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Motivation and Goals

= Due to the Increasingly stringent emission legislation, the
development of gasoline engines aims at the reduction of particulate
emissions by application of particulate filters.

" The regeneration behaviour of Gasoline Particulate Filter (GPF) Is
determined by reactivity and properties of captured soot.

" To reduce the regeneration temperature, technical effort in exhaust
gas aftertreatment and consequently CO, emissions during active
regeneration of GPF the control of the burn-out of particles within
GPF has a enormous significance.

= Aim of the study: Control of the soot reactivity by engine
parameters and the enhancement by the optimization of these
parameters

Engine Test Bench at IFKM

Turbocharged 4 cylinder research GDI engine (2.0 liters)
Indication system

Optical access

Particle measurements with

" “Engine Exhaust Particle Sizer (EEPS)”

= “Smoke Meter”

= “Particulate Sampling System (PSS 20)”
for temperature programmed oxidation
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Methods

= Characterization of soot particle properties by variation of single
engine parameters in stationary operating points

l. Investigation of particle properties
" Variation Start of Injection (SOI) and soot sampling
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m 2. Soot Sampling

Source: AUDI AG

Il. Soot reactivity

= Oxidation rates of different soot samples were investigated through
temperature  programmed oxidation (TPO) Dby employing
thermogravimetric analysis (TGA).

" The temperature at maximum oxidation rate (T .,) IS widely used to
iIndicate soot reactivity towards oxidation.

= Dynamic, non-isothermal measurements were performed using a
heating rate of 5 K-mintand a gas atmosphere consisting of 5 %vol
O, and 95 %vol N,.
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lll. Carbon Nanostructure analysis
= High-Resolution Transmission Electron Microscopy (HRTEM) and
Image analysis algorithm to study carbon nanostructure (length,
curvature and seperation distance of graphene layers) within primary

soot parcticles.
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Results

Impact of Start of Injection (SOI) on particle characteristics

Engine parameters

_{A SOI= 340 — 220°CA BTDC

“2 n=2000 min -1 ¥ > BMEP = 8 bar g ST = 26,25°CABTDC # pRail = 100 bar

|. Particle number concentration and size distribution
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. Soot reactivity
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Ill. Carbon nanostructure
= Carbon nanostructure affects the energy level of C-atoms accessible
for oxidation and therefore soot reactivity.
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= Particle number concentration and
size distribution is determined by
guality of the mixture formation.

= A decreasing

soot aggregate

diameter causes an increased soot
reactivity, which is most likely due to
the increased specific surface area.
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Conclusions
" The results show a high correlation of homogenization of mixture

formation and soot reactivity indicated by T
"= Good mixture formation enhances soot reactivity towards oxidation.
" By knowing property-reactivity relations, the oxidation of particulates
within the GPF can be enhanced and controlled via the operation
conditions of the engine.
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= Amorphous, disordered
graphene layers
INncrease soot reactivity.
Y= Small primary particles
-> Increase specific surface
- Increase In soot reactivity

" Ordered and expanded
graphene layers cause
OW SO0t reactivity.
" |ncreasing primary
1  particle diameter
decrease soot reactivity.



