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Abstract

Application of electric field on materials lead to intriguing effects. Different class of ma-

terials are subjected to an external field either as a part of a processing treatment, or

by mere virtue of its application. When employed as a processing treatment, electric

field can modulate the microstructure in metals, alloys, ceramics and polymers thereby

altering the material properties. Alternatively, a number of applications, for instance in

electronic devices, also involve materials to be utilized as component which are subjected

to intense currents on a daily basis. Permanent displacement of atoms can lead to open

circuit failures, compromising the reliability of the entire device. The present disserta-

tion explores one application each where electric field can lead to either favorable, or

deleterious consequences, with the aid of phase-field modeling.

In the first part of the thesis, a diffuse-interface model is developed and employed to

study the directed self-assembly of symmetric diblock copolymers under the concurrent

influence of electric field, substrate affinity and confinement. Various limiting geometries

are studied and a set of phase diagrams in electric-field-substrate-strength for various

film thicknesses are characterized. In addition to identifying the presence of parallel,

perpendicular and mixed lamellae phases similar to previous analytical calculations and

experimental observations, we also find a region in the phase diagram corresponding

to one-half integral lamellar spacing where hybrid morphologies such as wetting layers

at the vicinity of the substrate coexisting with either holes in the middle of the film

or perpendicular cylindrical domains coexist. The study is further extended to three

dimensions, where, the latter morphology is characterized as a hexagonally perforated

lamellar (HPL) phase. For the first time, it is shown that electric field can instigate

an order-order transition from a lamellar to a HPL phase. Kinetic pathways of the

transition additionally reveal the perforated lamellae to be an intermediate structure

during parallel-to-perpendicular lamellar transition in thin films.

In the following part, various damage modes initiating from grain boundary (GB)

grooves due to electromigration (EM) in nanoscale interconnects are elucidated. To this

end, a single component polycrystalline phase-field model which takes into account the

electron wind force, is employed. The model and its numerical implementation is first
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benchmarked with the sharp interface theory of surface diffusion-mediated thermal groov-

ing of Mullins. Thereafter, it is shown that GB flux due to electromigration can drastically

affect the mode of progressive EM damage. Rapid atomic transport along the surface

leads to a shape-preserving surface drift, while, a faster GB atomic transport localizes the

damage in form of intergranular slits with a shape-preserving tip. The phase-field simula-

tions further highlights the role of curvature- or EM-induced healing fluxes running along

the surface which replenish the groove and delay damage dissemination. For the first

time, a numerical model is extended to study spatio-temporal damage initiation, propa-

gation, self-healing, grain coarsening in three-dimensional interconnects. Subsequently, a

critical comparison of the solutions of grooving in finite grains obtained from sharp inter-

face and phase-field method reveals that inconsideration of the EM-induced surface flux

in the sharp interface theories can lead to significant errors both in terms of estimation of

groove shapes and regime of damage modes. Finally, a new sharp interface model for fi-

nite grains, which takes into account the effect of concurrent capillarity, and EM-induced

surface flux, and EM-induced GB flux is formulated to address the discrepancies. The

predictions from the new model shows excellent agreement with the phase-field model.

The results of the present dissertation successfully demonstrates the feasibility and

applicability of the phase-field method in capturing the essential physics of the problem

and tackling the microstructure evolution in electric field-induced phenomenon efficiently

and elegantly.



Kurzfassung

Das Anlegen eines elektrischen Feldes an Materialien hat eine faszinierende Wirkung.

Unterschiedliche Werkstoffklassen sind einem externen elektrischen Feld entweder als ein

Teil der Verarbeitung oder aufgrund der alleinigen Applikation ausgesetzt. Wenn das

elektrische Feld für die Verarbeitung verwendet wird, kann dieses die Mikrostruktur in

Metallen, Legierungen, Keramiken und Polymeren verändern, wodurch die physikalis-

chen Eigenschaften verändert werden. Alternativ können mehrere Einsatzmöglichkeiten

wie beispielsweise der Einsatz in elektronischen Geräten dazu führen, dass Materialien

als Komponenten verwendet werden, die täglich intensiven Stromstärken ausgesetzt sind.

Eine ständige Verlagerung der Atome kann zu Fehlern im offenen Stromkreis führen,

wodurch die Zuverlässigkeit des gesamten Geräts beeinträchtigt wird. Mit Hilfe der

Phasenfeldmethode wird in der vorliegenden Dissertation jeweils ein Anwendungsfall un-

tersucht, in dem das elektrische Feld entweder positive oder negative Folgen haben kann.

Im ersten Teil der Arbeit wird ein diffuses Grenzflächenmodell entwickelt und für die

Untersuchung der gerichteten Selbstorganisation von symmetrischen Diblock-Copolymeren

verwendet, die gleichzeitig durch das elektrische Feld, die Substrataffinität und die Beschrä-

nkung beeinflusst werden. Es werden verschiedenene beschränkende Geometrien unter-

sucht und eine Reihe an Phasendiagrammen für unterschiedliche Schichtdicken charak-

terisiert, die das Verhälnis zwischen dem elektrischen Feld und der Substratstärke zeigen.

Zusätzlich zu der Ermittlung der vorhandenen parallelen, senkrechten und gemischten

Lamellenphasen findet man, ähnlich wie bei den vorausgegangenen analytischen Berech-

nungen und experimentellen Beobachtungen, auch einen Bereich im Phasendiagramm,

der einem Lamellenabstand der Größe eines halben Integrals entspricht, in dem hybride

Morphologien wie Benetzungsschichten in der Nachbarschaft des Substrats koexistieren,

die entweder Löcher in der Mitte der Schicht oder senkrechte zylinderförmige Bereiche

aufweisen. Des Weiteren wird die Untersuchung auf drei Dimensionen erweitert, in de-

nen die letztgenannte Morphologie als eine hexagonal perforierte (HPL) Lamellenphase

charakterisiert wird. Erstmals wird gezeigt, dass durch ein elektrisches Feld ein Ordnungs-

Ordnungs-Übergang von einer Lamellenphase zu einer HPL-Phase hervorgerufen werden

kann. Außerdem zeigt der kinetische Verlauf des Übergangs, dass es sich bei den perfori-
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erten Lamellen, die während des Übergangs von parallelen zu senkrechten Lamellen in

Dünnschichten entstehen, um Zwischenstrukturen handelt.

Im Folgenden werden verschiedene Beschädigungsarten erläutert, die aufgrund der

Elektromigration (EM) in Nanoverbindungen durch die Rille der Korngrenze verursacht

werden. Dazu wird ein einkomponentiges, polykristallines Phasenfeldmodell verwendet,

das die Windstärke der Elektronen berücksichtigt. Das Modell und dessen numerische

Umsetzung wird erst mit der scharfen Grenzflächentheorie von Mullins verglichen, bei der

die thermische Rillenbildung durch Oberflächendiffusion vermittelt wird. Anschließend

wird gezeigt, dass die Art der durch die fortschreitende Elektromigration verursachten

Schädigung stark durch einen Fluss durch Grenzflächen beeinträchtigt werden kann, der

aufgrund der Elektromigration stattfindet. Ein schneller atomarer Transport entlang

der Oberfläche führt zu einer formerhaltenden Versetzung der Oberfläche, während der

Schaden durch einen schnelleren atomaren Transport durch Grenzflächen in Form von

interkristallinen Schlitzen mit einer formerhaltenden Spitze lokalisiert wird. Durch die

Phasenfeldsimulationen wird die Funktion von krümmungs- und EM-induzierten heilen-

den Strömungen entlang der Oberfläche weiter hervorgehoben, die die Rille wieder auffüllen

und die Schadensausbreitung verzögern. Erstmals wird ein numerisches Modell erweit-

ert, um die räumlich-zeitliche Schadenseinleitung, die Ausbreitung, die Selbstheilung und

die Kornvergröberung in dreidimensionalen Verbindungen zu untersuchen. Anschließend

zeigt ein kritischer Vergleich der aus der scharfen Grenzflächenmethode und der Phasen-

feldmethode gewonnenen Lösungen bezüglich der Rillenbildung, dass sowohl bei der

Ermittlung der Rillenformen als auch beim Verlauf der Schadensart erhebliche Fehler

entstehen können, wenn der durch die Elektromigration induzierte Oberflächenfluss in

den Theorien der scharfen Grenzflächen nicht berücksichtigt wird. Zur Beseitigung der

Diskrepanzen wird schließlich ein neues scharfes Grenzflächenmodell für finite Körner

formuliert, das die zeitgleiche Kapillarwirkung und den durch die Elektromigration in-

duzierten Oberflächen- und Grenzflächenfluss berücksichtigt. Die mit dem neuen Modell

getroffenen Vorhersagen zeigen eine sehr gute Übereinstimmung mit dem Phasenfeldmod-

ell.

Durch die Ergebnisse der vorliegenden Arbeit wird die Durchführbarkeit und Anwend-

barkeit der Phasenfeldmethode in Bezug auf die Erfassung der erforderlichen Physik des

Problems und in Bezug auf die Bewältigung der mikrostrukturellen Entwicklung effizient

und elegant in einem Phänomen verdeutlicht, das durch ein elektrisches Feld verursacht

wird.



Preface

Electric field is known to orient ordered phases of block copolymers, thereby enabling

precise control to tailor microstructures. Metal conductors on the other hand when

subjected to high current density lead to atomic diffusion due to interaction between the

conducting electrons and metal atoms. Permanent displacement of atoms lead to open

circuit failure. The present thesis is devoted to understand the effect of the electric field

on block copolymers and electromigration in metals.

To this end, numerical models based on the phase-field method are formulated in

Chapters 3 and 4. The directed assembly of block copolymers under the combined influ-

ence of electric field, substrate affinity and confinement is explored in Chapters 5 and 6.

Insights into the interplay of various mass transport mechanisms during grain boundary

grooving due to electromigration are highlighted in Chapters 7−10 with a view to prolong

the lifetime of device.

The numerical models and the results presented in part II and III respectively have

been either published or submitted in the following peer-reviewed articles :

Article 1 : A. Mukherjee∗, R. Mukherjee, K. Ankit, A. Bhattacharya, and B. Nestler,

Phys. Rev. E, 93 (3),032514, 2016

Article 2 : A. Mukherjee∗, K. Ankit, A. Reiter, M. Selzer, and B. Nestler, Phys.

Chem. Chem. Phys., 18 (36), 25609, 2016

Article 3 : A. Mukherjee∗, K. Ankit, R. Mukherjee, and B. Nestler, J. Electron.

Mater., 45 (12), 6233, 2016

Article 4 : A. Mukherjee∗, K. Ankit, M. Selzer, and B. Nestler, Phys. Rev. Appl.,

9 (4), 044004, 2018

Article 5 : A. Mukherjee∗, M. Selzer, and B. Nestler, To be submitted

Article 6 : A. Mukherjee∗, J. Santoki, M. Selzer, and B. Nestler, To be submitted

The thesis is concluded in the final chapter summarizing the findings along with

∗Corresponding Author
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possible future extensions of the presented results.

I have obtained the permission from all the co-authors and publishers to partially

or entirely use the published results (including texts, equations, tables and figures) in

current thesis. The corresponding contributions of the co-authors to the articles have

been stated in the Declaration of Originality. Apart from these stated contributions,

other scientific contributions are mine, unless otherwise declared. Figures 2.1, 2.3, 2.4,

2.6, 2.7, 2.8, 2.9 and 2.10 are taken from literature and the permission to use these figures

has been granted by the corresponding publishers. The license for usage of copyrighted

figures is limited to the present thesis.
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Chapter 1

Introduction : Motivation &

Synopsis

Electric field manifests as a promising method to guide and control morphological tran-

sition of block copolymers. Directed self-assembly is attained either by reorientation

of domains in the direction of the field or by order-order transition to an energetically

more favorable structure. The increase in field with decreasing system size lends as an

effective and efficient choice in modulating morphologies especially in thin films of nano

dimensions.

On the other hand, electric field in metals used in electronic devices can lead to open

circuit failure by promoting void nucleation, growth and migration, hillock formation, lo-

calized thinning and grain boundary (GB) grooving by the phenomenon known as electro-

migration (EM). With progressive downscaling of electronic devices and a concomitant in-

crease in the operating current densities, reliability issues pertaining to electromigration-

mediated failure in interconnects is only expected to exacerbate in the years to come.

Mathematical modeling, such as the phase-field approach can help us improve the

current understanding of electromigration failure mechanisms and kinetic pathways of

electric field-induced pattern formation in soft matters. With the motivation to address

the above mentioned phenomenon, the results of the present dissertation can be divided

into two parts. In the first part, the effect of confined interacting walls on electric field-

induced transition in symmetric block-copolymer thin films is elucidated in form of phase

diagrams. Furthermore, hexagonally perforated lamellae, which until now is known to

be only metastable in the bulk is shown to stabilize in film thicknesses close to one-half

integral lamellar spacing due to concurrent influence of confinement, substrate affinity

and applied field. In the second part of the thesis the role of capillary- and EM-mediated

surface diffusion and EM-induced GB grooving is investigated. Two modes of damage

2
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Figure 1.1: Parallel (left), mixed (center) and perpendicular (right) lamellae morphologies

resulting from the competing effect of substrate interaction and applied electric field

in form of surface drift and intergranular slit are delineated depending upon the rate

limiting transport mechanism. A comparison of the groove profiles obtained from phase-

field method and sharp interface analytical and numerical solutions further reveal the

importance of EM-induced surface flux not accounted in the latter which acts as an

healing mechanism. A short graphical abstract of the results presented later in the thesis

is provided below.

1. Influence of substrate interaction and confinement on electric-field-induced

transition in symmetric block-copolymer thin films

Chapter 5 is devoted to the study of directed assembly of symmetric block copoly-

mers (which form lamellae structure) due to competing substrate interaction, elec-

tric field, and confinement. A coarse-grained non-local Cahn-Hilliard which couples

the Ohta-Kawasaki functional with Maxwell equation of electrostatics along with

the contribution of substrate interaction which is proposed in chapter 3 is employed.

The phase diagram consisting of parallel, mixed and perpendicular morphologies

(see Fig.1.1) in electric-field-substrate strength space for different film thicknesses is

calculated. In addition, the dependence of the critical fields for transition between

the various phases on substrate strength, film thickness and dielectric contrast is

discussed. Some preliminary three-dimensional results are also presented to corrob-

orate the presence of other morphologies other than lamellae in symmetric system.

The results presented in the chapter has been published in Physical Review E [1].

2. Electric-field-induced lamellar to hexagonally perforated lamellar tran-

sition in diblock copolymer thin films : kinetic pathways

Symmetric block-copolymers, are well known to evolve into parallel, mixed and

perpendicular lamellar morphologies under the concomitant influence of an electric

field and substrate affinity. In chapter 6 it is shown that an additionally imposed
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Figure 1.2: Parallel lamellar to hexagonally perforated lamellar transition in diblock copolymer

bilayer films due to competing substrate interaction, electric field, and confinement

confinement can effectuate a novel parallel lamellar to hexagonally perforated lamel-

lar (HPL) transition in monolayer and bilayer films (see Fig.1.2). HPL is shown to

stabilize at large substrate affinity in a narrow region of the phase-diagram between

parallel and perpendicular lamellar transitions in ultra-thin films. Additionally,

perforated lamellae is also identified as an intermediate structure during parallel-

to-perpendicular lamellar transition. Deeper insights into the kinetic pathways of

the phase transition is systematically analyzed using the Minkowski functionals.

The results presented in the chapter has been published in Physical Chemistry

Chemical Physics [2].

3. Grain boundary grooving : Comparison between phase-field simulations

and Mullins’ theory

The phase-field model of grain boundary grooving under electromigration (EM) pre-

sented in chapter 4 (which has been published in Journal of Electronic Materials) is

validated against the sharp-interface analytical theory of surface diffusion-mediated

by Mullins’ for isolated grooves in the absence of EM in chapter 7. Several bench-

marking in terms of the temporal evolution of the groove depth and width (which

obey a t1/4 law) and profile shapes (see Fig.1.3) are performed and critically com-

pared to those obtained by Mullins’. The validity of the approximations made

in deriving the sharp interface governing equation is elucidated. In addition, the

self-similar behavior of the profiles and a preliminary comparison between the sig-

natures of surface diffusion and volume diffusion-mediated profiles which can be

used to discern the dominant atomic transport mechanism is also discussed.

4. Electromigration-induced surface drift and slit propagation in polycrys-

talline interconnects
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Figure 1.3: A comparison between the surface diffusion-mediated normalized groove profile

obtained from sharp-interface analytical theory of Mullins and phase-field method measured along

x and y directions.

In chapter 8, the electromigration damage in wide polycrystalline interconnects due

to grain-boundary grooving is assessed. An interplay of surface and grain-boundary

diffusion is shown to drastically influence the mode of progressive EM damage.

Rapid atomic transport along the surface leads to shape preserving surface drift

reminiscent of Blech drift velocity experiments as shown in Fig.1.4 (left-top). On

the other hand, a comparatively faster grain-boundary transport localizes the dam-

age resulting in the proliferation of intergranular slits with a shape preserving tip

(Fig.1.4 left-bottom). In steady state, the two regimes exhibit an exponent of 1

and 3/2 respectively in Black’s law. While surface drift obeys an inverse scaling

with grain size, slits exhibit a direct relationship at small sizes with the depen-

dence becoming weaker at larger ones. Furthermore, the influence of curvature- or

EM-mediated healing fluxes running along the surface on groove replenishment is

explained. Insights derived from phase-field simulations of EM in bi-crystals are

extended to investigate the multiphysics of mixed-mode damage of polycrystalline

interconnect line that is characterized by a drift of small grain surfaces, slit prop-

agation and coarsening (see right column of Fig.1.4). The triple and quadruple

junctions are identified as prominent sites of failure. The results presented in this

chapter have been published in Physical Review Applied [3] and Journal of Elec-

tronic Materials [4].

5. Effect of electromigration on grain-boundary grooving at finite grain size

: Comparison between sharp-interface and phase-field solution
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Figure 1.4: Various regimes of damage initiating from grain-boundary grooves depending upon

the rate-limiting transport mechanism : surface drift (left-top), intergranular slit (left-bottom)

and mixed-mode damage in polycrystalline interconnects (right).

  

Figure 1.5: The discrepancy in the solution obtained from sharp interface analytical and nu-

merical solution and phase-field method. While sharp interface model predicts a unique solution

for a given value of α, the phase-field gives rise to two solutions.
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Grain boundary grooving damage due to electromigration in polycrystalline inter-

connect is investigated using sharp-interface and phase-field models in chapter 9.

It is shown that the single parameter α = JGBΩL2

8B
where JGB is the grain boundary

flux, Ω the atomic volume, L the grain size and B a material constant, used in

the sharp-interface theory is inadequate to capture either the steady shape of the

groove profile or the groove dimension when applied to the specific case of electro-

migration. Moreover, the sharp-interface solution is also found to be non-unique in

α. The discrepancies are rationalized in terms of electromigration-induced surface

flux which introduces an additional degree of freedom to ascertain the morphology

of the groove. The healing effect of electromigration in some cases lead to prema-

ture arrest of groove penetration in comparison to the thermal groove counterparts.

Although the presence of electromigration accelerates the groove extension from a

temporal t1/4 to a steady state t regime, the sharp interface analytical theory over-

estimates the displacement than the phase-field model as ascertained by performing

virtual drift velocity experiments. The results presented in this chapter forms the

content of a manuscript which has been submitted for publication.

6. Grain boundary grooving in finite grains due to concurrent surface and

grain boundary electromigration

A sharp-interface model of steady state grain-boundary grooving of a periodic array

of grains under isotropic conditions is formulated by considering the effect of con-

current capillarity, and electromigration-induced surface flux, and electromigration-

induced grain-boundary flux in chapter 10. A second-order non-linear ordinary dif-

ferential equation governing the profile shape is derived and solved numerically. It is

shown that for a given inclination of the surface at the groove root Γ (sin−1 γGB/2γs),

the groove profiles evolving under concurrent surface and grain-boundary electro-

migration is characterized by two independent parameters namely, χ which denotes

the ratio of capillary to EM force at the surface and M , depicting the competition

between the rate of electromigration transport at the grain-boundary to the sur-

face. For a given χ, the groove depth relative to the surface maximum increases

with increasing value of M . For M < Γ, decreasing χ engenders a surface healing

flux as a result of which the surface profiles become flatter thereby decreasing the

groove depth and vice-versa for M > Γ. At M = Γ, the profiles are independent

of χ and assume a shape of constant curvature. Not all possible combinations of

M − χ − Γ results in a steady state and the typical steady-state solution regions

are elucidated in two-dimensional M −χ, M −Γ and χ−Γ space. The predictions

from the theoretical model are further corroborated using the phase-field method

(see Fig. 1.6) and the practical implications of the study are discussed. The re-

sults presented in this chapter form the content of a manuscript which has been
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Figure 1.6: A comparison of the solution of groove profiles from sharp interface model of Ref.[5],

sharp interface model presented in chapter 9 and phase-field model.

submitted for publication.

The thesis not only contributes to the advancement of our understanding of directed

assembly of block copolymers and EM failure mechanisms due to GB grooving, but

provides a general framework in phase-field models, exemplifying the applicability

to tackle other electric field-induced physical phenomenon in materials science.



Chapter 2

Literature Review

2.1 Effect of electric field on materials : Boon or

Bane?

A large number of material system in and around us are subjected to an electric field

either as a part of a processing treatment or by mere virtue of its application. Different

materials respond to the applied field disparately, depending upon its ability to conduct

electricity. Materials can be broadly classified as conductors, insulators (or dielectrics)

and semiconductors depending upon their response to the field. Conductors or metals are

good carrier of electricity and contain a large number of free electrons which can move

freely through the material. Most metals such as Copper, Aluminum, Gold etc. fall under

this category. Poor conductors of electricity are termed as insulators. Unlike conductors

which contain abundance of mobile charges, the dielectric or insulators are characterized

by charges that are attached to specific atoms or molecules. However, this does not imply

that they do not respond when placed in an electric field. Rather, the positively charged

nucleus is displaced along the electric field and the electrons in opposite direction. As

a result, a dipole moment is generated and the atom is said to be polarized. Glass,

Mica, Wood, Diamond for instance are insulators. Semiconductors, such as Silicon and

Germanium, are class of materials whose conductivity lies between that of conductors

and insulators.

The classification of the materials can alternatively understood in terms of energy

band theory. Conductors exhibit a complete overlap between the valence and the con-

duction bands. Hence, even at ambient temperature, a large number of electrons are

available for conduction. A large forbidden gap of the order of 7 eV exists between the

two bands in insulators. Only at very high temperatures or high voltage do these materi-

als conduct. However, such conduction is rare and may lead to dielectric breakdown. The

9



Chapter 2. 10

forbidden gap in semiconductors is of the order of 1 eV. As a result, some energy in form

of heat can raise the electrons from valence to conduction band leading to conductivity.

When employed as a processing treatment, electric field can be utilized to control

microstructure of materials which dictates the applicability of the final product. For

instance, the electric field is known to modulate morphologies in soft matter systems such

as block copolymers [6, 7], polymer blends [8, 9] and fluids [10, 11]. Electrohydrodynamic

processes have been exploited to replicate patterns on scales smaller than 100 nm by

topographically structured electrodes [12, 13]. Application of an electric field has also

been employed to control pattern formation in solidifying microstructures [14]. Rod

spacing in directionally solidification of MnBi/Bi eutectics can be controlled by electric

current pulsing [15]. Precise control of macro segregation or solute redistribution of

impurities have been achieved in Al-Si alloys [16, 17]. Application of DC current during

solidification of cast iron reduces the size of graphite flakes, alter their shapes and decrease

the amount non-metallic inclusion [18]. DC and AC electric field are gaining popularity

in enhancing consolidation and controlling grain growth during sintering processes of

ceramics [19, 20, 21].

However, it is not always that an applied electric field act as a boon. In several appli-

cations, passage of an electric field leads to undesirable effects. Metallic conductors called

interconnects invariably are subjected to intense current stressing during service condi-

tions. Permanent displacement or loss of material known as electromigration ultimately

leads to failure of devices [22, 23]. In battery technology, for instance in Lithium-ion

batteries, under a certain range of current densities, highly branched dendritic structures

are generated [24, 25]. Dendrites can perforate the insulating layers and lead to short

circuit upon reaching the opposite electrode.

The present dissertation explores one application each where the electric field can lead

to either beneficial or deleterious effect. Specifically, the intention is to study the effect

of the electric field on directed self-assembly of diblock copolymers and the phenomenon

of grain-boundary grooving due to electromigration in nanoscale interconnects. Each of

the two topics are briefly reviewed one by one to create a necessary background and lay

down the basic principles which facilitates the study and the interpretation of the results

presented later in the thesis.
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2.2 Effect of surface, confinement and electric field

on block copolymers

Self-assembly of block copolymers (BCPs) has been an actively pursued field of study

because of its wide technological implications [26, 27]. Diblock copolymers consist of two

homopolymer units, linked by covalent bonds [26, 27]. Owing to the covalent bonding

between the two blocks, these polymers undergo microphase separation below the order-

disorder transition temperature (ODT), thereby, limiting the size of phase separated

domains.[26] Depending upon the Flory interaction parameter(χ) which scales inversely

with temperature and the degree of polymerization N , block copolymers are categorized

in two distinct regimes namely, weak segregation limit(WSL) and strong segregation

limit(SSL).[27] If χN > 10, i.e. closer to the ODT, the block copolymers are characterized

by a sinusoidal composition profile, with the microdomain period scaling as N
1
2 .[28] On

the other hand, if χN >> 10, i.e. well below the ODT, block copolymers are characterized

by a square wave composition profile with sharp interfaces between the two blocks and

microdomain period scales as N
2
3 .[29] The former regime is termed as weak segregation

limit while the latter is termed as strong segregation limit [26, 27]. Depending upon the

volume fraction of the components and segregation regime, block copolymers exhibit a

range of periodic morphologies such as lamellae, gyroids, cylinders, spheres etc.[26, 27]. A

typical phase diagram of a polyisoprene (PI)-polystyrene (PS) diblock copolymer system

is shown in Fig.2.1.

In the absence of any external field, a symmetric diblock copolymer (equal volume

fractions of both blocks) forms domains of lamellar morphology with various degrees of

alignment. Practical applications, however, require complete alignment of the microphase

separated domains. Effective stabilization of the desired morphologies can be instigated

by means of external stimulus such as surface interaction [31], shear flow [32], electric

[33] and magnetic fields [34] that is otherwise non-trivial especially in bulk samples. Mi-

crophase separation takes place on solid substrates which generally have affinity towards

one of the monomer components. Typically, interfacial energy difference between the two

blocks in contact with a substrate (i.e γAS 6= γBS, where γAS and γBS are the interfacial

energies between a monomer A or B and substrate S) can cause surface induced ordering

resulting in parallel arrangement of the domains with respect to the surface [35, 36, 37].

The extent of this parallel ordering depends upon the substrate interaction strength

which ultimately determines the surface ordering length. A parallel ordered lamellae

in a polystyrene- polymethyl metha acrylate thin film of thickness 300nm is shown in

Fig.2.3(a). If the copolymer system is confined between two rigid substrate walls, two

different interaction cases may be considered, (a) the walls are symmetric i.e. both walls
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Figure 2.1: Phase diagram of a PI-PS diblock copolymer system. Five different ordered struc-

tures were reported in Ref. For a given volume fraction, increasing χN not only leads to

disorder-order transition (filled circles) but also in certain cases to an order-order transition

(open circles). Reprinted with permission from Khandpur et al. [30]. Copyright 1995 American

Chemical Society.
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Figure 2.2: A schematic showing the various stable configurations in a symmetric diblock

copolymer in presence of parallel walls/substrate (denoted by hatched lines). (a) Parallel lamellae

in presence of symmetric wall interaction, (b) Parallel lamellae in presence of antisymmetric

wall interaction, (c) Perpendicular lamellae arising either due to frustration or applied electric

field.

attract the same monomer and (b) antisymmetric walls i.e. both walls attract different

monomers [38, 39, 40, 41, 42]. As shown in Fig. 2.2 (a) and (b), the system either forms

integral nLo or half-integral (n + 1
2
)Lo number of lamellae, where Lo is the equilibrium

lamellar spacing, depending on whether the wall is symmetric or antisymmetric respec-

tively [38, 39, 40, 41, 42]. Surface reconstructions are relevant in monolayer and bilayer

thin films as they induce many interesting intermediate morphologies [43, 44].

Additionally, the confinement of the BCPs within parallel walls introduces a length

scale constraint. If the film thickness is incommensurate with the lamellar spacing, the

copolymers are said to be in a frustrated state [46]. The BCPs can either comply with

this constraint by deviating from their natural length scale, which is typical in thicker

films where the deviation can span over a large number of lamellae [39, 46] or alleviate

frustration by adopting a perpendicular orientation with respect to the walls [38, 39,

40, 41, 42] as shown in Fig. 2.2(c). In extreme cases when the substrate interaction is

large, a mere reorientation is energetically unfavorable while confinement can induce an

order-order transition (OOT) to a more favorable structure [47]. For instance, in lamellae

forming systems, the interference of composition waves emanating from the substrate can

stabilize half-lamellae, hybrid and anti-hybrid structures [48]. Additionally, formation of

holes at the center of film along with wetting layers has also been deduced in the past
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(a) (b) (c)

Figure 2.3: (a) Cross sectional TEM image of a 300nm PS-b-PMMA film annealed under

40V/µm electric field of 3h (upper) and 6h (lower). The applied electric field is not high enough

to overcome the effect of substrate affinity and a parallel morphology is seen to be stable. Scale bar

: 100nm. (b) Cross sectional TEM image of a 700nm PS-b-PMMA film annealed under 40V/µm

electric field of 6h (upper) and 16h (lower). Few parallel layers closer to the substrate co-exist

with perpendicular lamellae at the center of the film. Scale bar : 100nm. (c) Electric-field-

induced complete alignment of PS-PHEMA-PMMA terblock tripolymer as observed in scanning

electron microscopy starting from a disordered structure. The electric field strength corresponds

to 15V/µm. The cross section length scale corresponds to 150nm × 150nm. Fig. (a) and

(b) reprinted with permission from Xu et al. [7]. Copyright 2004 American Chemical Society.

Fig.(c) reprinted with permission from Olszowka et al.[45]. Copyright 2009 American Chemical

Society.
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Figure 2.4: Electric-field-induced gyroid to cylinder (left) and hexagonally-perforated-lamellae

to cylinder (right) transition studied using dynamical self-consistent field theory. The morpho-

logical transition takes place by elimination of electrostatically unfavorable junctions. Left fig.

reprinted with permission from Ly et al [51]. Copyright 2007 American Chemical Society. Right

fig. reprinted with permission from Ly et al. [52]. Copyright 2008 American Chemical Society.

[49, 50, 1]. In cylinder forming systems various combinations of parallel lamellae, parallel

cylinders, perpendicular cylinders and perforated lamellae have been reported [43, 44].

From an experimental perspective, the electric field manifests as a promising external

stimulus in inducing morphological transformations in BCPs because of the ease with

which it can be applied, especially in thin films [53, 7]. Since the inception of the so-

called “dielectric contrast” mechanism reported in the seminal work of Amundson and

co-workers [6, 54], much of our understanding of electric-field-induced morphological tran-

sitions has evolved in the last decade. The suggested mechanism underpins the concept

of an associated free energy penalty for perpendicular interface (with respect to the di-

rection of electric field) between two phases possessing disparate permittivities. BCPs

can elude the electrostatic penalty in two ways. One, the constituent monomers can

reorient in the direction of applied electric field which is common in structures with a

primary symmetry axis. Thus, parallel lamellae [55, 56, 57, 58] and cylinders [57, 59, 60]

adopt a perpendicular configuration as shown in Fig.2.3(c), while spheres elongate in the

direction of the applied field to form cylinders [7, 61, 62, 63]. Highly symmetric struc-

tures, on the other hand, mutate to a different motif by mutilation of electrostatically

unfavorable interfaces resulting in OOT such as gyroid to cylinder [51, 64, 65] (Fig.2.4

left), hexagonally perforated lamellae (HPL) to cylinder [52, 66] (Fig.2.4 right) and HPL

to lamellar transition [67] amongst others. Since electric field is readily applicable in thin

films, there has been a recent upsurge in the investigations of electric-field-induced OOTs

as exemplified in recent reviews [68, 69].
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A lot of factors can aid or deter the evolving phase morphology in presence of elec-

tric field such as the segmental interaction or segregation χN , the substrate interaction

strength and the confinement which can act as geometric barrier. The copolymers can be

easily modulated at low segregation owing to weak segmental interaction between the two

blocks [56, 59]. The substrate interaction can hinder the alignment process by electric

field as then the applied field has to overcome the interfacial interaction [53] as shown in

Fig.2.3(a). Confinement (film thickness) on the other hand can aid or hinder the align-

ment process by electric field depending upon its relation with the natural lamella period

Lo [56, 70].

Concurrence of electric field, substrate affinity and confinement enhances the nature

of intermediate morphologies [1]. Apparently, substrate interaction predominates closer

to the walls but weakens upon translating towards the middle of the film. While, the

electric field is dominant near the center of the film. As a result the morphology in

the vicinity of the walls differs significantly from that in the middle. In symmetric

BCPs, this trade-off leads to a mixed morphology where parallel lamellae in the proximity

of the walls co-exist with perpendicular lamellae at the center of the film [55, 56, 57]

as also shown in Fig.2.3(b). During electric-field-induced sphere to cylinder transition,

substrate affinity instigates a surface enrichment layer possessing a hexagonal symmetry

[60]. Similarly, experimental studies on gyroid forming BCPs revealed coexistence of

perpendicular cylinder, perpendicular lamellar and HPL morphologies [71]. Additional

complications may arise in monolayer and bilayer films where the film thickness is lower

than the surface ordering length. In such cases an influence of substrate is experienced in

the entire film wherein application of electric field can potentially engender novel OOTs-

induced morphologies.

2.2.1 Electrothermodynamics of BCPs

The intention of the present section is to briefly review and understand the electrother-

modynamics of BCPs and the interested readers are referred to the excellent reviews by

Tsori [68] and Pester et al. [69] for details of the various effects of electric field, order-

order transitions, disorder-order transitions and domain alignment mechanisms. Since

the work in the dissertation focuses on symmetric BCPs which order into lamellar struc-

ture, the remaining of the section will only focus on this particular morphology. Moreover

owing to the simple geometry, calculation of free energies of various configurations are

analytically tractable.

As mentioned above, BCPs reorient in the direction of the applied electric field to

avoid any interfaces between the two blocks. However, the basic analytical treatment
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differs depending upon the weak and strong segregation regime. Both the cases are

discussed separately next.

2.2.1.1 Electrostatics in SSL

Consider a stack of n parallel arranged lamellae (one lamellae consists of a A and a B

block) with equilibrium lamellar spacing of Lo confined within a film of thickness L.

Neglecting the effect of any frustration or deviation of the lamellar width from their

natural value, the film thickness and lamellar spacing are related by L = nL0. It is

further assumed that the confined walls have a preferential affinity to the A block. The

total interfacial energies Fs can then be written as,

Fs = (Interfacial energy between the two blocks) + (Interfacial energy between A

block and the surface)

For n lamellae, there are 2n number of interfaces between the two blocks and two inter-

faces between the A block and the wall. As a result,

Fs = 2nγABA+ 2γASA (2.1)

where, γAB and γAS are the interfacial energies between the two blocks and A block and

the wall respectively. A is the interfacial area. Since in SSL, the lamellae exhibit a square-

wave composition profile, it is assumed that the two blocks are parallel plate capacitors

with dielectric constants εA and εB respectively, separated by sharp interfaces connected

in series. The effective capacitance of the parallel stack C‖, can then be written as a sum

of the inverse of the capacitance of n B blocks of thickness L0/2, n− 1 inner A blocks of

thickness L0/2 and the two A blocks at the surface of thickness Lo/4. In mathematical

notation,

1

C||
=

nLo
2AεB

+
(n− 1)Lo

2AεA
+

2Lo
4AεA

(2.2)

On rearranging, the effective capacitance writes as,

C‖ =
εAεB
εA + εB

2A

L
(2.3)

The electrostatic free energy Fes can then be written as,

Fes = −1

2
C‖V

2

= − εAεB
εA + εB

A

L
V 2 (2.4)
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where V is the applied voltage.

The net free energy per unit area of the parallel configuration F‖ can be written as

the sum of interfacial and electrostatic contributions as,

F‖ = 2nγAB + 2γAS −
εAεB
εA + εB

V 2

L
(2.5)

n perpendicularly arranged lamellae with the walls having an affinity towards A block

is next considered. The interfacial energy Fs can be written as,

Fs = (Interfacial energy between the two blocks) + (Interfacial energy between the A

blocks and the surface) + (Interfacial energy between the B blocks and the surface)

Fs = 2nγABA+ 2nγAS
A

2n
+ 2nγBS

A

2n
= 2nγABA+ (γAS + γBS)A (2.6)

It is to be noted that in the above Eq. the fact that each block has two interfaces with

the walls of area A/2n has been utilized. The electrostatic part of the free energy can be

deduced by considering the blocks to be connected in parallel configuration. Hence, the

effective capacitance C⊥ writes as

C⊥ = n
A

2n

εA
L

+ n
A

2n

εB
L

=
A

2L
(εA + εB) (2.7)

The electrostatic energy in perpendicular configuration thus writes as,

Fes = −1

2
C⊥V

2

= −1

4

A

L
(εA + εB)V 2 (2.8)

The net free energy per unit area of the perpendicular configuration F⊥ can be written

as the sum of interfacial and electrostatic contributions as,

F⊥ = 2nγAB + γAS + γBS −
1

4L
(εA + εB)V 2 (2.9)

The relative stabilities of the two configurations depend on the free energies, which

in turn depends upon the parameters γAB, γAS, γBS, εA and εB. The critical value of the

voltage required for parallel to perpendicular transition can be found from the condition

of ∆F = F⊥ − F‖ = 0. This yields the critical voltage Vc as,
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Figure 2.5: A schematic diagram of a mixed morphology with a monolayer of parallel stacking

at the vicinity of the surface and perpendicular arrangement at the center of the film.

Vc =
2(γBS − γAS)1/2(εA + εB)1/2L1/2

(εA − εB)
(2.10)

The critical electric field Ec reads as,

Ec =
Vc
L

=
2(γBS − γAS)1/2(εA + εB)1/2

(εA − εB)

1

L1/2
(2.11)

The above Eq. gives an important result that for an unfrustrated block copolymer

within a symmetrically interacting wall, the critical field Ec scales as L−1/2 i.e. higher

electric field is required to instigate a parallel to perpendicular lamellar transition as film

thickness decreases.

As discussed above, due to short range nature of surface affinity one can also envisage

a case as shown in Fig.2.5 where parallel and perpendicular lamellar structures co-exist.

To derive the free energy of such a mixed morphology it is assumed that only a single

alternate A-B block of thickness Lo/4 and Lo/2 respectively exists at the vicinity of both

the walls. The interfacial energy contribution to the free energy writes as,

Fs = 2γASA+ 2γABA+ 2nγABA+ 2nγAB
A

2n
(2.12)

The first term denotes the interaction between the A block and the wall on both ends.

The second and the third term are the interfacial energies of A-B block in parallel and

perpendicular configurations respectively. The final term represents the extra contribu-

tion at the T-junctions on either side. The effective capacitance of the configuration can
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be thought of two parallel plate capacitors in series on either side at the proximity of the

wall, additionally in series with n parallel plate AB capacitors. If C1 and C3 denotes the

resultant capacitance of the two alternately arranged blocks then,

1

C||
=

1

C1

+
1

C3

=
Lo

4AεA
+

Lo
2AεB

=
Lo(εB + 2εA)

4AεAεB
(2.13)

The equivalent capacitance of the perpendicularly arranged lamellae C2 at the center

is given by

C2 = n
AεA

2n(L− 3
2
Lo)

+ n
AεB

2n(L− 3
2
Lo)

(2.14)

The effective capacitance of the mixed morphology can finally be written as,

1

Cm
=

1

C1

+
1

C2

+
1

C3

(2.15)

Substituting Eqs.2.13 and 2.14 in the above Eq.,

Cm =
4AεAεB(εA + εB)

8εAεBL− 9εAεBLo + 2ε2ALo + ε2BLo
(2.16)

The free energy of the mixed morphology per unit area can written using Eqs.2.12

and 2.16 as

Fm = 2γAS + 3γAB + 2nγAB −
εm
L
V 2 (2.17)

where εm = 2εAεB(εA+εB)

8εAεB−9εAεB
Lo
L

+2ε2A
Lo
L

+ε2B
Lo
L

. Thus, depending upon the material parameters

two critical electric fields E‖m and Em⊥ required for parallel to mixed morphology tran-

sition and mixed to perpendicular morphology transition can be derived from Eqs. 2.5,

2.9 and 2.17 as

E‖m =

√
3γAB

L(εm − ε‖)
(2.18)

Em⊥ =

√
(γBS − γAS)− 3γAB

L(ε⊥ − εm)
(2.19)

where ε‖ = εAεB
(εA+εB)

and ε⊥ = (εA+εB)
4

. Phase diagram based on the above free energy

calculations was generated by Tsori and Andelman [56] and Pereira and Williams [55],
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Figure 2.6: The phase-diagram of a symmetric diblock copolymer showing the stability regions

of parallel, perpendicular and mixed lamellar morphology in (a) E−δ space where δ = γBS−γAS
γT

,

γT denotes the interfacial energy of the T junctions and (b) E − L/do space where L is the

film thickness and do is the equilibrium lamellar spacing. At lower δ and film thickness, tran-

sition from parallel to perpendicular morphology is direct. Above a critical value of δ∗ and L∗

respectively there exists two critical fields corresponding to parallel to mixed and mixed to per-

pendicular morphology. Reprinted with permission from Tsori and Andelman [56]. Copyright

2002 American Chemical Society.

  

Figure 2.7: Phase diagram for strained films, where the film thickness is incommensurate with

the natural lamellar spacing. (a) At lower substrate affinity a perpendicular state is favorable.

(b) The critical field for parallel to mixed and parallel to perpendicular transition exhibits oscil-

lations which can be attributed to the lower field required to achieve the morphological transition

for film thickness corresponding to half-integral lamellar thickness. Reprinted with permission

from Tsori and Andelman [56]. Copyright 2002 American Chemical Society.
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designating the stability regions of the three morphologies. Typical slices on a E− δ and

E−L/do space is shown in Fig.2.6 , where, δ = γBS−γAS
γT

and do is the equilibrium lamellar

width (same as Lo used here). γT denotes the interfacial energy of the T-junctions in

the mixed state which can be equivalently represented in terms of γAB. It can be seen

in Fig.2.6 that the mixed morphology is stable only above a critical value of δ and

film thickness L/do. In addition, the phase diagrams taking into account the effect of

incommensurability was also calculated as shown in Fig.2.7 In such cases perpendicular

state is favored at lower values of δ and thin films. The critical fields for parallel to

mixed and parallel to perpendicular lamellar transition exhibits oscillations. A lower

value of applied electric field can instigate a morphological transition at L = (n + 1
2
)do

as compared to the L = nLo film thicknesses.

2.2.1.2 Electrostatics in WSL

For the sake of simplicity, only the effect of electric field is considered in the present

section with a rational of understanding the dielectric contrast mechanism. Additional

effect of wall affinity can be found in Tsori and Andelman [56]. The electrostatic energy

of the system is given by,

Fes = −1

2

∫
V

ε(r)|E(r)|2 dr (2.20)

V is the volume of the domain. The dielectric constant ε(r), depends on the deviation

of the local concentration from its equilibrium value δψ(r) = ψ(r) − ψ0(r), and can be

written as a Taylor series expansion until first order as,

ε(r) = ε+ ∆εδψ(r) (2.21)

where, ε = (εA + εB)/2 is the average permittivity of the mixture and ∆ε = (εA − εB) is

the permittivity difference. The electric field can similarly be written as a sum of zeroth

and first order terms as,

E(r) = E0 + E1 (2.22)

where, E0 is the applied electric field if the dielectric constant is the same everywhere

in the system and E1 is the deviation of the electric field from the applied value at any

given point due to the variation of the dielectric constant according to Eq.(2.21). E1 can

further be written in terms of a scalar potential field as,

E1 = −∇φ (2.23)

The distribution of the electric field is given by the Maxwell Eq.,

∇ · [ε(r)E(r)] = 0. (2.24)
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Again, substituting Eqs.(2.21), (2.22) and (2.23) and taking into account terms until

first-order,

∇2φ =
∆ε

ε
∇δψ(r) · E0. (2.25)

Taking Fourier transform we have,

φ(k) = −i 1

|k|2
∆ε

ε
δψ(k)(k · E0) (2.26)

Substituting the above solution in the Fourier transform of Eq.(2.23)

E1(k) = −ikφ(k) (2.27)

we obtain

E1 = −∆ε

ε
δψ(k)k̂(k̂ · E0) (2.28)

where k̂ = k/|k| is the unit wave vectors. Therefore, substituting the above expression

in Eq.(2.22), we obtain the electric field as

E(k) = E0 −
∆ε

ε
δψ(k)k̂(k̂ · E0) (2.29)

Using Eq.(2.29), Fourier transform of Eq.(2.21) and Parseval’s theorem (which states

that the total intensity of any physical amplitude is equal in real space as well as Fourier

space), the anisotropic part of the free energy which is responsible for the alignment of

microstructure is given by

Fes =

∫
1

2

(∆ε)2

ε
δψ(k)δψ(-k)

(
k · E0

)2

d3k (2.30)

The above Eq. implies that there is a electrostatic free energy penalty for composition

gradients not aligned along the field direction (k·E0 6= 0) and is proportional to the square

of the dielectric contrast ((∆ε)2). However, it is to noted that the above Eq. is strictly

valid closer to the ODT because of the assumption of small deviation of the composition

from the equilibrium value which in turn allowed the use of Taylor expansion of the

dielectric constant. The above Eq. is often supplemented with a Ginzburg-Landau type

polynomial to study kinetic pathways of electric field-induced transition in soft matters

[57, 64, 56].

2.3 Electromigration in metallic conductors

A metallic sample subjected to an external electric field or current exerts two distinct

forces on the atoms of the conductor. Firstly, the applied field exerts a direct electrostatic

force which propels the atoms in the direction of electric field. Secondly, the electrons
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 (a)

(b)

Figure 2.8: (a) Scanning-electron micrograph of a gold stripe on molybdenum substrate after

passing of 106A/cm2 current. The cathode side exhibits a drift with residual gold on the sub-

strate. While mass is accumulated at the anode end. Reprinted from Blech and Klinsborn [75]

with permission from Elsevier. (b) Global thinning of large areas after accelerated EM testing

of thin film Copper conductors. Reprinted from Gladkikh et al. [76] with permission from IOP

publishing.

which are accelerated in the direction opposite to that of the electric field collide with

the diffusing atoms, thereby transferring momentum in the process which triggers atomic

motion in the direction of the electron flow. Both these driving forces are proportional

to the applied field and can be combined and expressed as,

Feff = zeE (2.31)

where z = ze + zw is the effective charge containing the effect due to electrostatic (ze)

and electron wind force (zw), e is the electronic charge and E is the applied electric field.

The phenomenon, known as electromigration (EM), raises serious reliability concern in

modern integrated circuits [22, 23, 72]. EM damage in thin films has garnered much

attention due to its implication in efficient designing of interconnects [73, 74].

Interconnects, often considered as the “roads” and “highways” of the modern day

integrated circuits (ICs), connect various active elements comprising the microelectronics.

While operational, interconnects carry intense electric current rendering them susceptible
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to damage due to electromigration (EM) [72, 23, 77]. EM in interconnects, thus possess

major reliability concerns, which otherwise may compromise the performance of the entire

IC [73, 74, 73, 22].

The momentum transfer between conducting electrons and metal atoms can perma-

nently displace atoms leading to material accumulation or depletion[22, 75]. Flux diver-

gence is typically favored at microstructural heterogeneous sites such as grain boundaries

(GBs) [78, 79], triple points [80, 81], dislocations [82, 83] and mixed grain size [84, 85]

amongst others. EM-induced damage manifests in various forms which can broadly be

classified into one of the following categories:

• The most commonly observed damage is thinning of large areas of the test piece

typically observed in the SEM images of damaged lines after accelerated EM testing

[76, 86]. A similar mode of damage was observed in the seminal drift velocity

experiments of Blech and Kinsborn [75] and thereafter [87, 88, 89] as shown in

Fig.2.8.

• The second form of damage commences through voiding, typically at sites of non-

vanishing (positive) flux divergence [78]. The nucleated voids can evolve along the

line preserving its shape or transform into finger-like slits [90, 91]. Slit growth

may be transgranular [82, 92, 93, 94] or along the grain-boundaries (intergranular)

[95, 96, 97]. Slits can also initiate from grain-boundary (GB) grooves where GBs

intersect a free surface [98] or at sidewalls [99]. Some typical failed lines are shown

in Fig.2.9.

• The third damage mode occurs as a result of negative flux divergence leading to mass

accumulation. The material extrusions, known as hillocks as shown in Fig.2.10, lead

to failure due to short circuiting between neighboring interconnect levels [100, 98,

101].

2.3.1 Accelerated EM testing : Drift velocity experiments

The most widely used set up for EM testing is the drift velocity set proposed by Blech

and Kinsborn [75]. The test piece (such as Aluminum or Copper) is deposited on an

underlayer material such as Molybdenum, Titanium nitride or Tantalum nitride. The

base material is selected to have a lower conductivity than the test piece so that all the

electric current should pass through it. In addition, the underlayer should not form any

intermetallic compound with the test sample. High current is passed due to which the

test piece drifts in the direction of electron flow. The edge displacement is measured from

which an estimate of the drift velocity is inferred.
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(a) (b)

(c)

Figure 2.9: (a) Scanning-electron micrograph of transgranular slit propagation transverse to

unpassivated aluminum interconnect line. Reprinted form Arzt and Kraft [91] with permission

from AIP publishing. (b) Scanning electron image of EM failure in electroplated copper showing

void extending along GB. (c) Scanning-electron micrograph emphasizing the role of microstruc-

ture gradient i.e. big and small grains upstream and downstream with respect to electron wind

respectively. Reprinted from Arnaud et al. [85] with permission from AIP publishing.

  

(a) (b)

Figure 2.10: (a) Focused ion beam microscopy showing hillock at the Al/TiN interface as a

result of EM testing at 1MA/cm2. Reprinted from Nucci et al. [98] with permission from

Cambridge University Press. (b) Scanning electron microscopy image of hillock formation of

Pb phase (top) and Sn phase (bottom) in a eutectic SnPb line conducted at 100◦C at current

density of 6×104A/cm2. Reprinted from Yoon et al. [101] with permission from Springer JEM.
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To speed up the failure and reduce the experimental time, EM testing is carried out

at higher current densities and elevated temperatures than actual service condition. The

results thus obtained require careful extrapolation to gain meaningful insights. Black

[102] derived a simple expression relating the mean time to failure to current density and

temperature as follows. The mean time to failure tf is inversely proportional to the rate

of mass transport as,

tf ∝
1

R
. (2.32)

The rate of mass transport in turn is dependent on the number of conducting electron

ne, thermally activated ions Na and momentum transfer ∆p between them,

R ∝ neNa∆p. (2.33)

The number of electrons transported through a unit volume and the momentum trans-

fer with the ions are both proportional to the current density j. The number of activated

ions follows an Arrhenius-type relation as,

Na ∝ exp(−∆H/kBT ) (2.34)

where, ∆H is the activation energy. Combining the above relations,

tf =
A

j2
exp(∆H/kBT ). (2.35)

A is a constant consisting of material properties and geometry of the test sample, kB is

the Boltzmann constant and T is the temperature. Thus, results from accelerated EM

testing can be extrapolated using the above relation.

Although a number of experimental observations corroborate a j−2 dependence, re-

ports on j−1 and even fractional values have also come up. Since then, the Black’s law

has been modified as,

tf =
A

jn
exp(∆H/kBT ). (2.36)

to accommodate different experimental findings. The occurrence of the fractional value

can be reconciled by a void nucleation and growth process. It can be shown by invoking

critical vacancy accumulation event either when vacancy concentration [73] or vacancy-

accumulated stress [103] reaches a critical value, that the mean time to failure for the

void nucleation process follows a j−2 dependence. On the other hand, considering the

growth of a void at GB triple junction, it can be shown that the void growth exhibits a

j−1 relation [73]. Thus depending upon the rate limiting failure step the exponent n lies

between 1 − 2. Exponents greater than 2 requires one to consider the effect of Joule’s

heating [104].
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2.3.2 Pathways of EM

Polycrystalline metallic lines are characterized by a number of potential diffusional path-

ways which include the lattice, GBs, surface and interphase boundaries between the film

substrate or film dielectric layers, amongst others [105, 106, 107, 108]. At typical oper-

ational conditions (< 450◦C), bulk diffusivity is negligible, rendering only surfaces and

GBs as the potential diffusion pathways. The dominant EM pathway is typically assessed

in drift velocity experiments by correlating the edge velocity with the EM activation en-

ergy via an Arrhenius-type equation, vd =
Do

kBT
zeρrj exp(

EM
kBT

), where, vd is the drift

velocity, Do the diffusivity of the metal species, ze the valence, ρr the resistivity, j the

current density and EM the activation energy for electromigration [75, 105]. The slope of

the log-normal plot between vdT/j and 1/T yields the value of activation energy, which

can then be compared to the GB (EGB) and surface (ES) diffusion activation energies

to extract the dominant path. However, on numerous occasions, the observed activation

energy lies between EGB and ES, thereby reflecting the possibility of multiple pathways

involved in EM [105, 109, 76, 106, 107].

Furthermore, the feasibility of diffusion occurring simultaneously via multiple path-

ways is also accentuated by a large scatter observed in the activation energy data plotted

as a function of test piece geometry, given by d/w where d is the average grain size and

w is the line width [105, 109]. This can be rationalized in terms of microstructure of the

sample as follows. In bamboo type lines, if w << d, the average orientation of GBs is

perpendicular to the electric field as shown in Fig.2.11(a), thus rendering this path, moot.

As a result, the activation energy as determined from the drift velocity experiments is

closer to the activation energy of the surface [108]. On the contrary, if w > d , GBs

form a continuous network (Fig.2.11(b)) and EM occurs via a combination of surface and

GB diffusion, thus making the line more susceptible to damage [105, 76]. Therefore, a

successful assessment of damage modes in interconnect, in principle, must account for

the disparate pathways in the sample.

2.3.3 Grain boundary grooving under electromigration

A number of models based on void nucleation have been formulated to rationalize damage

by restricting EM to GBs [78, 110, 111, 103, 112]. However most of the models fail on

two counts. First, the calculations performed to determine the excess vacancy concen-

tration reveal instantaneous (of the order of seconds) attainment of equilibrium vacancy

supersaturation [78, 77]. Such a short time does not concord well with the experimental

observed failure times. Second, the maximum supersaturation was found to be less than

1 under all conditions. For such small supersaturation, energy barrier for void formation
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(a)

(b)

Bulk

Surface

GB

Figure 2.11: Schematic illustration depicting various EM pathways in (a) bamboo-type line and

(b) wide polycrystalline line, where d represents the average grain size and w the line width.

Surfaces are the predominant EM pathway in the former, while atomic transport proceeds through

concurrent surface and GB diffusion in the latter.
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through homogeneous nucleation is unfavorable. Thus presence of foreign particles is

deemed necessary to explain void formation by vacancy-condensation mechanism [78].

Although the apparent discrepancy of void nucleation by vacancy condensation can be

resolved by incorporating mechanical stress [103, 112, 77], nevertheless, it does not rule

out the possibility of void growth mechanism being the lifetime limiting mechanism [73].

EM damage by GB-grooving is one such mechanism which encompasses all the afore-

mentioned damage manifestations [113]. Grain-boundary (GB) grooving is an ubiquitous

phenomenon leading to the morphological evolution of the phase interface in the vicinity

of the triple junction with a GB [114, 115, 116, 117, 118]. The initial groove provides an

initial seed for subsequent void growth, thereby obviating the need for invoking nucle-

ation event. In fact most of the aforementioned observed damages can be rationalized by

GB grooving. EM-induced flux along GB leads to drift of smaller grains along the line,

exhibiting an impression of thinning [85, 5]. Even in bamboo-type lines where surface

EM is prominent owing to the lack of continuous GB network, mass transport along the

surface leads to thinning of the windward grain transverse to the line [99, 119]. The mass

transport on leeward grain, on the other hand, manifest in hill-like feature [120, 121]. Fur-

thermore accelerated grooving could also evince in cracks at GB due to rapid EM-induced

atomic transport along the GB [95, 96, 3]. The phenomenon is further exacerbated in

wide polycrystalline line where once a slit originates from a GB groove, subsequent prop-

agation is rapid along the line owing to contiguous GB network [105, 81]. Slits have also

been observed in bamboo type lines emerging from side walls and propagating transverse

to the line along a tilted GB [99, 96].

The theory of thermal grooving was pioneered by Mullins, elucidating the morphologi-

cal evolution of a free surface under various capillary-driven mass transport mechanisms[122,

123]. Although each of the transport mechanism leads to a time-dependent shape of the

groove profile, the evolution is self-similar, with the groove dimensions namely, the depth

and the width scaling as t1/2, t1/3 and t1/4 when the active mass transport mechanisms

are evaporation-condensation [122], volume diffusion [123] and surface diffusion [122] re-

spectively.

One of the assumptions in the original work of Mullins is that the GB does not

participate in the mass transport process. However the presence of external field leads to

gradients in chemical potential which drives atoms along the GB. Such cases are typical

in presence of stress during sintering and creep [124, 125] and in presence of externally

applied electric field for instance during electromigration [5, 126]. GB diffusion accelerates

the grooving process [124, 127] which ultimately govern the stability of polycrystalline

[128] and multilayer thin films [129]. The problem of GB grooving in presence of surface

EM was first dealt with analytically by Ohring for bamboo-type lines in which GBs do
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not participate in the mass transport process [113]. A subsequent extension to account

for flux of vacancies along GB was proposed by Rosenberg and Ohring [78]. Both the

above theories however are valid for isolated grooves (infinite grains) and employ the

small slope approximation (SSA) i.e. the surface evolves such that the slope is small at

every point along the surface.

Among the theoretical models, GB grooving model by Klinger and Glickman is of

particular interest [5, 126]. The theory considers the evolution of grooves under the

combined influence of capillary-mediated surface diffusion and grain boundary electro-

migration (GBEM). Under a single framework, the model describes the drift of grains

as well propagation of channel-like intergranular slit. The transition between the two

regimes takes place at a critical value of a dimensional group α = JGBΩL2

8B
where the GB

flux JGB = DGBδGBzGBeE
ΩkBT

and Mullins’ constant B = DsδsγsΩ
kBT

. Here, Ds and DGB denotes

the surface and GB diffusivity, δs and δGB represents the surface and GB thickness, γs

is the surface energy, zGBe represents the effective valence of the atomic species at the

GB, E denotes the applied electric field, Ω is the atomic volume and kBT has the usual

meaning. Below a critical value of α termed as “Mode A”, the surface drifts homoge-

neously preserving its shape. Relaxing the SSA , gives rise to the second regime, termed

as “Mode B”, above a critical value of α, in which the root detaches from the surface

to form isolated slits propagating along GB. Physically, smaller grains, lower GB flux

and lower surface diffusivity promotes the former regime and vice-versa. The model to a

great extent has been successful in interpreting microstructural damage [76, 86, 130, 85]

as well as in partially addressing the issue of perplexing activation energy values of cop-

per interconnects [109]. Dispersity in the activation energy values can be reconciled by

considering concurrent GB and interface or surface diffusion [107, 131].

2.4 Role of numerical modeling in addressing electric-

field-induced problems

The influence of various EM pathways on damage proliferation has been studied earlier

using analytical [5, 103, 112] and numerical methods [132, 133]. Although serving as an

excellent starting point, analytical methods often make simplifying assumptions to for-

mulate a mathematically amenable problem, which can lead to over or under estimation

of the lifetime of interconnects. Numerical methods, on the other hand, can circumvent

this issue by effectively capturing the multiphysics of EM-induced microstructural dam-

age, with fewer presumptions. Several computational methods encompassing different

length and time scales, such as the macroscopic finite element methods [134, 135], meso-

scopic phase-field [136, 137, 138, 139], level-set [140], front tracking methods [141, 142],
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atomistically-informed ab-initio methods [143, 144], Monte Carlo simulations [145, 146]

and more recently phase-field crystal models [147] have been successfully applied to study

EM-induced void migration [134, 137, 138, 147], transgranular slit propagation [92, 136]

and intermetallic growth [148, 149].

In block copolymers, self-consistent field theory (SCFT) [150, 151] and dynamic

density functional theory (DDFT) [152, 153] are the current state-of-the-art numerical

methodologies employed hitherto. While both the numerical methods provide a statisti-

cal framework, where chain architecture and block sequence are formulated in terms of a

field-theoretic Hamiltonian, the SCFT is limited to the determination of static morpholo-

gies by comparison of free energies. DDFT, on the other hand, is supplemented with a

kinetic equation similar to the Cahn-Hilliard model which facilitates additional studies

pertaining to the kinetic pathways of microstructural evolution. Cell dynamical simu-

lation (CDS) is also a popular and computationally efficient microstructure simulation

technique, but lack details of the molecular interactions [154, 155]. Moreover, CDS is

currently limited to linear chain architecture. The electrostatics of the problem is usually

taken into account by the perturbed solution of Maxwell equation. The perturbed solu-

tion of the Maxwell equation is based on the assumption of weak fractional variation of

the dielectric constant [6, 54]. Though appropriate in the proximity of the order-disorder

transition(ODT) temperature, the results can be significantly marred as the segregation

increases. The limitation of this approach as been highlighted in Ref. [156] where it was

shown that the lowest order perturbation theory leads to a free energy which is invariant

to the interchange of the two monomers. Using a complete electrostatic treatment in

the SCFT framework [157, 158, 61] and a second-order perturbation theory [156] it has

been further shown that the electric field couples differently to the two blocks. Same

limitations also holds for the CDS [64] and DDFT [57] studies where an anisotropic term

accounting for dielectric interface penalty in the evolution equation is appended (which

again arises from the first-order perturbation theory).

Phase-field models or diffuse-interface models as they are popularly known can pro-

vide an efficient framework to address such time-dependent free boundary problems. A

number of conserved variables which can be composition or density, or non-conserved

variables such as grain order parameters representing different crystallographic orienta-

tion or phase-fields which merely act as phase indicators, are defined to describe the mi-

crostructure of the material. In this methodology, the sharp-interface between co-existing

phases is replaced by an interface of finite width, across which all the field variables vary

smoothly. Furthermore, no additional boundary conditions are required to be imposed

at the moving boundary, obviating the need to track the same. Thus, complex pattern

formation and highly non-linear phenomenon can be studied gracefully. The present

work is devoted to the formulation and application of phase-field model to study di-
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rected assembly of diblock copolymers and damage proliferation in polycrystalline metal

interconnects.

The thesis is organized as follows. In the succeeding chapters (Chapter 3 and 4) the

two phase-field models along with their numerical implementation and relationship to

sharp-interface models are presented. Chapter 5 and 6 reports the application of the

model to study directed self-assembly of block copolymers under substrate interaction,

electric field and confinement. Chapters 7, 8, 9 and 10 are devoted towards the study of

various aspects of the phenomenon of GB grooving under EM. Chapter 11 concludes the

thesis with a brief summary and a discussion on the possible future directions.



Part II

Methods : Phase-field formulation



Chapter 3

Phase-field model for directed

assembly of block copolymers due to

substrate affinity and electric field

3.1 Ohta-Kawasaki or Non-local Cahn-Hilliard Model

Block copolymers are known to self assemble into variety of ordered structures following

phase separation. Diblock copolymers consists of two distinct subchains, say, A and

B type monomers with NA and NB number of each type respectively. Since the two

subchains are joined together through a covalent bond, unlike polymer blends or metallic

alloys, these class of materials tend to undergo microphase separation below the critical

temperature. In other words, the segregated A and B domains do not continue to coarsen

indefinitely following spinodal decomposition, but saturate with domains of fixed widths

depending upon χN and f . χ is the Flory-Huggins interaction parameter measuring the

incompatibility of the two monomers and is given by

χ = εAB −
1

2
(εAA + εBB) (3.1)

where, εAB, εAA and εBB are the bond energies or the monomer interaction parameters.

Block copolymers exhibit a positive value of χ, favoring phase segregation. N = NA+NB

is the polymerization index and f = NA/N is the relative length of A monomer chain

to the entire macromolecule. It is also an indication of monomer density or volume

fraction of the A block. Because of the incompressibility condition, the volume fraction

of B block is given by 1 − f . A number of well-ordered periodic morphologies such

as lamellae, hexagonally-packed cylinders, body-centered spheres, gyroids, perforated

lamellae structures have been observed and reported experimentally as a function of χN

and f [26, 30].

35
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In the present section, the diffuse-interface formalism to model the occurrence of such

spatially periodic ordered structures found in diblock copolymers is discussed. The orig-

inal derivation dates back to the mean field theory of Ohta and Kawasaki [29] which has

been re-casted several times for numerical simulation either by a cell dynamical approach

[159, 154, 155] or as in the present case phase-field approach [160, 161, 162]. A detailed

re-derivation of the Ohta-Kawasaki density functional theory and the approximations

which leads to the non-local Cahn-Hilliard-like functional has been examined by Choksi

and Ren [163]. We therefore, do not delve into the derivation here, but, start from the free

energy functional form providing a brief summary of the relation between the numerical

and physical parameters and the derivation of the kinetic equation.

The free-energy functional can be written as a sum of short-range and long-range

interaction terms to account for chain connectivity as [29, 164, 159, 160],

F =

∫
V

f(ψ) +
κ

2
|∇ψ|2 dr +B

∫
V

∫
V

G(r, r′)(ψ(r)−m)(ψ(r′)−m) dr dr′ (3.2)

The terms in the first integral are the short-range part consisting of a double well

potential and gradient energy term typical of modeling of any phase separation process

[165]. ψ is a scaled compositional order-parameter that measures the difference of the

local volume fraction of A(ψA) and B(ψB) blocks as,

ψ = ψA − ψB. (3.3)

Since ψA + ψB = 1 we have ψ = 1 − 2ψB. Therefore, presence of pure monomer A i.e.

ψB = 0 is depicted by regions with ψ = 1 and presence of pure monomer B i.e. ψB = 1 is

depicted by regions with ψ = −1. m denotes the difference in the global volume fraction

of A and B monomers as

m = f − (1− f) = 1− 2f (3.4)

Thus, m denotes the average of ψ over the volume as m =
∫
V
ψ dr. A suitable choice

of f(ψ) is a quartic potential of the form −ψ2/2 + ψ4/4. The parameters κ and B are

related to the polymer architecture through the relations [29, 164, 163, 166],

κ ∼ l2

f(1− f)χ
(3.5)

B ∼ 1

2f 2(1− f)2l2χN2
(3.6)

where l is the Kuhn statistical length or the average monomer space size. The segregation

χN is determined by κ and B as,

χN ∼ 1√
2Bκf 3/2(1− f)3/2

. (3.7)
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The second double integral in Eq.(3.2) contain terms that restricts the scale of phase

separation. G is the Green’s function having the property ∇2G(r, r′) = −δ(r− r′). The

double integral can be equivalently written analogous to the gradient energy term in the

first integral by introducing a variable v which satisfies the Poisson problem,

−∇2v(r) = ψ(r)−m. (3.8)

If the Green’s function G(r, r′) satisfies the above boundary value problem then,

v(r) =

∫
V

G(r, r′)(ψ(r′)−m) dr′ (3.9)

should be the solution of the Eq.(3.8). This can be seen by applying the Laplacian

operator on both sides

∇2v(r) =

∫
V

∇2G(r, r′)(ψ(r′)−m) dr′ = −
∫
V

δ(r− r′)(ψ(r′)−m) dr′ = −(ψ(r)−m)

(3.10)

which is equivalent to Eq.(3.8). Now using divergence theorem,∫
V

|∇v|2 dr = −
∫
V

v∇2v dr +

∫
S

v∇v · n ds. (3.11)

Choosing the boundary condition such that the surface integral vanishes and employing

Eqs.(3.9) and (3.10) we obtain,∫
V

|∇v|2 dr =

∫
V

∫
V

G(r, r′)(ψ(r)−m)(ψ(r′)−m) dr dr′. (3.12)

Therefore, an alternate form of free energy functional writes as,

F =

∫
V

f(ψ) +
κ

2
|∇ψ|2 dr +B

∫
V

|∇v|2 dr (3.13)

The competition between the three energies in the free energy functional leads to the

periodic structures. This can be seen as follows : (i) The first term f(ψ) which is a double

well with minima located at ψ = ±1, is minimized when the domains are segregated to

pure A and B phases. (ii) The gradient energy term penalizes sharp gradients and leads to

smooth transition regions between ψ = −1 and ψ = +1. However, the transition regions

are fewer to minimize the interfacial energy. Therefore, the first two terms lead to larger

domains of pure A and B with transition regions separating the two. The first two terms

alone cannot lead to periodic structures. (iii) The third term on the other hand, penalizes

regions of ψ whose local values deviate from global value m. Thus, regions with ψ = m

are preferred. In order to make the free energy contribution small, the non-local term

ψ has to oscillate about m which increase the interfacial or transition areas, ultimately

giving rise to periodic microstructures depending on the value of m.
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The kinetic equation can be derived from variational principle as,

∂ψ

∂t
= M∇2µ (3.14)

where M is the phenomenological mobility assumed to be 1 and µ = δF
δψ

is the chemical

potential defined as,

δF

δψ
= −ψ + ψ3 − κ∇2ψ +B

∫
V

G(r, r′)(ψ(r′)−m) dr′ (3.15)

Substituting into the evolution Eq.(3.14) and using Eqs.(3.8) and (3.9),

∂ψ

∂t
= ∇2[−ψ + ψ3 − κ∇2ψ]−B(ψ −m). (3.16)

A few properties of the non-local Cahn-Hilliard functional is considered next.

3.1.1 Mass conserving property

The non-local part does not alter the mass conserving property of the system. This can

be seen as follows.

d

dt

∫
V

ψ(r, t) dr =

∫
V

∇2µlocal dr−B
∫
V

(ψ(r, t)−m) dr (3.17)

where, µlocal = −ψ + ψ3 − κ∇2ψ. Using divergence theorem, the first integral can be

re-written as, ∫
V

∇2µlocal dr =

∫
S

n · ∇µ ds (3.18)

Assuming a no-flux boundary condition, the integral vanishes at the boundaries. Hence,

d

dt

∫
V

ψ(r, t) dr = −B

[∫
V

ψ(r, t) dr−
∫
V

m dr

]

= −B

[∫
V

ψ(r, t) dr−m

]
= 0 (3.19)

where the fact that V is a scaled domain of unit volume has been assumed.

3.1.2 Length scale in the system

The competition between κ and B governs the length scale of the emerging pattern. This

can be understood by suitably rescaling the governing Eq.(3.14) by, ψ̃ = ψ−m, x̃ =
√
Bx
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Figure 3.1: Microstructure of symmetric diblock copolymer system at ε2 = 0.2, ε2 = 0.1 and

ε2 = 0.004 (from left to right). With increasing ε2 the equilibrium domain size characterized by

the lamellar thickness increases.

and t̃ = Bt [166],

B
∂ψ̃

∂t̃
= B∇̃2

[
− (ψ̃ +m) + (ψ̃ +m)3

]
−B2κ∇̃4ψ̃ −Bψ̃

∂ψ̃

∂t̃
= −ε̃2∇̃4ψ̃ + ∇̃2

[
ψ̃3 + 3mψ̃2 − (1− 3m2)ψ̃

]
− ψ̃ (3.20)

where ε̃ =
√
κB. Dropping the tildes for the sake of convenience hereafter, it is clear that

the length scale depends on
√
κB. This can also be verified from Eq.(3.7).

3.1.3 Linear Stability

The linear stability of the stationary solution in one dimension space is next considered.

For this purpose, the solution is assumed to be of the form [167],

ψ(x, t) = m+
∞∑
k=1

A(t) cos(kx) (3.21)

Substituting in the linearized version of the Eq.(3.20),

∂A(t)

∂t
= [−ε2k4 + (1− 3m2)k2 − 1]β. (3.22)

The solution of the above Eq. takes the form A(t) = A(0) exp(ηkt) where ηk =

−ε2k4 + (1− 3m2)k2 − 1. The maximally growing wavenumber can be found by setting

dηk/ dk = 0 as,

− 4ε2k3 + 2k(1− 3m2) = 0 (3.23)

which gives k =
√

(1− 3m2)/2ε2.
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Figure 3.2: Equilibrium composition profile for a symmetric diblock copolymer system at ε2 =

0.05 (top) and 0.0001 (bottom) corresponding to WSL and SSL respectively. The composition

profile exhibit a sinusoidal behavior in WSL and a square wave characteristic in SSL.

Secondly, the ψ = m state will loose stability if ηk > 0. The root of ηk = 0 gives,

k =

√
(1− 3m2)∓

√
(1− 3m2)2 − 4ε2

2ε2
(3.24)

A positive wavenumber is guaranteed if one of the following cases is met:

1. Case I : Both terms in the numerator are positive along with a positive sign in

between i.e. −1/
√

3 < m < 1/
√

3 and ε2 < (1− 3m2)2/4.

2. Case II : Both terms in the numerator are positive along with a negative sign in

between. This gives a trivial condition of ε > 0.

Thus a disordered state loses stability if the above conditions are satisfied. Thus for

a symmetric diblock copolymer i.e. m = 0 with a lamellar morphology the ψ = 0 is

unstable if 0 < ε2 < 1/4.
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Figure 3.3: Domain width D as a function of ε2 on a double logarithmic scale. For values of

ε2 < 0.05 the slope of the fitted line (green) exhibits a slope of −0.254, while data points with

ε2 < 0.0025 yields a slope of −0.32 (pink).

3.1.4 Two regimes of microphase separation

Depending upon the value of ε2 which is related to χN , block copolymers are categorized

in two distinct regimes namely weak segregation limit (WSL) and strong segregation limit

(SSL). If χN > 10 i.e. closer to the order-disorder transition temperature, the block

copolymers are characterized by a sinusoidal composition profile (as shown in Fig.3.2(a))

with domain period scaling as N1/2 [28]. On the other hand, if χN � 10 i.e. well below

the ODT, the block copolymers are characterized by a square wave composition profile

with sharp interfaces between the two blocks (as shown in Fig.3.2(b)) and microdomain

period scales as N2/3 [29]. The former regime is termed as WSL, while the latter is

designated as SSL. Since ε2 ∼ N−2, the equilibrium domain size D follow the power

law D ∼ (ε2)−1/4 and D ∼ (ε2)−1/3 in WSL and SSL respectively [28, 29, 168]. The

double logarithmic plot of the variation of the equilibrium domain size D with ε2 along

with the fitted straight lines are shown in Fig.3.3. The equilibrium domain size was

calculated from microstructure obtained from two-dimensional simulations starting from

a disordered state with thermal noise to mimic phase separation. The simulations were

run until an equilibrium, characterized by no further appreciable coarsening. The domain

size was then calculated from the first moment of the structure function as mentioned in

[160, 161, 169]. The two regimes with distinct slopes of −0.254 and −0.32 are evident.

Alternatively, the equilibrium lamellar thickness for symmetric system, that minimizes

the free energy functional can also be computed analytically, at least for the SSL. The

interested reader is referred to [170, 159] for the details of the derivation .
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3.1.5 Forms of f(ψ)

In the present work, a usual 2 − 4 potential which has two symmetric minima located

at ψ = ±1 around a maximum at ψ = 0. Such a potential has been utilized in several

works of Oono and Bahiana [170], Liu and Goldenfeld [164], Chakrabarti and co-workers

[160] and Choksi and co-workers [166]. Lamellar, hexagonally-packed cylinders, gyroid,

perforated lamellae, body-centered cubic spheres have been numerically found to be stable

in ε2 − f space [171, 166, 172]. In CDS modeling a function f ′(ψ) = A tanhψ has also

been utilized by Oono and Puri [173, 174]. It can be seen by expanding tanh until cubic

terms as,

A tanhψ = Aψ − Aψ
3

3
(3.25)

that this is indeed similar to the 2−4 potential described above. Appropriately choosing

the coefficients in both the expressions an equivalence between CDS and CH modeling

can be established [175].

An alternate form of f(ψ) which contains an additional cubic term has also been

employed. The specific form of f(ψ) reads as [176, 154],

f(ψ) =
[
− τ

2
+
A

2
(1− 2f)2

]
ψ2 +

ν

3
(1− 2f)ψ3 +

u

4
ψ4 (3.26)

where τ depends on the quench depth and A, ν and u are phenomenological constants.

Here the scaled composition variable is given by ψ = ψA−ψB−m. It is to be noted that

the effect of the ψ3 term in the free energy term is to tilt the ψ = −1 state with respect to

the ψ = +1 state. It has been argued that such a symmetry breaking potential is desired

to simulate hexagonal and cubic structures in three dimensions. However, as mentioned

above it has been numerically demonstrated in the past [171, 166] that the function used

in the present study can in fact enable modeling of these ordered morphologies.

3.2 Effect of surfaces on binary mixture

The theoretical framework to study the effect of external surface on binary mixture was

pioneered by Cahn [177]. The excess free energy ∆F , of a semi-infinite fluid (or solid) in

contact with a planar surface at x = 0 can be written as,

∆F

kBT/Vm
=

∫ ∞
0

∆f +
κ

2

(
dψ

dx

)2

dx+ Φ(ψs) (3.27)

where Vm is the average molecular volume, Φ(ψs) is the contribution of the free-energy

per unit area of the surface and ψs is the scaled composition at the surface. ∆f =
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f(ψ)− f(ψo)− (ψ−ψo) ∂f∂ψ
∣∣∣
ψ=ψo

and ψo is the scaled composition of the fluid. κ
2

(
dψ
dx

)2

is

the interfacial contribution of the free energy due to the presence of composition gradients.

The equilibrium composition profile near the surface can be deduced by the method

of variational calculus by setting the variational derivative to be zero i.e. δ(∆F )e
δψ

=

0. The appropriate boundary condition can be derived as follows. Consider the free

energy functional 3.27 to be minimized. Then the variation δ(∆F ) or the change in ∆F

corresponds to the change when ψ(x) changes by an infinitesimal amount δψ(x) i.e.,

ψ̃(x) = ψ(x) + δψ(x) (3.28)

and,

δ(∆F ) = ∆F [ψ̃(x)]−∆F [ψ(x)] (3.29)

Defining, δψ(x) = εη(x) where, η(x) is an arbitrary continuous function whose value

is of the order of 1 and ε is an infinitesimal number. Therefore,

∆F [ψ̃(x)] =

∫ ∞
0

F
(
x, ψ(x) + εη(x), ψ′(x) + εη′(x)

)
dx+ Φ[ψs(0) + εη(0)] (3.30)

where F = ∆f + κ
2

(
dψ
dx

)2

. Performing a Taylor series expansion in terms of ε,

∆F [ψ̃(x)] =

∫ ∞
0

F
(
x, ψ(x), ψ′(x)

)
+

∂F

∂ψ(x)
εη(x) +

∂F

∂ψ′(x)
εη′(x) dx

+Φ[ψs(0)] +
dΦ

dψs
εη(0). (3.31)

The above Eq. can be rearranged as,

∆F [ψ̃(x)] =

∫ ∞
0

F
(
x, ψ(x), ψ′(x)

)
dx+ Φ[ψs(0)] +

∫ ∞
0

[ ∂F

∂ψ(x)
εη(x)

+
∂F

∂ψ′(x)
εη′(x)

]
dx+

dΦ

dψs
εη(0) (3.32)

∆F [ψ̃(x)] = ∆F [ψ(x)] +

∫ ∞
0

[ ∂F

∂ψ(x)
εη(x) +

∂F

∂ψ′(x)
εη′(x)

]
dx+

dΦ

dψs
εη(0) (3.33)

Utilizing Eq.(3.29) the above Eq. can be rewritten as,

δ(∆F ) =

[∫ ∞
0

[ ∂F

∂ψ(x)
εη(x) +

∂F

∂ψ′(x)
εη′(x)

]
dx+

dΦ

dψs
η(0)

]
(3.34)

Using integration by parts on the second term in the integral,

δ(∆F ) = ε

[∫ ∞
0

∂F

∂ψ
η(x) dx+

∂F

∂ψ′(x)
η(x)

∣∣∣∣∣
∞

0

−
∫ ∞

0

∂

∂x

∂F

∂ψ′(x)
η(x) dx+

dΦ

dψs
η(0)

]
(3.35)
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Simple algebraic manipulation simplifies the Eq. to,

δ(∆F ) =
∂F

∂ψ′(x)
εη′(x)

∣∣∣∣∣
∞

0

+
dΦ

dψs
εη(0) +

∫ ∞
0

(∂F
∂ψ
− ∂

∂x

∂F

∂ψ′(x)

)
εη(x) dx (3.36)

δ(∆F ) =
∂F

∂ψ′(x)

[
δψ(∞)− δψ(0)

]
+

dΦ

dψs
δψ(0) +

∫ ∞
0

(∂F
∂ψ
− ∂

∂x

∂F

∂ψ′(x)

)
δψ(x) dx

(3.37)

Selecting the boundary condition at x =∞ such that δψ(∞) = 0,

δ(∆F ) =
[
− ∂F

∂ψ′(x)
+

dΦ

dψs

]
δψ(0) +

∫ ∞
0

(∂F
∂ψ
− ∂

∂x

∂F

∂ψ′(x)

)
δψ(x) dx (3.38)

To obtain the usual Euler-Lagrange equation δ(∆F )e
δψ(x)

= 0 , the first term is chosen such

that it vanishes at x = 0. This generates the boundary condition as,

∂F

∂ψ′(x)
=

dΦ

dψs
∂ψ

∂x

∣∣∣
x=0

= −1

κ

dΦ

dψs
(3.39)

3.2.1 Specific choice of Φ(ψs) and its physical interpretation

Although a mathematical model to predict surface enrichment was developed by Cahn

[177], a specific form of Φ(ψs) was not discussed. The most commonly used form is

obtained from the linear and quadratic terms in ψs as [178],

Φ(ψs) = −µ1ψs −
g

2
ψ2
s (3.40)

where, the unimportant constant term has been omitted as it doest not alter the free

energy minimization. µ1 represents the surface chemical potential which favors one of the

species at the surface over the other and g/2 is the measure of the deviation of interaction

near the surface from the bulk.

The physical interpretation of these terms can be further understood from a simple

lattice model consisting of A and B atoms as seen in Fig.3.4(a). It is assumed that the

left layer is cut and an impenetrable wall is placed in its position. The derivation was

first put forward by Jerry and Nauman [179] and their approach is followed in a slightly

detailed manner.

Let the total number of lattice sites be No, among which NA are occupied by A atoms

and NB by B. The probability of finding A atom at any lattice site = NA
No

. Since, the
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(a) (b)

Figure 3.4: (a) A lattice consisting of equal number of A and B atoms. (b) The leftmost bonds

(shown by dashed line) are cut and replaced by an impenetrable wall.

probability of finding an A atom at the layer closer to the surface is the same, the above

ratio is denoted by ψs which can be interpreted as mole fraction of A atom. Similarly,

Probability of finding B atom at any lattice site = NB
No

= 1− ψs.

Energy required to form bonds between A and B atoms of the mixture and wall is

given by,

ξ1 = εAWψs + εBW (1− ψs) (3.41)

where, εAW and εBW are the bond energies between A atom and wall and B atom

and wall respectively. The bond energies arising due to the missing nearest neighbor also

needs to be considered. Energy due to missing nearest neighbor can be written as,

ξ2 = (Probability of finding an A atom at a lattice site × Probability of finding an A

atom as its nearest neighbor) × (Bond energy between A-A atoms)

+ (Probability of finding an B atom at a lattice site × Probability of finding an B

atom as its nearest neighbor) × (Bond energy between B-B atoms)

+ (Probability of finding an A atom at a lattice site × Probability of finding an B

atom as its nearest neighbor) × (Bond energy between A-B atoms)

+ (Probability of finding an B atom at a lattice site × Probability of finding an A

atom as its nearest neighbor) × (Bond energy between A-B atoms)
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In mathematical notation the above relation writes as,

ξ2 = ψ2
sεAA + (1− ψs)2εBB + 2ψs(1− ψs)εAB (3.42)

The total surface energy Φ(ψs) can thus be written as,

Φ(ψs) =
VmC

kBT
[ξ1 −

1

2
ξ2] (3.43)

where Vm is the average molecular volume, C denotes the number of contacts between

the wall and the mixture molecules per unit area of the wall and kBT has the usual

meaning. The factor 1/2 eliminates the double counting. Substituting Eqs.(3.41) and

(3.42) in Eq.(3.43) along with simple algebraic manipulation leads to,

Φ(ψs) =
V C

kBT

[
(εBW −

εBB
2

)− ψs(εBW − εAW + εAB − εBB)− ψ2
s

2
(εAA + εBB − 2εAB)

]
(3.44)

For simplicity the constant terms in the first parentheses are not considered henceforth

for the reason mentioned above. The above expression can be arranged in a convenient

form as,

Φ(ψs) =
VmC

kBT

[
− ψs

{(
εBW −

1

2
εBB −

1

2
εWW

)
−
(
εAW −

1

2
εAA −

1

2
εWW

)
+
(
εAB −

1

2
εAA −

1

2
εBB

)}
− ψ2

s

2

(
εAA + εBB − 2εAB

)]
(3.45)

The above expression can be written in terms of interaction parameters defined as,

χ =
z

kBT

(
εAB −

1

2
εAA −

1

2
εBB

)
(3.46)

χBW =
z

kBT

(
εBW −

1

2
εBB −

1

2
εWW

)
(3.47)

χAW =
z

kBT

(
εAW −

1

2
εAA −

1

2
εWW

)
(3.48)

where z denotes the coordination number of the lattice. Substituting the above relations

in Eq.(3.45) and rearranging,

Φ(ψs) = −VmC
z

χ
[
1 +

χBW − χAW
χ

]
ψs +

VmC

z
χψ2

s (3.49)

Comparing Eqs.(3.40) and (3.49),

µ1 =
VmC

z
χ
[
1 +

χBW − χAW
χ

]
(3.50)

g = −VmC
z

χ (3.51)
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Figure 3.5: Schematic of a binary AB mixture in contact with an external surface. The presence

of external surface modifies the bond energies at the adjacent layer.

In the above derivation it was assumed that the presence of wall does not alter the

bond energy. However, in principle the bond energy between atoms is dependent on the

relative distance from the wall. If we assume that the effect of the wall is short-ranged,

the bond energies εAA, εBB and εAB only in the adjacent layer to the wall (first layer

in Fig.3.5) are modified to ε′AA, ε′BB and ε′AB respectively. Therefore, the extra energy
VmC
kBT

1
2
(ψ2

sε
′
AA + (1 − ψs)2ε′BB + 2ψs(1 − ψs)ε′AB) should be accounted in Eq.(3.43). The

above derivation can be repeated for such a case to calculate the appropriate expressions

for g and µ1 which writes as,

g = −VmC
z

(χ− χW ) (3.52)

µ1 =
VmC

z
(χAW − χBW + χW − χ) +

VmC

kBT

(
ε′AA − ε′BB

2

)
(3.53)

where χW = z
kBT

(ε′AB − 1
2
ε′AA − 1

2
ε′BB).

3.3 Diffuse-interface formalism to study combined

effect of substrate affinity and electric field on

symmetric diblock copolymers

Having gained a basic understanding to model morphologies of diblock copolymers, ex-

ternal surfaces and electric field, a theoretical model to study the concurrent effect of
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external fields is formulated below. The total free energy functional in units of kBT can

be written as,

F = Fbulk + Fsurface + Felectrostatic. (3.54)

The bulk part is given by Eq.(3.2). The free energy of the domain surface in presence of

attracting walls is written as, [178, 180]

Fsurface
kBT

=

∫
S

[
h(r)ψ(r) +

1

2
gsψ

2(r)

]
dr. (3.55)

The above expression results from a Taylor series expansion of bare surface energy [178].

The terms h(r) and gs have same physical interpretations as µ1 and g. A positive value

expresses preferential attraction of B component and vice-versa [178, 180].

To account for two confining walls at two ends in the current study, the above expres-

sion is rewritten in terms of a δ-function as,

Fsurface
kBT

=

∫
S

[
hoδ(y) + hLδ(y − L)

]
ψ(r)dr, (3.56)

where, ho and hL are the interaction strengths of the wall at x = 0 and L respectively.

In the present study the term gs is set to zero, i.e. any deviation of interaction from

the bulk is neglected. This specific choice of surface potential results in short range

interaction. The electrostatic contribution to the free energy functional can be obtained

as [181, 6],
Felectrostatic

kBT
= − εovo

kBT

∫
V

ε(ψ)

2
|∇φ|2dr (3.57)

where, εo is the permittivity of free space, vo is the volume occupied by one polymer

chain and ε(ψ) is the dielectric permittivity which is taken to be phase dependent. φ is

the space dependent potential due to the applied voltage. A linear interpolation of the

permittivity between the two phases assuming the polymer to behave as a linear dielectric

material yields,

ε(ψ) = εA

(
1 + ψ

2

)
+ εB

(
1− ψ

2

)
(3.58)

The assumption of linear dielectric behavior has been previously employed in SCFT

calculations [157, 59].

Substituting the derived expressions,

F

kBT
=

∫
V

[
−ψ

2

2
+
ψ4

4

]
+
κ

2
|∇ψ|2 − εovo

kBT

ε(ψ)

2
|∇φ|2dr

+B

∫
V

∫
V

G(r, r′)ψ(r)ψ(r′)drdr′ +

∫
S

[
hoδ(y) + hLδ(y − L)

]
ψ(r)dr. (3.59)
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In the absence of the electrostatic free energy contribution, the model reduces to

the one from Brown et al. [41], that was used to study surface induced ordering of

block copolymers. The kinetic evolution of the conserved order parameter ψ follows the

dynamics underpinned by Model B [182],

∂ψ

∂t
= M∇2 δF

δψ

= M∇2

[(
−ψ + ψ3

)
− κ∇2ψ − εovo

kBT

ε′(ψ)

2
|∇φ|2

]
−Bψ.

(3.60)

Additionally, the Maxwell equation is employed to numerically simulate the spatial

distribution of φ as,

∇ ·
[
εoε(ψ)∇φ

]
= 0. (3.61)

The effect of thermal fluctuations can be accounted by adding a noise term
√
sη in

Eq.(3.60), where, s is the strength of the noise, the reciprocal of which is roughly equal to

the quench depth and η is noise distribution following the fluctuation-dissipation theorem

〈η(r, t)η(r′, t′)〉 = −∇2δ(r− r′)δ(t− t′). It is worth mentioning that thermal fluctuations

are important as far as the order-disorder transitions in weak segregation regime are

concerned. However, the equilibrium morphology which is the focus of the present work

is not influenced upon incorporation of stochastic noise. The present claim is corroborated

by Ref. [41], where the effect of confining surfaces was studied and the final morphology

was found to be independent of noise, both in WSL as well as SSL. Therefore, it is asserted

that the neglect of stochastic noise in the present work is reasonably well justified.

Next, the simulation parameters are non-dimensionalized as per characteristic energy

F ′, length L′ and time t′ scales. The free energies are non-dimensionalized using F ′ =

kBT , L′ is the lattice cell size and t′ = L′2

M ′F ′
. The terms κ and B are non-dimensionalized

as, κ = κ′

L′2
and B = B′L′2. The dielectric constants are rendered non-dimensional using

εA =
ε′A
εo

and the electric field by E = E′√
kBT

voεo

. Using representative values of T = 430K

and vo = 100nm3, the value of E = E′

82V/µm
is obtained.

The simulation geometry chosen for the present study is shown in Fig. 3.6. The

set-up consists of two rigid surfaces at y = 0 and y = Ly confining the copolymer film

across which a constant voltage is applied. Dirichlet boundary conditions are applied

for voltage at y = 0 and y = Ly with φ|y=0 = +V
2

and φ|y=Ly = −V
2

while Neumann

boundary condition is applied at x = 0 and x = Lx. Therefore, electric field is aligned

along y-direction. The confining substrates, also attract one of the copolymers which is

controlled by the numerical parameter h as mentioned before. The appropriate boundary
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V

X

Y
 Block Copolymer Thin Film

x = 0 x = L
x
  

         y = 0

y = L
y

Figure 3.6: A schematic showing the simulation set up used in the present study. A diblock

copolymer thin film is confined within two rigid substrates (top and bottom) which has a pref-

erential attraction towards one of the components. Electrostatic field is generated by applying a

constant voltage across the film thickness.

condition to account for attracting substrates translate into, [177, 183]

∂ψ

∂y

∣∣∣∣
y=0

= +
ho
κ

∂ψ

∂y

∣∣∣∣
y=Ly

= −hL
κ
. (3.62)

Additionally, no mass transport is allowed through the rigid surface by applying a

no-flux boundary condition at the surfaces, [183, 37]

∂µ

∂y

∣∣∣∣
y=0

=
∂µ

∂y

∣∣∣∣
y=Ly

= 0. (3.63)

Periodic boundary condition is applied for ψ in x-direction. Eq.(3.60) is solved using an

explicit finite difference method where the spatial derivatives are discretized using central

difference which is second order accurate in space and temporal discretization using first

order Euler technique. The equation is solved in two steps. First, the terms constituting

µ is discretized as follows,

µi,j = −ψi,j + ψ3
i,j − κ

[(ψi+1,j − 2ψi,j + ψi−1,j

∆x2

)
+
(ψi,j+1 − 2ψi,j + ψi,j−1

∆y2

)
− εov

3
o

kBT

(εA − εB)

4

{(φi+1,j − φi−1,j

2∆x2

)2

+
(φi,j+1 − φi,j−1

2∆y2

)2}]
−Bψi,j (3.64)
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where i, j denote the discrete grid position in x and y directions respectively. ∆x and ∆y

are the spatial discretization width in x and y directions respectively.

The discretized temporal evolution writes as,

ψt+∆t
i,j − ψti,j

∆t
= M

[(µi+1,j − 2µi,j + µi−1,j

∆x2

)
+
(µi,j+1 − 2µi,j + µi,j−1

∆y2

)]
(3.65)

where t denotes time and ∆t is the temporal discretization width. The Laplace equation

in Eq. (3.61) is solved iteratively using Successive-Over-Relaxation (SOR) method. The

details of the discretization is discussed in the next chapter. The initial guess for φ

is tailored by providing a linear initial profile in y-direction (corresponding to constant

electric field, since, E = −∇φ) to facilitate faster convergence.
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Phase-field model for grain

boundary grooving under

electromigration

4.1 Sharp-interface description

Before proceeding to the diffuse-interface formalism, we briefly recount the phenomeno-

logical description of the electromigration within the framework of irreversible thermody-

namics. As mentioned earlier, metal ions of the conductor when subjected to an applied

electric field are exposed to two forces. First, the direct electrostatic force which propels

the positive ions towards the negative terminal (cathode). Second, the negatively charged

electrons accelerated in the direction of the positive terminal (anode), collide with the

positive ions, thus transferring momentum resulting in the movement of the ions in the

direction of electron flow. This contribution is termed as “electron wind”.

Consider a pure metal conductor with species A and vacancies V occupying the normal

(substitutional) lattice sites subjected to an applied field. The flux of the atom A JA can

be written as a linear combination of the driving forces as [23, 184]

JA = −LAA∇(µA − µV + qAφ)− LAee∇φ. (4.1)

µA and µV are the chemical potentials of the species A and V respectively. qA and e denote

the valence of A and electron charge respectively. φ represents the electric potential. LAA

is the phenomenological coefficient related to the diffusion coefficient of A and LAe relates

to the interaction between the ion and the electron. The flux of the atoms A will instigate

the flow of vacancies JV in the opposite direction such that

JV = −JA. (4.2)

52
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The term (µA+qAφ) combined is termed as the electrochemical potential. To understand

the driving forces arising out of the imposed electric field, Eq.(4.1) can be rearranged to

give

JA = −LAA∇(µA − µV )− LAAqA∇φ− LAee∇φ (4.3)

The second term in the above equation is the consequence of the direct electrostatic force

while the third term arising due to the cross effect between the diffusing species and

electron is the electron wind force. In the conductor, the metal ions are shielded by the

negative electrons so that the direct electrostatic force is often much less than the wind

force [23, 72]. The dominance of the wind force is further corroborated by experimental

observation which suggest the movement of the conductor in the direction of the electron

flow [75, 87]. Hence the second term can safely be neglected so that we have

JA = −LAA∇(µA − µV )− LAee∇φ (4.4)

= Jchem + Jem (4.5)

Thus due to the continuity equation we have

∂CA
∂t

= ∇ · LAA∇(µA − µV ) +∇ · LAee∇φ (4.6)

The flux of the charge carriers i.e. electrons on the other hand, is given by

Je = −LeA∇(µA − µV + qAφ)− Leee∇φ (4.7)

The current in the conductor is entirely due to the imposed electron wind and the cross

effect due to mass flux is negligible and hence the cross terms can be safely neglected.

In addition, the timescales for the electrodynamics i.e. charge relaxation is much faster

compared to the ion diffusion process. Hence, the current continuity equation translates

into Laplace equation as

∇ · Je = ∇ · [Leee∇φ] = 0 (4.8)

Comparing the above equation to Ohm’s law yields the relation between the electron

conductivity σ and mobility as

σ = Leee (4.9)

We next relate the constants LAA and LAe to the diffusivity. The free energy of the

system consisting of NA number of atoms and NV a number of vacancies is written as [184]

G = NAµ
0
A +NV aG

f
V + kBT

[
NA ln

(
NA

NA +NV a

)
+NV a ln

(
NV a

NA +NV a

)]
(4.10)

where µ0
A is chemical potential of A atoms in a pure crystal consisting of only A atoms

and Gf
V is the free energy to form a vacancy. The chemical potentials are defined as

µA =
∂G

∂NA

= µ0
A + kBT ln

(
NA

NA +NV a

)
. (4.11)
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For a dilute solid solution NA � NV a and µA = µ0
A. Similarly

µV =
∂G

∂NV a

= Gf
V + kBT ln

(
NV a

NA +NV a

)
= Gf

V + kBT lnXV (4.12)

where XV is mole fraction of vacancies. Therefore, the chemical driving force of A atoms

can be written as

Jchem = −LAA∇(µA − µV ) = −LAA∇(µ0
A −G

f
V − kBT lnXV ) =

LAAkBT

XV

∇XV (4.13)

Using the relation XV = ΩVCV where ΩV is the atomic volume and CV is the concentra-

tion of the vacancy we have

Jchem =
LAAkBTΩV

XV

∇CV (4.14)

Comparing the above equation with Fick’s law yields the relation between vacancy diffu-

sivity and LAA as LAA = DVXV /ΩV kBT . The process of EM is driven by the collision of

the electron with the diffusing species around the sites of lattice imperfections or defects,

which creates a force due to the self-consistent electronic charge distribution around the

defect. The defect scatters the electrons, creating a dipole and exerts an electrostatic

force [185]. This force is described phenomenologically by ascribing an effective charge

ze, with the driving force reading as Fem = zeE. Thus it is assumed that the driving

force for electromigration can be approximated by an electrostatic force. This in turn

induces a drift of the atoms by a vacancy mechanism given by

Jem = − < vd > CV = −MV FemCV = −DVCV
kBT

zeE (4.15)

where < vd > is the average drift velocity and MV is the vacancy mobility. Comparing the

above equation with Eq.(4.4) LAe = DVCV z/kBT . Since migration of atoms takes place

by a vacancy mechanism the material transport is usually written in terms of vacancy

flux. Using Eqs.(4.2), (4.3), (4.14) and (4.15) the vacancy flux writes as

JV = −DV

(
∇CV −

ze

kBT
CVE

)
. (4.16)

In thin film conductors the surface and GBs are the predominant diffusion pathways

and in such cases LAA and LAe can be related to surface DS and GB diffusivities DGB.

The corresponding sharp-interface description is discussed later in relevant chapters.

4.2 Diffuse-interface model

The aim of the present chapter is to construct a simplified model that can correctly

capture the concurrent diffusion and EM phenomenon in pure metal polycrystalline in-

terconnect. In the drift velocity set up, as shown in Fig.4.1(a), the metal conductor (such
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as Aluminum, Copper, Gold) is deposited on a relatively inert material (such as Molybde-

num, Tantalum, Titanium nitride) which is insoluble and does not form any intermetallic

compound with the test sample [75]. The electric current passes through the underlayer

domain and shunts into the metal stripe whenever it gets the opportunity to do so, re-

sulting in EM displacement. The equivalent circuit diagram of the experimental set up is

shown in Fig.4.1(b). Additionally, the resistivity (conductivity) of the underlayer mate-

rial is higher (lower) than the test piece, so that majority of the current is assumed to flow

through the metal conductor. In the simulations, we recreate a two-dimensional version

of the actual three-dimensional set up as shown in Fig.4.1(c) which is the top-view of

the experimental configuration. The underlayer beneath the conductor is not explicitly

considered which essentially implies that the net current flows through the conductor.

The vapor or the outer environment is not considered explicitly, and the region ahead of

the test piece is assigned the conductivity of the underlayer (since the vacuum cannot

conduct electricity), while still modeling the leading edge as a free surface. The equiva-

lent circuit diagram of the simulation set up is shown in Fig.4.1(d). Moreover, since our

prime interest is GB grooving and initial stage drift, only the cathode end of the sample

is considered. The mass deposition and the formation of hillocks which takes place at the

anode end are not taken into account. Thus the simulation set up comprises of an array

of periodic grains of the metal interconnect separated from the dielectric underlayer as

shown in Fig. 4.1(c).

Following [186, 187, 4], a set of conserved and non-conserved order parameters to dis-

tinguish between the underlayer and the polycrystalline interconnect domain is employed.

A conserved order parameter, which, in the present case is the scaled density variable

ρ, distinguishes the underlayer (ρ = 0) and the interconnect (ρ = 1) domain. While,

a set of N non-conserved order parameters (η1, η2, ....., ηN) are chosen to describe the

multiple grains in the interconnect microstructure. The non-conserved order parameters

are chosen such that the ith grain of the interconnect is described by ηi = 1 and ηj = 0 ∀
j 6= i, where as the underlayer domain is defined by ηi = 0 ∀ i.

With the above description, GB is defined as the region between ith and jth grain

where ηi and ηj varies smoothly between 0 < ηi, ηj < 1. Surface, on the other hand is

the region between the underlayer and the ith grain of the interconnect exhibiting smooth

variation of ρ and ηi as 0 < ρ, ηi < 1. Using the definition of conserved and non-conserved

order parameters the free energy functional is defined as,

F = NV

∫
V

f(ρ, ηi) + κρ|∇ρ|2 + κη

N∑
i=1

|∇ηi|2 dV (4.17)

where, κρ and κη are the gradient energy coefficients which penalizes gradients in ρ and η

respectively. V denotes the volume and NV is the number of atoms per volume. f(ρ, ηi)
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(b)(a)

(c) (d)

Figure 4.1: (a) Schematic illustration of a typical drift velocity experiment configuration. A

conducting metal called the interconnect is deposited over a relatively high resistivity substrate

known as the underlayer. The electric field is generated by an applied voltage at the electrodes.

(b) An equivalent circuit diagram of the experimental set-up. (c) Schematic diagram of the two

dimensional set-up used in the phase-field study. The set-up is a top view of the experimental

configuration. The interconnect consists of array of periodic grains with GB aligned along the

direction of electric field, a case typical of polycrystalline interconnects. The electric field is

applied by either prescribing constant potential at top and bottom edges (constant voltage) or by

imposing a constant potential gradient (constant current). The electron wind is directed towards

the bottom electrode. (d) An equivalent circuit diagram of the simulation set-up corresponding

to the constant voltage case. Ru, Lu and Rm, Lm are the initial resistances and lengths of the

underlayer and the metal interconnect respectively.
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is a Landau-type potential which creates N + 1 distinct minima at (ρ, η1, η2, ....., ηN) =

(1, 1, 0, ....., 0),

(1, 0, 1, ....., 0), ....., (0, 0, 0, ....., 0) in the free energy landscape. The explicit expression of

f(ρ, ηi) can be derived considering the following symmetry arguments,

(a) f(ρ, ηi) must account for two degenerate states in ρ, corresponding to the intercon-

nect and the underlayer domain. The simplest polynomial satisfying the criteria is

a double well of the form

fI = Aρ2(1− ρ)2 (4.18)

where, A is the energy barrier with units of energy per atom.

(b) Second, the interconnect defined by ρ = 1 should exhibitN minima in ηi, (η1, η2, ....., ηN) =

(1, 0, ....., 0), (0, 1, ....., 0), (0, 0, ....., 1) corresponding to various grain orientations.

Following [188, 189],

fII = Bρ2ξ(ηi) (4.19)

where,

ξ(ηi) =
N∑
i=1

[η4
i

4
− η2

i

2
+ ε

N∑
j>i

η2
i η

2
j

]
+

1

4
. (4.20)

The function ξ(ηi) is a multiwell in ηi. The first two terms of ξ(ηi) is a double-well

potential with 2N minima at (ηi, ηj) = (±1,±1) which is unsuitable to define a

multigrain structure. The cross term with a proper choice of ε > 1/2 is able to

restrict the number of minima to 2N with (ηi, ηj) = (±1, 0) [190]. Restricting to

only the positive values of ηi and without any loss of generality select ε = 2. The

constant 1/4 is added to shift the well depth to 0. An elaborate discussion on the

effect of ε on free energy landscape and equilibrium profiles can be found in Ref.

[189].

(c) Third, the underlayer i.e. ρ = 0 is characterized by a single minima in ηi, (η1, η2, ....., ηN) =

(0, 0, ....., 0). Thus, the final contribution writes as [188],

fIII = C(1− ρ)2

N∑
i=1

η2
i (4.21)

Combining Eqs. (4.18), (4.19) and (4.21),

f(ρ, ηi) = Aρ2(1− ρ)2 +Bρ2ξ(ηi) + C(1− ρ)2

N∑
i=1

η2
i (4.22)

It is to be noted that the prefactor ρ2 and (1−ρ)2 in the second and third term will alter

the free energy landscape in the interconnect and the underlayer domain respectively. The
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kinetic equations of the conserved and the non-conserved order parameters are obtained

from the free energy functional by variational derivatives. Thus, the non-conserved order

parameters follow the dynamics of Allen-Cahn Eq. [191] as,

∂ηi
∂t

= −Lη
δ

δηi
(F/NV )

= −Lη
[∂f(ρ, ηi)

∂ηi
− 2κη∇2ηi

]
(4.23)

where, Lη is the relaxation coefficient for the non-conserved order parameters. The

conserved order parameter, on the other hand, is governed by the modified Cahn-Hilliard

Eq. [165] as,
∂ρ

∂t
= ∇ ·

[
M(ρ, ηi)

{
∇ δ

δρ
(F/NV ) + ze∇φ

}]
(4.24)

The chemical potential µ is defined from the variational derivative as,

µ =
δ

δρ
(F/NV ). (4.25)

Strictly speaking, effective charge can assume different values in different regions of the

interconnect such as effective surface charge zS, effective grain boundary charge zGB and

effective charge in the bulk zB. However, for the sake of simplicity a uniform effective

charge is assumed in the present work. Thus Eq.(4.24) translates into,

∂ρ

∂t
= ∇ ·M(ρ, ηi)[∇µ+ ze∇φ] (4.26)

Thus, the above Eq. implies the motion of diffusing species under the combined influence

of gradient of chemical potential as well as electric potential. To account for enhanced

diffusivities at the surface and GB, the mobility is expressed as a scalar function of ρ and

ηi as [188],

M(ρ, ηi) = MB + 4MGB

∑
j>i

√
η2
i η

2
j + 16MSρ

2(1− ρ)2 (4.27)

where MB, MGB and MS stands for the atomic mobility in the bulk, at the GBs and at

the surface respectively.

Few comments are in order regarding the specific choice of mobility function. The

third term in Eq.(4.27) represents the surface diffusion at the interconnect-underlayer

interface (interphase interface in other words). The square term in ρ and (1−ρ) makes our

mobility function biquadratic as opposed to the quadratic form used in several previous

studies [192, 193, 194, 195] and serves two purposes. First, ρ by virtue of its conserved

nature exhibits the Gibbs-Thomson effect, as a result of which, ρ may overshoot the

prescribed limit of 0 < ρ < 1 depending upon the local curvature. The biquadratic

mobility specifically supresses the additional bulk diffusion contribution arising from the
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local variation of ρ [196]. In fact, it has recently been shown through asymptotic analysis,

that a polynomial well-type free energy in conjunction with a quadratic mobility leads

to an additional contribution from bulk diffusion at the same order as surface diffusion

[197, 198]. A biquadratic mobility, such as the one used in the present study, however, is

able to recover pure surface diffusion limited motion i.e. motion by surface laplacian of the

mean curvature [198]. It is remarked that obstacle-type free energies which restricts the

value 0 < ρ < 1, however, do not suffer from the above mentioned deficiencies [196, 197].

Secondly, biquadratic mobility also has the attractive feature that it always returns a

non-negative value, thus obviating any numerical instabilities.

While the asymptotic analysis are carried out as the interface width tends to zero,

the numerical implementation of the diffuse interface with finite width could give rise

to normal diffusion currents [199]. To restrict diffusion only along the tangential direc-

tion along the surface in such cases, a tensorial form of mobility function has also been

proposed given by [200, 201, 202],

M = MB + 4MGB

∑
j>i

√
η2
i η

2
jTGB + 16MSρ

2(1− ρ)2TS (4.28)

where, TGB and TS are the surface projection tensor of the form TS,GB = I − n ⊗ n.

I represents the identity tensor and n the normal to the surface and GB given as n =

∇ρ/|∇ρ| and n = (∇ηi −∇ηj)/|∇ηi −∇ηj|.

However, considering the fact that in the present problem interface thickness is of the

order of nanometers, the simplistic scalar mobility function is able to restrict the diffusion

mainly along the surface and GB and is employed in the present work. Tensorial mobility,

on the other hand is expected to work properly for even moderately diffuse interface

widths as it inherently restricts the diffusion current along the tangential direction.

In addition to Eq.(4.23) and (4.26), the Laplace equation is solved assuming the

relaxation time for electrostatic equilibrium to be much faster than the diffusive timescale

to evaluate the electric potential distribution as ,

∇ ·
[
σ(ρ)∇φ

]
= 0 (4.29)

where σ is the conductivity taken to be ρ dependent to distinguish the electrical property

of the metal interconnect σm and dielectric underlayer σu. A linear interpolation is

employed between the interconnect and underlayer as,

σ(ρ) = σmρ+ σu(1− ρ) (4.30)

Thus Eq. (4.23), (4.26) and (4.29) combines a degenerate Cahn-Hilliard, Allen-Cahn and

Laplace Eq. which constitutes coupled PDEs for the electromigration problem.
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Figure 4.2: A 2-D schematic of the finite difference grid with the black dots representing the

regular lattice points and the crosses depicting the staggered positions.

4.3 Numerical Discretization

The governing equations are discretized using explicit finite difference method on a square

staggered mesh. Because of the presence of the gradient energy term in ρ in the free energy

functional, the Cahn-Hilliard equation is a fourth order partial differential equation. The

Cahn-Hilliard equation is solved in two steps. First the chemical potential µ is calculated

at each grid point. The laplacian is calculated using a 5 point stencil in 2 −D (7 point

stencil in 3−D). The discretized equation writes as,

µi,j =
(∂f
∂ρ

)
i,j
− 2κρ

[ρi+1,j − 2ρi,j + ρi−1,j

(∆x)2
+
ρi,j+1 − 2ρi,j + ρi,j−1

(∆y)2

]
(4.31)

Thereafter, the gradient and the divergence operator is discretized using a combination

of first order forward and backward difference formulas resulting in an overall accuracy

of second order. The mobility function M(ρ, ηi) is calculated at the center of two grid

points i.e. at staggered positions denoted as i− 1/2, j, i+ 1/2, j, i, j − 1/2 and i, j + 1/2

as shown in Fig.4.2. Thus,

Mi+ 1
2
,j =

Mi,j +Mi+1,j

2

Mi− 1
2
,j =

Mi,j +Mi−1,j

2

Mi,j+ 1
2

=
Mi,j +Mi,j+1

2

Mi,j− 1
2

=
Mi,j +Mi,j−1

2
(4.32)
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The temporal derivative is discretized using Euler method. The final difference equa-

tion writes as,

ρt+∆t
i,j − ρti,j

∆t
= 1

∆x

[
Mi+ 1

2
,j

{
µi+1,j−µi,j

∆x
+ ze

φi+1,j−φi,j
∆x

}
−Mi− 1

2
,j

{
µi,j−µi−1,j

∆x
+ ze

φi,j−φi−1,j

∆x

}]
+ 1

∆y

[
Mi,j+ 1

2

{
µi,j+1−µi,j

∆y
+ ze

φi,j+1−φi,j
∆y

}
−Mi,j− 1

2

{
µi,j−µi,j−1

∆y
+ ze

φi,j−φi,j−1

∆y

}]
(4.33)

The Allen-Cahn equation in contrast is a second order partial differential equation

and the discretized version can be written as,

ηt+∆t
i,j − ηti,j

∆t
= −Lη

[(∂f
∂η

)
i,j
− 2κη

{ηi+1,j − 2ηi,j + ηi−1,j

(∆x)2
+
ηi,j+1 − 2ηi,j + ηi,j−1

(∆y)2

}]
(4.34)

While, the Cahn-Hilliard and Allen-Cahn equations are parabolic partial differential

equations, the Laplace equation is elliptical and requires an iterative approach to the

solution. The gradient and the divergence operator are discretized similar to the Cahn-

Hilliard equation,

1

∆x

[
σi+ 1

2
,j

{φi+1,j − φi,j
∆x

}
− σi− 1

2
,j

{φi,j − φi−1,j

∆x

}]
+

1

∆y

[
σi,j+ 1

2

{φi,j+1 − φi,j
∆y

}
− σi,j− 1

2

{φi,j − φi,j−1

∆y

}]
= 0 (4.35)

For ∆x = ∆y the above equation can be rearranged as,

φi,j =

[
σi+ 1

2
,jφi+1,j + σi,j+ 1

2
φi,j+1 + σi− 1

2
,jφi−1,j + σi,j− 1

2
φi,j−1

]
[
σi+1,j+σi,j+1+σi−1,j+σi,j−1+4σi,j

2

] (4.36)

The above equation is solved iteratively at each grid point. The convergence can

be further sped up by adopting the Successive-Over-Relaxation technique in which the

solution at each iteration is taken to be the weighted average of the current and previous

iteration as,

φn+1
i,j = (1− ω)φni,j + ωφn+1

i,j (4.37)

where n denotes the iteration step and ω is the relaxation parameter. The choice of ω

depends upon the exact form of the equation and the coefficients under consideration,

but is generally taken to be in the range 0 < ω < 2. The stopping criterion is selected

such that the maximum difference of the φ value between the present and the previous

iteration at any grid point is less that 10−6 i.e.,

max
∣∣∣φn+1
i,j − φi,j

∣∣∣ ≤ 10−6 · (4.38)



Chapter 4. 62

4.4 Boundary Conditions

The equations are discretized at nodal points referred to as 0, 1, ..., Nx − 1, Nx in x

direction and 0, 1, ..., Ny − 1, Ny in y direction. The end points in each direction i.e. 0

and Nx in x direction and 0 and Ny in y direction are assumed to be the boundary points,

the values at which are calculated using the prescribed boundary condition. The Cahn-

Hilliard equation being a fourth order partial differential equation requires 4 boundary

conditions. Because of the discretization scheme, one boundary condition in µ and the

other in ρ is employed. Periodic boundary condition is utilized in x direction as

µ0,j = µNx−1,j ; ρ0,j = ρNx−1,j

µNx,j = µ1,j ; ρNx,j = ρ1,j (4.39)

with j = 0, 1, 2, ....., Ny and isolate in y direction as,

µi,0 = µi,1 ; ρi,0 = ρi,1

µi,Ny = µi,Ny−1 ; ρi,Ny = ρi,Ny−1 (4.40)

with i = 0, 1, 2, ....., Nx. Same boundary conditions are employed for η as,

η0,j = ηNx−1,j ; ηi,0 = ηi,1

ηNx,j = η1,j ; ηi,Ny = ηi,Ny−1 (4.41)

with j = 0, 1, 2, ....., Ny and i = 0, 1, 2, ....., Nx.

For the electric potential φ, two types of boundary conditions corresponding to con-

stant voltage and constant current are employed as shown in Fig.4.1(c). A constant

voltage V is applied at the domain edges at x = 0 and x = Nx as,

φx=0 = +V

φx=Nx = −V (4.42)

Constant current along y direction can be prescribed by maintaining gradients along

y direction as,

∂φ

∂y

∣∣∣∣∣
x=0

= − j

σm

∂φ

∂y

∣∣∣∣∣
x=Nx

= − j

σu
(4.43)

In both the constant voltage and constant current cases as isolate boundary condition is

employed at the domain edges in y direction as,

φ0,j = φ1,j

φNx,j = φNx−1,j (4.44)
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with j = 0, 1, 2, ....., Ny.

The explicit finite difference scheme is numerically stable and convergent only below a

certain temporal width ∆t depending upon the selected grid width ∆x and the individual

equation. The stability limit of the Cahn-Hilliard equation is given by,

∆t ≤ (∆x)4

22d+1κρMmax

(4.45)

where d is the dimensionality of the system and Mmax is maximum value of the atomic

mobility. For the Allen-Cahn equation, the stability criterion reads as,

∆t ≤ (∆x)2

2dκηLη
· (4.46)

For coupled equations, the stability criterion is selected from the minimum value of the

timestep width ∆t as,

∆t ≤ min

{
(∆x)4

22d+1κρMmax

,
(∆x)2

2dκηLη

}
(4.47)

4.5 Asymptotic analysis : Motion of the free surface

The presence of interfaces of finite thickness in the phase-field formalism introduces an

additional length scale in the problem. Therefore, to verify that the phase-field model

reduces to the sharp-interface problem as the interface width tends to zero, we perform a

formal asymptotic analysis. The asymptotic analysis of a coupled system of degenerate

Cahn-Hilliard (variable atomic mobility M) and degenerate Allen-Cahn (variable GB

relaxation parameter Lη) equation has been performed by Novick-Cohen [203]. More

recently Ahmed et al.[199] have performed the analysis for the system of degenerate

Cahn-Hilliard and Allen-Cahn equation. Both cases couple the motion of free surface by

surface laplacian of the mean curvature and that of GB by mean curvature. Mahadevan

et al.[204] and Bhate et al.[137] have studied the system of degenerate Cahn-Hilliard

equation with a wind force term and Laplace equation for a smooth double well and

obstacle type free energies respectively. The motion of the interface in such cases are

governed by surface laplacian of the mean curvature and surface laplacian of the applied

electric potential. Barrett et al.[138] analyzed the system of degenerate Cahn-Hilliard

and Allen-Cahn equation under different scaling of Lη. In one limit the authors recover

motion by surface laplacian of the mean curvature of the free surface, while the GB is

stationary. In a different limit the free surface moves due to a combination of surface

laplacian of mean curvature and surface attachment limited kinetics and the GB by mean

curvature. The effect of electromigration was also studied. However, so far models with
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only one-sided conductivity (non-zero conductivity in only one of the phases) have been

analyzed [204, 137, 138]. In this section we extend the previous mentioned studies to a

system of degenerate Cahn-Hilliard, Allen-Cahn and Laplace equation with both sided

conductivity.

The governing equations are non-dimensionalized by introducing a length scale x̃ =

x/L, energy scale G̃ = G/A, time scale t̃ = MSGt/(ρm − ρu)2L2, potential φ̃ = φ/EoL

and conductivity σ̃ = σ/σm. Here, A is the free energy barrier height defined in Eq.(4.18)

and L is the grain size. In addition, we define a parameter ε =
√
κρ/A/L related to the

interface width and q = κη/κρ which denotes the ratio of the gradient energy coefficients

of the conserved and the non-conserved order parameter such that κη = qε2. It is to

be noted that the surface energy in phase-field models scales as γs ∼
√
κρA. Using the

definition of ε, we have γs ∼ LεA. Therefore, in order to have finite surface energy as

ε → 0, we choose A = ω/ε, where, ω is a constant. Furthermore we work with the

scaling M →M/ε and Lη → Lη/ε
3. Dropping tildes henceforth we obtain the governing

equations as,

ε2
∂ρ

∂t
= ∇ ·M(ρ)∇(µρ + εΛ∇φ), (4.48)

ε4
∂ηi
∂t

= −Lηµη, (4.49)

∇ ·
[
σ(ρ)∇φ

]
= 0. (4.50)

where µρ = ∂f
∂ρ
− 2ε2∇2ρ, µη = ∂f

∂η
− 2qε2∇2η and Λ = zeEoL/ω which denotes the ratio

of scale of electrostatic energy to chemical energy. Since along the surface only one of

the ηi vary smoothly (Fig.4.1(c)), the mobility function Eq.(4.27) is only a function of ρ

which has been utilized in Eq.(4.48). Furthermore, only one of the ηi exhibits gradient

along the surface. Therefore, consideration of only one of them will suffice for further

analysis.

We divide the domain into outer and inner regions where the values of field variables

change slowly and rapidly respectively. Between the two, there exists an overlapping

region where the solution obtained in the two regions are valid and must match with each

other. The PDEs (4.48), (4.49) and (4.50) are solved subjected to the initial condition

ρ = 1, η1 = 1, η2 = 0, σ = σm∀x ∈ Ω− (4.51)

and

ρ = 0, η1 = 0, η2 = 0, σ = σu∀x ∈ Ω+ (4.52)

and the boundary conditions n · ∇ρ = n · ∇η1 = n · ∇η2 = n · ∇µρ = 0. Ω± denotes

the bulk regions on the either side of the interface. The solution of the above PDEs are

written in terms of powers of small parameter ε.
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4.5.1 Outer expansion

The outer solution for the three field variables write as,

ρ(x, ε, t) = ρ0(x, t) + ερ1(x, t) + ε2ρ2(x, t), (4.53)

η(x, ε, t) = η0(x, t) + εη1(x, t) + ε2η2(x, t), (4.54)

φ(x, ε, t) = φ0(x, t) + εφ1(x, t) + ε2φ2(x, t), (4.55)

µρ(x, ε, t) = µ0
ρ(x, t) + εµ1

ρ(x, t) + ε2µ2
ρ(x, t), (4.56)

µη(x, ε, t) = µ0
η(x, t) + εµ1

η(x, t) + ε2µ2
η(x, t), (4.57)

where, superscript on the variables denotes the order while that on ε denotes the power.

Substituting the above expansions in Eqs.(4.48), (4.49) and (4.50) and equating terms

of same order of ε from the left and right hand side of the equations we obtain at the

leading order O(ε0)

∇ ·M(ρ0)∇µ0
ρ = 0, (4.58)

− Lηµ0
η = 0, (4.59)

∇ · [σ(ρ0)∇φ0] = 0 (4.60)

where µ0
ρ = ∂f(ρ0,η0)

∂ρ0
and µ0

η = ∂f(ρ0,η0)
∂η0

. Eqs.(4.58) and (4.59) under the boundary condi-

tions has the solution

ρ0 = η0 = 1 ∀x ∈ Ω−, (4.61)

ρ0 = η0 = 0 ∀x ∈ Ω+ (4.62)

Using the values of ρ0, Eq.(4.60) reduces to Laplace equation in the bulk domains as

∇2φ0 = 0 ∀x ∈ Ω± (4.63)

Next to the leading order O(ε) we have terms that are not trivially zero as,

∇ ·M(ρ0)∇µ1
ρ + Λ∇ ·M(ρ0)∇φ0 = 0, (4.64)

− Lηµ1
η = 0, (4.65)

∇ · [σ(ρ0)∇φ1] +∇ · [σ′(ρ0)ρ1∇φ0] = 0 (4.66)

Using the values of ρ0 = 0, 1 from leading order solution we have M(ρ0) = 0 and Eq.(4.64)

reduces to 0 = 0 trivially. From Eq.(4.65) we have

µ1
η = 0 (4.67)

=⇒ ∂2f(ρ0, η0)

∂η2
η1 +

∂2f(ρ0, η0)

∂η∂ρ
ρ1 = 0 (4.68)
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Furthermore, from Eq.(4.22)

∂2f(ρ0, η0)

∂η∂ρ
= 2Bρ0[η03 − η0]− 4C(1− ρ0)η0 (4.69)

= 0 ∀x ∈ Ω± (4.70)

and

∂2f(ρ0, η0)

∂η2
= Bρ02

[3η02 − 1] + 2C(1− ρ0)2 (4.71)

6= 0 ∀x ∈ Ω± (4.72)

Therefore from Eq.(4.68) we have

η1 = 0. (4.73)

Since, ρ1 remains undetermined, from Eq.(4.66) φ1 also remains undetermined from the

outer expansion.

4.5.2 Inner expansion

We next define a local orthogonal coordinate system (r, s), where |r| measures the normal

signed distance from any point on the interface given by the level set ρ = 0.5 and s is

tangential to the interface. We further define a rescaled coordinate z = r/ε to stretch the

inner region. In the moving coordinate system (z, s) the spatial and temporal derivatives

transform as follows,

∇2 =
1

ε2
∂2

∂z2
+
κ

ε

∂

∂z
+

∂2

∂s2
+O(ε), (4.74)

∇ ·M∇ =
1

ε2
∂

∂z

(
M

∂

∂z

)
+
κ

ε
M

∂

∂z
− κ2Mz

∂

∂z
+

∂

∂s

(
M

∂

∂s

)
+O(ε), (4.75)

∂

∂t
=

∂

∂t
− Vn

ε

∂

∂z
− Vt

∂

∂s
+O(ε), (4.76)

where κ is the curvature of the interface, Vn and Vt are the normal and the tangential

velocities respectively. The inner expansions write as

ρ̂(z, s, ε, t) = ρ̂0(z, s, t) + ερ̂1(z, s, t) + ε2ρ̂2(z, s, t), (4.77)

η̂(z, s, ε, t) = η̂0(z, s, t) + εη̂1(z, s, t) + ε2η̂2(z, s, t), (4.78)

φ̂(z, s, ε, t) = φ̂0(z, s, t) + εφ̂1(z, s, t) + ε2φ̂2(z, s, t), (4.79)

µ̂ρ(z, s, ε, t) = µ̂0
ρ(z, s, t) + εµ̂1

ρ(z, s, t) + ε2µ̂2
ρ(z, s, t), (4.80)

µ̂η(z, s, ε, t) = µ̂0
η(z, s, t) + εµ̂1

η(z, s, t) + ε2µ̂2
η(z, s, t), (4.81)

In addition, the matching conditions provide the boundary conditions for the inner vari-

ables as,

lim
z→±∞

ρ̂0(z, s) = ρ0±(s), (4.82)
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lim
z→±∞

ρ̂1(z, s) = ρ1±(s) + z
∂ρ0

∂x

±

(s), (4.83)

lim
z→±∞

ρ̂2(z, s) = ρ2±(s) + z
∂ρ1

∂x

±

(s) +
z2

2

∂2ρ0

∂x2

±

(s). (4.84)

The derivative matching conditions read as

lim
z→±∞

∂ρ̂0

∂z
(z, s) = 0, (4.85)

lim
z→±∞

∂ρ̂1

∂z
(z, s) =

∂ρ0

∂x

±

(s), (4.86)

lim
z→±∞

∂2ρ̂1

∂z2
(z, s) = 0, (4.87)

lim
z→±∞

∂ρ̂2

∂z
(z, s) =

∂ρ1

∂x

±

(s) + z
∂2ρ0

∂x2

±

(s). (4.88)

The above matching conditions are also applicable to other variables η̂, φ̂, µ̂ρ and µ̂η.

4.5.2.1 Leading order

At the leading order O(ε0) for η equation we have,

− Lηµ̂0
η = 0 (4.89)

=⇒ ∂f(ρ̂0, η̂0)

∂η
− 2q

∂2η̂0

∂z2
= 0. (4.90)

Multiplying all the terms by ∂η̂0/∂z, integrating and using the boundary conditions for

ρ̂0 and η̂0 from matching conditions to evaluate the constant of integration to be zero we

have

f(ρ̂0, η̂0) = q

(
∂η̂0

∂z

)2

(4.91)

which can be further integrated to give the equilibrium profile for η̂0.

From the leading order O(1/ε2) in ρ equation we have

∂

∂z

[
M(ρ̂0)

∂µ̂ρ
0

∂z

]
= 0. (4.92)

Integrating once

M(ρ̂0)
∂µ̂ρ

0

∂z
= A1(s, t) (4.93)
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From matching condition limz→±∞
∂µ̂ρ

0

∂z
(z, s) = 0 and M(ρ̂0) = M(ρ0±) = 0 we evaluate

A1(s, t) = 0. However, since the Eq.(4.93) is valid for the entire inner region and M(ρ̂0) 6=
0 for ρ̂0 6= 0, 1 we have

∂µ̂ρ
0

∂z
= 0, (4.94)

=⇒ ∂f(ρ̂0, η̂0)

∂ρ̂0
− 2

∂2ρ̂0

∂z2
= 0. (4.95)

Multiplying all the terms by ∂ρ̂0/∂z and integrating once

f(ρ̂0, η̂0) =

(
∂ρ̂0

∂z

)2

(4.96)

which can be integrated again to yield the equilibrium profile of ρ̂0. The leading order

O(1/ε2) in φ equation yields

∂

∂z

[
σ(ρ̂0)

∂φ̂0

∂z

]
= 0. (4.97)

Integrating once

σ(ρ̂0)
∂φ̂0

∂z
= A2(s, t). (4.98)

From matching limz→±∞
∂φ̂0

∂z
(z, s) = 0 and σ(ρ̂0) = σ(ρ0±) = σu, σm, we have A2(s, t) = 0.

Therefore in the inner region
∂φ̂0

∂z
= 0, (4.99)

=⇒ φ̂0 = A3(s, t). (4.100)

From matching conditions limz→±∞ φ̂
0 = φ0± = A3(s, t), which implies continuity of

electric potential across the interface.

4.5.2.2 Next-to-leading order

The next-to-leading order O(ε) in η equation leads to

− Lηµ̂1
η = 0, (4.101)

=⇒ ∂2f(ρ̂0, η̂0)

∂η̂2
η̂1 +

∂2f(ρ̂0, η̂0)

∂η̂∂ρ̂
ρ̂1 − 2qκ

∂η̂0

∂z
− 2q

∂2η̂1

∂z2
= 0. (4.102)

Multiplying the above Eq. by ∂η̂0/∂z and integrating within the limits ±∞∫ +∞

−∞

∂2f(ρ̂0, η̂0)

∂η̂2
η̂1∂η̂

0

∂z
dz +

∫ +∞

−∞

∂2f(ρ̂0, η̂0)

∂η̂∂ρ̂
ρ̂1∂η̂

0

∂z
dz

−
∫ +∞

−∞
2qκ

(
∂η̂0

∂z

)2

dz −
∫ +∞

−∞
2q
∂2η̂1

∂z2

∂η̂0

∂z
dz = 0. (4.103)
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The above equation can be rewritten as∫ +∞

−∞

∂

∂z

[
∂f(ρ̂0, η̂0)

∂η̂

]
η̂1dz −

∫ +∞

−∞

∂2f(ρ̂0, η̂0)

∂η̂∂ρ̂
η̂1∂ρ̂

0

∂z
dz

+

∫ +∞

−∞

∂2f(ρ̂0, η̂0)

∂η̂∂ρ̂
ρ̂1∂η̂

0

∂z
dz −

∫ +∞

−∞
2qκ

(
∂η̂0

∂z

)2

dz

−
∫ +∞

−∞
2q
∂3η̂0

∂z3
η̂1dz = 0 (4.104)

where the first and the last terms in the integral in Eq.(4.103) have been simplified using

chain rule of derivative and integration by parts respectively. The first and the last term

in the integrals in Eq.(4.104) can be combined to give ∂
∂z

[
∂f(ρ̂0,η̂0)

∂η̂
− 2q ∂

2η̂0

∂z2

]
η̂1dz, which,

from the leading order solution Eq.(4.90) is zero. Furthermore, introducing the notation

B1(s, t) =
∫ +∞
−∞

∂2f(ρ̂0,η̂0)
∂η̂∂ρ̂

[
ρ̂1 ∂η̂0

∂z
− η̂1 ∂ρ̂0

∂z

]
dz Eq.(4.104) can be simplified to

B1(s, t)−
∫ +∞

−∞
2qκ

(
∂η̂0

∂z

)2

dz = 0. (4.105)

The comparison of next-to-leading order O(1/ε) in ρ Eq. and utilizing the relations
∂µ̂0

∂z
= 0 and ∂φ̂0

∂z
= 0 we obtain

∂

∂z

[
M(ρ̂0)

∂µ̂ρ
1

∂z

]
= 0. (4.106)

Integrating once

M(ρ̂0)
∂µ̂ρ

1

∂z
= B2(s, t). (4.107)

Taking the limits z → ±∞ we have M(ρ0±) = 0 which implies B2(s, t) = 0. Therefore

we obtain
∂µ̂ρ

1

∂z
= 0. (4.108)

Integrating again

µ̂ρ
1 = B3(s, t) (4.109)

=⇒ ∂2f(ρ̂0, η̂0)

∂ρ̂2
ρ̂1 +

∂2f(ρ̂0, η̂0)

∂η̂∂ρ̂
η̂1 − 2κ

∂ρ̂0

∂z
− 2

∂2ρ̂1

∂z2
= B3(s, t). (4.110)

Multiplying both sides by ∂ρ̂0/∂z and integrating within the limits ±∞ we obtain after

simplification as in Eqs.(4.103) and (4.104)

B1(s, t) +

∫ +∞

−∞
2κ

(
∂ρ̂0

∂z

)2

dz = −
∫ +∞

−∞
B3(s, t)

∂ρ̂0

∂z
(4.111)
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=⇒ B1(s, t) +

∫ +∞

−∞
2κ

(
∂ρ̂0

∂z

)2

dz = −B3(s, t)[ρ0+ − ρ0−] = µ̂1
ρ (4.112)

Eliminating B1(s, t) from Eqs.(4.105) and (4.112)

µ̂1
ρ = −κγs (4.113)

where γs =
∫ +∞
−∞ 2q

(
∂η̂0

∂z

)2

dz+
∫ +∞
−∞ 2

(
∂ρ̂0

∂z

)2

dz is the surface energy. The above equation

is the Gibbs-Thomson condition which occurs as a first order correction in the present

phase-field model.

Next-to-leading order O(1/ε) for φ equation we have

∂

∂z

[
σ(ρ̂0)

∂φ̂1

∂z

]
= 0. (4.114)

Integrating within the limits ±∞ and using matching conditions we obtain

σ(ρ0+)
∂φ0+

∂x
− σ(ρ0−)

∂φ0−

∂x
= 0. (4.115)

The above equation implies continuity of current across the interface. In the case of

unequal conductivities i.e. σ(ρ0+) 6= σ(ρ0−) we have a discontinuity of electric potential

gradient or electric field across the interface.

4.5.2.3 Higher orders

At next order O(ε0) in ρ equation we obtain terms that are not trivially zero as

∂

∂z

[
M(ρ̂0)

(
∂µ̂2

ρ

∂z
+ Λ

∂φ̂1

∂z

)]
= 0. (4.116)

Integrating once we get

M(ρ̂0)

(
∂µ̂2

ρ

∂z
+ Λ

∂φ̂1

∂z

)
= C1(s, t) (4.117)

Again as before taking the limits z → ±∞ we have M(ρ0±) = 0 and C1(s, t) = 0.

Therefore
∂µ̂2

ρ

∂z
+ Λ

∂φ̂1

∂z
= 0. (4.118)

At order O(ε2) in η equation we obtain

µ̂2
η = 0. (4.119)



Chapter 4. 71

At order O(ε0) in φ equation we have

∂

∂z

[
σ(ρ̂0)

∂φ̂2

∂z

]
+

∂

∂z

[
σ′(ρ̂0)ρ̂1∂φ̂

1

∂z

]
+ κσ(ρ̂0)

∂φ̂1

∂z
+

∂

∂s

[
σ(ρ̂0)

∂φ̂0

∂s

]
= 0 (4.120)

At next order O(ε) in ρ equation we have

−Vn
∂ρ̂0

∂z
=

∂

∂z

[
M(ρ̂0)

∂µ̂3
ρ

∂z

]
+

∂

∂z

[
M ′(ρ̂0)ρ̂1

∂µ̂2
ρ

∂z

]
+ κM(ρ̂0)

∂µ̂2
ρ

∂z

+
∂

∂s

[
M(ρ̂0)

∂µ̂1
ρ

∂s

]
+

∂

∂z

[
M(ρ̂0)Λ

∂φ̂2

∂z

]
+

∂

∂z

[
M ′(ρ̂0)ρ̂1Λ

∂φ̂1

∂z

]

+κM(ρ̂0)Λ
∂φ̂1

∂z
+

∂

∂s

[
M(ρ̂0)Λ

∂φ̂0

∂s

]
(4.121)

From Eq.(4.118) the second and the sixth and the third and the seventh term on the

right hand side can be combined to obtain zero. Integrating within the limits ±∞

− Vn
∫ +∞

−∞

∂ρ̂0

∂z
dz =

[
∂2µ̂1

ρ

∂s2
+ Λ

∂2φ̂0

∂s2

]∫ +∞

−∞
M(ρ̂0)dz (4.122)

where from matching M(ρ0±) = 0 has been employed to eliminate other terms. Using

Eq.(4.113) we obtain the velocity of the interface as

Vn = −γsM s
∂2κ

∂s2
+ ΛM s

∂2φ̂0

∂s2
. (4.123)

where M s =
∫ +∞
−∞ M(ρ̂0)dz. The above equation states that at the sharp-interface limit

i.e. as ε→ 0, the interface moves by surface laplacian of the mean curvature and surface

laplacian of the electric potential.

A few subtle points need to be mentioned. Firstly, from Eq.(4.110) and (4.113) taking

the limit z → ±∞ and taking into account the matching conditions Eq.(4.82), (4.83),

(4.85) and (4.87), we have,

∂2f(ρ0±, η0±)

∂ρ2
ρ1± +

∂2f(ρ0±, η0±)

∂ρ∂η
η1± = −κγs. (4.124)

Using Eq.(4.70)

ρ1± = − κγs
∂2f(ρ0±,η0±)

∂ρ2

(4.125)

gives the first order correction to the variable ρ. Depending upon the value of the right

hand side of the above equation, there will be regions in the domain which deviate from
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the values of 0 and 1. This will result in contribution due to bulk diffusion in addition

to surface diffusion. The higher order terms in ρ in the mobility function suppresses the

contribution from bulk diffusion. From Eq.(4.102), it can be shown that

∂2f(ρ0±, η0±)

∂η2
η1± +

∂2f(ρ0±, η0±)

∂ρ∂η
ρ1± = 0. (4.126)

Using Eqs.(4.70) and (4.72)

η1± = 0 (4.127)

that is the non-conserved order parameter does not exhibit any higher order corrections.

4.6 Relationship to sharp-interface model

To facilitate a comparison between the sharp-interface and the phase-field method, the

relation between the various model parameters from the two methods needs to be estab-

lished.

4.6.1 Interfacial properties

In the phase-field model, the interfacial properties such as interfacial energy and width are

related to the gradient-energy coefficients and the potential well height. Since the present

phase-field model deals with antiphase (GB) as well as interphase (surface) boundaries,

the interfacial characteristics of both interfaces is determined separately. Following the

approach of Cahn-Hilliard [165], the interfacial energy is calculated starting from an initial

planar interface across phases in local equilibrium. Although, the treatment is along

similar lines to Moelans et al. [189] and Ahmed et al. [202], the derivation differs slightly

from Ref. [202] because of our choice of f(ρ, ηi) which results in different dependence of

the material and model parameters.

4.6.1.1 Antiphase boundary

For the GB in the present case, the two grain structure corresponding to (ρ, η1, η2) =

(1, 1, 0) and (1, 0, 1) as shown in Fig.4.1(c) is considered. Since the variation of ρ across

the GB is negligible, it can safely be assumed that ρ ≈ 1 and ( dρ
dx

)2 ≈ 0. The GB energy

of the system is then given by the integral,

γGB
NV

=

∫ +∞

−∞

{
f(ρ = 1, η1, η2) + κη

[(
dη1

dx

)2

+

(
dη2

dx

)2]}
dx. (4.128)
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From the bulk free energy density selected in the present work, f(ρ = 1, η1, η2) across

a grain boundary translates into,

f(ρ = 1, η1, η2) = Bξ(η1, η2). (4.129)

The functions η1(x) and η2(x) that extremize functional (4.128) satisfy Euler-Lagrange

equations,

∂f

∂η1

− 2κη
d2η1

dx2
= 0 (4.130.1)

∂f

∂η2

− 2κη
d2η2

dx2
= 0 (4.130.2)

and satisfy the boundary conditions,

η1 = 1 and η2 = 0 for x→ −∞, (4.131.1)

η1 = 0 and η2 = 1 for x→ +∞, (4.131.2)

dη1

dx
=

dη2

dx
= 0 for x→ ±∞. (4.131.3)

Multiplying Eq.(4.130.1) by dη1
dx

and (4.130.2) by dη2
dx

and adding,

∂f

∂η1

dη1

dx
+
∂f

∂η2

dη2

dx
− 2κη

[(
d2η1
dx2

)
dη1
dx

+

(
d2η2
dx2

)
dη2
dx

]
= 0, (4.132)

which can be rearranged to give,

df

dx
− κη

[
d

dx

(
dη1

dx

)2

+
d

dx

(
dη2

dx

)2]
= 0. (4.133)

Integrating the above equation and evaluating the constant of integration using the

boundary conditions (4.131.1), (4.131.2) and (4.131.3) (which turns out to be zero),

f(ρ = 1, η1, η2) = κη

[(
dη1

dx

)2

+

(
dη2

dx

)2]
. (4.134)

The above relation, known as the equipartition of energy implies that at equilibrium, the

bulk term and the gradient term contributes equally to the interfacial free energy. Simple

algebraic rearrangement of the above Eq. yields the equilibrium profiles as,

dη1

dx
= −

√√√√ f(ρ = 1, η1, η2)

κη

[
1 +

(
dη2
dη1

)2] , (4.135.1)

dη2

dx
= +

√√√√ f(ρ = 1, η1, η2)

κη

[
1 +

(
dη1
dη2

)2] . (4.135.2)
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Combining Eq.(4.128) and (4.134) gives,

γGB
NV

= 2

∫ +∞

−∞
f(ρ = 1, η1, η2) dx. (4.136)

Using Eq.(4.129) and changing the independent variable from x to η1,

γGB
NV

= 2
√
κηB

∫ 1

0

√
ξ(η1, η2)

√
1 +

(dη2

dη1

)2

dη1 (4.137)

The above integral can only be solved analytically for ε = 1.5, for which the profiles η1(x)

and η2(x) are symmetric across x = 0, such that η2(x) = 1 − η1(x) and dη2
dη1

= −1 [189].

For all other values of ε 6= 1.5, the integral needs to be evaluated numerically yielding,

γGB
NV

= 2
√
κηBI1(ξ(η1, η2)) (4.138)

where, I1 is a constant depending upon the function ξ(η1, η2).

The GB width is defined heuristically as the region where η1 (or η2) varies from a

value of 0.1 to 0.9 [205]. Thus, rearranging Eq. (4.135.1) can be written as,

∫ +δGB/2

−δGB/2
dx =

√
κη
B

∫ 0.9

0.1

√√√√1 +
(

dη2
dη1

)2

ξ(η1, η2)
dη1 (4.139)

A numerical integration of the above Eq. results in,

δGB =

√
κη
B
I2(ξ(η1, η2)) (4.140)

where, I2 is a constant depending upon the function ξ(η1, η2). It is to be noted that one

is free to choose any form of multiwell in ηi which would only modify the constant I1

and I2, but not the
√
κηB and

√
κη
B

dependency of γGB and δGB. Thus, by choosing an

appropriate ξ(ηi), κη and B one can tailor material specific γGB and δGB.

4.6.1.2 Interphase boundary

To calculate the surface energy, similar to the above approach, a planar interface be-

tween an interconnect grain and the underlayer corresponding to (ρ, η1, η2) = (1, 1, 0)

and (0, 0, 0) respectively is assumed. Accordingly, the surface energy γS is given by the

integral,

γS
NV

=

∫ +∞

−∞

{
f(ρ, η) + κρ

(
dρ

dx

)2

+ κη

(
dη

dx

)2}
dx. (4.141)
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Again following the procedure outlined for the GB, the equipartition of energy at equi-

librium dictates,

f(ρ, η) = κρ

(
dρ

dx

)2

+ κη

(
dη

dx

)2

. (4.142)

To make the relationship between numerical parameters and γS apparent, Ref. [202] is

followed by assuming a linear profile of both the order parameters across the interface as,

dρ

dx
∝ dη

dx
(4.143)

which according to the boundary conditions ρ(−∞) = η(−∞) = 1 and ρ(+∞) =

η(+∞) = 0 translates into,

ρ(x) = η(x). (4.144)

The above equality implies,

dρ

dx
=

dη

dx
. (4.145)

Substituting Eq.(4.146) in (4.143),

dρ

dx
= −

√
f(ρ, η)

(κρ + κη)
. (4.146)

Based on the equality (4.144), the bulk free energy translates into f(ρ, η = ρ) = (A +

C)ρ2(1− ρ)2 + B
4
ρ2(ρ2 − 1)2. Similar to the procedure used in deriving Eq. (4.136) and

(4.137), γS can be approximated by the integral,

γS
NV

= 2

∫ 1

0

√
(κρ + κη)

√
f(ρ, η = ρ) dρ (4.147)

Thus, it can be inferred,

γS
NV

= 2
√

(κρ + κη)I3(A,B,C). (4.148)

It can also be shown that the surface width δS is given by,

δS =
√

(κρ + κη)

∫ 0.9

0.1

1√
f(ρ, η = ρ)

dρ (4.149)

which can be simplified as,

δS =
√

(κρ + κη)I4(A,B,C). (4.150)



Chapter 4. 76

where I3 and I4 is a constant depending on the exact nature of f(ρ, η) and the coefficients

A,B,C.

As evident from Eqs. (4.138), (4.140), (4.148) and (4.150), in the present phase-

field model the model parameters A,B,C, κρ, κη can be tuned to produce a range of

interfacial energies. However, it should be emphasized that the above relations hold only

approximately and only serve as a guideline. In the present thesis, the interfacial energies

are evaluated numerically (which does not involve any approximations) as,

γS,GB
NV

=

∫ +∞

−∞

{
f(ρ, η1, η2) + κρ

(
dρ

dx

)2

+ κη

[(
dη1

dx

)2

+

(
dη2

dx

)2]}
dx (4.151)

starting from an initial sharp planar interface between two interconnect grains for γGB

and between an interconnect grain and the underlayer for γS with their respective equilib-

rium (ρ, η1, η2). The kinetic Eqs.(4.23) and (4.24) are then solved (so that the interfaces

become diffuse) until there is no appreciable change between two successive timesteps.

The interfacial energies are then calculated by numerically integrating Eq.(4.151). A

comparative study of the influence of above parameters and the equilibrium profiles can

be found in Ref. [188]

4.6.1.3 Selection of gradient energy coefficients and barrier heights

Although, the present work is not confined to any specific material, the parameters need

to be chosen such that γGB and γS are related as,

2γS sin θ = γGB (4.152)

where θ is the angle between the surface tangent at the root and the horizontal axis. As

a result, the permissible values follow,

0 ≤ γGB
γS
≤ 2. (4.153)

Moreover, in metals γS is higher than γGB. As such the scaled values of the potential

barriers A,B,C is chosen to be equal (= 1) and the gradient energy coefficients, κρ = 1

and κη = 0.33, such that γGB
γS

= 0.7 and dihedral angle is 139◦. The δGB and δS are

calculated to be 2.4 and 3.5 respectively.

4.6.2 Kinetic parameters

The selection of kinetic parameters namely the atomic mobilities and the relaxation

coefficient is discussed next. The atomic mobilities in phase-field model is related to the
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Figure 4.3: Comparison of the Mullins’ constant B obtained from asymptotic analysis (dashed

line) and that form the slope of the temporal decay of a sinusoidal perturbation performed using

phase-field simulations. The agreement is good at higher wavelengths λ where the small slope

approximation is fulfilled as assumed in Mullins’ theory.

diffusivity. In case of bulk diffusion, the Cahn-Hilliard Eq. can be compared to the Fick’s

law to relate bulk atomic mobility to bulk diffusivity as [165],

DB = MB
∂2f

∂ρ2
(4.154)

In case of surface diffusion, the surface atomic mobility can be related to surface

diffusivity by relating the normal velocity of the interface obtained from the asymptotic

analysis of the phase-field model to that from the sharp-interface theory of Mullins [122]

which states that,

Vn = B∇2
sκs (4.155)

where,

B =
DsδsγsΩ

kBT
(4.156)

is a constant comprising of material parameters and κs is the mean curvature. The

parameter B is extracted from the simulation parameters by comparing the expression

of the normal velocity of the interface from sharp-interface relation (only the capillarity

part) and that obtained from the asymptotic analysis of the phase-field model Eq.(4.123)

yielding an expression,

B = γsM s, (4.157)

The values of γs and Ms can be obtained numerically by starting from a 1−D domain with

an initial sharp interface between a grain of the interconnect (characterized by ρ = 1,

η1 = 1 and η2 = 0) and the underlayer domain (characterized by ρ = 0, η1 = 0 and

η2 = 0). The profile is equilibrated such that there is no appreciable change between

two successive timesteps and the above expressions are evaluated. The above procedure

yields a value of B = 1.21 for the assigned numerical parameters. The expression can

be counterchecked by comparing the value of B obtained from the Mullins’ theory of
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dampening of sinusoidal perturbations [206] as done in Ref. [207]. To this end, simulation

by imposing a perturbation of the form Ao sin(kx) on a planar interface between an

interconnect and underlayer domain with their respective equilibrium ρ and η values is

performed and the progressive decay of the amplitude is tracked. According to [206], the

decay obeys an exponential law of the form,

At = Ao exp[−Bk4t]. (4.158)

Thus the slope of the ln
(
At
Ao

)
vs. t curve is given by −Bk4, from which the value of

B can be evaluated. However, it is to be noted that Mullins’ theory is valid for the

case of Aok � 1 such that the temporal decay of the perturbation obeys the small slope

approximation. It can be seen in Fig.4.3 that as λ increases (or in other words as k

decreases), the value of B converges to that obtained from expression (4.158). Once the

value of B is known, the value of Ds
kBT

can then be evaluated from Eq. 4.156 if the other

parameters are known.

The GB atomic mobility MGB can be related to the GB diffusivity by comparing the

expression of the GB flux from sharp interface and phase-field model as,

DGBδGB
ΩkBT

zGBeE = MGBzGBeE (4.159)

which implies,
DGB

ΩkBT
=
MGB

δGB
(4.160)

where MGB =
∫ +∞
−∞ 4MGB

√
η2

1η
2
2dz is evaluated similar to M s considering a planar inter-

face between the two grains of the interconnect.

The surface evolution is governed simultaneously by Cahn-Hilliard and Allen-Cahn

equations because of the variation of both the conserved and the non-conserved variables.

Owing to the choice of our mobility values, the Cahn-Hilliard equation exhibits motion

by surface laplacian of the mean curvature, in addition to the motion by mean curvature

due to Allen-Cahn dynamics. As a result, for a given MS, one needs to choose Lη such

that the surface evolution is diffusion controlled and invariant of its choice.

4.6.3 Electrical properties

Moving on to the electrical parameters, the effective valence which is a sum of electrostatic

and wind force can be directly used from the experimental observed values of metals. In

the present work, a representative value of −5 is selected which has been reported for

copper interconnects. The conductivity of the metal interconnect σm is set to be 10 times

higher than the dielectric underlayer σu.
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To calculate JGB the electric field or potential difference across the conductor due to

the applied potential at the domain edges for the CV setup should be determined. This

can be obtained by creating a circuit analogy of the simulation set up as shown in Fig.

4.1(d). Since the underlayer domain and the metal are connected in series, the same

current flows through them. Hence from the Ohm’s law, potential at an intermediate

point between underlayer and interconnect can be calculated to be,

VI = V

(
Ru
Rm
− 1
)

(
Ru
Rm

+ 1
) , (4.161)

where V is the applied potential, Ru and Rm are resistances of the underlayer and the

interconnect respectively. Thus the electric field across the conductor Em can be written

as,

Em =
V − VI
Lm

=
2V(

1 + σmLu
σuLm

)
Lm

, (4.162)

where σm and σu are the conductivities of the metal interconnect and the underlayer

material, while Lm and Lu are the length of the interconnect and the underlayer domain.

Thus, the grain-boundary flux can be expressed as,

JGB = MGBzeEm. (4.163)

It is important to note that in the CV set-up, as the surface drifts under the action

of EM, the conductor length Lm decreases, as a result of which Em (and concomitantly

JGB) drops overtime. The reported Em corresponds to the initial value. On the other

hand, the CC set-up ensures a constant Em = j/σm throughout the course of drift. Thus,

the two BCs are motivated to test whether the assumption of constant GB flux JGB is

necessary to attain a steady state drift.

4.7 Applicability, limitations and possible extensions

of the model

A few comments on the general applicability of the model and the results obtained from

the model is in order.

1. EM in metals can either occur through the electron-current-induced diffusion of

interstitial atoms or via the migration of substitutional atoms by a vacancy mech-

anism [184]. The present model is only applicable to the latter case.
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2. The stress generation due to vacancy accumulation is neglected in the present

model. The presence of gradient of stresses can further accentuate the driving

force for atomic transport [111]. In addition, the generation and annihilation of

vacancy is also not accounted.

3. A current carrying wire produces a magnetic field around the conductor. As a result

of which the net force on the ions should be an addition of the contributions from

electric and magnetic force. Since the direction of the magnetic force is perpendic-

ular to the plane of the current (from the conventional right hand rule), its effect

on diffusion is disregarded [208].

4. The effect of back stress along the line is neglected. In Blech-type test geometries

as the conductor drifts in the direction of electron wind, a back stress is generated

across the line which impedes the further movement [87]. This essentially implies

that the slit evolves and propagates along an infinite GB. Consequently, the EM

fluxes are not blocked at the domain edges. In the present framework, physics of

both back-stress accumulation and stress-assisted atomic transport can be incorpo-

rated by solving a complete elastic boundary-value problem [137, 209].

5. Passage of electric current through the line causes Joule’s heating that activates

an additional mode of mass transport via thermomigration [210, 121]. The multi-

physics of heat and mass transport can again be easily incorporated by coupling an

additional heat diffusion equation.

6. Finally, all the properties of the interconnect namely interfacial energy, atomic

mobility and the conductivity have been assumed to be isotropic. The assumptions,

considerably simplify the analysis, however it is remarked that anisotropy in either

of the properties can easily be incorporated and is not a limitation of the phase-

field modeling in general. For e.g., most commercial interconnects are face-centered

cubic (FCC) metals which are characterized by a strong diffusional anisotropy. This

effect can be included by introducing the crystallographic direction dependence in

surface atomic mobility (MS) [136] as M(ρ, ηi) = MS(ρ)[1 + δ cos k(θ + ψ)] where

δ denotes the anisotropy strength, θ = tan−1(ρy/ρx) is the angle between normal

to the surface (∇ρ) and x-axis and ψ represents the misorientation angle between

the fastest diffusion direction and x-axis. k depicts the number of diffusion paths

on a crystalline plane. For FCC metals k = 2, 4, 6 corresponds to {110}, {100}
and {111} planes respectively. The presence of diffusional anisotropy can lead to

richness in the dynamics of GB grooving and slit formation in polycrystalline lines

as has been previously demonstrated for bamboo-type lines [142] and single crystal

islands [211, 212, 213]. GB diffusional anisotropy can also be modeled along similar

lines.
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We end the chapter highlighting a few key differences to the related electrochemical

phenomenon. In electrochemical problems such as electrodeposition, the applied current

densities are of the order of 10− 100A/m2, in contrast to EM-induced damage in metals

where the imposed currents are in the range of 108 − 1010A/m2. As a result the electron

wind does not play a role in such problems. Therefore the driving force for diffusion is

the electrochemical potential (µA + qAφ) and the cross-term is neglected. Secondly, in

electrolytic solution all the ionic species contribute towards the current. The electrostatic

field distribution in such systems is evaluated by solving Poisson’s equation. Even if a

condition of charge neutrality is assumed, the statement of current conservation does not

imply the validity of Laplace equation. Instead, electrostatic potential at any spatial

position is such that the flux due to concentration gradients (or chemical potentials) is

balanced by that due to electric potential gradients. In electrodes, however, the primary

charge carriers are electrons and the Ohm’s law is typically recovered.
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Chapter 5

Influence of substrate interaction

and confinement on electric field

induced transition in symmetric

block copolymer thin films

5.1 Introduction

In the present chapter, the morphologies arising due to competing substrate interaction,

electric field and confinement effects on a symmetric diblock copolymer are studied. The

phase diagram in electric field-substrate strength space for different film thicknesses is

calculated. In addition to identifying the presence of parallel, perpendicular and mixed

lamellae phases similar to analytical calculations, a region in the phase diagram where

hybrid morphologies (combination of two phases) coexist is delineated. These hybrid

morphologies arise either solely due to substrate affinity and confinement or are induced

due to the applied electric field. The dependence of the critical fields for transition

between the various phases on substrate strength, film thickness and dielectric contrast

is discussed. Some preliminary 3D results are also presented to corroborate the presence

of hybrid morphologies.

The organization of the chapter is as following. The results are presented in the

following section 5.2. The chapter is concluded by comparing the results to that from

experiments and SCFT calculations in section 5.3.

83
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5.2 Results

The various non-dimensional model parameters are selected as ∆x = ∆y = 1.0, ∆t =

0.02, κ = 1.0, B = 0.1, M = 1.0, εA = 3.0, εB = 2.0. It is remarked, that the present

results are not influenced by the choice of grid resolution (∆x and ∆y). To this end,

the numerical results (at ∆x = ∆y = 1.0) can be replicated with finer grid spacing

(∆x = ∆y = 0.5). In order to scale up the time-step width ∆t which scales as (∆x)4

for Cahn-Hilliard equation, a larger grid spacing is conveniently chosen. The values of

the permittivity closely resembles a PS-PMMA copolymer system [54, 70], though other

values have also been used in the literature [57]. The values of κ and B correspond to

a segregation of χN ≈ 18. The surface interaction strength h is varied as 0.1, 0.5, 1.0

and 1.5. Since the intention is to study symmetric walls i.e. both the surfaces attract the

same monomer, ho = hL. Moreover, the effect of confinement is also of additional interest.

Simulations are carried out for different box sizes in y-direction, Ly = 64, 32, 16, 8, 4. The

natural lamellar spacing Lo is around 10 grid points (as determined in Sec.5.2.1), so that

the selected film thicknesses allows us to study systems with Ly > Lo, Ly ∼ Lo and

Ly < Lo. Another implication of the above mentioned values of substrate interaction

and film thickness is that the surface induced ordering length is greater than the film

thickness. In other words, this implies that in the absence of electric field, lamellae,

parallel to the substrate, span across the entire film. The surface induced ordering length

for the smallest substrate affinity of h = 0.1 is around 8Lo. The magnitude of electric

field is tuned by changing the value of applied voltage, and by normalizing it with the

box size Ly, i.e., E = V
Ly

to maintain the same electric field for different box sizes.

The box size in x-direction is kept fixed as Lx = 64 in all the simulations. The initial

microstructure is generated by assigning a computational noise between ±0.005 about

the average composition (ψ = 0) corresponding to a disordered state. The system is then

allowed to evolve in presence of electrostatic field and attracting substrates.

To gain insights during the microstructure evolution process two parameters are de-

fined, average density profile along y direction ρ(y, t) [37, 214] and degree of alignment

β(t) [215, 216] as,

ρ(y, t) =
1

Lx

Lx∑
x=1

ψ(x, y, t) (5.1)

β(t) =

∑
kx,ky

k2x−k2y
k2 S(kx, ky, t)∑

kx,ky
S(kx, ky, t)

(5.2)

where kx and ky are the Fourier space wave vectors in x and y direction and k2 =

k2
x + k2

y. S(kx, ky) is the magnitude of intensity of the Fourier power spectrum defined as
1
L

〈
ψ(k, t)ψ(-k, t)

〉
. L denotes the system size Lx×Ly and the terms in the angular bracket
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Table 5.1: Number of lamellae at different film thickness Ly for weak surface interaction

strength, h = 0.1. The box size in x-direction is kept constant at Lx = 64. There exists an

interval of film thickness where a certain number of lamellae is observed. The configuration

is at the maximum frustration at lower film thickness for a given interval, while it is at mini-

mum frustration at higher value. The observed configuration is parallel at larger film thickness.

However, at smaller film thickness frustration is alleviated by averting to a perpendicular con-

figuration.

Ly(Film thickness) No. of lamellae

78 7

70-77 8

69 6

60-68 7

51-59 6

42-50 5

34-41 4

25-33 3

16-24 2

15 6(Perpendicular)

7-14 1

<6 7(Perpendicular)

imply the product of ψ and its complex conjugate in Fourier space. In cases, where the

alignment is parallel to the substrates i.e parallel lamellae along the y direction form,

kx ≈ 0, as there is no relevant periodicity along this direction. As a result, the value

of degree of alignment parameter is β = −1. In the opposite case, the alignment is

perpendicular to the surface, ky ≈ 0 and the value of degree of alignment parameter is

β = 1. Thus, a value of β = −1 implies 100% parallel lamellae, while, a value of β = 1

implies a 100% perpendicular lamellae. A parallel lamellae arrangement in y direction

is characterized by an oscillatory average density profile, whereas a flat profile about

ρ(y) = 0 corresponds to a perpendicular lamellar arrangement.

5.2.1 Determination of equilibrium lamellar thickness

The effect of confinement on the lamellae period and resulting stable arrangement is first

discussed. For the case of weak substrate interaction h = 0.1, the number of lamellae

along with stable configuration (configuration is parallel unless mentioned) at different
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Figure 5.1: Variation of average lamellar spacing L with film thickness Ly: There exists a

film thickness interval in which an integral number of lamellae exists. Within an interval,

the lamellar spacing varies linearly with film thickness. The upper limit of a film thickness

interval corresponds to a state of least frustration while the lower limit corresponds to maximum

frustrated state.

film thickness is presented in Table 5.1. For larger film thickness, the evolving configu-

ration is parallel and the lamellar period changes only in integral values. At lower film

thickness, a change in orientation to perpendicular state takes place. By doing so, the

lamellae are able to mitigate the effect of frustration. A certain number of lamellae is

stable within a fixed film thickness interval. At larger film thickness there is also a dis-

tinct reversal to a lower integral value of lamellae before going to the next higher integer.

For e.g. a change in the lamellar period from 7 to 8 takes place through an intermediate

value of 6.

The variation of the lamellar spacing with film thickness is presented in Fig. 5.1.

The average lamellar spacing, L, for different film thickness is calculated as follows. The

zeros of the density profile taken to be the interface composition are linearly interpolated

and a thickness of a layer (half lamellae), is calculated by the difference between the

adjacent zeros. L, is then found by averaging out the differences and multiplying it

by two. The following trends can be inferred from Fig.5.1. In a given film thickness

interval corresponding to a fixed number of lamellae, L varies linearly. The parallel

configuration is in the least frustrated state at the higher value of the interval, while
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the frustration is maximum at the lower end. The plot also shows abrupt change in the

lamellar spacing during transition from one lamellar period to another. Theoretically, this

change is expected to occur when the frustration is maximum, i.e when the film thickness

is Ly = (n+ 1
2
)Lo.[46] The plot bears a striking resemblance to the experimental plot of

Lambooy et al [46] (Fig.3 in their paper).

Apparently, L is strongly dependent on Ly and it is difficult to pin point at a definite

equilibrium value. However, a rough estimate can certainly be made. Since in a given film

thickness interval corresponding to a fixed number of lamellae, the least frustrated state

occurs at the upper limit, this value is presumably close to the equilibrium value. A close

inspection of Fig. 5.2 reveals that the upper limit for each interval is close to 10, which

can then be taken to be the equilibrium spacing. A second possibility is to ascertain the

equilibrium spacing from the film thickness where a perpendicular configuration is stable.

Similar methodology has been earlier used in Ref.[41] to calculate the equilibrium lamellar

spacing. This state also corresponds to a state of least frustration as film thickness in

x direction is not finite. The lamellar spacing for the two film thicknesses Ly = 15 and

6 are calculated to be 10.55057 and 10.668968, respectively. Incidentally, this value is

closer to the ones obtained for film thicknesses Ly = 78 and 69 which is around 11. This

observation implies that the equilibrium value is possibly between 10 and 11. The change

in the lamellar period is expected to take place at half-integral values of equilibrium

spacing i.e at (n+ 1
2
)Lo. Assuming Lo = 10, it can be seen in Table 5.1 that the change

in lamellae period takes place at these values, at least for thin films. A deviation occurs for

the case of larger film thicknesses, but this is natural as the change from the equilibrium

spacing can be distributed across several layers. Thus, the equilibrium spacing is closer

to 10 than 11. A value of Lo = 10 is hence chosen as the equilibrium lamellar spacing

hereafter.

5.2.2 Effect of electric field and surfaces

Some typical morphologies arising due to the interplay of substrate interaction, confine-

ment and electric field is first discussed followed by an evaluation of the resulting phase

diagram. The result is categorized into three different regimes depending on the film

thickness Ly.

5.2.2.1 Thicker films with Ly >> Lo

The combined effect of the substrate and electric field for model parameters h = 0.1,

E = 0.937 and Ly = 64(6Lo) is presented in Fig. 5.2. The phase separation initiates

from the surface leading to the formation of parallel lamellae. However, at t = 80, the
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Figure 5.2: Microstructure evolution with model parameters h = 0.1, E = 0.937 and Ly =

64(6Lo) at timesteps (a) t = 10, (b) t = 80, (c) t = 180 and (d) t = 5000. After the initial

stages of surface induced ordering as in (a) and (b), the effect of electric field sets in resulting

in a breakup of the parallel layers starting from the inner film (b) and subsequently joining in

the perpendicular direction. The final stable configuration is perpendicular as shown in (d). The

density profile in (e) and alignment kinetics in (f) also corroborate the fact that local break up

and coalescence in the direction of applied field is the mechanism of alignment.
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effect of electric field sets in, leading to undulations which ultimately break up the inner

layers into smaller domains. Subsequently, the smaller domains coalesce and get aligned

in the direction of the electric field. This phenomenon proceeds outwards layer by layer

resulting in a perpendicular lamellar arrangement due to energetic consideration.

The average density profile in Fig. 5.2(e) during early stages (corresponding to t =

10) is oscillatory near the surface, due to the formation of enriched and depleted layers.

With time the oscillatory profile develops throughout the film thickness. At t = 180,

the innermost oscillation dies out and is replaced by a flatter profile which highlights the

destruction of parallel structure at the center of the film. Much later, (corresponding to

t = 5000) the density profile becomes flat in the bulk of the film. However the average

value shows small enrichment layers at the immediate vicinity of the surfaces even though

the microstructure at the final timestep appears to be completely perpendicular. The

kinetics of alignment is presented in Fig. 5.2(f). The value of β is -1 during early

stages corresponding to parallel ordering along the surface. There is a smooth temporal

transition from -1 to a value closer to +0.9 which depicts the formation of perpendicular

lamellae.

The influence of increasing the magnitude of substrate interaction strength and electric

field for the same film thickness is presented in Fig. 5.3. The mechanism that leads to the

formation of perpendicular lamellae is essentially the same as earlier, i.e local lamellae

disruption and coalescence. However, as a result of greater substrate interaction, the

parallel lamellae near the surfaces i.e. the wetting layer never break resulting in alternate

enriched and depleted layers at the boundaries. In literature such a morphology is termed

as mixed [55, 56, 53]. Though the surface induced ordering length is greater than the

film thickness of our study, the effect of surface is predominant closer to the walls and

fades away from the walls. In other words this implies that the effect of surface is non

uniform over the whole ordering length. As a result, when the electric field drives the

domain alignment perpendicular to the surface, above a threshold interaction strength h,

and below a threshold electric field E, the substrate interaction dominates near the walls

resulting in a few parallel layers. Meanwhile the effect of electric field is predominant at

the center (away from the wall) and is able to induce a change in configuration in this

region.

The degree of alignment achieved in the direction of electric field is around 75% in

Fig. 5.3(e). Due to higher magnitude of electric field, faster kinetics is observed as can

be seen by either comparing the microstructures in Fig. 5.2 and Fig. 5.3 or by comparing

the slope of β in Fig. 5.2(e) and Fig. 5.3(e) during the transition period. The latter

has a steep transition region as compared to the smoother transition region in the former

case. Finally the consequences of further increasing the electric field to E = 2.187 is
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Figure 5.3: Microstructure evolution with model parameters h = 1.0 and E = 1.25 for film

thickness Ly = 64(6Lo) at timesteps (a) t = 10, (b) t = 80, (c) t = 180 and (d) t = 5000. Due

to the presence of higher magnitude of surface interaction strength, the lamellae near the vicinity

of the surface never break, resulting in a mixed morphology mode. (e) The average density plot

ρ(y) consists of an oscillatory profile near the walls signifying a parallel arrangement where as

the profile is flat at the middle, implying a perpendicular state. (f) The degree of alignment

parameter β captures the transition from initial parallel structure (β = −1) to the mixed state

(β = 0.5).
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     (a)      (b)       (c)      (d) 

(e) (f)

Figure 5.4: Microstructure evolution with model parameters h = 1.0 and E = 2.187 for film

thickness Ly = 64(6Lo) at timesteps (a) t = 10, (b) t = 50, (c) t = 100 and (d) t = 1000.

The presence of higher magnitude of electric field leads to nucleation of perpendicular layers

of alternate phases at the center of the film in contrast to the mechanism of local lamellae

disruption and joining at low fields. This fact is substantiated by density profile ρ(y) in (e) and

alignment parameter β (f). In the former graph, oscillatory profile characteristics of parallel

configuration never develops in the middle of the film and in the latter graph the transition of

β from negative to positive values is abrupt.



Chapter 5. 92

  

 2.56
 6.59

  10.40
14.43

(d) (e)

 2.82
7.42

9.57

14.17

     (a)      (b)        (c)

Figure 5.5: (a) microstructure corresponding to t = 5000 for model parameters h = 0.1,

E = 0.156 for film thickness Ly = 16(1.6Lo), (b) microstructure corresponding to t = 5000

for model parameters h = 1.0, E = 0.156 and for the same film thickness (c) contour plot

corresponding to (b), (d) average density profile corresponding to (a) and (e) average density

profile corresponding to (b).

studied whilst keeping the other two parameters h = 1.0 and Ly = 64 unaltered. The

results are shown in Fig. 5.4. An interesting phenomenon to observe is the mechanism

of alignment by the electric field. In contrast to the previous cases, the parallel ordering

never goes beyond two layers. Instead, the electric field is sufficiently high to orient the

composition fluctuations in the non-phase separated region, leading to the appearance

of perpendicular lamellae at the middle of the film. Subsequently, the parallel layers

near the walls also collapse and the rearrangement of perpendicular lamellae proceeds

by defect annihilation mechanism [54]. The average density profile in Fig. 5.4(e) shows

enrichment layers at the walls at all times but the oscillatory profile, characteristic of the

parallel lamellae configuration never develops at the film center. The transition regime of

alignment kinetics is abrupt as compared to the earlier cases. The value of β saturates to

a value of +0.8 which constitutes to 90% alignment in the direction of the applied field.

5.2.2.2 Films with Ly ≈ Lo

The next study focuses on configurations when the film thickness is comparable to the

bulk lamellar spacing. The case of film thickness of Ly = 16 which is approximately equal

to 1.5Lo is of particular interest. For Ly = 16 two cases with h = 0.1 (Fig. 5.5(a)) and

h = 1.0 (Fig. 5.5(b)) are presented. The electric field is kept constant at E = 0.156.

For low substrate interaction strengths, a parallel arrangement is found to be stable as

in Fig. 5.5(a). However, with increasing substrate interaction strength, circular domains
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Figure 5.6: Average density profiles at different electric field strengths for h = 0.5. All the plots

correspond to t = 5000.

emerge at the center of the film as in Fig.5.5(b). To differentiate the effect of electric field

and substrate interaction responsible for this phenomenon, the microstructural pattern in

the absence of electric field is considered. The resulting evolution (not shown) is similar,

comprising of an inner layer of circular domains. Therefore, it can be inferred that the

effect is solely driven by the substrate confinement independently of the applied electric

field. The results can also be interpreted in terms of interference of composition waves.

For higher h, the film thickness, Ly = 16, is close to half integral of equilibrium lamellar

spacing. A destructive interference takes place at the center due to the composition

waves emanating from the walls and an inner lamellae cannot be maintained. As a

result circular domains start appearing in the middle. The breakup of the inner lamellae

into circular domains is similar to the formation of holes as described by the mean-field

theory of Shull [36]. The same phenomenon is absent at low h, presumably because the

destructive interference at the film center is not sufficiently strong. An average density

plot including the transition at ρ(y) = 0 for the case of lower h is presented in Fig.5.5(d).

It can be verified that the innermost layer is thinner (10.40 − 6.59 = 3.81) than the

next two adjacent layer on both sides(6.59− 2.56 = 14.43− 10.40 = 4.03) and a parallel

arrangement can still be maintained with the innermost layer being in a compressed state.

The average density profile presented in Fig. 5.5e) shows the asymmetry in the roots

of ρ(y) = 0. The average ρ(y) value at the center is slightly B rich, clearly signifying

the absence of any parallel lamellae structure. The slight asymmetry in the average

density points indicates, either the evolution of a perpendicular phase or an in plane

asymmetric phase. The microstructure in Fig. 5.5b) indicates the second possibility

where circular domains coexist at the center simultaneously with the wetting layers. The

presence of such hybrid structures (combination of two different phases) have previously

been reported in cylinder forming systems at similar film thickness [43]. However their
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transition in electric field has not been reported previously. Although a 3D simulation

is desirable to adequately address the issue, some predictions from the current 2D study

can certainly be made. The average density profile for h = 0.5 at different field strengths

is presented in Fig. 5.6. All the plots correspond to t = 5000. At low electric field

strengths, E = 0.156, the plot is similar to Fig. 5.5d), comprising of parallel lamellae.

With a slight increase in the electric field strength, the value of ρ(y) at the center of the

film shifts towards zero (slightly B rich). The density profile is similar to Fig. 5.5e),

and denotes the appearance of a structure other than lamellae. In this case it is not the

effect of substrate and confinement alone that causes this transition, but the presence

of electric field does play its part. With further increase of electric field E = 1.25 and

2.1875, the surface enrichment decreases. At the same time, the average value at the

center of the film shifts to positive values and the profile tends to get flatter. Though it

is clear that perpendicular phases now span, at least in the middle of the film, the exact

nature is very difficult to determine precisely in 2D simulation. It is speculated that the

perpendicular phases are either cylindrical structures (for E = 1.25) or perpendicular

lamellae (for E = 2.1875).

5.2.2.3 Films with Ly < Lo

Next, the film thickness is further decreased below the equilibrium lamellar spacing, to

Ly = 4(0.4Lo). The results corresponding to model parameters h = 0.1 and E = 0.156

are shown in Fig. 5.7. The early stage microstructure corresponding to t = 10 is a

superposition of parallel and perpendicular lamellae. With time (t= 30 and 70), the

system evolves through a metastable antisymmetric configuration and transforms into a

perpendicular state. This observation is also corroborated by the average density profile.

The result is consistent with the findings of Walton et al. [39] who argue in favor of

a transient antisymmetric arrangement in symmetric thin films during the formation of

vertical configuration.

Even with the smallest electric field strength (used in the course of this study), a

perpendicular arrangement is seen to be stable. Even in the absence of the electric field,

a stable perpendicular arrangement establishes implying that the geometrical confinement

predominates over the electric field. Interestingly, β reaches the value of +1 in this case.

This observation points towards the following important fact : When the arrangement

is guided by substrate confinement, deviation from perfect perpendicular morphology

is negligible. However, significant deviation in perpendicularity is observed when the

ordering is achieved due to the application of electric field.

For ho ≥ 1.0, parallel arrangement is found to be stable in the absence and at low

strength of electric fields. At higher electric field strengths, the microstructure is a su-
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Figure 5.7: Microstructure evolution with model parameters h = 0.1 and E = 0.156 for film

thickness Ly = 4(0.4Lo) at timesteps (a) t = 10, (b) t = 30, (c) t = 70 and (d) t = 200. The

microstructure has been drawn in 1 : 1 scale for clarity. To relieve the frustration due to con-

finement, the copolymer arranges in a stable perpendicular configuration even in the absence of

electric field. The early time microstructure in (a) is a superposition of parallel and perpendicu-

lar lamellae. The final perpendicular state is achieved through a transition state of asymmetric

configuration as also seen in the density profile in (e) (t = 70). (f) The degree of alignment

parameter corresponds to a perpendicular state.
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Figure 5.8: Microstructure evolution with model parameters h = 1.0 and E = 2.188 for film

thickness Ly = 4(0.4Lo) at timesteps (a) t = 1000, (b) t = 1500 and (c) t = 5000 . The

microstructure has been drawn in 1 : 1 scale for clarity. The microstructure at final step is a

superposition of parallel and perpendicular lamellae. The perpendicular lamellae are thinner at

the center. (d) The average density profile is also not flat in the region of ρ(y) = 0, implying

a significant deviation from perpendicular arrangement. (e) The value of degree of alignment

indicates a 50% aligned structure in the direction of field.
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perposition of parallel and perpendicular lamellae as can be seen in Fig. 5.8. Because

of the small film thickness, the substrate interaction is predominant and electric field is

not able to completely eradicate the previous surface ordering phenomenon. Correspond-

ingly β saturates to a value of 0 which is midway between parallel and perpendicular

configuration.

5.2.3 Phase diagram

A phase diagram to summarize the influence of electric field E, surface interaction

strength h and film thickness Ly on the evolving morphologies by classifying them into

parallel, perpendicular and mixed category is next constructed. The morphology mixed

is designated only when there exists at least one completely parallel layer (L = Lo/4 since

the layers closer to the substrate are one-half of the inner layers) . Classification based

on such criteria will allow us to compare the resulting phase diagram with the analytical

calculations [56, 55]. Any other combination of phases is denoted as hybrid structure.

The resulting configuration stability diagram is shown in Fig. 5.9. The following points

can be appreciated,

1. For a given film thickness, the magnitude of applied electric field to induce a perpen-

dicular arrangement increases with increasing magnitude of substrate interaction

strength. Any deviation from this generality occurs only for very thin films e.g.

Ly = 4 (Fig. 5.9(e)) and closer to half-integral lamellar thickness i.e (n + 1
2
)Lo (in

our case Ly = 16, Fig. 5.9(c)).

2. At low strength of substrate interaction (h = 0.1, 0.5) and electric fields, parallel

arrangement is found to be stable. However beyond a certain critical value of the

electric field e.g. E = 0.937 corresponding to h = 0.1, the configuration oscillates

between perpendicular and parallel configuration (Fig. 5.9 (a)-(e)). The present

findings accentuate the previous analytical results [56]. In general : As Ly de-

creases, the effect of substrate interaction becomes more prominent. Therefore a

higher magnitude of electric field is required to induce a transition from parallel

to perpendicular configuration. However, for Ly incommensurable with the bulk

lamellar spacing (say (n + 1
2
)Lo) i.e. halfway between integral lamellar spacings,

the free energy of the parallel configuration is maximum and hence a lower electric

field can induce a perpendicular transition.

3. For unstrained films e.g. Ly = 64, 32, the critical electric field Ec required for

a parallel to perpendicular transition scales as L
−1/2
y [56]. Though the numerical

calculations are carried out at discrete values of electric field, this behavior can still
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Figure 5.9: Phase diagram showing the stable arrangement at different magnitudes of electric

field E and substrate interaction strength h for different film thicknesses (a) Ly = 64(6Lo),

(b) Ly = 32(3Lo), (c) Ly = 16(1.6L0), (d) Ly = 8(0.8Lo) and (e) Ly = 4(0.4Lo). The

microstructures for Ly = 8 and 4 have been drawn in 1 : 1 scale. All the above plots are for

permittivity values of εA = 3.0 and εB = 2.0.
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Figure 5.10: Temporal variation of the free energy contributions arising from the (a) double-well

term, (b) gradient energy term, (c) long range interaction term, (d) electrostatic energy term

and (e) surface energy term corresponding to the case h = 0.1, E = 0.625 and Ly = 64(6Lo).

(f) Net free energy obtained from the summation of all the contributions.
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Figure 5.11: Temporal variation of the free energy contributions arising from the (a) double-well

term, (b) gradient energy term, (c) long range interaction term, (d) electrostatic energy term

and (e) surface energy term corresponding to the case h = 0.1, E = 0.9375 and Ly = 64(6Lo).

(f) Net free energy obtained from the summation of all the contributions.
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be verified: Ec for h = 0.1 and Ly = 64 lies between 0.625 and 0.9375 (Fig. 5.9

(a)). Taking Ec = 0.9 for Ly = 64, Ec for Ly = 32 can be calculated to be 1.27

which lies between the values of 1.25 and 1.562 in Fig. 5.9(b). Similar trend can

be verified for h = 0.5 in Fig. 5.9(a) and (b).

4. For higher substrate interaction strengths, i.e h = 1.0, 1.5, the range of stability of

parallel configuration increases with decreasing film thickness (Fig. 5.9(a), (b), (d),

(e)). For Ly < Lo, the parallel configuration is more stable.

5. Mixed morphologies are stable only for thicker films (Ly ≥ 3Lo) and for higher

substrate interaction strength, h ≥ 1 (Fig. 5.9(a), (b)). Interestingly, the elec-

tric field required for the transition of parallel to mixed morphology, i.e. the first

critical field is independent (or at most weakly dependent due to the discretized

nature of the phase diagram) of substrate interaction strength (Fig. 5.9(a) and

(b)). However, the second critical field i.e. the field required to convert mixed

to perpendicular morphology is dependent strongly upon the substrate interaction

strength (approximately linearly).

6. Next, consider the variation of the critical fields with film thickness for unstrained

films (Ly = 64, 32) for fixed substrate interaction strengths of h = 1.0, 1.5 (Fig. 5.9

(a) and (b)). Clearly, both the critical fields depend upon the film thickness. The

dependence of the first critical field, though, is stronger than the second critical

field.

7. Interesting morphologies arise at Ly ∼ 1.5Lo where the film thickness is incom-

mensurable with the lamellar period. At low substrate affinities a usual parallel to

perpendicular lamellae transition is observed but at higher affinities a wide range

of hybrid structures results. The exact nature, though, is not clear in the present

study.

A comment on the free energies of the different structures is also warranted. In

analytical static calculations, a comparison of the free energies as a function of h and E

of two states, say parallel and perpendicular is made to ascertain the stable configuration

and the critical electric field required for the phase transition. The spontaneous phase

transition from one configuration to the other in dynamic calculations, on the other

hand, precludes the possibility to exactly pin point the critical value. Therefore, the phase

boundaries (black dashed lines) in Fig.5.9 are just a guide to the eye. A comparison of the

free energies of the two states, however, can certainly be made. The temporal variation

of various contributions to the free energy in Eq.(3.59) corresponding to the case h = 0.1,

E = 0.625 and Ly = 64(6Lo) (parallel configuration) is shown in Fig.5.10. Since we start
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the simulations from a disordered state (ψ = 0), the free energy arising from the double-

well contribution (Fig.5.10(a)) decreases overtime as phase separation proceeds and the

value of ψ reaches that of a segregated state (not necessarily ψ = ±1). The increasing

gradients in ψ increases the gradient energy contribution (Fig.5.10(b)). Similarly, the

deviation of ψ from the average value of m = 0, increases the contribution from the long

range term with time (Fig.5.10(c)). The free energy of the long range term was calculated

from Eq.(3.12) by first solving the Poisson Eq.(3.8) subjected to the appropriate boundary

condition. Due to the development of the parallel lamellae structure, the electrostatic

energy increases (Fig.5.10(d)) because of the presence of unfavorable interfaces and the

surface energy decreases (Fig.5.10(e)) simultaneously due to the wetting of the substrate

by the preferred block. Although the electrostatic part is the main contributor to the

total free energy, the net energy of the system decreases with time (Fig.5.10(f)) due to

the decrease in the double-well and the surface energy terms.

The free energy for the case h = 0.1, E = 0.9375 and same film thickness which leads

to perpendicular lamellae structure is shown in Fig.5.11. The double-well (Fig.5.11(a)),

gradient (Fig.5.11(b)) and long range (Fig.5.11(c)) terms behave similarly and the mag-

nitudes of the free energy from these terms are roughly the same order of magnitude as

the previous case. The formation of parallel lamellae at initial stages (as also evident

in Fig.5.2) leads to an increase of the electrostatic energy (Fig.5.11(d)) and decrease in

the surface energy (Fig.5.11(e)). However, due to the higher applied electric field, the

disruption and formation of perpendicular lamellae at later stages, reverses the trend.

Due to the dominant contribution of the electrostatic energy (which is roughly four times

higher than the previous case), the net free energy follows the same trend i.e. it does

not decrease monotonically (Fig.5.11(f)). It is to be noted that this does not violate the

second law of thermodynamics, since the system is connected to an external power source

which does work on the system.

The net free energy decreases with increase in the applied electric field (for a given

h) as shown in Fig.5.12 because of the decrease in the electrostatic energy. The curve

in Fig.5.12 represents the the minimum of the free energy curves of the parallel (F‖(E)),

perpendicular (F⊥(E)) and mixed state (Fm(E)) i.e. min.{F‖(E), F⊥(E), Fm(E)}.

5.2.4 Role of dielectric contrast

The effect of increasing the dielectric contrast i.e. εA − εB on the final configuration,

will now be discussed. Increasing the contrast between the two blocks implies that the

material is more responsive to an applied electric field and, as a consequence, if (εA− εB)

is large, the resulting phase diagram is governed by the relative mismatch. In the studies
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Figure 5.12: Variation of net free energy with applied electric field for h = 1.0

so far, the values ∆ε = 1 (εA = 3 and εB = 2) have been considered, which are close

to the values reported by Amundson et al. [54] (εA = 3.8 and εB = 2.5) for PS-PMMA

copolymer. If the permittivity difference ∆ε = 3.5 is increased by selecting εA = 6.0 and

εB = 2.5 as reported in Ref. [57, 56, 158], for the same copolymer system, an increase in

electrostatic free energy contribution is expected for the same magnitude of applied field.

The discussion is restricted to unstrained films (Ly = 64, 32). The resulting phase

diagram is presented in Fig. 5.13 and the corresponding values of the critical electric fields

are drastically lowered. According to the analytical calculations [56, 55], this decrease is

proportional to
√
εA+εB
εA−εB

. Considering the critical electric field to be Ec = 0.9 for ∆ε = 1

and Ly = 64 and h = 0.1 (Fig. 5.9(a)), the critical field on increasing the dielectric

contrast to ∆ε = 3.5 according to above equality (on holding Ly and h constant) yields

a critical value of around Ec = 0.3 which complies well with Fig. 5.13(a). A similar

behavior is retrieved for Ly = 32 as well.

The nature of the phase diagram changes dramatically and the region of mixed mor-

phology in the phase diagram is diminished. With enhanced dielectric contrast, the

dependence of the critical fields on the substrate interaction strength for a given film

thickness becomes rather weak. This is contrary to the behavior at low dielectric contrast

where the second critical field (mixed to perpendicular) displayed a strong dependency

on substrate interaction strength. However, the dependency of the critical fields on film

thickness for a given substrate interaction strengths is similar to that at low dielectric
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(a)

(b)
 

Figure 5.13: Phase diagram showing the stable arrangement at different magnitudes of electric

field E and substrate interaction strength h for film thickness (a) Ly = 64(6Lo), (b) Ly =

32(3Lo) for permittivity values of εA = 6.0 and εB = 2.5.
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Figure 5.14: Microstructural patterns at (a) Ly = 64(6Lo),h = 0.5, E = 1.25, (b) Ly =

64(6Lo),h = 1.0, E = 1.25, (c) Ly = 32(3Lo),h = 0.5, E = 1.562, (d) Ly = 32(3Lo),h = 1.0,

E = 1.562, (e) Ly = 8(0.8Lo),h = 0.1, E = 1.25, (f) Ly = 8(0.8Lo),h = 0.1, E = 1.562, (g)

Ly = 4(0.4Lo),h = 0.1, E = 0.156, (h) Ly = 4(0.4Lo),h = 1.0, E = 2.1875. A comparison with

the 2D morphologies in the phase diagram presented in Fig.5.9 suggests that the microstructure

fall into the same adopted morphology classification in 3D as well.

contrast i.e. both fields depend on the film thickness with the dependency of the second

critical field being higher than the first.

5.3 Discussions and Conclusions

The chapter is concluded with a critical assessment of the results from the present study

to the experiments, analytical and SCFT calculations. The most relevant experimen-

tal study is due to Xu et al. [53, 7]. They studied thin films of varying thickness

(4Lo, 10Lo, 20Lo, 100Lo) [7]. For film thicknesses less than 10Lo, substrate interaction

was found to be dominant resulting in parallel arrangement, even on application of elec-

tric field of 40V/µm . The substrate induced ordering length in their study was about

5Lo and the segmental interaction or the segregation was χN = 26. The segregation in

the present work is relatively weaker than their experiments (χN = 18) and ordering

length is around 8Lo (with lowest substrate interaction strength). The critical field for

lowest substrate interaction from our study is of the order of 76V/µm and 128V/µm for

Ly = 6Lo and 3Lo respectively for a dielectric contrast of ∆ε = 1. The second value is
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      (e)
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Figure 5.15: Microstructural patterns for Ly = 16(1.5Lo) at substrate affinity and electric field

strength of (a) h = 0.1, E = 0.9375, (b) h = 1.0, E = 0.156, (c) h = 0.5, E = 1.25, (d)

h = 0.5, E = 2.1875, (e) top view of the contour of the order parameter gradient of (c), (f)

sideview of (e) and (g) a zoomed view of (f). The coexistence of parallel wetting layers and

an inner parallel layer of cylinders can be seen in (b).The presence of electric field induces the

formation of perpendicular cylinder in (c). However at higher field strengths, the system reverts

to a perpendicular lamellae (d).
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actually quiet high and may well exceed the dielectric breakdown of the material and in

such cases only parallel ordering would be exhibited. It is remarked that in recent ex-

periments, electric field of the order of 120V/µm have been applied [71]. However, if the

critical field for enhanced dielectric contrast of ∆ε = 3.5 (the same as in experiment) is

examined, the values are around 40V/µm and 52V/µm for Ly = 6Lo and 3Lo respectively,

which are well within experimental range. Given a higher segregation in experiments, the

critical fields are expected to be higher than that in the present study. Infact using SCFT

Matsen [158] calculated the critical field to be around 57V/µm for the same experimen-

tal conditions of Xu et al. (∆ε = 3.5 and χN = 26) for Ly = 10Lo, though substrate

interaction was not explicitly considered. Moreover, at χN = 18, the critical field from

their work would turn about to be roughly 58V/µm for dielectric contrast of ∆ε = 3.5

and Ly = 6Lo(Fig 5(a) in Ref. [158]).

A comparison of the present findings to that of Lin et al. [60] who studied sphere

to cylinder transition is discussed next. Using SCFT calculations, a complete phase

diagram was calculated. Their segregation also corresponds to χN = 18. The present

work is thus complementary to their study. For weak substrate interaction, the critical

field (maximum value) calculated by them is around 32V/µm and 45V/µm for Ly =

6Lo and 3Lo respectively (Fig. 7 in ref. [60]). Considering that sphere to cylinder

transition generally takes place at field strength lower than parallel to perpendicular

lamellar transition, our values of 40V/µm and 52V/µm are quite in agreement with SCFT

calculations. A similar comparison can also be made at higher substrate strengths.

The calculated phase diagrams are similar in spirit to that by Lyakhova et al. [57].

In both studies, the phase diagram is obtained from dynamic microstructure evolution

rather than static calculations [56, 60]. The authors investigated parallel to perpendicular

transition of lamellar morphology using dynamic SCFT coupled to perturbed solution

of Maxwell equation for thin films of Ly = 4Lo and segregation of χN = 16. Mixed

morphologies were however not observed in that study. In the present study, the system

was allowed to evolve from a disordered state under combined electric and substrate

field, whilst in the study of Lyakhova et al., electric field was applied to well developed

microstructures. Possible difference can arise because of the initial level of ordering. Our

results are qualitatively similar to the results of Lin et al. [60] who observed the presence

of mixed phases in film thickness as low as 3Lo in cylinder forming systems at a similar

segregation.

A comparison of the calculated phase diagram to the analytical calculation of Tsori

et al. [56] is made next. The authors computed the phase diagrams both in weak and

strong segregation regime. The results presented correspond to an intermediate regime.

Though our results are closer to WSL, the phase diagram presented in Fig . 5.9 is similar
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to the analytical calculation of Tsori et. al in SSL (Fig. 8 and 9 in ref. [56]). It is

remarked that the two phase diagrams correspond to two different segregation regimes

and are based on different assumptions. The phase diagram calculated by Tsori et al.

corresponds to SSL and is based on the assumption of finite surface ordering length and

high dielectric contrast (∆ε = 3.5 as compared to our ∆ε = 1). In WSL, they assumed

the ordering length to be greater than the film thickness and mixed morphology was not

considered. In the present study, mixed morphology is observed inspite of the ordering

length being lower than the film thickness. The consideration of finite surface ordering

length in context of WSL (and in the occurrence of mixed morphology in particular)

might have been an over assumption. Moreover, only a single intermediate phase i.e. a

mixed lamellae morphology was considered. The results of the present study, however,

indicates the presence of other intermediate or hybrid structures, thus altering the phase

diagram significantly from analytical theories.

The influence of wall interaction characteristics on the equilibrium morphologies is

briefly discussed. The present work is restricted to symmetric substrate interaction.

However, in principle two additional cases are possible. The substrate can be (i) antisym-

metric i.e. both walls attract different monomers with same strength or (ii) asymmetric

i.e. both walls have preference towards same or different monomers, but possess different

interaction strength. The consideration of antisymmetric case may not lead to any new

geometries other than the ones reported here. Only the region of their respective oc-

currence in the phase diagram might change, given that film thickness corresponding to

integral number of lamellae spacing would then be the frustrated state and half-integral,

the natural state. On the contrary, asymmetric interaction can potentially engender an

additional type of mixed morphology, where the system adopts a parallel configuration on

one side (where interaction strength is comparatively higher) and perpendicular configu-

ration on the other (where interaction strength is weaker). However, it remains to be seen

if the competing electric field can stabilize other morphologies, for instance, cylindrical

that has been reported in the present study.

To summarize, the morphology evolution of a symmetric diblock copolymer under

competing substrate interaction and electric field using a coupled Ohta-Kawasaki func-

tional and Maxwell equation is studied. By solving the full Maxwell equation, the weak

dielectric inhomogeneity is not assumed, making the model equally applicable irrespec-

tive of segregation. A good agreement with the analytical and SCFT calculations, amply

demonstrates the predictive capability of the proposed model. A distinct advantage of

coarse graining is the accessibility to large scale simulation, especially in three dimension.

Moreover, in 3D the nature of mixed/hybrid morphologies are well defined and such a

simple classification (parallel, perpendicular and mixed lamellae) may not be suffice. Our

2D results does point out that in the incommensurate films in the regime Ly < 2Lo, this



Chapter 5. 109

interplay of substrate, confinement and electric field leads to rich hybrid structures and

even the occurrence of a parallel lamellae to perpendicular cylinder transition. Infact in

recent experiment on gyroid forming copolymers by Crossland et al. [71] a large number

of coexisting morphologies were observed at low dielectric contrast. Some preliminary

3D results which corroborates the findings of our present 2D study is presented in Fig.

5.14 and 5.15.



Chapter 6

Electric-field-induced lamellar to

hexagonally perforated lamellar

transition in diblock copolymer thin

films : Kinetic pathways

6.1 Introduction

Hexagonally Perforated Lamellar (HPL) morphology is known to be a long-lived metastable

state between lamellar and cylindrical phases in diblock copolymers [217, 30]. The struc-

ture of HPL encompasses the planar characteristics of lamellar phase (usually the minority

component), hexagonal or cubic arrangement of the cylindrical phase (majority compo-

nent) penetrating the parallel layers with three-fold connections similar to the gyroid

phase [218, 219]. Owing to the technological importance of HPL as a key ingredient in

the synthesis of nanoporous thin films, conceiving techniques capable of stabilizing the

otherwise metastable HPL are of scientific interest [220, 221].

In this present chapter, a detailed 3-D numerical study is presented to explore this

novel electric-field-induced lamellar to HPL transition with specific focus on the kinetic

pathways of the transition. Previously, HPL phases heretofore known to be unstable

in the bulk (thick films) are shown to be preserved in thin films in cylinder-forming

BCPs due to surface reconstruction [43, 44]. The literature is replete with investigation

that report the occurrence of HPL in thin films of triblock copolymers at asymmetric

compositions [222] as well as in diblock-homopolymer blends [223]. However, to the best

of our knowledge, any study focusing on electric-field-induced OOT to HPL morphology

has never been reported.

110
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Figure 6.1: A schematic of the simulation geometry used in the present study. BCP thin film

is confined between two rigid substrates in the z direction. The substrates have a preferential

affinity towards the B monomer. Electric field is generated by imposing a constant voltage across

the film thickness.

The simulation geometry chosen for the present study (Fig. 6.1) consists of two rigid

surfaces at z = 0 and z = Lz confining a BCP film across which a constant voltage is

applied. Dirichlet boundary conditions are applied for voltage at z = 0 and z = Lz with

φ|z=0 = +V
2

and φ|z=Lz = −V
2

while Neumann boundary conditions are applied in the

lateral directions. Thus, the resulting electric field is aligned along the z-direction.

6.2 Results

6.2.1 Effect of substrate interaction, confinement and electric

field : Phase diagram

To begin with, the the phase diagram arising out of the three way confluence of substrate

affinity, confinement and electric field is described. The phase diagram for weak substrate

affinity is presented in Fig. 6.2. In the absence of an electric field, the system mainly

(except for Lz = 15(1.5Lo)) adopts a parallel configuration with respect to the substrate.

If Lz < 15(1.5Lo) a monolayer arrangement (BAB) evolves, while films with Lz > 15

establish a bilayered arrangement (BABAB). However, films with Lz = 1.5Lo, a thickness

that corresponds to maximum frustrated state, adopts a perpendicular configuration.

The application of electric field induces a parallel to perpendicular transition above a

threshold value. The characteristic patterns in the phase diagram are symmetric about

Lz = 1.5Lo, with the critical field decreasing until Lz = 1.4Lo followed by a gradual

increase thereafter.

The phase diagram, however, exhibits exotic behavior (Fig. 6.3) with an increase in

the substrate affinity to h = 0.5. In the absence of electric field, larger substrate strength,

while maintaining other parameters unchanged, leads to parallel ordering for each film
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Figure 6.2: Phase diagram of a lamellae forming BCP at low substrate affinity, h = 0.1. In the

absence of electric field (E = 0), the film tends to adopt a parallel configuration with respect to

the substrate. However, an exception can be seen at Lz = 15(1.5Lo) (enclosed in the dashed box,

which corresponds to a highly frustrated state), where confinement alone leads to a morphological

transition to a perpendicular state. For other film thicknesses, a critical magnitude of electric

field is required to induce a change in the configuration. The morphologies in the phase diagram

are symmetric about Lz = 15(1.5Lo).
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Figure 6.3: Phase diagram of a lamellae forming system at large substrate interaction strength

h = 0.5. A parallel ordering is observed to evolve at all film thickness in the absence of electric

field. However, it is noteworthy that two critical fields exist in the present case. Above the first

critical field, a parallel to HPL transition occurs; the preferred component forms the cylindrical

domains. A slight enrichment layer of the preferred component exists at the surfaces, but, the

wetting layer, in general, is not found to be uniform. Electric field strength corresponding to the

second critical value leads to the appearance of perpendicular lamellae.

thickness. The application of electric field, however, leads to a couple of fascinating mor-

phological transitions corresponding to two distinct values of critical fields. Above the

first critical field strength, transition from a parallel lamellae to HPL occurs. Analo-

gously, a field strength corresponding to the second critical value effectuate formation of

perpendicular lamellae. At this point, it is clarified that the lamellar to HPL transition

is neither an outcome of a shift in critical temperature nor of the phase boundaries from

symmetric to asymmetric range. The shift in the critical temperature results from the

second order expansion term of the dielectric permittivity which is currently not being

considered. Further, as a precautionary measure, the volume fractions of the two blocks

is tracked which are equal at all simulation timesteps.

Thus, in all fairness, the transition is facilitated by the synergistic activity of substrate

affinity, confinement and electric field. In the phase diagram, the HPL morphology can

be seen to stabilize at a larger substrate affinity in the region between the two critical

values of the applied electric field described above. It is well worth noting that it is the

preferred component (attracted by substrate) that evolves into cylindrical domains. For

the cases studied here, the substrate always has a preference towards the block B resulting
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in the formation of perpendicular cylindrical arrays. Interestingly, the occurrence of

cylindrical phase is prolific at Lz = 1.5Lo corresponding to the maximally frustrated

state of the parallel lamellae system. Thus, the role of confinement in inducing the

novel morphological transition needs to be emphasized. The HPL morphology was not

observed beyond a film thickness of Lz = 1.6Lo. Since one cannot rule out the possibility

of HPL morphology in other bilayer films (Lz > 1.6Lo), a finer search is warranted in

the parameter space of interest (1.25 < E < 1.75). However, the range of the occurrence

of HPL is certainly diminished. Moreover, as film thickness increases beyond bilayer

arrangement, it is statistically improbable that the disintegrated layers would proceed to

coalesce end-to-end such that a final HPL symmetry is attained.

6.2.2 Lamellar to HPL transition : Kinetic Pathways

6.2.2.1 Transition in monolayer films (BAB)

To gain meaningful insights into the mechanistic pathway leading to the morphological

transition, the temporal evolution of the blocks upon initializing from a disordered state

under attracting substrate and electric field is analyzed. Initial stages of microphase

separation is predominantly governed by surface energetics leading to a parallel ordering

across the film thickness (t = 100, Fig. 6.4(a)). At t = 350 (Fig. 6.4 (b)), the applied

electric field instigates a peristaltic mode of instability in the inner layer characterized

by wave-like periodic constrictions. Subsequently, this instability leads to disintegration

of the inner layer followed by coalescence in the direction of field. The 2-D cuts in

the x − y plane (plane perpendicular to the applied electric field) are presented in Fig.

6.4(b). The ongoing coalescence process leads to the genesis of cylindrical domains of

the preferred monomer(B) in the inner layers of A matrix (Fig. 6.4(b) middle and lower

row). However, the substrate stays B-rich (of non-uniform composition) characterized by

hexagonal patterning owing to the inner symmetry of its layers (Fig. 6.4(a)) .

The kinetic pathways of the morphological transition can be rigorously elucidated

through the Minkowski functionals [224, 225, 226, 227]. This functional provides an effi-

cient means to characterize complex microstructures through geometric and topological

quantities, which for three dimensional images are the volume V , surface area S, mean

curvature H and Euler characteristic χ. The numerical technique and calculation proce-

dure of the Minkowski functionals are adopted from the references [224, 227]. For the sake

of completeness, a brief discussion is provided; however readers are referred to previously

published literature where elaborate descriptions are presented.

A black and white image is generated from the order parameter by imposing a thresh-

old value, which in the present case is the average magnitude of the order parameter
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Figure 6.4: (a) Temporal evolution corresponding to t = 100, t = 350, t = 380, t = 400,

t = 500, t = 1000, t = 5000 and t = 10000 for numerical parameters Lz = 1.2Lo, h = 0.5 and

E = 2.1875 depicting the kinetic pathway of lamellar to HPL transition in a monolayer film.

(b) 2-D sectional views in x− y plane (plane perpendicular to the applied field) at z = 2 (top),

z = 4 (middle) and z = 7 (bottom) at t = 430 (left column) and t = 10000 (right column).

Electric field induces a peristaltic instability mode in the inner layer which subsequently breaks

and joins in the direction of the electric field, leading to the appearance of cylindrical domains.
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Figure 6.5: Minkowski functionals (a) volume (V ), (b) surface area (S), (c) curvature (2H) and

(d) Euler number (χ) corresponding to the temporal evolution of Fig. 6.4. ψ = 0 contours are

also plotted alongside at representative timesteps to characterize the evolution process. Both the

monomers have been rendered transparent for clarity. As evident by the contours, the temporal

evolution can be categorized into two stages : Onset of peristaltic mode, followed by disintegration

and coalescence, leading to the appearance of thin cylinders. This is followed by the coarsening

and rearrangement of the cylinders.

(ψ = 0). The advantage of adopting such an approach in unraveling the kinetic pathways

has been earlier highlighted in Ref.[227] . The number of open cubes (nc), number of open

faces (nf ), number of edges (ne) and number of vertices (nv) are computed by an algo-

rithm formulated by Michielsen-De Raedt [224]. Finally, the four Minkowski functionals

are calculated as,

V = nc

S = 6nc + 2nf

2H = 3nc − 2nf + ne

χ = −nc + nf − ne + nv. (6.1)

The temporal evolution of the four Minkowski functionals and the corresponding

contour plots at representative timesteps are presented in Fig. 6.5. After an initial

incubation period (until t = 200), the electric field initiates a peristaltic mode of interface

instability (similar to t = 350, Fig. 6.4). The inner layers begin to disintegrate which can
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also be otherwise noted by a characteristic decrease in the volume V . The disintegration

of the inner layer leads to exposed surfaces, thereby resulting in an increase of surface area

S as shown in Fig.6.5(b). Meanwhile, the curvature 2H first decreases from t = 200 to

t = 300 due to initiation of the peristaltic interface instability. This is followed by a slight

increase in 2H to reach a maximum at t = 390 due to the formation of perforations and

thin cylindrical domains (Fig.6.5(c)). At this stage (at t = 370), the Euler characteristic

χ first starts to decrease from zero to negative values depicting the formation of tunnels

in the microstructure (cylinders joining the parallel layers in Fig.6.5(d)). The downward

trend continues until t = 440 as more and more perpendicular cylinders span across the

parallel layers. The emergence of cylinders results in an increase of V (t = 370 to t = 410)

indicating the reintegration of an A block. Meanwhile, the curvature 2H decreases during

the same time interval from (t = 390 to t = 600). In between t = 390 and t = 600,

the incipient cylindrical domains coarsen in the transverse direction as evident from the

ψ = 0 contours, resulting in a decrease of the curvature. After t = 1000, the Minkowski

functionals stay predominantly unchanged for the most part, other than the occasional

undulations due to the temporal rearrangement, indicating the completion of lamellar

to HPL transition. The final Euler characteristic, as observed in Fig.6.5(d), is negative

corresponding to a structure with many tunnels indicative of an HPL morphology.

6.2.2.2 Transition in bilayer films (BABAB)

The kinetic transition pathways in bilayer films is studied next. An exemplary morpho-

logical evolution is shown in Fig. 6.6. In this case, the kinetic pathway is similar to the

case of monolayer films, i.e. surface induced ordering leads to incipient parallel lamellae,

followed by their disruption and coalescence. However, the incubation time for the onset

of the instability is observed to be different. Owing to a larger film thickness, the influ-

ence of substrate in modulating pattern formation is not as prominent leading to an early

onset of the peristaltic instability in the inner layer (t = 200 in Fig. 6.6 compared to

t = 350 in Fig. 6.4). The 2-D slices in the x− y plane are presented in Fig. 6.6(b). The

disintegration of the parallel layers leads to a bicontinuous structure as seen in the 2-D

sectional views at intermediate timestep, t = 300 (Fig. 6.6(b) left column). The bicon-

tinuous structure temporally evolves into circular spots of B monomer in the A matrix.

It is worth noting that the radius of the spots (cylinder in 3-D) is larger at the center

and decreases upon translating towards the substrate implying a shape modulation.

To comprehend the kinetic pathways, the evolution of the ψ = 0 contours is tracked

and analysis is performed with the help of Minkowski functionals in Fig.6.7. The temporal

evolution of the Minkowski functionals are found to be different in the bilayer films,

particularly the temporal variation of S, 2H and χ. Similar to the case of monolayer
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Figure 6.6: Temporal evolution corresponding to t = 100, t = 200, t = 230, t = 260, t = 300,

t = 1000, t = 5000 and t = 10000 for numerical parameters Lz = 1.6Lo, h = 0.5 and E = 1.25

depicting the kinetic pathway of lamellar to HPL transition in a bilayer film. (b) 2-D sectional

view in x− y plane (plane perpendicular to the applied field) at z = 2 (top), z = 5 (middle) and

z = 9 (bottom) at t = 300 (left column) and t = 10000 (right column). The onset of instability,

similar to the case of monolayer films is peristaltic where the inner layer disintegrates first and

later joins the outer layers.
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films, the volume V decreases while in this case surface area S increases initially owing

to the disintegration of inner layer and subsequent joining leading to the formation of

small neck-like regions as evident from the contour at t = 220. The formation of these

connections between the inner layers lead to an increase of the curvature 2H and to

a decrease of the Euler number χ. As soon as the tiny necks span across the width

of inner layer, V and χ attain minima (first local minima of χ) at t = 220. This is

followed by a brief period of neck coalescence as highlighted by the contours at t = 240

during which 2H achieves a maximum, while χ ascends towards a sharp peak. With

time, the necks get aligned in the direction of electric field touching the outer layers as

they continue to coarsen in the transverse direction leading to the formation of cylinders

with thin interconnecting arms. At this timestep, S reaches its maximum value, while χ

plummets down to the global minimum. Obviously, the connecting arms are energetically

unfavorable as the resulting interfaces are perpendicular to the direction of the applied

electric field. As expected, these electrostatically penalizing junctions collapse in the next

timesteps leading to a decrease in S and 2H and an increase in χ. This is followed by

an in-plane rearrangement of cylinders towards hexagonal ordering as evident by more or

less unaltered values of the Minkowski functionals.

A few comments regarding the differences of the kinetic pathways in monolayer and

bilayer films are in order. Firstly, a comparison of the χ curves for monolayer and bilayer

films reveals that the latter has two successive sharp troughs in contrast to a unique

minimum in monolayer films. This indicates that the lamellar to HPL transition in a

bilayer film essentially proceeds as a two stage process. In bilayer films, the reorientation

process initiates from the center of the film and proceeds outwards. The electric field

initially disintegrates the inner layer which subsequently connects, indicated by the first

trough in the χ plot. As the connections get aligned in the direction of electric field, fresh

joints are formed with the outer layer (alternatively viewed as perforations in the outer

layer) resulting in interconnecting cylinders as also characterized by a second dip in the

Euler number (χ). Secondly, the decreasing S stage is another distinguishing feature in

the kinetic pathways of bilayer and monolayer films. On the contrary, the surface area

saturates after reaching a pinnacle in monolayer films as a result of the evolution of well

defined cylinders. However, the cylinders in bilayer films initially have interconnecting

arms which later disintegrate causing a decreasing S upon the attainment of peak value.

It is re-emphasized, that the kinetic pathway characterized by evolution of interconnecting

cylinders is solely a feature specific to bilayer films.
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Figure 6.7: Minkowski functionals (a) volume (V ), (b) surface area (S), (c) curvature (2H) and

(d) Euler number (χ) corresponding to the temporal evolution of Fig. 6.6. ψ = 0 contours are

also presented along the graph at representative timesteps to characterize the evolution process.

Both the monomers have been rendered transparent for clarity. Unlike the case of monolayer

films, the cylinders that form at an intermediate stage in the present case possess interconnecting

arms. However, these electrostatically unfavorable junctions disintegrate and rearrange at later

stages into a well-defined cylindrical arrays.
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Figure 6.8: Comparison of the kinetic pathways between parallel lamellar to HPL transition

(E = 1.25) and parallel to perpendicular lamellar transition (E = 1.75) using Minkowski func-

tionals. The onset of the transition is faster at larger electric field strength. The initial stages

of the transition are indiscernible (other than a difference in the timescale) in both cases where

by cylinders with interconnecting arms evolve at an intermediate state. However, it is at this

juncture that the kinetic pathways diverge from one another. At larger electric field strengths,

the cylinders coalesce to form perpendicular lamellae while, at lower field strengths the inter-

connecting arms collapse forming cylindrical domains.
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Figure 6.9: Overhead view corresponding to (a) Lz = 1.6Lo, h = 0.5 and E = 1.25 and (b)

Lz = 1.6Lo, h = 0.5 and E = 1.75 depicting the development of perforations (cylinders in

the center) at representative timesteps. At lower electric field, the perforations rearrange into

hexagonal ordering. Larger field strengths, initially ensues a perforated intermediate structure.

These perforations, however, coalesce forming perpendicular lamellae.

6.2.2.3 Perforated lamellae as an intermediate stage in parallel lamellar to

perpendicular lamellar transition

The next question that naturally arises is how does the kinetic pathway for parallel to

perpendicular lamellar transition differ from that of parallel lamellar to HPL transition

in thin films? Do cylinders at all form at any stage of parallel to perpendicular lamellae

transition? The answer is indeed affirmative as evident from the comparison of kinetic

pathways discussed below.

As the kinetic pathways of bilayer films are more complex, the evolution of Minkowski

functionals at two electric field strengths in Fig. 6.8 are compared. The plots correspond

to E = 1.25 where the parallel lamellae to HPL transition occurs and E = 1.75, where

perpendicular lamellae evolve. Upon comparing the two cases, the evolution timescale

is observed to be different though the pathway itself seems to be similar. Naturally,

at a higher field strength the incubation period, i.e. the time before the onset of the

transition is much shorter. During the initial stages of transition, the height of the peaks

and troughs of the Minkowski functionals are nearly the same. As implied from the

previous discussion of the kinetic pathways, these minima and maxima correspond to

the formation of cylindrical domains with interconnections. It is only at the later stages

that both the pathways diverge from one another, i.e. during the ascent of V and χ and

descent of 2H and S. The quantities V , S and χ saturate at a higher value of the field

strength E = 1.75, while the curvature 2H settles down at a lower value.
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Figure 6.10: A small section of the entire simulation domain corresponding to (a) Lz = 1.6Lo,

h = 0.5 and E = 1.25 and (b) Lz = 1.6Lo, h = 0.5 and E = 1.75 illustrate the cylinder splitting

and merging events at representative timesteps

The disparate χ values at different field strengths indicate topologically distinct BCP

structures. χ = −25 corresponds to a HPL morphology i.e. surfaces with a number of

passages, while the one with χ = −7.5 corresponds to a perpendicular morphology with

a few defects. The overhead view is presented in Fig. 6.9 which depicts the kinetic mech-

anism by which perpendicular lamellae evolve from an intermediate perforated lamellae

structure. At low electric field strengths, the initial perforations emerge, which are uneven

in shape. These perforations temporally coalesce, coarsen and simultaneously undergo

an inplane rearrangement into a hexagonal ordering. However, at larger electric field

strengths, perforated lamellae evolve at an intermediate stage, which later coalesce to

form perpendicular lamellae. A representative region of the simulation domain illustrat-

ing the merging and splitting phenomena is presented in Fig. 6.10. At low field strengths,

the reorientation process results into an interconnected cylindrical domain. With time

the interconnecting arms become thinner, and ultimately split to form isolated cylinders.

However, at larger field strengths, the intermediate cylindrical domains that evolved ulti-

mately merge leading to perpendicular lamellar morphology. Another point worth noting

is the number of timesteps required to attain the respective final morphologies at different

electric field strengths. Typically it is observed that a splitting event is comparatively

slower than the merging process.
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6.3 Discussion and Concluding Remarks

The presence of substrate affinity and confinement can markedly influence the electric-

field-induced transition in monolayer and bilayer films. The simulations were initialized

from a disordered state under the confluence of electric field and attracting substrate.

Owing to the smaller film thickness, the surface-induced ordering is almost instantaneous

(Fig. 6.4(a), 6.6(a)) leading to a parallel ordering. The dominating influence of electric

field only sets in after a certain incubation period. Even if the simulation domain is

initialized from a parallely ordered lamellae (such as in Fig. 6.4(a), 6.6(a)) the final

structure is found to be invariant. Thus, parallel lamellar to HPL transition can be

considered as one of the variants of a broad spectrum of previously reported electric-field-

induced-OOT as mentioned earlier. HPL phase, however, is not observed in the absence of

substrate affinity. Furthermore, lamellar to HPL transition changes our perspective of the

phase diagrams in symmetric BCPs. Previous numerical [56, 57] and analytical studies

[55, 56] have reported parallel, perpendicular and mixed lamellae in symmetric block

copolymers under the confluence of attracting substrates and electric field. Morphologies

possessing a distinct symmetry (in a symmetric BCP) as the one reported in this article

have never been previously reported.

Stability of monolayer [228] and multilayer films [158] subjected to a perpendicular

electric field was investigated by Matsen using a self-consistent field theory. However,

substrate affinity was not accounted for in strict sense. A cylindrical morphology was

shown to form as an intermediate structure during parallel to perpendicular lamellar

transition in monolayer films, when the instability was peristaltic [228]. The present

simulations, on the other hand, emphasize the role of substrate affinity in stabilizing the

HPL structure (and thus the cylindrical domains).

The relative stability of two morphologies in presence of electrostatic field and sub-

strate affinity can be estimated thermodynamically by comparing the free energies as

done in previous works [55, 56] for simple geometries such as parallel, perpendicular and

mixed lamellar systems. The stability of a given morphology is dependent upon the mag-

nitude of electric field E, the difference of the interfacial energy of the block and substrate

γAS − γBS (which is equivalent to the model parameter h) where, γAS and γBS represent

the interfacial energies between a given block and the substrate and the dielectric con-

stants of the two blocks. Of course, for strained films incommensuration effects such as

lamellar contraction and expansion also needs to be taken into consideration. Moreover,

for other intermediate morphologies such as mixed lamellae, interfacial energy at the

junctions need to be accounted, additionally. Although, accounting for interfacial energy

is straightforward for simple geometries [55, 56], extension of the same approach to com-

plex geometries is non-trivial. However, heuristically, a dominant substrate interaction
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Figure 6.11: Shape modulation of the cylindrical domain for different film thicknesses, Lz

: (a) 1.2Lo, (b) 1.3Lo, (c) 1.4Lo, (d) 1.5Lo and (e) 1.6Lo. The magnitude of electric field

corresponds to the highest strength for the respective film thickness as depicted in Fig. 6.3,

where HPL morphology is stable.

facilitates a parallel ordering and a larger contribution from the electrostatic term will

stabilize perpendicular arrangement. Moreover, it is also essential to examine the nature

of competing external fields. Substrate interaction is typically a short-ranged field, while

the electrostatic field is long-ranged. The influence of substrate affinity is localized close

to confining substrates. On the contrary, electric field uniformly spans over the entire

film thickness. Based on the above arguments, application of large electric fields can

induce morphological transition to a lower energy state such as perpendicular lamellae,

as shown in Figs. 6.2 and 6.3. Additionally, there exists a maximum permissible film

thickness above which, transition to mixed lamellae configuration, is feasible, as reported

in a number of previous studies [55, 56, 57, 53]. The film thicknesses considered in the

present study are, however, lower than surface ordering length and the presence of sub-

strate has a strong influence on the entire film. Transition to HPL morphology is a third

possibility that has been explored. HPL structure, similar to the mixed lamellae, can

be considered as an intermediate morphology comprising of parallel and perpendicular

domains. Modulation to HPL morphology minimizes the electrostatic free energy via for-

mation of perpendicular cylindrical channels, while the region in the immediate vicinity

of the substrate is predominantly occupied by the preferred component so as to minimize

interfacial energy. HPL morphology is shown to evolve in thin films and is presumably

absent in thicker films because of short-ranged characteristic of the substrates.

An important implication of the reported lamellar to HPL transition is that it en-

hances the composition range where the occurrence of HPL morphology can be antici-

pated. Moreover, technologically, long standing perfectly ordered cylindrical arrays are



Chapter 6. 126

highly desirable in the fabrication of scaffolds, templates and memory storage devices

[220, 221]. It is worth mentioning that cylindrical arrangement do not always manage

to attain a perfect hexagonal ordering. Specifically, the HPL structures belonging to

parallel lamellar to HPL transition region are defect-laden. To rule out the possibility

of finite size effects, additional simulations with larger system size (Lx = Ly = 128∆x)

were performed without noting any appreciable changes (not shown here). The imper-

fect ordering can thus be attributed to the lower magnitude of the applied electric field

incapable of supplying sufficient driving force for rearrangement. However, for most film

thicknesses, a well-ordered structure resulted at electric field strengths closer to the HPL-

perpendicular lamellar transition. Secondly, the predominant instability modes (due to

the applied electric field) also determines whether the final structure is defect prone.

Generally, there are two competing interface instability modes, namely peristaltic and

undulatory characterized by out of and in phase undulations respectively of the inner

lamellae. The kinetic pathway accompanying peristaltic mode leads to structures which

are less prone to defects as opposed to the undulatory mode that gives rise to undesirable

grain boundaries [228]. For the intermediate segregation regime considered in the present

study, the peristaltic mode is dominant (as exemplified in Fig. 6.4 and 6.6) and as a result

the structures are usually less prone to defects. However, in strong segregation regime,

the undulatory mode predominates over peristaltic mode and the resulting structures

are expected to be defect-laden (with a distinct possibility that the resulting structure

may not even be HPL). Moreover, as an intermediate structure, HPL provides a more

smoother transition pathway from parallel to perpendicular lamellae, thereby, leading to

a final structure that is relatively free from defects.

In electric-field-induced OOTs, where the resultant morphology consists of cylinders

(such as parallel to perpendicular cylinder [60], sphere to cylinder [57] or hexagonally per-

forated lamellar to cylinder [52]), shape modulations are generally observed. The shape

modulations in the previous studies were attributed to varying substrate affinities as well

as different values of the electric field strengths. Additionally, shape modulations de-

pending upon film thickness were observed in the present study. Comparison of cylinder

as a function of film thickness at same field strength is not possible. However, as men-

tioned before, since the most symmetric structures prevail at largest field strengths for a

given film thickness, the respective structures (Fig. 6.11) are chosen for comparison. The

shape modulation is a result of the HPL phases occurring at a symmetric composition.

In monolayer films, the central layer is always A-rich because of the preferential affinity

of B component for the substrate. As a result, for Lz = 1.2Lo, the cylinder is concave-

shaped (thinner at the center). As the film thickness is progressively increased towards

a bilayer configuration, the inner region becomes B-rich, with the cylinders displaying a

significant distortion (bulge) at the center. The shape at Lz = 1.6Lo is concave closer to
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the substrate to maximize the surface coverage, while maintaining a convex shape at the

middle to conserve the overall volume fraction.

Another repercussion of electric-field-induced HPL transition is that it allows one the

freedom to fabricate cylindrical channels of the desired block in a symmetric system.

The substrate can be coated by a suitable compound (usually a random copolymer)

such that it preferentially bonds with one of the blocks and thereby facilitate a parallel

ordering. Upon application of electric field, the preferentially attracted block will evolve

into cylindrical domains. A further comment on the magnitude of electric field strengths

required for triggering such a morphological transition is in order. Multiplying the non-

dimensional values of electric field in Fig. 6.3 by 82V/µm, representative values of around

76−180V/µm is obtained. The upper limit is actually quite high and may well exceed the

dielectric breakdown limit of the polymeric system. However, field strengths of around

120V/µm have been applied in recent experiments [71]. Moreover, a small dielectric

mismatch between the two blocks (εA = 3, εB = 2 and ∆ε = 1) has been chosen in the

present work. A larger mismatch such as in the case of PS-PMMA system (εPMMA = 6,

εPS = 2.5) lowers the field strengths (by a factor of
√
εA+εB
εA−εB

[55, 56]). In such cases, a

further reduction in the field strength can be achieved by placing the component with

larger dielectric constant at the center [228].

To summarize, electric field, substrate affinity and confinement was shown to instigate

a parallel lamellar to HPL transition in symmetric BCP thin films. HPL was found to

be stable in film thickness range Lz = 1.2 − 1.6Lo. All, but Lz = 1.6Lo correspond to

monolayer films. Incidentally, Lz = 1.6Lo is the only bilayer film where the HPL evolves

as a stable phase.
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Theory of thermal grooving :

Comparison between phase-field

simulations and Mullins’ theory

7.1 Introduction

In this chapter, the phase-field model and its numerical implementation is benchmarked

with the sharp-interface analytical theory of thermal grooving by Mullins [122] for isolated

grooves i.e. for infinite grains. Grooving refers to the progressive deepening of the

grain-boundary (GB) free surface intersection. When an initial flat surface is taken to

an elevated temperature one of the many mass transport mechanisms such as surface

diffusion [122], volume diffusion [123], evaporation-condensation [122] amongst others

are activated. The present discussion is restricted to the mass transport mechanism

solely by surface diffusion. At the elevated temperature, an initial groove develops at the

surface-GB intersection (Fig.7.1) as a result of the system trying to attain the equilibrium

dihedral angle, resulting in the reduction of GB length, while expelling material onto the

surface. This results in formation of ridges as shown in Fig.7.1, instigating a curvature-

gradient along the surface which further provides the impetus for mass flux by flattening

the ridges. This momentarily upsets the dihedral angle resulting in further deepening of

the groove by transporting material to the surface. Thus, the process of grooving goes

on indefinitely.

Grooving is an ubiquitous phenomenon and has been extensively observed and stud-

ied in bicrystals of copper [229], tungsten [230], molybdenum [231], platinum/alumina

interface [232], GB triple junctions of magnesia polycrystal [233], singular surfaces of Ni-

rich NiAl [234], Ni-films on sapphire substrates [116] among several others. GB grooving

129
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Figure 7.1: A schematic depicting the grain boundary groove along with the relevant groove

characteristics. dg represents the groove depth relative to the initial flat surface. hg is the mass

pile-up height above the flat surface. The groove width w is the distance between the abscissa of

the maximum of the profile on either side of the grain boundary. θo denotes the angle between

the tangent and horizontal axis at the groove root.

leads to stagnation of grain growth in polycrystalline thin films where a large number

of boundaries terminate on a surface [235, 236, 237]. GB grooving is responsible for mi-

crostructural degradation in form of thin film break up [238] and hole formation [239] in

polycrystals. Grooving has also been reported in polycrystalline materials with internal

voids such as solid-oxide fuel cells [240, 241, 242].

The mathematical treatment of GB grooving under surface diffusion was pioneered

by Mullins which is revisited next. Only the basic steps of the derivation are listed and

the complete derivation can be found in Ref. [122, 243]

7.2 Sharp-interface relations

Assume a surface profile y(x, t) in a Cartesian coordinate system evolving due to surface

diffusion because of gradients in chemical potential. The chemical potential of an atom

due to presence of curvature is given by [244],

µ = µo + Ωγsκs, (7.1)

where µo represents the chemical potential of a flat surface, Ω the atomic volume, γs

the surface energy and κs denotes the curvature which is given by κs = − y′′

(1+y′2)3/2
. The
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notation ′ denotes the derivative w.r.t x. The surface flux induced due to curvature

gradient reads as,

Js = −νM ∂µ

∂s
, (7.2)

where ν denotes the surface concentration of the atoms given by ν = δs
Ω

and M the atomic

mobility which as per the Nernst-Einstein relation is given by M = Ds
kBT

and s denotes

the arc length. Substituting Eq.(7.1) in Eq.(7.2) we get,

Js = −νDsΩγs
kBT

∂κ

∂s
(7.3)

where, ∂
∂s

= ∂
∂x

∂x
∂s

and using ∂x
∂s

= 1
(1+y′2)1/2

yields,

Js =
νDsΩγs
kBT

1

(1 + y′2)1/2

∂

∂x

(
y′′

(1 + y′2)3/2

)
(7.4)

The mass conservation equation along the surface relates the surface flux divergence to

the normal velocity as,
dJs
ds

= −Vn
Ω

(7.5)

Utilizing Eq.(7.4) we get,

Vn = −DsδsΩγs
kBT

1

(1 + y′2)1/2

∂

∂x

(
1

(1 + y′2)1/2

∂

∂x

(
y′′

(1 + y′2)3/2

))
(7.6)

A simple geometric projection of the normal velocity yields Vn = ∂y
∂t

1
(1+y′2)1/2

(derivation

is provided in appendix B) which on substitution in Eq.(7.6) leads to the kinetic equation

of the surface profile as,

∂y

∂t
= −B ∂

∂x

(
1

(1 + y′2)1/2

∂

∂x

(
y′′

(1 + y′2)3/2

))
, (7.7)

where B = DsδsΩγs
kBT

is the Mullins’ constant. As evident, Eq.(7.7) is a highly non-linear

partial differential equation (PDE) and as such difficult, if not impossible to obtain a

closed form solution analytically. It is to be noted that the maximum slope of the profile

corresponds to the root. To obtain a closed form solution, the above PDE can be linearized

according to Mullins by employing SSA such that (y′)2 � 1. This linearization procedure

reduces Eq.(7.7) to,
∂y

∂t
= −By′′′′. (7.8)

The above PDE is solved under the following initial and boundary conditions [122],

(i) the initial surface is flat i.e.,

y(x, 0) = 0.
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Figure 7.2: Temporal evolution a grain boundary groove obtained from phase-field simulation

of an initial flat bicrystal.

(ii) constant slope at the root which under SSA translates into,

yx(0, t) = m = tan θo .

(iii) continuity of the flux at the root that dictates no matter is transported along the

GB, which under the small slope approximation (SSA) according to Eq.(7.4) reads

as,

yxxx(0, t) = 0 .

The Eq.(7.8) facilitates an analytical solution by using an integral transform such as

Laplace or Fourier transform. Mullins solved the PDE employing a Laplace transform

in time. However, Ref. [243] is followed and the PDE is solved utilizing Fourier cosine

transform in space. The basic steps to attain the solution is as follows,
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(i) Take cosine Fourier transform in space,

∂yc
∂t

= −BFc[yxxxx] (7.9)

where,

yc =

∫ ∞
0

y(x, t) cos(kx) dx

Fc[yxxxx] =

∫ ∞
0

yxxxx cos(kx) dx (7.10)

(ii) Integrate the r.h.s of Eq.(7.9) utilizing the Eq.(7.10), successively by parts and

employing the boundary conditions leading to an ODE,

∂yc
∂t

= −Bk2m−Bk4yc (7.11)

(iii) Integrate via separation of variables and evaluate the integration constant from the

initial condition to obtain,

yc = −m
k2

[
1− exp(−Bk4t)

]
(7.12)

(iv) Apply inverse transform to obtain the solution as,

y(x, t) =
2

π

∫ ∞
0

yc cos(kx) dk. (7.13)

The equation is readily inverted at x = 0 as,

y(0, t) = −2m

π

∫ ∞
0

[
1− exp(−Bk4t)

]dk

k2
(7.14)

Integrating by parts and using the definition of gamma function Γ(z) =
∫∞

0
xz−1e−x dx

the temporal deepening of the groove follows,

y(0, t) = − m√
2Γ(5/4)

(Bt)1/4

= −0.78m(Bt)1/4 = dg (7.15)

The other important relations that can be derived at the root are,

yx(0, t) = m

yxx(0, t) = − m√
2

(Bt)−1/4

Γ(3/4)

yxxx(0, t) = 0 (7.16)

The second derivative at the root is evaluated in a similar manner by first taking

the cosine Fourier transform followed by the inversion at the root.
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(v) Since the temporal evolution of the groove depth follows a t1/4 law according to

Eq.(7.15), Mullins assumed a general solution of the form,

y(x, t) = m(Bt)1/4Z(u) (7.17)

where u = x/(Bt)1/4. Substituting the partial derivatives of the solution in the

PDE (7.8) the following ODE is obtained,

Zuuuu −
u

4
Zu +

Z

4
= 0 (7.18)

Substituting a power series solution of the form Z(u) =
∑∞

n=0 anu
n,

∞∑
n=0

n(n− 1)(n− 2)(n− 3)anu
n−4 − 1

4

∞∑
n=0

nanu
n +

1

4

∞∑
n=0

anu
n = 0 (7.19)

The coefficients can be determined by Frobenius method by equating the coefficients

of same powers of u on both sides. However the first four coefficients are determined

from Eqs.(7.15) and (7.16) as,

a0 = − 1

21/2Γ(5/4)
a1 = 1

a2 = − 1

23/2Γ(3/4)

a3 = 0 (7.20)

The coefficients from the fourth term onwards can be evaluated from the recursive

relation given by,

an+4 = an
n− 1

4(n+ 1)(n+ 2)(n+ 3)(n+ 4)
(7.21)

7.3 Results

To benchmark the phase-field model with the analytical theory of Mullins, a bicrystalline

set-up with an initial flat surface with a dihedral angle of π is chosen. The simulation

set-up is shown in Fig.4.1(c). All the respective order parameters are assigned their

respective equilibrium values and the system is allowed to evolve only under the action

of surface diffusion. This is done by assigning Ms = 1 and MB = MGB = 10−6.

The temporal evolution of the groove obtained from phase-field simulation is shown

in Fig.7.2. To distinguish between the vapor phase and the various grains of the solid
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Table 7.1: Values of coefficients

ao −7.803× 10−1

a1 10.000× 10−1

a2 −2.886× 10−1

a4 8.130× 10−3

a6 −2.004× 10−4

a8 3.625× 10−6

a10 −4.969× 10−8

a12 5.339× 10−10

a14 −4.655× 10−12
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Figure 7.3: Temporal evolution of the surface obtained from the ρ = 0.5 isoline. The phase-field

simulations faithfully capture the maximum in the groove profile followed by a characteristic dip

below the initial flat surface which is not predicted by Mullins’ theory.
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Figure 7.4: Variation of the curvature along the surface corresponding to the profiles in Fig.7.3

at different times.

phase the quantity Φ =
∑N

i=1 iηi is plotted. The temporal deepening of the groove along

with the formation of ridges is evident in Fig.7.2. Since, the free surface in the present

phase-field model is defined as the region where 0 < ρ < 1, the ρ = 0.5 isoline is shown in

Fig.7.3 for the better assessment of the grooving process. The grooving initiates such that

the dihedral angle as dictated by the surface energy γs and GB energy γGB is attained.

This leads to mass transport from groove root towards the surface resulting in a pile-up

(surface ridge). Subsequent groove deepening and widening take place under the action

of curvature gradient-induced surface diffusion. The profiles exhibit a characteristic dip

below the initial flat surface following the ridge.

Since, the process of thermal grooving is essentially a capillary-driven phenomenon,

the variation of the mean curvature κs is plotted in Fig.7.4, to gain insights on the mass

transport along the surface. Convex regions are denoted by positive sign and concave

by negative. Therefore mass transport takes place from regions of high curvature to low

in convex regions and vice-versa in concave regions. In other words, direction of mass

transport follows from convex to concave regions. Thus at t = 500, atomic transport

ensues towards the dipped region of the profile (the concave region) from either sides

(convex regions). As a result of the mass transport, the concave region shifts towards

the right overtime and the curvature at the vicinity of the root decreases as evident in

Fig.7.4 at t > 1000. The decline of the curvature-gradients along the surfaces decreases

the driving force for further grooving due to which the deepening continues but with an

ever decreasing rate.

In deriving the analytical shape of the groove a boundary condition in terms of the

equilibrium dihedral angle at the root was employed. Thus, it is necessary to validate

whether the dihedral angle is correctly reproduced in the profiles obtained from phase-

field simulations. Care must be taken to locate the groove root form the phase-field
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Figure 7.5: Measurement of the slope at the root from the groove profile. Profiles on either side

of the GB are fitted with a fourth order polynomial.
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Figure 7.6: A comparison of the temporal evolution of the groove depth measured from the

initial flat surface. The points correspond to data obtained from phase-field simulations where

as the dashed line represents the analytical expression dg = 0.78m(Bt)1/4 from Mullins’ theory.
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Figure 7.7: A comparison of the temporal evolution of the groove depth measured from the

surface maximum. The points correspond to data obtained from phase-field simulations where

as the dashed line represents the analytical expression (dg + hg) = 0.93m(Bt)1/4 from Mullins’

theory.

simulations. In the sharp interface solution, invoking the symmetry of the problem about

the groove root, only a single branch on the either side of the root is calculated. The other

branch is obtained as the mirror image of the former and both branches intersect at a

single point at the root. In the phase-field solution, however, due to the diffuse nature of

the GB, both branches rather than intersecting sharply forms a blunt concave region. This

is purely an artifact of the phase-field method. In order to locate the groove root precisely,

we fit the ρ = 0.5 level set on the either side of the GB by fourth order polynomial leaving

out the points in the interfacial region. The root is defined as the intersection point of

the fit. Consequently, while comparing to the sharp interface solution, the phase-field

profile is adjusted such that the root obtained from the intersection is placed at y = 0.

The fitted curve is shown in Fig. 7.5. The slope at the intersection point is calculated to

be 20.46◦ which is close to the theoretical value of 19.87◦.

A comparison of the groove depth dg relative to the initial flat interface obtained from

the phase-field method to that given by Eq.(7.15) is made next. The groove depth from

the phase-field simulations are measured from the point of intersection of the fitted curve.

The comparison of the groove depth between the sharp-interface and phase-field method

is shown in Fig.7.6 where an excellent agreement between both the methods is observed.

Information regarding temporal evolution of other groove characteristics such as the

maximum of the profile can also be found from Eq.(7.17). For instance, assuming
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Figure 7.8: A comparison of the temporal evolution of the groove width. The points correspond

to data obtained from phase-field simulations where as the dashed line represents the analytical

expression w = 4.6(Bt)1/4 from Mullins’ theory.

(Bt)1/4 = 1 the normalized groove profile can be written as,

y

m
= Z(x) (7.22)

The value of x at which the curve peaks can be evaluated by finding the roots of derivative

of Z(x). It can be shown that the curve attains a maximum at x = 2.3. Since, all the

dimensions follow a t1/4 law, the temporal evolution of the groove width follows,

w = 4.6(Bt)1/4. (7.23)

It can also be shown that ordinate corresponding to x = 2.3 i.e. Z(2.3) = 0.193. Since,

the y-axis is normalized by a factor of m, the temporal evolution of the groove depth

relative to the surface maximum (dg + hg) follows,

dg + hg = 0.973m(Bt)1/4 (7.24)

A comparison of the temporal law given by Eqs.(7.24) and (7.23) and that obtained

from the simulations is given in Figs.7.7 and 7.8 respectively. The phase-field method is

able to faithfully capture the behavior of the sharp-interface relations.

Since, all the groove dimensions namely the groove depth and width, follow a t1/4, the

profiles should exhibit time invariance. This can also be asserted by rearranging Eq.(7.17)

as,

y

t1/4
= mB1/4Z

[ 1

B

x

t1/4

]
(7.25)
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Figure 7.9: Self-similar behavior of the groove profile obtained from phase-field simulations.

Since all the relevant length scales along x and y direction follow a t1/4 temporal behavior the

axes have been scaled accordingly.

The dynamic scaling of the groove profiles evident from the collapse of the profiles at

different times into a single curve is shown in Fig.7.9 where the axes have been scaled by

the factor t1/4.

The self-similar behavior of the profiles can also be interpreted in another way as

follows. Rearranging Eq.(7.17) as

y

m(Bt)1/4
= Z

[ x

(Bt)1/4

]
(7.26)

Since the relevant dimensions in y and x directions are the groove depth and width

respectively, the above Eq. can be written in terms of dg and w from Eqs.(7.15) and

(7.23) as,

y

dg/0.78
= Z

[ x

w/4.6

]
(7.27)

The above normalization renders the profiles time invariant. The resulting normalized

profiles are plotted in Fig.7.10 where the dynamical scaling of the curves is evident.

The advantage of normalizing the profiles by the latter procedure is that it facilitates

a direct comparison with Mullins’ solution as given in Fig.3 of Ref.[122]. A comparison

of the normalized profile from Mullins and the phase-field method is shown in Fig.7.11.

Both the solutions are in excellent agreement, with the phase-field profile predicting the

minimum (x = 0), the first zero of the profile (x = 1.14), the maximum (x = 2.3) and the

point of inflection (x = 3.43) with reasonable accuracy. This completes the benchmarking

procedure of the phase-field model and its numerical implementation.
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Figure 7.10: Self-similar behavior of the groove profile obtained from phase-field simulations.

The x and y axes have been scaled by w/4.6 and dg/0.78 respectively.
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Figure 7.11: A comparison of the solution of the normalized profile obtained from phase-field

simulation (points) and Mullins’ theory (dashed line).
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Table 7.2: Values of numerical parameters and the corresponding interfacial energies

A B C κρ κη γs γGB θo

1 0.33 3 1 0.33 0.532 0.238 13◦

1 1 1 1 0.33 0.588 0.40 20◦

1 1 1 1 1 0.728 0.705 30◦

1 2 1 1 1 0.824 0.967 36◦
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Figure 7.12: Effect of the slope at the root m(= tan θo) on the groove profile. Increasing m

increases the groove depth. All the groove profiles correspond to t = 20000.

We next examine the effect of m(= tan θo) specifically the effect of SSA on grooving

kinetics in Fig.7.12. The angle at the groove root is altered by manipulating the numerical

parameters A,B,C, κρ, κη, which in turn controls γs and γGB. The values of the numerical

parameters and the corresponding angles at the root are provided in the Table 7.2. With

increasing slope, the groove depth increases which is qualitatively in accordance with

Eq.(7.15). The groove width shows a marginal increment with increasing m as evident

from the shifting of the maximum of the profile of the positive branch towards right (and

towards left of the negative branch). Although Eq.(7.23) predicts invariance of width

on m, the increase can be attributed to the increasing value of γs which expedites the

grooving process by increasing the kinetic coefficient B.

To quantify the effect of SSA quantitatively, the comparison of the groove depth

obtained by analytical Eq.(7.15) and phase-field method is presented in Fig.7.13. Until

about θo = 20◦ (i.e. m = 0.36) the SSA and hence the linearized problem provides a

reasonable estimate of the groove depth as seen from a good agreement between the two

solutions. Deviations arise for the cases of θo = 30◦(m = 0.577) and 36◦(m = 0.726)



Chapter 7. 143

 0.1

 1

 10

 1000  10000

d
g

Bt

θo = 13 °

θo = 20 °

θo = 30 °

θo = 36 °

Figure 7.13: Effect of slope at the root on the groove depth. Higher values of θo leads to

deviation of the phase-field solution (points) from Mullins’ analytical solution (lines).

where the groove depth obtained from the numerical solution is lower than analytical

expression of Mullins by about 15%. The groove width, on the other hand is relatively

independent of m in accordance with Mullins as shown in Fig.7.14. Interestingly both

groove depth and width follow (Bt)1/4 temporal law even if the SSA is violated.

7.4 Discussion and Concluding remarks

The phase-field model is validated against Mullins’ sharp-interface theory. A remarkable

agreement between Mullins’ theory and phase-field solution in terms of both the shape

of the profile and the temporal evolution of the groove depth and width is observed.

However certain key differences between the analytical theory and phase-field method

warrant a further discussion. Firstly to make the solution analytically tractable, a SSA

(m < 0.2) was employed in the sharp-interface theory. The phase-field method, however,

is not restricted by such an approximation and grooves of slope with an even higher value

of m can be simulated with reasonable accuracy. The γs and γGB selected in the present

study result in m = 0.3615 which clearly violates the SSA. Inspite of the violation, all the

groove dimensions follow the small slope analytical solution of Mullins. The agreement
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Figure 7.14: Effect of slope at the root on the groove width. The groove width is invariant to

change in θo. A good agreement with the analytical solution is also evident.

at higher m indicates that the analytical solution obtained from linearized eq. 7.8 serves

as an excellent approximation of the complete non-linear Eq.(7.7).

In fact, the complete solution of the non-linear PDE for m ranging from 0 − 4 was

obtained numerically by Robertson [245]. A deviation of about 10% from the Mullins’

prediction of groove depth was reported for m > 0.7. However until m ≤ 0.3 which is

close to the present case, the small slope solution was found to be a good approximation.

A similar conclusion was also made by Zhang and Schneibel [246] in their finite difference

numerical solution of GB grooving and by level set simulation of Khenner et al.[247].

A second interesting feature of the profile obtained from the phase-field method is the

presence of a characteristic dip below the flat surface following the maximum. Such a dip

is not predicted by Mullins’ solution (because of the truncation of the series solution to 14

terms), but the possibility of which was advocated by Hillert in a private communication

[122]. The numerical solution by Robertson [245], Zhang and Schneibel [246] and Khenner

et al. [247], similar to the present phase-field method also exhibits a dip.

The dip is a characteristic signature of groove evolving under the action of surface

diffusion. The evolution of grooves under volume diffusion was also simulated using the

phase-field method by assigning MB = 1 and Ms = MGB = 10−6 i.e. with a constant

atomic mobility. As evident in Fig. 7.15, the volume diffusion-mediated groove does not

sink below the flat surface following the maximum. Thus, the dominant mass transport
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Figure 7.15: Temporal evolution of the grooves under the action of volume diffusion. Unlike

the surface-diffusion-mediated grooves, the volume-diffusion-driven groove profiles do no exhibit

a minimum following the ridge.

mechanism can be asserted from the shape of the profiles. In a related work Mullins

derived the groove shapes under the influence of volume diffusion [123]. A critical com-

parison with Mullins’ theory, however, is outside the scope of the present work.

Another modeling consideration that warrants a discussion is on the selection of the

GB relaxation parameter, Lη. Due to the construction of the phase-field model, the

evolution of the surface is governed by both Cahn-Hilliard and Allen-Cahn equation

because of the gradients in both types of order parameters ρ and ηi across the surface.

However, it is to be noted that the two equation gives rise to two different geometric

limits, namely, motion by surface laplacian of the curvature or surface diffusion (due

to variable mobility Cahn-Hilliard Eq.) and motion by mean curvature or attachment-

detachment kinetics (due to dynamics of Allen-Cahn Eq.) which are governed by the

parameters Ms and Lη. In the present case, the appropriate law dictating the interface

motion is surface diffusion. To fulfill this purpose, for a given Ms, Lη needs to be chosen

high enough such that the dynamics of Allen-Cahn Eq. is faster and the interface motion

is diffusion-controlled rather than attachment-detachment. The effect of Lη on the shape

of profiles for Ms = 1 is shown in Fig.7.16. The shapes of the profiles are quite different for

Lη = 0.001 and 0.01 as compared to Lη = 0.1 and 1. Specifically, the profile corresponding

to Lη = 0.001 does not exhibit a prominent maximum. Although the profile for Lη = 0.01

does exhibit the ridges on either side of the groove, the characteristic dip below the

surface is absent in both profiles corresponding to Lη = 0.001 and 0.01. Other checks

with Ms = 0.1 and in terms of kinetics of grooving were also made (see Fig.7.17) and

it was generally observed that for the present phase-field model Ms ≥ 0.1Lη resulted in

profiles independent of Lη. Although Lη could be selected to be a very high value, the

restriction of small timestep width associated with higher values of Lη should also be
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Figure 7.16: Temporal evolution of the grooves due to surface diffusion for different values of

Lη. For smaller values of Lη, the profiles do not exhibit the dip below the original flat surface.

considered.

The present model is the diffuse-interface counterpart of the sharp-interface kinetic

Eqs. of Cahn and Taylor [196], in that it combines motion by the two above mentioned

geometric laws and thus can be efficiently employed to model phenomena that couples

these laws such as concurrent grooving and grain growth in thin polycrystalline films

[237, 248]. There, Lη can be chosen based on the considerations discussed above or by

decoupling grooving and grain growth kinetics by making Lη to be position-dependent by

enslaving it to the order-parameters ρ, ηi similar to the mobility function. Such a method

has been employed in Ref.[207].

To summarize, the phase-field model is validated for surface diffusion-mediated GB

grooving by a critical comparison with Mullins’ solution. The model can be further

applied to study other relevant metallurgical phenomenon which are governed by surface

diffusion, for instance, sintering [249, 250], morphological stability of multilayer thin films

[129, 251, 252], Rayleigh instability in solid state [253, 254, 255] amongst others.
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(a)

(b)

Figure 7.17: Temporal evolution of the (a) grooves due to surface diffusion and (b) groove depth

for different combinations of Ms and Lη.



Chapter 8

Electromigration-induced surface

drift and slit propagation in

polycrystalline interconnects

8.1 Introduction

In the present chapter, the phase-field model of chapter 4 is employed to assess the role

of surfaces and grain-boundaries as potential EM pathways.

While surface EM has garnered much attention [92, 136, 137], investigations on the

influence of concurrent surface and GB diffusion on EM are rather limited [134]. As to

how the surfaces and GBs participate in the damage proliferation is still a concern for the

electronic industry. The numerical simulation results of damage initiation at GB grooves

corresponding to the two rate limiting transport mechanisms is presented in Sec. 8.2.

The results reveal that the concurrent surface and GB transport can drastically alter the

damage modes and subsequent damage propagation depending upon the rate limiting

transport mechanism. Synergy between our numerical findings and previous analytical

and experimental observations are also discussed. Furthermore, implications of grain size

distribution and coarsening on the damage initiation in polycrystalline interconnects are

highlighted. Sec. 8.3 concludes the chapter.

148
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Figure 8.1: Temporal evolution of the groove profiles in GBDLR corresponding to (a) early

and (b) late stages. Tails of neighboring grains merge to form circular arcs. Subsequently, the

surface drifts in the direction of electron wind. (c) Curvature along the groove profile. The

surface drifts preserving the shape as apparent from a constancy of curvature for t > 10000.

8.2 Results

8.2.1 GB diffusion-limited regime (GBDLR)

To begin with, the evolution of grooves when surface diffusion is faster or comparable

to the GB diffusion is considered such that MS/MGB = 2 where MS and MGB are the

atomic mobilities in the surface and GB respectively.

8.2.1.1 Morphological evolution

The evolution of the GB grooves at the triple junctions under the concurrent influence

of capillarity and EM is shown in Fig. 8.1(a). A curvature-driven surface diffusion en-

sues from surface ridges (larger curvature), towards the grain center (smaller curvature).

Temporal evolution of curvature, of the grain surface, κs, is plotted in Fig. 8.1(c). Even-

tually, the tails of the neighboring grooves overlap, elevating the depression at the grain
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Figure 8.2: (a) Displacement-time curve at different field strengths for grain size of 2L = 200∆x

in GBDLR. Higher electric field facilitates the steady-state regime.

center. This elevation is characterized by a flattening of the curvature profile near the

grain center due to the formation of a near semi-circular surface. As soon as the circular

arc evolves, the grains start drifting in the direction of electron wind (Fig. 8.1(b)) which

is reminiscent of the Blech-type drift velocity experiments [75, 87, 89]. Overlapping sur-

face curvature profiles observed at larger time-steps suggest that the grains preserve their

shape as they drift.

8.2.1.2 Grooving-Drift characteristics

The kinetics of groove displacement is measured from the temporally-evolving displace-

ment of the groove root, dg, relative to the initial flat surface. Two distinct regimes

corresponding to intial grooving and subsequent drift are discernible in Fig. 8.2. During

the grooving stage, no significant difference in the groove displacement is observed. A

non-linear power fit of the form k1 + k2t
n results in a temporal exponent of n = 1/4. The

presence of EM does not alter the exponent which has also been predicted for thermal

grooves [122], indicating that the initial stage is predominantly capillary driven. This

capillary-mediated grooving is followed by short root deceleration which is prominent at

low field strengths. A steady state is finally attained as evident from the linear temporal

regime.

8.2.1.3 Effect of electric field

During drifting stage, the velocity can be expressed in terms of a simple mass balance

equation as v = JGBΩ/L [5] where JGB is the GB flux, Ω is the atomic volume and L the
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(a) (b)

Figure 8.3: (a) Scaling of steady state drift velocity with electric field in GBDLR. A linear

relationship is obeyed over a magnitude of electric field. (b) Variation of incubation period with

electric field. At low field strengths, a capillary plateau is observed, while at high field strengths

a linear regime is exhibited.

grain size. Since, JGB = MGBzeEm, the velocity scales linearly with electric field. The

steady state velocity extracted from the slope of the linear regime of dg − t curve indeed

obeys the linear scaling over a magnitude of electric field as shown in Fig.8.3(a).

The effect of current density j (or electric field because of their linear dependence due

to Ohm’s law) on damage kinetics is expressed according to modified Black’s law [102],

tf =
1

jn
exp

(
∆H

kBT

)
(8.1)

where, tf is the time to failure and ∆H is the activation energy of the process. The

above expression can be used to extrapolate the EM test results which are performed at

accelerated condition to the service condition. The value of the exponent n sheds light

on the mechanism or rate limiting step of failure [256]. In the present case, tf can be

expressed as,

tf = tincub + tdrift, (8.2)

where, tincub is the incubation time before which drift initiates and tdrift is the time

elapsed in drift. Since faster drift corresponds to shorter failure times i.e. v ∝ 1/tdrift,

the exponent of current density for the second term in the above expression turns out be

n = 1. Furthermore, as the electric field tends to zero, the incubation time is expected to

tend towards infinity. The variation of tincub is plotted in Fig.8.3(b), where the data points

are fit to function tincub = k1/(k2 + Em). As, k2 � Em, tincub ∼ k1/k2 and the curve

exhibits a plateau region corresponding to capillary dominated regime. On the other
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Figure 8.4: (a) Displacement-time curve depicting the grain size dependency on drift kinetics

in GBDLR. Smaller grains, owing to rapid merging of neighboring tails, facilitate surface drift

and attainment of steady state. (b) Velocity dependence on grain size. The steady-state velocity

follows an inverse scaling with respect to the grain size. Electric field strength corresponds to

Em = 5.6818× 10−4.

hand, at higher field strengths Em � k2, tincub ∼ k1/Em and a linear tail corresponding

to EM-dominated regime can be observed. Thus in EM dominated regime both stages

should result in n = 1 in Eq. 8.1.

8.2.1.4 Effect of grain size

The dependency of grooving and drifting characteristics on the grain size is presented in

Fig. 8.4(a). The root displacement during initial stage (t = 100−400) is higher for smaller

grain (2L = 100∆x) owing to the prominence of curvature-driven flux due to overlap of

neighboring groove tails. Since, the grooving stage is prolonged for larger grains, the

displacement at intermittent stage (t = 500 − 11000) is higher for larger grains, while,

exhaustion of curvature-driven flux leads to a slowing down of smaller grain. However,

since the smaller size grain facilitate the development of surface arc that initiates drifting,

the steady state regime is attained faster, eventually surpassing the larger grains. The

inverse scaling of the grain size during steady state drift according to the aforementioned



Chapter 8. 153

  

(a)

(b)

(c)

Figure 8.5: Temporal evolution of grooves in SDLR at (a) early, and (b) late stages. Faster

GB transport leads to accelerated grooving, followed by the development of cavity at the root

which eventually forms a channel-like slit that advances along the GB maintaining a constant

width and shape. (c) Curvature profile along the groove. Slit formation changes the curvature

of the root from convex to concave. The grain size and electric field strength corresponds to

2L = 400∆x and Em = 2.3674× 10−3 respectively.

mass balance relation is corroborated by the phase-field numerics in Fig. 8.4(b).

8.2.2 Surface diffusion limited regime (SDLR)

The case when transport through the GB is faster than that at the surface such that

MS/MGB = 0.1 is discussed next. The strength of electric field is selected to be one

magnitude higher than than in GBDLR. In the following section, the cases pertaining to

large grains and deviations arising due to finite grain sizes is dealt sequentially.

8.2.2.1 Morphological evolution

A predominance of GB diffusion accelerates the grooving rate in Fig. 8.5(a) as compared

to Fig. 8.1(a). As a result of low surface diffusivity and large grain size, any overlap

of the neighboring groove tails is found to be absent. The grooves temporally widen

forming a cavity at the root. Ultimately, a narrow slit-like channel develops (Fig.8.5(b))

which then propagates along the GB preserving its width and shape. A fast GB diffusion

flux is responsible for localizing the damage along GB as opposed to the Blech type

regime where the entire surface drifts homogeneously. The trailing edge evolves through

surface diffusion to form arcs as observed in Fig.8.5(b), and eventually starts drifting. In
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Figure 8.6: Displacement-time curve illustrating kinetics of slit propagation in SDLR. After an

initial growth exponent 3/4, the slit attains a dynamic steady-state.

other words, while the entire surface drifts conserving its shape when surface diffusion

predominates, shape is conserved only near the tip region of the slit in SDLR. It is also

worth noting that the convexity of the groove root is preserved when the surface drifts,

as opposed to slit formation where the root curvature transitions from convex to concave

(Fig. 8.5(c)) during evolution.

8.2.2.2 Slit propagation kinetics

The dg − t curve corresponding to different electric field is plotted in Fig. 8.6. Similar to

the Blech regime in Fig. 8.2, two distinct kinetic regions can be identified. In this case,

the transient stage exhibits a faster kinetics evident from the temporal exponent of 3/4.

As the root detaches from the surface to form slit, it deepens with a steady-state velocity

as evident from the linear exponent in the dg − t curve. Larger field strengths hasten the

transition to a steady-state.

8.2.2.3 Effect of electric field

The sharp interface GB grooving model proposed in [5, 257] predicts E3/2 dependency of

slit kinetics. The velocities of the groove root computed via present phase-field simula-

tions at different magnitudes of electric field strength, confirm the corresponding scaling

law in Fig. 8.7. Drawing analogy from GBDLR, failure in the present case can be

expressed as,

tf = tg + tp (8.3)
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Figure 8.7: Velocity dependency on electric field in SDLR. Higher electric field leads to fast-

propagating slits.

where, tg and tp correspond to the initial accelerated grooving and slit propagation stage

respectively. The GB grooving model by Rosenberg and Ohring [78] suggests that the

EM-induced grooving (not slit propagation) leads to hole formation in which the time

to failure exhibits a E
4/3
m dependence. This relationship can also be inferred from Fig.

8.6 during the initial stages where dg ∝ t3/4 and the prefactor depends on the magnitude

of Em. If the groove root continues propagating following this temporal law, tg ∝ E
4/3
m

proposed by Rosenberg and Ohring is expected. Thus, while the former (tg) will lead

to n = 4/3, the latter (tp) gives rise to n = 3/2. Hence the exponent in Eq. (8.1) is

anticipated to lie between 4/3− 3/2 depending upon the rate limiting step.

8.2.2.4 Effect of grain size

Traditionally, the sharp interface models analyze the slit dynamics independently once

the slit is detached from the surface assuming an idealized geometry such that the slit

surface is parabolic while the tip retains an equilibrium dihedral angle and is flat further

away. It does not take into account the influence of initial grain size on slit kinetics. Our

phase-field simulations, on the other hand, nicely captures the non-linearities associated

with slit initiation from GB grooves and subsequent advancement without making any a

priori assumptions on the slit shape. Hence, the proposition of grain size independence on

slit kinetics are easily verified via the present simulations. The dg− t curve corresponding

to different grain sizes is presented in Fig. 8.8(a). Although, any difference in kinetics

during the initial stages is indiscernible, deviation arises progressively in later stages in

the order of increasing grain size. The overlapping of neighboring groove profiles in case of

smaller grains leads to concomitant surface drift in addition to slit propagation. For the

constant voltage set-up, this drifting leads to significant decrease in the GB flux leading

to a slower kinetics at later stages. The steady state velocity corresponding to different
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Figure 8.8: (a) Displacement-time curve in SDLR depicting the grain size dependency on

slit kinetics. Deviation arises progressively at late stages in order of increasing grain size.

(b) Velocity dependence on grain size. Slits originating from smaller grains lead to slower

propagation. The dependency becomes weaker as the grain size is increased. The electric field

strength corresponds to Em = 9.4697× 10−3.

grain sizes is plotted in Fig. 8.8(b). While the influence of the small grain sizes on slit

kinetics is strong, the dependency becomes weaker as the grain size increases due to the

absence or delay of simultaneous surface drift.

8.2.3 Role of surface and GB as EM pathway

To better assess the role of surface and GB as potential EM pathways, the surface and

GB flux vectors superimposed on the groove profile is plotted. Fig. 8.9(a) corresponds

to GBDLR (Fig.8.1(b) at t = 10000). EM itself can act as a healing agent especially in

the homogeneous displacement regime for the case discussed in Fig. 8.1. The convexity

of root is sustained as the surface drifts and curvature gradient-driven surface flux points
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Figure 8.9: Surface (red arrows) and GB (green arrows) currents in (a) GBDLR and (b) SDLR

. While EM-induced surface flux replenishes the groove root in GBDLR, curvature-gradients

results in an additional mode of healing mechanism. The magnitude of flux vectors have been

upscaled for clarity.

away from the root. The electric field lines are superimposed over the phase-fields that

represent the grains and the underlayer in Fig. 8.10 (a) and (b). The field lines are

initially straight i.e., there are no horizontal potential gradients. As the groove develops,

the field lines twist, thereby, instigating a gradient in the electric potential along the

freshly exposed surfaces. This in turn induces a healing flux along the electron wind,

which is directed towards the groove root. While EM-induced GB flux, JEGB, leads to

groove extension, surface currents replenish the groove.

The role and direction of various fluxes at different stages of damage is summarized

  

(a)   (b)

Figure 8.10: Electric field lines superposed over the phase field corresponding to (a) initial and

(b) late stages. Grooving leads to distortion of the field lines which prompts a potential gradient

and healing flux directed towards the root.
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in Fig. 8.11. During initial stages of homogeneous displacement (Fig.8.11(a)), curvature

gradient-induced surface flux J∇κSS and EM-induced GB flux JEGB lead to groove exten-

sion, while EM-induced surface flux JES compensates it. The early stage contribution of

the healing flux is marginal. However, as the groove deepens, freshly exposed surfaces

temporally increase JES . As the circular arcs of constant curvature emerge, J∇κSS exhausts

while JES saturates to a fixed value. Thus, the edge drift is governed by an interplay of

JES and JEGB, as shown in Fig. 8.11(b).

In SDLR, root concavity (Fig. 8.4(d)) promotes material transport towards the root.

In addition to JES , curvature-gradient induced surface flux J∇κSS also contributes towards

the healing flux (Fig. 8.9(b) which corresponds to t = 3000 of Fig.8.5(a)). Because of

the dual healing mechanism of JES + J∇κSS , surface currents near the root are intense,

while relatively weaker further away because of sole effect of JES . The mechanism of slit

formation is summarized in Fig.8.11 (c) and (d). Origin of healing fluxes can therefore

be curvature gradient- or EM-induced, or both, depending upon the predominance of

capillarity over EM, or vice versa.

Thus, a homogeneous displacement is favored when JES ' JEGB which is most likely to

occur when MS/MGB ' 1 and low to moderate field strengths since increasing electric

field strengths would inadvertently increase JES . On the other hand, groove-to-slit tran-

sition will result if JEGB � (JES + J∇κSS ) which is preferable as MGB/MS � 1 and high

field strengths.

8.2.4 Polycrystalline line

Damage of bicrystalline configuration discussed hitherto although providing numerous

fundamental insights, are of limited practical value. In reality, commercial interconnects

are polycrystalline (more than 2 grains) with a mixed grain size distribution. As a result,

curvature-driven grain coarsening can also potentially play a vital role in the initiation of

damage. Naturally, in addition to the surface and GB diffusivities, the GB mobility (Lη),

that determines the coarsening rate, should also be considered in order to comprehend

the damage mechanisms.

In this section, the phase-field model is extended to 3-D to numerically investigate the

damage modes in polycrystalline interconnects. For simplicity, the present study is limited

to 20 non-conserved order parameters corresponding to grains of different orientations

and retain the columnar structure. Practically, such a configuration corresponds to an

interconnect line blocked by a large single crystal. Starting from the polycrystalline grain

distribution that is generated via a 2-D grain growth simulation (Fig. 8.12(a)), the focus

is on the damage modes that are operative in SDLR. In the following 3-D simulations, the
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Figure 8.11: Schematic diagrams depicting the role of surface and GB in GB diffusion-limited

regime at (a) early and (b) late stages. Curvature-induced surface flux J∇κSS and EM-induced

GB flux JEGB lead to groove extension, while the EM-induced surface flux JES heals the groove.

The drifting is governed by an interplay of JES and JEGB. Similar illustration in surface diffusion-

limited regime at (c) early and (d) late stages. In addition to JES , J∇κSS also replenishes the

groove.
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Figure 8.12: Damage in polycrystalline line initiating from a multi-grained structure (a) t = 0

for high GB mobility (Lη = 1) at (b) t = 500, (c) t = 1500, (d) t = 2500, (e) t = 4400 and

low GB mobility (Lη = 0.1) corresponding to (f) t = 500, (g) t = 1500, (h) t = 2500 and (i)

t = 3500 in SDLR. Smaller grains exhibit surface drifting (shown in white dotted box), while

junctions around larger grains exhibit a propensity of slit formation. The triple and quadruple

junctions are the preferential sites of failure (white dotted circles). (j) Temporal evolution of

relative density of the interconnect depicting the drift of the polycrystalline line.
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grain mobility ‘Lη’ is varied between 0.1 and 1.0 to decompose the influence of coarsening

on damage proliferation. Every grain orientation is assigned a different color for clarity.

Furthermore, the underlayer is rendered invisible for better visualization.

Upon comparing the number of grains in Figs. 8.12(b) with (f), it is observed that

coarsening is enhanced at a larger value of Lη, wherein, smaller grains are consumed by

larger ones. Concurrently, GB networks, that are a dominant pathway perish rapidly.

GB grooves are clearly visible in both cases, though no noticeable differences in terms of

failure initiation can be perceived.

To quantify EM-induced damage, the relative density of the interconnect is defined

as ρ/ρo where ρ is the instantaneous density and ρo is the initial value. As the damage

proceeds, this parameter quantifies the amount of drift along the line and the residual

trailing edge. The temporal evolution of relative density is plotted in Fig. 8.12(j). Clearly,

in the early stages (t = 500), the extent of damage in both the lines are similar (≈ 10%).

However, during later stage, smaller grains survive until longer times when Lη = 0.1,

that results in thinning of areas with small grains. As an example, consider the smaller

grains on the left edge of Figs. 8.12 (f), (g) and (h) enclosed in white dashed box, which

drift faster than larger neighbors, designated as G1 and G2 in Figs. 8.12(g) and (h),

respectively. On the other hand, larger grains (G1) in both cases undergo marginal or

almost no drift. This stagnancy is clearly evident in Fig.8.12(j) where at t = 2500, the

smaller grain sample (Lη = 0.1) displays a drift of 40% as compared to 25% in large grain

test piece (Lη = 1). This finding is in qualitative agreement with those for bi-crystalline

configuration, where drift velocity was found be inversely related to grain size.

For Lη = 1, where grain coarsening is prevalent, propensity of slit initiation from the

grooves, increase with time. However, at a lower Lη (=0.1), the damage proceeds via a

mixed mode wherein smaller grains exhibit thinning as slits develop along GB junctions

of the larger grains, though the thinning is definitely reduced. This slit propensity is

evident in slowing of the drift of the interconnect in Fig.8.12(j). While the drift between

t = 1500 to t = 2500 is around 15%, it is little less than 10% between t = 2500 and

t = 3500 for Lη = 0.1 system. The curve plotted for Lη = 1 is comparatively flatter due

to morphogenesis of slits resulting in a large residual trailing edge.

Another consequence of a small GB mobility is that for the same line length, time to

failure is smaller (t = 3500 for Lη = 0.1 in Fig.8.12(i) as compared to t = 4400 for Lη = 1

in Fig.8.12(e)). Clearly, interconnects with smaller average grain size would possess larger

GB networks that accelerates surface drift. For deeper insights, it is worth investigating

the primary sites of failure. To track the events that lead to failure, temporal evolution of

the bottom plane of the line corresponding to Lη = 0.1 are presented in Figs. 8.13(a)-(d).

To demarcate the grains and GBs, Φ =
∑
η2
i is plotted, such that Φ = 0 corresponds
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Figure 8.13: Temporal evolution of the bottom section of the polycrystalline line showing the

predominant failure sites at (a) t = 2500, (b) t = 2900, (c) t = 3100 and (d) t = 3500 for

Lη = 0.1. Here, grains illustrated in blue are separated by green GBs. The red color denotes the

exposed underlayer domain due to hole formation by accelerated GB grooving initiating from the

top surface. Temporal evolution of ρ = 0.5 surface contour at (e) t = 2500, (f) t = 2900, (g)

t = 3100 and (h) t = 3500. Junctions around larger grains (shown in white dotted circle) are the

ones that fail more readily. Dissolution of smaller grains leads to slit merging and subsequent

failure (cyan and magenta dotted circle).
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to the underlayer, Φ = 1 represents the grains of interconnect, and Φ = 0.5, the GBs.

Moreover, the ρ = 0.5 surface contour is also shown in Figs. 8.13(e)-(h).

The first junctions of failure are the ones that are surrounded by larger grains desig-

nated as G1, G2, and G3 in Fig. 8.12(i) and enclosed inside white dotted circles in Figs.

8.13(a), (b), (e), and (f). GBs or junctions of larger grains, while acting as sites where

slits initiate, also promote its proliferation, as discussed previously in Sec. 8.2. Moreover,

the triple and quadruple junctions are comparatively more susceptible to damage, when

compared with GBs. For instance, the damage occurs at a faster rate along the quadruple

junction when Lη = 0.1 (Figs. 8.12(i), 8.13(b), and 8.13(f)). Similarly in Fig. 8.12(e)

(Lη = 1), holes form at triple junctions around grain G1.

The second predominant failure sites are the grain junctions originating due to disso-

lution of smaller grains as shown in Fig.8.13 (magenta and cyan dotted circles), especially

if the neighboring grains are large. Smaller grains, due to larger EM surface drift, entail

large thinning, but when consumed by neighboring grains, cause slits to merge. This

interesting event is nicely captured in Figs. 8.13(e)-(h) (in magenta and cyan dotted

circles), where the protruded junctions from the neighborhood of smaller grain approach

each other, as it continuously shrinks. Finally, the adjoining slit-tips coalesce before

evolving in unison.

8.3 Discussions and Concluding Remarks

The present study is applicable to polycrystalline lines where GB-grooving proceeds via

concurrent surface and GB atomic diffusion and EM. Our work comes closest to the

experimental study of damage morphology of copper interconnects by Gladkikh et al.

[76] and McCusker et al. [86]. Both surface condition and grain size distribution were

reported to influence the damage modes. Absence of an overlayer (such as tantalum)

which promotes oxidation and formation of oxide precipitates accelerate slit growth. Both

these observations can be argued based on slow surface diffusion which concomitantly

hinders the healing process which is corroborated by the present study. Global thinning

of the sample was attributed to small grain size distribution. Surface diffusivity was

assumed to be comparable to GB diffusivity (though the exact diffusivity values were not

reported) to explain the observed damage modes by comparing the parameters to the GB

grooving model in [5]. The aforementioned observation can also be rationalized on the

basis of healing flux highlighted in the present work even in SDLR. A sufficient value of

(JES + J∇κSS ) outweighs JEGB, as a result of which root detachment phenomenon will not

be observed. This non-detachment is expected to be observed at smaller grain size and

lower electric field strength.
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The present work builds upon the analytical theory of Klinger et al. [5, 95, 257] and

highlights the importance of curvature gradient- and EM-induced surface healing flux

that has not been accounted in previous investigations [5, 257]. Although the scaling

laws derived in [5, 95, 257] are well reproduced by the phase-field method, incumbent

healing fluxes delay the growth of damage by replenishing the groove root.

Our 2-D phase-field simulation results on homogeneous displacement are similar to

ones obtained by Khenner et al. [140] using their level-set technique. However, numerical

modeling of slit propagation is comparatively non-trivial. The main advantage of using a

diffuse-interface approach, such as ours, is that the phenomenon of slit detachment from

the surface becomes easily tractable, albeit with a finer grid resolution as compared to

level-set. Moreover, the 2-D model was also extended to 3-D to investigate the failure of

polycrystalline interconnects, where coarsening can modulate the damage mechanisms.

For the first time, a mixed mode of damage is identified, wherein, smaller grains exhibit

thinning while slits manifest around junctions of larger grains. Grain triple and quadruple

junctions are identified as preferential sites of failure.

The model in the present form does not consider the Blech effect. As the sample

drifts in the direction of electron wind, mass accumulation at the anode gives rise to

back stresses that hinder the EM-induced displacement [87, 88]. The timescale on which

back stress-gradients develop scales into hours, therefore, our predictions on early-stage

damage propagation holds good. In addition, the presence of residual or thermal stress

[258, 259] arising during fabrication or annealing cycle has also not been considered. In

present framework, physics of both back-stress accumulation and thermal stress can be

incorporated by solving a complete elastic boundary-value problem [137, 209] or through

an atomistically-informed formalism of phase-field crystal (PFC) models [147]. Moreover,

phenomena such as void nucleation at the cathode end and crystalline defects such as

triple junctions and GBs, can also be studied using PFC. Here, it is important to mention

that genesis of slits in SDLR, in the present work, is not a nucleation phenomenon, rather

it is the manifestation of accelerated GB grooving. While, void nucleation results in an

exponent of n = 2 in Black’s law (which is faithfully reproduced by PFC), the present

work elucidates the damage in form of global thinning and intergranular slit initiating

from GB grooves leading to n = 1 and n = 3/2 respectively in steady state. PFC studies,

however, are currently limited to bulk-diffusion regimes.

Insights gained in the present work can be easily extrapolated to other technologically-

relevant configurations, such as, near bamboo lines or slit initiation and growth along the

side walls (for e.g. top surface) transverse to the line. While EM-induced GB transport

will drain the root (as long as the GB is tilted) similar to the observation for the present

configurations, the EM-induced surface healing flux is unidirectional. This unidirectional
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healing will eventually result in formation of asymmetric grooves with a mass-depleted

leeward side while the mass accumulates on the windward side [120, 142, 121]. However,

the steady-state morphology and dynamics of slits are anticipated to be consistent with

the ones presented in this chapter, as these characteristics arise solely on dimensional

arguments.



Chapter 9

Effect of electromigration on

grain-boundary grooving at finite

grain size: Comparison of sharp

interface and phase-field simulations

9.1 Introduction

A theoretical model proposed by Klinger and co-workers elucidated grain-boundary groov-

ing as the mechanism of Blech electromigration in a periodic array of a polycrystalline

interconnect [5, 126, 257]. The GB grooving model considers the concomitant effect of

surface and GB diffusion on the interconnect reliability where the EM-induced GB flux

causes extension of grooves while the capillarity driven surface diffusion maintains the

shape of the surface. Depending on a non-dimensional parameter α = JGBΩL2

8B
where JGB

is the GB flux, L is the grain size, Ω is the atomic volume and B = DSδSΩγS
kBT

is a kinetic

constant, two distinct damage regimes are possible. Below a critical value of α termed

as “Mode A”, the surface drifts homogeneously preserving its shape. The “A-regime” is

similar to the displacement of the test sample commonly observed in Blech drift veloc-

ity experiments [75, 87]. With EM-induced flux localized at the GBs, the grains at the

drift front are displaced along the line. Subsequently the consecutive interior grains are

removed, given a continuous GB network along the line exists [260]. This is typical in

polycrystalline lines. Relaxing the small slope approximation (SSA) , gives rise to the sec-

ond regime, termed as “Mode B”, above a critical value of α, in which the root detaches

from the surface to form isolated slits propagating along GB. Physically, smaller grains,

lower GB flux and lower surface diffusivity promotes the former regime and vice-versa.

166
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The model is able to explain a number of drifting characteristics observed in seminal drift

velocity experiments by Blech [75, 87, 89] such as drift velocity dependence on current

density, grain size and also the measured activation energies [109].

Although the model has been successfully employed thereafter to rationalize the ob-

served damage modes in polycrystalline interconnects [76, 86, 261], the proposed model

overlooks a key aspect. Specifically, the surface evolution is governed solely due to

curvature-gradient mediated surface diffusion, while the electric-field-driven diffusion

along the groove walls is not accounted for. Furthermore the model is only applicable

during steady state drift and does not enlighten the initial stages of grooving. Concurrent

GB and surface EM are important, especially in copper interconnects as evident from the

measured disparate activation energy values [106, 107, 86]. Moreover, the damage modes

are observed to be dependent on surface conditions. For instance, surface contamina-

tions, oxides, presence of passivation and underlayer which hinders the diffusion along

the free surfaces lead to shorter lifetime and activation energy comparable to surface and

metal-underlayer interface diffusion[107, 86, 106, 76].

In the present chapter, we revisit the problem of GB grooving under electromigration,

specifically focusing on “Mode A” regime of homogeneous displacement, by utilizing both

analytical and numerical methods. To make the analytical calculations (sharp interface)

mathematically amenable, we follow the approach of Thouless [125] by invoking the SSA.

The EM flux along the freshly exposed groove walls will also be neglected. Following

Klinger et al.[5], SSA will be relaxed by solving the derived sharp interface relations nu-

merically in steady state. Finally a phase-field or diffuse interface model which relaxes

SSA as well as accounts for EM-driven flux along groove walls is employed [4] and com-

pared with the sharp interface analytical and numerical solution. Since the SSA does

not predict “Mode B” of slit propagation, it is kept outside the purview of the present

chapter.

Our results suggest that surface EM acts as a healing agent which invariably leads

to lower groove penetration in comparison to the sharp interface models. Moreover, the

single parameter α is shown to be inadequate to predict either the steady state shape

or the kinetic regimes of damage. The present chapter is organized as follows. In the

following section the sharp interface governing equation of the groove profile is derived,

which is solved analytically in linear form and numerically in its complete non-linear

form. Thereafter, the solution from sharp interface and phase-field model are critically

compared in section 9.3 and the role of surface EM not accounted in sharp-interface model

is highlighted. Section 9.4 concludes the chapter.
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Figure 9.1: The schematic of the geometry used in the sharp-interface analytical model. The

system consists of a two-dimensional periodic array of grains with grain size L. Starting from a

flat surface, grain boundary grooves develop under the combined influence of capillary-mediated

surface flux JS and electromigration-induced grain boundary flux JGB due to the applied electric

field along the grain boundary. θ0 is the angle made by the tangent at the groove root and the

x-axis and is given by sin−1(γGB/2γS).

9.2 Sharp Interface Relations

9.2.1 Analytical approach

We start with the linearized governing Eq.(7.8)

∂y

∂t
= −By′′′′. (9.1)

The above PDE is solved under the following boundary conditions [125],

(i) constant slope at the root which under SSA translates into,

y′(0, t) = m = tan θo .

(ii) the periodicity of the problem also dictates,

y′(L/2, t) = 0.

(iii) the continuity of the flux at the groove root i.e. Js = JGB/2 results in,

y′′′(0, t) = JGBΩ
2B

where the small slope version of Eq.(7.4) is utilized to calculate Js.

(iv) the flux at x = L/2 is zero i.e.,

y′′′(L/2, t) = 0 .

The third boundary condition couples the surface flux to the EM-induced GB flux at

the groove root. JGB is given by

JGB =
DGBδGB
ΩkBT

zGBeE (9.2)
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The complete solution of Eq.(9.1) can be written as a combination of [125, 129],

y(x, t) = vsst+ yss(x) + ytr(x, t), (9.3)

where the first part represents the steady state translation or drift of the surface, the sec-

ond term yss(x) denotes the time invariant profile and the last term ytr(x, t) the transient

part of the solution. The steady state part of the solution can be obtained by substituting

vss = ∂y
∂t

and integrating Eq.(9.1) subjected to the aforementioned boundary conditions

resulting in,

vss =
JGBΩ

L
(9.4)

yss(x) = −JGBΩ

24BL
x4 +

JGBΩ

12B
x3 −

(
JGBΩL

24B
+
m

L

)
x2 +mx (9.5)

The transient part of the solution can be obtained by a standard technique of dis-

placement from steady state [262] which renders the boundary conditions homogeneous,

followed by separation of variables leading to,

ytr(x, t) =
∞∑
n=0

An exp(−n4 t

τ
) cos(

2nπ

L
x), (9.6)

where τ =
(
L
2π

)4

/B, A0 = 1
L

∫ L
0
−yss(x) cos(2nπ

L
x)dx and An = 2

L

∫ L
0
−yss(x) cos(2nπ

L
x)dx

∀n 6= 0. A further integration by parts term by term yields,

ytr(x, t) = A0 +

{
∞∑
n=1

( mL

(nπ)2
+
JGBΩL3

8B(nπ)4

)
exp

(
− n4 t

τ

)
cos
(2nπ

L
x
)}

where A0 = JGBΩL3

720B
− mL

6
. Substituting Eq.(9.4), (9.5) and (9.7) in Eq.(9.3) gives the

complete solution as,

y(x, t) =
JGBΩ

L
t+

JGBΩL3

720B
− mL

6
− JGBΩ

24BL
x4 +

JGBΩ

12B
x3

−

(
JGBΩL

24B
+
m

L

)
x2 +mx

+

{
∞∑
n=1

( mL

(nπ)2
+
JGBΩL3

8B(nπ)4

)
exp

(
− n4 t

τ

)
cos
(2nπ

L
x
)}

(9.7)

It can be verified that for JGB = 0, the above expression reverts to the solution by

Hackney [262] for GB grooving of periodic array of grains with origin positioned at the

groove root. Secondly, the terms involving A1 do not occur in the solution of Thouless

[125] because of the different starting condition of profile of equal curvature rather than

a flat one. Finally, the shape of the profile i.e. the steady state (yss(x)) and the transient
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(ytr(x, t)) part is dependent on two non-dimensional parameters m and α = JGBΩL2

8B
. This

can be seen by non-dimensionalizing the profile by x = x
L/2

and y = y
L/2

. Therefore, the

steady state part of the solution given by Eq.(9.5) can be re-written as

yss(x) = − α

24
x4 +

α

6
x3 −

(
α

6
+
m

2

)
x2 +mx. (9.8)

Similarly, the transient part (Eq.9.7) can be written as,

Y (x, t) =
α

45
− m

3
+

{
∞∑
n=1

( 2m

(nπ)2
+

2α

(nπ)4

)
exp

(
− n4 t

τ

)
× cos

(
nπx

)}

In steady state, the groove depth relative to mean surface position is given by,

y(0) = −m
3

+
α

45
. (9.9)

While, the surface maximum from the mean position is given by,

y(L/2) =
m

6
− 7α

360
. (9.10)

Thus for a negative α, the groove is expected to become deeper and the surface maximum

elevated compared to that in the absence of any GB flux.

9.2.2 Numerical Approach

We next solve the complete non-linear PDE (7.7) using a numerical technique. For this

we follow the approach of Klinger et al. [5] by making the substitution z = y′√
1+y′2

and

∂y
∂t

= vss in Eq.(7.7) to obtain,

vss = −B ∂

∂x

(
√

1− z2
∂

∂x

(
∂z

∂x

)}
(9.11)

vss = −B ∂

∂x

(
√

1− z2
∂2z

∂x2

)
(9.12)

vss = −{Js}xΩ (9.13)

Integrating the above Eq. and evaluating the integration constant from the condition

of flux continuity Js(0) = JGB
2

and using vss = JGBΩ
L

from mass balance we get,

JGBΩ

BL
x− JGBΩ

2B
= −
√

1− z2
∂2z

∂x2
(9.14)
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Non-dimensionalizing the above Eq. by substituting x = x
L/2

, z = z and α = JGBΩL2

8B
we

obtain,
∂2z

∂x2 =
α(1− x)
√

1− z2 (9.15)

The above non-linear ordinary differential equation (ODE) needs to be evaluated for the

boundary condition z(0) = −z(2) = sin θo. The ODE is solved using shooting method

and the procedure involves the following steps,

(i) The second order ODE (9.15) is converted to two first ODEs by making the sub-

stitution u1 = z and u2 = ∂z
∂x

. The resulting ODEs write as,

∂u1

∂x
= u2 (9.16)

∂u2

∂x
=
α(1− x)
√

1− u1
2 , (9.17)

subjected to the boundary conditions u1(0) = −u1(2) = sin θ0

(ii) The above boundary value problem (BVP) is transformed to an initial value problem

by choosing u2(0) = p where p is an initial guess. The system of ODEs (9.16) and

(9.17) are then solved using fourth order Runge-Kutta method iteratively, to obtain

the solution at u1(2). However the boundary condition dictates u1(2, p) = − sin θ0.

Hence, the procedure is repeated with different values of p until the boundary

condition at x = 2 is satisfied.

(iii) To speed up the convergence procedure, after the first two iterations, the subsequent

values of p are obtained by using the secant method by converting the BVP to a

root finding problem for f(p) = u1(2, p) + sin θo = 0 as,

pi+2 = pi+1 − (pi+1 − pi)
f(pi+1)

f(pi+1)− f(pi)
. (9.18)

The iteration is stopped when f(p) < 10−6.

9.3 Results

The numerical parameters selected in the phase-field simulations are given in Table 9.1.

In the present chapter both constant voltage (CV) and constant current (CC) EM testing

are employed. It is important to note that in the CV set-up, as the surface drifts under

the action of EM, the conductor length Lm decreases, as a result of which Em (and

concomitantly JGB) drops overtime. The reported Em corresponds to the initial value.
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Table 9.1: Non-dimensionalized numerical parameters used in the present study and correspond-

ing interfacial properties

Parameter Non-dimensional value

κρ 1

κη 0.33

A,B,C 1

MB 10−6

MGB 0.2,0.5,1.0,2.0

MS 1.0

ze -5

φ ± 0.01, 0.05, 0.1

σm 3

σu 0.3

∆x,∆y 0.5

Lu, Lm 64 ∆x

L 100 ∆x

∆t 0.001

γS 0.58

γGB 0.40

δS 3.5

δGB 2.4

On the other hand, in the CC set-up, ensures a constant Em throughout the course of

drift. Thus, the two BCs are motivated to test whether the assumption of constant GB

flux JGB is necessary to attain a steady state drift.

9.3.1 No grain boundary flux

9.3.1.1 Steady state groove profiles

As a benchmark calculation, we first compare the solution obtained from the three meth-

ods in absence of any GB flux. The analytical equilibrium profile is a circular profile of

equal curvature given by y(x) = −m
2
x2 +mx obtained by substituting α = 0 in Eq.(9.8).

The numerical profile is obtained by solving Eq.(9.15) with α = 0. The interface profile

from the phase-field simulation is extracted as the ρ = 0.5 level set. Care must be taken

to locate the groove root form the phase-field simulations. In the sharp interface solu-
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tion, invoking the symmetry of the problem about the groove root, only a single branch

on the either side of the root is calculated. The other branch is obtained as the mirror

image of the former and both branches intersect at a single point at the root. In the

phase-field solution, however, due to the diffuse nature of the GB, both branches rather

than intersecting sharply forms a blunt concave region. This is purely an artifact of the

phase-field method. In order to locate the groove root precisely, we fit the ρ = 0.5 level

set on the either side of the GB by fourth order polynomial leaving out the points in the

interfacial region. The root is defined as the intersection point of the fit. Consequently,

while comparing to the sharp interface solution, the phase-field profile is adjusted such

that the root obtained from the intersection is placed at y = 0.

The sharp-interface numerical and the phase-field solution show a good agreement as

evident in Fig.9.2(a), while the analytical calculation predicts a slightly elevated profile.

It is to be noted that γS and γGB selected in the present study corresponds to m(=

tan θo) = 0.3615 which clearly violates the SSA (m < 0.2) employed in the analytical

calculation. A consequence of such an approximation implies an overestimation of the

curvature during groove evolution. However, even with such a simplified assumption

the analytical solution is within 3% of both the non-linearized as well as the phase-field

solution. This not only validates our phase-field formulation and its implementation but

also indicates that the analytical solution obtained from the linearized PDE (9.1) serves

as an excellent approximation of the complete non-linear problem in absence of any grain

boundary flux.

9.3.1.2 Temporal evolution of the groove depth

We define the groove depth as the position of the groove root relative to the initial flat

surface. For the analytical expression this translates to,

dg = y(0, 0)− y(0, t) (9.19)

which according to Eq.(9.7) with JGB = 0 can be written as,

dg =
mL

6
− mL

π2

∞∑
n=1

1

n2
exp

(
− n4 t

τ

)
. (9.20)

A comparison of the above expression to that from the phase-field simulation is pre-

sented in Fig.9.2(b). The position of the groove root from the simulations is determined

as discussed above. The general agreement is quite good with the analytical expression

overestimating the equilibrium groove depth by about 3.6%. The behavior of the early

stages is particularly interesting, as it exhibits a slope of 1/4. This can be also be shown
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(a)

(b)

Figure 9.2: a) Comparison of the equilibrium groove profile obtained from the three methods for

the case of no grain boundary flux. The agreement between the sharp-interface numerical and the

phase-field method is good, while the analytical method based on the small slope approximation

overestimates the curvature leading to a slightly elevated profile. (b) Comparison of the temporal

evolution of the groove depth from the analytical and the phase-field method. Although the small

slope approximation overestimates the groove depth, the initial t1/4 law predicted by the analytical

method is preserved as evident from the curve obtained from the phase-field method.

more formally by using Mellins’ transform as t� τ [243],

dg =
mL

6
− mL

π2

{
π2

6
− π

2
√

2Γ(5/4)

2π

L
(Bt)1/4

}

=
m(Bt)1/4

√
2Γ(5/4)

= 0.78m(Bt)1/4, (9.21)

which is same as the expression derived by Mullins for the case of isolated grooves. This

extends the validity of Mullins’ expression for groove depth for interacting grooves in

finite grain systems at early times. Moreover, the simplification of SSA does not alter

the t1/4 scaling, but only affects the constant prefactors appearing in the expression.
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(a) (b)

(c)

Figure 9.3: Steady state groove profiles obtained from the three methods for different values

of non-dimensional parameter α. The atomic mobilities MGB and MS are selected to be 0.5

and 1 respectively for all the SI-Analytical, SI-Numerical and Phase-field CV and CC cases.

The grain boundary flux JGB is varied by changing the applied potential φ in constant voltage

set-up or current density j in constant current set-up as (a) φ = ±0.01, j = 1.894 × 10−5

such that JGB = −2.41468 × 10−4 and α = −0.06214, (b) φ = ±0.05, j = 9.469 × 10−5 such

that JGB = −1.2074 × 10−3 and α = −0.3107 and (c) φ = ±0.1, j = 1.894 × 10−4 such that

JGB = −2.41468× 10−3 and α = −0.6214. The phase-field method consistently yields a flatter

profile in comparison to the sharp-interface model. Additional set of phase field simulation

in (c) corresponding to CV 2 and CC 2 for JGB = −2.41468 × 10−3 and α = −0.6214 with

MGB = 1, MS = 1 and φ = ±0.05, j = 9.469× 10−5 leads to a second solution even though the

sharp-interface model gives rise to a unique solution.
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9.3.2 Grooving under electromigration

9.3.2.1 Steady state groove profiles

JGB can be varied by either changing the GB atomic mobility MGB or alternatively by

changing Em across the conductor by adjusting the value of the prescribed potential at

the domain edges according to Eq.(4.163). We first fix the value of MS = 1, MGB = 0.5

and vary the applied potential as φ = ±0.01, 0.05, 0.1 for the constant voltage case.

Equivalently, the current density is varied as j = 1.894× 10−5, 9.469× 10−5, 1.894× 10−4

for the case of constant current such that, JGB = −2.41468 × 10−4,−1.2074 × 10−3 and

−2.41468 × 10−3 respectively. In terms of the non-dimensional parameter α, the values

correspond to −0.06214,−0.3107 and −0.6214 such that the values lie within the global

steady state regime of surface evolution.

A critical comparison of the steady state profile from sharp interface analytical(Eq.9.6),

numerical solutions and phase-field simulation is presented in Fig.9.3. With increasing

values of α, the numerical solution approaches the analytical solution. However, for the

range of α probed, the difference is not significant. A convincing agreement is also found

for the steady state profiles obtained from the constant voltage and the constant current

set up from the phase-field simulations. Moreover, a significant disagreement between the

numerical and the phase-field solution can be observed for higher values of α (Fig.9.3(b)

and (c)) Another point to be noted is that height of the profiles i.e. the distance between

the groove depth relative to the surface maximum increases with increasing magnitude

of α. On the contrary, the phase-field profiles consistently become flatter with increasing

α.

Another implication of the sharp interface analytical and numerical solution (Eqs.(9.5)

and (9.15) respectively) is that the steady state profile depends on the parameter α. In

other words, the sharp-interface predicts a unique solution for a given α. To ascertain the

validity of the aforementioned claim, we perform an additional test indicated by CV 2

and CC 2 in Fig.9.3(c) at JGB = −2.41468× 10−3 by increasing MGB = 1 and decreasing

the applied potential φ = ±0.05 such that α = −0.6214. The phase-field method results

in a second solution for the same α with the new profile elevated in comparison with the

previous one. This essentially implies that shape of the grooves depend not only on the

magnitude of JGB, but also on the individual parameters determining the quantity.
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9.3.2.2 Temporal evolution of groove depth

The analytical expression of the temporal variation of the groove depth in presence of

electromigration can be written from Eq.(9.7) as,

dg = −JGBΩ

L
t− A0 −

∞∑
n=1

mL

(nπ)2
exp(−n4t/τ)

−
∞∑
n=1

JGBΩL3

8B(nπ)4
exp(−n4t/τ) (9.22)

For t << τ the above expression can be simplified using Mellins’ transform as,

dg = −JGBΩ

L
t− m(Bt)1/4

√
2Γ(5/4)

+
JGBΩ

2B

(Bt)3/4

√
2Γ(7/4)

= −JGBΩ

L
t− 0.78m(Bt)1/4 + 0.38

JGBΩ

B
(Bt)3/4 (9.23)

Thus, in addition to the t1/4 dependence as in the case of JGB = 0, two other time-

dependent terms namely t3/4 and t arise in presence of external grain-boundary flux

which become progressively important at larger t. We mention that the t1/4 dependence

does not arise in the solution of Thouless [125] because of the different initial starting

profile of equal curvature. Furthermore, the second (t1/4) and the third term (t3/4) of

the solution is same as that derived by Genin et al. [124] for the case of isolated grooves

under stress implying the validity of the solution in the case of finite grains when any

overlap from the neighboring profiles is absent. Eventually for t >> τ the linear term in

t responsible for uniform thinning dominates as,

dg = −JGBΩ

L
t+

mL

6
− JGBΩL3

720B
(9.24)

A comparison of the analytical expression and phase-field numerics for the three α

values are shown in Fig.9.4. For all the three cases, the early stage t1/4 behavior and the

late stage linear drift in t are clearly observable from the phase-field computation. Sec-

ondly, with increasing JGB(α), the overall agreement between the curves become poorer.

The most striking feature of the disagreement is the increasing relative disparity until

intermediate times. Specifically, if we observe the curves in Fig. 9.4 (b) and (c) at

ln 8 − ln 10 the disagreement appears to be significantly larger when compared to the

early stages. At this point it is important to contrast this temporal disparity to the case

of JGB = 0 in Fig.9.2(b) where the analytical and phase-field results differ by a constant

factor throughout the evolution process. While the analytical solution enters a transient

higher deepening rate regime followed by a slower kinetic regime, the phase-field curves

exhibit an early dip and subsequently enter the steady state faster. The dip appears

larger for α = −0.6214 obtained at lower MGB and higher φ/j (Phase-field CV/CC) than

that at higher MGB and lower φ/j (Phase-field CV 2/CC 2) as observed in Fig.9.4(c).
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(a) (b)

 (c)

Figure 9.4: The temporal evolution of the groove displacement for the same parameter set

used in Fig. 9.3. After an initial t1/4 temporal law, a linear regime implying a steady state

drift is attained in both analytical and phase-field solution. The analytical solution, however,

overestimates the displacement and more so at higher values of α. In the intermediate times,

the analytical solution transits to a higher deepening rate, which is suppressed in the phase-field

solution eventually exhibiting an early dip.
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9.3.2.3 Role of EM surface flux

Let us next try to resolve the source of these discrepancies by critically examining the

assumptions involved in deriving the analytical and numerical solutions. The sharp in-

terface analytical solution differs from the numerical counterpart only in the linearization

of the governing equation i.e. the SSA. The phase-field computation, similar to the

sharp-interface numerical solution does not rely on SSA and infact treats the complete

non-linear problem. The minor disagreement between the analytical and numerical sharp

interface solutions, while an increasing discrepancy with the phase-field solution in Fig.9.3

suggests the possibility of a different source of disparity other than the SSA.

The analytical and numerical solution of PDE (7.7) pertains to a generalized case

of grooving under any kind of GB flux. In presence of EM, however, it overlooks an

additional mode of transport in form of EM-induced surface flux (JES ). Although the

initial surface is perpendicular to the direction of electric field, the formation of GB

grooves exposes a fraction of the free surface to the electron wind. The direction of

this flux depends on the sign of ze which being negative is directed towards the groove

root. Thus, while JGB drains material out of the root, JES provides a healing flux. In

absence of JGB, grooves develop at the surface-GB intersection as a result of the system

trying to attain the equilibrium dihedral angle, resulting in the reduction of GB length,

while expelling material onto the surface. This results in formation of ridges instigating

curvature-gradients along the surface which further provide the impetus for mass flux J∇κsS

by flattening the ridges. This momentarily upsets the dihedral angle resulting in further

deepening of the groove by transporting material to the surface. This process is repeated

until the circular profile of equal curvature develops. In presence of EM-induced GB flux,

JGB provides an additional driving force for GB reduction. As a result, both the groove

depth and the surface maximum predicted by the sharp-interface calculation are higher in

presence of JGB than that solely evolving under J∇κsS . However, the presence of JES (which

is inherently accounted in phase-field simulations) would oppose both increment of groove

depth and formation of ridges by transporting material back to the root. The magnitude

of JES depends on MS and the projection of the electric field (which is dependent on

applied potential for CV set-up and applied current density for CC set-up) on the surface.

As we increase JGB by increasing the applied potential, JES infact increases concomitantly

which induces a higher net flux along the freshly exposed groove walls. It is worth

mentioning that JES depends upon the shape of the evolving surface and increases as the

groove deepens because of the exposed fresh surfaces until a steady shape is attained.

Thus JGB obtained at a higher Em (higher φ or j) and lower MGB, inadvertently

results in higher JES than that at lower Em (lower φ or j) and higher MGB. That this is

indeed true can be verified in Fig.9.5 where a representative instance of EM surface flux
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(a)

(b)

Figure 9.5: The net surface flux vectors for the two parameter sets corresponding to Fig.9.3(c)

for the constant voltage set-up after the steady state shape of the groove profile has been at-

tained. Higher applied electric field leads to higher healing surface flux in (a) as compared to

(b) as evident from the number of high magnitude red arrows. As a result, the groove profile in

Fig.9.3(c) is flatter as well as the groove displacement is lower in Fig.9.4(c) for the first set of

parameter.

vectors for the two sets of parameters utilized in Fig.9.3(c) is presented. The intensity

of EM surface flux currents near the root (signified by red arrows) for the former case is

higher than the latter. This explains the flatness of the steady state profile and the greater

dip in groove displacement for the first set of parameters in Fig.9.3(c) and Fig.9.4(c).

We next examine the effect of individual parameters comprising JGB i.e. MGB and Em.

The groove depth relative to the surface maximum, d = |y(0)|+ |y(L/2)| (from Eq.(9.9)

and (9.10)) from the analytical and phase-field method is plotted against Em in Fig.9.6.

We fix MGB/MS = 0.5 and vary φ = ±0.01, 0.05, 0.1. The sharp-interface analytical and

numerical methods predict a linear increase of groove depth with increasing magnitude

of Em. Phase-field, on the other hand, exhibits an opposite trend albeit the decrease is

non-linear. The groove depth decreases with increasing Em because of enhanced JES .

We next fix φ = ±0.1 and vary MGB = 0.2, 0.5, 1.0, 2.0. The resulting curves are

shown in Fig.9.7. A linear behavior can be observed with increasing MGB, albeit the

sharp-interface consistently overestimates the groove depth. Another point to note is

that both the curves (sharp-interface and phase-field) do not exhibit same slope (or in

other words are not parallel) and diverge at higher values, indicating that JES does play a

role even though the electric field across the conductor is equal in all the cases. Increasing

Em (keeping MGB and MS fixed) not only increases JGB, but also has a direct effect on

JES as a result of which the groove depth decreases in the former case; the relatively

slower rate of increase of the groove depth due to increment of MGB (keeping Em and

MS fixed) is more of a causality. Although MGB does not directly affect JES , it does lead
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Figure 9.6: The variation of groove depth d measured from the surface maximum with the

applied electric field Em. While the sharp interface method (analytical as well as numerical)

predicts an increase of d with increasing Em, the phase-field method exhibits an opposite trend.

The discrepancy can be rationalized on the basis of electromigration-induced surface flux not

accounted in sharp-interface models which provides a healing effect leading to the premature

arrest of groove penetration.

to larger groove extension and consequently a larger fraction of the exposed groove walls

due to which JES will be higher. However, in contrast to the former case the effect is not

prominent enough to overcome the effect of increasing JGB.

9.3.2.4 Drift velocity

We next examine the drift characteristics in light of drift velocity experiments. In drift

velocity experiments, the drifting edge attains a steady state characterized by a linear

displacement-time curve following an initial incubation period [89]. In the present case

the initial grooving stage can be regarded as the incubation period. The origin of the

incubation period can also be inferred from the two time dependent terms (first and

last parentheses) in Eq.(9.7). While the former term relates to the surface drift which

is dominant at larger t, the latter describes the groove extension and is pre-eminent at

smaller t. Of course, the prefactors also dictate the transition between grooving and

drift. A higher JGB and a higher B will facilitate the advent of the drift stage, resulting

in a shorter incubation stage. The above inference is quite consistent with the drift

velocity experiments where the incubation period is found to be inversely dependent on

temperature [89], which can be attributed to the Arrhenius type dependence of diffusivity
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Figure 9.7: The variation of groove depth d measured from the surface maximum with grain

boundary atomic mobility MGB relative to surface atomic mobility MS. Although both sharp

interface (analytical as well as numerical) and phase-field model predict an increase of d with

increasing MGB, the sharp-interface method considerably overestimates the groove dimensions.

The discrepancy increases with increasing MGB.

on temperature as a result of which both MGB(hence JGB) and MS (hence B) decrease.

The steady state velocity vss from simulations is extracted from the slope of the

displacement-time curves (as in Fig.9.4) by fitting a straight line in the linear regime. It

should be noted that presence of EM surface flux should not alter the kinetics of drift

which is derivable through a mass balance equation given by Eq.(9.4). As a result, unlike

the steady state profile, the steady state velocity should be invariant to the individual

variation in MGB and Em as long as it results in equivalent JGB. The universal scaling on

JGBΩ/L is evident in Fig.9.8 where all the data points collapse on a single master curve.

The results from the both CV and CC set-up converge towards the same steady state.

9.4 Discussion and Conclusion

In the present work we employ analytical and numerical approaches to investigate the

effect of electromigration on GB-grooving. The sharp-interface theory based on Ref.

[5] which is valid for arbitrary constant GB flux is shown to lead to significant errors

when specifically applied to the case of EM. We conclude the chapter by summarizing

the discrepancies originating out of the simplified assumptions involved in deriving the

sharp-interface theory in light of the results obtained from the phase-field simulations.



Chapter 9. 183

  

Figure 9.8: The universal scaling of steady state velocity on grain boundary flux JGB and grain

size L. The solid line represents the linear behavior of the sharp-interface model. The points

correspond to the data obtained from the phase-field simulations for both constant voltage and

constant current set-up.

1. Morphological stability in terms of α : An important consequence of the present

results is that the parameter α = JGBΩL2

8B
that has hitherto been used to predict

groove shapes and damage mechanisms in polycrystalline interconnects [5, 76, 86]

is infact inadequate to estimate either the correct steady state shape or the kinetic

regime of damage. For instance, one can fix the ratio MGB

MS
and increase α by

increasing the applied field Em which should shift the kinetic regime from global

steady state to the local steady state (slit along GB). However, as evident from

the groove profiles in Fig.9.6, increasing α by increasing Em alone suppresses slit

forming propensity because of enhanced JES . Rather, the phase-field simulations

emphasize the critical role of MGB

MS
on the stability of the surface. Below a critical

value of MGB

MS
no slit solution is possible and increasing Em leads to premature

arrest of GB grooving. Thus, the presence of JES introduces an additional degree of

freedom to ascertain the morphological stability of the GB grooves.

Secondly, since JES is governed by the shape of the profile, it is a time-dependent

quantity which increases temporally as grooving proceeds. As a result, although the

initial t1/4 and late stage t regime predicted by the analytical theory is preserved, the

intermediate regime characterized by the interplay of the t1/4and t3/4 dependence is

suppressed as evident in Fig.9.4 The results derived from analytical expressions at



Chapter 9. 184

higher Em and higher MGB are more prone to errors as compared to the phase-field

counterparts. Subsequently, the steady state is achieved faster. The steady state

behavior, however, remains unaffected and scales linearly with JGB.

2. Small slope approximation : Based on the assumption of SSA in analytical theory,

a global steady state solution is always possible. However, as shown in Ref. [5],

relaxing SSA results in a finite interval of α, only within which a steady state is

warranted. In this interval, the sharp interface analytical and numerical solution

diverge as the limits of the steady state range is approached implying the break-

down of the SSA. Accounting for EM surface flux in the phase-field method further

restricts the region of steady state solution (which is now characterized by two in-

dependent variables which are function of MGB

MS
and Em). Moreover, in the new

interval in addition to SSA, non-consideration of JES leads to significant errors as

evident from Fig.9.3.

3. Scaling on grain size L : A careful consideration of sharp-interface Eqs.(9.9) and

(9.10) suggests that the scaled groove dimensions depend only upon the non-

dimensional quantities m and α. This essentially implies the invariance of the

scaled groove dimensions on grain size L. The same also holds true for the sharp-

interface numerical solution. However, as evident from the phase-field simulations,

α does not result in a unique solution. Furthermore, the presence of EM surface flux

JES , depends upon the fraction of exposed groove walls which in turn is dependent

on the grain size. This results in the violation of the scale invariance of grain size

according to the expression of α.

4. Constant GB flux : Another simplification which makes the problem analytically

tractable is the assumption of steady state GB diffusion and constant GB flux uti-

lized to derive the flux boundary condition at the root [124]. A steady state GB

diffusion is attained in both the cases following an initial transient stage in the sim-

ulations. While the assumption of constant GB flux in the phase-field simulations

is true in constant current, drifting (as a result of which Lm decreases) will lead to

decrease in the GB flux in the constant voltage set-up. As a result, a slightly higher

steady state velocity was observed in the simulations with the constant current at

higher JGB values. For the cases, where grooving comes to a halt the groove depth

is found to be higher for the constant current case. For the cases, where Lm changes

significantly during the damage process, for instance in the case of slit propagation

we expect the constant current and constant voltage to yield different results in

terms of the steady state velocity.

The results presented in the chapter can significantly enhance our understanding of
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damage morphologies in copper metal lines which are severely affected by the surface

conditions [107, 76, 86]. If the surface diffusion along the freshly exposed groove walls

are not blocked or hindered by passivation or impurities, EM-induced surface flux will

promote damage my global thinning of grains and save the line from the more pervasive

failure in form of intergranular slits.

Healing is an integral process of EM-induced damage. In situ experiments have previ-

ously demonstrated this aspect during void growth and migration in Aluminum intercon-

nects [99, 263]. Premature termination of groove penetration in bamboo type lines was

reported by Ogurtani and Akyildiz [120, 142] and Averbuch et al. [264] using computer

simulations. Since most healing effects are generally time dependent, their consideration

in analytical theories might not be all that straightforward. For instance, in the present

case the JES can be accounted by transforming the governing equation in terms of θ, the

surface tangent and x by replacing Eq.(7.3) by, JS = DsδS
ΩkBT

[−ΩγS
dκ
ds

+ zeEm sin θ], where

κ = dθ
ds

and dx
ds

= cos θ. Boundary condition in θ is then needed to close the equation.

However, this in turn requires the information of the shape of the profile itself. Such

an approach is employed in the case of slit propagation by assuming a constant shape

of the slit surface [95, 96, 94]. Although the governing equations turn out to be highly

non-linear, the solution (which require numerical techniques) provides information only

on the time-independent steady state shape.

The results presented in the chapter demonstrate that phase-field method is a promis-

ing tool to capture the entire temporal evolution of EM damage initiation, propagation

and healing elegantly. Particularly fortifying is the ability of the phase-field method to

capture the drift velocity characteristics over a magnitude of GB flux. Drift velocity

experiments provide valuable information on the activation energy of the process, which

in turn further identifies the dominant diffusional pathway.



Chapter 10

Grain boundary grooving in finite

grains due to concurrent surface and

grain boundary electromigration

10.1 Introduction

The theoretical GB grooving model by Klinger and Glickman [5, 126] considers the evolu-

tion of grooves under the combined influence of capillary-mediated surface diffusion and

grain boundary electromigration (GBEM). The model, however, is limited on account

of ignoring the EM-mediated surface flux running along the groove walls. It was shown

in the previous chapter using a phase-field method (where EM-induced surface flux is

inherently captured), that not considering such flux can lead to errors in ascertaining the

temporal evolution of the groove root as well as the equilibrium groove profile. The aim

of the present chapter is to extend the model of Ref. [5] to incorporate the effect of EM

surface flux and study the steady state groove profiles. It will be shown that unlike the

previous work, accounting the surface EM flux introduces an additional degree of free-

dom to describe the groove shapes. The present chapter is organized as follows. In the

succeeding section (Sec. 10.2), the mathematical model of GB grooving under concurrent

surface and GBEM is presented. Thereafter in Sec.10.4, the effect of model parameters

on the groove profile is discussed. In addition, the steady state solution regimes in the

model parameter space are explored. The model predictions are then critically compared

with the solutions from the phase-field method and that from Ref. [5]. The chapter

is concluded in Sec. 10.5 by a brief summary and discussion of the implications of the

findings of the present work.
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JĴJS 

� JS

?

JGB 6E

��7
s θ

6

-
x

y

-L�

x = L
2

1

Figure 10.1: Schematic depicting the steady state groove profile and the choice of coordinate

system (in a moving frame of reference) used in the present work. The origin is selected at the

groove root. The applied electric field E in the interconnect is directed along GB. The steady-

state groove shape is determined by the interplay of capillarity and EM-induced surface flux

JS and EM-induced GB flux JGB. Invoking the symmetry of the groove profiles, the governing

equations are derived for only half the grain size L/2 where L is the grain size. θ is the angle

made by the surface arc s with the x-axis.

10.2 Sharp-interface model

Let x − y be the coordinate system in the moving frame of reference with the origin

coinciding with the groove root as shown in Fig.10.1. The applied electric field E is

directed parallel to the GB. The groove profile y(x, t) evolves due to the concurrent

influence of chemical potential µ and electric potential at the surface φs. The surface

flux of the atoms can be written as a linear combination of the driving force from the

principle of linear irreversible thermodynamics as

Js = −L11∇sµ− L1e∇sφs (10.1)

= Jchem + Jem (10.2)

The chemical part of the surface flux can be written in terms of the average drift velocity

(< v >) of the surface concentration of atoms ν as

Jchem = ν < v >= −νMs∇sµ (10.3)

On comparison with Eq.(10.1) L11 = νMs. The chemical potential of an atom along the

surface due to the presence of curvature is given by,

µ = µo + Ωγsκs (10.4)

where µo is the chemical potential of a flat surface, Ω the atomic volume, γs the surface

energy and κs the curvature. Inserting Eq.(10.4) in (10.3),

Jchem = −νMsΩγs
dκs
ds

. (10.5)
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The surface concentration of atoms ν is given by ν = δs
Ω

. δs is the thickness of the surface

layer. Ms is the surface atomic mobility which is related to the surface diffusivity Ds

according to the Nernst-Einstein relation as M = Ds
kBT

. Substituting the above relation

in Eq.(10.5),

Jchem = −Dsδsγs
kBT

dκs
ds

(10.6)

Similarly EM-induced surface flux can be written as

Jem = −νMsFem (10.7)

where Fem represents the driving force for EM which can be approximated by an electro-

static force with an effective surface charge zse as

Fem = zse
∂φs
∂s

. (10.8)

Substituting in Eq.(10.7) and using the definition of ν and Ms we have

Jem = − Dsδs
ΩkBT

zse
∂φs
∂s

(10.9)

Substituting Eqs.(10.6) and (10.9) in (10.1) the surface flux can be re-written as

Js = −Dsδsγs
kBT

dκs
ds

+
Dsδs

ΩkBT
zseEt (10.10)

where Et = −∂φs
∂s

is the tangential component of the applied electric field along the

surface and is given by βE sin θ. The coefficient β = 2σm/(σm + σu) depends upon the

conductivity of the metal interconnect σm and the outer domain σu. θ denotes the angle

between the surface tangent and x-axis as shown in Fig.10.1. Rewriting Eq.(10.10) by

utilizing the relation κs = − y′′

(1+y′2)3/2
where ′ denotes the derivative with respect to x

co-ordinate and substituting F = y′√
(1+y′2)

= sin θ, such that κs = −dF
dx

,

Js =
Dsδsγs
kBT

√
1− F 2

d2F

dx2
+

Dsδs
ΩkBT

zseβEF. (10.11)

Mass conservation along the surface relates divergence of surface flux to the normal

velocity as,
dJs
ds

= −Vn
Ω
. (10.12)

Assuming the surface drifts in steady state with shape conserving profile,

Vn = V cos θ. (10.13)

Substituting Eq.(10.13) in Eq.(10.12) and using the relation dx = cos θ ds,

dJs
dx

= −V
Ω
. (10.14)
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Integrating the above Eq. and finding the integration constant from the condition of

continuity of flux at the root Js(0) = JGB/2,

Js +
JGB
L

x− JGB
2

= 0 (10.15)

where, the relation V = JGBΩ
L

has been utilized from the mass balance at the groove root.

L represents the grain size. JGB is the EM-induced GB flux given by,

JGB =
DGBδGB
ΩkBT

zGBeE (10.16)

where DGB denotes the diffusivity at the GB, δGB the GB thickness and zGBe the effec-

tive charge of the diffusing species at the GB. Substituting Eqs.(10.11) and (10.16) in

Eq.(10.15),

Dsδsγs
kBT

√
1− F 2

d2F

dx2
+

Dsδs
ΩkBT

zseEβF +
DGBδGB
2ΩkBT

zGBeE
( x

L/2
− 1
)

= 0. (10.17)

Dividing throughout by Dsδs
ΩkBT

zseEβ,

γsΩ

zseEβ

√
1− F 2

d2F

dx2
+ F +

DGBδGBzGB
2Dsδszsβ

( x

L/2
− 1
)

= 0. (10.18)

Non-dimensionalizing the above Eq. by introducing x = x
L/2

the governing Eq. is obtained

as,

χ
√

1− F 2
d2F

dx2 + F +M(x− 1) = 0 (10.19)

where,

χ =
4γsΩ

zseEβL2
(10.20)

and

M =
DGBδGBzGB

2Dsδszsβ
. (10.21)

Eq.(10.19) is solved subjected to the following boundary conditions,

F = sin θo = Γ at x = 0 (10.22)

where Γ = γGB
2γs

and γGB is the grain-boundary energy. The symmetry of the problem

also dictates,

F = 0 at x = 1. (10.23)

Two non-dimensional groups arise from the governing Eq.(10.19), namely χ and M . The

number χ denotes the ratio of capillary force γsΩ
L2 to the surface EM force zseE. Such

a number has previously been defined to characterize shapes of voids in several theories

of EM-mediated void migration [265, 92] and slit propagation [266, 96, 267]. In case of
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circular voids, capillary force maintains the circular shape, while EM force induces shape

changes due to mass transport. In the context of the present problem of GB-grooving,

the capillary force leads to a surface profile of uniform curvature which is an arc of a

circle as in the case of thermal grooves. The presence of EM, however, can significantly

alter the steady-state surface profile which need not be circular. Such a case is expected

to occur at |χ| < 1. The second number M represents the ratio of rate of EM transport

along the GB to that at the surface.

Most commercial interconnects are characterized by negative effective valence imply-

ing a dominant wind force. Hence zse and zGBe are selected to be negative in the present

work. This implies that the direction of JEs and JGB is in the direction of electron wind.

While JGB drains the groove root, JEs transport material to the groove root. Thus χ and

M are negative and positive numbers respectively. χ and M along with the groove angle

sin−1(Γ) completely determines the steady state groove profile.

The second order non-linear ordinary differential Eq.(10.19) is solved using Runge-

Kutta method coupled to a shooting method. The procedure involves converting the

second order ODE to two first-order ODEs by making the substitutions, u1 = F and

u2 = dF
dx

. The resulting coupled first order ODEs can then be written as,

du1

dx
= u2

du2

dx
=
−u1 +M(1− x)

χ
√

1− u2
1

(10.24)

which are solved under the modified boundary conditions u1 = Γ at x = 0 and u1 = 0 at

x = 1.

10.3 Analytical solution of the linearized equation

An analytical solution of ODE (10.19) is permitted if
√

1− F 2 ≈ 1. In other words,

the linearization procedure implies assuming F 2 � 1. Since F = sin θ, F = dy
ds
≈ dy

dx

(sin θ ≈ tan θ for small θ). Thus, linearized version of Eq.(10.19) can be written as,

χ
d3y

dx3 +
dy

dx
= M(1− x) (10.25)

subjected to the boundary conditions,

y = 0 at x = 0
dy

dx
= 0 at x = 1

dy

dx
= Γ at x = 0 (10.26)
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Figure 10.2: Effect of M on steady state groove profiles at (a) lower EM force χ = −10 and (b)

higher EM force χ = −1. The angle at the groove root corresponds to Γ = 0.34. In both cases,

groove depth relative to the surface maximum increases with increasing value of M . At χ = −10

and M = 0 (i.e. DGB = 0), the solution reverts to the case of thermal grooves. At χ = −1 and

M = 0, a higher surface EM flux acts as a healing agent leading to lower equilibrium groove

depth than the thermal groove.

It is to be noted that dy
dx

= Γ√
1−Γ2 at x = 0. However, the linearized version of the

boundary condition is used in the rest of the derivation.

The solution of Eq.(10.25) which is a third order non-homogeneous linear ODE can

be split into homogeneous and non-homogeneous part as [268],

y(x) = yh(x) + ynh(x) (10.27)

The solution of the homogeneous part yh(x) satisfies the ODE,

χ
d3y

dx3 +
dy

dx
= 0 (10.28)

has the form,

yh(x) = C1 + C2 exp

(
x
√
χ

)
+ C3 exp

(
− x
√
χ

)
(10.29)

assuming negative χ. The solution of the non-homogeneous part ynh(x) can be found by

assuming

ynh(x) = k1x
2 + k2x. (10.30)

Substituting the derivatives in Eq.(10.25) and comparing coefficient of each power of x,

ynh(x) = −M
2
x2 +Mx. (10.31)
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Hence, the complete solution can be written by combining Eqs.(10.29 and 10.31 as,

y(x) = C1 + C2 exp

(
x
√
χ

)
+ C3 exp

(
− x
√
χ

)
− M

2
x2 +Mx (10.32)

Employing the boundary conditions (10.26) the constants can be evaluated as,

C1 = −(C2 + C3)

C2 =

√
χ(Γ−M) exp

(
− 1√

χ

)

exp

(
− 1√

χ

)
− exp

(
1√
χ

)

C3 =

√
χ(Γ−M) exp

(
1√
χ

)

exp

(
− 1√

χ

)
− exp

(
1√
χ

) (10.33)

10.4 Results

10.4.1 Effect of M on the groove profile

The effect of M on the groove profile at two χ values of −10 and −1 corresponding to

lower and higher surface EM force respectively are presented in Fig.10.2. For a given

χ, the groove depth relative to the surface maximum increases with increasing value

of M . This increase can be attributed to JGB which drains the root by transporting

material along the GB. Since higher M implies higher DGBδGBzGB, JGB increases with

increasing M . At higher χ i.e. lower surface EM force or equivalently lower JEs and

M = 0 corresponding to no GB transport, the solution reverts to that of thermal groove

as seen in Fig.10.2(a). Higher surface EM force (χ = −1), however, leads to enhanced JEs
which acts as a healing mechanism by transporting material towards the groove root. As

a result, the steady state groove depth is lower than that of thermal groove in Fig.10.2(b)

for the case of M = 0 and 0.1.

10.4.2 Effect of χ on the groove profile

The effect of χ on the steady state groove profiles is discussed next. At lower value

of M(= 0.1) which corresponds to the case of faster mass transport along the surface

than GB, the groove depth decreases with decreasing the magnitude of χ as shown in
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  (a) (b)

 (c) (d)

Figure 10.3: Effect of χ on steady-state groove profiles obtained from the solution of the non-

linear ODE : (a) At lower M(= 0.1), the groove depth increases with increasing magnitude of

χ (the legend is same as (c)) until the limit of thermal groove owing to increasing EM-induced

surface healing flux, (b) at higher M(= 1), higher GB flux offsets the effect of surface flux

and the groove depth decreases with increasing absolute values of χ. (c) The groove profiles

become independent of χ at M = Γ = 0.34. At this value, the GB flux is equally compensated

by the healing surface flux. (d) The curvatures along the profile for different values of M and

χ = −0.01. While, at M = 0.1, the profile exhibits convexity throughout, higher M = 1 leads to

concavity at the root. M = Γ results in profile of uniform curvature.
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Fig.10.3(a). Decreasing χ results in the increase of JEs which heals the groove. Moreover,

higher surface EM force relative to the capillary force leads to flatter profiles for lower

χ. As surface EM force decreases, the groove depth tends towards the limit of thermal

groove at higher magnitude of χ.

The healing surface flux JEs , however, is unable to overcome a faster mass transport

along GB for M = 1 in Fig.10.3(b) as a result of which the dependency of profile on

χ is exactly reversed. The groove depth decreases with increasing absolute values of χ

until attaining the limit of thermal groove. The next question that naturally arises is

at what value of M does this reversal occur? The behavior of the ODE (10.19) and

the dependence of the solution on χ and M can be approximately estimated from the

linearized version of the equation which permits an analytical solution. It can be seen

from Eqs.(10.32) and (10.33) that for M = Γ, the profiles become independent of χ. For

M < Γ the height of the profiles increases with χ, while profiles become flatter for M > Γ.

The non-linear ODE does indeed exhibit a similar behavior as shown in Fig.10.3(c) where

the profiles for different values of χ overlap for M = Γ = 0.34. It is worth mentioning

that only at the condition of M = Γ, the profiles assumes a shape of uniform curvature

similar to thermal grooves with a value of κs = M (Fig.10.3(d)).

The same inference regarding the value of M at which the dependency on χ re-

verses can equivalently be drawn by considering the interplay between JGB and JEs . The

condition of uniform curvature renders J∇κss to be zero. The profile is expected to be

independent of χ when JEs exactly counterbalances JGB. It is to be noted that JEs varies

at each point along the surface and is maximum at the vicinity of the root where the

component of the electric field E sin θ is maximum. Thus equating JGB and the value of

JEs at the root gives,

DGBδGB
ΩkBT

zGBeE = 2
Dsδs

ΩkBT
zseE sin θo

⇒M = sin θo (10.34)

The factor 2 on the right-hand side of the above equation takes into account the surface

flux flowing along both branches of the profile.

An additional pertinent remark regarding the shape of the profile is also in order.

At low M(= 0.1) the surface profiles exhibit a convex shape throughout. Convexity

at the root is also preserved for thermal grooves. However, at high values of M(= 1),

a faster mass transport across the GB promotes concavity at the root as evident in

Fig.10.3(d). The transition of the curvature from convex to concave at the root has

interesting implication on the contribution towards healing flux. In addition to JEs , J∇κss

instigates atomic transport to the vicinity of the root.
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Figure 10.4: Comparison between the solutions obtained from the linearized and the non-

linearized version of the governing equations at Γ = 0.15. (a) The linearized ODE provides a

good approximation to the non-linearized equation at lower value of M(= 0.1). (b) At higher

M(= 1) the linearized and the non-linearized solutions diverge with decreasing absolute values

of χ.

10.4.3 Comparison of the solution of non-linear and linearized

equation

Since the linearized ODE (10.25) makes the problem analytically tractable, it is impera-

tive to assess the applicability and the range of validity of the solution in comparison to

the non-linear counterpart Eq.(10.19). It is to be noted that the linearization procedure

involves assuming F = sin θ ≈ tan θ which is equivalent to the small slope approximation

(SSA) introduced in the seminal work of Mullins [122]. Generally, the slope is maximum

at the root and decreases further towards the grain center. The assumption is thus most

likely to hold true for Γ� 1.

The case of Γ = 0.15 is first considered, where, the above assumption is reasonably

satisfied. At low M(= 0.1) corresponding to slower GB transport, a good agreement
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between the profiles obtained from Eqs.(10.19) and (10.25) can be observed across all

values of χ in Fig.10.4(a). As GB transport increases to M = 1 deviations emerge

progressively as magnitude of χ decreases in Fig.10.4(b). Higher M and low magnitude

of χ leads to faster groove extension, as a result of which curvature is underestimated

due to utilization of the SSA in the linearized theory.

The case of Γ = 0.34 is discussed next. Although the selected value of Γ violates

the SSA to a certain degree, a reasonable agreement between the two solutions can be

seen in Fig.10.5(a). Another interesting point to be noted is that unlike the case of

Γ = 0.15, the linearized solution is more prone to errors at higher magnitude of χ. A

better consensus at lower absolute values of χ can be attributed to higher JEs which in

addition to J∇κss opposes accumulation of curvature along the surface, thereby fulfilling

the SSA to a greater extent. Given the simplified assumption in the linearized theory,

the solution is well within 3% of the exact solution. At higher M(= 1) however, the two

solutions again diverge with decreasing absolute of χ.

The above comparison suggests that the linearized ODE 10.25 has a limited range of

applicability. The linearized version provides a reasonable approximation only at lower

M and at higher χ values for higher M . Moreover, the linearized ODE 10.25 predicts

solution for all possible combinations of χ, M , and Γ as evident from Eq.(10.32). The

same, however, is not true for the non-linear ODE (10.19) as is discussed in the section

10.4.4.

10.4.4 Steady state solution space

The non-linear ODE 10.19 does not possess a solution for all possible combinations of χ,

M and Γ. A few typical two dimensional slices of the steady state solution regions from

the three dimensional χ−M − Γ space is studied.

The solution region in χ −M space corresponding to Γ = 0.34 is shown in Fig.10.6.

The stability limit of M increases slowly at low χ (i.e. greater surface EM force) until

χ = 0.1 and rapidly thereafter. For simplicity, consider a given material system which

fixes the parameters γs, zs, zGB,Ω, β and fixed grain size L. For a given χ, which fixes E,

increasing M increases the ratio of DGB/Ds. As a result, the upper limit of M for a given

χ is limited by the slow surface atomic transport which is incompetent to compensate

for the rapid GB atomic transport to maintain a steady state shape. It can be seen in

Fig.10.2 that increasing M promotes concavity at the root, which on further increase can

lead to root detachment. Below a critical value of M (which appears close to 1) a steady

state solution is always possible.

The steady state region enlarges at higher χ and higher M . For instance at |χ| = 10,
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 (b)

Figure 10.5: Comparison between the solutions obtained from the linearized and the non-

linearized version of the governing equations at Γ = 0.34. (a) Even at higher value of Γ the

linearized approximates the non-linearized solution within 1%. (b) At higher M(= 1) the lin-

earized and the non-linearized solutions diverge with decreasing magnitude of χ.

  

Figure 10.6: Regions of steady state solution in M − χ space for Γ = 0.34.
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 (a)

 (b)

Figure 10.7: (a) Regions of steady-state solution in M−Γ space for χ = −0.1. (b) Steady-state

surface profiles for different values of Γ corresponding to the values of M at the limit of steady

state (black solid line in (a)).

a steady state solution is possible for M as high as 68. Increasing χ, implies decreasing E

which decreases both EM surface and GB flux, but the latter to a larger extent. Hence a

steady state is possible until higher values of M (which correspondingly increases JGB).

This is also evident by comparing the profiles for M = 1 at χ = −10 and χ = −1 in

Fig.10.2 (a) and (b) respectively.

The solution region in Γ−M space for χ = −0.1 is presented in Fig.10.7. The solution

space decreases approximately linearly with increase in Γ until a value of 0.9 after which

it falls off rapidly. The reason behind the decline of the solution space can be rationalized

as follows. For a fixed χ, increasing Γ implies increase in the value of sin θo at the root,

resulting in higher JEs due to favorable tangential component of electric field (E sin θ)

along the surface. One is tempted to assert that a higher JGB is needed to maintain a

steady-state. The groove profiles for χ = −0.1 at the upper limit of M , required for a

steady-state solution are plotted in Fig.10.7(b). It is to be noted that at lower values of

Γ, the root exhibits concavity, instigating healing due to EM as well as curvature-induced

surface flux. At higher Γ, the convexity at the root is preserved and the healing flux is

only EM-induced. The increase in the maximum permissible value of M with decreasing
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(b)

(a)

Figure 10.8: Regions of steady state solution in χ− Γ space for (a) M = 0.5 and (b) M = 5.

Γ can be attributed to the dual healing surface flux as a result of which a higher JGB and

hence higher M is required to maintain a steady-state.

Two typical solution regions in Γ−χ space corresponding to M = 0.5 and M = 5 are

shown in Fig.10.8 (a) and (b) respectively. At M = 0.5, the steady state solution region

first increases until Γ = 0.5 roughly linearly and decreases thereafter. The initial decrease

is again linear up to Γ = 0.9, followed by a steep decline. Solution exists for all possible

values of χ at Γ = 0.5 = M . It may be recalled that it is precisely at this point that the

profiles are invariant of χ. Below Γ = 0.5 increasing Γ, increases the angular component

of JEs which is counterbalanced only at higher E or lower magnitude of χ (for a fixed

M) which correspondingly increases JGB (and JEs as well but to a lesser degree). Beyond

Γ = 0.5, a further increase in Γ presumably increases JEs to an extent where a solution is

only possible at higher magnitude of χ (or lower E) values which concomitantly lowers

the effect of JEs . A similar behavior is observed at M = 5 in Fig.10.8(b) where the

solution region moves towards higher absolute values of χ. However, the solution region

does not exhibit any discontinuity. Moreover, a higher value of M will promote concavity

at the root. Hence solution is possible until lower magnitudes of χ for lower Γ because

of the dual healing mechanism.
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 (c)

(a)

Figure 10.9: Comparison of the solution of the profiles obtained from the sharp interface model

and the phase-field model for three different sets of parameters. The solution from the sharp

interface theory of Ref. [5] is also presented for comparison. In contrast to the present model

where the parameters χ and M determine the groove shape, the profile in Ref. [5] is characterized

by a single parameter α. While doubling and halving MGB/MS and E results in a unique α

and consequently a single solution, in the present framework different values of χ and M are

obtained giving rise to two distinct profile as presented in (c).

10.4.5 Comparison with Phase-field model

The phase-field simulations were conducted with a drift velocity set up. A bicrystal of

the metal interconnect sharing a planar interface with the underlayer domain is allowed

to evolve under an applied electric field (through a constant current boundary condition)

directed along the GB. The applied current and the ratio of atomic mobility at the GB

and surface MGB/Ms were varied to change the parameters χ and M . The surface is

allowed to evolve until a steady state is achieved. A number of different checks were

made to ascertain if the steady state has been attained. For instance, steady state in

terms of velocity is deduced by tracking the velocity of the groove root. Shape invariance

of the groove profiles is determined from the condition of constancy of curvature, profile

perimeter and groove depth relative to the surface maximum. Few benchmark phase-field

calculations regarding attainment of steady state are provided in Appendix D.

The ratio of atomic mobilities MGB/MS to 0.5 is first fixed, which results in a value

of M = 0.1126 and vary the applied electric field to vary χ. The groove profile from

phase-field simulation is defined as the 0.5 contour line of the conserved order parameter

which distinguishes the interconnect and the underlayer domain. The profile from the

sharp-interface theory of Klinger et al. [5] is also computed for the sake of comparison. A
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good agreement between the profiles predicted by the present sharp-interface and phase-

field model is observed over a magnitude of χ values as evident in Fig.10.9. Secondly

contrary to the prediction of the present work, the model in Ref. [5] predicts an increase

in the groove depth relative to the surface maximum with increasing value of χ. The

discrepancy can be attributed to the inconsideration of EM surface flux, as a result the

deviation is significant at higher values of χ. Moreover, the solution of Ref. [5] depends

only on a single parameter α = JGBΩL2

8B
. This implies, for a given material system one

can obtain a profile by fixing the ratio DGB
Ds

and E. Alternatively, DGB
Ds

and E can be

doubled and halved respectively to obtain the same value of α and hence a unique profile.

However in the framework of the present theory, varying DGB
Ds

and E independently leads

to distinct values of χ and M , thereby resulting in two different curves as shown in

Fig.10.9(c). The prediction of the sharp-interface model is further corroborated by the

phase-field simulations which also results in two distinct curves. It is also worth noting

that the local electric field projection along the surface used in the sharp interface model

turns out to be an excellent estimate, although a slight deviation is observed at lower

magnitude of χ (higher field strength).

Additional simulations were performed to validate the other predictions of the sharp-

interface model such as increase of the groove depth with increasing M , profile invariance

on χ at M = Γ and the effect of σu
σm

. In all cases a good agreement between the sharp-

interface and phase-field simulations were observed as provided in the Appendix E .

10.5 Discussion and Conclusion

A sharp-interface mathematical model was formulated to study GB grooving under con-

current capillary and EM-mediated surface diffusion and EM-induced GB diffusion. The

theory is applicable to polycrystalline interconnects where the damage proceeds through

concurrent surface and GBEM. Grooves can initiate wherever GBs intersect a free surface

either external or internal for example at voids. The present work can be considered as

an extension of the work of Klinger et al. [5] concerning GB grooving in presence of

GB flux. The theory presented there, was general in nature and valid for arbitrary GB

flux irrespective of the exact nature of the external driving force (for instance applied

stress or electromigration). A surface stability map in terms of non-dimensional groups

α(= JGBΩL2

8B
) and Γ was determined. Below a critical value of α, a global steady state

similar to the one considered in the present work ensues, where the entire surface drifts

preserving its shape, while narrow channel-like slits manifest due to accelerated grooving

above this critical value.

The theory [5] was subsequently applied to rationalize the damage modes during
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accelerated EM testing [109, 76, 86, 85]. The EM surface flux along the groove walls was,

however, not considered. The present work highlights that accounting for EM surface

flux introduces an additional degree of freedom to ascertain the steady state region which

is now characterized in terms of χ, M , and Γ. Moreover, JEs induces a healing surface

flux as a result of which the equilibrium groove depths in certain cases can be lower than

that of thermal grooves. Such a case does not arise in the previous work.

A comment on what is to be expected in the non-steady state regions where a solution

is forbidden is made next. Higher GB flux either due to higher M or lower χ depletes the

root resulting in the detachment from the surface to form a slit, with the surface trailing

behind. The genesis of a slit was also suggested in the theory of Klinger et al. [5] and

has recently been corroborated by phase-field simulations [3]. Theoretically, slits can be

analyzed independently by assuming a local steady state.

GB segregation has been advocated as a mechanism to reduce or eliminate GBEM

in metals [269, 270]. The present work on the other hand emphasizes the role of surface

diffusion along freshly created surfaces as a measure to counter GBEM. Such a case is

expected at lower values of M which in turn could be due to the presence of GB impurities

and/or lower χ. However, at lower χ corresponding to higher applied electric field, Joule’s

heating could play an important role leading to an additional mode of mass transport

mechanism of thermomigration. Thermomigration acting in unison with EM leads to

intriguing effects as discussed in [271] and more recently in [121].
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Conclusions and future directions

11.1 Conclusions

Electric-field-induced directed self-assembly of diblock copolymers and grain boundary

grooving in metal interconnects were studied. To this end, two phase-field models were

formulated and employed. The feasibility of the phase-field method in capturing the

essential physics of the problems and tackling the microstructure evolution efficiently

and elegantly was amply demonstrated. Furthermore, the results significantly enhances

our current understanding of field-directed pattern formation in block copolymers and EM

failure mechanism in interconnects. The findings, highlights and the objectives fulfilled

in the present dissertation can be summarized as follows :

1. Directed assembly of block copolymers

In chapter 5, the effect of concurrent external agencies such as substrate affinity,

electric field and confinement in modulating the morphologies of lamellae block

copolymer was studied. The phase diagrams (or morphology) in electric-field-

substrate strength space presented, can serve as a guideline to the experimentalists

regarding the appropriate selection of process parameters.

A time-dependent-Ginzburg-Landau (TDGL) model which complements the Ohta-

Kawasaki functional with electrostatic and surface energies was employed. Although

the model is phenomenological in a sense that it lacks the details of the molecu-

lar chain interactions, it is now well established that all possible block-copolymer

morphologies observed experimentally can be reproduced by the Ohta-Kawasaki

functional [166]. In fact, the phase diagrams obtained using the method have been

critically compared to the existing analytical theories and more rigorous simula-

tion techniques such as Self-Consistent field theory (SCFT) and Dynamic Density

204
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functional theory (DDFT) with good agreement.

The numerical simulation methods such as the one presented here (or SCFT or

DDFT for that matter) do provide a detailed exposition on the range of posible

morphologies as compared to the analytical treatments. In analytical methods,

the possibility of a given structure for the prescribed parameters is deduced by

comparing the free energies of the expected, albeit, only simple morphologies. For

instance, in the case of symmetric diblock copolymers, this corresponds to the

parallel, mixed and perpendicular structures. The results presented in chapter 4,

does however indicate the possibility of other intermediate morphologies such as

holes and perforated lamellae, specially in thin films where incommensurability

effects are important.

Although the superiority of the TDGL-based models over SCFT and DDFT cer-

tainly cannot be claimed, the computational efficiency in accessing large length and

time scales lends support to the applicability of these methods. TDGL models can

be used as a precursor for the more-informed SCFT and DDFT studies where a

large parametric space needs to be investigated. TDGL models can also accentuate

a faster bridging between simulations and experiments.

In chapter 6, a novel parallel-to-hexagonally-perforated-lamellar transition was elu-

cidated in monolayer and bilayer thin films. The perforated lamellar morphology

is one of the most attractive and technologically relevant structure, however it is

usually only metastable in the bulk. Although there have been previous attempts

to stabilize the HPL structure in supported films [272] or by application of shear

[273], this is the first report of such a phase transition in presence of electric field.

Since electric fields are relatively easier to apply than shear, specially in thin films,

the present method provides a viable alternative to modulate such a structure.

Technologically, selective removal of the component forming the cylindrical phase

generates a porous structure which could find applications as scaffolds and tem-

plates [220, 221].

2. Grain boundary grooving under electromigration

In chapter 7, the phase-field model for GB grooving was validated by a critical

comparison with the seminal work of Mullins. It was shown that the results obtained

employing the small slope approximation in the work of Mullins is applicable beyond

this restriction but within reasonable limits. A characteristic dip following the

maximum which is not present in Mullins’ solution of surface diffusion-mediated

profile but envisaged by Hillert [122] is observed in the phase-field solution.

Chapter 8 deals with the study of the underlying mechanisms responsible for EM-

mediated GB grooving in nano-scale interconnects. Using the phase-field method
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that accounts for curvature-driven diffusion in conjunction with surface and grain

boundary electromigration, two modes of damage namely surface drift and slit prop-

agation are analyzed. Various scaling laws for experimentally relevant observables

such as grain size, electric field strength and drift velocity are evaluated under ac-

celerated electromigration testing conditions. The scaling laws can be extrapolated

to the actual service condition which could provide guidelines for efficient design

and reliability of electronic device. Moreover, to the best of our knowledge, this

is the first time a numerical model has been extended to study spatio-temporal

damage initiation, propagation, self-healing, grain coarsening in three-dimensional

interconnects.

In chapter 9, the limitation of the existing sharp-interface theories in tackling the

problem of EM-induced grooving was highlighted by a critical comparison with the

findings from the phase-field approach. Specifically, it was shown that a single

parameter α(= JGBΩL2

8B
) that has been used until now to rationalize microstructural

damage during concurrent capillary-induced surface diffusion and grain boundary

electromigration in unpassivated films is inadequate to characterize either the groove

shape or damage mode. Healing flux in terms of electromigration-induced surface

electromigration along freshly exposed groove walls lead to premature arrest of

grooving and delay damage dissemination. A significant highlight is the possibility

to conduct virtual drift velocity experiments using the phase-field method. A good

agreement with the sharp-interface theory over a magnitude of GB flux corroborates

the claim.

In chapter 10, a new sharp interface model was formulated to address the phe-

nomenon of grain boundary grooving due to surface and grain boundary electromi-

gration. It was shown that unlike the existing sharp interface theory, two parameters

χ(= 4γsΩ
zseEβL2 ) and M(= DGBδGBzGB

2Dsδszsβ
) are necessary to uniquely determine the groove

shapes. The discrepancy highlighted in chapter 8 is resolved as evident from the

good agreement between the solutions of the new model and the phase-field method.

11.2 Future directions

Although the works presented in the thesis is complete in its own right, several interesting

extensions are possible. The straightforward continuation of the present work is discussed

first.

1. Directed assembly of block copolymers

The work in the thesis explores only the effect of uniform field. As a result of



Chapter 11. 207

the dielectric contrast mechanism at play, only perpendicular lamellar structure is

favorable in thick films (in absence of any substrate affinity). In non-uniform field,

however, dielectrophoretic mechanism which implies that the material with higher

permittivity is preferred in regions of high electric field and vice-versa will also

dictate the stability of the resulting morphology, due to which a parallel lamellae

can also be stabilized in presence of the electric field [274]. Non-uniform electric field

can be generated by assigning a spatially varying electric field across the domain

edges [275] or by topographically patterned electrode [276]. The length of the

electrodes can additionally dictate the final morphology.

While the work in the thesis is mostly focused on symmetric diblock copolymer,

the model is certainly not restricted to lamellar morphology and other order-order

transitions can definitely be studied. Intriguing among them is the recent experi-

mentally observed hexagonally perforated lamellar to lamellar transition [67], the

kinetic pathway of which is not fully understood yet. Gyroid to lamellae transition

at high temperatures (low segregation) has recently been reported via a molecular

dynamics simulation [277], which so far has not been observed experimentally. It

remains to be seen whether such a transition can be observed through the present

approach.

Modeling efforts should be directed towards the incorporation of mobile ions in the

TDGL framework, either confined to one of the blocks and/or substrate. Former

leads to reduction in the applied field required to cause a parallel to perpendicular

transition while the latter enhances the critical field [278, 279, 280]. Cues can be

taken from SCFT where such an attempt have already been made [280]. Further-

more, the extension to study the effect of electric field and dielectric contrast in

triblock terpolymer would also be interesting. In this regard, a TDGL model for

non-frustrated triblock terpolymer has recently been formulated by Millett [281].

2. Grain boundary grooving under electromigration

In the scope of the present thesis all properties kinetic as well as interfacial were

assumed to be isotropic. Most interconnect materials are face-centered-cubic metals

which are characterized by strong surface adatom mobility. Anisotropy in surface

mobility has been reported to lead to oscillatory dynamics in single crystal islands

[211, 212, 213]. Presence of surface mobility anisotropy is expected to lead to

richness in grooving dynamics as well.

In the study pertaining to polycrystalline interconnects a columnar grain structure

was assumed for simplicity. In a regular grain structure, however slit can propagate

along the line through the grain boundaries, forming an island microstructure [109].

The study of slit merging and splitting in addition to grain coarsening in such cases
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Figure 11.1: Three dimensional phase-field simulation depicting intergranular slit propagation

at triple junction and grain boundary, (a) side view and (b) top view. Each grain orientation is

assigned a different color. Slit originating at triple junctions appears wider and propagates faster

than the ones at grain boundaries. The trailing edge continues to evolve via surface diffusion.

is worth investigating.

Although we have considered a simple bicrystalline set up, extension of present

work to study triple junctions is straightforward. An exemplary simulation of slit

formation at triple junction is presented in Fig.11.1. A mere visual inspection

suggests that the slit emanating at the GB triple junction (TJ) propagates faster

than the one at GB. Moreover, the slit at the TJ appears to be wider. This raises

the following important concerns regarding the slit manifesting at TJ. How does

the slit characteristics at TJ differ from those at GB ? Does the width and velocity

scaling laws hold for slit at TJ ? What is the role of healing flux at TJ ? What

happens if for a certain magnitude of electric field the slit solution exists at TJ

but not at GB ? Such a scenario was already envisaged by Klinger et al. [5] in

which they postulated that the trailing edge evolving via surface diffusion will form

a bridge resulting in a slit closure. This will result in a transition of a slit to a void

advancing along GB.

The ability to capture the self-healing of grooves during electromigration has been

the highlight of the phase-field method. The presence of grain triple junctions are

known to be the positions of accelerated grooving leading to pit formation [282].

How does the grain triple junction dynamics are affected by the healing fluxes

remains to be explored.

The work in the thesis primarily focuses on monocomponent system, while alloy

systems are also gaining popularity as interconnect materials. Phase-field model

can be readily extended to multicomponent system [283]. On such an extension

the model can be applied to study the effect of grooving in bi-component systems.
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Specifically slow diffusing species are known to segregate at the surface [284] which

can alter the healing kinetics along the surface. GB segregation can also be mod-

eled within the phase-field framework [285, 286, 287, 288] which is known to inhibit

GB electromigration [289, 290, 269]. In addition, insights into the phenomenon of

precipitate drifting, coarsening, interaction with grain boundaries due to electromi-

gration can be investigated [291].

The incorporation of stresses in terms of vacancy accumulation, back-stress along

the line and residual stress in the interconnect line originating from the fabrication

is an absolute must to complete the understanding of the electromigration-induced

grooving in interconnects. Stress-driven diffusion mechanisms and can be rigorously

addressed by solving self-consistently the elastostatic boundary-value problem for

the interconnect line together with the electrostatic and diffusion problems [137,

209].

Although a good agreement between the sharp interface and phase-field solutions

have been observed, the presented model by no means can be termed as quantitative.

In phase-field, the term quantitative is reserved for models which exhibit results

independent of interface thickness [292, 293, 294, 295, 296]. To this end, decoupling

of the equilibrium interfacial profile from concentration field is necessary. To achieve

this property, dropping of the gradient energy coefficient in ρ seems indispensable.

This results in a coupling of a second order conserved equation, in contrast to the

fourth order, utilized in the present model and the usual second order non-conserved

equation. It is to be noted that although such models have been utilized in the past

to model surface diffusion [297, 121], no formal asymptotic analysis so far exists,

to show that these set of equations does indeed correctly converge to even sharp-

interface limit. It is also worth noting that the sharp-interface Mullins’ equation is

a fourth order partial differential equation which bears a strong resemblance to the

fourth order Cahn-Hilliard equation. Attempt towards quantitative modeling of the

electromigration phenomenon is highly desirable to facilitate a direct comparison

with experiments.

11.3 Other avenues ....

In the course of the dissertation, only two representative phenomenon where applied elec-

tric field modulates microstructure evolution in soft matter and affects atomic transport

in metal interconnects were chosen to demonstrate the ability of phase-field method in

tackling moving boundary problems with electric field coupling. However, the potential of

the phase-field method can be employed to unravel the underlying physics of several other



Chapter 11. 210

phenomenon. A few important among them are discussed in closing the dissertation.

Electrostatic field-induced instability can be utilized to guide and replicate patterns

in thin liquid films [12, 13]. Spatially homogeneous and heterogeneous fields generated

by using topographically patterned electrode causing the displacement of liquid from the

regions of low field to high field, leading to the formation of ordered arrays of hexagons

or annular rings of liquid columns [298]. Cahn-Hilliard-Navier-Stokes equation supple-

mented with the electrostatic model can be employed to the study the non-linear pattern

formation which involves interface instability and shape bifurcations, gracefully. In ad-

dition, the competition between the destabilizing force between contact surface and soft

elastic films (polymeric films) in terms of van der waals and electric field and restoring

elastic force leads to rich morphological transitions [299, 300].

Electrostatic-field-induced surface instability can also be utilized to guide growth of

nano/micro scale islands in conductors [301, 302]. Similar instability arising due to elec-

tromechanical interaction known as Stranski-Krastanow instability are also prominent in

conducting metallic thin films [303, 304]. The stability of the surface with respect to

perturbations depends on the surface energy, the elastic energy due to lattice mismatch

between the film and the substrate and the electrostatic energy. The mass transport

governing mechanism is surface diffusion. Phase-field method can provide efficient guide-

lines to exploit mesoscale patterning in such cases. Elasto-electric coupling appeals as a

promising area going forward.
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Appendix A

Different sharp interface limits of

the phase-field model of chapter 4

The coupled system of Cahn-Hilliard, Allen-Cahn and Laplace equation exhibits different

sharp interface limits depending upon the scaling of Allen-Cahn mobility (Lη) relative to

the Cahn-Hilliard mobility M . In other words, the relative fastness or slowness of the

Allen-Cahn equation with respect to the Cahn-Hilliard equation determines the overall

dynamics of the interfaces. Here, we summarize three such possible motion of interfaces

which can be derived along similar lines following section 4.5.

A.1 Case I : M →M/ε and Lη → Lη/ε

The evolution equations for the interphase boundary under this scaling can be written as

ε2
∂ρ

∂t
= ∇ ·M(ρ)∇

[
∂f(ρ, η)

∂ρ
− 2ε2∇2ρ+ εΛφ

]
(A.1)

ε2
∂η

∂t
= −Lη

[
∂f(ρ, η)

∂η
− 2qε2∇2η

]
(A.2)

∇ · [σ(ρ)∇φ] = 0 (A.3)

The motion of the interphase boundary (surface) is then given by

Vn = MS

[
γS
∂2κ

∂s2
+

∂2

∂s2

(
Vn
Lη

∫ +∞

−∞

(∂η̂0

∂z

)2

dz

)
+ Λ

∂2φ̂0

∂s2

]
(A.4)

which is motion by combined surface laplacian of mean curvature, surface laplacian of

surface attachment kinetics and surface laplacian of electric potential. For the antiphase
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boundaries, since ρ ≈ 1 and ∇ρ ≈ 0, the motion is dictated by the dynamics of the η1

and η2 equations,

ε2
∂ηi
∂t

= −Lη

[
∂f(ρ, η)

∂ηi
− 2qε2∇2ηi

]
(A.5)

where i = 1, 2. Following the derivation in section 4.5 for an antiphase boundary it can

be shown that,

Vn = 2qκGBLη (A.6)

where, κGB is the curvature of the grain boundary and the antiphase boundary moves

via the motion by mean curvature. However, because of the construction of the f(ρ, ηi)

as given by Eq.4.22, ρ dips from the equilibrium value across the grain boundary. For a

significant dip, Cahn-Hilliard Eq.A.1 also needs to be considered and the sharp interface

limit is modified as,

Vn = 2qκGBLη −
2κGBLη

∫ +∞
−∞ (∂ρ̂

0

∂z
)2dz∫ +∞

−∞ (∂η̂1
0

∂z
)2 + (∂η̂2

0

∂z
)2dz

(A.7)

where, the second term is analogous to the solute drag effect and retards the grain bound-

ary motion. In the present work, the numerical parameters were so chosen as to negate

the contribution arising out of the second term.

A.2 Case II : M →M/ε and Lη → Lη/ε
3

The evolution equations under this scaling can be written as

ε2
∂ρ

∂t
= ∇ ·M(ρ)∇

[
∂f(ρ, η)

∂ρ
− 2ε2∇2ρ+ εΛφ

]
(A.8)

ε4
∂η

∂t
= −Lη

[
∂f(ρ, η)

∂η
− 2qε2∇2η

]
(A.9)

∇ · [σ(ρ)∇φ] = 0 (A.10)

The motion of the interphase boundary is given by

Vn = MS

[
γS
∂2κ

∂s2
+ Λ

∂2φ0

∂s2

]
(A.11)

which is motion by combined surface laplacian of mean curvature and surface laplacian of

electric potential as derived in section 4.5. For the antiphase boundary, it can be shown,

γGBκGB = 0 (A.12)

implying that the grain boundary is in its equilibrium configuration or in other words it

is flat.
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A.3 Case III : Degenerate Lη with different scalings

Similar to the atomic mobilities, the relaxation parameter Lη can also be chosen to be

different for the interphase and the antiphase boundaries by enslaving them to the field

variables such as

Lη(ρ, ηi) = LB + 16LSρ
2(1− ρ)2 + 4LGB

√
η2
i η

2
j . (A.13)

For the interphase boundary, we then use the scaling M → M/ε and LS → LS/ε
3 such

that the motion is governed by surface laplacian of the curvature and electric potential.

For the antiphase boundary we adopt the scaling LGB → LGB/ε to recover the traditional

motion by mean curvature.



Appendix B

Relating normal velocity Vn and ∂y
∂t

Two geometric constructions relating Vn and ∂y
∂t

are possible. However, only one of them

is consistent with the mass conservation Eq.(7.5) as discussed next.

B.1 Possibility 1

The first possibility is to draw the normal velocity Vn from a point on the curve y(x, t),

and then drop a perpendicular on ∂y
∂t

as shown in Fig.B.1. The point of intersection is

then y(x, t+ ∆t). In such a case, Vn is the hypotenuse and ∂y
∂t

is the base so that,

Vn cos θ =
∂y

∂t
(B.1)

=⇒ Vn
dx

ds
=
∂y

∂t
(B.2)

=⇒ Vn
1√

1 + (dy
dx

)2

=
∂y

∂t
(B.3)

=⇒ Vn =

√
1 +

(dy

dx

)2∂y

∂t
(B.4)

Figure B.1: Geometric construction depicting the first possibility in which the projection of

normal velocity Vn along y-direction is taken to be ∂y
∂t .
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Figure B.2: Geometric construction depicting the second possibility in which the points A and

B on the curve y(x, t) and y(x, t+∆t) respectively are joined. The perpendicular is then dropped

on the normal velocity Vn.

Using this procedure one can generate the locus of all the points corresponding to y(x, t+

∆t).

B.2 Possibility 2

The alternative way is to join y(x, t) (A) to y(x, t+∆t) (B) which gives ∂y
∂t

and then drop

a perpendicular on the vector Vn as shown in Fig.B.2. In this case, ∂y
∂t

is the hypotenuse

and Vn is the base so that

Vn =
∂y

∂t
cos θ (B.5)

=⇒ Vn =
∂y

∂t

1√
1 + (dy

dx
)2

(B.6)

But it is to be noted that y(x, t+ ∆t) was assumed beforehand.

B.3 What does the mass conservation equation mean

?

Consider an infinitesimally small control volume along the surface as in Fig.B.3. Assuming

Js > Js+∆s, so that more atoms enter the control volume than leaving it, all the elements

in the control volume will grow equally in the next timestep by an amount Vn∆t in the

normal direction.
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Figure B.3: Interpretation of the mass conservation Eq.(7.5). Accumulation or loss of atoms

in a control volume leads to movement of the segment along the normal direction.

B.4 Which possibility is consistent with the mass

conservation equation ?

Let us try to understand which approach is correct and consistent with the geometric law
dJ
ds

= −Vn
Ω

proposed by Mullins.

B.4.1 Possibility 1

Assume a curve y(x, t) with two points y(x1, t)(A) and y(x2, t)(B) inside the control

volume as in Fig.B.4. Since the accumulation of atoms lead to normal displacement of

the control volume, we displace the curve by an amount Vn∆t (one can assume ∆t = 1

so that the curve in the control volume is displaced by Vn). The locus of the points as

a result of this normal displacement gives the curve y(x, t + ∆t) which is unique. Thus,

the points A and B after displacement should also lie on this curve and is given by

y(x1, t + ∆t) (A′) and y(x2, t + ∆t)(B′). However, if we proceed via construction 1 as

in Fig.B.1 we end getting a locus of different set of points A′′B′′ as shown by green line

in Fig.B.4 which does not coincide with the curve A′B′. Since the green curve does not

coincide with y(x, t + ∆t) the points on it would also not be equidistant in the normal

direction from y(x, t).

B.4.2 Possibility 2

The second construction, however would remain consistent as shown in Fig.B.5. It is to

be noted that in this case ∂y
∂t

is perpendicular to Vn for infinitesimally small arc lengths.



Chapter B. 218

Figure B.4: Geometric construction depicting that the first possibility is inconsistent with the

mass conservation equation.

Figure B.5: Geometric construction depicting that the second possibility is consistent with the

mass conservation equation.



Appendix C

Calculation of curvature along the

profile

The curvature from the ρ = 0.5 level set is defined by the divergence of the normal vector

as,

κs = ∇ · n̂ (C.1)

where, n̂ = ∇ρ
|∇ρ| . The above expression can be simplified in two dimensions as,

κs =
ρxxρ

2
y − 2ρxρyρxy + ρyyρ

2
x

(ρ2
x + ρ2

y)
3/2

(C.2)

The curvature is calculated along the ρ = 0.5 contour. Since these points not neces-

sarily lie on regular lattice points, the location of such points are first calculated from

neighboring two lattice points through a linear interpolation. Following [305], the deriva-

tives are also linearly interpolated from these nearest neighboring lattice points. The

derivatives are discretized using second-order accurate central difference scheme as,

ρx =
ρi+1,j − ρi−1,j

2∆x

ρxx =
ρi+1,j − 2ρi,j + ρi−1,j

∆x2

ρxy =
ρi+1,j+1 − ρi−1,j+1 − ρi+1,j−1 + ρi−1,j−1

4∆x∆y
(C.3)

where i, j are the indices along x and y axes respectively. Thus, the first and the second

derivatives in Eq.C.2 comprises of information from 4 neighboring grid points, while, the

mixed derivatives from 8 neighboring grid points.
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Determination of steady state

D.1 Groove depth

The simplest way to ascertain the shape invariance of the profile is by measuring the

groove depth. The groove depth is defined as the distance between the minimum and the

maximum of the groove profile obtained from ρ = 0.5 contour. Since the ρ = 0.5 values

do not necessarily lie on the regular grid cells, these locations are calculated by a linear

interpolation between the neighboring cells both in x and y directions independently.

However, first, the effect of grid discretization on the groove profiles needs to be checked.

It has been previously pointed out [292, 306] that corresponding to a given driving force

the interface movement is plagued by time-periodic oscillations and even artificial pin-

ning. Hence the lattice discretization needs to be chosen such that the oscillations of the

interface on the scale of ∆x measured in units of
√
κρ/A remains effectively small. The

effect of lattice spacing on the groove profile is shown in Fig. D.1 (a). For a coarser

mesh, the effect of lattice pinning is visible. Accordingly, in the regime of the driving

force (current density) used in the present study, a grid spacing of ∆x = 0.5 was seen to

give results free from grid effects.

The temporal evolution of the groove depth corresponding to the profiles in Fig.10.9

of chapter 10 is shown in Fig. D.1(b). All the profiles attain a constant value after an

initial rise.

D.2 Profile perimeter

Another measure of the shape invariance is through the evaluation of the profile perimeter.

The perimeter is calculated through summation of the distances between the neighboring
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(a)

(b)

Figure D.1: (a) Effect of grid discretization ∆x on the profile shapes corresponding to param-

eters χ = −0.1797, M = 0.1126. ∆x is measured in units of
√
κρ/A. At higher ∆x effect of

coarser mesh in terms of pinning is visible. Accordingly, a finer discretization of ∆x = 0.5 is

used in all the simulations. (b) Temporal evolution of the groove depth corresponding to the

profiles in Fig.9 in the main article.

  

Figure D.2: Temporal evolution of the profile perimeter corresponding to the profiles in Fig.10.9

of chapter 10.
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 (a)

 (b)

Figure D.3: (a) Effect of lattice discretization on the steady state velocity. (b) Temporal

evolution of the root velocity corresponding to the profiles in Fig.10.9 of chapter 10.

points (x1, y1) and (x2, y2) on the ρ = 0.5 profile by the distance formula
√

(x2 − x1)2 + (y2 − y1)2.

The temporal evolution of the normalized profile perimeter corresponding to the profiles

in Fig.10.9 is shown in Fig. D.2.

D.3 Steady state velocity

The steady-state in terms of kinetics can be ascertained by following the velocity of the

groove root. The velocity is calculated numerically from the position of the groove root

between the successive time as,

v =
x(t+ ∆t)− x(t)

∆t
(D.1)

The steady state velocity is shown in Fig.D.3 along with effect of lattice discretization

∆x. It is noteworthy that the profiles corresponding to the parameters Fig.10.9(c) of

chapter 10 converge to the same steady state velocity owing to the same GB flux JGB in

both the cases.



Appendix E

Additional benchmark comparisons

of the sharp-interface model of

chapter 10 and phase-field solutions

E.1 Effect of M on groove profiles

The sharp-interface theory predicts an increase of the groove depth with increasing M

for a given χ as discussed in Fig.10.2 of chapter 10. A similar trend is predicted by the

phase-field simulations as well as shown in Fig.E.1.

  

Figure E.1: Comparison of the groove profiles obtained from sharp interface (SI) and phase-

field method (PFM) for different value of M for χ = −1.797. With increasing M the groove

depth relative to surface maximum increases.
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Figure E.2: Comparison of the groove profiles obtained from sharp interface (SI) and phase-

field method (PFM) for different value of χ at M = Γ = 0.34. For clarity only one of the SI

curve is shown. The profiles are invariant on the value of χ.

E.2 Invariance of groove profile on χ for M = Γ

To check the validity of profile invariance on χ we select a value M = Γ. Ds is held

constant for all the simulations by ascribing constant values to Ms (and also to κρ and

κη). The value of DGB needed to attain M = Γ can be calculated from

DGBδGBzGB
2βDsδszs

= M = 0.34. (E.1)

Since Ω = kBT = 1 in non-dimensionalized units we have from Eqs.(4.156) and (4.157)

Dsδs = M s. For Ms = 1, Dsδs = 2.088. Furthermore, for the selected value of σm/σu =

10, β = 1.818. Therefore, from the above equation DGBδGB = 2.581 = MGB. Since

MGB = 1 results in MGB = 1.7108, to obtain the desired value of 2.581 we need to choose

MGB = 1.5 in the phase-field simulations. The resulting χ-invariant profiles where χ is

varied over an order of magnitude is shown in Fig.E.2.

E.3 Effect of conductivity ratio on groove profiles

The effect of conductivity ratio between the metal interconnect and the underlayer σm/σu

is shown in Fig.E.3. The case of σm/σu = 1 corresponds to case where electric field at

every point in the domain is same and is equal to the applied electric field. As the ratio

is decreased, the electric field at the surface increases as a result of which the profiles

become flatter.
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Figure E.3: Comparison of the groove profiles obtained from sharp interface (SI) and phase-

field method (PFM) for applied electric field of E = 2.84× 10−4 and different ratios of σu
σm

such

that χ = −0.359,−0.4246 and −0.653 and M = 0.1126, 0.1331 and 0.2047, corresponding to
σu
σm

= 0.1, 0.3 and 1 respectively. Higher ratios leads to deeper grooves.



Appendix F

Phase-field model with only grain

boundary electromigration (GBEM)

The EM-induced surface flux in the phase-field model can be cut off by rearranging the

evolution Eq.4.26 for the conserved order parameter as

∂ρ

∂t
= ∇ ·M(ρ)∇µ+∇ ·M(ηi)ze∇φ (F.1)

= ∇ · 16MSρ
2(1− ρ)2

[
∂f(ρ, ηi)

∂ρ
− 2κ∇2ρ

]
+∇ · 4MGB

√
η2
i η

2
j ze∇φ (F.2)

Due to the pre-factor M(ηi), EM is limited to the GB, while the surface evolves only

under the action of capillarity. Thus the sharp-interface relations given in Chapter 9 and

that of Klinger et al.[5] are recovered.

 0

 0.06

 0.12

 0.18

 0.24

 0  0.2  0.4  0.6  0.8  1

α = -0.6214

– y

–
x

SI - Numerical

Phase-field (only GBEM) CV

Phase-field (only GBEM) CV 2

Figure F.1: Restricting EM to GB leads to a good agreement between the sharp-interface and

phase-field solutions. The parameter corresponds to Fig.9.3(c).
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The results performed with the modified above equation while unaltering the Allen-

Cahn and Laplace equation show a good agreement with the sharp-interface solution of

Klinger et al.[5]. The steady state groove profile is shown in Fig.F.1. Since now the profile

shape is only dependent on the non-dimensional group α, the phase-field solution corre-

sponding to the two parameter set of Fig.9.3(c) leads to a unique solution. Furthermore

the groove displacement also shows a good agreement with the sharp-interface analytical

solution as evident in Fig.F.2.

  

(a)

(b)

Figure F.2: (a) Comparison of the groove displacement from the sharp-interface analytical

solution Eq.(9.22) and phase-field simulations. The slight deviation is due to the small slope

approximation employed in the sharp-interface solution. (b) Same as (a) highlighting the late

stages of groove displacement.
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Directed assembly of block copolymers

Symbol Description Page No.

do Equilibrium lamellar spacing 20

f Relative length of A monomer chain 35

f(ψ) Bulk free energy density 36

g Parameter related to the deviation of interaction

parameter at the surface 44

ho/hL Substrate affinity strength at two ends of the film 48

m Difference in the average volume fraction of A

and B polymers 36

nc Number of open cubes 116

ne Number of edges 116

nf Number of open faces 116

nv Number of vertices 116

t Time 38

vo Volume occupied by one polymer chain 48

z Co-ordination number 46

A Interfacial area 17

A(t) Time-dependent amplitude of perturbation 39

B Long range interaction parameter 36

C Number of contacts between wall and mixture molecules 46

Cm Effective capacitance of mixed lamellae 20

C‖ Effective capacitance of parallel lamellae 17

C⊥ Effective capacitance of perpendicular lamellae 18

D Domain size 41

E/E Electric field 22/49

E0 Applied electric field 22
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Symbol Description Page No.

E1 Deviation of the electric field from the applied value 22

Ec Critical electric field 19

E‖m Critical electric field for parallel to mixed lamellae

transition 20

Em⊥ Critical electric field for mixed to perpendicular

lamellae transition 20

F Free energy functional 36

Fbulk Bulk free energy density 48

Felectrostatic Electrostatic free energy density 48

Fes Electrostatic energy 17

Fm Free energy of mixed lamellae 20

F‖ Free energy of parallel lamellae 18

F⊥ Free energy in perpendicular lamellae 18

Fs Interfacial energy 17

Fsurface Surface free energy 48

∆F Excess free energy 42

H Mean curvature 114

L/Ly/Lz Film thickness 17/49/111

Lo Equilibrium lamellar spacing 13

N Degree of polymerization 11

No Total number of lattice sites 44

NA Number of A type monomers 35

NB Number of A type monomers 35

S Surface area 114

S(kx, ky) Structure factor 84

V Voltage/Volume 18/22

Vc Critical voltage 18

Vm Average molecular volume 42

β(t) Degree of alignment 84

γAB Interfacial energy between A and B block 17

γAS Interfacial energy between A block and substrate 11

γBS Interfacial energy between B block and substrate 11

δ Non-dimensional parameter related to the interfacial

energies of two blocks and substrate 22

εm Effective dielectric constant of mixed lamellae 20

εo Permittivity of free space 48
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Symbol Description Page No.

εA Dielectric constant of A block 17

εB Dielectric constant of B block 17

εAA Bond energy between A-A atoms 35

ε′AA Bond energy between A-A atoms adjacent to the wall 47

εAB Bond energy between A-B atoms 35

ε′AB Bond energy between A-B atoms adjacent to the wall 47

εAW Bond energy between A atoms and wall 45

εBB Bond energy between B-B atoms 35

ε′BB Bond energy between B-B atoms adjacent to the wall 47

εBW Bond energy between B atoms and wall 45

ε‖ Effective dielectric constant of parallel lamellae 20

ε⊥ Effective dielectric constant of perpendicular lamellae 20

ε Average permittivity 22

ε̃ Length scale parameter 37

∆ε Difference between the permittivity of A and B blocks 22

κ Gradient energy coefficient 36

µ Chemical potential 38

µ1 Surface chemical potential 44

ρ(y, t) Average density profile 81

φ Electric potential 22

χ Flory-Huggins parameter/ Euler characteristic 11/114

χAW Interaction parameter between A atoms and wall 46

χBW Interaction parameter between B atoms and wall 46

χW Interaction parameter at the vicinity of the wall 47

ψ Scaled composition 36

ψS Scaled composition at the surface 41

Grain boundary grooving due to electromigration

Symbol Description Page No.

d Average grain size/Groove depth relative to the

surface maximum 28/180

dg Groove depth/displacement from the initial position 130/150

e Electronic charge 24

f Bulk free energy per atom 55
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Symbol Description Page No.

hg Surface maximum from the initial position 130

j Current density 27

kB Boltzmann constant 27

m Slope at the groove root 132

ne Number of conducting electrons 27

∆p Momentum transfer to the ions due to electron wind 27

q Ratio of gradient energy coefficient of conserved

and non-conserved order parameter 64

qA Valence of species A 52

s Surface arc length 131

t Time 53

tf Mean time to failure 27

v Non-dimensional velocity 150

vd Drift velocity 28

vss Steady state velocity 182

w Width of the interconnect line/ Groove width 28/130

z Effective charge of the diffusing species 24

ze Effective charge due to electrostatic contribution 24

zw Effective charge due to electron-wind contribution 24

zS Effective charge of the species at the surface 31

zGB Effective charge of the species at the grain boundary 31

A,B,C Barrier height of the free energy 57

Ao Initial amplitude of perturbation 78

At Amplitude of perturbation at a given time 78

B Mullins Constant 31

CA Concentration of species A 53

CV Concentration of vacancy 54

DB Bulk diffusivity 77

DS Surface diffusivity 31

DGB Grain boundary diffusivity 31

E Electric field 24

Em Electric field in the interconnect domain 79

Et Tangential component of the electric field 188

EM Activation energy of the electromigration process 28

F Free energy functional 55

Feff/Fem Effective driving force for electromigration 24/188
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Symbol Description Page No.

G Free energy 53

Gf
v Free energy of formation of vacancy 53

∆H Activation energy of the electromigration process 27

Jchem Chemical flux 187

Je Flux of electrons 53

Jem Electromigration flux 187

JA Flux of species A 52

JS Surface flux 131

JES Electromigration-induced surface flux 158

J∇κSS Capillary-induced surface flux 158

JGB Grain boundary flux 31

JEGB Electromigration-induced grain boundary flux 158

JV Flux of vacancy 52

L Grain size 31

Lee Kinetic coefficient for the flow of electrons 53

Lm Length of the interconnect domain 56

Lu Length of the underlayer domain 56

LAA Kinetic coefficient for the diffusion of species A 52

LAe Kinetic coefficient relating to the interaction between

species A and electron 52

Lη Grain boundary relaxation parameter 58

M Ratio of electromigration-induced grain boundary to

surface transport 181

MB Bulk atomic mobility 58

MS Surface atomic mobility 58

MGB Grain boundary atomic mobility 58

M(ρ, η) Position dependent atomic mobility 58

N Number of grains in the solid/interconnect domain 55

Na Number of thermally activated ions 27

NA Number of A atoms 53

NV Number of atoms per volume 55

NV a Number of vacancies 53

R Rate of mass transport 27

Rm Resistance of interconnect 56

Ru Resistance of underlayer 56

T Temperature 27
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Symbol Description Page No.

V Volume/Voltage 53/62

Vn Normal velocity 77

α Non-dimensional parameter characterizing

electromigration-induced grain boundary transport

to capillary-mediated surface transport 31

β Constant related to interconnect and underlayer

conductivity 188

γS Surface energy 31

γGB Grain boundary energy 72

Γ Half of the ratio of grain boundary to surface energy 189

δS Surface width 31

δGB Grain boundary width 31

ε Parameter related to interface width 64

η Grain order parameter (non-conserved) 55

θ Angle between surface tangent and horizontal axis 187

θo Angle between surface tangent and horizontal axis at

the groove root 130

κρ Gradient energy coefficient of the conserved order

parameter 55

κη Gradient energy coefficient of the non-conserved

order parameter 55

κS Mean curvature 130

Λ Ratio of electrostatic energy to chemical energy 64

λ Wavelength 78

µ Chemical potential 58

µo Chemical potential of a flat surface 130

µA Chemical potential of species A 52

µV Chemical potential of vacancies 52

µρ Variational derivative of free energy functional

with respect to conserved order parameter 64

µη Variational derivative of free energy functional

with respect to non-conserved order parameter 64

ν Surface concentration of atoms 131

ρ Scaled density variable (conserved order parameter) 55

ρr Resistivity 28

σ Conductivity 53
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Symbol Description Page No.

σm Conductivity of the interconnect domain 59

σu Conductivity of the underlayer domain 59

φ Electric potential 52

φs Electric potential along the surface 187

χ Ratio of capillary to surface electromigration force 189

Ω Atomic volume/Domain 31/64

ΩV Atomic volume of vacancy 54

Numerical discretization

Symbol Description Page No.

Nx, Ny Number of grid points in x and y directions 62

Lx, Ly Length of the simulation domain in x and y

directions 49

i, j Discrete grid position in x and y directions 50

∆x,∆y Spatial discretization width in x and y directions 50

t Time 51

∆t Temporal discretization width 51

ω Relaxation parameter for successive-over-relaxation

algorithm 59

n Iteration step 61
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[12] E. SchaÈffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner. Electrically induced

structure formation and pattern transfer. Nature, 403(6772):874, 2000.
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