4. Subsystem Case Study Systems

vo
id

 o
nA

dd
()

vo
id

 a
na

ly
ze

(D
et

ec
tio

nP
oi

nt
[])

IE
ve

nt
A

na
ly

sis
En

gi
ne

vo
id

 o
nA

dd
()

vo
id

 a
na

ly
ze

()

IA
tt

ac
kA

na
ly

sis
En

gi
ne

Fi
le

ge
tC

on
fig

ur
at

io
nF

ile
()

vo
id

 s
et

Co
nfi

gu
ra

tio
nF

ile
(F

ile
)

D
et

ec
tio

nP
oi

nt
[]

ge
tD

et
ec

tio
nP

oi
nt

s(
)

vo
id

 s
et

D
et

ec
tio

nP
oi

nt
s(

D
et

ec
tio

nP
oi

nt
[])

IS
er

ve
rC

on
fig

ur
at

io
n

Se
rv

er
Co

nfi
gu

ra
tio

n

Ev
en

t
A

na
ly

sis
En

gi
ne

At
ta

ck
A

na
ly

sis
En

gi
ne

Ac
ce

ss
Co

nt
ro

lle
r

Le
ge

nd
:

Co
m

po
ne

nt

Ty
pe

in
te

rfa
ce

 r
ela

tio
n

sig
na

tu
re

s

In
te

rfa
ce

At
ta

ck
St

or
e

bo
ol

 is
A

ut
ho

riz
ed

()
vo

id
 a

ss
er

tA
ut

ho
riz

at
io

n(
)

IA
cc

es
sC

on
tr

ol
ler

vo
id

 a
dd

At
ta

ck
()

vo
id

 fi
nd

At
ta

ck
s(

At
ta

ck
[])

vo
id

 re
gi

st
er

Li
st

en
er

()
vo

id
 n

ot
ify

Li
st

en
er

s(
At

ta
ck

Li
st

en
er

[])
vo

id
 s

et
Li

st
en

er
s(

At
ta

ck
Li

st
en

er
[])

vo
id

 fi
nd

At
ta

ck
s(

)
bo

ol
 is

M
at

ch
in

gA
tt

ac
k(

)

IA
tt

ac
kS

to
re

vo
id

 a
dd

R
es

po
ns

e(
R

es
po

ns
e)

vo
id

 r
eg

ist
er

Li
st

en
er

(E
ve

nt
Li

st
en

er
)

vo
id

 n
ot

ify
Li

st
en

er
s(

Ev
en

tL
ist

en
er

[])
vo

id
 s

et
Li

st
en

er
s(

Ev
en

tL
ist

en
er

[])

IR
es

po
ns

eS
to

re

vo
id

 a
dd

Ev
en

t(
Ev

en
t)

vo
id

 R
eg

ist
er

Li
st

en
er

()
vo

id
 n

ot
ify

Li
st

en
er

s(
Ev

en
tL

ist
en

er
[])

vo
id

 s
et

Li
st

en
er

s(
Ev

en
tL

ist
en

er
[])

bo
ol

 is
M

at
ch

in
gE

ve
nt

()

IE
ve

nt
St

or
e

<
<

pr
ov

id
es

>
>

Ev
en

t
St

or
e

R
eq

ue
st

H
an

dl
er

R
es

po
ns

e
St

or
e

R
es

po
ns

e
A

na
ly

sis
En

gi
ne

R
es

po
ns

e
H

an
dl

er

Ev
en

t
M

an
ag

er

U
se

r
M

an
ag

er

D
et

ec
tio

n
Po

in
t

Cl
ien

t
Co

nfi
gu

ra
tio

n

vo
id

 o
nA

dd
()

vo
id

 a
na

ly
ze

()

IR
es

po
ns

eA
na

ly
sis

En
gi

ne

vo
id

 a
dd

Ev
en

t(
Ev

en
t)

vo
id

 a
dd

At
ta

ck
(A

tt
ac

k)
R

es
po

ns
e[]

 g
et

R
es

po
ns

es
()

IR
eq

ue
st

H
an

dl
er

vo
id

 h
an

dl
e(

)

IR
es

po
ns

eH
an

dl
er vo

id
 a

dd
Ev

en
t(

Ev
en

t)
vo

id
 a

dd
At

ta
ck

(A
tt

ac
k)

R
es

po
ns

e[]
 g

et
R

es
po

ns
es

()

IE
ve

nt
M

an
ag

er

vo
id

 lo
go

ut
()

vo
id

 d
isa

bl
e(

)

IU
se

rM
an

ag
er

in
t g

et
Id

()
vo

id
 s

et
Id

(in
t)

St
rin

g
ge

tT
im

es
ta

m
p(

)
vo

id
 s

et
Ti

m
es

ta
m

p(
St

rin
g)

St
rin

g
ge

tU
se

rn
am

e(
)

vo
id

 s
et

U
se

rn
am

e(
St

rin
g)

St
rin

g
ge

tC
at

eg
or

y(
)

vo
id

 s
et

Ca
te

go
ry

(S
tr

in
g)

St
rin

g
ge

tL
ab

el(
)

vo
id

 s
et

La
be

l(S
tr

in
g)

IE
ve

nt

vo
id

 v
al

id
at

eA
ut

h(
A

ut
h)

vo
id

 v
al

id
at

eI
np

ut
(S

tr
in

g)
vo

id
 m

on
ito

rC
al

l()

ID
et

ec
t

Fi
le

ge
tC

on
fig

ur
at

io
nF

ile
()

vo
id

 g
et

Co
nfi

gu
ra

tio
nF

ile
(F

ile
)

IC
lie

nt
Co

nfi
gu

ra
tio

n

<
<

re
qu

ire
s>

>
<

<
pr

ov
id

es
>

>

<
<

re
qu

ire
s>

>

<
<

re
qu

ire
s>

>
<

<
pr

ov
id

es
>

>

<
<

pr
ov

id
es

>
>

<
<

re
qu

ire
s>

>

<
<

pr
ov

id
es

>
>

<
<

re
qu

ire
s>

>

<
<

pr
ov

id
es

>
>

<
<

re
qu

ire
s>

>

<
<

pr
ov

id
es

>
>

<
<

re
qu

ire
s>

>

<
<

pr
ov

id
es

>
>

<
<

re
qu

ire
s>

>
<

<
re

qu
ire

s>
>

<
<

re
qu

ire
s>

>

<
<

re
qu

ire
s>

>

<
<

pr
ov

id
es

>
>

<
<

re
qu

ire
s>

>

<
<

re
qu

ire
s>

>

<
<

pr
ov

id
es

>
>

<
<

re
qu

ire
s>

>

<
<

pr
ov

id
es

>
>

<
<

re
qu

ire
s>

>

<
<

re
qu

ire
s>

>

<
<

re
qu

ire
s>

>

<
<

re
qu

ire
s>

>

<
<

pr
ov

id
es

>
>

<
<

pr
ov

id
es

>
>

<
<

pr
ov

id
es

>
>

<
<

pr
ov

id
es

>
>

vo
id

 d
isa

bl
eC

om
po

ne
nt

(C
om

po
ne

nt
)

vo
id

 d
isa

bl
eA

cc
ou

nt
(A

cc
ou

nt
)

IA
ct

io
n

vo
id

 lo
gF

ile
A

na
ly

sis
(F

ile
)

IS
ta

tic
A

na
ly

sis

<
<

pr
ov

id
es

>
>

<
<

pr
ov

id
es

>
>

<
<

re
qu

ire
s>

>

Figure 10.7.: Repository model of the OWASP AppSensor intrusion detection system.

215

10. Evaluation & Case Study Systems

the software architecture model. The initial design derived by SoMoX was used as a basis

and re�ned having a more detailed model of the software architecture.

The architecture of AppSensor contains 14 components and a total of 17 interfaces.

The functionality itself is provided via the interfaces IDetect, IAction, IStaticAnalysis

and IEvent. The interfaces are implemented by the DetectionPoint component. Starting

here, the collected data is propagated through the architecture of the subsystem. First the

EventManager processes the collected raw data. In the RequestHandler, the request to be

analysed is �rst stored for analysis by the EventStore and analysed in the EventAnalysis-

Engine. If an attack is detected, it is �rst analysed in AttackAnalysisEngine and stored by

AttackStore. The AccessController checks the validity of the evaluation. If a reaction to

the attack is available, the countermeasure is processed by the ResponseHandler. Possi-

ble countermeasures are �rst processed in ResponseAnalysisEngine, initiated and stored

by ResponseStore. Countermeasures are additionally implemented by the UserManager.

Transverse components are ServerConfiguration and ClientConfiguration, which man-

age user-speci�c con�gurations.

The attributes DetectionPoint, Event2
, Attack, EventListener and Response are data

types within the system. They each manage information about the type of request, attack

or response to the attack and are passed between the analysis and response components.

In addition, EventListeners can be registered, which in turn are used to trigger speci�c

responses. DetectionPoint de�nes the entry point of the analysis request in the base

system. The attributes themselves are not central to the architecture and are not included

in the overview.

Using pro�lers, we have carried out measurements, to determine response time distri-

butions of the services of the AppSensor components and modelled them as RD-SEFFs.

This allows us to simulate the response times of the overall system’s services when we

include AppSensor in base systems. We have also created and annotated cost annotations.

10.4.3.2. OSSEC

Open Source HIDS SECurity (OSSEC) is a free open source host-based attacker detection

system that analyses log �les generated by Linux services, integrity checks of system �les,

Windows registry integrity, rootkit detection, and process surveillance. In addition, OSSEC

can take active countermeasures to defend against the attack. For our evaluation we use

OSSEC version 2. OSSEC in version 2 was developed in the programming language C and

can be compiled and used on a number of operating systems, such as Windows, Linux,

MacOS and various virtualization solutions. The software component repository model is

shown in Figure 10.8 and has been reverse engineered based on a source code analysis.

OSSEC consists of seven components and seven interfaces. The system communi-

cates event-based, thus the system has three event messages used for message passing.

These are either emitted or handled by the components. The interaction between the

subsystem and the base system is event-based as well. The base system emits either an

EventLogMessage or an EventFileChanges. The DataCollector component handles the

�rst, while the RealtimeCollector component handles the latter. Real time data, such as

2
Events from AppSensor should not be confused with the concept of event-based communication. AppSen-

sor uses call and response semantics.

216

10.4. Subsystem Case Study Systems

void analyzeLog()
void analyzeRTData()
void analyzeStaticData()

IAnalyzer

string doHash(byte[])

IHash

Realtime
Collector

sendmail()
execute()

IAgent

Data
Collector

Data
Analyzer

Analysis
Handler

Decoder

<<provides>>

<<requires>>

Agent

decodeEvent()

IDecoder

createModifyDeleteFile

EventFileChanges

alertData

EventAlert

logChanges

EventLogMessage

<<handles>>

<<handles>>

<<provides>>

<<provides>>

<<handles>>

<<provides>>

<<requires>>

<<emits>>

<<requires>>

void registryAnalysis()
void rootkitAnalysis(List<File>)

IOfflineDataCollector

void userBehaviourMonitor(User)
void monitorFunctionCall()

IRealtimeMonitor
<<provides>>

void recordAttacks()

ILogStorage

Attack
Storage

<<requires>>

<<provides>>

<<provides>>

<<requires>>

Legend:

Component
Type

interface relation

signatures

Interface

<<requires>>

<<requires>>

<<requires>>

<<requires>>

Figure 10.8.: Repository model of the OSSEC intrusion detection system.

data on the behaviour of users in the system or monitoring of function calls is monitored

by the RealtimeCollector by using the IRealtimeMonitor interface. If log �les change

and should be analysed, the DataCollector processes the log message event. Static o�ine

analysis data, such as Windows registry analysis data and �le-level rootkit analysis data,

are also collected by the DataCollector using the IOfflineDataCollector interface. Real-

time analysis of �le changes is also captured by handling the EventFileChanges event.

Both RealtimeCollector and DataCollector require the IAnalyzer interface, which is im-

plemented by the DataAnalyzer component. LogAnalyzer decodes the collected data using

the Decoder component (by accessing via the interface IDecoder) and emits an EventAlert

in case of an attack. The emitted alarm events are handled by the AnalysisHandler com-

ponent. For handling, several signatures of the IAgent interface can be used, which,

implemented via the Agent component, either carries out noti�cations or executes com-

mands as resulting actions. In addition, the AnalysisHandler processes sensor data and

can store alarms in the AttackStorage component, which service is provided by the

ILogStorage interface.

As already for the AppSensor model, we have enriched the OSSEC architecture model

with performance annotations. We modelled the abstract behaviour of several services

and added resource demands that we have collected by performance measurements by

pro�lers. For the purpose of cost estimation, we have added additional cost annotations.

217

10. Evaluation & Case Study Systems

10.4.4. Features of the Intrusion Detection Systems

Several features can be derived from the architecture description, the documentation

and the source code of the two previously introduced intrusion detection and prevention

systems. As with the logging systems, we have presented a subset of the features supported

by the systems, which should represent meaningful features of the systems and contribute

signi�cantly to in�uencing the quality attributes of the overall system.

We have identi�ed a total of nine features, that we have classi�ed into three core features

and six optional features. We present a summary of the features in Table 10.5. The �rst

core feature is an analyser observing inadmissible frequently calls of services (3). This can

occur whenever attackers attempt to increase the load by massively using certain services

of the base system to such an extent that the processing of requests from legitimate users

is no longer possible. Another core feature is the deactivation of accounts (4), for example,

when an attack is previously detected using a particular account. Log �le analysis (6) is

another core feature. Di�erent rules could be used to process log �les.

AppSensor supports three additional optional features. User data can be veri�ed (1). We

can also check whether a user is allowed to execute certain commands. Another optional

feature is the validation of input data (2). This can be used, for example, to search queries

for control commands. With another optional feature, components can be deactivated (5)

in the event of an attack, for example to ensure the operation of other core functions of

the base system or to protect sensitive data.

OSSEC supports three additional optional features. On Windows systems, the registry

(7) can be analysed. Abnormal modi�cations on the windows registry can be detected.

Another feature is the static integrity analysis of �les (8) in the �le system. In addition,

critical system �les can be checked for rootkits (9).

No. Feature Solution Core Optional

AppSensor OSSEC Feature Feature

(1) Authorization check 3 7 7 3

(2) Input validation 3 7 7 3

(3) Functional abuse 3 3 3 7

(4) Disable account 3 3 3 7

(5) Disable components 3 7 7 3

(6) Log �le analysis 3 3 3 7

(7) Registry analysis 7 3 7 3

(8) File integrity 7 3 7 3

(9) Rootkit check 7 3 7 3

Table 10.5.: Features supported by OWASP AppSensor and OSSEC.

218

10.5. Modelling the Feature Completions

<<FCC>>

Collector
<<FCC>>

Appender

<<FC>>
Logger

<<FCC>>

Formatter

<<Perimeter Providing>>

ConsoleLogging
SQLLogging

NoSQLLogging
MessageQueueLogging

…

<<Perimeter Requiring>>

SQLDatabase
<<Perimeter Requiring>>

MessageQueue

<<Perimeter Requiring>>

NoSQLDatabase

Figure 10.9.: Re�nement type of the feature completion Logger.

10.5. Modelling the Feature Completions

The subsystems introduced in the previous sections can be modelled by two feature

completions, namely the Logging feature completion and the IDS feature completion. In

Section 10.5.1 we describe the Logging feature completion, while Section 10.5.2 describes

the IDS feature completion. Each section introduces the reference architecture and their

application to the subsystem solutions. Finnaly, in Section 10.5.3 we provide a �nal

discussion.

10.5.1. Logging Feature Completion

The de�nition type of the Logging feature completion models the provided features

[Kie+16a] and the required complementum. Provided features correspond to the manda-

tory and optional features from Table 10.4. Required complementum uses essential services

from the base architecture that are required by certain features. Figure 10.9 shows the

re�nement type of the logging feature completion. The feature completion is divided into

the appropriate feature completion components and their dependencies, i.e. the reference

architecture of the subsystem. The logging feature completion consists of three FCCs,

namely Collector, Appender, and Formatter (see Section 7.2.5). Appender is dependent on

Formatter, while Collector is dependent on Appender. Appender requires additional services

from the base architecture, namely an SQL interface for database access, and the message

queue service [Bus+16].

The solution type aligns the abstract FCCs to software components of the subsystem

solutions. Table 10.6 shows the alignment of log4jv1 and log4jv2 to the logger feature

completion components, while Table 10.7 shows the perimeter interfaces to concrete

interfaces and signatures mapping. In the case of log4jv1, the FCC Collector consists of one

219

10. Evaluation & Case Study Systems

FCC log4jv1 log4jv2

Collector Logging AsyncLogging

Logging

Appender ConsoleAppending ConsoleAppending

FileAppending FileAppending

DatabaseAppending NoSQLAppending

SQLAppending

MessageQueueAppending

ThresholdFiltering

TimeFiltering

Formatter PatternFormatting PatternFormatting

JSONFormatting JSONFormatting

XMLFormatting XMLFormatting

CSVFormatting CSVFormatting

Table 10.6.: Alignment of abstract re�nement type to concrete solution type of the Logging

feature completion.

component, namely the Logging component. In the case of log4jv2, the Collector consists

of the components AsyncLogging and Logging. The Appender is responsible for writing

the data to an output medium. In the case of log4jv1, this consists of three components,

namely ConsoleAppending, FileAppending, and DatabaseAppending. log4jv2 consists of 6

components, namely ConsoleAppending, FileAppending, NoSQLAppending, SQLAppending,

ThresholdFiltering, and TimeFiltering. Finally, in the case of log4jv1, the Formatter
consists of the four components PatternFormatting, JSONFormatting, XMLFormatting,

and CSVFormatting, while in the case of log4jv2, four components are responsible, namely

PatternFormatting, JSONFormatting, XMLFormatting, and CSVFormatting.

In Table 10.7 features correspond to the provided perimeter interfaces. Therefore, the

table shows the relations between feature, provided perimeter interface and realizing

component (consisting of the set of all provided interfaces), interface or signature. Both

log4jv1 and log4jv2 provide their services by calling individual signatures in corresponding

interfaces.

In addition to the FCC Formatter, the Appender requires up to three other services

from the base system, namely an SQL database, a NoSQL database, and a MessageQueue.
However, only log4jv2 supports NoSQL logging and MessageQueue logging, which is why

these two required perimeter interfaces are only relevant for log4jv2 and only SQL database

logging is relevant for version 1. Both log4jv1 and log4jv2 require an SQL interface for

SQL database logging, while log4jv2 requires a NoSQL interface for NoSQL logging and a

message queue from the base system for MesseQueue logging.

220

10.5. Modelling the Feature Completions

Perimeter (prov) log4jv1 log4jv2

ConsoleLogging ILogging(toConsole()) ILogging(toConsole())

FileLogging ILogging(toFile(File)) ILogging(toFile(File))

SQLDBLogging ILogging(toSQL()) ILogging(toSQL())

NoSQLDBLogging - ILogging(toNoSQL())

MessageQueueLogging - ILogging(toMessageQueue())

AsyncLogging - IAsyncLogging(asyncLog())

ThresholdFiltering - IFiltLog(�lter(THRES))

TimeFiltering - IFiltLog(�lter(TIME))

PatternFormatting IFormLog(formLog(PATTERN)) IFormLog(format(PATTERN))

JSONFormatting IFormLog(formLog(JSON)) IFormLog(format(JSON))

XMLFormatting IFormLog(formLog(XML)) IFormLog(format(JSON))

CSVFormatting IFormLog(formLog(CSV)) IFormLog(format(CSV))

Table 10.7.: Provided perimeter interfaces of the Logger feature completion to concrete

interfaces and signatures of log4jv1 and log4jv2.

10.5.2. IDS Feature Completion

From the analysis of the two intrusion detection systems AppSensor and OSSEC, the

IDS feature completion results as follows: on the de�nition type, the feature completion

provides a total of 9 features. No additional services are required of the base system by

required complementum. The re�nement type is shown graphically in Figure 10.10. The

re�nement type is de�ned by a set of �ve feature completion components. This consists

of a Sensor, a Manager, the Analysis, Response and Store. The sensor is responsible for

recording the required data as a basis for attacker detection. The sensor is in a requiring

relation to the manager, which handles the management and distribution of data. The

manager triggers an analysis step (requiring relation to Analysis), whose result may

require a response (requiring relation to response). Analysis requires response in case

of countermeasures against the attack should be carried out. Both Analysis and Response
can require data to be stored. This storage step is performed by Store. Store may require

additional data from the Analysis (requiring relation to Analysis). As before the perimeter

providing interface provides the features as introduced in Section 10.4.4.

The relation between FCC and components of AppSensor considered on the solution

type is shown in Figure 10.11 graphically. One component is assigned to the FCC Sensor,

while two components are assigned to Response. Three components are responsible for

FCC Analyzer, while Store is realized by two components. The remaining �ve components

are assigned to the FCC Manager.

Figure 10.12 shows the relation of the FCCs and software components of the OSSEC

system’s solution type. Sensor consists of two components, the RealtimeCollector and

221

10. Evaluation & Case Study Systems

<<FCC>>

Sensor
<<FCC>>

Manager

<<FC>>
Intrusion Detection System

<<FCC>>

Store

<<Perimeter Providing>>

FunctionalAbuse
DisableAccount
LogFileAnalysis

…

<<FCC>>

Analysis
<<FCC>>

Repsonse

Figure 10.10.: Re�nement type of the feature completion Intrusion Detection System.

the DataCollector with the respective provided interfaces and processed events. Response
consists of the component Agent and the provided interface IAgent. Analyzer consists

of the components DataAnalyzer and Decoder, with the two corresponding provided

interfaces. Store consists of the AttackStorage component, while Manager consists of the

AnalysisHandler component. Both components provide their corresponding interfaces

respectively process the corresponding events.

Table 10.8 provides an overview of the relations between the perimeter interfaces and

the component interfaces. AppSensor implements the AuthorizationCheck using the

IDetect interface and the validateAuth(Auth) signature. IDetect is also responsible

for InputValidation. The signature validateInput(String) is responsible. Functional-
Abuse is also implemented by IDetect with the signature monitorCall. DisableAccount
belongs to the Response. This is implemented by the interface IAction with the signature

disableAccount(Account). DisableComponents, also a Response, and used by the signature

disableComponent(Component). LogFileAnalysis is implemented via the IStaticAnalysis

interface and the associated logFile(File) signature.

OSSEC implements FunctionalAbuse using the IRealtimeMonitor interface. The associ-

ated signature for implementing the feature is monitorFunctionCall. DisableAccount is im-

plemented by using IRealtimeMonitor. The associated signature for this is userBehaviour-

Monitor(User). LogFileAnalysis is implemented by the EventLogMessage event. Registry-
Analysis and RootkitAnalysis are implemented by the IOfflineDataCollector interface.

The corresponding interface is called registryAnalysis, respectively rootkitAnalysis-

(List<File>). FileIntegrity is also implemented by an event, namely EventFileChanges.

222

10.5. Modelling the Feature Completions

vo
id

 o
nA

dd
()

vo
id

 a
na

ly
ze

(D
et

ec
tio

nP
oi

nt
[])

IE
ve

nt
A

na
ly

sis
En

gi
ne

vo
id

 o
nA

dd
()

vo
id

 a
na

ly
ze

()

IA
tt

ac
kA

na
ly

sis
En

gi
ne

Fi
le

ge
tC

on
fig

ur
at

io
nF

ile
()

vo
id

 s
et

Co
nfi

gu
ra

tio
nF

ile
(F

ile
)

D
et

ec
tio

nP
oi

nt
[]

ge
tD

et
ec

tio
nP

oi
nt

s(
)

vo
id

 s
et

D
et

ec
tio

nP
oi

nt
s(

D
et

ec
tio

nP
oi

nt
[])

IS
er

ve
rC

on
fig

ur
at

io
n

Se
rv

er
Co

nfi
gu

ra
tio

n

Ev
en

t
A

na
ly

sis
En

gi
ne

At
ta

ck
A

na
ly

sis
En

gi
ne

Ac
ce

ss
Co

nt
ro

lle
r

Le
ge

nd
:

Co
m

po
ne

nt

Ty
pe

in
te

rfa
ce

 re
la

tio
n

sig
na

tu
re

s

In
te

rfa
ce

At
ta

ck
St

or
e

bo
ol

 is
A

ut
ho

riz
ed

()
vo

id
 a

ss
er

tA
ut

ho
riz

at
io

n(
)

IA
cc

es
sC

on
tr

ol
ler

vo
id

 a
dd

At
ta

ck
()

vo
id

 fi
nd

At
ta

ck
s(

At
ta

ck
[])

vo
id

 re
gi

st
er

Li
st

en
er

()
vo

id
 n

ot
ify

Li
st

en
er

s(
At

ta
ck

Li
st

en
er

[])
vo

id
 s

et
Li

st
en

er
s(

At
ta

ck
Li

st
en

er
[])

vo
id

 fi
nd

At
ta

ck
s(

)
bo

ol
 is

M
at

ch
in

gA
tt

ac
k(

)

IA
tt

ac
kS

to
re

vo
id

 a
dd

R
es

po
ns

e(
R

es
po

ns
e)

vo
id

 re
gi

st
er

Li
st

en
er

(E
ve

nt
Li

st
en

er
)

vo
id

 n
ot

ify
Li

st
en

er
s(

Ev
en

tL
ist

en
er

[])
vo

id
 s

et
Li

st
en

er
s(

Ev
en

tL
ist

en
er

[])

IR
es

po
ns

eS
to

re

vo
id

 a
dd

Ev
en

t(
Ev

en
t)

vo
id

 R
eg

ist
er

Li
st

en
er

()
vo

id
 n

ot
ify

Li
st

en
er

s(
Ev

en
tL

ist
en

er
[])

vo
id

 s
et

Li
st

en
er

s(
Ev

en
tL

ist
en

er
[])

bo
ol

 is
M

at
ch

in
gE

ve
nt

()

IE
ve

nt
St

or
e

<
<

pr
ov

id
es

>
>

Ev
en

t
St

or
e

R
eq

ue
st

H
an

dl
er

R
es

po
ns

e
St

or
e

R
es

po
ns

e
A

na
ly

sis
En

gi
ne

R
es

po
ns

e
H

an
dl

er

Ev
en

t
M

an
ag

er

U
se

r
M

an
ag

er

Cl
ien

t
Co

nfi
gu

ra
tio

n

vo
id

 o
nA

dd
()

vo
id

 a
na

ly
ze

()

IR
es

po
ns

eA
na

ly
sis

En
gi

ne

vo
id

 a
dd

Ev
en

t(
Ev

en
t)

vo
id

 a
dd

At
ta

ck
(A

tt
ac

k)
R

es
po

ns
e[]

 g
et

R
es

po
ns

es
()

IR
eq

ue
st

H
an

dl
er

vo
id

 h
an

dl
e(

)

IR
es

po
ns

eH
an

dl
er vo

id
 a

dd
Ev

en
t(

Ev
en

t)
vo

id
 a

dd
At

ta
ck

(A
tt

ac
k)

R
es

po
ns

e[]
 g

et
R

es
po

ns
es

()

IE
ve

nt
M

an
ag

er

vo
id

 lo
go

ut
()

vo
id

 d
isa

bl
e(

)

IU
se

rM
an

ag
er

in
t g

et
Id

()
vo

id
 s

et
Id

(in
t)

St
rin

g
ge

tT
im

es
ta

m
p(

)
vo

id
 s

et
Ti

m
es

ta
m

p(
St

rin
g)

St
rin

g
ge

tU
se

rn
am

e(
)

vo
id

 s
et

U
se

rn
am

e(
St

rin
g)

St
rin

g
ge

tC
at

eg
or

y(
)

vo
id

 s
et

Ca
te

go
ry

(S
tr

in
g)

St
rin

g
ge

tL
ab

el(
)

vo
id

 s
et

La
be

l(S
tr

in
g)

IE
ve

nt

Fi
le

ge
tC

on
fig

ur
at

io
nF

ile
()

vo
id

 g
et

Co
nfi

gu
ra

tio
nF

ile
(F

ile
)

IC
lie

nt
Co

nfi
gu

ra
tio

n

<
<

re
qu

ire
s>

>
<

<
pr

ov
id

es
>

>

<
<

re
qu

ire
s>

>

<
<

re
qu

ire
s>

>
<

<
pr

ov
id

es
>

>

<
<

pr
ov

id
es

>
>

<
<

re
qu

ire
s>

>

<
<

pr
ov

id
es

>
>

<
<

re
qu

ire
s>

>

<
<

pr
ov

id
es

>
>

<
<

re
qu

ire
s>

>

<
<

pr
ov

id
es

>
>

<
<

re
qu

ire
s>

>

<
<

pr
ov

id
es

>
>

<
<

re
qu

ire
s>

>
<

<
re

qu
ire

s>
>

<
<

re
qu

ire
s>

>

<
<

re
qu

ire
s>

>

<
<

pr
ov

id
es

>
>

<
<

re
qu

ire
s>

>

<
<

re
qu

ire
s>

>

<
<

pr
ov

id
es

>
>

<
<

re
qu

ire
s>

>

<
<

pr
ov

id
es

>
>

<
<

re
qu

ire
s>

>

<
<

re
qu

ire
s>

>

<
<

re
qu

ire
s>

>

<
<

re
qu

ire
s>

>

<
<

pr
ov

id
es

>
>

<
<

pr
ov

id
es

>
>

Se
ns

or
R

es
po

ns
e

M
an

ag
er

St
or

e
A

na
ly

sis

D
et

ec
tio

n
Po

in
t

vo
id

 v
al

id
at

eA
ut

h(
A

ut
h)

vo
id

 v
al

id
at

eI
np

ut
(S

tr
in

g)
vo

id
 m

on
ito

rC
al

l()

ID
et

ec
t

<
<

pr
ov

id
es

>
>

<
<

pr
ov

id
es

>
>

vo
id

 d
isa

bl
eC

om
po

ne
nt

(C
om

po
ne

nt
)

vo
id

 d
isa

bl
eA

cc
ou

nt
(A

cc
ou

nt
)

IA
ct

io
n

vo
id

 lo
gF

ile
A

na
ly

sis
(F

ile
)

IS
ta

tic
A

na
ly

sis

<
<

pr
ov

id
es

>
>

<
<

pr
ov

id
es

>
>

<
<

re
qu

ire
s>

>

Figure 10.11.: Alignment of the IDS feature completion components to AppSensor software

components.

223

10. Evaluation & Case Study Systems

void analyzeLog()
void analyzeRTData()
void analyzeStaticData()

IAnalyzer

string doHash(byte[])

IHash

Realtime
Collector

sendmail()
execute()

IAgent

Data
Collector

Data
Analyzer

Analysis
Handler

Decoder

<<provides>>

<<requires>>

Agent

decodeEvent()

IDecoder

createModifyDeleteFile

EventFileChanges

alertData

EventAlert

logChanges

EventLogMessage

<<handles>>

<<handles>>

<<provides>>

<<provides>>

<<handles>>

<<provides>>

<<requires>>

<<emits>>

<<requires>>

void registryAnalysis()
void rootkitAnalysis(List<File>)

IOfflineDataCollector

void userBehaviourMonitor(User)
void monitorFunctionCall()

IRealtimeMonitor
<<provides>>

void recordAttacks()

ILogStorage

Attack
Storage

<<requires>>

<<provides>>

<<provides>>

<<requires>>

Legend:

Component
Type

interface relation

signatures

Interface

Sensor Response ManagerStoreAnalysis

<<requires>>

<<requires>>

<<requires>>

Figure 10.12.: Alignment of the IDS FC’s components to concrete OSSEC software compo-

nents

Perimeter (prov) AppSensor OSSEC

AuthhorizationCheck IDetect(validateAuth(Auth)) -

InputValidation IDetect(validateInput(String)) -

FunctionalAbuse IDetect(monitorCall()) IRealtimeMonitor(

monitorFunctionCall())

DisableAccount IAction(disable IRealtimeMonitor(user

Account(Account)) BehaviourMonitor(User))

DisableComponents IAction(disable -

Component(Component))

LogFileAnalysis IStaticAnalysis(log EventLogMessage(

File(File)) logChanges)

RegistryAnalysis - IO�ineAnalysis(

registryAnalysis())

FileIntegrity - EventFileChanges(

createModifyDeleteFile)

RootkitAnalysis - IO�ineAnalysis(

rootkitAnalysis(List<File>))

Table 10.8.: Provided perimeter interfaces of the IDS feature completion to interfaces and

signatures of AppSensor and OSSEC.

224

10.6. Base System Case Study Systems

10.5.3. Discussion

In the previous sections, we answered the evaluation questions EQ I.I.1 and EQ I.I.2 from

Section 10.2. We showed how subsystems can be modelled using the feature completion

meta model and how subsystem solutions can be applied to the subsystem’s reference

architecture. We have demonstrated how such models can be created and applied to

real-world systems. We showed how to model very di�erent solutions, such as AppSensor

and OSSEC, in the architecture as well as similar solutions, such as log4jv1 and log4jv2. We

annotated these models to the reference architecture of the respective subsystem. For each

subsystem, we modelled several features and annotated them according to the subsystem

solutions.

10.6. Base System Case Study Systems

This section describes the base systems which the previously modelled feature completions

could be integrated to include new functionality by features. Altogether we consider three

base systems: Business Reporting System in Section 10.6.1, Remote Diagnostic Solution in

Section 10.6.2 and mRUBiS in Section 10.6.3.

10.6.1. Business Reporting System

This section introduces context information, functionality, architecture, and PCM model of

the �rst example system, the Business Reporting System (BRS). The BRS and the associated

PCM model have already been used in several publications [Koz11; BSK15; BK16]. Typical

scenarios for optimizing the software architecture have been shown. In these studies it has

been shown the PCM model of the BRS shows promising results for the applied scenarios

and that the optimization provides plausible candidates.

10.6.1.1. System Architecture

The Business Reporting System (BRS) allows users to generate business reports and derive

statistically evaluated data on current business processes from the dataset. We show the

system architecture of the BRS in Figure 10.13. The architecture is loosely based on a real

system, introduced by Wu and Woodside [WW04].

The system is a four-tier system consisting of nine software components. In total, there

are two di�erent interfaces that can be accessed from outside. The �rst interface addresses

services within the Webserver component, which is intended for processing user requests

to generate reports or retrieve raw data from the system. Here, the UserManagement com-

ponent is used to check the authorization of the request. The requests received from the

user are then forwarded to the Scheduler component, which is delegated either to the

OnlineReporting component or to the GraphicalReporting component, depending on the

request. These in turn requires data from the appropriate components for data aggrega-

tion, namely the CoreGraphicalEngine or the CoreOnlineEngine. Both data aggregation

components can either access the Database or alternatively, for faster access, via a Cache

component. This component also loads data from the database in case of cache misses.

225

10. Evaluation & Case Study Systems

Server 1

Server 2

Server 3

Scheduler

Webserver

Graphical
Reporting

Online
Reporting

User
Management

Server 4

Core
Graphic Engine

CacheDatabase

Core
Online Engine

Legend:

Resource
Container

System

Actor

Component

Required role

Provided role

Delegate

Business Reporting System

User

Service
Technician

Figure 10.13.: System model of the Business Reporting System [BK16].

As an alternative to user access via the Webserver component, a service technician can

directly access the CoreOnlineEngine component for maintenance purposes.

To analyse the performance properties and the expected costs, the model has annotations

for simulating the performance and costs. Performance annotations are modelled as

abstract behaviour using Palladio’s RD-SEFF mechanism. In addition to the behaviour,

the performance of the four hardware nodes is speci�ed with a CPU clock rate of 1500

processing units. In addition, there is a usage scenario that re�ects the usage of the system.

Cost annotations consist of costs for hardware, such as the selected CPU, as well as

initial acquisition costs or development costs for the software components. The underlying

PCM models for simulating performance and costs were adopted from [Koz11].

10.6.1.2. Architecture Degrees of Freedom

The PCM model of the BRS has three degrees of freedom, namely component selection,

component allocation, and resource selection such as adjustment of the CPU clock rate.

Feature inclusion is added as a new degree of freedom. This degree of freedom itself

in turn opens up new degrees of freedom, namely the optional integration of features,

the product selection, i.e. subsystem solution and an optional multiple instantiation of

subsystem-speci�c components.

Component selection is realized by replacing individual standard components already

allocated in the system with functionally equivalent components. The di�erence between

these components is that they di�er in their quality properties. For this purpose, the

repository contains several components that provide and require the same interfaces. This

is the case, for example, for the Webserver component.

226

10.6. Base System Case Study Systems

In component allocation, each individual placement of standard components on the

individual hardware nodes can be modi�ed. The system has nine servers (four of which

are initially in use). Component allocation in particular is an interesting degree of freedom

for adding new functionality through new components. If additional components are

assembled and allocated, nodes could be overloaded. This can signi�cantly reduce the

average response time of the system service. Thus, this degree of freedom has to be taken

in mind especially when adding new software components.

When adjusting the CPU clock rate, the standard clock frequency of 1500 processing

units can be adjusted with the product from the interval [0.5;2]. A higher clock rate has

a correspondingly positive e�ect on the response time of the system service. The cost

function serves as a counter movement, which is negatively in�uenced by a higher clock

frequency (higher costs). Using the example of the BRS, all nine servers can be adjusted in

their clock rate.

Feature inclusion is used by the software architect by extending assembly connectors

with feature annotations in the system (see Section 7.2.6.1). Alternatively, the language

described in Section 7.2.6.2 can be used to extend di�erent positions in the architecture

simultaneously with features. Once the position is modelled, the degree of freedom is

determined whether the modelled feature extension should actually be applied or remain

unchanged (optional degree).
Within the BRS system, for example, it would be conceivable to extend the connector

between Webserver and Scheduler by the feature SQLDatabaseLogging. If the feature

should be included optionally, a degree of freedom containing two elements {true, f alse}
is spanned. The feature SQLDatabaseLogging is supported according to Table 10.4 by

log4jv1 and log4jv2.

If the feature in the dimension optional degree is selected, then another degree of

freedom is spanned optimizing solution alternatives. If the feature is supposed to be

included to several positions than between Webserver and Scheduler, but for example

additionally between Scheduler and UserManagement, there arise two further options: it

can be additionally selected whether the subsystem is to be integrated several times and

delegated once in each case or integrated once and delegated several times (multiple
instantiation). This degree can have a signi�cant e�ect especially in the case of quality

attributes that are in�uenced by the number of deployed components such as reliability

or costs (for example in case of purchasing costs for components). This could have also

positive e�ects on the performance such as for load balancing purposes.

For the feature inclusion degree of freedom, additional opportunities for realization are

possible: Several other features could be selected, such as features shown in Table 10.4.

In addition, features of other feature completions, can be integrated to include several

subsystems in one base system. However, each feature must be manually marked for use

or optional use. The process remains semi-automatic, because the semantics of features

are not modelled formally, but only represented in natural language.

10.6.2. Remote Diagnostic Solution

Remote Diagnostic Solutions (RDS) system represents a real-world system applied in

real-world applications. We show how CompARE could be applied in real-world systems

227

10. Evaluation & Case Study Systems

Parser

Service
Engineer
Website

RDS
Connection Point

Data
Access

Device
Data

Data
Mining

& Prediction

Application Server

Database

Database ServerDMZ Server

Legend:

Resource
Container

System

Actor

Component

Required role

Provided role

Delegate

Remote Diagnostic Solutions

Remote
Plants

Service
Engineer

Figure 10.14.: System model of the Remote Diagnostic Solutions (after [BK16]).

widely used in industry. The RDS system, developed by ABB, is used to collect, aggregate,

and report status data of power plants and industrial plants.

The RDS periodically records status data of industrial plants and generates service

reports for the early detection of sensors or other components that may soon fail. These

data are visualized and can be reviewed by the service engineer. In addition to querying

status reports, service engineers can also remotely control and con�gure various parts of

the connected systems. In addition to actions controlled by human actors, the RDS can

carry out prede�ned actions independently.

The server-side system of the RDS consists of several million lines of C++ code. The

source code itself is not publicly accessible, which is why the evaluation presented here is

based on the PCM model from [Koz11; Goo+12] that abstracts from code. We show the

system architecture of the RDS in Figure 10.14.

10.6.2.1. System Architecture

The abstraction of the RDS model for the case study described here comprises seven

software components distributed on a 3-tier system. The 3-tier system is a classic division

of frontend (DMZ server), application server and back end (database server). For reasons

of isolation, the component that provides the access point for the connected remote

plants is distributed on the DMZ server. From here, the collected sensor data is send to

the Database component that is isolated on the database server via the processing units

on the application server. Once the data has been received at the RDSConnectionPoint

228

10.6. Base System Case Study Systems

component, it is converted into a suitable data format for further processing in the Parser.

The appropriately processed data is then separated in DeviceData according to connected

systems, pre-processed and evaluated in the DataMining&Prediction component. In this

component, predictions for possible imminent failures are also created. The processed data

is then forwarded to the database system via the DataAccess component and stored using

the Database component. In addition to the public interface for connecting to remote

plants, the service engineer can also access the data that has already been saved using

the interface of the ServiceEngineerWebsite component. Data access to the database is

performed via the DataAccess component.

In addition to the static architecture, the model has performance annotations to describe

the abstract behaviour. In addition, cost annotations are modelled, which are used, as

with the BRS system, to analyse cost. We reuse the cost model from the BRS system for

calculating the processor costs. Each server system has a CPU clock rate of 2000 processing

units.

10.6.2.2. Architecture Candidates

As with the previous model, the BRS model, di�erent degrees of freedom are possible: the

components shown in section 10.6.2.1 can again be distributed di�erently among hardware

resources. A total of �ve server systems are available. For each server the CPU clock rate

can be adjusted again. The interval [0.5; 2] as factor is possible. In addition, the feature

inclusion degree of freedom can be selected with the aforementioned sub degrees. Once

again, any features of the two feature completions can be applied to di�erent parts of the

system.

10.6.3. Modular Rice University Bidding System

Modular Rice University Bidding System (mRUBiS) is a community case study [Vog18;

AM] of HU-Berlin and implements an auction platform based on eBay.com. The case study

was originally developed to evaluate design patterns of applications and the performance

scalability of application servers. mRUBiS is a component-based system and realized with

Enterprise Java Beans 3 (EJB3). Internally mRUBiS uses data entities modelled in EMF.

The GlassFish Application Server is used as execution environment.

mRUBiS implements a marketplace where traders can sell goods or o�er them at auction.

The system supports several shops which can o�er their own goods for sale.

The system provides numerous external services for user access: Sellers can post new

items on the platform and check their inventory. Buyers can register on the platform, as

well as log in, browse items in di�erent categories, bid on items and submit reviews.

For our evaluation, we use as usage scenario a mix of get seller info, place bids and get

bid history.

10.6.3.1. So�ware Architecture

mRUBiS internally consists of 16 components and 16 interfaces. In our model, we have

chosen a two servers hardware con�guration to deploy the components. The system

229

10. Evaluation & Case Study Systems

Legend:

Resource
Container

System

Actor

Component

Required role

Provided role

Delegate

Application Server

Database Server

Modular Rice University Bidding System

Seller

Buyer

UserInfo

Persistence

Database

Manage
Items

Authentication

Item
Service

Inventory

Basic
QueryQuery

Figure 10.15.: System model of the Modular Rice University Bidding System (mRUBiS).

comprises an application server and a database server. The mRUBiS repository model

comprises nine software components. Figure 10.15 depicts the system architecture of

mRUBiS.

Buyers use the ItemService component to search for items or place bids. This �rst

authenticates the users by the Authentication components and then forwards requests

to the Database components via the Query component according to the desired service.

If the user submits a bid, the bid is �nally stored in the database using the Persistence

component. In addition, the buyer can edit user information using the UserInfo component.

For this purpose, UserInfo accesses BasicQuery and persists the changes in Database. The

Authentication component collects the necessary data using the BasicQuery component.

Sellers can use the Inventory component to add new items and check their inventory.

New items are forwarded to and processed in the database using the Query component. If

the inventory should be checked, this is done using the ManageItems component. This per-

forms a pre-processing of the requests, forwards the requests to the BasicQuery component

and �nally forwards it to the Database.

The architecture model of mRUBiS has performance annotations and cost annotations.

For the performance evaluation, we modelled the usage scenario perform bid as follows: If

a bid should be submitted, seller information is �rst retrieved using operation getUserInfo

of the component UserInfo. This request is delegated to the operation findUserById

of the component BasicQuery. Subsequently, operation getItemBidHistory of the com-

ponent BidServiceBean retrieves the bids already submitted (history). The operation

230

10.6. Base System Case Study Systems

findItemBidHistory of the component Query performs an extended request. Before the

bid is submitted, the identity of the user is �rst checked with the operation authenticate

of the component Authentication. This accesses the BasicQuery component and retrieves

the user data with the operation findUserByNickname. Then the availability of the item is

checked using operations checkAvailabilityOfItem and retrieveAvailabilityOfItem.

Finally the bid is placed by calling persistBid of component Persistence and saved in

the Database.

The mRUBiS cost model again models the cost function for processors, as previously

described in Section 10.6.1. In addition, the software components are annotated with initial

costs.

10.6.3.2. Architecture Candidates

Our mRUBiS architecture model supports several degrees of freedom: Five server systems

are available on which components can be distributed to distribute the load. Each server

system has a CPU clock rate of 200 processing units. This clock rate can be adjusted during

optimization using the [0.5; 2] interval as a factor. As with the previous case study systems,

mRUBiS can be extended with di�erent features of the feature completions. Furthermore,

the feature inclusion degree of freedom is applicable together with its sub-degrees of

freedom.

231

11. Evaluation Part I: Including Features
into So�ware Architectures

This chapter describes scenarios for the evaluation of the research questions described in

Section 10.2.1. All evaluation scenarios use the models described in the previous sections,

namely the models of the subsystems and the related feature completions (see Section 10.4).

These features are included into the models of the base systems (see Section 10.6). The

scenarios are used to demonstrate how CompARE can be used to evaluate design decisions

such as including features on desired positions in a base system and support software

architects at product selection and requirements prioritization. In the scenarios, we

use the degrees of freedom we introduced in the previous part for the respective base

system in addition. We use the systematic process CompARE and its implementation in

the PerOpteryx tool chain (see Section 10.3) to evaluate our research questions. Several

scenarios of this chapter and models are based on the Master’s thesis of Maximilian

Eckert [Eck18], supervised by me.

11.1. Preliminaries

The scenarios are part of the development process of the mRUBiS software system, in which

several software components have already been implemented to ful�l several (functional)

requirements. For each scenario we have carried out 100 iterations with 20 candidates

each. More than 1000 valid architecture candidates have been evaluated for most of the

scenarios. For all the following scenarios we have used Franks’ LQN Solver [Fra+09] to

calculate the response time. The convergence value is 0.001 and the iteration limit is 20.

11.1.1. Requirements

All scenarios are within the following main requirements:

• Statistical data shall be systematically recorded for the submission of bids on the

trading platform.

• Statistical data shall be systematically recorded for all actions carried out regarding

requests when searching for items in the stores.

• Statistical data shall be systematically recorded on all database enquiries arising

from the management of o�ered items on the trading platform.

• The existing SQL database shall be used to log data.

233

11. Evaluation Part I: Including Features into Software Architectures

Listing 11.1: PointCut de�nition for the scenarios

pointCut {

PointCut a l l P e r s i s t B i d C a l l s {

placementStrategy ExternalCallPlacementStrategy {

matchingSignature p e r s i s t B i d

}

} ,

PointCut a l l A c t i o n s I n Q u e r y {

placementStrategy InternalActionPlacementStrategy {

forAl l InternalAct ionsIn Query

}

} ,

PointCut a l l A c t i o n s I n B a s i c Q u e r y {

placementStrategy InternalActionPlacementStrategy {

forAl l InternalAct ionsIn Bas icQuery

}

} ,

PointCut a l l C o n t r o l F l o w s I n B a s i c Q u e r y {

placementStrategy ControlFlowPlacementStrategy {

forAllControlFlowsIn Bas icQuery

}

}

}

• The storage of the data shall take place in a given pattern-based format.

The requirements mentioned serve as basic requirements. Their feasibility and how

to achieve them is to be evaluated in the scenarios. If the evaluated quality attributes lie

outside these requirement limits, requirements may have to be prioritized.

We use the previously modelled degrees of freedom regarding the placement of compo-

nents and hardware con�guration from Section 10.6.3.1. The use of our feature completion

Logging is the best suitable for the aforementioned requirements.

Two necessary features can be derived from these requirements, namely SQLDatabaseL-
ogging and PatternFormatting. We choose the abstract control �ow extension mechanism

for extending the mRUBiS base architecture model.

11.1.2. Pointcuts

As the aforementioned requirements as a basis, we use the pointcut de�nitions from [Eck18]

to de�ne the scenario. The pointcuts are shown in Listing 11.1.

In summary, the four pointcuts describe which entities of the abstract behaviour of

our components (covering the requirements) should be extended. The extended feature

itself will be de�ned later. Furthermore, the placement strategy (see Section 7.2.3 and

Section 8.1) is determined, as well as whether the placement should be performed on a

signature or on a control structure. The pointcut allPersistBidCalls extends the signature

234

11.2. Preliminary Scenario: E�ects on quality attributes

persistBid by features (still to be de�ned). The pointcut allActionsInQuery extends all

internal actions in the Query component by (still to be de�ned) features. The pointcut

allActionsInBasicQuery extends all internal actions of the BasicQuery component. The

fourth pointcut, allControlFlowsInBasicQuery, extends all control �ows contained in the

BasicQuery component with a (still to be de�ned) feature.

11.1.3. Models

For all following scenarios, we use the following models and mechanisms:

As base architecture model we use the mRUBiS software architecture model from

Section 10.6.3.1. Additionally, we use the feature completion models Logging and the

related subsystem solution models of both log4j variants from Section 10.4.1.1 and 10.4.1.2.

For the de�nition of the weaving positions, we use the method of the abstract control �ow

extension. We use the extension by the abstract control �ow, since internal actions and

control �ow elements within components must be extended to evaluate the requirements.

11.2. Preliminary Scenario: E�ects on quality attributes

Using additional functionality usually in�uences the resulting quality attributes of the

overall system. When we add new source code, the system load usually increases, potential

new security �aws being created, or potential new errors arise that a�ect the reliability of

the system. However, it is often unclear at design time how positive or negative a certain

feature a�ects the relevant quality attributes. If the e�ect of the negative impact remains

within acceptable limits, stakeholders could adhere to the implementation of the feature.

This scenario should show how design decisions regarding feature selection can in

general a�ect the quality attribute’s response time and cost.

Design questions

This evaluation scenario considers whether the integration of additional functionality by

features can in�uence quality attributes of the overall system, such as response time or

system costs. Therefore, the following design question can be derived:

• What costs in terms of response time must stakeholders expect if they want to record

data to an SQL database and with pattern formatting of all internal actions of the

Query component, both before and after the actual internal actions?

• What are the Pareto-optimal candidates considering response time and costs for

recording to an SQL database and with pattern formatting of all internal actions of

the Query component, both before and after the actual internal actions?

Models

The model presented in Listing 11.2 re�nes the previously de�ned pointcut. From Logging,

the SQLDatabaseLogging and PatternFormatting features should be integrated into all

235

11. Evaluation Part I: Including Features into Software Architectures

10

15

20

25

30

included not included
Feature

R
es

po
ns

e
ti
m

e

(a) Box plot showing the response times of all evaluated

candidates

10

15

20

25

30

included not included
Feature

R
es

po
ns

e
ti
m

e

(b) Box plot showing the response times of the Pareto-

optimal candidates

Figure 11.1.: Box plots showing the relationship between including SQL database logging

and pattern formatting in mRUBiS and the resulting response time for the

service of the overall system. Cross mark indicates the arithmetic mean.

Listing 11.2: Advice for the preliminary scenario.

featureCompletion Logging ({ SQLDatabaseLogging } ,

{ P a t t e r n F o r m a t t i n g })

advice {

Advice {

appears AROUND
pointCut a l l A c t i o n s I n Q u e r y

placementPolicy OPTIONAL
}

}

internal actions of the Query component (pointcut allActionsInQuery). Data should always

be written before and after the call of the internal actions (appears AROUND). In addition,

both the presence of the feature and the absence of the feature in the base architecture are

evaluated (placementPolicy OPTIONAL).

Evaluation results & Discussion

For the evaluation of the scenario, PerOpteryx automatically generates a total of 1010

architecture candidates. The evaluation results in a total of 102 Pareto-optimal architecture

candidates.

Figure 11.1 shows box plots of the response time behaviour of the overall system,

both results with and without the feature. When considering all candidates and the

Pareto-optimal candidates, we can conclude the following: If features are included, the

response time of the overall system increases. For all evaluated candidates, the median is

236

11.2. Preliminary Scenario: E�ects on quality attributes

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●●

●

●

●

●

●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

10

15

20

25

30

0 30000 60000 90000 120000
Cost

R
es

po
ns

e
ti
m

e

Features ● ●included not included

(a) All evaluated and valid candidates (#1010)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

8

16

32

1e+04 3e+04 1e+05
Cost

R
es

po
ns

e
ti
m

e

Features ● ●included not included

(b) Pareto-optimal candidates (#102)

Figure 11.2.: All evaluated, valid, and Pareto-optimal candidates (preliminary scenario) of

the response time and cost evaluation of presence and absence of features.

13.25 ms for candidates with included features versus 12.64 ms to the candidates without

additional features. The arithmetic mean is 14.60 ms versus 13.32 ms. For the Pareto-

optimal candidates, the median is 13.56 ms and 12.28 ms respectively. The arithmetic mean

is 14.68 ms versus 12.15
1

ms. Overall, analyzing the evaluated Pareto-optimal candidates

we can see 20.82 % higher response times for the candidates including the additional

features. This value should not be understood as that generally solutions with integrated

features increase the response time for 20.82 %. Rather, the results are only valid for

our evaluated candidates and should only give an idea for higher response times when

including features considering our scenario.

Figure 11.2 shows the plots of all evaluated candidates, each with presence and absence of

features, as well as the Pareto-optimal candidates of both options. In the case of candidates

with lower costs, we can see the response time is higher at constant costs. With increasing

costs, the two curves approach each other. If features are included, the response time and

costs are higher compared to candidates without additional features.

As a result of the evaluation, we deduced that if additional features are included in

the base architecture, stakeholders can either expect higher monetary costs or higher

response times. Furthermore, the lower cost barrier for architecture candidates with

included features is 16.81 % higher compared to architecture candidates without additional

features. If the cost barrier becomes too high, requirements may need to be re-prioritized

or a di�erent set of features may need to be selected and re-evaluated.

1
We have normalized the arithmetic mean and median of candidates without features to the cost values

of candidates with included features so that value pairs are better comparable. If there are value gaps,

these were approximated linearly.

237

11. Evaluation Part I: Including Features into Software Architectures

Listing 11.3: Advices for scenario I.

featureCompletion Logging ({ SQLDatabaseLogging } ,

{ P a t t e r n F o r m a t t i n g })

advice {

Advice {

appears BEFORE
pointCut a l l P e r s i s t B i d C a l l s

placementPolicy MANDATORY
} ,

Advice {

appears BEFORE
pointCut a l l A c t i o n s I n Q u e r y

placementPolicy MANDATORY
} ,

Advice {

appears BEFORE
pointCut a l l C o n t r o l F l o w s I n B a s i c Q u e r y

placementPolicy MANDATORY
}

}

11.3. Scenario I: Evaluation of di�erent realizations

In the �rst scenario, we evaluate the di�erent realizations of the requirements. The

required features remain constant, i.e. there is no prioritization of requirements with

regard to features. Thus, we do not limit the selection of possible solutions. According to

Table 10.4, both solutions log4jv1 and log4jv2 support all required features, which is why

both solutions are considered in the optimization.

log4jv2 comes with a re-engineered code structure, therefore it tends to be better

maintainable, provides more features, which can be easier adapted and replaces log4jv1,

which should have a positive e�ect on the life cycle of the system.

The scenario shows how the mentioned properties can be set in relation to the resulting

quality attributes if required.

Design questions

In this evaluation scenario, we focus on the evaluation of both solutions of the logging FC.

In addition, we secondarily evaluate the placement of the components and the resource

con�guration. The main design questions of the scenario can be formulated as follows:

• Which of the available solutions is optimal for the selected placements in terms of

the quality attributes performance and cost?

• How do both solutions di�er in terms of the quality attributes response time and

costs of the overall system?

238

11.3. Scenario I: Evaluation of di�erent realizations

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

0 25000 50000 75000 100000
Cost

R
es

po
ns

e
ti
m

e

Solutions ● ●log4jv1 log4jv2

(a) All evaluated and valid candidates (#1010)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

8

16

32

5000 10000 30000 50000
Cost

R
es

po
ns

e
ti
m

e

Solutions ● ●log4jv1 log4jv2

(b) Pareto-optimal candidates (#43)

Figure 11.3.: All evaluated, valid, and Pareto-optimal candidates (scenario I) of the response

time and cost evaluation of both logging solutions, namely log4jv1 and log4jv2.

Models

To complete the previously de�ned pointcuts, we complement them by the advices shown

in Listing 11.3. In summary, the three advices de�ne that the two features SQLDatabaseL-
ogging, in combination with PatternFormatting. They are mandatory to be included (place-

mentPolicy MANDATORY) to the three of the four already de�ned pointcuts, namely

allPersistBidCalls, allActionsInQuery and allControlFlowsInBasicQuery. Logging must be

performed before (appears BEFORE) the calls of the services of the con�gured positions.

Evaluation results & Discussion

For the evaluation of the scenario, PerOpteryx automatically generates a total of 1010

architecture candidates. Figure 11.3a shows the scatter diagram of all evaluated architecture

candidates, divided into response time, costs and evaluated solution, namely log4jv1 and

log4jv2. The evaluation results in a total of 43 Pareto-optimal architecture candidates. All

Pareto-optimal architecture candidates are shown graphically in Figure 11.3b.

The analysis of the Pareto-optimal candidates shows log4jv2, compared to log4jv1,

seems to be cheaper in monetary costs. A cheaper price is bought by higher response

times. This also becomes clear by reviewing all evaluated candidates. Candidates using

log4jv2 tend to be more expensive and lead to weaker response times of the overall system.

The box plots in Figure 11.4 also illustrates the overall higher level of response times to

be expected when using log4jv2. For all evaluated candidates the median and arithmetic

mean for mRUBiS with log4jv1 is at 15.03 ms, and 15.91 ms respective, while using log4jv2

results in 15.42 ms for the median and 16.64 for the arithmetic mean. The di�erence for

the Pareto-optimal results is even higher. For log4jv1 the median is at 13.48 ms, while the

arithmetic mean is at 14.42 ms. For log4jv2 the median is at 19.71 ms, while the arithmetic

mean is at 18.56 ms.

239

11. Evaluation Part I: Including Features into Software Architectures

10

20

30

log4jv1 log4jv2
Solution

R
es

po
ns

e
ti
m

e

(a) Box plot showing the response times of all evaluated

candidates

10

20

30

log4jv1 log4jv2
Solution

R
es

po
ns

e
ti
m

e

(b) Box plot showing the response times of the Pareto-

optimal candidates

Figure 11.4.: Box plots showing the relationship between the solution used in mRUBiS and

the resulting response time for the service of the overall system. Cross mark

indicates the arithmetic mean.

The number of architecture candidates evaluated, however, is only an excerpt from all

possible con�gurations, so that the analysed result cannot be generalized to all possible

architecture candidates. Furthermore, additional architecture decisions (which have not

been considered) could in�uence the results. However, the result can serve as an assessment

of the tendency if the evaluated question should be used as a basis for further evaluation

questions. For example, log4jv2 provides additional features that may be desirable in a later

evaluation scenario. It might be useful to consider whether the increased response time

later would be worth features that become important, or whether the older version with

lower response times should later be used. If log4jv1 is used, architects should remark that

technical debts may arise, which would later necessitate a refactoring leading to additional

costs. This additional costs are not re�ected in this analysis.

11.4. Scenario II: Usingmultiple inclusion

Usually, in component-based software architectures components are deployed once and

can then be used by any parts of the system by delegating. If the degree of distribution of

the individual components of the software system to many hardware resources increases,

network connection run-times can have negative e�ects on the response time of the

services. In addition to the network load, bottlenecks of hardware on which this component

was deployed can decrease the performance of the overall system. For these reasons,

replication through multiple deployment can improve the response time of the system.

On the other hand, additional deployments are usually associated with higher costs due to

licence models.

The scenario presented here therefore examines when and to what extent multiple

deployment of logging can help to improve the software quality.

240

11.4. Scenario II: Using multiple inclusion

Listing 11.4: Excerpt from behaviour description for scenario II.

multiple BehaviourInclusion b e h a v i o u r I n c l _ZZ {

. . .

}

Design questions

Replication of components can provide better load balancing across hardware resources [TT85].

If components are deployed and allocated multiple times, the load can potentially be better

distributed across multiple systems. We therefore set the following new requirement for

the base system:

In the mRUBiS base system, the data logging requirements should be imple-

mented such that the necessary functionalities can be used and deployed for

each call exclusively.

From this new requirement we can derive the following design question for evaluation:

How does multiple inclusion of Logging features in�uence the quality

attributes response time and costs?

Models

For the evaluation of multiple inclusion, we use the same advices as in scenario 1. To use

multiple inclusion, the placement description must be extended as shown in Listing 11.4.

The keyword multiple before the corresponding behaviour description instructs the weav-

ing mechanism to multiply the component instance of the components to be included and

allocate them to resource containers.

Evaluation results & Discussion

For the evaluation of the scenario, PerOpteryx automatically generates a total of 1010

architecture candidates. Figure 11.5 shows the scatter diagram of all evaluated architecture

candidates, divided into response time, costs and evaluated solution, namely log4jv1 and

log4jv2. The evaluation results in a total of 36 Pareto-optimal architecture candidates.

The tendency of the resulting response times for the two options can be derived from the

overview of all evaluated candidates: Cheaper candidates are more frequent in multiple

delegation, while candidates with lower response times result in candidates with multiple

inclusion. From the results we can conclude that architecture candidates with multiple

inclusion result in higher costs than architecture candidates with multiple delegation.

This �nding is supported by the scatter plot of the Pareto-optimal architecture candidates.

Using multiple, better response times can be expected. One reason might be the placement

of the components to be better optimized, i.e. heavily loaded hardware can be disburdened

by a lower load due to fewer amounts of calls, or overloaded network connections can be

discharged by local deployment. This reduces the overall response time.

241

11. Evaluation Part I: Including Features into Software Architectures

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●
●

●

● ●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

10

20

30

0 25000 50000 75000 100000
Cost

R
es

po
ns

e
ti
m

e

Multiple ● ●no yes

(a) All evaluated and valid candidates (#1010)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

16

32

5000 10000 30000 50000
Cost

R
es

po
ns

e
ti
m

e

Multiple ● ●no yes

(b) Pareto-optimal candidates (#36)

Figure 11.5.: All evaluated, valid, and Pareto-optimal candidates (scenario II) of the re-

sponse time and cost evaluation of including a subsystem one time, while

delegating all caller locations to the same components versus including a

subsystem multiple time, having for each caller location an own subsystem

instance.

By this results, we can �nd if the architecture design focuses on the costs of the system,

multiple delegation would be preferable. If resources are to be used more evenly and shorter

response times of the service are required, multiple instantiation is the better choice.

11.5. Scenario III.a: Annotating features at di�erent
components

Logging solutions, in particular, implement a cross-cutting concern that can be applied

anywhere in the system (e.g. to record data). The decision whether data of a component

should be recorded results from the requirements. However, the resulting quality attributes

can have retroactive e�ects on the requirement. This is relevant, for example, if the speci-

�cation of a functional requirement describes to record data from a particular component,

but the implementation of these requirements would have negative e�ects on certain

quality attributes, so that both requirements cannot be implemented at the same time.

In this case, requirements must be prioritized. If a certain limit of the quality attribute

response time, for example, must not be exceeded, either the functional requirement must

be changed or the solution of the requirement must be changed, for example by a solution

with less performance overhead.

This scenario shows how to analyse the impact on the response time and cost quality

attributes when features are added to di�erent components.

242

11.5. Scenario III.a: Annotating features at di�erent components

Listing 11.5: Advice for scenario III.a.

featureCompletion Logging ({ SQLDatabaseLogging } ,

{ P a t t e r n F o r m a t t i n g })

advice {

Advice {

appears AROUND
pointCut a l l A c t i o n s I n B a s i c Q u e r y

placementPolicy OPTIONAL
} ,

Advice {

appears AROUND
pointCut a l l P e r s i s t B i d C a l l s

placementPolicy OPTIONAL
} ,

Advice {

appears AROUND
pointCut a l l A c t i o n s I n Q u e r y

placementPolicy OPTIONAL
}

}

Design questions

Di�erent partial functionalities of systems are called with di�erent frequency. The reason

is these partial functionalities are called by the system with varying frequency, for instance

due to loops. If, for example, data should be �ltered, how often the �lter function is called

depends on the routine that calls the �lter. In contrast, a sort function, for example, can

return the sorted result in one single run. The di�erence in this complexity has e�ects

when extending these functions with additional features, such as with features from the

Logging subsystem. If a particularly frequently called functionality is annotated, the new

functionality is also called correspondingly often. To demonstrate e�ects coming from

the weaving positions in the base architecture, we annotate features to three di�erent

annotation positions in mRUBiS. The positions are de�ned by the pointcuts allActionsIn-
BasicQuery, allPersistBidCalls, and allActionsInQuery. The following design questions can

therefore be de�ned:

• Which architecture candidate are Pareto-optimal with regard to the quality attributes

response time and costs when extending the internal actions of the BasicQuery

component in the base system before and after executing its internal actions?

• Which of the architecture candidates are Pareto-optimal with regard to the quality

attributes response time and costs when extending persisting bids in the base system

before and after executing the bid?

243

11. Evaluation Part I: Including Features into Software Architectures

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

10

15

20

25

30

0 25000 50000 75000 100000
Cost

R
es

po
ns

e
ti
m

e

Components ● ● ●BasicQuery ItemService Query

(a) All evaluated and valid candidates (#388)

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

8

16

5000 10000 30000 50000
Cost

R
es

po
ns

e
ti
m

e

Components ● ● ●BasicQuery ItemService Query

(b) Pareto-optimal candidates (#72)

Figure 11.6.: All evaluated, valid, and Pareto-optimal candidates (scenario III.a) of the

response time and cost evaluation of di�erent components as inclusion targets

for the selected features.

• Which of the architecture candidates are Pareto-optimal with regard to the quality

attributes response time and costs when extending the internal actions of the Query

component in the base system before and after executing the internal action?

• Which architecture candidates are globally Pareto-optimal with regard to the quality

attributes response time and costs across all three positions in the base system?

Models

The advices shown in Listing 11.5 complete the pointcut de�nition for evaluating the design

questions. Both features are used to extend the three pointcuts allActionsInBasicQuery,

allPersistBidCalls, and allActionsInQuery, each enclosing the construct (appears AROUND)

and each with optional placement policy (placementPolicy OPTIONAL).

Evaluation results & Discussion

For the evaluation of the scenario, PerOpteryx automatically generates 388 valid archi-

tecture candidates. Figure 11.6 shows the scatter diagram of all evaluated architecture

candidates, divided into response time, costs and evaluated solution, namely log4jv1 and

log4jv2. The evaluation results in a total of 72 Pareto-optimal architecture candidates.

The scatter diagram in Figure 11.6 shows the three groups resulting from the annotation

at the three positions in the mRUBiS architecture. The highest overall response times result

from the annotation of the ItemService component, which executes the bids of the users.

This is followed by the annotation of the internal actions of the Query component, while

the extension of the BasicQuery component results in the lowest response times. This

result is also supported by the box plots of the response times in Figure 11.7a. Annotating

244

11.5. Scenario III.a: Annotating features at di�erent components

10

15

20

25

BasicQuery ItemService Query
Annotated component

R
es

po
ns

e
ti
m

e

(a) Box plot showing response times of the three anno-

tation positions in mRUBiS

●

●

●

●

●

●

8

10

12

14

20000 40000 60000
Cost

R
es

po
ns

e
ti
m

e

Components ● ●BasicQuery Query

(b) Scatter plot showing the quality attributes response

time and cost of Pareto-optimal architecture candi-

dates across all annotation positions.

Figure 11.7.: Box plot and scatter plot for scenario III.a. Cross mark in the box blot indicates

the arithmetic mean.

BasicQuery results in an response time of 13.13 ms (median), while annotating ItemService

results in 14.61 ms), and annotating Query results in 13.34 ms. Again, we approximated

missing values for BasicQuery, and Query, while ItemService was used as the base line.

The results can be explained by the internal complexity of the individual services of the

components. While ItemService is internally composed of several internal actions, the

BasicQuery component (which implements the simplest logic) contains only one single

internal action. The response times of Query is between annotating and ItemService.

Considering the Pareto-optimal results across all positions, it results that the use of

ItemService does not result in Pareto-optimal architecture candidate. The �ndings are

shown graphically in Figure 11.7b. The results are dominated by BasicQuery, followed

by the annotation of the Query component (with only one Pareto-optimal architecture

candidate).

As a result, it can be derived that, depending on the requirement for necessary recorded

data that must be collected from components, di�erences in the response time behaviour of

the overall system can be expected. Once again, requirements may have to be prioritized if

response time is a particularly critical attribute that is more important for the project than

recording data at a certain position in the software system. If the response time behaviour

is relevant at most, an annotation of the BasicQuery component should be preferred.

However, it should be noted that the trade-o� between relevance of the collected data and

e�ects on response time should be considered separately.

245

11. Evaluation Part I: Including Features into Software Architectures

11.6. Scenario III.b: Increasing the number of annotated
components

Similar to the previous scenario of analysing the impact of features on individual com-

ponents on the quality attributes of the system, this scenario considers the impact of the

number of components annotated with features. If stakeholders want to collect as many

data as possible, functional requirements can specify data should be recorded on as many

positions in the system as possible. As before, such a requirement may violate the limits

of acceptable quality properties. In particular, if, for example, data should be recorded to

a central database system, this can overload hardware and thus slow down the overall

system.

The scenario presented here therefore shows how the in�uence can be evaluated of the

collection of data with varying number of annotated positions in the system.

Design questions

In the previous scenario, we evaluated di�erent annotation positions in the mRUBiS

system. If as many data as possible should be collected, the relevant question is how many

components can be annotated so that the quality attribute requirements can still be met.

Therefore, we can de�ne the following design questions:

• How does the annotation of several positions at the same time in�uence the quality

attributes response time and costs?

• Which architecture candidates are Pareto-optimal in terms of quality attributes

response time and cost for annotating one position, two positions, and three positions

in the mRUBiS system?

Models

For this scenario, we use the models from scenario III.a again.

Evaluation results & Discussion

For the evaluation of the scenario, PerOpteryx automatically generates a total of 622

architecture candidates. Figure 11.8a shows the scatter diagram of all evaluated architecture

candidates, divided into response time, costs and evaluated solution, namely log4jv1 and

log4jv2. The evaluation results in a total of 199 Pareto-optimal architecture candidates.

Figure 11.8 shows the Pareto-optimal results of the three groups. We can identify three

corridors approximated using the LOESS
2

method: while a single annotation usually

produces slightly cheaper and more e�cient candidates in terms of response time, the

candidates with three annotations rank behind for both quality attributes. As expected,

annotating two services in mRUBiS results in values in between 1 and 3 annotations at

the same time.

2
a non-parametric, local regression method

246

11.7. Scenario IV: Annotating the abstract control �ow

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

8

16

32

1e+04 3e+04 1e+05
Cost

R
es

po
ns

e
ti
m

e

Annotations ● ● ●1x 2x 3x

(a) Pareto-optimal candidates (#199) showing response time and

costs (scenario III.b) when annotating di�erent numbers of

components.

10

15

20

25

30

1x 2x 3x
Times annotated

R
es

po
ns

e
ti
m

e

(b) Box plots showing the distributions of the

di�erences in response times when annotat-

ing components

Figure 11.8.: Scatter plot and box plot showing the results of scenario III.b

Annotating three times compared to one time results in 16.92 % on average (22.16 %

median) higher response times compared to one time annotation
3
. Annotating two times

results in 4.96 % higher response times on average (7.27 % median). If the focus is on better

response times and lower costs, then stakeholders would have to lower the requirements

for amount of data collection.

11.7. Scenario IV: Annotating the abstract control flow

As described in Section 8.5.2, internal actions or control structures such as branches or

loops can be extended by CompARE. This can be useful, for example, to record data when

calling a certain branch or for all iterations of a loop call. Especially when annotating

loops, results in many logging calls. This can result in negative e�ects on quality attributes

such as performance.

This evaluation scenario shows how the e�ects of feature annotations on di�erent

elements of the abstract behaviour of components can a�ect quality attributes and how

these e�ects can be analysed.

Design questions

PerOpteryx can annotate di�erent parts of the (abstract) control �ow. However, the

annotation within a loop has a di�erent complexity compared to the annotation of an

internal action, since a loop usually results in many calls. For recording data, for example,

3
We have normalized the arithmetic mean and median of candidates with di�erent numbers of annotations

to the cost values of candidates with 1x annotations so that value pairs are better comparable. If there

are value gaps, these were approximated linearly.

247

11. Evaluation Part I: Including Features into Software Architectures

Listing 11.6: Advices for scenario IV.

featureCompletion Logging ({ SQLDatabaseLogging } ,

{ P a t t e r n F o r m a t t i n g })

advice {

Advice {

appears BEFORE
pointCut a l l P e r s i s t B i d C a l l s

placementPolicy MANDATORY
} ,

Advice {

appears AROUND
pointCut a l l A c t i o n s I n B a s i c Q u e r y

placementPolicy OPTIONAL
} ,

Advice {

appears AROUND
pointCut a l l C o n t r o l F l o w s I n B a s i c Q u e r y

placementPolicy OPTIONAL
}

}

this means that increased response times are to be expected when annotating loops. To

evaluate this in advance, we de�ne the following design questions:

• What e�ects on the quality attributes response time and costs are to be expected

if, in addition to recording the data of the call when bidding, data on all internal

actions of the BasicQuery component should be recorded (appearance before)?

• What e�ects can be expected on the quality attributes response time and costs if, in

addition to recording the data of the call at bidding, data on all control �ow elements

of the BasicQuery component should be recorded (appearance around)?

Models

Listing 11.6 shows the advices required for scenario IV. Before (appears BEFORE) the

actual call of the bid submission (i.e. the pointcut allPersistBidCalls) the two features are

included mandatory (placementPolicy MANDATORY). Both features are later contained in

every architecture candidates. The two features are included according to the model at the

two pointcuts allActionsInBasicQuery and allControlFlowsInBasicQuery, each enclosing

the statement (appears AROUND). It should be included optionally (placementPolicy

OPTIONAL).

248

11.8. Scenario V: Evaluation of feature alternatives with �xed features set

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

10

20

30

40

0 30000 60000 90000
Cost

R
es

po
ns

e
ti
m

e

Position ● ● ●+control str. +internal actions bid calls

(a) All evaluated and valid candidates (#758)

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

8

16

32

8192 32768 131072
Cost

R
es

po
ns

e
ti
m

e

Position ● ● ●+control str. +internal actions bid calls

(b) Pareto-optimal candidates (#112)

Figure 11.9.: All evaluated, valid, and Pareto-optimal candidates (scenario IV) of the re-

sponse time and cost evaluation of di�erent placement strategies in the ab-

stract control �ow of software components, namely bid calls only, bid calls

and control structures on basic query in addition, and bid calls and internal

actions of basic query in addition.

Evaluation results & Discussion

For the evaluation of the scenario, PerOpteryx automatically generates 758 valid archi-

tecture candidates. Figure 11.9 shows the scatter diagram of all evaluated architecture

candidates, divided into response time, costs and evaluated solution, namely log4jv1 and

log4jv2. The evaluation results in a total of 112 Pareto-optimal architecture candidates.

The evaluation of all evaluated architecture candidates already shows the trend for the

highest response times when recording data on bids in combination with recording at all

control structures to be considered in the scenario. As expected, recording only the bids

is in the lead in terms of low response times and costs. The Pareto-optimal results also

show a similar picture. While the annotation of internal actions has only small additional

performance and cost overhead, the annotation of all control structures can be expected to

be considerably more complex. Here, the trade-o� to be taken becomes particularly clear:

if all control structures should be annotated to receive the largest amount of data, higher

response times must be accepted compared to the annotations of bids and internal actions

only.

11.8. Scenario V: Evaluation of feature alternatives with fixed
features set

The Logging subsystem provides di�erent options for formatting the output. For example,

the output can be formatted according to a certain pattern or the output can be formatted

as XML or JSON. Processing data and output into the respective output format is realized

249

11. Evaluation Part I: Including Features into Software Architectures

by di�erent source code, thus di�ers in complexity and reliability and therefore leads to

di�erences in the resulting quality attributes of the overall system, as for example the

response time of the service. One of the selected features must always be supported by

the evaluated architecture candidates. Thus, it can be chosen afterwards which feature

from the selected alternatives in the software system would be optimal with regard to the

relevant quality attributes.

This scenario shows the analysis of the e�ects of di�erent features on the quality

attributes response time and cost of the overall system, which are still to be understood as

alternatives to each other at design time.

Design questions

There are often di�erent features available that can be used as alternatives because of their

functional similarity, such as the type of formatting. For example, formatting as a pattern,

JSON, or XML could be open for discussion. The quality attributes, for example, can be

decisive for the �nal selection. From these, the following design questions can be de�ned:

• Which of the three alternative features PatternFormatting, JSONFormatting, and

XMLFormatting result in Pareto-optimal software architectures in terms of response

time and cost of recording data at bidding (before), at all internal actions in query

(appearance before), at all internal actions in Query (appearance around), and at all

control �ow elements in BasicQuery (appearance around) in the mRUBiS system?

• How do the feature alternatives di�er in response time and cost at the before de�ned

positions in mBUBiS?

Models

The advices from Listing 11.7 de�ne the modelled requirements for the design questions.

The FileLogging feature will be included mandatory, while the feature group will have

freedom to choose between the formatting features, namely PatternFormatting, XMLFor-
matting, and JSONFormatting. However, one of the three formatting options must always

be selected.

The advice de�nition for the four pointcuts is to be included mandatory (placement-

Policy MANDATORY) for all feature groups (although there are still variation options

for formatting within the three options). Pointcuts allPersistBidCalls and allActionsIn-
Query each extend before the call (appears BEFORE), while allActionsInBasicQuery and

allControlFlowsInBasicQuery each enclose the call (appears AROUND).

250

11.8. Scenario V: Evaluation of feature alternatives with �xed features set

Listing 11.7: Placement description for scenario V.

featureCompletion Logging ({ F i l e L o g g i n g } ,

{ P a t t e r n F o r m a t t i n g , XMLFormatting , JSONFormatt ing }

)

advice {

Advice {

appears BEFORE
pointCut a l l P e r s i s t B i d C a l l s

placementPolicy MANDATORY
} ,

Advice {

appears BEFORE
pointCut a l l A c t i o n s I n Q u e r y

placementPolicy MANDATORY
} ,

Advice {

appears AROUND
pointCut a l l A c t i o n s I n B a s i c Q u e r y

placementPolicy MANDATORY
} ,

Advice {

appears AROUND
pointCut a l l C o n t r o l F l o w s I n B a s i c Q u e r y

placementPolicy MANDATORY
}

}

Evaluation results & Discussion

For the evaluation of the scenario, PerOpteryx automatically generates 986 valid archi-

tecture candidates. Figure 11.10 shows the scatter diagram of all evaluated architecture

candidates, divided into response time, costs and evaluated solution, namely log4jv1 and

log4jv2. The evaluation results in a total of 159 Pareto-optimal architecture candidates.

When comparing the quality attributes by using the di�erent features in mRUBiS, we

�nd response times and costs slightly di�er from each other. This result is supported by

the estimation of the three result corridors using the LOESS method. Only the architecture

candidates with lower response times show the trend PatternFormatting works slightly

faster than JSON, followed by XML formatting. Architecture candidates with lower costs

and higher response times show low di�erences. This can be explained because formatting

data cause comparatively low e�ort in comparison to the overall logging process. In general,

however, the procedure can be used to evaluate di�erent features that are available as

alternatives against each other. Further evaluation examples could be sorting of data such

as bubble sort, insertions sort or quick sort implementations. Depending on the application

and pre-sorting of data, di�erent results in terms of response time could be expected.

251

11. Evaluation Part I: Including Features into Software Architectures

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

10

15

20

25

30

0 30000 60000 90000
Cost

R
es

po
ns

e
ti
m

e

Features ● ● ●JSON Pattern XML

(a) All evaluated and valid candidates (#986)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

8

16

1e+04 3e+04 1e+05
Cost

R
es

po
ns

e
ti
m

e

Features ● ● ●JSON Pattern XML

(b) Pareto-optimal candidates (#159)

Figure 11.10.: All evaluated, valid, and Pareto-optimal candidates (scenario V) of the re-

sponse time and cost evaluation of di�erent layouting formats of the logging

solutions regarding JSON, Pattern, and XML formatting.

11.9. Scenario VI: Evaluation of feature alternatives
considering optional features

Design decisions could open for discussion in early stages of the design process. For

example, the decision to use a particular feature of the Logging subsystem may depend

on further factors. Further factors may include the resulting quality attributes using

one or more features. For example, if a feature reduces a certain quality attribute too

much, requirements might be re-prioritized. Analysis with optional features is therefore

important because not all products implement all features (if desired features are not

contained in the set of core features). The more design decisions have not yet been de�ned

in advance (like con�guring features to be optional), the better solutions can be found.

This scenario therefore shows the analysis of optional design decisions to �nd trade-o�

decisions between features.

Design questions

Di�erent solution support di�erent features. In the case of Logger, log4jv2 supports

writing to a NoSQL database, while log4jv1 does not support this feature. However,

if software architects decide in advance NoSQL should be supported, they exclude all

architecture candidates using log4jv1. An exclusion of this solution also excludes a lot

of potentially better candidates (we remember that log4jv1 can have potentially lower

resource requirements). Thus, if the design decision is not �xed yet, it may be useful to

select certain features as optional, so that more solutions can be evaluated even if they do

not support several features. Then, depending on the results of the quality features and

252

11.9. Scenario VI: Evaluation of feature alternatives considering optional features

Listing 11.8: Placement description and advices for scenario VI.

featureCompletion Logging (

{ F i l eAppend ing , SQLAppending ,

optional NoSQLAppending } , { P a t t e r n F o r m a t t i n g }

)

requirements can be re-prioritized. Basing on this, the following design questions can be

de�ned:

• Which of the three features FileLogging, SQLDatabaseLogging andNoSQLDatabaseL-
ogging provides globally Pareto-optimal architecture candidates regarding the qual-

ity attributes response time and costs for recording data at bidding (appearance

before), recording data at all internal actions in Query (appearance before), recording

data at all internal actions in Query (appearance around), and recording data at all

control �ow elements in BasicQuery (appearance around) in the mRUBiS system?

• Which architecture candidates are Pareto-optimal according to the use of the feature

alternatives with regard to the quality attributes response time and cost?

• Which subsystem solution is Pareto-optimal within one of the three features when

using them at the 4 locations in the mRUBiS system?

Models

Listing 11.8 shows the models for the evaluation of the design questions. Scenario VI

is related to scenario V. However, here, one of the features is con�gured as optional

feature. FileAppending, SQLAppending, and PatternFormatting are mandatory features,

while NoSQLAppending is an optional feature. The advice de�nitions remain the same and

are reused from scenario V.

Evaluation results & Discussion

For the evaluation of the scenario, PerOpteryx automatically generates 1009 valid archi-

tecture candidates. Figure 11.11 shows the scatter diagram of all evaluated architecture

candidates, divided into response time, costs and evaluated solution, namely log4jv1 and

log4jv2. The evaluation results in a total of 114 Pareto-optimal architecture candidates.

In the context of the four inclusion positions in the mRUBiS architecture, write opera-

tions of the recorded log data to a �le can be performed with the lowest response times.

Writing to a NoSQL database is slightly faster than writing to an SQL database system.

The slowest con�guration in our simulation is writing data into an SQL database system.

When writing to the database systems, we assume the standard con�guration of the NoSQL

database system MongoDB (version 3.4.10) and the standard con�guration of the MySQL

(version 5.7.20) database system. If the hardware and con�guration of the �le system and

the database systems is di�erent, the expected values may di�er from the values shown

253

11. Evaluation Part I: Including Features into Software Architectures

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●●

●

●

●

● ●

●

●

●
●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

40

0 25000 50000 75000 100000
Cost

R
es

po
ns

e
ti
m

e

Features ● ● ●File Append NoSQL Append SQL Append

(a) All evaluated and valid candidates (#1009)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

8

16

32

5000 10000 30000 50000
Cost

R
es

po
ns

e
ti
m

e

Features ● ● ●File Append NoSQL Append SQL Append

(b) Pareto-optimal candidates (#114)

Figure 11.11.: All evaluated, valid, and Pareto-optimal candidates (scenario VI) of the

response time and cost evaluation of di�erent layouting formats of the

logging solutions regarding the features FileAppending, NoSQLAppending,

and SQLAppending. NoSQLAppending was set to be an optional feature.

here. However, the evaluation shows di�erent features of Logging can result in di�erent

results of quality attributes of the overall system.

Figure 11.12 shows a comparison of the response times and costs of the Pareto-optimal

architecture candidates when using the FileAppending and SQLAppending features as

alternatives. The Pareto-optimal architecture candidates of the two features are grouped

according to the two subsystem solutions log4jv1 and log4jv2. While FileAppending can be

implemented from both systems with similar response times and costs, there are signi�cant

di�erences in SQLAppending. If log4jv1 is used, lower response times can be achieved in the

overall system. NoSQLAppending is only implemented from log4jv2. If NoSQLAppending
must be used, the trade-o� between using the feature, to response times and costs has to

be made.

11.10. Accuracy of the Optimization

At model level, including features at desired positions in the software architecture model

by weaving means including software components into the base system. For the simulation

of performance properties and costs, we exclusively use PCM concepts. The simulation

engine of the performance properties was not adapted or extended in the presented work.

All newly introduced elements such as subsystems, subsystem solutions and features are no

longer included in the transformed model. The performance evaluation and optimization

of the scenarios shown in these scenarios therefore rely on already evaluated concepts.

[Hap09] and [Reu+16] have shown Palladio’s performance analysis can provide accurate

results. Koziolek [Koz11] has shown that optimizing PCM models provide accurate results

for the quality attributes performance and costs along the three degrees of freedom:

254

11.11. Discussion

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

10

15

20

25

30

0 25000 50000 75000
Cost

R
es

po
ns

e
ti
m

e

Solutions ● ●log4jv1 log4jv2

(a) Pareto-optimal candidates comparing response times

and cost of �le appending using di�erent solutions

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

40

0 25000 50000 75000 100000
Cost

R
es

po
ns

e
ti
m

e

Solutions ● ●log4jv1 log4jv2

(b) Pareto-optimal candidates comparing response times

and cost of sql appending using di�erent solutions

Figure 11.12.: Comparison of both features FileAppending and SQLAppending grouped by

both logging solutions log4jv1 and log4jv2.

component selection, hardware selection, and component allocation. The new degrees

of freedom introduced in this dissertation are reduced to these three degrees of freedom

using transformations. Therefore, the accuracy of analyses of quality attributes and the

optimization of software architectures shown in this dissertation is based on the results of

these studies.

11.11. Discussion

Scenarios 1 – 6 demonstrate in detail evaluation questions EQ I.II.1, EQ I.II.2, EQ III.1,

and EQ III.2 from Section 10.2. We show how the models of subsystems and subsystem

solutions can be reused to extend existing base software architectures by features. We

show how di�erent solutions can be automatically evaluated with regard to the quality

attributes of the overall system. In addition, we show the evaluation of new architecture

design decisions such as considering feature selection and di�erent feature positions can

in�uence quality attributes. Based on these results, we discuss how requirements can be

prioritized and how the results can be used as a basis for discussions with stakeholders.

255

12. Evaluation Part II: Qualitative
Modelled Knowledge

This chapter evaluates the research questions from Section 10.2.2. We evaluate the combi-

nation of the two knowledge models using two systems, namely Business Reporting System
(cf. Section 10.6.1) and Remote Diagnostic Solutions (cf. Section 10.6.2), together with the

IDS subsystem (cf. Section 10.5.2), with the solutions AppSensor (cf. Section 10.4.3.1) and

OSSEC HIDS (cf. Section 10.4.3.2) to show the applicability and bene�ts of our approach.

When evaluating the combination of quanti�ed quality attributes in combination with

qualitatively modelled quality attributes, we show how trade-o� decisions can be made

between several quality attributes of di�erent types regarding the software architecture.

12.1. Evaluation process

Figure 12.1 shows the evaluation process schematically. We perform the evaluation in

three steps, namely model creation, model annotation and model exploration that we have

already used in one of our publications [BK16].

• Model creation: We use the QML model extended in Section 9.1 to de�ne dimensions

to be evaluated and optimized during the evaluation. In addition, we determine which

dimensions should be considered as quanti�ed dimensions and which dimensions

should be considered as qualitatively valued dimensions.

• Model annotation: Using the quality annotations model, the de�ned quality dimen-

sions are annotated to the a�ected components together with the corresponding

values of this dimension.

• Model exploration: We use PerOpteryx to carry out the design space exploration to

calculate the Pareto-optimal architecture candidates. For this purpose, quantitative

and qualitative modelled quality attributes are considered together.

12.2. Combining both types of knowledge

This section shows how software architects can combine two qualitatively modelled

quality attributes, namely usability and security with the two quanti�ed quality attributes,

performance and cost in order to make trade-o� decisions between them.

257

12. Evaluation Part II: Qualitative Modelled Knowledge

Model creation Model annotation

Quality annotated PCM

Annotate quality value
and component model

(QAM)
PCM

Quality attribute
estimation PCM

DimensionsSelect/define
dimensions (QML)

Model exploration

Design space
optimization

Pareto-optimal
candidates

Quantitative
Results

Figure 12.1.: Schematic overview of the evaluation process of part II of the evaluation

(according to [BK16]).

12.2.1. Scenario VII: Combination of usability and security

This scenario considers the evaluation of design alternatives for quality attributes when

no quantitative objective function is available or might be too costly for the project to

carry out quantitative analysis. Further, improving several quality attributes often means

reducing others at the same time. This scenario therefore demonstrates how such trade-o�

decisions can be modelled and analysed. Two new requirements for the Business Reporting

System consider the improvement of usability and the improvement of security quality

attributes:

• The graphic representation of the business reports shall be improved in terms of

illustration of business areas and the corresponding business values to improve the

understanding by the user.

• The user management of the business reporting system shall be improved so that the

probability of successful attacks is reduced and the business data is better protected.

12.2.1.1. Design questions

The previously introduced requirements could be implemented by four components of

which two each represent alternatives in pairs.

The Business Reporting System has a component for showing the business reports gener-

ated by the system, namely the GraphicalReporting’ component. The GraphicalReporting’

258

12.2. Combining both types of knowledge

component provides a graphical representation using a list of several individual business �g-

ures from di�erent areas of the company. The alternative component GraphicalReporting”

could have the following appearance and properties: GraphicalReporting” groups the

business �gures by business areas, sorts them according to importance, and displays se-

lected, particularly relevant data by scatter plots. This might increase the user satisfaction

when using GraphicalReporting” [MS; Nie97]. GraphicalReporting’ requires less re-

sources than component GraphicalReporting” due to the simple graphical representation.

We therefore assume the fourfold resource requirement due to the increased need for

the graphical representation for GraphicalReporting”. Both components implement the

functionality in a very similar manner, provide and require the same interfaces. They only

di�er in the representation of the data.

The second requirement concerns the user management of the BRS. While the origi-

nal component UserManagement’ in the system could be a proprietary development, the

alternative component UserManagement” could implement a more extensively tested and

widely used third-party component, for example an OAUTH2 implementation. The OAuth

2.0 authorization framework [IET12] “is the industry-standard protocol for authoriza-

tion” [Gro]. It can be used in mobile or desktop devices and is widely used in practice

[Par17; RS16; Bih15; Nas17]. Thus, it can be classi�ed as more secure in terms of restricting

access for unauthorized users than a less tested proprietary development. Due to more

complex algorithms to guarantee the security properties, we assume a double resource

requirement for UserManagement”.

On the basis of the two pairwise alternative components, the following design questions

can be derived which are to be evaluated:

• What are the Pareto-optimal architecture candidates for all combinations of all

possible properties of the dimensions of security and usability, such as security =

low, usability = low or security = high, usability = low?

• To what extent does the improvement of the user experience in�uence the response

time and the costs of the overall system?

• To what extent does the improvement of the access restriction capabilities in�uence

the response time and the costs of the overall system?

12.2.1.2. Models

For the evaluation we require several models that we have taken from our evaluation

in [BK16]. First, we model the dimensions of the quality attributes and their possible

properties using QML. We show an excerpt of the model in Figure 12.2. Then properties

must be annotated from the set of possible properties of a dimension to the corresponding

component using the QAM.

We assign the dimension UserSatisfaction to the quality attribute usability. For user

satisfaction, we model �ve possible quality attributes, de�ned as set and consisting the

attributes {1,2,3,4,5} that represent the levels of user satisfaction. Higher values mean

higher quality. The quality attribute security de�nes the dimension AccessRestriction. For

the dimension we model three possible values that a component can have, namely {low,

259

12. Evaluation Part II: Qualitative Modelled Knowledge

Integer: value =
{1, 2, 3, 4, 5}

«eClass»
:ScaleElement

unit = not quantified
relSem = increasing

«eClass»
UserSatisfaction:
DimensionScale

<Integer>
«eClass»

UsabilityContract:
SimpleQMLContract

SoM = ordinal

«eClass»
:ScaleOfMeasure«eClass»

:Objective
«eClass»
:Value

Figure 12.2.: Excerpt from the QML dimension UserSatisfaction. Each Element 1, 2, 3, 4, 5
would be represented in its own class. For space reasons, we have represented

them in a set notation.

medium, high}. In this dimension, high means better security. All values estimate the

quality of a component with respect to the corresponding dimension. Among themselves

and within a dimension, the properties follow an order relation on ordinal scale level. Both

dimensions are de�ned as objectives, while their value shall be optimized.

According to Section 12.2.1.1, we assign from the dimension user satisfaction the

value 2 to the component GraphicalReporting’, while the alternative implementation

GraphicalReporting” has the value 4. Further, we assign from the dimension access

restriction the property low to the component UserManagement’, while the alternative

component UserManagement” has the value high. For the annotations, we use the QAM.

Evaluation results & Discussion

For the evaluation we have carried out 200 iterations 20 candidates each, with a total of 2586

architecture candidates. PerOpteryx calculated 63 Pareto-optimal architecture candidates

out of these. The Pareto-optimal architecture candidates are shown in Figure 12.3a.

Altogether we can identify four corridors, grouped according to the individual levels

of usability, represented by the dimension UserExperience and security, represented by

the dimension AccessRestriction. As expected, the architecture candidates with the lowest

quality properties are most cost-e�cient to be used and also result in the lowest response

times. The architecture candidates with one of the higher quality property and one of the

lower quality property from the respective dimensions are in the middle �eld. We �nd the

architecture candidates with a lower level of security are cheaper and faster than those

with high usability. As expected, the architecture candidates with high security and high

usability level are the most expensive candidates and have the highest response times.

These results are supported by the box plots in Figure 12.3b. The box plot shows the

response times for the four groups of combinations of the respective possible characteristics

260

12.2. Combining both types of knowledge

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

4

8

1500 2000 2500 3000
Cost

R
es

po
ns

e
ti
m

e
[m

s]

Properties ● ● ● ●
secu high,
usab lvl 2

secu high,
usab lvl 4

secu low,
usab lvl 2

secu low,
usab lvl 4

(a) Scatter plot showing the Pareto-optimal architecture candi-

dates grouped by security and usability dimension

2.5

5.0

7.5

10.0

12.5

secu high,
usab lvl 2

secu high,
usab lvl 4

secu low,
usab lvl 2

secu low,
usab lvl 4

Properties

R
es

po
ns

e
ti
m

e
[m

s]

(b) Box plot showing the response times for the

architecture candidate grouped by security

and usability dimension

Figure 12.3.: Scatter plot and box plot for scenario VII. Cross mark in the box blot indicates

the arithmetic mean.

Arithmetic mean Security low Security high

Usability low 100 % 164 %

Usability high 133 % 229 %

Table 12.1.: Overview of the average additional e�ort in terms of response time consider-

ing the two quality attributes security and usability within their respective

dimensions.

of the properties for each dimension. The values for the response times of each group are

approximated on the basis of the costs of the group security low, usability level 4. On the

basis of this data, predictions about the additional costs (in terms of response time) can

be calculated caused by improving a certain quality attribute. Table 12.1 summarizes the

�ndings of the evaluation.

The di�erence between the lowest security and the lowest usability, to the highest

security and the highest usability is 129.34% arithmetic mean (99.59 % median) additional

costs regarding response time (green area). On this basis, software architects can decide

whether the highest level of the respective dimension justi�es the increase in response

time or whether a requirement prioritization in favour of one of the dimensions becomes

necessary (red, purple area). If response time is even the most critical factor, response time

must be prioritized at the highest level, which would lead to an architecture candidate

from the blue area.

261

12. Evaluation Part II: Qualitative Modelled Knowledge

12.2.2. Scenario VIII: Security

This scenario extends the model of a real-world system, the RDS (see Section 10.6.2), by

annotations of qualitatively modelled quality attributes. The focus of this scenario is on

showing how quality requirements on security, namely better protection against data

loss and improved protection against unauthorized access, could be evaluated and how

trade-o� decisions could be analysed. Two new requirements can be de�ned for improving

the RDS in terms of security:

• The input processing of data should become more secure so that the e�ort for

attackers increases to inject malicious code.

• The database, which stores the recorded values and aggregated status data, should

be better protected against data loss.

The models and evaluation results are based on models used in the evaluation in [BK16].

Design questions

In the base system of the RDS, the functionality of the input processing of data and

storage of the measurement data is implemented by the components Parser and Database

respectively. Two alternative components with di�erent quality properties could be used

to improve the quality attributes mentioned above.

The alternative input processing component Parser” could have a higher quality re-

garding the dimension intrusion prevention, but requires the double CPU resources than

Parser. Database” has improved data loss prevention capabilities, where we assume a four-

fold resource requirement for CPU resources. Both components can be used as pairwise

alternatives because they provide and require the same component interfaces.

The following design questions can be derived from the pairwise alternative components:

• Which architecture candidates are Pareto-optimal when the quality attribute security

should be improved?

• Which security improvements is Pareto-optimal in terms of costs and response time?

Models

Again, we use QML to model the quality attribute, dimensions, and possible properties for

the dimensions. For the annotation of properties to components, we use QAM again.

For both dimensions intrusion prevention and data loss prevention, we use the three

values {low, medium, high}. From the dimension intrusion prevention, we assign the value

low to Parser, while we annotate the value high to Parser”. We annotate the Database

component with the value low from the dimension data loss prevention, while we use high
for Database”.

262

12.2. Combining both types of knowledge

●

●

●

●

●

●

●

●

●

●
●

4

8

40 60 80 100
Cost

Re
sp

on
se

 ti
m

e
[m

s]

Properties ● ● ● ●
intr. prev high,
data loss high

intr. prev high,
data loss low

intr. prev low,
data loss high

intr. prev low,
data loss low

VI

VII

I

V

IV

II III

Figure 12.4.: Scatter plot showing the Pareto-optimal architecture candidates of the RDS

system grouped by the security dimensions data loss prevention and intru-

sion prevention. Annotated results are further explained in the results and

discussion section.

Evaluation results & Discussion

PerOpteryx automatically evaluated 814 valid architecture candidates. The optimization

resulted in 11 architecture candidates as Pareto-optimal candidates. In Figure 12.4 the

candidates are numbered consecutively by I - VII for better clarity of the following �ndings.

With the small number of Pareto-optimal candidates, the candidates can be examined

in pairs: Candidate I and candidate II have identical costs and the identical level of data

loss prevention. Candidate II, however, achieves a lower level of intrusion prevention

and has lower response times. If stakeholders could accept lower intrusion prevention,

the architecture would achieve 0.99 ms lower response time at the same monetary cost.

Alternatively, performance could be reduced by 0.99 ms in favour of better intrusion

prevention.

Candidates II and III reveal a sweet spot within the Pareto-optimal results: With the

same quality regarding intrusion prevention and data loss prevention, an improvement

of only 0.19 ms would increase the cost of the software system by 18.6 %. Stakeholders

must decide whether the 0.19 ms improvement in response time justi�es the 18.6 % cost

increase.

The pairs consisting of candidates IV and V, as well as VI and VII show interesting

�ndings comparing them to each other. On the cost axis, the candidates within each pair

are at the same value. Interesting �ndings are shown by the analysis of the axis over

the response time. While the di�erence at cost value 87 between candidates with low

intrusion prevention and low data loss prevention to high intrusion prevention and low

data loss prevention is 2.16 ms higher (48.3 % higher), the di�erence at cost value 115 is

263

12. Evaluation Part II: Qualitative Modelled Knowledge

reduced to 1.01 ms (30.3 %). With increasing �nancial resources, the negative in�uence

on the response time of the better intrusion prevention can therefore be reduced. The

di�erence results from a resource contention that can be reduced by better hardware

resources. However, more hardware resources are more expensive. With a small budget,

the use of components with the better intrusion prevention security features cause 96.5 %

higher response times, while with 31.6 % higher budget worsening the response time is

reduced to 30.3 % by using better security features. A further �nding is that when using

components with better intrusion prevention, and increasing the budget by 36 % might

achieve almost the same response time as for candidates with lower intrusion prevention.

If the decision is made in favour of better quality properties, it might be promising to

evaluate further architecture candidates in which the quality attributes are analysed with

a further increase in budget. This could improve the response time even more.

12.3. Using qualitative reasoning

In this section we show scenarios demonstrating the purpose of qualitative reasoning for

the evaluation of qualitatively modelled knowledge. Qualitative reasoning allows mod-

elling e�ects between di�erent quality attributes and to combine them with quantitative

methods. In the following two scenarios, we consider the BRS and RDS systems.

12.3.1. Scenario IX: E�ects between quality dimensions when using di�erent
implementations

This scenario evaluates how quality dimensions can in�uence the quality dimensions

of other quality attributes. More concrete, the ability for backups can have an in�uence

on the quality attribute recoverability and thus on the quality attribute usability in the

dimension ease of data recovery. When considering further quality dimensions together, a

manual examination quickly becomes tedious and an analysis prone to error. We therefore

focus on the automatic analysis of e�ects to make trade-o� decisions between the di�erent

quality dimensions of di�erent quality attributes. We would like to analyse the following

requirement for the BRS:

The data recovery process of the overall system shall be improved.

The models and evaluation results have already been shown in one of our publica-

tions [SBK18].

Design questions

Each implementation has di�erent quality properties, such as the quality of the backup

process, which in turn a�ects the recoverability and thus the quality of the recovery process

in the event of data loss. For the investigation and implementation of the requirements

from the previous section, three components have to be considered with regard to the

BRS: Database, CoreOnlineEngine and the WebServer component. For each component,

there is an alternative component, which di�ers in quality attributes as for instance the

264

12.3. Using qualitative reasoning

quality properties of the ability for backups with regard to the quality of the database

backup process, recoverability with regard to fault tolerance and the quality of the backup

process. Thus, this has an indirect e�ect on usability with regard to the ease of the data

recoverability dimension. In addition, they di�er in terms of resource demand and costs.

This results in the following design questions:

• How does the quality attributes recoverability and ability for backups of individual

components in�uence the quality attribute usability, in the dimension ease of data

recovery of the overall system?

• How does the quality of the data recovery process in�uence the overall response

time of the services and costs of the software system?

Models

In the �rst step, we de�ne the attributes for the quality dimension. This is the basis of the

models and thus possible characteristics that de�ne the properties of a quality dimension.

In other words, the characteristics correspond to possible values that a property of a quality

attribute can have. We use DS = {−−,−, 0,+,++} for our quality dimensions. The value

++ corresponds to the highest quality property within the dimension and -- to the lowest.

The intermediate values correspond to gradations at ordinal scale level. 0 corresponds to a

neutral quality property.

For the evaluation of the design questions, we annotate the pairwise alternatives of the

three components Database, CoreOnlineEngine and WebServer with the corresponding

values from the respective quality dimension: In practice, software architects often have the

choice between di�erent database management systems (DBMS), such as those available

from di�erent vendors. Known examples for DBMS are be the Oracle Database 12c and

the IBM DB2 10.5. Both DBMS have similar features and functionalities, but di�er in their

quality attributes. However, quality attributes, such as the ability for backups are di�cult

to quantify. In such cases, however, qualitative comparison of the alternative systems

within the same quality dimension is possible. Such a qualitative comparison can be based

on the personal experience of software architects or on reviews of technical reports such

as the Oracle Technical Comparison report [Ora13]. This report proposes that the quality

of the backup process of the Oracle Database 12c can be ranked higher than the backup

process of the alternative system. We annotate this information to the corresponding

database components in the component repository using QAM. To be conformed to the

technical report, we annotate the quality of the backup process of the IBM DBMS with

the value 0. The Oracle database, with slightly better quality, we annotate with + and

assume that measurements regarding CPU resource demands of the Oracle DBMS observe

on average 1.5 times the amount of the IBM database, as well as double the initial costs.

We de�ne a similar model for CoreOnlineEngine. For one of the two CoreOnlineEngine

components, the CoreOnlineEngine” we assume a 20 % lower CPU resource demand and

80 % lower costs. The 2nd component has a lower fault tolerance.

Microsoft’s TechNet report [Mic09b] describes a correlation between the quality of

the backup process and the recoverability. We model this correlation in the MRS shown

in Table 12.2 (left). Using QAM, we annotate the MRS model to both components. The

265

12. Evaluation Part II: Qualitative Modelled Knowledge

MRS: Recoverability

MR: Ability for backups

IN: ++ + 0 - --

OUT: ++ ++ + 0 -

MRS: Usability

MR: Recoverability

IN: ++ + 0 - --

OUT: ++ ++ + 0 -

Table 12.2.: MRS modelling the in�uence of ability for backups to recoverability (left) and

recoverability to usability (right).

MRS models that if any required component (in the system) de�nes a certain quality of

the backup process (ability for backups), this has a direct e�ect on the recoverability of

the CoreOnlineEngine component. The ease of the data recovery process after a system

failure depends, among other factors, on the availability of data backups.

We model usability as additional quality attribute. Web server components that are

more user-friendly than others would intuitively improve the overall usability of the entire

software system. We assume WebServer” is more user-friendly and requires the double

CPU resource demand. Nielsen describes in [Nie12], that usability of user interfaces

depends on how easily users can recover the system from errors that have occurred.

Basing on this, we conclude that the quality attribute usability of individual components

is positively in�uenced by an improvement of recoverability of the components of the

service. Therefore, we annotate the two alternative web server components with the MRS

from Table 12.2 (right).

Evaluation results & Discussion

PerOpteryx evaluates in 400 iterations, with 20 candidates each a total of 6015 valid

architecture candidates, of which 22 result as Pareto-optimal candidates. Again, we used

Franks’ LQN Solver [Fra+09] to calculate the response time. The convergence value is

0.001 and the iteration limit is set to 20. All evaluated architecture candidates are shown

in Figure 12.5a, while the Pareto-optimal candidates are shown in Figure 12.5b.

The scatter plot of all architecture candidates shows four �elds of candidates. These four

�elds represent the combinations of components, with their di�erent quality attributes,

with regard to usability, recoverability and ability for backups. Gaps between the candidate

groups occur due to di�erent initial costs of the software components and di�erences in

resource demands, which a�ect the costs for hardware.

When analysing the components used in the four areas, we can �nd each area uses a

di�erent set of software components: Area one includes Webserver’, CoreOnlineEngine’,

or CoreOnlineEngine”, and the IBM database component. Area two includes Webserver”,

CoreOnlineEngine’ or CoreOnlineEngine”, and the IBM database component. Area three

includes Webserver’, CoreOnlineEngine’ or CoreOnlineEngine”, and the Oracle database

component. The last area contains Webserver”, CoreOnlineEngine’ or CoreOnlineEngine”,

and the Oracle database component. We �nd only candidates using Webserver” and

the Oracle database components can achieve an overall improvement in the ease of re-

covery dimension. According to our qualitative reasoning model, the selection of the

266

12.3. Using qualitative reasoning

●

●
●● ●●

●

● ●

●●

●

● ●●

● ●

● ●●

● ●●

● ●

●

●●

●●

● ●

●●
● ●

●●

● ●

●

●

●

●●●

●

●

●

●●

●●

●

●

●

●●
●

●●●

●

●●

● ●

●●

●

●●
●●

●

●

●●

●

● ●●

●

●

● ● ●
●

●

● ●

●

● ●

● ●●

●

●● ●●●●

●

●

●● ●
●● ●

●

●

●

●● ●
●●

● ●●

●● ●

●●

●
●

● ● ●

● ●

●

● ●
●

●●

●

●

●

●

● ●

● ●

●

●●

●

●●●

●

●●

●●

●

●

● ●

●

●● ●

● ●●

●● ● ●

●

●●

● ● ●

● ●

● ●

●

●●

●●●

●

●●

●● ●

● ●

● ● ●
●●

●● ●

● ●●
●

●

●●
●●

● ●●

●● ●

● ●
● ●●

●

●●●

●

●

●

● ●● ●●

● ●●

●

● ●

●

●● ●

●

●●

●● ●

●●

●

● ●

● ●

●
● ●●

●●

●●●

●

●

●● ●

●●

●

● ●

●

●
●●

●

●●
●●

●●●

● ●

● ●

●

●

●

●

●

●●

●

●●●

●●

●●

● ●

● ●●

● ●

●

●
●

● ●

●

●●

●

● ●

●● ●

●

●● ●

●●

●

●● ●

●

●●

●●

●●

● ●

●● ●

●

●●

● ●

●●

●

●
● ●

●

●●
●

●●

●

●

●

●●

●●

●●

●

●

●

●

●●

●

●

●●

●

●

●●

● ●

●●●

●●

●●●
●●

●

●

●

●

● ●

●●

●●

●

●●

●

● ●
●●

●

●

●●

● ●●

●

●●

● ●

●

●

●

●

●●●●

●●

●●

●

●●

●●●

● ●

●

●●

● ●

●●

●

●

●

● ●●

●●

●

●●● ●●

● ●

●

●●●

● ● ●

● ●

● ●

●

●●

●●

● ●●

●●

●●●

● ●●

●

●

●●

●

●

●

●
●

● ●

● ●

●

●

●

●

● ●

●● ●

●●

● ●

●

●●●

●

●●

●●

●

●

●

●

●●

●

●

● ●●

●●

●

● ●

●

● ●●

● ●

●●

● ●
●●

● ●

● ●

●●

● ●

● ●

●●●

●

●

●●●

●

●

●● ●

●

●

● ●

● ●
● ●

●

●

●

●

● ●

●● ●

●

●

● ●

●

●

●●

●●●

●●●

●

●

●● ●● ●

●●

●●
●●

●

●●

●●

●

●

●●

● ● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●●

●●

●●
●●
●

●●

●●

●

●

●●

●

●

●●

●● ●

●●●

●●

●
●

●●

● ●●

●●

●

●●

●

●●

●

●●

●

●●

●

● ●

●

●

● ●

● ● ●

●

●

●

● ●●

● ●

● ●

●

●●

●

●

●●
●●●

●

●

●●

●

●● ●

● ●●

●

●

● ●

●

●

●
●●

●●

●●

●

●● ●●

●

●

● ●

●● ●

●

●

●● ●

● ●

●

● ●●

●

●

● ●

●●

●

●●

● ●

●

●

●

●●

● ●

●●

●

●●●

●

●

●●
●●

●
● ●

●

●●

●

●

●

●

●

●●●

●

●

●

● ●●

●

●●

● ●

●●

●

●

●●●
●● ●

●●

●●● ●

●

●●

●

● ● ●

●● ●

●

●●

●●

●

●

●●

●●●

●

●●
● ●

●

● ●●

●

●

●

●●

●●

●

●

● ●

● ●

●

●

●

●

●

●

●●

●●

●

●

●●

●
●

●●

● ●●

● ●

●

●

●●

●●●

●●●

●●●● ●●

●●

● ●●

●● ●●

●●

●

●

●●●

●

●●

●

●

● ●

●●
●●

● ●

● ●

●

●

●
●

●●

●

●●●

● ●

●●●

●

●

●●

●

●

●
●

●

●●●

● ●

● ●

●

●

● ●●
● ●

●●

●

●

●

●● ●

●●●

●

●● ●

● ●

●

● ●●

●

●●

●

●

●

●

●

●●

●

●

●●
●● ●

● ● ●

●●

● ●

●

●●

●●

●

● ●

●

●●●

●●

●

●

● ●

●● ●

●

●
●●

●

●

●

●●

● ●

●

●

● ●

● ●

● ●

●●

●●

● ●

● ●

●

● ●

●

●

●●

● ● ●

●● ●

●

● ●

●

●

●

●

●

●●

●

●

●●

●●
●● ●

● ●

●●

●●

●

●●

●● ●

●

●

● ●●
● ●

●●

● ●

● ●

●

●

●

●

● ●●

●

● ●●

●●●

●

●

●●

● ●

●●

●

●● ●

● ●●

●

●

●●●

●● ●●

●

●

● ●●

●●

●●

● ●

●●

●

● ●●

●● ●

●●

●
●●

●●

●● ●

● ●

● ●

● ●

●●●

●●

●

●

● ●

● ●

●●

●●

●●●
●●

●●●

● ●

●

● ●

●●

●●

●

● ●●

● ●

●

●

● ●

●

●●
● ●

● ●

● ●●

●

●
●

●

●

●

●●

●●

●

● ●●

●

●●●

●●

● ●

●●●

● ●

● ●

● ● ●

● ●●

●

●

● ●

●

●

●

●

●

●●

●●

●●● ●●

●

●●

●●

● ●●

●

● ●

● ●●

●●

●

● ●

●●●

● ●

● ●

●

●

●●

●● ●

● ●

● ● ●

●● ●

● ●

●●

●●

● ●

●●

●

●

●

●

● ●

●●

● ●
● ● ●

● ●

●

●

●●

●●●

●●

●

● ●

●

●

●●

●●

●● ●

●●

●

●

● ●●

●●

●
●●●

●●

●

● ●

●●

●●

●

●

●●

● ●

●●

●●●

● ●●
●

●

●●

●●

●●

●

●

●● ●●

●

● ●

●

●●●

● ● ●●●●●

●●

●●

●

●●

●

● ●

●●

●

●

●●

●●

●

●

●● ● ●●

●

● ●

●●

●

●

●●

●

●

● ●

● ●

●
●●●

●● ●
●●

●● ●

●●

●●

●●

●

●●

●●

● ●●

●●

●

●●●

●

●

● ● ●

● ●

● ●

● ●

●●

●

●

●
● ●● ●

●●

●●

●●

● ● ●

●

●●●

●

● ●

●●

● ● ●

●

●
●●

● ●
●

●●●

●

●

●

●

●●

●

●●
●

●

● ●●

●

●●●

●

●

●●● ●● ●

●●

●● ●

●●

●

● ●

● ●

● ●

●

● ●

● ●●

●

●

●

●●

●

● ●●

●●

●

●

●●

●●

●

●

●●

●

●●●

●●

● ●●

●● ●
●

●●

●
● ●

● ●

● ●●● ● ●

●

●

●●

●

●

●

●

●●● ●●

● ●

●

●●

●●

●

●

●● ●

●

●

●

●●●

● ●

●
●●

●

●

●

●● ●●●

●●

●●

●●

● ●●

●● ●●●

●●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●●●

●

●●

● ●● ● ●●
●●

●

●

●●

● ● ●

● ●

●

●●

●

●
●● ●

●
● ●

●

●

●

● ●

●

●●

●●

●

●

● ●●

●

●●

●

●

●●

●●

● ●

●

● ●

●
●●●

●

●

●

●

●

●●●

●●

●●

●●

●●

●

●
●●

●

● ●●

●

●

●

● ●

●●

●●

●●

●

●●

●

●

●

●●

●●●
● ●

● ●

●

●

●

●

●

●

●●
●●

● ●●●

●

●

●

●

●●

●

●

●●

●●
●●

● ●

●

●

●● ●

●

●●

●

●●

●

●● ●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●

●

●●

●
●●●

●

●●

●● ●

●● ●

● ●

●

●

● ●

●●●
● ●

●

●

●●

●

●●

●

●●

● ●
●

●●

●

●

●

●

● ●

●●

●●

●

●●
●

● ●

●

●●

●

● ● ●

●

●

●

●

● ●●

●

●●

●●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●● ●● ●

●

●●

●●

●●

●

●●

●

● ●

●●
●

●

●

● ●

●

●●●

●●

●●

●

●

●

● ●

●●

●

●

●

●

●

●●

● ●

● ●

●●●

● ●●

● ●
● ●●

●

●●●

●●

● ●●

● ●

●●

●

●

●

●

●

● ●

●

●●●
●●

● ●

●● ●

●

●

●

●● ●

●

● ●●

●

●

●●●

●●

● ●●

●●●

●

●

●

● ●● ● ●

● ●

● ●

●

●●

● ●
●●

●

●

●●

●● ●

●

●

●

●●● ●
●

●

●● ●

●● ●

● ●

●●●

●

●

● ●

●

●●

●●

●

●

●

● ●

●

●●

● ●
●

●

●

● ●●

●●

● ●●

●

●● ●●

● ●●

●●

●

●

●

●

● ●

●●

●●

●●

●●

● ●

●● ●

● ●

● ●

● ●

●●

● ●

●●●

●

●●

●

●●

● ●

●●

●

●●

●●

●●

●●

●

●

●

●

●

●

●

●●

● ●

●

●

●●

●●

●

●●

●

●●●

●

●

●

●

● ●

●● ●
●

● ●●

●●

●●

●●

●●●

●
●

●

● ●

● ●

●●

●

● ●●

● ●

●●

●●

●●

●

● ●●

●●●

●

●●

●● ●

●●

●●

● ●

●

●●

●

●

●●

●●

●

●

●●

●●●

● ●

●

●

●

●

●

●● ●

●●

●●

●●● ● ●●

●

●●

●

●●

●●

●●

● ●

●●

● ●●● ●

●

●

●

●●●

●●

●●

● ●●

●●

●●

●

●

● ●

● ●

● ●

●● ●

●●

● ●

●

●●●

●

●●●

● ●

●●

●●●

●●

●●

● ●

● ●●

●

●●

● ●

●

● ●

●●

●
● ●

●

●●
●●
●●

● ● ●

●

●●

●
●●●

●

●

●

●
●

●

●

●●
● ●

●

● ● ●● ●

●

●

●

●●

●

●

●● ●

●

●

●

●●

●●

●

●

●

●● ●

● ●

● ●●

●●●

●

●

● ● ●

●

●

● ●

● ●

● ●

● ●

●

●

●

●● ●

●

●●

● ●

●●

●●

●

●●

● ●

● ●●

●●

● ●

●●

●

● ●

●

●

●●

●

●

●

● ●

● ●
● ● ●

●●

● ●

●

●

●●
●●

●●

●

●

●● ●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●● ●

●

●

●

●●

●

● ●●

●

●

●●●

●

●● ●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●●

● ●●

●

● ●

●●

●

●●

● ●

●

●

●●

●●
●● ●

●
● ●●

●●●

● ●●

● ●● ● ●

●

●
●● ●

● ●

●

●●

●●

● ●●

●●
●

● ●
●●

● ●
● ●●

●
● ●

●●

●● ●

●

●●●

●

●

●

●

●

●

● ●●

●

●

●●

●● ●

●

●●

● ●

●

●●
● ●●●

●

●●

●

● ●

●● ●

● ●●
●

●●

●

●

●

●● ●
●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●●

● ● ●

●

●

●●

●

●

● ●

●

●●

●

●●

●

● ●●

●●

●●

●●

● ●

●

●

● ●●

●●

●

●

●●● ● ●

● ●●

●

●

● ●

● ●

●●

●●

● ●

● ●

●

●

●●

●● ●

●
●

● ●

● ●

●

●

● ●

●

●● ●

●

●

● ●●

●

● ●

●

●

●● ●

●● ●

●

●

● ●

● ●●

●

●● ●
● ●●

●

● ●

● ●

●●●

●

●

●

●●

●

●●

●

● ●● ●

●●

● ●●

●

● ●
●●●

●

●

● ●●

●●

●●

●

●● ●

●

● ●

● ●●

●

●●

●
●

● ●●

●●

●●●

●●

● ●●●

●

●

●
●●●

●●

●●

●●

●

●●

●

●
●●● ● ●

●
●

●●
● ●●

●

●●

● ●

●●●

●

●

●

●●●

●

●

●

● ●●

●

●●

●

●

●●

●

●

●●

●

●

●●

●
●

●

●

● ● ●

● ●

●

●

●●●

●

●● ●

●

●

●

●● ●

●

●

●

●

● ●

●

●●

●

● ●●

●

●●

●

● ●

●
● ●●

● ●

●

●

●●

●

●●

●●

●

●

●● ●
●

●

● ●

●
● ●

●

●

●● ●

● ●

● ●

●●

●●

●

●

●●●

●

● ●

●●

●●

●

● ●

●

●

●

●

●

●

●●

●

●● ●●

●

●

●●

●●

●●

●

●

●

●●

●

●●

●

●●

●

●●●

●

● ●

●●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●
●

●

●

●●

●

●

● ●

●●

●

●

●

●
●

● ●

●

● ● ●●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

● ●

●●

●

●

●

●● ●

●

●●

●

● ●

●●

●

● ●●

●

●● ●●

●

●●
●●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

● ●

●

● ● ●

●

●

●

● ●

●

● ●
●●

●

● ●

●

●●
●●

● ●

●

●●

● ●●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

● ●

●

●●

●

● ●● ●

●●

●
● ●

●

●●●

●

●●

● ●●

●

●●

● ●

●

●

●

● ●

● ●●

● ● ●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

● ●

●●

●

●

●

●●

●

●

● ● ●

●●

●

●●

●

●

● ●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●● ●

● ●

●

●● ●

●

●

●

●●

●

●
●

●

●

● ●

●
●

●●
●

●●

●

● ●

●

●●

●

●

●● ● ●

●

● ●
●

● ●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

● ●

●

● ●

●

●

● ●
●

●

●

●

●●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●●●

●●

●

●

●●

●

● ●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

● ●●

●

●

● ●●

●

●●

●

●●

●●

●●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

● ●

● ●

●

●●●

●

●

●●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

● ●

●

●

●

●

● ●
●

●
●●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●●

●

●

● ●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

● ●●

●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●

●

●
●● ●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●●

●

● ●

● ●
●

●

●●

●●

●
●

● ●

●●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●
●

●

●

● ●

●

● ●

●

●

● ●
●● ●

●

●

●

●

●

●

●●

● ●

●●

●

● ●
●●

● ●●

●

●

●●

●

●

●

●

●

●

●

● ●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●● ●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

● ●

● ● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●
●

●

● ●●

●

●

● ●

●

●

●

●●

●

●

●

●

●●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●●

●

●●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●●●

●

●
●●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●●

●
●●●

●

●●●●

●

●●

● ●
●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●● ●

●●

●

●●

●●

●

●●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●●

●

●

●

●

●●

●

●●

●
●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

● ●

●●●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●●

●

●●
●

● ●

●

●
●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●

●●

●

●●
●

●●●

●

●

●

●
●
● ●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●
●

●

●●●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●● ●

●

●
●

●
●●

●

●

●●●

●

●

●

● ●

●
●

●

●

●
●
●

●●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●●

●

●
●

●

● ●

● ●

●

●

●

●

●

●●

●●

●

● ●●

●

●●

●

●

●●

●

●●

●●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●●

●

●

●●

● ●

●

●●

● ●

●●

●

●

●

●

●●

●●

●

●

●

●
●●

●

●

●

●

● ●

●

●

● ●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●
●●
●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●●

●●

●
●

●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

● ●

●

●

●

●
●

●

●●●

●

● ●

●●

●

●

●
●

●●

●

● ●

● ●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●●

●

●

●●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●●

●

●

●

●
●

●

●

●●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

1

4

16

1000 2000 3000 4000
Cost

R
es

po
ns

e
ti
m

e
[m

s]

Properties ● ●Ease of recovery: (+) Ease of recovery: (o)

(a) Scatter plot showing all evaluated and valid candi-

dates of scenario IX

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5

1.0

2.0

4.0

1000 2000 3000 4000
Cost

R
es

po
ns

e
ti
m

e
[m

s]

Properties ● ●Ease of recovery: (+) Ease of recovery: (o)

(b) Scatter plot showing all Pareto-optimal architecture

candidates of scenario IX

Figure 12.5.: Scatter plots showing the four �elds of architecture candidates and the Pareto-

optimal architecture candidates regarding response time, costs, and ease of

recovery.

CoreOnlineEngine has no in�uence on the overall quality property of the dimension ease

of recovery.

A closer analysis of the results considering the Pareto-optimal results shows a lower

cost barrier of 424 cost units for candidates with a lower ease of recovery. The lower cost

barrier for architecture candidates with better ease of recovery is 3728 cost units. Similar

response times can be achieved with both lower and higher ease of recovery. However,

better ease of recovery requires higher budgets. On the basis of the results, software

architects and other stakeholders can now decide if the additional costs justify the higher

ease of recovery. In cases where backup recovery is critical for the business scenario,

stakeholders may accept the signi�cantly higher costs. In applications where ease of

recovery is less critical to the business model, the costs might be too high and the decision

would be in favour of the less expensive architecture candidates.

12.3.2. Scenario X: E�ects between quality dimensions when using di�erent
features

In scenario 10, we consider di�erent con�guration options of the same software component.

This scenario evaluates di�erent features to be selected, as for example the use of another

algorithm due to another con�guration of the software component. For example, the

DBMS Microsoft SQL Server recovers data in simple and full modes in case of data loss. To

assess di�erences between features, we use the RDS as base system with a focus on storing

the measurement data. The models and evaluation results have already been presented in

our publication [SBK18].

267

12. Evaluation Part II: Qualitative Modelled Knowledge

MRS: Recoverability

MR: Ability for backups

IN: ++ + 0 - --

OUT: ++ + 0 - --

MRS: Usability

MR: Recoverability

IN: ++ + 0 - --

OUT: ++ + 0 - --

Table 12.3.: MRS modelling the in�uence of ability for backups to recoverability (left) and

recoverability to usability (right).

Design questions

Software architects often need to know at design time what e�ects the individual features

have on the overall quality of the software system (in which the database system is used).

With this knowledge, software architects can analyse at design time whether requirements

can be met by using individual features. Again it is interesting how di�erences in recov-

erability in�uence the usability dimension ease of recovery. On this basis, the scenario

evaluates the following design questions:

• How does the selection of features and the resulting quality property of the dimension

ease of recovery a�ect the response time and costs of the overall system?

Models

To model the relevant quality dimensions, we use Microsoft’s technical report Microsoft
recovery model report [Mic16] as basis for the architecture knowledge. The report describes

the di�erences between the two recovery modes. According to the report, recoverability

is better ful�lled in full mode, but has a negative e�ect on system performance.

Thus, we model the full mode’s ability for backup of the database with positive in�uence

(+) and the simple mode with negative in�uence (-). We reuse the DS from the previous

scenario. Due to the higher resource demands, we assume the full mode requires four

times the CPU resource demands compared to the simple mode. In addition, we extend

the model with the two MRS models from Table 12.3 to model the in�uence of ability

for backups on recoverability and recoverability on usability (of the dimension ease of

recovery).

Evaluation results & Discussion

PerOpteryx evaluated 2030 valid architecture candidates, in 200 iterations with 20 can-

didates each. 9 of these candidates were resulted as Pareto-optimal. Again, we used the

LQN solver [Fra+09] to calculate the response time. The convergence value is 0.001 and

the iteration limit is 20.

The Pareto-optimal architecture candidates are shown in Figure 12.6. Again, the can-

didates are grouped according to the usability dimension ease of recovery, response time
and cost. Overall, we �nd a higher ease of recovery leads to higher response times. If

lower response times are required, the architecture candidates result in signi�cantly higher

costs. The lower limit for response time is 5.24 ms for candidates with ease of recovery

(++), while the highest response time is 4.57 ms for candidates with ease of recovery (+).

268

12.4. Accuracy of Evaluating Qualitative Modelled Knowledge

●

●

●

●

●

●

●

●

●

4

8

60 90 120
Cost

R
es

po
ns

e
ti
m

e
[m

s]

Properties ● ●Ease of recovery: (+) Ease of recovery: (++)

Figure 12.6.: Scatter plot showing the Pareto-optimal architecture candidates of the RDS

system grouped by ease of recovery, response time, and costs.

Looking at the candidates that represent the barriers, the candidate with ease of recovery

(++) results in 62.83 % higher cost (whereby the candidates are not directly comparable

due to the di�erences in response times).

If either response time or costs are in the focus of the optimization, decision makers

should select architecture candidates with lower ease of recovery. On the other hand, it is

clear that better recovery of data in the event of an error results in higher response times

or costs. On the basis of the results, however, this trade-o� decision can be discussed with

a data basis and requirements can be prioritized with the stakeholders.

12.4. Accuracy of Evaluating Qualitative Modelled Knowledge

The accuracy of the evaluation of qualitatively modelled knowledge depends on the

level of detail and accuracy of the knowledge itself. Due to the lack of real setups and

the possibility to model knowledge from experienced software architects, we relied on

documents from system vendors themselves. However, documents from vendors are not

necessarily a reliable knowledge source. They usually contain information about positive

properties of the described systems, as well as negative properties of the systems from

competitors. However, the evaluation of the knowledge itself has shown that the modelled

knowledge when combining with quantitatively modelled knowledge results plausible

values. Without the modelling of qualitative knowledge, optimization as shown would not

have been possible. Systems with better quality properties such as recoverability would

not have been included in the set of Pareto-optimal results due to higher resource demand.

Accordingly, these candidates would not have been visible in the results and would not

have been considered as promising candidates.

269

12. Evaluation Part II: Qualitative Modelled Knowledge

12.5. Discussion

In scenarios 7 – 10 we demonstrate in detail evaluation questions EQ II.I.1, EQ II.I.2,

EQ II.II, and EQ III.2 from Section 10.2. The scenarios show how qualitatively-valued

quality attributes can be modelled and analysed. We show how a combined analysis of

both types of knowledge representation could be carried out and which results could be

expected. Based on these results, requirements could be prioritized and discussed with

stakeholders.

270

13. Evaluation Part III: Optimizing
Annotation Positions and Solution
Selection

By reusing 3rd party systems for the implementation of features, well-considered design

decisions and often a well-tested code base of these systems are reused. Security is one of

the big topics in modern software systems and one of the enablers of modern business

models. Implementing security features is hard and there are many pitfalls. Even popular

open source cryptography libraries, such as OpenSSL has been shown to be prone to

common security pitfalls, such as the Heartbleed vulnerability [Dur+14]. Implementing

such security critical systems from scratch could lead even more to unsecure systems.

Thus, crypto libraries, access control systems or other security critical systems, such as

intrusion detection systems, should not be written from scratch, but established 3rd party

systems should be used.

Even if software architects have decided reusing libraries and even if the type of secu-

rity feature to be implemented has already been de�ned, the solution selection and its

possible placement in the base architecture is unclear. Each change in selected product

and placement in the base architecture changes the resulting quality attributes, such as

performance and costs. Possible questions in detail are demonstrated in this scenario.

Let us assume the stakeholders want to improve the quality attribute security with regard

to the quality dimension recognition of external attacks. Features of the IDS subsystem

implement such requirements. The BRS (Section 10.6.1) could be attacked on several

positions in its architecture, where attacker detection could be applied to detect and

prevent attacks. We use the two subsystem solutions AppSensor (Section 10.4.3.1) and

OSSEC (Section 10.4.3.2) as alternative solutions. To implement the requirements, they

are alternative implementations of the IDS subsystem. As a constraint for this scenario, a

lightweight and non-intrusive model extension mechanism should be used.

Design questions

Let us review the software architecture of BRS. We show the system architecture of BRS

in Figure 10.13.

The particularly critical positions in the BRS software architecture with regard to

possible functional abuse are mainly components handling user interactions, such as user

management and generation of reports. Two positions are liable for this type of attack

and use case: First, we focus on the assembly connector between UserManagement and

Scheduler performing user logins and user logo�s. Second, we focus on the assembly

271

13. Evaluation Part III: Optimizing Annotation Positions and Solution Selection

Server 1

Server 2

Server 3

Scheduler

Webserver

Graphical
Reporting

Online
Reporting

User
Management

Server 4

Core
Graphic Engine

CacheDatabase

Core
Online Engine

Business Reporting System

User

Service
Technician

<<CV>>
FunctionalAbuse

<<CV>>
FunctionalAbuse

Legend:

Resource
Container

System

Actor

Component

Required role

Provided role

Delegate

<<CV>>
Optional Inclusion

Figure 13.1.: Feature annotated BRS system view-type.

connector between GraphicalReport and CoreGraphicEngine. These components focus

on the user interaction between user and system while generating reports. To detect

functional abuse, we use the feature FunctionalAbuse to ensure a function that is used for

realizing a business use case cannot be abused for attacking the system. The following

three design questions can be derived:

• What in�uence does the use of the feature FunctionalAbuse have on the performance

and costs of the overall system at the two aforementioned assembly connectors of

the BRS?

• What are the di�erences in performance and cost based on the number of inclusion

positions?

• Which of the two subsystem solutions is optimal with regard to the feature Functional-
Abuse at the two architecture positions and taking into account the environmental

parameters (such as usage scenario, resource setup) of the BRS?

Scenario Application

Figure 13.1 shows the extension of the system view-type of the BRS architecture model

schematically. Software architects can evaluate the design questions by annotating the

assembly connectors with the complementum visnetis annotation, which connects the

FunctionalAbuse to the desired components of the system. As annotation positions, we

select the assembly connector between the components UserManagement and Scheduler,

272

and GraphicalReporting and CoreGraphicEngine. Both annotation positions are con�g-

ured as optional and are therefore considered in the design space exploration as optional

inclusion positions. This creates a design space spanning from zero weaving positions to

two weaving positions. Within this range there is scope for exploration and optimization.

Further, the applied subsystem solution can be varied for each candidate architecture model.

The design space further considers the allocation of the remaining components, software

components of the feature completion components, implementing functional abuse, as well

as resource scaling of the processing resources of the 4-tier system. The CPU resources of

each of the four server systems can be selected in the range of 1000 to 4000 MHz during

design space exploration. Further annotation positions would be conceivable, such as the

entry points between actors and Webserver component, and CoreGraphicEngine compo-

nent. In this scenario, however, we concentrate on the assembly connectors mentioned

above.

For model weaving, we consider three component repositories: the repository with

the components of the BRS system, the repository with the components of AppSensor

and the repository with OSSEC components. We also use the feature completion model

of the IDS, as well as the feature model, which models the feature objectives of the IDS

feature completion. We extend the system view-type of the BRS model with our reuse

pro�le and annotate the stereotype featureTarget to the assembly connectors. As feature,

we con�gure FunctionalAbuse as optional desired. We also de�ne a QML contract type,

contract and pro�le that models the quality attribute performance with the dimension

response time and cost as quality attributes to be evaluated. Both quality attributes are

de�ned as objectives. This models can then be used for the evaluation of the design

questions mentioned.

Evaluation results & Discussion

The �rst two design questions from Chapter 13 can be analysed by the plots shown in

Figure 13.2. Altogether, PerOpteryx analysed 3053 valid architecture candidates. Out

of these, 74 candidates are Pareto-optimal. Several areas can be identi�ed in which the

architecture candidates can be grouped. The largest �eld of architecture candidates, in

which also the Pareto-optimal architecture candidates are located, shows relatively small

e�ects on quality attributes performance and costs when including FunctionalAbuse. The

annotation of the assembly connector between GraphicalReport and CoreGraphicEngine

has higher e�ects on performance and costs, than the annotation of the assembly connector

between UserManagement and Scheduler. Annotating both connectors results in even more

cost-expensive and resource demanding candidates. However, the results of annotating

both positions of the architecture, are slightly distorted: 957 architecture candidates

could not be evaluated because the system was overloaded due to the high calculation

e�ort. Annotating both components tend to result in higher response times. Nevertheless,

PerOpteryx evaluated architecture candidates having both annotations with comparatively

low response times. However, these candidates tend to be more expensive. Allowing the

DSE to increase the processing resources further, the high demanding candidates could

probably be evaluated. This would probably result in higher costs.

273

13. Evaluation Part III: Optimizing Annotation Positions and Solution Selection

●
●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

● ●

●

●●

●

●

●

●

● ●
●

●

●

●

●●

● ●

●

●●

●

●
●

●●

● ●
●

●
●

● ●

●

●

●

●

● ●●

●

●

●
●

●
●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

● ●
●

●

● ●● ●
●

●
● ●

●
●●

● ●
●

●
● ●●

●
●●

●

● ●

●

●
● ●

●

●
● ●

● ●

● ●
● ●

●

●
●

●

● ●

●

●

●●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●●●

●
●

●
●

● ● ●
● ●

● ●

●●
●

●

●

● ●●

●●
●

●● ●

●
●

●

●

●
●

●
●

●

● ●
●

●
●

●
●

● ●●

●

●
●

●

●

● ●●
●

●

●●

●

● ●

●

●
●

●
●● ●

●●
● ●

●
●

●●
●

●●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●
● ●

●●

●
●

●

● ●● ●
●●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
● ●●●

●

●
●

●

●

●

●
●

●

●
●

● ●

● ● ●

●

●●

●
● ●●

●
●

●●

●
●

●
●
●●●●●●

●
●

●

●
●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

● ●● ●
●

●
●

●
●● ●

●

●
● ●

● ●●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●●
●

●● ●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
● ●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●

● ●
●

●
●

●

●
●

●
●

●

●

●●
●● ●

●

●
●

●●

●●
●

●

● ●
●

●

●
●

●

●
●

●

●

●
●

● ●●

●

● ●
●

●●

●

●

●
●

●

●

●

●
●

● ●● ●

●
● ●

●
●

●
●

●
● ●

● ●●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

● ● ●

● ●
●

●●

●

●
●●

●

●

●

●

●
●

● ●
●

●

●

● ●

●

●●

●

●

●
●●

●

●

●
●

● ●
●●

●
●●

●

●

●●

●
●

●●

●

●
●

●
●

●●
●

●
●●

●
●

● ● ●

●

●

●
●

●

●

●
●

●● ●

●

●

●●

●
●

●
● ●

●

●

●

●
●

●
●●●

●

●

●
●

●

● ● ●●

● ●● ●
● ●●● ●

●
●

●

●

●

●● ●
●

●

●
●

●

●
●

●●
●

● ●
●

●

●

●●●●
●

●

●●●

●●
●

●

●

●
●

● ●●
●

●

●
●

●
● ●

●

●

●
●

●
●●

●

●
●
●

●
●

●

●
● ●

● ●

●●

●

●●● ●

●●

●●

●

●
● ●

●
●

● ●●
●

● ●

●
●●

●●

●

●

● ●● ●
●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●●

● ●
●

● ●

● ●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●●

●
●

●
●

●
●

● ●●
● ●

●

●

●●
●

●
● ●●

●

● ●

●

●
●●

● ●●
●

●

●

●●
●

●

●

● ●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●● ●●
●

●

●

● ●
●

●
●

●

● ●● ●

●

●

●
●

●

●

●
● ●

●●
●

●

● ●

●

●

●● ● ●●

●

●
●

●

●
●● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●
●

●
●

●
●

●● ●

●

●

●

●
●

● ●●

●● ●
●

●

●
●

●

●

●
●

●

● ●

●

●
●

●

●
● ●●

●

●●

●
● ●

●

●
●

●

●

● ●
●●●

●
●

●

●

● ●

●●
●

●

●● ●●
● ●

●
●

●

●
●

●●●

●

●
●●●

●
●

●
●

●●
●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●
●

●
● ●

●

●

●

● ●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ● ●● ●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●
●

●

● ●
●

●

●
● ●

●

●

●●

●

●

●

●

●
●

●

●
●

●
● ●

●

●

●

●

●
●
●

●
●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●
●

●
●● ●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
● ●

●

● ●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●

●
●●

●
● ●

●●●
●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●
●

●
●

●
● ●

●●

●●

●
●

●

●
●

●
●

●

●
● ●

●
●

●
●● ●

●

●

● ●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

● ●

● ●
●

● ●

●

●
●

●

●

●
●●

●
●

●
● ●

●

●

●

●● ●●● ●

●
● ●

●

●

●

●● ●

●

●

●
●

●

●

● ●

●●

●

●
●

●
● ●

●

● ● ●
●

●
●

●

●●
●●●

●

●

●●
●

●

●

●

●
●

●

●

●●
●

●

●

●
●● ● ●

●

●

●●●●
●● ● ●● ●

●●

●

●

●

●

●

●● ●

●
●

● ●● ●
●

●

●

●

●●●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●●

●●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●●
●

●
●●

●
●

●
● ●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●
●●

●●

●

●

●

●
●●

●

●

● ●
●

●● ● ●
●

●

●
●

●

●

● ●

●

●● ●
●

●

● ●
●

●
●

●

●

●
●

●
●

●

●

●

●● ●

●
●

●
●●

●

●
●●

● ●

●

●
●● ●●● ●

●

● ●
●

● ●

●● ●

●

● ●●

●

●
● ●

●●

●
●

●

●

● ●●

●

●

●

●
●

●

●
●

●

●

●

●
●
● ●●

●●
●

●

●
●

●
●● ●

● ●
●

● ●

●

●
●●

●

●
●

●

●

●

●

● ●
●● ●

●

●
●

●
●

●

●

● ●●
●

●

●

● ●
●

●

●

●

● ●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●

● ●
●

●●
●

●
●

● ● ●● ●

●

●
●

●

●

●

●
●

●

●

●●
●

● ●
●●● ●

●

●

● ●●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●●

●

●

●
●

●

●

●
●

●●●

●●

●

● ●

●●
●●

● ●

●

●

●

●
●

●

●

● ●

●

●

●●●

●
●

●

●

●●
●

●
● ●

● ●●

●
●

●

● ●
●●● ●

●

●

●

● ● ●

●

●

●
●●●

●

●
●

●

● ●
●

●

●
●

●
● ● ●

●
● ●

●
●

●

●

●●
●

●
●

●

●●

●
●

●
● ●

●
●

●

●
●

●

●

●

●

●
● ● ●

●●

●

●
● ●●

●
●

●

●

●
●

●
●

●
●
● ●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●
● ●

●

●

●

●●
●

●

●

●●
●

●●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

● ●

●

●

●
●

●

●

●● ●

●

●

●
●
●

●
● ●

●

●●
●

●
●

●●
●

●
●

●
●

●
●●

● ●

●

●

●● ●●●●
●

● ●

● ●●
●

●
●

●

●
●

●

●

●

●

●

●●
●

●
●

●● ●
●

●

●

●

●
●

●●
●

●●
●

●

●
●

●

●●●
●
●

●
●

●●
● ●● ●

● ●●

●

●
●

●

●●
● ●

●
●● ●

●

●
●

●

●
●●

●
●

●

●

●
●● ●●

●

●

●
●

●

●

●

●

● ●

● ●

●
●●

●

●
●
●

●

●

●
●

●
●

●

● ●●
●●

●

●

●
●

●●

●●

●

●

●

●

●

●

●
●

●
●●●

●

●●

●
●●●●

●

●

● ●

●

●●

● ●● ●●

●

●

●

●

●

●
●

●
●

●
●

●●●
●●

●

●
●●

●●

●

●

●

●
●●
●●

●

●

●
●

●

● ●
●

●
●

●

●
●● ●●●

●

● ●
●

●●
●● ●

●
●

●
●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

●

● ●
●●

●

●
●

●

●
● ●

●●

●

● ●
●

●

●

●

●

●

●
●

●

●

●
●

●
●● ●

●

●
●

●
●●

●

●

●
● ●

●
●

●
●

●

0.5

8.0

128.0

2048.0

3e+03 1e+04 3e+04 1e+05 3e+05
Cost

R
es

po
ns

e
ti
m

e
[m

s]

Annotations ● ● ● ●both Graphical
Report no User

Management

(a) All evaluated and valid candidates (#3053)

●

●●

●

●

●

●

●

●

●
●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●
●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

● ●

●

●

●

●

●
● ●

●

●

●
●●

●

●

●

●
●

●

●

●

0.125

0.500

2.000

8.000

3e+03 1e+04 3e+04 1e+05 3e+05
Cost

R
es

po
ns

e
ti
m

e
[m

s]
Annotations ● ● ● ●both Graphical

Report no User
Management

(b) Pareto-optimal candidates (#74)

Figure 13.2.: All evaluated, valid, and Pareto-optimal candidates (scenario part III) of the

response time and cost evaluation of di�erent annotation positions of features.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

● ●

●●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

● ●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●
●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●
●●

●

●

●●
●

●●

●

●

● ●
●

●

●
●

●

●
●●

●

●
●

●

●

●
● ●

●●
●

●

●●
●

●

●

●●

●

●●

●

●

● ●●

●
●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●
●

● ●

●

●

●
●

●

●

●
●

●

●
●

● ● ●● ●●

●

●
● ●●

●●

●

●

●

●

●

●
●

●
●

● ●
●

●
●

●
●

●
●

● ●

●●

●

●

●
●

●

●
●

● ●

●

●
●

●
●

●

●
●●

●●
●

●

●

●

● ●

●

● ●●
●

●
●

●

●
● ●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

● ●
●●●

●
●

●
●

●●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

● ●

●

●
●

●
●

● ●

●

●

●

●

● ●

●
●

●

●
●● ● ●

●

● ●

●
●

● ●
●

●

●

●

●●

●

●
● ●

●

●
●

●

●

●●
●●

●

●

● ●
●

●
●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●● ●
●

●
●

●

●
●●

●

● ●●
●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
● ●●

●●●
●
●

●

●
●

●

●

●

● ● ●
●

●

●

●●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●●●
●

●

●
●

●
●

●●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

● ●

●
●

●
● ●

●
●

●

●

●
●

● ●
● ● ●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●
● ●

●●●
●

●
●

●
●

● ●

●

●

●
●

●

●

●
●

●
● ●

●●

●●

●
●

●

●

●

●
●

●

●

● ●
●

●

●

●●
●

●

●

● ●●●
●

●
●

●
●

●

●

●

●●
●

●

● ●

● ●
●

● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●● ●
●● ●

●
●

●

●

●

●● ●

●

●
●

● ●

●
●

●

●

●
● ●

●

● ● ●
●

●
●

●

●●
●●●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●
●● ● ●

●

●●
●●

●● ● ●● ●
●●

● ●

●

●● ●

●
●

● ●●
●

●
●●

●●●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●●

●●
●

●
●

●
●

●
●

●

●

●
●

●

●

●●
●

●
●●

●

●

●

● ●
●●

●

●●
●

●

●

●

●

●

●

●

●●

●
●

●
●●

●●

●

●
●

●
●

●

●

● ●
●

●
● ● ●

●

●

●

●

● ●

●

●● ●

●

●

● ●
●

●

●
●

●

●
●

●

●
●

●

●● ●

●

●

●
●●

●

●

● ●

●
●

●

●

●●
●●

● ●
●

● ●
●

● ●

●● ●

●

●
●●

●

●
●

●●

●
●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●
● ●●

●
●

●●
●

●
●● ●

●
●

●

● ●

●
●●

●

●

●

●
●● ●
●

● ●

●

●
●

●
●

●

●

● ●●
●

●

●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●
●

●

● ●
●

●
●

●

●
●

● ● ●
● ●

●
●

●

●

●

●

●

●

●
●

●
●

●
●●● ●

●

●

● ●●
●

●
●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●
●

●
●●

●

●

●
●●

●
●

●

0.5

8.0

128.0

2048.0

1e+04 3e+04 1e+05 3e+05
Cost

R
es

po
ns

e
ti
m

e
[m

s]

Annotations ● ● ● ●

AppSensor,
Graphical
Report

AppSensor,
User
Mngmt

OSSEC,
Graphical
Report

OSSEC,
User
Mngmt

(a) All evaluated and valid candidates (#1535)

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

● ●

●●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

● ●

●

●

●
●

● ●

0.5

8.0

128.0

1e+04 3e+04 1e+05 3e+05
Cost

R
es

po
ns

e
ti
m

e
[m

s]

Annotations ● ● ● ●

AppSensor,
Graphical
Report

AppSensor,
User
Mngmt

OSSEC,
Graphical
Report

OSSEC,
User
Mngmt

(b) Pareto-optimal candidates (#57)

Figure 13.3.: All evaluated, valid, and Pareto-optimal candidates (scenario part III) of the

response time and cost evaluation comparing both IDS solutions, namely

AppSensor and OSSEC. Further, the plots show two di�erent positions of the

feature FunctionalAbuse.

274

Figure 13.3 shows the automatically evaluated architecture candidates for analysing

design question three. All 1535 evaluated candidates as well as the 57 Pareto-optimal

candidates show a division into four �elds: The �rst area (red) shows the feature of

AppSensor on the assembly connector between GraphicalReport and CoreGraphicEngine.

The second area (green) shows AppSensor at the connector between the Scheduler and

UserManagement connector. The third area (blue) shows the solution OSSEC, at the con-

nector between GraphicalReport and CoreGraphicEngine. Finally, the last area (purple)

shows the solution OSSEC, at the connector between Scheduler and UserManagement. The

results show for both positions OSSEC is the faster and cheaper solution than AppSensor.

All architecture candidates including OSSEC result in an average response time of far less

than 0.5 ms, while the use of AppSensor extends the average response time to at least 0.5

ms up to more than 2 s. The results show OSSEC is the faster and cheaper solution for both

positions. If the feature positions for a particular solution are analyzed, there is another

interesting �nding: while using OSSEC there is almost no in�uence on performance and

costs annotating the connector between GraphicalReport and CoreGraphicEngine or the

connector between Scheduler and UserManagement component. Annotating the �rst is

slightly cheaper than annotating the latter. In contrast, when using AppSensor, annotating

the connector between GraphicalReport and CoreGraphicEngine results in a much higher

response time than annotating the other connector.

Another interesting result can be derived from the following analysis: If, for example,

AppSensor is mandatory to be used, the Scheduler to UserManagement connector could

be extended by the feature with smaller performance and cost overhead compared to

extending the other. This decision may be necessary, for example, if further features need

to be included and are not supported by OSSEC. Annotating as many components as

possible with FunctionalAbuse and simultaneously implement a feature not supported by

OSSEC, the following trade-o� decision could be made: Use of AppSensor, annotation

of the FunctionalAbuse feature on the Scheduler to UserManagement component, with

simultaneous integration of the InputValidation feature at a further position in the BRS

that needs to be evaluated in a subsequent step. Use of OSSEC would not be possible

in this scenario, because InputValidation is no supported feature. By this decision the

possibility to implement further features would be prioritized higher than to achieve the

lowest response times and costs.

The analysis evaluates the evaluation questions EQ I.II.1, EQ I.II.2, EQ III.1 and EQ III.2

from Section 10.2. We show how the adapter extension mechanism can be used to reuse

models uniformly and how di�erent subsystem solutions can be evaluated automatically.

We discuss and show how di�erent desired positions of the system can be extended by

features by using annotations. We show how to evaluate the e�ects on quality attributes

of the overall system due to di�erent architecture decisions such as the position of features

and the selected subsystem solutions. On this basis, requirements can be prioritized and

used as a basis for discussions with stakeholders.

275

14. Concluding Discussion

14.1. Threats to validity

The following sections describe possible threats to validity:

Scenario selection: The performance of the approach and the possible questions to be

evaluated were carried out scenario-based. Thus, the results for the scenarios mentioned

and the derived results can only be applied to these scenarios. Nevertheless, the scenarios

demonstrate relevant questions in the software architecture design process.

Modelling informal knowledge: In the study on evaluating informal knowledge

through qualitative modelling methods, the evaluation relies on document-based on knowl-

edge sources. Some knowledge sources originate from the manufacturers itself, which

might have limits in their objectivity. The evaluation is based on the assumption these

sources have provided truthful information about the performance and other quality

attributes of their products. The results of the analyses at least follow our expectations.

Quality evaluation: To evaluate the quality attribute performance, we rely on the

Palladio approach and the LQN solver. The accuracy of the LQN solver is di�cult to verify.

However, both tools are widely used by the community such as used in [Goo+12].

Argumentative validation: Several evaluation questions or sub-questions could only

be answered argumentatively. Examples, measurements or even empirical experiments

would have been preferred, but were not possible due to a lack of realistic setups and

resources.

14.2. Evaluation results

The �rst part of the validation considers modelling feature completions and the application

of real-world systems as subsystem solutions to the subsystem’s reference architecture. EQ

I.I.1 considers whether a reference architecture can be found for subsystems. Using the two

feature complications Logging and IDS, we showed we can de�ne a reference architecture

that can be applied to multiple subsystem solutions. EQ I.I.2 considers whether several

inhomogeneous software architecture models of subsystem solutions can be applied to

the subsystem’s reference architecture. We answered this question by modelling 2 × 2

subsystem solutions and applying them to two subsystems, namely Logging (log4jv1 and

log4jv2) and IDS (AppSensor and OSSEC).

The previously modelled subsystems can be used to automatically evaluate design

decisions regarding software architectures when reusing complex subsystems. EQ I.II.1

and EQ I.II.2 consider the questions on reuse and automatic evaluation of such design

decisions. EQ I.II.1 examines whether models can be reused uniformly. How they can

be uniformly reused is described in detail in scenarios I - VI and in scenario of part III.

277

14. Concluding Discussion

Features are included in base systems to reuse the functionality of several subsystem

solutions uniformly (and without having internal knowledge of these solutions).

EQ I.II.2 focuses mainly on the automatic evaluation of di�erent subsystem solutions. In

scenario I, we show in detail how alternatives can be automatically evaluated with regard to

subsystem solutions and how suitable decisions or architecture candidates can be selected.

Evaluation part III shows another scenario on how subsystem solution alternatives can be

evaluated against each other.

The evaluation questions regarding informal knowledge for the optimization of software

architectures are considered by EQ II.I.1 and EQ II.I.2. Scenarios VII - X show in detail how

informal knowledge can be qualitatively modelled and how the models can be automatically

analysed. We showed how qualitatively modelled knowledge can be modelled and which

analysis and trade-o� decisions become possible.

How to combine qualitatively modelled knowledge and quantitative modelled knowledge

is considered by EQ II.II. Scenarios VII - X describe in detail which design decisions are

supported when combining and analysing both types of knowledge. We showed how

trade-o� decisions can be supported by including architecture knowledge in the decision

support process.

Questions regarding automatic model generation and model optimization are considered

by the research questions EQ III.1 and EQ III.2. The new possibilities ofCompARE regarding

modelling and analysis, as well as model generation methods, allow further architecture

decisions to be evaluated automatically. EQ III.1 considers which architecture decisions

can be supported automatically and how they in�uence the software architecture design.

We answer this questions in detail in scenarios I to VI, and the scenario in part III of the

evaluation. Finally, EQ III.2 examines the possibility of requirements prioritization by

combining the presented contributions. We explain the prioritization of requirements in

detail by scenarios III.a, IV, VII, X, and the scenario in part III. We discuss how the results

of CompARE can be used for prioritizing requirements and use the results as basis for

discussions with stakeholders.

14.3. Summary

The previous three parts evaluate the research questions from Section 10.2. Part one of

the evaluation shows scenarios improving reuse and evaluation process of subsystems

during the design of the software architecture regarding reuse of features, as well as their

con�guration by using CompARE. We show how these di�erent scenarios can be modelled,

analysed, evaluated, and we describe our �ndings basing on these results. Finally, we

discussed which conclusions for the software architecture design and the requirements

can be drawn from the results.

Part two of the evaluation shows how qualitative knowledge can be modelled, com-

bined with quantitative knowledge and �nally evaluated. We show how qualitatively

valued knowledge can be used together with quantitative models and how qualitative

reasoning mechanisms can be used to evaluate complex e�ects between quality attributes.

We demonstrate how transitive e�ects between quality attributes can be modelled and

278

14.3. Summary

evaluated. Further, we discussed what �ndings can be derived for the requirements and

design process.

Finally, in part three of the evaluation we show another scenario with a di�erent set

of models and design questions. Using these models and design questions, we show

how the mechanisms of CompARE can support software architects and stakeholders at

software architecture design. We �nd also surprising results can be observed by evaluating

subsystem solutions and di�erent positions of features in a base architecture model.

To support software architects in the component-based software architecture process,

we show that

• Subsystem models can be automatically integrated into base models to integrate

new features automatically. This automatic integration of features can be used to

support decisions on software architectures regarding these features without having

to create all models manually.

• Knowledge can be qualitatively modelled and optimized with quantitatively modelled

knowledge. Thus, trade-o� decisions can be made regarding the qualitatively valued

quality attributes and quantitative quality attributes. On this basis, requirements

can be prioritized.

Another conclusion considers future work regarding the evaluation: when comparing

software architectures with presence and absence of features it can be useful to make certain

parameters constant when selecting architecture candidates. For example, architecture

candidates can be better compared if the feature selection is evaluated with constant

resource con�guration. To decide whether a particular feature should be used or not,

tactics to evaluate the feature selection with constant resource environment might be

useful. Such a setup would be interesting to get more �ndings on the quality attributes

in�uenced by several subsystem solutions and several positions of features in the base

architecture model.

279

15. Future Work & Conclusion

15.1. Future Work

This section describes the outlook for future work based on the contribution of this

dissertation.

15.1.1. Change operations for modifying so�ware architectures

CompARE currently supports operations to add new functionality, e.g. by software com-

ponents or other model entities. However, no further operations are supported yet. For

example, the approach does not support substitution of entities, which can be used to

replace a standard component with a subsystem. Further, components cannot be removed.

Substitution operations or subtraction operations would enable new degrees of freedom,

such as replacing previous implementations with new, complex subsystems and would

allow analysing their e�ects on quality attributes. However, the supported operations are

su�cient to perform changes regarding reuse of subsystems.

15.1.2. Reference Architecture

CompARE requires for the weaving of subsystems into a base architecture correspon-

dence between the architectures of all subsystem solutions and the subsystem reference

architecture. All subsystem solutions that cannot be applied to the subsystem reference

architecture, cannot be integrated automatically into base systems to the current state of

the art of the approach. A further abstraction of the reference architecture could solve this

limitation. Thus, the allocation between the individual feature completion components

and the subsystem solution software architecture components could be carried out more

�ne-granularly. An expressive correspondence model could enable a �ne-granular map-

ping between the abstract model and the software architecture model of the subsystem

solution. Such a �exible correspondence model would support experts to use potentially

arbitrary software architecture models as subsystem solutions.

15.1.3. Architecture constraints

CompARE supports architecture constraint validation, but only three conditions can be

validated: Namely, whether elements are together, separated, or allocated in isolation on

resource containers. Thus, CompARE can only validate the correct allocation of entities

in component-based software architecture models. However, no functional constraint

checking can be performed. A promising constraint would be whether certain components

281

15. Future Work & Conclusion

or services in the software architecture are placed in the system correctly. Such a check

could exclude or at least avoid errors regarding the placement of functionalities already in

the design phase. It would also be useful to replace the validation with constraints in the

object constraints language
1

or a similar language.

15.1.4. Architecture patterns and styles

CompARE enables subsystems with complex internal architecture to be automatically wo-

ven into a base architecture. However, it does not o�er the possibility to apply architecture

patterns or styles. For example, it is not possible to model the architecture of a model view

controller, pipe-lining, or other architecture patterns and automatically apply them to the

existing architecture. To enable this, the reuse meta model could be further extended and

the weaving mechanism could be extended for applying large-scale changes. In addition,

a speci�cation for sequential processing of operations and the de�nition of the operation

itself would be required (similar to the rule-based approaches or the architecture templates

from Lehrig et al. [LHB18]).

15.1.5. Empirical validation

We have shown in detail possible bene�ts of CompARE in the three-part validation by

discussing several scenarios. According to the validation results, relevant design questions

can be answered occurring in the software development process regarding software

architecture and its quality attributes. An empirical validation based on real requirements

and real stakeholders would be helpful to validate the relevance of the bene�ts for practice.

It would be interesting to learn to what extent di�erent subsystems can be modelled and

reused as intended. In this context, it would also be interesting to calculate a cost/bene�t

calculation that results from the additional modelling e�ort and possible cost savings that

result from new �ndings from the early analysis.

15.1.6. Usability study

During the design of CompARE, we focussed on a simple reuse of already modelled feature

completions. Only a few adjustments are required to automatically include features in

the base software architecture. However, a controlled user study would provide insight

in the CompARE’s usage process. We could examine how the process could be simpli�ed

or whether the already designed usage process can be well-used by study participants.

In such a study di�erent requirements could be made, which could be applied to base

architectures. In this case, the control group would model by standard CBSE processes,

while the second group would use CompARE. The process of modelling subsystems and

the application of the reference architecture to subsystem solutions could be evaluated

similarly. Di�erent solutions could be applied to a given subsystem and appropriate feature

completion, as well as reference architecture. Finally, a questionnaire could be used to get

information on improvements of the process.

1
https://www.omg.org/spec/OCL/About-OCL/

282

15.2. Conclusion

15.2. Conclusion

This section is a summary of this dissertation. We start with summarizing the topic and

the motivation to work on this dissertation. Then, we discuss the research questions and

the resulting contribution of the CompARE approach. Finally, we discuss insights that we

can derive from the evaluation.

Topic andmotivation

The presented dissertation considers the reuse of complex subsystems in component-based

software architectures based on models for the purpose of automatic optimization re-

garding quality attributes. It should enable software architects to reuse models without

deeper knowledge of the internal software architecture of libraries, frameworks or other

3rd party systems during software architecture design. Further, software architects should

be automatically supported by software architecture design decisions. The optimization

of several new degrees of freedom considering feature selection, product selection of

several subsystem solutions, and positions of features in the base architecture comple-

ments previous component-based software architecture optimization approaches. The

quality attributes considered by CompARE exceeds the set of quality attributes regarded in

similar optimization procedures by qualitatively valued quality attribute modelling. As a

result of the optimization, software architects can review the Pareto-optimal architecture

candidates and make trade-o� decisions according to the relevant quality attributes and

the requirements of the system. This should help to make the software architecture design

process more e�cient and reduce the risk of designing systems that do not �t the actual

software requirements.

Research topics

The research topics address three parts: a meta model for reusing complex subsystems, the

automatic model weaving to extend component-based base software architecture models

with subsystems on the desired positions, and the modelling of informal knowledge in a

qualitative representation and its automatic analysis using qualitative reasoning.

Contributions of the CompARE approach

CompARE automatically supports software architects in making trade-o� decisions regard-

ing reuse of subsystems and resulting quality attributes. The approach supports automatic

reuse of subsystems, design decision support for feature selection, product selection and

feature positions in the base software architecture regarding the quality attributes of the

overall system. To support the contributions, we propose a meta model for modelling sub-

systems, its reference architecture, and model entities to apply component-based software

architecture models of subsystem solution to the reference architecture. Using the subsys-

tem model, our weaving engine automatically includes the subsystem models in the base

architecture model. Our extension for combining qualitatively valued architecture models

and quantitative objective functions then uses the generated models to evaluate the quality

283

15. Future Work & Conclusion

attributes of the overall software architecture model. We also show how CompARE can be

classi�ed into the component-based software engineering process de�ned by Cheesman

and Daniels [CD00], as well as H. Koziolek and Happe [KH06b] and A. Koziolek [Koz11].

Evaluation

For the evaluation of CompARE, we show 11 scenarios and several sub scenarios in which

we use three base systems to include features of four real-world subsystem solutions. The

evaluation shows how design decisions in the software architecture design process can be

automatically evaluated using CompARE. Further, we show how these results can be used

as a basis for requirements prioritization and for the optimal selection and placement of

3rd party subsystems.

By scenarios for the analysis of informal knowledge in combination with quantitative

modelled knowledge, we show how trade-o� decisions regarding quality attributes and

software architecture design can be made and which results can be derived from such

analysis.

284

A. Approach

Fe
at

ur
e

Id
en

ti
fic

at
io

n

In
te

rf
ac

es
 A

nn
ot

at
io

n

D
om

ai
n

A
na

ly
si

s

A
rc

hi
te

ct
ur

e
K

no
w

le
dg

e
Sp

ec
ifi

ca
ti
on

R
eq

ui
re

m
en

t
Su

pp
or

tin
g

Su
bs

ys
te

m
s &

So
lu

tio
ns

Su
bs

ys
te

m
 D

om
ai

n
Ex

pe
rt

In
te

ra
ct

io
n

&

D
ep

en
de

nc
y

Sp
ec

ifi
ca

ti
on

Fe
at

ur
e

Sp
ec

ifi
ca

ti
on

A
ffe

ct
ed

 Q
ua

lit
y

Sp
ec

ifi
ca

ti
on

So
lu

tio
n

D
ev

elo
pe

r

R
eq

ui
re

m
en

t D
om

ai
n

Su
bs

ys
te

m

Id
en

ti
fic

at
io

n

Co
m

po
ne

nt
 S

pe
cs

 &
A

rc
hi

te
ct

ur
e

Pr
ov

id
ed

Fe
at

ur
es

Fe
at

ur
e

Pr
ov

id
in

g
&

 R
eq

ui
rin

g
Sp

ec
ifi

ca
tio

n

Fe
at

ur
e

to
 In

te
rfa

ce
 &

 Q
ua

lit
y

Eff
ec

t S
pe

cifi
ca

tio
n

A
nn

ot
at

ed
 S

ub
sy

st
em

s &
 S

ol
ut

io
ns

A
ffe

ct
ed

 Q
ua

lit
y

D
im

en
sio

ns

Su
bs

ys
te

n

Su
pp

or
te

d
Fe

at
ur

es

Co
m

po
ne

nt
 to

Fu
nc

tio
na

l C
on

ce
rn

s
A

nn
ot

at
ed

 A
rc

hi
te

ct
ur

e

Co
m

po
ne

nt
 D

ev
elo

pe
r

Co
m

po
ne

nt
 R

eq
ui

re
m

en
ts

A

na
ly

sis

Fu
nc

tio
na

l P
ro

pe
rt

y
Sp

ec
ifi

ca
tio

n

Q
ua

lit
y

Pr
op

er
ty

Sp

ec
ifi

ca
tio

n

Co
m

po
ne

nt

Im
pl

em
en

ta
tio

n

Co
m

po
ne

nt
 R

ep
os

ito
ry

/
CO

TS
 M

ar
ke

t

R
eq

ui
re

m
en

ts

R
eq

ui
re

m
en

ts

In
te

rfa
ce

s

R
ef

er
en

ce
 A

rc
hi

te
ct

ur
e

Sp
ec

ifi
ca

ti
on

C
om

po
ne

nt
 A

nn
ot

at
io

n

In
te

rfa
ce

s &
In

te
rn

al

D
ep

en
de

nc
ies

Bi
na

ry
 C

om
po

ne
nt

s
&

 S
pe

cifi
ca

tio
n

Q
oS

A

nn
ot

at
io

ns

In
te

rfa
ce

s

Fu
nc

tio
na

l C
on

ce
rn

s &
D

ep
en

de
nc

ies

Su
bs

ys
te

m
D

om
ai

n

Fe
at

ur
e

to
 In

te
rfa

ce
R

ela
tio

n

D
om

ai
n

Sp
ec

ifi
c

Fe
at

ur
es

Fu
nc

tio
na

l C
on

ce
rn

s &
D

ep
en

de
nc

ies
 &

 S
ol

ut
io

n
Co

ns
tr

ai
nt

s

So
ftw

ar
e

A
rc

hi
te

ct

Co
m

po
ne

nt
 Id

en
tifi

ca
tio

n

C
om

po
ne

nt
 &

 F
ea

tu
re

In

te
ra

ct
io

n

Co
m

po
ne

nt
 S

pe
cifi

ca
tio

n

In
te

ro
pe

ra
bi

lit
y

Ch
ec

k

In
iti

al
 C

om
po

ne
nt

Sp
ec

s &
 A

rc
hi

te
ct

ur
eIn

iti
al

In
te

rfa
ce

s

In
iti

al
Fe

at
ur

e
Se

lec
tio

n

Fe
at

ur
e

A
na

ly
si

s

In
iti

al
Fe

at
ur

e
Se

lec
tio

n

Bu
sin

es
s T

yp
e

M
od

elIn
iti

al
 C

om
po

ne
nt

Sp
ec

s &
 A

rc
hi

te
ct

ur
e

Fe
at

ur
e

C
on

fig
ur

at
io

n
In

iti
al

Fe
at

ur
e

Se
lec

tio
n

R
eq

ui
re

m
en

ts
 S

up
po

rt
in

g
Fe

at
ur

es
Bu

sin
es

s C
on

ce
pt

M
od

el
U

se
 C

as
e

M
od

el
Te

ch
ni

ca
l

Co
ns

tr
ai

nt
s

Q
oS

M
et

ric
s

Se
rv

ice
 E
ffe

ct
Sp

ec
ifi

ca
tio

n

Se
rv

ice
 E
ffe

ct
Sp

ec
ifi

ca
tio

ns
 &

In
te

rfa
ce

Pr
ot

oc
ol

s

Ex
ist

in
g

In
te

rfa
ce

s
&

 A
ss

et
s

Se
rv

ice
 E
ffe

ct
Sp

ec
ifi

ca
tio

ns
 &

In
te

rfa
ce

Pr
ot

oc
ol

s
In

iti
al

 C
om

po
ne

nt
Sp

ec
s &

 A
rc

hi
te

ct
ur

e

Bu
sin

es
s R

eq
ui

re
m

en
ts

Fu
lfi

lli
ng

 A
rc

hi
te

ct
ur

e
&

 S
pe

cs

Co
m

po
ne

nt
 S

pe
cs

 &

A
rc

hi
te

ct
ur

e
w

it
h

Fe
at

ur
es

,
so

lu
ti
on

 s
pe

ci
fic

 c
on

st
ra

in
ts

Specification

Specification

Co
m

po
ne

nt
R

eq
ui

re
m

en
ts

 &
In

te
rfa

ce

Si
gn

at
ur

es

D
ec

is
io

n
M

ak
in

g
Q

ua
nt

ita
tiv

e
an

d
Q

ua
lit

at
iv

e
Q

ua
lit

y
Pr

op
er

tie
s

&
 O

pt
im

al
 C

an
di

da
te

s
wi

th
 F

ea
tu

re
s

Su
bs

ys
te

m

Figure A.1.: Speci�cation Work�ow of the extended CBSE process (based on [KH06b]).

285

A. Approach

So
ftw

ar
e

A
rc

hi
te

ct

Q
ua

lit
y

R
eq

ui
re

m
en

t
A

nn
ot

at
io

n

Q
ua

nt
ita

tiv
e

Q
ua

lit
y

M
od

el
In

te
gr

at
io

n

Q
ua

lit
at

iv
e

Q
ua

lit
y

M
od

el
 I

nt
eg

ra
ti
on

Sy
st

em
 M

od
el

Tr

an
sf

or
m

at
io

n

A
nn

ot
at

ed
 S

ys
te

m
A

rc
hi

te
ct

ur
e

Q
ua

nt
ita

tiv
e

Q
ua

lit
y

En
ric

he
d

Sy
st

em
A

rc
hi

te
ct

ur
e

Fu
lly

 Q
ua

lit
y

En
ric

he
d

Sy
st

em
A

rc
hi

te
ct

ur
e

&

So
lu

tio
ns

D
ep

lo
ye

r

Sy
st

em
 E

nv
iro

nm
en

t S
pe

cs

(&
 Q

ua
lit

y
Pr

op
er

tie
s)

A
llo

ca
tio

n

Co
m

po
ne

nt
 S

pe
cs

 &
A

rc
hi

te
ct

ur
e

wi
th

 S
ol

ut
io

ns
U

se
 C

as
e

M
od

els

Quality Analysis

Sy
st

em
En

vi
ro

nm
en

t

D
ep

lo
ym

en
t

D
ia

gr
am

s

Q
ua

lit
y

E
va

lu
at

io
n

&

O
pt

im
iz

at
io

n

Fu
lly

 Q
ua

lit
y

A
nn

ot
at

ed

Sy
st

em
 A

rc
hi

te
ct

ur
e

wi
th

Q
ua

lit
y

Pr
op

er
tie

s

D
om

ai
n

Ex
pe

rt

U
se

 C
as

e
A

na
ly

sis

U
sa

ge
 M

od
el

Sp
ec

ifi
ca

tio
n

A
nn

ot
at

ed
D

ep
lo

ym
en

t
D

ia
gr

am
s

Q
ua

lit
y

Cr
ite

ria

U
sa

ge
M

od
el

Sc
en

ar
io

s
(A

ct
iv

ity
 C

ha
rt

s)

U
se

 C
as

e
M

od
els

Co
m

po
ne

nt
A

rc
hi

te
ct

ur
e

Bu
sin

es
s

R
eq

ui
re

m
en

ts

Co
m

po
ne

nt
 Q

ua
lit

y
Sp

ec
ifi

ca
tio

n

Co
m

po
ne

nt
D

ev
elo

pe
r

So
lu

tio
n

Ex
pe

rt

Sy
st

em
 A

rc
hi

te
ct

ur
e

 &
 Q

ua
lit

y
Ev

al
ua

tio
n

M
od

el

Q
ua

lit
y

Eff
ec

t
Sp

ec
ifi

ca
tio

n

O
pt

im
al

 C
an

di
da

te
s

wi
th

 F
ea

tu
re

s

Figure A.2.: Quality Analysis Work�ow of the extended CBSE process (based on [KH06b]).

286

B. Meta Models & Profiles Overview

B.1. Meta Models

Fe
at

ur
eC

om
pl

et
io

n
R

ep
os

it
or

y

Fe
at

ur
eC

om
pl

et
io

n
Fe

at
ur

eC
om

pl
et

io
n

C
om

po
ne

nt

vi
sn

et
um

: V
isn

et
um

C
om

pl
em

en
tu

m

+
co

m
po

ne
nt

s

+
fe

at
ur

eC
om

pl
et

io
ns

+
co

m
pl

em
en

ta

SI
G

N
AT

U
R

E
IN

T
ER

FA
C

E
C

O
M

PO
N

EN
T

«e
nu

m
er

at
io

n»
V

is
ne

tu
m

IN
D

IF
FE

R
EN

T
T

O
G

ET
H

ER
IS

O
LA

T
ED

SE
PA

R
AT

ED

«e
nu

m
er

at
io

n»
C

on
st

ra
in

t

+
re

qu
ire

d
C

C
om

po
ne

nt
s

co
ns

tr
ai

nt
: C

on
st

ra
in

t

A
rc

hi
te

ct
ur

eC
on

st
ra

in
t

+
co

ns
tr

ai
nt

s

Fe
at

ur
eO

bj
ec

ti
ve

+
fe

at
ur

eO
bj

ec
tiv

e

0.
.1

0.
.*

0.
.1

1

1.
.*

1.
.*

0.
.1

0.
.1

0.
.1

0.
.*

0.
.*

0.
.*

de
sc

rip
tio

n:
 S

tr
in

g

D
es

cr
ib

ed
E
le

m
en

t

na
m

e:
 S

tr
in

g

N
am

ed
E
le

m
en

t

C
on

st
ra

in
ab

le

E
le

m
en

t
FM

::F
ea

tu
re

1.
.*

+
fe

at
ur

es
1

FM
::F

ea
tu

re

P
er

im
et

er
P

ro
vi

di
ng

1.
.*

1.
.*

+
pr

ov
id

ed
Fe

at
ur

es

P
er

im
et

er
R

eq
ui

ri
ng

+
co

m
pl

em
en

tu
m

1.
.*

0.
.1

+
pr

ov
id

in
g

+
re

qu
iri

ng
0.

.1

O
N

C
E

M
A

N
Y«e

nu
m

er
at

io
n»

R
ep

lic
at

io
n

1.
.*

1.
.*

+
co

ns
tr

ai
ne

d
El

em
en

ts

0.
.1

0.
.*

C
om

pl
em

en
tu

m

V
is

ne
ti
s

1

1

+
co

m
pl

em
en

ta
ry

Fe
at

ur
e

+
re

qu
ire

sC
om

pl
em

en
tu

m

0.
.* 1.
.*

0.
.*

re
pl

ic
at

io
n:

 R
ep

lic
at

io
n

In
cl
us
io
nM

ec
ha
ni
sm

ap
pe

ar
s:

A
pp

ea
ra

nc
e

A
da

pt
er

M
ec

ha
ni

sm
B

eh
av

io
ur

M
ec

ha
ni

sm
B

EF
O

R
E

A
FT

ER
A

R
O

U
N

D

«e
nu

m
er

at
io

n»
A

pp
ea

ra
nc

e

+
in

cl
us

io
nM

ec
ha

ni
sm

0.
.1

1

pl
ac

em
en

t:
Po

lic
y

P
oi

nt
C

ut
ap

pe
ar

s:
A

pp
ea

ra
nc

e
pl

ac
em

en
t:

Po
lic

y

A
dv

ic
e

P
la
ce
m
en
tS
tr
at
eg
y

m
an

da
to

ry
op

tio
na

l

«e
nu

m
er

at
io

n»
P
ol

ic
y

1 1

1.
.*

1.
.*

1
1

+
po

in
tc

ut
s

+
ad

vi
ce

s
1

1

Figure B.1.: Feature Completion (meta model)

287

B. Meta Models & Pro�les Overview

B.2. UML Profiles

Feature Completion Reuse Profile

FC::Complementum

<<Stereotype>>
complementumTarget

PCM::Operation
Signature

PCM::Operation
Interface

PCM::Repository
Component

+requiredBy1..1

0..*0..* 0..*

+extendedBy

<<Stereotype>>
featureTarget

FC::Complementum
Visnetis

PCM::Assembly
Connector

1..1

0..*

<<Stereotype>>
featureCompletion

Solution

PCM::System
0..*

+solutionRepositories1..*

Legend:

meta class
reference

extends meta model element

Figure B.2.: FeatureCompletion Reuse Pro�le

FC::FeatureCompletion
Component

<<Stereotype>>
isSolutionFor

FeatureCompletion Solution Profile

1..1+realizes

0..*

FC::Complementum

<<Stereotype>>
requiresComplementum

<<Stereotype>>
fulfillsComplementumVisnetis

PCM::Operation
Signature

PCM::Operation
Interface

PCM::Repository
Component

FC::Complementum
Visnetis

+requires

+fulfills

1..1

0..*

0..*0..*0..*

0..* 0..*

1..1

<<Stereotype>>
extension

<<Stereotype>>
costPCM::Repository

FCS::ExtensionMechanism

+extensionMechanism

Cost::CostRepository

+costRepositories

1..1

1..*

0..*

0..*

Legend:

meta class
reference

extends meta model element

Figure B.3.: FeatureCompletion Solution Pro�le

288

C. Publications that dissertation bases on

ICSA’19 Axel Busch, Dominik Fuchß, and Anne Koziolek. PerOpteryx: Auto-
mated Improvement of Software Architectures. In Proceedings of the

IEEE International Conference on Software Architecture (ICSA2019):

Tool Demo Track, Hamburg, Germany, 2019, ICSA’19. IEEE, Ham-

burg, Germany. 2019

SE’18 Axel Busch and Anne Koziolek. Considering Not–quanti�ed Quality
Attributes in an Automated Design Space Exploration. In Software

Engineering 2018, Fachtagung des GI–Fachbereichs Softwaretechnik,

06.–09. March 2018, Ulm, Deutschland, 2018.

ECSA’18 Yves Schneider, Axel Busch, and Anne Koziolek. Using Informal
Knowledge for Improving Software Quality Trade–o� Decisions. In

Proceedings of the 12th European Conference on Software Architec-

ture, Madrid, Spain, ECSA’18. Springer, Berlin, DE. 2018.

MEMOCODE’17 Max Scheerer, Axel Busch, and Anne Koziolek. Automatic Evaluation
of Complex Design Decisions in Component–based Software Architec-
tures. In Proceedings of the 15th ACM–IEEE Intern. Conference on

Formal Methods and Models for System Design, Vienna, Austria,

MEMOCODE’17, pages 67–76. ACM, New York, NY, USA. 2017.

QoSA’016 Axel Busch and Anne Koziolek. Considering Not–quanti�ed Quality
Attributes in an Automated Design Space Exploration. In Proceedings

of the 12th International ACM SIGSOFT Conference on the Quality

of Software Architectures, Venice, Italy, QoSA’16, pages 50–59. IEEE.

2016.

CloudSPD’16 Axel Busch, Yves Schneider, Anne Koziolek, Kiana Rostami, and

Jörg Kienzle. Modelling the Structure of Reusable Solutions for
Architecture–based Quality Evaluation. In Proceedings of the 2nd

Workshop on Cloud Security and Data Privacy by Design co–located

with the 8th IEEE International Conference on Cloud Computing

Technology and Science (CloudCom 2016), Luxembourg, Cloud-

SPD’16, pages 521–526. IEEE. 2016.

ModComp’16 Jörg Kienzle, Anne Koziolek, Axel Busch, and Ralf Reussner. Towards
concern–oriented design of component–based systems. In 3rd Interna-

tional Workshop on Interplay of Model–Driven and Component–

Based Software Engineering, CEUR. 2016.

289

C. Publications that dissertation bases on

QRS’15 Axel Busch, Misha Strittmatter, and Anne Koziolek. Assessing Secu-
rity to Compare Architecture Alternatives of Component–Based Sys-
tems. In Proceedings of the IEEE International Conference on Soft-

ware Quality, Reliability & Security, Vancouver, British Columbia,

Canada, QRS ’15, pages 99–108. IEEE Computer Society. 2015, Ac-

ceptance Rate (Full Paper): 20/91 = 22%.

SE’15 Axel Busch. Automated decision support for recurring design deci-
sions considering non-functional requirements. In Software Engineer-

ing 2015 — Workshopband, 2015, GI Lecture Notes in Informatics.

Doctoral Symposium.

290

Bibliography

[Abd+14] Hani Abdeen et al. “Multi-objective Optimization in Rule-based Design Space

Exploration”. In: Proceedings of the 29th ACM/IEEE International Conference
on Automated Software Engineering. ASE ’14. Vasteras, Sweden: ACM, 2014,

pp. 289–300. isbn: 978-1-4503-3013-8. doi: 10.1145/2642937.2643005. url:

http://doi.acm.org/10.1145/2642937.2643005.

[AKM13] Omar Alam, Jörg Kienzle, and Gunter Mussbacher. “Concern-oriented soft-

ware design”. In: International Conference on Model Driven Engineering Lan-
guages and Systems. Springer. Berlin, Heidelberg, 2013, pp. 604–621.

[Ale+09] A. Aleti, S. Bjornander, L. Grunske, and I. Meedeniya. “ArcheOpterix: An

extendable tool for architecture optimization of AADL models”. In: 2009 ICSE
Workshop onModel-BasedMethodologies for Pervasive and Embedded Software.
May 2009, pp. 61–71. doi: 10.1109/MOMPES.2009.5069138.

[AM] System Analysis and Germany Modeling Group at the HPI/University of

Potsdam. Modular Rice University Bidding System (mRUBiS). url: https://w

ww.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/case-st

udies/mrubis/ (visited on 02/21/2019).

[BA96] Shawn A. Bohner and Robert S. Arnold. Software change impact analysis. IEEE

Computer Society Press, 1996.

[Bac+05] F. Bachmann, L. Bass, M. Klein, and C. Shelton. “Designing software archi-

tectures to achieve quality attribute requirements”. In: SW Proceedings 152.4

(Aug. 2005), pp. 153–165. issn: 1462-5970. doi: 10.1049/ip-sen:20045037.

[BB01] Barry W. Boehm and Victor R. Basili. “Software Defect Reduction Top 10

List”. In: IEEE Computer 34.1 (2001), pp. 135–137. doi: 10.1109/2.962984.

url: https://doi.org/10.1109/2.962984.

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software
Engineering in Practice. Synthesis Lectures on Software Engineering. San

Rafael, California: Morgan & Claypool, 2012. url: http://www.morganclaypo

ol.com/doi/abs/10.2200/S00441ED1V01Y201208SWE001.

[Bec08] Ste�en Becker. Coupled Model Transformations for QoS Enabled Component-
Based Software Design. Vol. 1. Karlsruhe Series on Software Quality. Univer-

sitätsverlag Karlsruhe, Jan. 2008.

[Bec15] Kristian Beckers. Pattern and Security Requirements: Engineering-Based Estab-
lishment of Security Standards. Springer Publishing Company, Incorporated,

2015. isbn: 3319166638, 9783319166636.

291

https://doi.org/10.1145/2642937.2643005
http://doi.acm.org/10.1145/2642937.2643005
https://doi.org/10.1109/MOMPES.2009.5069138
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/case-studies/mrubis/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/case-studies/mrubis/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/case-studies/mrubis/
https://doi.org/10.1049/ip-sen:20045037
https://doi.org/10.1109/2.962984
https://doi.org/10.1109/2.962984
http://www.morganclaypool.com/doi/abs/10.2200/S00441ED1V01Y201208SWE001
http://www.morganclaypool.com/doi/abs/10.2200/S00441ED1V01Y201208SWE001

Bibliography

[BFK19] Axel Busch, Dominik Fuchß, and Anne Koziolek. “PerOpteryx: Automated Im-

provement of Software Architectures”. In: Proceedings of the IEEE International
Conference on Software Architecture (ICSA2019): Tool Demo Track. ICSA’19. to

appear. Hamburg, Germany: IEEE, 2019.

[Bih15] C. Bihis. Mastering OAuth 2.0. Packt Publishing, 2015. isbn: 9781784392307.

[Bin+96] Pam Binns, Matt Englehart, Mike Jackson, and Steve Vestal. “Domain-Speci�c

Software Architectures for Guidance, Navigation and Control”. In: Interna-
tional Journal of Software Engineering and Knowledge Engineering 6 (1996),

pp. 201–227.

[BK16] Axel Busch and Anne Koziolek. “Considering Not-quanti�ed Quality At-

tributes in an Automated Design Space Exploration”. In: Proceedings of the
12th International ACM SIGSOFT Conference on the Quality of Software Archi-
tectures. QoSA’16. Venice, Italy: IEEE, 2016, pp. 50–59. doi: 10.1109/QoSA.20

16.10.

[Bos00] Jan Bosch. Design and Use of Software Architectures: Adopting and Evolving
a Product-line Approach. New York, NY, USA: ACM Press/Addison-Wesley

Publishing Co., 2000. isbn: 0-201-67494-7.

[BPS04] Danilo Beuche, Holger Papajewski, and Wolfgang Schröder-Preikschat. “Vari-

ability management with feature models”. In: Science of Computer Program-
ming 53.3 (2004). Software Variability Management, pp. 333–352. issn: 0167-

6423. doi: https://doi.org/10.1016/j.scico.2003.04.005. url: http://w

ww.sciencedirect.com/science/article/pii/S0167642304000954.

[BR08] Rainer Böhme and Ralf Reussner. “Validation of Predictions with Measure-

ments”. In: Dependability Metrics. Vol. 4909. Lecture Notes in Computer Sci-

ence. Springer-Verlag Berlin Heidelberg, 2008. Chap. 3, pp. 14–18. url: http:

//www.springerlink.com/content/662rn13014r46269/fulltext.pdf.

[Bra+08] Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen, and Roman Slowinski, eds.

Multiobjective Optimization. Interactive and Evolutionary Approaches. Berlin,

Germany: Springer. Lecture Notes in Computer Science Vol. 5252, 2008.

[Bre+09] Bert Bredeweg et al. “Garp3—Workbench for qualitative modelling and simu-

lation”. In: Ecological informatics 4.5 (2009).

[Bro87] Frederick P. Brooks Jr. “No Silver Bullet Essence and Accidents of Software

Engineering”. In: Computer 20.4 (Apr. 1987), pp. 10–19. issn: 0018-9162. doi:

10.1109/MC.1987.1663532. url: https://doi.org/10.1109/MC.1987.16635

32.

[BSK15] Axel Busch, Misha Strittmatter, and Anne Koziolek. “Assessing Security to

Compare Architecture Alternatives of Component-Based Systems”. In: Pro-
ceedings of the IEEE International Conference on Software Quality, Reliability
& Security. QRS ’15. Acceptance Rate (Full Paper): 20/91 = 22%. Vancouver,

British Columbia, Canada: IEEE Computer Society, 2015, pp. 99–108. doi:

10.1109/QRS.2015.24.

292

https://doi.org/10.1109/QoSA.2016.10
https://doi.org/10.1109/QoSA.2016.10
https://doi.org/https://doi.org/10.1016/j.scico.2003.04.005
http://www.sciencedirect.com/science/article/pii/S0167642304000954
http://www.sciencedirect.com/science/article/pii/S0167642304000954
http://www.springerlink.com/content/662rn13014r46269/fulltext.pdf
http://www.springerlink.com/content/662rn13014r46269/fulltext.pdf
https://doi.org/10.1109/MC.1987.1663532
https://doi.org/10.1109/MC.1987.1663532
https://doi.org/10.1109/MC.1987.1663532
https://doi.org/10.1109/QRS.2015.24

Bibliography

[Bus+16] Axel Busch, Yves Schneider, Anne Koziolek, Kiana Rostami, and Jörg Kienzle.

“Modelling the Structure of Reusable Solutions for Architecture-based Qual-

ity Evaluation”. In: Proceedings of the 2nd Workshop on Cloud Security and
Data Privacy by Design co-located with the 8th IEEE International Conference
on Cloud Computing Technology and Science (CloudCom 2016). CloudSPD’16.

Luxembourg: IEEE, 2016, pp. 521–526. doi: 10.1109/CloudCom.2016.0091.

url: http://ieeexplore.ieee.org/document/7830732/.

[CD00] John Cheesman and John Daniels. UML Components: A Simple Process for
Specifying Component-based Software. 2000. isbn: 0201708515.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. New York, NY, USA: ACM Press/Addison-

Wesley Publishing Co., 2000. isbn: 0-201-30977-7.

[CH15] Yulia Cherdantseva and Jeremy Hilton. “Information security and information

assurance: discussion about the meaning, scope, and goals”. In: Standards and
Standardization: Concepts, Methodologies, Tools, and Applications. IGI Global,

2015, pp. 1204–1235.

[Chu+12] Lawrence Chung, Brian A Nixon, Eric Yu, and John Mylopoulos. Non-
functional requirements in software engineering. Vol. 5. Springer Science &

Business Media, 2012.

[Com+02] Santiago Comella-Dorda, John C. Dean, Edwin Morris, and Patricia Oberndorf.

“A Process for COTS Software Product Evaluation”. In: COTS-Based Software
Systems. Ed. by John Dean and Andrée Gravel. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2002, pp. 86–96. isbn: 978-3-540-45588-2.

[Con68] Melvin E Conway. “How do committees invent”. In: Datamation 14.4 (1968),

pp. 28–31.

[DDK02] Marc Dacier, Yves Deswarte, and Mohamed Kaaniche. “Models and tools

for quantitat. assessment of operat. security.” In: ed. by Sokratis K. Katsikas

and Dimitris Gritzalis. IFIP Conference Procs. Chapman & Hall, Jan. 3, 2002,

pp. 177–186. isbn: 0-412-78120-4.

[Deb+02] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. “A fast and elitist multi-

objective genetic algorithm: NSGA-II”. In: IEEE Transactions on Evolutionary
Computation 6.2 (Apr. 2002), pp. 182–197. issn: 1089-778X. doi: 10.1109/423

5.996017.

[DK01] Arie van Deursen and Paul Klint. “Domain-Speci�c Language Design Requires

Feature Descriptions”. In: Journal of Computing and Information Technology
10 (2001), p. 2002.

[Dur+14] Zakir Durumeric et al. “The Matter of Heartbleed”. In: Proceedings of the
2014 Conference on Internet Measurement Conference. IMC ’14. Vancouver, BC,

Canada: ACM, 2014, pp. 475–488. isbn: 978-1-4503-3213-2. doi: 10.1145/266

3716.2663755. url: http://doi.acm.org/10.1145/2663716.2663755.

293

https://doi.org/10.1109/CloudCom.2016.0091
http://ieeexplore.ieee.org/document/7830732/
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
http://doi.acm.org/10.1145/2663716.2663755

Bibliography

[Eck18] Maximilian Eckert. “Conditional placement of architectural elements to opti-

mize software architectures”. 2018.

[Ecl19a] Eclipse Foundation. Eclipse Modeling Framework (EMF). https://www.eclip
se.org/modeling/emf/. [Online; accessed 25-Mar-2019]. 2019.

[Ecl19b] Eclipse Foundation. EMF Feature Model (archived project). http://archive
.eclipse.org/archived_projects/featuremodel.tgz. [Online; accessed

25-Mar-2019]. 2019.

[Ecl19c] Eclipse Foundation. Xtext. https : / / www . eclipse . org / Xtext/. [Online;

accessed 25-Mar-2019]. 2019.

[Fal+11] Davide Falessi et al. “Decision-making techniques for software architecture

design: A comparative survey”. In: ACM Computing Surveys (CSUR) (2011).

[FK98] Svend Frølund and Jari Koistinen. Qml: A language for quality of service spec-
i�cation. Hewlett-Packard Laboratories, 1998.

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc., 2002. isbn: 0321127420.

[Fra+09] Greg Franks, Tariq Omari, C. Murray Woodside, Olivia Das, and Salem De-

risavi. “Enhanced Modeling and Solution of Layered Queueing Networks”. In:

IEEE Trans. on Software Engineering 35.2 (2009), pp. 148–161. url: http://dx

.doi.org/10.1109/TSE.2008.74.

[GKN15] Ian Gorton, John Klein, and Albert Nurgaliev. “Architecture Knowledge for

Evaluating Scalable Databases”. In: 12thWorking IEEE/IFIP Conference on Soft-
ware Architecture, WICSA 2015, Montreal, QC, Canada, May 4-8, 2015. 2015,

pp. 95–104. doi: 10.1109/WICSA.2015.26. url: https://doi.org/10.1109/W

ICSA.2015.26.

[Gli08] Martin Glinz. “A risk-based, value-oriented approach to quality requirements”.

In: IEEE Software 2 (2008), pp. 34–41.

[GMT05] C. Gri�n, B. Madan, and T. Trivedi. “State space approach to sec. quant.” In:

Computer Software and Applications Conference, 2005. COMPSAC 2005. 29th
Annual International. Vol. 2. COMPSAC, July 2005, 83–88 Vol. 1. doi: 10.1109

/COMPSAC.2005.145.

[Goo+12] Thijmen de Gooijer, Anton Jansen, Heiko Koziolek, and Anne Koziolek. “An

Industrial Case Study of Performance and Cost Design Space Explorat.” In:

Proceedings of the 3rd ACM/SPEC International Conference on Performance En-
gineering. Ed. by Lizy Kurian John and Diwakar Krishnamurthy. ICPE. ICPE

Best Industry-Related Paper Award. Boston, Massachusetts, USA: ACM, 2012,

pp. 205–216. isbn: 978-1-4503-1202-8. doi: 10.1145/2188286.2188319. url:

http://icpe2012.ipd.kit.edu.

[Gre06] Greg Linden. Marissa Mayer at Web 2.0. http://glinden.blogspot.com/200

6/11/marissa-mayer-at-web-20.html. [Online; accessed 04-Feb-2019]. 2006.

[Gro] Internet Engineering Task Force (IETF) OAuth Working Group. OAuth 2.0.

https://oauth.net/2/. url: https://oauth.net/2/.

294

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
http://archive.eclipse.org/archived_projects/featuremodel.tgz
http://archive.eclipse.org/archived_projects/featuremodel.tgz
https://www.eclipse.org/Xtext/
http://dx.doi.org/10.1109/TSE.2008.74
http://dx.doi.org/10.1109/TSE.2008.74
https://doi.org/10.1109/WICSA.2015.26
https://doi.org/10.1109/WICSA.2015.26
https://doi.org/10.1109/WICSA.2015.26
https://doi.org/10.1109/COMPSAC.2005.145
https://doi.org/10.1109/COMPSAC.2005.145
https://doi.org/10.1145/2188286.2188319
http://icpe2012.ipd.kit.edu
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
https://oauth.net/2/

Bibliography

[Gül03] C. Gülcü. The Complete Log4j Manual. QOS.ch, 2003. isbn: 9782970036906.

[Hap09] Jens Happe. “Predicting software performance in symmetric multi-core and

multiprocessor Environments”. PhD thesis. 2009. 291 pp. isbn: 978-3-86644-

381-5. doi: 10.5445/KSP/1000011806.

[Hap11] Lucia Happe. “Con�gurable Software Performance Completions through

Higher-Order Model Transformations”. PhD thesis. 2011.

[Her+11] Frank Hermann et al. “Correctness of model synchronization based on triple

graph grammars”. In: MoDELS. Springer. 2011.

[Hol92] John H Holland. “Adaptation in natural and arti�cial systems. 1975”. In: Ann
Arbor, MI: University of Michigan Press and (1992).

[IET12] Internet Engineering Task Force (IETF). The OAuth 2.0 Authorization Frame-
work. https://tools.ietf.org/html/rfc6749. Oct. 2012. url: https://tools.ietf

.org/html/rfc6749.

[Int07] International Organization for Standardization. ISO/IEC 25030:2007: Soft-
ware engineering – Software product Quality Requirements and Evaluation
(SQuaRE) – Quality requirements. Geneva, Switzerland. 2007.

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Uni�ed Software
Development Process. Boston, MA, USA: Addison-Wesley Longman Publishing

Co., Inc., 1999. isbn: 0-201-57169-2.

[Jef] Je� Sauro. How much does a usability test cost? https://measuringu.com/us

ability-cost/, year = 2018, note = "[Online; accessed 04-Mar-2019]".

[JO97] Erland Jonsson and Tomas Olovsson. “A Quantitat. Model of the Security

Intrusion Proc. Based on Attacker Behavior.” In: IEEE Trans. Software Eng.
23.4 (1997), pp. 235–245. url: http://dblp.uni-trier.de/db/journals/tse

/tse23.html#JonssonO97.

[KAK09] Jörg Kienzle, Wisam Al Abed, and Jacques Klein. “Aspect-oriented multi-view

modeling”. In: Proceedings of the 8th ACM international conference on Aspect-
oriented software development. ACM. New York, NY, USA, 2009, pp. 87–98.

[Kan+90] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Tech. rep. Carnegie-

Mellon University Software Engineering Institute, Nov. 1990.

[Kaz+96] R. Kazman, G. Abowd, L. Bass, and P. Clements. “Scenario-based analysis

of software architecture”. In: IEEE Software 13.6 (Nov. 1996), pp. 47–55. issn:

0740-7459. doi: 10.1109/52.542294.

[Kaz+98] Rick Kazman et al. “The architecture tradeo� analysis method”. In: ICECCS.

IEEE. 1998.

[KH06a] Heiko Koziolek and Jens Happe. “A QoS-Driven Development Process Model

for Component-Based Software Systems”. In: Proc. 9th International Sympo-
sium on Component-Based Software Engineering (CBSE’06). Ed. by Ian Gorton

et al. Vol. 4063. LNCS. Springer, June 2006, pp. 336–343. isbn: 3-540-35628-2.

url: http://dx.doi.org/10.1007/11783565_25.

295

https://doi.org/10.5445/KSP/1000011806
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://measuringu.com/usability-cost/
https://measuringu.com/usability-cost/
http://dblp.uni-trier.de/db/journals/tse/tse23.html#JonssonO97
http://dblp.uni-trier.de/db/journals/tse/tse23.html#JonssonO97
https://doi.org/10.1109/52.542294
http://dx.doi.org/10.1007/11783565_25

Bibliography

[KH06b] Heiko Koziolek and Jens Happe. “A Quality of Service Driven Development

Process Model for Component-basedSoftware Systems”. In: Component-Based
Software Engineering. Ed. by Ian Gorton et al. Vol. 4063. Lecture Notes in

Computer Science. July 2006, pp. 336–343. isbn: 3-540-35628-2. url: http://d

x.doi.org/10.1007/11783565%5C_25.

[Kie+16a] Jörg Kienzle, Anne Koziolek, Axel Busch, and Ralf Reussner. “Towards

Concern-Oriented Design of Component-Based Systems”. In: 3rd Interna-
tional Workshop on Interplay of Model-Driven and Component-Based Software
Engineering (Saint Malo, France). CEUR, Oct. 2016. url: http://ceur-ws.or

g/Vol-1723/.

[Kie+16b] Jörg Kienzle, Anne Koziolek, Axel Busch, and Ralf H Reussner. “Towards

Concern-Oriented Design of Component-Based Systems.” In: 3rd Interna-
tional Workshop on Interplay of Model-Driven and Component-Based Software
Engineering, ModComp 2016. Ed. by F. Ciccozzi. 2016, pp. 31–36.

[Kie+16c] Jörg Kienzle et al. “VCU: the three dimensions of reuse”. In: International
Conference on Software Reuse. Springer. Berlin, Heidelberg, 2016, pp. 122–137.

[Kla14] Benjamin Klatt. “Consolidation of Customized Product Copies into Software

Product Lines”. PhD thesis. Karlsruhe Institute of Technology, Germany, 2014.

isbn: 978-3-7315-0368-2. url: http://digbib.ubka.uni-karlsruhe.de/voll

texte/1000043687.

[Kle+93] M. H. Klein et al. A Practitioners Handbook for Real-Time Analysis: Guide to
Rate Monotonic Analysis for Real Time Systems. Kluwer Academic Publishers,

1993. isbn: 0-7923-9361-9.

[KLV06] Philippe Kruchten, Patricia Lago, and Hans van Vliet. “Building Up and Rea-

soning About Architectural Knowledge”. In: Quality of Software Architectures.
Ed. by Christine Hofmeister, Ivica Crnkovic, and Ralf Reussner. Berlin, Hei-

delberg: Springer Berlin Heidelberg, 2006, pp. 43–58. isbn: 978-3-540-48820-0.

[Koz11] Anne Koziolek. “Automated Improvement of Software Architecture Models for

Performance and Other Quality Attributes”. PhD thesis. Karlsruhe, Germany:

Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher

Institut für Technologie, 2011. url: http://digbib.ubka.uni-karlsruhe.de

/volltexte/1000024955.

[KP99] Brian W. Kernighan and Rob Pike. The Practice of Programming. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc., 1999. isbn: 0-201-61586-

X.

[Kro12] Klaus Krogmann. Reconstruction of Software Component Architectures and Be-
haviourModels using Static and Dynamic Analysis. Vol. 4. The Karlsruhe Series

on Software Design and Quality. KIT Scienti�c Publishing, 2012.

[Kru02] Charles W. Krueger. “Variation Management for Software Production Lines”.

In: Software Product Lines. Ed. by Gary J. Chastek. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2002, pp. 37–48. isbn: 978-3-540-45652-0.

296

http://dx.doi.org/10.1007/11783565%5C_25
http://dx.doi.org/10.1007/11783565%5C_25
http://ceur-ws.org/Vol-1723/
http://ceur-ws.org/Vol-1723/
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043687
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043687
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000024955
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000024955

Bibliography

[Kru08] C. W. Krueger. “The BigLever Software Gears Uni�ed Software Product Line

Engineering Framework”. In: 2008 12th International Software Product Line
Conference. Sept. 2008, pp. 353–353. doi: 10.1109/SPLC.2008.33.

[LG03] Anna Liu and Ian Gorton. “Accelerating COTS Middleware Acquisition: The

i-Mate Process”. In: IEEE Softw. 20.2 (Mar. 2003), pp. 72–79. issn: 0740-7459.

doi: 10.1109/MS.2003.1184171. url: https://doi.org/10.1109/MS.2003.1

184171.

[LHB18] Sebastian Lehrig, Marcus Hilbrich, and Ste�en Becker. “The architectural

template method: templating architectural knowledge to e�ciently conduct

quality-of-service analyses”. In: Softw., Pract. Exper. 48.2 (2018), pp. 268–299.

doi: 10.1002/spe.2517. url: https://doi.org/10.1002/spe.2517.

[LW13] J. Lenhard and G. Wirtz. “Measuring the Portability of Executable Service-

Oriented Processes”. In: 2013 17th IEEE International Enterprise Distributed
Object Computing Conference. Sept. 2013, pp. 117–126. doi: 10.1109/EDOC.20

13.21.

[Mad+02] Bharat B. Madan, Katerina Goseva-Popstojanova, Kalyanaraman

Vaidyanathan, and Kishor S. Trivedi. “Modeling and Quanti�cation of Security

Attributes of Software Systems”. In: 2002 International Conference on Depend-
able Systems and Networks (DSN 2002), 23-26 June 2002, Bethesda, MD, USA,
Proceedings. DSN’02, 2002, pp. 505–514. doi: 10.1109/DSN.2002.1028941.

url: http://doi.ieeecomputersociety.org/10.1109/DSN.2002.1028941.

[Mad+04] Bharat B. Madan, Katerina Goševa-Popstojanova, Kalyanaraman

Vaidyanathan, and Kishor S. Trivedi. “A Method for Modeling and

Quantifying the Security Attributes of Intrusion Tolerant Systems”. In: Per-
form. Eval. 56.1-4 (Mar. 2004), pp. 167–186. issn: 0166-5316. doi: 10.1016/j.p

eva.2003.07.008. url: http://dx.doi.org/10.1016/j.peva.2003.07.008.

[Man17] Object Management Group. OMG Meta Object Facility Core – Version 2.5.1.

www.omg.org/spec/UML/2.5.1/. Dec. 2017. url: https://www.omg.org/spec

/UML/2.5.1/.

[Mar06] Marissa Mayer. Google Speed Research. https://www.youtube.com/watch?v

=BQwAKsFmK_8. [Online; accessed 04-Feb-2019]. 2006.

[MCN92] John Mylopoulos, Lawrence Chung, and Brian Nixon. “Representing and

using nonfunctional requirements: A process-oriented approach”. In: IEEE
Transactions on SE 18.6 (1992).

[McQ+06] Miles McQueen, Wayne. Boyer, Mark Flynn, and George Beitel. “Time-to-

Compromise Model for Cyber Risk Reduction Est.” In: Quality of Protection.

Ed. by Dieter Gollmann, Fabio Massacci, and Artsiom Yautsiukhin. Vol. 23.

Advances in Inform. Security. Springer, 2006, pp. 49–64. isbn: 978-0-387-

29016-4. url: http://dblp.uni-trier.de/db/series/ais/ais23.html#McQu

eenBFB06.

[Mel15] John Melton. “AppSensor: Real-Time Event Detection and Response”. In:

AppSec USA 2015. San Fransisco, CA, USA, 2015.

297

https://doi.org/10.1109/SPLC.2008.33
https://doi.org/10.1109/MS.2003.1184171
https://doi.org/10.1109/MS.2003.1184171
https://doi.org/10.1109/MS.2003.1184171
https://doi.org/10.1002/spe.2517
https://doi.org/10.1002/spe.2517
https://doi.org/10.1109/EDOC.2013.21
https://doi.org/10.1109/EDOC.2013.21
https://doi.org/10.1109/DSN.2002.1028941
http://doi.ieeecomputersociety.org/10.1109/DSN.2002.1028941
https://doi.org/10.1016/j.peva.2003.07.008
https://doi.org/10.1016/j.peva.2003.07.008
http://dx.doi.org/10.1016/j.peva.2003.07.008
https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/UML/2.5.1/
https://www.youtube.com/watch?v=BQwAKsFmK_8
https://www.youtube.com/watch?v=BQwAKsFmK_8
http://dblp.uni-trier.de/db/series/ais/ais23.html#McQueenBFB06
http://dblp.uni-trier.de/db/series/ais/ais23.html#McQueenBFB06

Bibliography

[Mic09a] Microsoft. Perimeter Firewall Design. https://docs.microsoft.com/en-us/p

revious-versions/tn-archive/cc700828(v=technet.10). [Online; accessed

28-Feb-2019]. 2009.

[Mic09b] Microsoft TechNet. Recoverability. https://technet.microsoft.com/en-us

/library/bb418967.aspx. [Online; accessed 31-Jan-2019]. 2009.

[Mic16] Microsoft Docs. Recovery Models. https://docs.microsoft.com/en-us/sq
l/relational-databases/backup-restore/recovery-models-sql-server.

2016.

[MS] Sepeedeh Margono and Ben Shneiderman. “A Study of File Manipulation by

Novices Using Commands vs. Direct Manipulation”. In: ().

[Nas17] A.E. Nascimento. OAuth 2.0 Cookbook: Protect your web applications using
Spring Security. Packt Publishing, 2017. isbn: 9781788290630.

[Nat19] Nati Shalom and Yoav Einav. Insights into In-Memory Computing and Real-
time Analytics. https://blog.gigaspaces.com/amazon-found-every-100ms
-of-latency-cost-them-1-in-sales/. [Online; accessed 04-Feb-2019]. 2019.

[Nie12] Jakob Nielsen. Usability 101: Introduction to Usability. https://www.nngrou

p.com/articles/usability-101-introduction-to-usability/. [Online;

accessed 31-Jan-2019]. 2012.

[Nie97] Jakob Nielsen. “Usability Engineering”. In: The Computer Science and Engi-
neering Handbook. 1997, pp. 1440–1460.

[NMR10] Qais Noorshams, Anne Martens, and Ralf Reussner. “Using Quality of Service

Bounds for E�ective Multi-objective Software Architecture Optimization”.

In: Proceedings of the 2nd International Workshop on the Quality of Service-
Oriented Software Systems (QUASOSS ’10), Oslo, Norway, October 4, 2010. ACM,

New York, NY, USA, 2010, 1:1–1:6. isbn: 978-1-4503-0239-5. doi: 10.1145/185

8263.1858265. url: http://sdq.ipd.kit.edu/conferences_and_events/qu

asoss2010/.

[Ora13] Oracle HA Product Managemet. Technical Comparison Oracle Database 12c
vs. IBM DB2 10.5: Focus on High Availability. Tech. rep. Oracle Corporation,

2013.

[Pag88] Meilir Page-Jones. The Practical Guide to Structured Systems Design: 2Nd Edi-
tion. Upper Saddle River, NJ, USA: Yourdon Press, 1988. isbn: 0-13-690769-5.

[Par17] Aaron Parecki. OAuth 2.0 Simpli�ed. Lulu.com, 2017. isbn: 1387130102,

9781387130108.

[Reu+16] Ralf H. Reussner et al. Modeling and Simulating Software Architectures –
The Palladio Approach. Cambridge, MA: MIT Press, Oct. 2016. 408 pp. isbn:

9780262034760. url: http://mitpress.mit.edu/books/modeling-and-simu

lating-software-architectures.

[RS16] Justin Richer and Antonio Sanso. Oauth 2 in Action. Manning Pubns Co, Aug.

2016. isbn: 9781617293276.

298

https://docs.microsoft.com/en-us/previous-versions/tn-archive/cc700828(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/tn-archive/cc700828(v=technet.10)
https://technet.microsoft.com/en-us/library/bb418967.aspx
https://technet.microsoft.com/en-us/library/bb418967.aspx
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/recovery-models-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/recovery-models-sql-server
https://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://doi.org/10.1145/1858263.1858265
https://doi.org/10.1145/1858263.1858265
http://sdq.ipd.kit.edu/conferences_and_events/quasoss2010/
http://sdq.ipd.kit.edu/conferences_and_events/quasoss2010/
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures

Bibliography

[RSO08] Björn Regnell, Richard Berntsson Svensson, and Thomas Olsson. “Supporting

roadmapping of quality requirements”. In: Ieee software 25.2 (2008).

[SBK17] Max Scheerer, Axel Busch, and Anne Koziolek. “Automatic Evaluation of

Complex Design Decisions in Component-based Software Architectures”. In:

Proceedings of the 15th ACM-IEEE International Conference on Formal Methods
and Models for System Design. MEMOCODE’17. Vienna, Austria: ACM, 2017,

pp. 67–76. isbn: 978-1-4503-5093-8. doi: 10.1145/3127041.3127059. url:

http://doi.acm.org/10.1145/3127041.3127059.

[SBK18] Yves Schneider, Axel Busch, and Anne Koziolek. “Using Informal Knowledge

for Improving Software Quality Trade-o� Decisions”. In: Proceedings of the
12th European Conference on Software Architecture. ECSA’18. Madrid, Spain:

Springer, 2018.

[SC12] Sam Supakkul and Lawrence Chung. “The RE-Tools: A multi-notational re-

quirements modeling toolkit”. In: RE. IEEE. 2012.

[Sch02] Stuart Schechter. “Quantitatively Di�erentiating System Security”. In: Work-
shop on Economics and Information Security. 2002, pp. 16–17.

[Sch10] Keith Schwarz. Topological sort algorithm for linear-time sorting of directed
acyclic graphs. http://www.keithschwarz.com/interesting/code/?dir=to
pological-sort. [Online; accessed 14-Dec-2018]. 2010.

[Sch16] Yves Schneider. “Modellierung der Struktureigenschaften von Subsystemen

bei architekturellen Entwurfsentscheidungen in komponentenbasierten Sys-

temen”. 2016.

[Sch17] Max Scheerer. “Using Concern Weaving to Extend Component-based System

Architectures”. 2017.

[SGB05] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. “A Taxonomy of Variability

Realization Techniques: Research Articles”. In: Softw. Pract. Exper. 35.8 (July

2005), pp. 705–754. issn: 0038-0644. doi: 10.1002/spe.v35:8. url: http://dx

.doi.org/10.1002/spe.v35:8.

[SK16] Misha Strittmatter and Amine Kechaou. The Media Store 3 Case Study System.

Tech. rep. 2016,1. Faculty of Informatics, Karlsruhe Institute of Technology,

2016. url: http://digbib.ubka.uni-karlsruhe.de/volltexte/documents

/3792054.

[Sol+02] Rini van Solingen, Vic Basili, Gianluigi Caldiera, and H. Dieter Rombach. “Goal

Question Metric (GQM) Approach”. In: Encyclopedia of Software Engineering.

American Cancer Society, 2002. isbn: 9780471028956.

[ST07] Vibhu Saujanya Sharma and Kishor S. Trivedi. “Quantifying software perf.,

rel. and sec.: An architecture-based approach.” In: Journal of Syst. and Softw.
80.4 (Mar. 1, 2007), pp. 493–509. url: http://dblp.uni-trier.de/db/journa

ls/jss/jss80.html#SharmaT07.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Wien: Springer Verlag, 1973.

isbn: 3-211-81106-0.

299

https://doi.org/10.1145/3127041.3127059
http://doi.acm.org/10.1145/3127041.3127059
http://www.keithschwarz.com/interesting/code/?dir=topological-sort
http://www.keithschwarz.com/interesting/code/?dir=topological-sort
https://doi.org/10.1002/spe.v35:8
http://dx.doi.org/10.1002/spe.v35:8
http://dx.doi.org/10.1002/spe.v35:8
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/3792054
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/3792054
http://dblp.uni-trier.de/db/journals/jss/jss80.html#SharmaT07
http://dblp.uni-trier.de/db/journals/jss/jss80.html#SharmaT07

Bibliography

[SV06] Thomas Stahl and Markus Völter. Model-Driven Software Development. John

Wiley & Sons, 2006.

[SV12] Thomas L Saaty and Luis G Vargas. Models, methods, concepts & applications
of the analytic hierarchy process. Vol. 175. Springer Science & Business Media,

2012.

[Sva+03] Mikael Svahnberg, Claes Wohlin, Lars Lundberg, and Michael Mattsson. “A

Quality-Driven Decision-Support Method for Identifying Software Architec-

ture Candidates”. In: International Journal of Software Engineering and Knowl-
edge Engineering 13.5 (2003), pp. 547–573. doi: 10.1142/S0218194003001421.

url: https://doi.org/10.1142/S0218194003001421.

[SW05] Mikael Svahnberg and Claes Wohlin. “An investigation of a method for iden-

tifying a software architecture candidate with respect to quality attributes”.

In: Empirical SE 10.2 (2005).

[Thea] The Guardian.Over $119bn wiped o� Facebook’s market cap after growth shock.

https://www.theguardian.com/technology/2018/jul/26/facebook-mark

et-cap-falls-109bn-dollars-after-growth-shock, year = 2018, note =

"[Online; accessed 05-Mar-2019]".

[Theb] The Guardian. The Cambridge Analytica Files. https://www.theguardian.co
m/news/series/cambridge-analytica-files, year = 2018, note = "[Online;

accessed 05-Mar-2019]".

[TMD09] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. Software Ar-
chitecture: Foundations, Theory, and Practice. Wiley, 2009. isbn: 0470167742,

9780470167748.

[TT85] Asser N. Tantawi and Don Towsley. “Optimal Static Load Balancing in Dis-

tributed Computer Systems”. In: J. ACM 32.2 (Apr. 1985), pp. 445–465. issn:

0004-5411. doi: 10.1145/3149.3156. url: http://doi.acm.org/10.1145/314

9.3156.

[Ver13] Verizon. Data Breach Investigations Report. 2013.

[VL00] David A. van Veldhuizen and Gary B. Lamont. “Multiobjective Evolutionary

Algorithms: Analyzing the State-of-the-Art”. In: Evolutionary Computation
8.2 (2000), pp. 125–147.

[Vog18] Thomas Vogel. “mRUBiS: An Exemplar for Model-based Architectural Self-

healing and Self-optimization”. In: Proceedings of the 13th International Con-
ference on Software Engineering for Adaptive and Self-Managing Systems.
SEAMS ’18. Gothenburg, Sweden: ACM, 2018, pp. 101–107. isbn: 978-1-4503-

5715-9. doi: 10.1145/3194133.3194161. url: http://doi.acm.org/10.1145

/3194133.3194161.

[Wal+13] Martin Walker et al. “Automatic optimisation of system architectures using

EAST-ADL”. In: Journal of Systems and Software 86.10 (2013), pp. 2467–2487.

issn: 0164-1212. doi: https://doi.org/10.1016/j.jss.2013.04.001.

300

https://doi.org/10.1142/S0218194003001421
https://doi.org/10.1142/S0218194003001421
https://www.theguardian.com/technology/2018/jul/26/facebook-market-cap-falls-109bn-dollars-after-growth-shock
https://www.theguardian.com/technology/2018/jul/26/facebook-market-cap-falls-109bn-dollars-after-growth-shock
https://www.theguardian.com/news/series/cambridge-analytica-files
https://www.theguardian.com/news/series/cambridge-analytica-files
https://doi.org/10.1145/3149.3156
http://doi.acm.org/10.1145/3149.3156
http://doi.acm.org/10.1145/3149.3156
https://doi.org/10.1145/3194133.3194161
http://doi.acm.org/10.1145/3194133.3194161
http://doi.acm.org/10.1145/3194133.3194161
https://doi.org/https://doi.org/10.1016/j.jss.2013.04.001

Bibliography

[WJ15] Groves Dennis Watson Colin and Melton John. AppSensor Guide - Application-
Speci�c Real Time Attack Detection & Response. OWASP Foundation, 2015.

[WSJ07] Lingyu Wang, Anoop Singhal, and Sushil Jajodia. “Toward Measuring Network

Security Using Attack Graphs”. In: Proceedings of the 2007 ACM Workshop on
Quality of Protection. QoP. Alexandria, Virginia, USA: ACM, 2007, pp. 49–54.

isbn: 978-1-59593-885-5. doi: 10.1145/1314257.1314273. url: http://doi.a

cm.org/10.1145/1314257.1314273.

[WW04] Xiuping Wu and Murray Woodside. “Performance Modeling from Software

Components”. In: Proceedings of the 4th International Workshop on Software
and Performance. WOSP ’04. Redwood Shores, California: ACM, 2004, pp. 290–

301. isbn: 1-58113-673-0. doi: 10.1145/974044.974089. url: http://doi.acm

.org/10.1145/974044.974089.

[Xu08] Jing Xu. “Rule-based automatic software performance diagnosis and design

improvement”. PhD thesis. Carleton University, 2008.

[Xu12] Jing Xu. “Rule-based automatic software performance diagnosis and improve-

ment”. In: Performance Evaluation 69.11 (2012), pp. 525–550. issn: 0166-5316.

doi: https://doi.org/10.1016/j.peva.2009.11.003.

301

https://doi.org/10.1145/1314257.1314273
http://doi.acm.org/10.1145/1314257.1314273
http://doi.acm.org/10.1145/1314257.1314273
https://doi.org/10.1145/974044.974089
http://doi.acm.org/10.1145/974044.974089
http://doi.acm.org/10.1145/974044.974089
https://doi.org/https://doi.org/10.1016/j.peva.2009.11.003

	Abstract
	Zusammenfassung
	Danksagungen
	Introduction
	Motivation
	Challenges
	Approach & Contributions
	Motivating Scenario
	Outline

	Example Systems
	Prerequisites for the Example Systems
	Base System
	Extending system

	Base system: Media Store
	Media Store's Use Cases
	System components
	System Architecture
	Internal Process
	Quality of Service Attributes
	Degrees of Freedom
	Expanding Points

	Extending system: Logging System log4j
	log4jv2 Use Cases
	System components
	System Architecture
	Quality of Service Attributes
	Realization of Requirements
	Concerns

	Foundations, Related Work and Preliminary Study
	Foundations
	Software-Architecture and Software Architecture Models
	Model-driven Software Development
	(Component-based) Software Architecture
	Component Type Hierarchy
	Reference Architecture
	Feature Models

	Software Quality and Modelling Knowledge
	Software Quality and Quality Attributes
	Model-based Quality Prediction
	Quality of Service Modelling Language
	Modelling Quality in Palladio
	Qualitative Reasoning

	Optimizing Software-Architecture Models
	Multiple Criteria
	Software-Architecture Optimization

	Component-based Software Development Process (CBSE)
	Quality Analysis in the CBSE
	Quality Exploration in the CBSE

	Related Work
	Modelling and Representing Knowledge
	Knowledge for Decision Making

	Automated Model Generation and Model Variability
	Reuse model artefacts by completions
	Variability Models

	Support for Software-Architecture optimization
	Automatic and semi-automatic approaches
	Manual approaches

	Quantifying the Quality Attribute Security
	Motivation
	Quantification Approach
	Definition of Security Relevant Properties
	Application Example
	Attacker Model
	Attacker & Scenarios
	Component Security
	Mutual Security Interference

	Security Modelling using SMP
	Base Model
	Component Security
	Composing Component and Attacker Model
	Attacker Scenario
	Combining the Sub-Models

	Evaluation
	Reference Scenario
	Component Variation Scenario
	Deployment Variation Scenario

	Applying the approach to the Palladio Component Model
	PCM Security Extension
	Transformation to SMP

	Related Approaches
	Limitations
	Data Streams
	Getting the Data
	Meaningful values

	Cost Analysis
	Discussion

	Quality-driven reuse of software models
	Automated Feature-Driven Extension of Software Architectures
	Terms, Definitions and Roles
	Features
	Subsystem
	Subsystem Solution

	CompARE Prerequisites
	Goal of Feature-Driven Software Architecture Extension
	CompARE in a Nutshell
	Domain Analysis
	Solution Analysis
	Reuse Process
	Design Space Optimization

	CompARE in the Component-based Software Engineering Process
	Component-based Development Process
	Roles of the extended CBSE
	Requirements Workflow
	Specification Workflow
	Quality Analysis Workflow
	Decision Making

	Further Scenarios
	Assumptions & Limitations
	Summary

	Formalising the Entities of Reuse
	Roles and Requirements
	Roles
	Requirements for the Reuse and Automated Decision Process

	Feature Completion Meta Model
	Feature Completion
	Feature Objectives
	Reuse Architecture
	Architecture Constraints
	Feature Completion Component
	Feature Completion Extension Mechanism
	Feature Completion Solution

	Applying the Reference Architecture to Solutions
	Identify features
	Components annotation
	Annotate perimeter interfaces

	Multi Type Hierarchy
	Types

	Assumptions and Limitations
	Summary

	Model Weaving using Feature-driven Degrees of Freedom
	Extending Software Architecture Models
	Model Transformation using Triple-Graph-Grammars
	Model Transformation
	Weaving component-based Software-Architecture Models

	Adapter Extension
	Adapter Generation
	Adapter Assembly

	Abstract Behaviour Extension
	Extending the Control Flow

	Formal Mechanism for PCM Transformation
	Adapter Extension
	Abstract Behaviour Extension
	Weaving PCM Models

	Architecture constraints
	Feature-driven Architecture Degrees of Freedom
	Subsystem Selection Degree
	Feature Selection Degree
	Multiple Inclusion Degree
	Optional Choice Degree

	Assumptions and Limitations
	Summary

	Modelling and Analysis of Architecture Knowledge
	Extending the Quality Evaluation Space
	Qualitatively-valued Quality Attributes
	Modelling Dimensions for Not-quantified Quality Attributes
	Quality Annotation Model

	Quality Analysis using Qualitative Reasoning
	Quality Rule Specification
	Quality Knowledge Analysis

	Candidate Evaluation
	Assumptions and Limitations
	Summary

	Evaluation and Conclusion
	Evaluation & Case Study Systems
	Levels of Validation for the CompARE Approach
	Level I: Validation of Accuracy
	Level II: Validation of Applicability
	Level III: Validation of Benefits

	Evaluation Concept
	Hypothesis I: Automated model weaving
	Hypothesis II: Reuse informal knowledge for architecture optimization
	Hypothesis III: Automated model generation and optimization
	Achieved Levels of Validation

	CompARE Implementation
	Weaving Engine
	Qualitative Knowledge Analysis
	Integration in PerOpteryx

	Subsystem Case Study Systems
	Apache's log4j
	Features of the Logging Systems
	Intrusion Detection Systems
	Features of the Intrusion Detection Systems

	Modelling the Feature Completions
	Logging Feature Completion
	IDS Feature Completion
	Discussion

	Base System Case Study Systems
	Business Reporting System
	Remote Diagnostic Solution
	Modular Rice University Bidding System

	Evaluation Part I: Including Features into Software Architectures
	Preliminaries
	Requirements
	Pointcuts
	Models

	Preliminary Scenario: Effects on quality attributes
	Scenario I: Evaluation of different realizations
	Scenario II: Using multiple inclusion
	Scenario III.a: Annotating features at different components
	Scenario III.b: Increasing the number of annotated components
	Scenario IV: Annotating the abstract control flow
	Scenario V: Evaluation of feature alternatives with fixed features set
	Scenario VI: Evaluation of feature alternatives considering optional features
	Accuracy of the Optimization
	Discussion

	Evaluation Part II: Qualitative Modelled Knowledge
	Evaluation process
	Combining both types of knowledge
	Scenario VII: Combination of usability and security
	Scenario VIII: Security

	Using qualitative reasoning
	Scenario IX: Effects between quality dimensions when using different implementations
	Scenario X: Effects between quality dimensions when using different features

	Accuracy of Evaluating Qualitative Modelled Knowledge
	Discussion

	Evaluation Part III: Optimizing Annotation Positions and Solution Selection
	Concluding Discussion
	Threats to validity
	Evaluation results
	Summary

	Future Work & Conclusion
	Future Work
	Change operations for modifying software architectures
	Reference Architecture
	Architecture constraints
	Architecture patterns and styles
	Empirical validation
	Usability study

	Conclusion

	Approach
	Meta Models & Profiles Overview
	Meta Models
	UML Profiles

	Publications that dissertation bases on
	Bibliography

