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Abstract

Up to this day, the Standard Model of particle physics is widely accepted as the most funda-
mental quantum field theory which is fully compatible with the precise measurements being
carried out at particle collider experiments. Despite this enormous success, the model does
not provide answers to all remaining open questions of fundamental physics. In order to
overcome this shortcoming, theories beyond the Standard Model are investigated. In this
thesis, we compute higher-order corrections to observables in extended Higgs sectors of three
different theories beyond the Standard Model.

We investigate the Two-Higgs-Doublet Model and the Next-to-Two-Higgs-Doublet Model as
two extensions of the Standard Model with regard to the Higgs potentials of the theories. In
both models, we perform the complete electroweak renormalization of all independent param-
eters of the theories and present several different renormalization schemes for the scalar mixing
angles of the extended Higgs sectors. We compute the full electroweak one-loop corrections
to the partial decay widths of the decays of all Higgs bosons in the two theories. Further-
more, we provide the two newly developed computer programs 2HDECAY and ewN2HDECAY

which allow for the numerical evaluation of the partial decay widths and branching ratios
of all Higgs boson decays in the two models. In order to demonstrate the relevance of the
newly computed corrections we use the two programs for numerical analyses and estimate
the remaining theoretical uncertainties of the calculations.

The third theory investigated in this thesis is the charge-parity-violating Next-to-Minimal
Supersymmetric Standard Model. In our work, we provide the O(α2

t ) two-loop corrections
to the masses of the Higgs bosons of this model. To that end, we perform the one- and
two-loop renormalization of the theory, restricting ourselves to the contributions relevant for
the O(α2

t ) corrections. The results of our computations are implemented in a new version
of NMSSMCALC. As a demonstration of the relevance of the newly computed corrections, we
perform a numerical analyses on the size of the O(α2

t ) two-loop contributions.

Zusammenfassung

Bis zum heutigen Tag ist das Standardmodell der Teilchenphysik weithin als die grundlegend-
ste Quantenfeldtheorie anerkannt welche mit den präzisen Messungen von Teilchenbeschleu-
niger-Experimenten vollständig kompatibel ist. Trotz dieses enormen Erfolgs vermag das
Modell nicht alle verbleibenden offenen Fragen der Grundlagenphysik zu beantworten. Um
dieses Manko zu überwinden werden Theorien jenseits des Standardmodells untersucht. In
dieser Arbeit berechnen wir Korrekturen höherer Ordnung zu Observablen in den erweiterten
Higgs-Sektoren dreier verschiedener Theorien jenseits des Standardmodells.

Wir untersuchen das Zwei-Higgs-Dublett-Modell und das Nichtminiale Zwei-Higgs-Dublett-
Modell als zwei Erweiterungen des Standardmodells hinsichtlich der Higgs-Potentiale der
Theorien. In beiden Modellen führen wir die vollständige elektroschwache Renormierung aller
unabhängigen Parameter der Theorien durch und präsentieren verschiedene Renormierungss-
chemata für die skalaren Mischungswinkel der erweiterten Higgs-Sektoren. Wir berechnen die
vollständigen elektroschwachen ein-Schleifen-Korrekturen zu den partiellen Zerfallsbreiten der
Zerfälle aller Higgs-Bosonen in beiden Theorien. Weiterhin stellen wir die zwei neu entwickelte
Computerprogramme 2HDECAY und ewN2HDECAY vor, welche die numerische Auswertung der
partiellen Zerfallsbreiten und Verzweigungsverhältnisse in beiden Modellen ermöglichen. Um
die Relevanz der berechneten Korrekturen zu quantifizieren, nutzen wir die neu entwickelten
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Programme für numerische Analysen und schätzen die verbleibende theoretische Unsicherheit
unserer Berechnungen ab.

Die dritte in dieser Arbeit untersuchte Theorie ist das ladungs- und paritätsverletzende Nicht-
minimale Supersymmetrische Standardmodell. In unserer Arbeit berechnen wir die O(α2

t )-
zwei-Schleifen-Korrekturen zu den Massen der Higgs-Bosonen dieses Modells. Zu diesem
Zweck führen wir die ein- und zwei-Schleifen-Renormierung der Theorie durch, wobei wir uns
auf Beiträge zu denO(α2

t )-Korrekturen beschränken. Die Ergebnisse unserer Rechnungen sind
in einer neuen Version des Computerprogramms NMSSMCALC eingepflegt. Zur Demonstration
der Relevanz der neu berechneten Korrekturen analysieren wir die Größe der O(α2

t )-zwei-
Schleifen-Beiträge numerisch.
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CHAPTER 1

Introduction

The Standard Model (SM) of particle physics describes the properties and interactions of
the most fundamental particles known to this date in a mathematically consistent way [1–8].
The theoretical predictions made within the SM were confirmed by measurements at particle
collider experiments with remarkable precision [9–14] and with the discovery of a SM-like
Higgs boson at the Large Hadron Collider (LHC) in 2012 [15, 16], the last missing particle
predicted by the SM was discovered.

Despite its enormous success, the SM suffers both from theoretical shortcomings, e.g. the
hierarchy problem, as well as from the fact that it does not postulate a large enough breaking of
the charge-parity (CP) symmetry or a suitable candidate for dark matter (DM). Consequently,
throughout the last decades tremendous effort was invested into studies of theories beyond
the SM (BSM).

Among the simplest candidates for BSM theories are singlet and doublet extensions of the
SM Higgs sector. Examples of these BSM theories are the Two-Higgs-Doublet Model (2HDM)
[17, 18] and the Next-to-Two-Higgs-Doublet Model (N2HDM) [19] which are interesting ex-
tensions of the SM since they provide candidates for DM, a rich phenomenology and they
can describe a successful baryogenesis. For the solution of other shortcomings of the SM,
e.g. the hierarchy problem, BSM theories based on supersymmetry (SUSY) are considered.
The simplest realization of a SUSY theory is given by the Minimal Supersymmetric Stan-
dard Model (MSSM) [20–36]. Due to the presence of the additional symmetry between the
fermionic and bosonic degrees of freedom in the MSSM, the hierarchy problem of the SM
Higgs boson sector is naturally solved. Despite this, another form of fine-tuning problem,
the µ problem, remains in the theory. The Next-to-Minimal Supersymmetric Standard Model
(NMSSM) [37–46] provides a natural solution to this µ problem. Moreover, the NMSSM fea-
tures an interesting phenomenology through its extended Higgs sector and the CP-violating
realization of the model provides additional sources of CP violation.

The Higgs sector provides a promising portal to BSM physics. The detailed investigation of
the discovered Higgs boson and its couplings might indicate signs of new physics due to loop
contributions stemming from additional BSM particles or through the mixing with additional
Higgs bosons. From the theoretical side, the detailed investigation requires the calculation of
the observables of the Higgs sector to the highest possible precision.



2 1. Introduction

Concerning the higher-order corrections to 2HDM Higgs boson decays, several computer pro-
grams are available. For example, the FORTRAN code HDECAY 6.52 [47] enables the calculation
of the branching ratios (BRs) of the 2HDM Higgs bosons including off-shell and loop-induced
decay modes and the state-of-the-art quantum chromodynamics (QCD) corrections, where
applicable. Other examples of computer tools include Prophecy4f [48–51], enabling the com-
putation of the loop-corrected decay widths corresponding to the decay of the light CP-even
Higgs boson to four fermions via pairs of off-shell gauge bosons, 2HDMC [52] that allows for the
computation of all two-body and some three-body decay widths including higher-order QCD
corrections, SPheno [53,54] which enables the generic calculation of the full one-loop-corrected
two-body decays and partially tree-level three-body decays which can be applied to the case
of the 2HDM, and H-COUP [55] which allows for the computation of loop-corrected partial
decay widths of the decays of Higgs bosons of extended Higgs sectors into final-state pairs
of fermions and gauge bosons. In order to perform thorough and precise phenomenological
analyses, the partial decay widths and BRs of all decay channels of the Higgs bosons of the
2HDM need to be considered at the highest possible level of precision. One key goal of this
thesis is to provide the electroweak one-loop corrections to the partial decay widths of all on-
shell (OS) Higgs boson decays of the 2HDM that are not loop-induced. These decay widths
are combined with the state-of-the-art QCD corrections implemented in HDECAY 6.52 to form
the new computer program 2HDECAY [56]. Since we consider several different renormalization
schemes for the scalar mixing angles of the 2HDM in 2HDECAY, the program additionally
allows for an estimate of the remaining theoretical uncertainty of the loop-corrected decay
widths.

For the N2HDM on the other hand, only a few computer codes for the computation of higher-
order corrections to the Higgs boson decays are available. The FORTRAN program N2HDECAY

[57,58] enables the calculation of the BRs of the N2HDM Higgs bosons, including off-shell and
loop-induced decay modes and the state-of-the-art QCD corrections, where applicable. As
another example, the generic results for the full one-loop decays of the Higgs bosons provided
by the program SPheno can be applied to the N2HDM as well. In this thesis, we provide the
electroweak one-loop corrections to the partial decay widths of all OS Higgs boson decays
of the N2HDM that are not loop-induced. For the calculation of the electroweak one-loop
corrections, we consider several different renormalization schemes of the scalar mixing angles
of the N2HDM. We present the new computer program ewN2HDECAY which combines the
electroweak loop-corrected decay widths with the state-of-the-art QCD corrections provided
by N2HDECAY.

Apart from partial decay widths and BRs, the masses of the Higgs bosons in BSM theories
provide another interesting observable for which predictions to the highest level of precision
are required. This is particularly the case in SUSY models where the Higgs boson masses are
not free parameters but instead, they are calculated from the independent input parameters
of the theory. For the MSSM and NMSSM, the higher-order corrections to the Higgs boson
masses, dominated by contributions stemming from top quarks and stop squarks, are sizeable.
Hence, their calculation to the highest level of precision is of importance in order to provide
reliable predictions. While the status of the higher-order corrections to the Higgs boson
masses in the NMSSM is not as advanced as in the MSSM, there was still a tremendous
progress concerning their calculation throughout the last decades. For the CP-conserving
realization of the model, the leading one-loop contributions [59–64] as well as the full one-loop
corrections to the Higgs boson masses in several renormalization schemes [65–70] are available.
Moreover, the two-loop O(αtαs + αbαs) contributions1 were computed in the approximation
of vanishing external momentum [65] and more recently, additional corrections stemming
from the genuine NMSSM-specific parameters were computed as well [71]. Analogously, for

1We refer to Sec. 14.5 for an explanation of the meaning of the O(αiαj · · · ) notations used in this thesis.
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the CP-violating NMSSM the dominant one-loop corrections [72–77] as well as the full one-
loop corrections together with dominant two-loop corrections in the renormalization group
approach [78] were made available. In an independent thorough calculation, the full one-loop
corrections as well as the two-loop O(αtαs) contributions to the Higgs boson masses of the
complex NMSSM were provided in a mixed DR-OS scheme and implemented in the FORTRAN

program NMSSMCALC [67,79–81]. In order to further increase the precision, it is a key objective
of this thesis to calculate the two-loop O(α2

t ) corrections to the Higgs boson masses in the
complex NMSSM and to implement these additional contributions into the updated program
version NMSSMCALC 3.00 [82].

This thesis is structurally and thematically divided into four different parts.

In Part I of the thesis, we lay the theoretical foundations for our work. Starting with Chap-
ter 2, we provide a brief introduction to the SM and its shortcomings and briefly discuss
extensions of the SM in general. In the subsequent Chapter 3, we discuss the regularization
and OS renormalization of the ultraviolet (UV) divergences of loop integrals in general. We
provide generic formulae for the calculation of partial decay widths up to one-loop order and
discuss the computation of radiative corrections to the masses of particles in a generic way.
We conclude Part I with a general discussion about input parameter conversions as well as
with a general analysis on gauge dependences in higher-order corrections.

Part II of this thesis deals with the calculation of the electroweak one-loop corrections to the
partial decay widths of the Higgs bosons of the real 2HDM. Beginning with Chapter 4, we
introduce the electroweak Lagrangian and the Higgs potential of the CP-conserving 2HDM.
In the subsequent Chapter 5, we present the renormalization of all independent parameters
of the electroweak sector of the 2HDM, focusing in particular on the renormalization of the
scalar mixing angles. Following in Chapter 6, we describe the semi-automated calculation
of the electroweak partial decay widths and present the computer package 2HDECAY for the
calculation of the BRs and partial decay widths of the 2HDM Higgs bosons. Subsequently, we
present in Chapter 7 a numerical analysis on the size of the electroweak one-loop corrections
for selected decay channels. Finally, in Chapter 8 we provide a conclusion of Part II of this
thesis.

In Part III of this thesis, we focus on the calculation of the electroweak one-loop corrections
to the partial decay widths of the Higgs bosons of the real N2HDM. In Chapter 9, we intro-
duce the electroweak Lagrangian and the scalar potential of the CP-conserving N2HDM and
present the renormalization of all independent parameters of the N2HDM in the subsequent
Chapter 10. We present several different renormalization schemes for the four scalar mixing
angles of the N2HDM. In the subsequent Chapter 11, we present the semi-automated compu-
tation of the electroweak partial decay widths of all OS decay channels of the N2HDM Higgs
bosons that are not loop-induced and present the computer package ewN2HDECAY. Following
in Chapter 12, we present a numerical analysis on the size of the electroweak corrections to
the partial decay widths and BRs. Subsequently, we provide in Chapter 13 a conclusion of
Part III of this thesis.

Part IV of this thesis deals with the calculation of the O(α2
t ) two-loop corrections to the

masses of the neutral Higgs bosons in the CP-violating NMSSM. We begin in Chapter 14
with the presentation of the Lagrangian and the scalar potential of the complex NMSSM
and present in the subsequent Chapter 15 the renormalization of all independent parameters
relevant for the two-loopO(α2

t ) corrections. In the following Chapter 16, the calculation of the
two-loop O(α2

t ) contributions to the loop-corrected masses of the neutral Higgs bosons of the
complex NMSSM and their implementation in NMSSMCALC 3.00 is described. Subsequently,
we present in Chapter 17 a numerical analysis on the size of the two-loop O(αtαs + α2

t )



4 1. Introduction

corrections to the Higgs boson masses. Finally in Chapter 18, we provide a conclusion of
Part IV of this thesis.

In Chapter 19, we present a final conclusion as well as an outlook on possible future work.
The thesis is completed by an extensive appendix. In App. A, we present the O(ε) and O(1)
expansions of the scalar one- and two-loop integrals required for the calculations performed
in this work. In the subsequent Appendices B and C, we present the definition of the CTs of
the 2HDM and N2HDM as they are implemented in 2HDECAY and ewN2HDECAY, respectively.
Following in App. D, we present the analytic formulae for the neutral and charged Higgs
boson mass matrix elements as well as their CTs. Subsequently, we present in App. E the
Feynman diagrams corresponding to the two-loop contributions to the unrenormalized self-
energies of the neutral and charged Higgs bosons. In the final App. F, we provide exemplary
input and output files for 2HDECAY.

The calculation of the electroweak corrections to the partial decay widths of the Higgs bosons
of the 2HDM and N2HDM as well as the programs 2HDECAY and ewN2HDECAY themselves
were presented in [56] and [83], respectively. Moreover, the O(α2

t ) two-loop corrections to the
masses of the Higgs bosons in the complex NMSSM as well as their implementation into the
updated version NMSSMCALC 3.00 was presented in [82]. Similarities between the structure
and content of these works and Parts II to IV of this thesis are intentional and reflect the
contribution of the author.



Part I.

Theoretical Foundations





CHAPTER 2

The Standard Model of Particle Physics and Its Extensions

This thesis covers higher-order corrections to partial decay widths and Higgs boson masses
in three different quantum field theories (QFTs): the 2HDM, the N2HDM and the complex
NMSSM. The common feature of all three of these models is that they extend the SM of
particle physics by introducing additional fields and symmetries. In Sec. 2.1, we present a brief
history of particle physics that led to the development of the SM and introduce the particle
content of the SM. Moreover, we discuss the remarkable agreement of experimental data
with theoretical predictions made within the SM and on the other hand its shortcomings and
experimental evidences that indicate that the SM is not sufficient to explain all phenomena
observed in the universe. In Sec. 2.2, we introduce first extensions of the SM that are based
on the addition of Higgs singlets and doublets to the SM Lagrangian. Both the 2HDM and
the N2HDM fall into this category of SM extensions, and we discuss how these models provide
solutions to some of the shortcomings of the SM. Finally, in Sec. 2.3 we briefly introduce the
concept of SUSY, which doubles the particle content of the SM and provides solutions for
most of its open problems. As specific examples of SUSY extensions, we briefly discuss the
MSSM and the complex NMSSM, since the calculations of the higher-order corrections to the
Higgs masses presented in this thesis are performed in the latter model.

2.1. The Standard Model of Particle Physics

The idea that the physical world consists of fundamental indivisible building blocks is the con-
cept of atomism (from the ancient Greek word átomos, meaning“indivisible” [84]) which dates
back at least 2500 years from the present day. The original concept of atomism was based
on philosophical arguments rather than on experimental observation and the fundamental
building blocks were considered to be in the form of geometrical shapes [85,86]. Through the
centuries, scientists discovered the chemical elements and replaced the idea of these shapes as
fundamental building blocks in favor of the chemical elements. It was not until the discovery
of the electron e− in 1897 [87] that the concept of the atoms as indivisible structures was
abandoned, and with the later discovery of the protons and neutrons as sub-atomic parti-
cles [88], the apparent fundamental building blocks of nature were found and the Rutherford
model of the atom was established [89,90].

Since then, our understanding of particle physics at the fundamental level progressed in a
fast pace throughout the last century. The development of quantum mechanics, especially
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Figure 2.1.: Particle content of the SM of particle physics. The fermions of the SM, namely
the quarks and leptons, are grouped into three generations. The gauge bosons mediate the
strong, electromagnetic and weak forces, while through the Higgs field, the SM particles
acquire their masses. The different boxes around the particles as well as the color codes
indicate which particle is affected by each of the fundamental forces, represented by the
corresponding colored gauge boson. In the constituent quark model, the u and d quarks form
the protons and neutrons and together with the electrons e− (all three depicted with a gray
background), they make up most of the ordinary matter.

of the spin-statistics theorem [91,92], revealed that each fundamental particle belongs to one
of two classes of particles: bosons, with an integer spin obeying the Bose-Einstein statistics
and fermions, with half-integer spin obeying Fermi-Dirac statistics. While the electrons be-
long to the latter category, the photons γ, the quanta of the electromagnetic field, belong
to the bosons. The theoretical concepts of QFTs allowed for the development of quantum
electrodynamics (QED), which served as a fundamental theory for describing the electromag-
netic force, which, together with gravity, formed one of the two known forces at the time.
Moreover, the formulation of QED allowed for a deeper understanding of electromagnetism,
since it enabled a theoretical explanation of many of its phenomena. On the other hand, the
observation of radioactive decays led to the development of the concept of the weak force [93]
as a third fundamental force of nature, with the W± and Z gauge bosons as the mediators of
the force and the electron neutrino νe as another fundamental particle which is produced in
weak decays. Moreover, experiments carried out at high-energy particle accelerators in the
second half of the last century revealed that the protons and neutrons consist of even more
fundamental building blocks, namely the up and down quarks u and d, respectively, as well
as of the gluons g. The strong force was established as the fourth fundamental force of the
universe, mediated between the quarks by these gluons, and mathematically it was described
in the framework of QCD [89,94].
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Three of the four known forces, namely the electromagnetic, weak and strong force, where
combined into a common mathematical framework of gauge theories, which is nowadays
known as the SM of particle physics. The electromagnetic and weak forces were unified as a
single electroweak force, while the strong force remains as the other individual fundamental
force [1, 7, 8]. Furthermore, experiments at high-energy accelerators throughout the second
half of the last century revealed that there are several generations of fundamental fermions,
where the only formal difference between fermions of different generations is given by their
different masses. With the discovery of the top quark t in 1995 [95,96] and the τ− lepton in
the year 2000 [97], the last fermions of the third generation were discovered. Finally, the Higgs
boson h of the SM, proposed as a theoretical concept as early as 1968 [2–6], was discovered
only recently in the year 2012 [15, 16]. Its discovery completed the whole framework of the
SM of particle physics as it is known to date. All fundamental particles of the SM and the
forces mediating between them are illustrated in Fig. 2.1.

From a mathematical point of view, the SM of particle physics is established as a gauge QFT
based on the direct group product SU(3)C × SU(2)L × U(1)Y , where the indices refer to
color, left-handedness and weak hypercharge, respectively. In the following, we only briefly
describe the structure of the SM. For a more detailed overview, we refer to e.g. [94]. The first
subgroup SU(3)C describes the strong interaction in the mathematical framework of QCD,
with color as the fundamental charge of the gauge group. The gauge bosons mediating the
strong force are 8 gluons g in the adjoint representation of the SU(3)C which each carry a
color-less combination of the three color states {r, g, b} (red, green and blue) and the three
anti-color states {r, g, b} (anti-red, anti-green and anti-blue). The only other particles that
interact strongly are the quarks which are embedded both in QCD and in the SM as up-type
and down-type quarks, i.e. the upper and lower row of quarks presented in Fig. 2.1. Each
quark carries any one of the three colors as a color charge.

The other two gauge groups of the SM, given as the direct product SU(2)L×U(1)Y , describe
the unified electroweak force. The corresponding group charges are the weak isospin IW as
well as the weak hypercharge Y and the gauge boson fields mediating the electroweak force
are given by the SU(2)L triplet (W1,W2,W3) and the gauge singlet B. This force acts on
all leptons and quarks of the SM, all of which are represented in the electroweak theory
via a chiral representation, i.e. the fermions are described via left- and right-chiral fields,
indicated with subscripts L and R, respectively. The leptons are represented by the left-chiral
SU(2)L doublet ((νe, νµ, ντ ), (e, µ, τ))L and the right-handed singlet (e, µ, τ)R while the up-
and down-type quarks are represented by the left-chiral SU(2)L doublet ((u, c, t), (d, s, b))L
and the two right-handed singlets (u, c, t)R and (d, s, b)R. Since the subgroups SU(3)C and
SU(2)L × U(1)Y transform independently of each other, the color charge is not affected by
this SU(2)L × U(1)Y representation of the quarks [94].

The gauge symmetries of the SM forbid the explicit appearance of mass terms for any fun-
damental particle of the theory in the Lagrangian. On the other hand, it is experimentally
well-established that almost all particles of the SM have a non-vanishing mass [98]. The
mechanism of electroweak symmetry breaking (EWSB) provides a solution to this theoretical
shortcoming. In addition to the fields described above, the SM contains an SU(2)L Higgs
doublet (φ+, φ0), where φ+ and φ0 represent the charged and neutral components, with a
non-vanishing vacuum expectation value (VEV) v ≈ 246 GeV [98] which represents the vac-
uum state of the scalar potential. Through the Englert-Brout-Higgs-Guralnik-Hagen-Kibble
mechanism [2,4,99], the electroweak symmetry, i.e. the internal symmetry of the gauge group
product SU(2)L × U(1)Y , is spontaneously broken down to the electromagnetic symmetry
described by the internal symmetry of the gauge group U(1)em. This group, whose symmetry
remains unbroken in the SM after EWSB, corresponds to the electromagnetic force and the
corresponding charge Q of the group is the electromagnetic charge. The relationship between



10 2. The Standard Model of Particle Physics and Its Extensions

the charges of the original group product and Q is given by an electroweak analogue of the
Gell-Mann–Nishijima formula [100,101],

Q = IzW +
Y

2
, (2.1)

where the superscript “z” indicates the third component of the weak isospin. The four gauge
boson fields (W1,W2,W3) and B of the unbroken group SU(2)L × U(1)Y are mixed into the
massive particle eigenstates W± and Z which mediate the weak force as well as into the
massless photon γ which mediates the electromagnetic force. In the broken phase, the matter
particles of the SM are still grouped into three generations2 of up-type and down-type quarks,
now with electromagnetic charges Q = 2/3 and Q = −1/3, respectively, as well as into three
generations of charged leptons with Q = −1 and neutrinos with Q = 0. Moreover, EWSB
generates effective mass terms for most of the particles of the SM3 via the interaction of the
particles with the Higgs field. This allows for describing massive particles in the SM while
still preserving the underlying gauge symmetries of the QFT.

The theoretical predictions made in the framework of the SM are under ongoing investigation.
Especially, the mass of the Higgs boson as well as its production and decay rates have been
analyzed in detail and so far, no significant deviations from the SM predictions are observed
(cf. [13, 14] and e.g. [98, 102] for more recent presentations of results). On the other hand,
there are several observations, e.g. stemming from cosmology, for which the SM does not offer
any theoretical explanation. Moreover, the SM also has some theoretical shortcomings. We
briefly review some of both the experimental and theoretical shortcomings in the following,
since they serve as a motivation for investigations of BSM physics.

From an experimental point of view, the following observations indicate that the SM is not a
sufficient theory to describe nature as a whole:

� Dark matter: Cosmological observations indicate that ordinary baryonic matter only
accounts for a minority of the matter content of the universe, with the majority of
approximately 84% being so-called DM [103]. The SM does not provide a candidate for
DM4.

� Baryon asymmetry: A clear dominance of matter over antimatter is observed in the
universe [105]. Sakharov formulated three necessary conditions that are required for
baryogenesis, i.e. for establishing an asymmetry of matter over antimatter in the early
universe. Among these conditions is the requirement that a QFT describing the universe
must provide sufficient sources of CP violation [106]. While the SM provides a possible
source of CP violation through a complex phase of the Cabibbo-Kobayashi-Maskawa
matrix [107, 108] which mixes the quark flavors, this source is not strong enough to
account for the observed baryon asymmetry [109].

� Gravity: The SM does not provide any explanation of gravity. While there are several
recent attempts to explain gravity not as another fundamental force, but rather as an
emergent phenomenon, e.g. through entropic gravity [110,111], some predictions made
by these theories seem to be at odds with experimental observations [112]. Hence, at
the present date it is far from clear whether gravity should be considered truly as an
independent fundamental force or rather an emergent phenomenon, but in both cases,
the SM has to be extended in order to accurately describe its effects.

2In the following, we also use the commonly used word flavor for denoting the different fermions.
3The neutrinos, gluons and the photon remain massless in the SM.
4While there exist attempts to provide a DM candidate within the SM, e.g. through a hexaquark state uuddss,
none of these attempts seem to explain the observed DM density without being at odds with other experimental
results [104].
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� Dark energy: Apart from ordinary baryonic and dark matter, the majority of ap-
proximately 68% of the energy density in the universe stems from dark energy [103],
hypothesized in order to explain the accelerating expansion of the universe. One at-
tempt to explain the origin of dark energy is through the cosmological constant. Within
the SM, this constant is connected to the vacuum energy and its contribution can be
calculated as zero-point fluctuations in a field-theoretical approach. However, the cos-
mological constant calculated within the SM and the observed value differ by remarkable
120 orders of magnitude [113, 114] and hence, the SM does not provide a sufficient ex-
planation of dark energy. For a recent review of theoretical approaches to solve the
problem of dark energy, we refer to [115].

� Neutrino masses: The observation of oscillations between neutrinos of different flavors
indicates that neutrinos must have a non-vanishing mass [116], and current experiments
like the Karlsruhe Tritium Neutrino Experiment (KATRIN) aim to deliver new upper
bounds on the electron neutrino mass or to even measure it with a precision of approxi-
mately 0.2 GeV [117]. In the SM, neutrino masses are not generated through the Higgs
mechanism and consequently, the SM has to be extended to account for non-vanishing
neutrino masses.

Moreover, the following observations, still requiring more data, are in tension with the SM:

� g − 2 of the muon: The observed value of the anomalous magnetic moment of the
muon µ− differs from the theoretical prediction calculated within the SM at three to
four standard deviations [118], which indicates that the SM does not completely explain
the anomalous magnetic moment.

� B meson decays: Several experiments observed SM deviations in some decays e.g. in

the B meson decay channel B
0 → D∗+τ−ντ in which the measured decay rates differ

from the theoretical predictions calculated in the SM (cf. [119] for a recent overview).
Whether these deviations are large enough to significantly indicate an invalidity of the
SM or not is subject to current experimental and theoretical research.

Furthermore, the SM also has theoretical shortcomings, some of which we list in the following:

� Strong CP problem: In its most general form, the QCD Lagrangian of the SM can
contain a phase θ with arbitrary value which explicitly breaks CP symmetry. However,
measurements of the electric dipole moment of the neutron restrict this phase to values
θ � 10−9 [120]. In the SM, there is no mechanism that explains why θ should be
either precisely zero or so exceedingly small. Hence, the strong CP problem embeds a
fine-tuning problem into the SM.

� Hierarchy problem: As discussed in this section, the Higgs doublet is a necessary
ingredient for the SM in order to generate the masses of the SM particles through EWSB.
However, higher-order corrections to the Higgs mass that emerge through quantum
fluctuations are a function of the squared cut-off energy scale Λ2 at which the theory
breaks down. This is in strong contrast to the higher-order corrections to all other
masses in the SM, since these are protected by gauge or chiral symmetries and hence do
not depend polynomially on Λ [121]. The hierarchy problem is in essence the question
why the observed value of the Higgs mass at approximately 125 GeV [13] is so much
smaller than the expected cut-off scale Λ ≈ 1019 GeV, i.e. the Planck scale at which
the SM is supposed to break down due to effects of gravity. In order to explain the
observed value of the Higgs boson in the SM, it is necessary to assume that the higher-
order corrections to the Higgs mass cancel with CT5 in such a way that precisely the

5The concept of counterterms and renormalization is introduced in detail in Sec. 3.1.
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comparatively low Higgs mass of 125 GeV is produced. This requires a cancellation to
a precision of approximately 1 part in 1030. Hence, the hierarchy problem is another
fine-tuning problem of the SM.

It is debatable whether the theoretical problems of the SM described above should be con-
sidered as indications or even motivations for BSM physics. The problem of fine-tuning is
in essence more of philosophical than of physical origin, especially if it is mentioned in the
context of naturalness, and it is always possible to use e.g. the anthropic principle as a coun-
terargument for fine-tuning. While in some cases in the past, the removal of fine-tuning
problems present in some theories was successfully used as a guiding principle which led to
the discovery of more fundamental theories [121,122], we leave it to the reader whether they
consider this reductionistic approach as a valid motivation for BSM physics or not. On the
other hand, the experimental observations presented above indicate more clearly that the SM
is not a sufficient theory to fully describe nature. While none of the three QFTs considered
in this thesis provide solutions to all of the aforementioned problems simultaneously, all of
them solve at least some of the experimental and theoretical shortcomings of the SM.

2.2. Singlet and Doublet Extensions of the Standard Model

Among the simplest possibilities to extend the SM of particle physics is the introduction of
additional SU(2)L Higgs singlets and doublets to the Lagrangian. This extends only the
scalar sector of the SM in the form of additional Higgs bosons. Since the scalar sector is
experimentally the least well-studied sector of the SM so far, BSM theories of this kind
become increasingly more interesting since their parameter space is usually less restricted
in comparison to other SM extensions where the scalar sector is more restricted e.g. due to
addtional symmetry relations. One of the most stringent contraints of any BSM model comes
from the ρ parameter [33]

ρ ≡
∑

i v
2
i

[
4IW,i(IW,i + 1)− Y 2

i

]∑
i 2Y 2

W,iv
2
i

, (2.2)

where we sum over any scalar Higgs doublet or singlet with corresponding VEVs vi, weak
isospin IW,i and weak hypercharge Yi. The currently measured value of this parameter is
given by [98]

ρexp = 1.00039± 0.00019 . (2.3)

In the SM, the ρ parameter is automatically unity per construction at tree level, since only
one Higgs doublet with isospin IW = 1/2 and weak hypercharge Y = +1 is contained in the
Lagrangian. Likewise, it is possible to add an arbitrary number of additional SU(2)L doublets
or SU(2)L singlets (with quantum numbers IW = 1/2, Y = +1 or IW = Y = 0, respectively)
to the Lagrangian, since Eq. (2.2) in all cases evaluates precisely to unity at tree level. While
in principle it is possible to add other more complicated SU(2)L structures to the Lagrangian,
the constraint on ρ given by Eq. (2.3) typically leads to a fine-tuning of the parameters in
such models [33]. Hence, in Part II of this thesis we consider only the simpler case where we
add an additional doublet to the Lagrangian, thus defining the 2HDM, and in Part III, we
additionally add a gauge singlet to the 2HDM which gives rise to the N2HDM.

The unitarity constraints are another important restriction that models beyond the SM have
to fulfill. The mechanism of EWSB does not only introduce effective mass terms to the
theory. Moreover, it is a mechanism to unitarize the scattering of e.g. longitudinal gauge
bosons at high energies. Without the Higgs boson, the scattering amplitude is divergent
with respect to an increasing center of mass energy such that unitarity is violated for high
energies. However, through EWSB, the Higgs couples to the gauge bosons proportionally
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to their squared masses and cancels the divergent contributions in the scattering amplitude,
hence preserving unitarity. In theories with extended Higgs sectors, the additional Higgs
bosons also couple to the gauge bosons. The unitarity constraints are thus in essence a
constraint on the combination of the coupling constants describing the interaction of the
Higgs and the gauge bosons. Extensions of the SM which contain SU(2)L doublets and
singlets fulfill the constraints stemming from the couplings to the gauge bosons automatically
at tree level per construction [123].

Another set of important constraints are flavor-changing neutral currents (FCNCs), i.e. decay
processes that change the flavor of a quark without a simultaneous change of its electric
charge. Experimental data put very stringent constraints on the branching ratios of FCNC
processes [124,125], which implies that models which allow for FCNC couplings at tree level
typically need to be fine-tuned in order to be consistent with these data. In the SM, FCNC
processes are not present at tree level and are highly suppressed at one-loop order through
the Glashow-Iliopolus-Maiani (GIM) mechanism [126]. In the 2HDM and N2HDM, however,
the most general form of these models introduces FCNCs already at tree level through the
Yukawa sector. In Secs. 4.3 and 9.3, we discuss the appearance and removal of FCNCs in the
2HDM and N2HDM, respectively.

While adding another SU(2)L doublet (and a gauge singlet) to the SM is ad hoc, i.e. not
motivated by a more complex underlying theory or symmetry, the 2HDM and N2HDM are
nevertheless interesting models since they provide solutions to some of the aforementioned
shortcomings of the SM. A special realization of the 2HDM, the Inert Doublet Model, provides
a DM candidate [127–130], and so does an inert doublet in the N2HDM. The latter model
moreover features the possibility of a dark singlet as another source of DM (cf. [58,131,132]
for recent analyses). Moreover, the additional Higgs potential parameters of the 2HDM and
N2HDM allow for additional sources of CP violation if complex versions of the models are
considered6. In Parts II and III of this thesis, we provide electroweak one-loop corrections
within the CP-conserving realizations of the 2HDM and N2HDM, respectively. These models
contain extended Higgs sectors with an interesting phenomenology while at the same time
they allow for more freedom with respect to the parameters of the scalar potential since they
are not constrained by additional symmetries as it is the case e.g. for SUSY models.

2.3. Supersymmetric Extensions of the Standard Model

Among the most popular extensions of the SM are BSM models in the framework of SUSY. In
the following, we only briefly introduce the basic concepts and ideas of SUSY. For a general
introduction to and a review on the topic, we refer to e.g. [36]. In SUSY, additional fermionic
operators Q exist which transform bosonic into fermionic states et vice versa:

Q |boson〉 = |fermion〉 , (2.4)

Q |fermion〉 = |boson〉 . (2.5)

Due to these additional transformations, the bosonic and fermionic fields are directly con-
nected to each other. One motivation for the consideration of SUSY was the fact that in the
development of the SM, fundamental symmetries turned out to be fruitful guiding principles
(e.g. , the formulation of the SM in terms of gauge symmetries allowed for a unification of
the electromagnetic and the weak force and their combination with the strong force, and the
excellent agreement of many SM predictions with experimental data validated symmetries as
a guiding principle). From a theoretical point of view, the Coleman–Mandula theorem [133]
provides a stringent no-go theorem which states that in a consistent QFT containing a mass

6In our work, we restrict ourselves to the real 2HDM and N2HDM.
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Figure 2.2.: Particle content of the MSSM. Each SM particle (left-hand side of the figure)
acquires a superpartner, indicated with a tilde (right-hand side of the figure). Note that in
this representation, H and H̃ denote Higgs and higgsino field doublets instead of particles.

gap, only trivial combinations of internal and space-time symmetries can exist, which in
essence reduces the possibilities of extending the SM based on additional symmetries. How-
ever, the Haag– Lopuszański–Sohnius theorem [134] states a loophole of this no-go theorem.
By considering a Lie superalgebra instead of a Lie algebra, i.e. by formulating an algebra con-
taining both commuting and anticommuting symmetry generators, the theorem states that
there exists a non-trivial combination of both space-time and internal symmetries, providing
the basis for a SUSY QFT with a mass gap. Moreover, the theorem states that SUSY is the
only mechanism through which such a consistent QFT with maximally realized symmetries
can be established. Consequently, using symmetries as guiding principles for formulating
more fundamental theories naturally leads to the development of SUSY. Moreover, from a
theoretical point of view, the unification of gravity with the three other fundamental forces
e.g. in the framework of superstring theory necessarily requires the superalgebra and hence
automatically induces SUSY [135].

SUSY extensions have been studied in great detail up until this day. The MSSM [20–36] is
an example of a SUSY theory which provides a supersymmetric extension of the SM via an
introduction of a minimal amount of additional particles and which was at the same time
compatible with experimental data. Due to the internal symmetries between fermions and
bosons in the superalgebra, the MSSM predicts twice as many particles as the SM. Each
fundamental fermion and boson of the SM acquires a superpartner, also called sparticles,
whose quantum numbers differ from the respective fundamental particle of the SM only by a
half-integer value of the spin, while all other quantum numbers are the same. Per convention,
the superpartners of the SM fermions are denoted with the prefix “s” while the superpartners
of the bosons are denoted with the suffix “ino”. Moreover, due to the holomorphy of the
superpotential of the MSSM, the model requires two Higgs doublets instead of one as in the
SM and hence, it contains a specific realization of a 2HDM [36]. An overview over the particle
content of the MSSM is depicted in Fig. 2.2.

Due to the fact that the superpartners have the same quantum numbers as their SM counter-
parts (apart from the spin), SUSY extensions like the MSSM predict that each SM particle has
a SUSY partner with the same mass. However, this is at odds with experimental results, since
we did not observe any superpartners at the mass scale of the SM particles. Due to this, if
SUSY is realized in nature, it needs to be broken my some yet unknown mechanism which can
be parametrized by adding soft-SUSY-breaking terms to the SUSY Lagrangian [24,136,137].
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These terms are introduced in the form of dimension-two terms, i.e. they have a positive di-
mension of mass, which explains the “softness” of their inclusion: they dominantly affect the
physics at the low (i.e. soft) energy scale but they do not alter the cancellation of divergent
structures (i.e. at the high or hard scale) in the higher-order scalar masses of the theory. The
method of soft SUSY breaking allows for the parametrization of the unknown mechanism
of SUSY breaking through the introduction of these additional soft-breaking parameters.
Hence, details about the exact origin of the SUSY breaking, still unknown as of today, are
not required for the softly-broken theory to yield theoretical predictions for observables. As
a potential drawback, the parametrization of the SUSY-breaking mechanism introduces a
plethora of new free parameters to the theory. Even the most simple phenomenologically
relevant realization of a SUSY model, namely the MSSM, features as much as 105 additional
parameters in the soft-SUSY-breaking Lagrangian in its most general form.

Supersymmetric theories provide interesting solutions to many of the shortcomings of the SM
mentioned in Sec. 2.1. The MSSM, for example, was originally constructed as a new theory
to solve the hierarchy problem inherent to the SM [24]. This solution is based on the SUSY
relations between the fermionic and bosonic fields and their coupling constants. As mentioned
in Sec. 2.1, the higher-order corrections to the Higgs mass are a function of the cut-off scale
Λ2 up to which the SM is considered to be a valid theory. The dominant contributions to this
quadratic term stem from the heaviest particle of the theory, i.e. in the SM, the contributions
originate from quantum fluctuations involving virtual top quarks. Higher-order corrections
to the fermionic particles on the other hand do not feature this quadratic dependence on
the cut-off scale, since they are protected by a chiral symmetry. When calculating higher-
order corrections to the Higgs boson mass in SUSY extensions, contributions from additional
quantum fluctuations involving the superpartners of the top quark need to be taken into
account. Due to SUSY, these superpartners couple in the same way to the Higgs boson as
the top quark, but since their contribution is bosonic instead of fermionic, they contribute with
a different sign. As a consequence, the terms quadratic in the cut-off scale are canceled and
the Higgs mass is protected from large corrections due to the symmetry between the fermionic
and bosonic sector. Since SUSY is not expected to be an exact symmetry, but rather a softly-
broken one, the higher-order corrections to the Higgs mass still receive contributions which
depend logarithmically on the cut-off scale, however. As long as the soft SUSY breaking scale
is not too large or equivalently the SUSY particles do not become too heavy, i.e. at the scale
of approximately O(1 TeV), no new hierarchy problem is introduced and the Higgs mass is
protected against large corrections in the presence of large energy scales7.

Another open problem of the SM, the observed baryon asymmetry of the universe, can po-
tentially be resolved in SUSY extensions when considering models with complex parameters
which yield additional sources of CP violation [138]. Moreover, many SUSY theories provide a
candidate for DM. The most general MSSM Lagrangian can contain couplings which allow for
processes which violate the conservation of lepton and baryon number L and B, respectively.
One theoretical consequence of the existence of these couplings would be proton decay, but
since experimental observations indicate that the proton is stable at least on a time scale of
approximately 1034 years [139], additional symmetries are imposed on the MSSM to remove
these couplings from the Lagrangian. An example of such an additional symmetry is called R
parity, which is imposed on the MSSM in the form of a discrete Z2 symmetry [36] and which
yields a conserved quantum number for each particle, the R-parity number

PR = (−1)3B+L+2S , (2.6)

where S denotes the spin of the corresponding particle. For SM particles, this quantum
number is given by PR = 1, while for SUSY particles, it yields PR = −1. Since R parity

7In the particular case of the MSSM, however, the problem cannot be fully solved since the so-called little
hierarchy problem remains in the theory. We discuss this in more detail in Sec. 14.1.
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is a conserved quantity, it consequently allows only for the production of SUSY particles in
pairs, while the decay of a SUSY particle necessarily involves an odd number of lighter SUSY
particles. Hence, R-parity-conserving SUSY models predict a stable lightest supersymmetric
particle (LSP) which serves as a prime candidate for DM if it interacts only weakly and is
electrically neutral [36].

In this thesis, we consider the singlet extension of the complex MSSM, i.e. the complex Next-
to-Minimal Supersymmetric Standard Model (complex NMSSM) [37–46, 140], as a specific
realization of a SUSY extension. Due to additional contributions stemming from the gauge
singlet, the radiative corrections to the Higgs boson mass are not required to be as large as in
the MSSM in order to provide a SM-like Higgs boson with a mass of approximately 125 GeV.
We discuss this in more detail in Chapter 14 where we also introduce the model. With its
complex parameters, the complex NMSSM provides additional sources of CP violation already
at tree level which are less constrained by electric dipole moments (EDMs) in comparison
to the MSSM [141]. Moreover, the complex NMSSM is interesting from a phenomenological
perspective due to exotic signatures provided by its extended Higgs sector [142]. Furthermore,
the theory contains a DM candidate and provides a solution to the hierarchy problem, as
outlined above.



CHAPTER 3

Higher-Order Corrections to Higgs Boson Decay Widths and Masses

In this chapter, we give a brief overview over the field-theoretical concepts that are relevant
for the calculation of partial decay widths at one-loop level in the 2HDM and N2HDM in
Part II and Part III, respectively, as well as for the corrections to Higgs boson masses at two-
loop level in the complex NMSSM in Part IV. We assume that the reader is familiar with the
concepts of quantum mechanics, special relativity, quantum field theory and the calculation
of higher-order corrections in QFTs with the Feynman diagrammatic approach. This thesis
is not intended to give a thorough introduction into these topics. For this, we refer the reader
to introductory QFT textbooks, e.g. [94,143,144].

In Sec. 3.1, we briefly review the concepts of regularization and renormalization which are
necessary in order to obtain finite partial decay widths and Higgs boson masses in higher-
order calculations. One of the main focuses of this thesis is the renormalization of different
extensions of the SM. Due to this, we review the renormalization of generic field multiplets in
Sec. 3.2 in order to introduce the required notation for the renormalization of the SM exten-
sions and for the concepts of OS renormalization as well as modified minimal subtraction (MS)
and modified dimensional reduction (DR) renormalization. In the subsequent Secs. 3.3 and
3.4, we discuss the calculation of one-loop partial decay widths and one- and two-loop Higgs
boson masses in general. In the subsequent Sec. 3.5, we describe the input parameter conver-
sion which is necessary for the consistent comparison of partial decay widths calculated within
different renormalization schemes. This chapter concludes with a brief general discussion of
the gauge independence of fixed-order calculations of partial decay widths and Higgs boson
masses in Sec. 3.6.

3.1. Regularization and Renormalization of Loop Integrals

As a simple example of a one-loop diagram, we consider a tadpole diagram with a virtual
scalar particle with mass m > 0 in the loop, as depicted in Fig. 3.1. Up to some additional
constants, this diagram represents an integral of the form∫

d4l

(2π)4

1

l2 −m2
, (3.1)

where the four-momentum l is the integration variable. This integral has a divergence in the
regime of large momenta (or small spatial distances, respectively), a UV divergence. The
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m

Figure 3.1.: Exemplary UV-divergent one-loop tadpole diagram with a virtual scalar particle
of mass m > 0.

appearance of these divergences is inevitable in any fixed-order calculation, i.e. they are an
artifact of the incompleteness of a quantum-field theoretical description of very small space-
time separations [94]. Despite the appearance of these divergences, higher-order calculations
of observables, e.g. partial decay widths and Higgs boson masses, still yield finite, physical
results through the methods of regularization and renormalization.

Through regularization, the UV divergences of the loop integrals are isolated from their finite
contributions in a self-consistent way. There are many different regularization methods, all
with their own advantages and shortcomings. In this work, we use dimensional regularization
(DREG) [145–149] for non-SUSY models and dimensional reduction (DRED) [150, 151] for
SUSY models in order to isolate the divergences. The key idea common in both regularization
methods is that the loop momenta and space-time coordinates are considered in D = 4− 2ε
dimensions, with ε > 0 being small, instead of the ordinary 4 space-time dimensions. In
DREG, this shift to D dimensions is additionally applied to all other tensor and spinor
structures of the QFT. While this procedure is applicable to non-SUSY models, in SUSY
extensions this would lead to a mismatch between the degrees of freedom of the bosonic and
fermionic fields in D dimensions8. As a consequence, DREG explicitly violates SUSY [150]
which hence needs to be restored e.g. through the introduction of SUSY-restoring countert-
erms [158–161]. In DRED on the other hand, the shift from 4 to D space-time dimensions
is restricted to the loop momenta, while the tensor and spinor structure is still considered to
be four-dimensional. While it has been analyzed that DRED preserves SUSY at the one-loop
level and for the dominant contributions at two- and three-loop level [162–166], a general
all-order proof of the preservation of SUSY through DRED is not known to date.

In both regularization schemes, the UV divergence of the loop integral is regularized by the
finite shift ε and the loop integral evaluates to a finite part on the one hand and a universal
contribution

∆ ≡ 1

ε
− γE + ln (4π) + ln

(
µ2

µ2
R

)
(3.2)

on the other hand. Here, γE denotes the Euler-Mascheroni constant, µR is the mass-
dimensional renormalization scale which needs to be introduced in order to preserve the
dimensionality of the loop integral and µ denotes the mass-dimensional ’t Hooft scale which
cancels in the calculation of any observable.

While DREG and DRED serve to regulate the UV divergence for any ε > 0, the loop integral,
and hence the calculation of any observable, still yields a UV-divergent result. This becomes
apparent in the physical limit when considering four space-time dimensions, i.e. for ε → 0
in Eq. (3.2). In order to remove these UV divergences consistently, we use the method of

8For both SUSY and non-SUSY extensions, care has to be taken when extending the Dirac matrix γ5 to
D dimensions since its definition is given unambigiously only in 4 space-time dimensions. An inconsistent
treatment of γ5 e.g. in the framework of DREG leads to the appearance of axial anomalies, the Adler-Bell-
Jackiw anomalies [152–155]. For an overview over the possible extension of γ5 to D dimensions, we refer
to [156,157]. In our work, we do not encounter axial anomalies at any stage of our calculations.



3.2. On-Shell Renormalization of Field Multiplets 19

renormalization. Each bare parameter ρi,0 (i = 1, 2, ...) and bare field φj,0 (j = 1, 2, ...) of the
QFT is split into a physical renormalized parameter ρi and field φj and their corresponding
CT δρi and wave-function renormalization constant (WFRC)

√
Zφ (or its expansion δZφ)

according to

ρi,0 = ρi + δρi , (3.3)

φj,0 =
√
Zφjφj ≈

(
1 +

δZφj
2

)
φj . (3.4)

The CTs and WFRCs contain UV divergences which precisely cancel against the UV diver-
gences stemming from loop integrals in a fixed-order calculation. By imposing renormalization
conditions, furthermore additional finite contributions are allocated to the CTs and WFRCs
that depend on the explicit renormalization conditions that are chosen. The renormalized
parameters ρi on the other hand are UV-finite and represent the physical values of these
parameters. Due to the cancellation of the UV divergences of the loop integrals and the CTs
and WFRCs, all divergences are consistently removed from the QFT and the observables be-
come manifestly UV-finite. This procedure works order-by-order for all renormalizable field
theories [94]. All models considered in this work, i.e. the 2HDM, N2HDM and the complex
NMSSM, belong to this class of renormalizable field theories in four space-time dimensions,
cf. e.g. [36, 167, 168] where the renormalizability of the 2HDM and MSSM is discussed. The
singlet extensions of these two models are renormalizable as well, since the additional singlet
terms introduced in the Lagrangian are renormalizable.

3.2. On-Shell Renormalization of Field Multiplets

The multiplicative renormalization of scalar fields indicated in Eq. (3.4) is directly applicable
for theories with a single scalar field, e.g. for the Higgs boson field renormalization in the SM.
On the other hand, theories with extended Higgs sectors often contain several scalar fields
with the same quantum numbers which consequently can be combined into scalar multiplets.
Examples of this are the Higgs sectors of all three models considered in this work, namely
the 2HDM, the N2HDM and the complex NMSSM, with several scalar multiplets in each of
the models. In the following, we briefly review the renormalization of a scalar multiplet in
general. Applications of this general renormalization mechanism to the specific models are
discussed in the respective Parts II, III and IV of this thesis.

In the following, we perform the renormalization of the fields in the mass basis. This is a
typical approach when the fields are renormalized in an OS scheme and in our work, we apply
such a scheme for the Higgs sectors of the 2HDM and N2HDM. Alternatively, the scalar fields
can be renormalized in a minimal scheme in the gauge basis where only a minimal amount of
WFRCs is introduced. We apply this approach for the renormalization of the Higgs fields in
the complex NMSSM and discuss the differences with respect to the renormalization in the
mass basis in more detail in Sec. 15.3.1.

We consider a scalar multiplet with n bare scalar fields φi,0 (i = 1, ..., n). In the mass basis,
the terms bilinear in the fields define the diagonal mass matrix D2

φ of the scalar multiplet, with

the ith diagonal entry representing the squared mass of the ith scalar. Through multiplicative
renormalization by means of an n × n matrix

√
Zφ (or its expansion δZφ), the multiplet is

rescaled to yield the renormalized multiplet via the n-dimensional generalization of Eq. (3.4),
φ1

...

φn


0

=
√
Zφ


φ1

...

φn

 ≈
(
1n×n +

δZφ
2

)
φ1

...

φn

 . (3.5)
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iΣφiφj (p
2) ≡ φi

1PI
φj φi

=
φj φi

+
φj

+ . . .

Figure 3.2.: The 1PI self-energies iΣφiφj (p
2) (i, j = 1, ..., n) are defined as the sum of all

self-energy diagrams at a given loop order that cannot be split into two different diagrams by
cutting a single line in the diagram. They denote the transition of the scalar particle φi to
φj .

The n× n matrix δZφ contains n2 different WFRCs which are of the considered loop order,

δZφ =



δZφ1φ1 δZφ1φ2 · · · δZφ1φn

δZφ2φ1 δZφ2φ2

...
. . .

δZφnφ1 δZφnφn


. (3.6)

The probability amplitude of the scalar fields to propagate from one space-time point to
another is described by means of the two-point correlation function Γφ [94]. Since higher-
order corrections introduce UV divergences into the two-point correlation function, Γφ needs
to be renormalized. In a renormalizable field theory, it suffices to renormalize all independent
parameters and fields of the theory to render the two-point correlation function finite, as well.
Accordingly, the renormalized two-point correlation function is defined as:

Γ̂φ(p2) ≡



Γ̂φ1φ1(p2) Γ̂φ1φ2(p2) · · · Γ̂φ1φn(p2)

Γ̂φ2φ1(p2) Γ̂φ2φ2(p2)

...
. . .

Γ̂φnφ1(p2) Γ̂φnφn(p2)


≡ i
√
Zφ
† [
p21n×n −D2

φ + Σφ(p2)− δD2
φ

]√
Zφ .

(3.7)

Here, we introduced the n× n matrix CT of D2
φ, that, in contrast to D2

φ itself, is in general
non-diagonal. Its explicit form depends on the renormalization of the minimum of the scalar
potential and is presented below. The self-energy matrix Σφ(p2) is a symmetric n×n matrix
given by

Σφ(p2) =



Σφ1φ1(p2) Σφ1φ2(p2) · · · Σφ1φn(p2)

Σφ1φ2(p2) Σφ2φ2(p2)

...
. . .

Σφ1φn(p2) Σφnφn(p2)


. (3.8)

Each entry of this matrix represents the one-particle irreducible (1PI) self-energy of the
transition from the scalar particle φi to φj , as shown in Fig. 3.2. By expanding

√
Zφ about

the unit matrix, analogously to Eq. (3.5), Eq. (3.7) can be rewritten as

Γ̂φ(p2) ≈ i
[
p21n×n −D2

φ + Σ̂φ(p2)
]
, (3.9)

where we introduced the renormalized self-energy matrix

Σ̂φ(p2) ≡ Σφ(p2)− δD2
φ +

δZ†φ
2

(
p21n×n −D2

φ

)
+
(
p21n×n −D2

φ

) δZφ
2

. (3.10)
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The renormalized propagator of the scalar multiplet is given by the negative inverse of the
two-point correlation matrix,

Ĝφ(p2) ≡ −Γ̂−1
φ (p2) =

i

(−i)det
(

Γ̂φ(p2)
) adj

(
Γ̂−1
φ (p2)

)
, (3.11)

where det stands for the determinant and adj for the adjugate of the matrix Γ̂φ(p2). The
poles of the renormalized propagator are determined by the zeros of the determinant of the
two-point correlation function. According to the Källéen-Lehmann spectral representation,
these poles correspond to the physical masses mφi of the scalar particles in the mass basis
[94, 169, 170]. By finding the zeros of the determinant, the position of these poles, and
consequently the masses of the particles, can be explicitly calculated. Since the calculation
of the higher-order corrections to the Higgs masses in the complex NMSSM is part of this
work, this concept is discussed in more detail in Sec. 3.4 and Chapter 16.

The matrix CT δD2
φ and the WFRCs δZφ contain UV divergences which cancel against the

divergences stemming from the unrenormalized self-energies, hence yielding a UV-finite renor-
malized two-point correlation function in Eq. (3.9). The finite parts of the CTs and WFRCs
on the other hand still need to be fixed by imposing suitable renormalization conditions.
Among the simplest choices of renormalizing a non-SUSY QFT is to choose an MS scheme
in the framework of DREG. In such a scheme, the parameter CTs and WFRCs of the theory
are defined to contain only the UV-divergent terms proportional to the universal constant
∆, cf. Eq. (3.2). For SUSY extensions, an equivalent definition in the framework of DRED,
namely the DR scheme9,10, can be defined. In this scheme, the CTs and WFRCs contain only
the UV-divergent terms and moreover some additional finite contributions which arise due
to the difference between DREG and DRED as discussed in Sec. 3.1. In both cases, the CTs
defined in this scheme depend explicitly on the renormalization scale µR at which they are
defined. The MS/DR scheme has the advantage that the definitions of the CTs and WFRCs
become particularly simple.

Another renormalization scheme which is commonly used in literature is the OS scheme by
imposing the following three renormalization conditions [94]:

� The mixing of fields with same quantum numbers vanishes on the mass shells p2 = m2
φi

(i = 1, ..., n).

� The physical masses mφi (i = 1, ..., n) are defined as the real parts of the poles of the

renormalized propagator Ĝφ(p2).

� The normalization of the fields φi (i = 1, ..., n) is such that the residues of the propagator
at its poles is equivalent to i.

9For completeness, we want to mention that in the framework of DRED, there is also an alternative approach
for the minimal renormalization called the DR′ scheme. This approach differs from the usual DR scheme by
a different treatment of the ε-scalar masses which arise in the SUSY Lagrangian through the shift from 4 to
D dimensions. For more details about the differences between these approaches, we refer to [171,172]. In our
work, we use the DR scheme for the calculation of the corrections to the Higgs masses in the complex NMSSM
and we want to emphasize that to O(α2

t ), both schemes yield the same results [173].
10In principle, we could also apply the DR scheme to non-SUSY models. However, this approach necessitates

the consistent treatment of additional contributions stemming from the ε terms, i.e. the evanescent couplings
[165, 174, 175]. Hence, for practical reasons we use the MS scheme for all calculations in non-SUSY models
(i.e. the 2HDM and N2HDM) and the DR scheme for the complex NMSSM in this work.
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The application of these renormalization conditions to the two-point correlation function,
cf. Eq. (3.9), and its expansion around its poles determines the diagonal terms of the matrix
CT δD2

φ and the explicit form of the WFRCs in the OS scheme:

δD2
φiφi

= Re
[
Σφiφi(m

2
φi

)
]
, (3.12)

δZφiφi = −Re

[
∂Σφiφi(p

2)

∂p2

]
p2=m2

φi

, (3.13)

δZφiφj =
2

m2
φi
−m2

φj

Re
[
Σφiφj (m

2
φj

)− δD2
φiφj

]
(i 6= j) . (3.14)

In the OS scheme, the positions of the poles of the propagator are defined as the physical
masses mφi (i = 1, ..., n), and these mass values are required as an independent input through
which the mass parameters and their CTs are fixed. In contrast to the MS/DR scheme,
where higher-order corrections to the masses of the particles can be calculated by computing
the zeros of the determinant of the two-point correlation function, in the OS scheme the
physical masses mφi are per definition given as an input. An advantage of the OS scheme in
comparison to the MS/DR scheme is that WFRCs defined in an OS scheme are automatically
properly normalized at higher orders and consequently, for a calculation of e.g. decay widths
of physical particles the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula [176] is
directly applicable without additional finite rotations [143].

3.3. Decay Widths at Tree Level and Next-to-Leading Order

One way of making theoretical predictions for observables at colliders like the LHC is to
use the field-theoretical framework of the LSZ reduction formula together with the Feynman
diagrammatic approach in order to calculate decay amplitudes for particles of a specific QFT.
In the following, we describe how the decay amplitudes are connected to the partial decay
widths of the specific decay channel and how all partial decay widths can be combined to
make predictions of the decay probability of a particle that is produced at e.g. the LHC. The
calculation of the higher-order corrections to the partial decay widths allows for more precise
predictions of these decay probabilities.

In Parts II and III of this thesis, we consider the decays of all Higgs bosons of the 2HDM
and N2HDM, respectively, and calculate the electroweak corrections to these decays to one-
loop order. The relevant formulae for the decay amplitudes are presented in this section in a
generic way such that they can be applied to each of the two models in the respective parts
of the thesis.

We consider decays of any CP-even, CP-odd or charged Higgs boson φ with four-momentum
p1 into a pair of two other particles X1 and X2 with four-momenta p2 and p3, respectively,
i.e. we consider the decay process

φ −→ X1X2 . (3.15)

For the calculation of the electroweak corrections, we consider OS decays only, i.e. we require

m2
1 ≥ (m2 +m3)2 (3.16)

with the OS conditions p2
i = m2

i (i = 1, 2, 3) for the masses mi of the three particles. The
leading order (LO) decay amplitude

iALO
φX1X2

≡ iALO(φ −→ X1X2) (3.17)
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φ
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Figure 3.3.: Generic decay amplitudes of the process φ −→ X1X2. At LO, the decay
amplitude is denoted by ALO

φX1X2
while at next-to-leading order (NLO), the amplitude consists

of the genuine one-loop vertex corrections AVC
φX1X2

(center), shown topologically in Fig. 3.4,

as well as the sum of all CT and WFRC contributions ACT
φX1X2

, depicted by a cross.

can be calculated by means of the Feynman diagrammatic approach by calculating the decay
generically shown in the left-hand figure in Fig. 3.3. For all decays considered in this thesis,
the partial decay width of the decay of φ into X1 and X2 at LO is subsequently given by

ΓLO
φX1X2

=
1

2m1

∫
dΠ2 S

∑
d.o.f.

∣∣ALO
φX1X2

∣∣2 = S
λ(m2

1,m
2
2,m

2
3)

16πm3
1

∑
d.o.f.

∣∣ALO
φX1X2

∣∣2 , (3.18)

where λ(x, y, z) denotes the Källén phase space function

λ(x, y, z) ≡
√
x2 + y2 + z2 − 2xy − 2xz − 2yz (3.19)

and S is a symmetry factor for which we set S = 1/2 in case that the two particles X1 and X2

are indistinguishable, e.g. two Z bosons or neutral CP-even Higgs bosons of the same type,
or S = 1 otherwise.

At NLO, the decay process receives genuine one-loop corrections to the three-particle vertex,
as shown generically in the central figure of Fig. 3.3, as well as CT contributions stemming
both from the vertex and from the external field renormalization, depicted generically as a
cross in the right-hand figure of Fig. 3.3. We denote these NLO contributions with AVC

φX1X2

for the genuine vertex corrections, additionally depicted topologically in Fig. 3.4, and with
ACT
φX1X2

for the sum of all CT and WFRC contributions, respectively. At one-loop level, in
general we also need to consider corrections to the external legs which are not depicted in
Fig. 3.3. Due to the OS renormalization of the fields that we use for the calculation of the
decays in the 2HDM and N2HDM, most of these external leg corrections are already accounted
for. The OS definition of the WFRCs ensures the proper normalization of the fields such that
the LSZ reduction formula can still be applied to calculate the decay amplitudes at one-loop
level and the external leg corrections are shifted into the WFRCs accordingly. The remaining
external leg corrections vanish for all decays that we consider in this work due to Slavnov-
Taylor identities [177–179]. Hence, the relevant contributions for the NLO decay amplitudes
are given by

ANLO
φX1X2

≡ AVC
φX1X2

+ACT
φX1X2

. (3.20)

In order to calculate the partial decay width, we again take the unpolarized absolute square
of the decay amplitude, however, at NLO we only expand it up to terms that are relevant at
one-loop order,∣∣ANLO

φX1X2

∣∣2 ≈ ∣∣ALO
φX1X2

∣∣2 + 2 Re
[(
ALO
φX1X2

)∗AVC
φX1X2

+
(
ALO
φX1X2

)∗ACT
φX1X2

]
. (3.21)

Since Eq. (3.20) is independent of the four-momenta pi for all decays considered in this work,
the phase space integration factorizes out again and the LO formula for the partial decay
width, cf. Eq. (3.18), can directly be generalized to the NLO case.



24 3. Higher-Order Corrections to Higgs Boson Decay Widths and Masses

φ

X1

X2

φ

X1

X2

φ

X1

X2

φ

X1

X2

φ

X1

X2

Figure 3.4.: Topological contributions to the vertex corrections AVC
φX1X2

to the decay process
φ −→ X1X2 at one-loop level. For the Feynman diagrammatic calculation of a decay in a real-
istic QFT, the full particle content of the theory has to be mapped into these topologies. The
tadpole contributions to the vertex corrections are only relevant in an alternative treatment
of the minimum conditions of the potential of a spontaneously broken gauge symmetry.

At one-loop order however, there is one additional complication that needs to be taken into
account. Decay processes that contain charged particles in the initial or final state acquire
one-loop corrections with virtual photons γ in the loop. Since the photon is a massless
particle, these loop integrals develop another type of divergence in the region of small space-
time momenta, the so-called infrared (IR) regime. The appearance of this divergence in
a QFT can be understood via a semi-classical interpretation. The integration of the loop
momentum is performed over the whole physical space, i.e. over all space-time configurations.
Since the photon is a massless particle whose energy is directly proportional to its frequency,
its energy can become arbitrarily small. In the asymptotic state of the IR regime, i.e. for
very small frequencies, an ever-increasing number of photons can occupy the phase-space.
Hence, the appearance of an IR divergence is merely an artifact of an insufficient description
of the photonic field in this asymptotic space-time configuration. From a field-theoretical
point of view, this divergence can be canceled order by order by taking bremsstrahlung effects
in the NLO decays into account, which is ensured by the Kinoshita-Lee-Nauenberg (KLN)
theorem [180, 181]. More specifically, for the NLO decays involving charged particles in the
initial or final state, additional Feynman diagrams are computed which correspond to the
decays

φ −→ X1X2 γ , (3.22)

called real corrections to the decays. Since these real photons can have arbitrarily small
energies as well, in principle an infinite amount could be emitted, since photons with vanishing
energies are not detectable. This leads to another divergence that appears in the calculation
of the real corrections when the integration over the full phase-space is performed, and this
additional IR divergence precisely cancels the IR divergence stemming from the one-loop
integrals involving virtual photons. For the calculation of all real corrections Γreal

φX1X2+γ to the
decay processes considered in this work, we applied the generic formulae of the real corrections
presented in [182] to our models. Additionally, the analytic forms of the phase space integrals
required for calculating the real corrections were taken from [183]. Finally, the full partial
decay width at NLO is given by

ΓNLO
φX1X2

= ΓLO
φX1X2

+ S
λ(m2

1,m
2
2,m

2
3)

16πm3
1

∑
d.o.f.

∣∣ANLO
φX1X2

∣∣2 + Γreal
φX1X2+γ . (3.23)

From a field-theoretical point of view, the IR divergences stemming from the virtual photons
first need to be regularized before they can be removed by taking real corrections into account.
While DREG is a suitable method for the regularization of IR divergences [184] which is
often applied in QCD calculations, we use a mass regularization scheme with an infinitesimal
photon mass to regulate the IR divergences. This photon mass appears both in the one-loop
diagrams containing virtual photons and in the real corrections and cancels in the sum of
both contributions. More details about the photon regularization are presented in Secs. 6.1
and 11.1 for the 2HDM and N2HDM decays, respectively.



3.4. Higher-Order Mass Corrections 25

φi φj φi φj φi φj φi φj φi φj

φi φj φi φj φi φj φi φj

Figure 3.5.: Generic two-loop contributions to the 1PI self-energies iΣφiφj (p
2) (i, j = 1, ..., n)

which represent the transition of the scalar particle φi to φj .

By summing up all partial decay widths of a specific Higgs boson φ, we can calculate the
total decay width of φ at a given loop level:

Γ
tot,(N)LO
φ ≡

∑
{X1,X2}

Γ
(N)LO
φX1X2

. (3.24)

With the total decay width at hand, we can define the BR of a specific decay as follows:

BR(N)LO (φ −→ X1X2) ≡
Γ

(N)LO
φX1X2

Γ
tot,(N)LO
φ

. (3.25)

The BR is a measure of the probability that the Higgs boson φ decays specifically into X1 and
X2. The precise calculation of the BRs, together with precise calculations of the production
cross sections, allows for the prediction of the measurable decay rates of the Higgs boson at
the LHC.

3.4. Higher-Order Mass Corrections

Important observables at particle colliders are the masses of particles. For example, the 2012
discovery of the Higgs particle [15,16] with SM-like properties and especially the measurement
of its mass of approximately 125 GeV [13] is of great importance for our basic understanding
of elementary particle physics. The Higgs mass is a particularly interesting observable, since
its value is connected to the stability of the electroweak vacuum, and the measured value
favors a metastable vacuum over an absolutely stable one [185, 186]. As briefly discussed
in Sec. 3.2, from the theoretical approach the mass of elementary particles is a computable
quantity as well if not all particle masses are independent parameters of the considered theory.
This is typically the case in SUSY models, where due to the SUSY relations connecting the
fermionic and bosonic fields, some Higgs boson masses are dependent parameters. Due to
this, their CTs are given in terms of CTs of the other independent parameters of the theory.
Consequently, the higher-order corrections to the Higgs self-energies lead to a shift of the
position of the complex pole of the Higgs propagator, cf. Eqs. (3.9) and (3.11).

To one-loop order, the 1PI self-energies are depicted topologically in Fig. 3.2 while at two-
loop level, the topological contributions to the self-energies are shown in Fig. 3.5. The loop-
corrected masses are then given as the complex poles of the propagator generically defined in
Eq. (3.11), i.e. the masses of the particles are given as the roots of

det
(

Γ̂(p2)
)

= 0 (3.26)

with respect to p2. Note that the particle masses that appear in the diagonal matrix D2
φ

in Γ̂(p2), cf. Eq. (3.9), are the tree-level masses while the roots of Eq. (3.26) determine the
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loop-corrected masses. Evidently, if Γ̂(p2) is evaluated only at tree level, then both of these
masses are equivalent. Already to one-loop order however, the renormalized self-energies that
form the building blocks of Γ̂(p2) are intricate functions of p2 which in the most general case
do not allow for an analytic solution of Eq. (3.26) for p2 in closed form. Due to this, the roots
often have to be determined numerically. One approach for this numerical determination is
given by the iterative solution of Eq. (3.26), i.e. by first equating p2 to the tree-level mass
in the renormalized self-energy only. This allows to solve Eq. (3.26) for p2 and this solution
is then used as the new value for p2 in the renormalized self-energies with which Eq. (3.26)
can again be solved for p2, etc. Such an iterative approach for calculating the loop-corrected
masses is simple to implement, e.g. in the form of a Runge-Kutta method [187, 188], but
it has the disadvantage of automatically mixing different loop orders, which consequently
violates the gauge independence of the computed particle masses. We further discuss the
gauge dependence of higher-order calculations of particle masses in more detail in Sec. 3.6
and the application of the iterative procedure in the calculation of the complex NMSSM Higgs
boson masses in our work in Chapter 16.

3.5. Input Parameter Conversion at Next-to-Leading Order

The calculation of higher-order corrections to partial decay widths and particle masses through
the Feynman diagrammatic approach necessarily involves the evaluation of UV-divergent loop
integrals, as discussed in detail in Sec. 3.1. In DREG, the evaluation of these loop integrals di-
rectly depends on the mass-dimensional renormalization scale, cf. Eq. (3.2). In the following,
we denote with µout this renormalization scale at which the loop integrals (and consequently,
e.g. the partial decay widths) are evaluated. On the other hand, if some parameters of the
QFT are renormalized through MS/DR conditions, their input values and CTs explicitly de-
pend on the renormalization scale µR at which these parameters are defined. In the most
general case, each MS/DR parameter can be defined at an individual renormalization scale.
In the calculation of the electroweak one-loop corrections to the Higgs decays in the 2HDM
and N2HDM considered in Parts II and III of this thesis however, we consider all MS param-
eters to be defined at the same universal scale µR. In the following discussion, we restrict
ourselves to the case of MS parameters. The case of DR parameters is exactly analogous.

We want to emphasize that both the renormalization scale µout at which the partial decay
widths are evaluated and the renormalization scale µR at which the MS parameters are defined
can be chosen arbitrarily and in particular, they are not necessarily required to be the same. In
case that the two scales are different, the MS parameters that enter the calculation of the decay
widths need to be converted from the scale µR to the scale µout. We denote with p a generic
parameter of a QFT which is renormalized in the MS scheme by splitting the bare parameter
p0, which is independent of the renormalization scale, into the renormalized parameter p(µR)
and its CT11 δp

(
µR, p(µR)

)
, which both are explicitly dependent on the renormalization scale

µR. Due to the independence of the bare parameter p0 of the renormalization scale, we can
introduce the renormalized parameter and its CT at two different scales, e.g. µR and µout,
but the sum of both yields the same bare parameter p0 in both cases:

p0 = p(µR) + δp
(
µR, p(µR)

)
= p(µout) + δp

(
µout, p(µout)

)
.

(3.27)

11In the general case, the CT δp depends not only on the parameter p itself, but on several other independent
parameters of the theory. In order to keep the notation simple, we express the dependence only in terms of p,
but the notation δp

(
µR, p(µR)

)
implicitly is to be understood as to represent the dependence on all relevant

parameters.
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This equation can be solved for p(µout) which yields an expression for the parameter p at the
renormalization scale µout:

p(µout) = p(µR) + δp
(
µR, p(µR)

)
− δp

(
µout, p(µout)

)
≈ p(µR) + δp

(
µR, p(µR)

)
− δp

(
µout, p(µR)

)
.

(3.28)

Since the CT δp on the right-hand side of the first line of this equation depends on the
parameter p(µout) which we want to determine, this equation can only be solved iteratively. In
the second line, we therefore applied the linearized approach described in [189] by evaluating
the parameter p in every term on the right-hand side of Eq. (3.28) at the scale µR where it
is known. This allows for a direct determination of p(µout) without the need of an iterative
procedure. Since the CT δp is defined in the MS scheme, its form at one-loop level is given
in terms of the part δp∆ proportional to the UV-divergent ∆ as defined in Eq. (3.2),

δp
(
µR, p(µR)

)
= δp∆

(
p(µR)

)
∆

= δp∆
(
p(µR)

) [1

ε
− γE + ln(4π) + ln

(
µ2

µ2
R

)]
.

(3.29)

Inserting this form of the CT into Eq. (3.28) reveals that all terms that are not directly
dependent on µR or µout drop out and the formula for the parameter p at the scale µout

simplifies to

p(µout) = p(µR) + δp∆
(
p(µR)

)
ln

(
µ2

out

µ2
R

)
. (3.30)

This relation allows us to convert the MS renormalized parameter p, defined at a renor-
malization scale µR, to its value at another renormalization scale µout. However, due to
the linearized approach applied in Eq. (3.28), this relation is only approximately valid up to
higher-order terms.

Apart from the scale conversion of MS parameters, care has to be taken when higher-order
corrections to e.g. partial decay widths are calculated within different renormalization schemes
for the CTs of the independent parameters. For a consistent comparison of the results calcu-
lated within these different schemes, the independent parameters have to be converted from
one scheme to another.

In the following, we denote with ϕ an arbitrary independent parameter of the theory defined in
an arbitrary renormalization scheme, e.g. the scalar mixing angles of the (N)2HDM considered
in this thesis. At one-loop order, we decide to renormalize ϕ in a reference scheme by splitting
the bare parameter ϕ0 into the physical parameter ϕref and its CT12 δϕref

(
µR, ϕref(µR)

)
in

the reference renormalization scheme, defined at the scale µR. Alternatively, we can define
both the parameter and its CT in an arbitrary other renormalization scheme at another scale
µout, denoted by ϕi and δϕi

(
µout, ϕi(µout)

)
, respectively. Since the bare parameter ϕ0 is in

both cases the same, we can calculate the parameter ϕi in the other renormalization scheme
by a generalization of Eq. (3.28):

ϕi(µout) ≈ ϕref(µR) + δϕref

(
µR, ϕref(µR)

)
− δϕi

(
µout, ϕref(µR)

)
. (3.31)

As for the scale conversion of the MS parameters, this relation is only valid up to higher-order
terms since we used the linearized approximation in the last term by evaluating it with the
parameter ϕref instead of ϕi in order to avoid the necessity of an iterative procedure.

The finite differences in the definition of any CT are expected to vanish if the CT were to
be evaluated precisely to all orders. Hence, it is also expected that the partial decay widths

12As for the MS CT, the simplified notation δϕref

(
µR, ϕref(µR)

)
implicitly assumes that the CT of the parameter

ϕ may depend on several independent parameters of the theory.
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calculated within different renormalization schemes should converge to the same result if
they were to be computed in an all-order calculation. At any finite order in perturbation
theory, however, the different choices of renormalization schemes lead to different partial
decay widths [190]. Due to this, the calculation and comparison of partial decay widths
within different renormalization schemes, together with the consistent parameter conversion
by means of Eq. (3.31), allows for an estimate of the remaining theoretical uncertainty of the
NLO corrections due to missing higher-order contributions.

3.6. Gauge Independence of Fixed-Order Calculations

Since a considerable part of our work deals with the gauge-independent renormalization of
mixing angles and questions about gauge dependence of partial decay widths and higher-order
corrections to the Higgs masses, the final section of Part I of this thesis is dedicated to a brief
discussion about the gauge independence of fixed-order calculations in general.

Gauge theories are characterized by the invariance of the Lagrangian of the gauge theory
under specific local gauge transformations. It is a common feature of a quantized gauge
theory comprising vector fields to contain redundant degrees of freedom which need to be
removed in order to calculate physically sensible predictions. These redundant degrees of
freedom appear even in comparatively simple Abelian gauge theories, e.g. in QED, where
the quantized photon field contains four degrees of freedom from which only two, namely
the two transverse modes of the photon polarization, are realized in nature. The other
two degrees of freedom of the photon field are redundant and lead to ill-defined expressions
in the computation of physical observables. The most straightforward quantity where the
problematic redundant degrees of freedom become apparent is the generating functional Z[J ]
of the gauge theory within the framework of the path integral formalism [94]. We denote
with A a generic vector field with its associated source J and the action of the field theory
with S[A]. The generating functional of the theory is generically given by

Z[J ] ≡
∫
D[A] exp

(
iS[A] + i

∫
d4xJ(x) ·A(x)

)
. (3.32)

From this quantity, the Feynman rules of the theory as the building blocks of the calculation
of S matrix elements can be derived. However, the integration measure D[A] in Eq. (3.32)
implies an integration over all possible configuration states of the vector field A. Since A
contains redundant (i.e. unphysical) degrees of freedom which are connected through continu-
ous gauge transformations, Eq. (3.32) implies an integration over arbitrarily many unphysical
configuration states13. Consequently, Eq. (3.32) is a divergent quantity which a priori can
not be used to derive physical observables. In order to circumvent this problem, one can
e.g. apply the Faddeev-Popov procedure [191] which consistently cancels the redundant de-
grees of freedom14 and allows for the usage of the generating functional for a calculation of
physical observables.

In all QFTs we consider in this thesis, we use the class of Rξ gauges to fix the gauge.
Through the gauge-fixing Lagrangian of the Rξ gauges, the generating functional and hence
the Feynman rules of e.g. the vector boson propagators become functions of GFPs ξ, where

13Descriptively spoken, the independence of the gauge theory under gauge transformations corresponds to a
continuous shear in configuration space. In this sense, the gauge theory forms an equivalence class, and
the integration over the infinitely many realizations of the equivalence class leads to the divergence of the
generating functional.

14Technically, the Faddeev-Popov procedure leads to a factorization of the integration over the redundant degrees
of freedom in Eq. (3.32). Through a proper normalization of the generating functional, this global divergent
factor stemming from the redundant degrees of freedom is precisely canceled.
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Abox Atri Aself Aleg

Figure 3.6.: All topological contributions for a two-body toy scattering process of OS
fermions at one-loop level, consisting of the box diagrams Abox, triangle diagrams Atri, self-
energy diagrams Aself and external leg corrections Aleg.

in general, any gauge boson of the theory acquires a distinctive GFP. While the introduction
of the gauge-fixing Lagrangian explicitly breaks the invariance of the original Lagrangian
of the gauge theory under local gauge transformations, S matrix elements calculated in the
gauge-fixed theory are still both gauge-invariant and GFP-independent [192–197]. We want to
emphasize that this statement is ensured by the Becchi-Rouet-Stora-Tyutin (BRST) symmetry
and it is valid order by order in perturbation theory [94, 198, 199]. The only possibility to
break the GFP independence of the calculation of observables at a fixed loop order is via
imposing improper renormalization conditions on some of the independent parameters of the
theory [196, 200]. We discuss this further in Secs. 5.3 and 10.3 for the 2HDM and N2HDM,
respectively, where we demonstrate that an improper renormalization of the scalar mixing
angles leads to a residual GFP dependence of the partial decay widths at one-loop order.

Apart from an improperly chosen renormalization scheme, there is another possibility to
explicitly violate the GFP independence in the calculation of an observable, e.g. the higher-
order corrections to the Higgs masses, as described in Sec. 3.4. In this case, however, the
violation of GFP independence is not introduced via improper renormalization conditions,
but via the iterative procedure through which the Higgs masses can be determined, since
this procedure mixes different orders of perturbation theory. While the building blocks of
the calculation of the Higgs masses, i.e. the renormalized diagonal Higgs self-energies (or
to be more precise, the complex poles of the corresponding propagator, cf. Eq. (3.26)), are
manifestly GFP-independent quantities when considered at a specific fixed loop level and eval-
uated with the tree-level Higgs masses [196], the iterative procedure leads to the evaluation
of these self-energies with loop-corrected masses. This explicitly breaks Slavnov-Taylor iden-
tities and hence introduces a GFP dependence into the calculated values of the higher-order
Higgs masses, which however is formally of higher orders of perturbation theory than the one
considered in the calculation. This is in contrast to the violation of gauge-parameter indepen-
dence introduced through an improper renormalization scheme, where the GFP dependence is
formally of the same order of perturbation theory as the calculation that is considered [196].

In order to systematically analyze and quantify the GFP dependences arising in perturbative
calculations performed in any gauge-fixed gauge theory, there are several theoretical tools
available. The Nielsen identities [193] allow for a very generic analysis of possible sources
of gauge dependences for fixed-order calculations. They can be used to formulate model-
independent rigorous proofs e.g. about the gauge independence of S matrix elements or the
CTs that are required for the fixed-order calculation. While these identities can in principle
also be used for analyzing the origin of gauge dependences in different parts of a fixed-
order calculation and for tracing their mutual cancellations, there are two other theoretical
approaches that are better suited for this purpose in practice.

The first method for the explicit extraction and analysis of the cancellation of GFP-dependent
contributions is the so-called pinch technique (PT) [201–208]. We briefly illustrate the key
ideas of the PT by considering a toy process at one-loop level, i.e. the two-body scattering
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of OS fermions with momenta pi and masses mi as illustrated in Fig. 3.6. The one-loop
amplitude is a manifestly GFP-independent quantity, as can be formally proven by appli-
cation of the Nielsen identities. As mentioned above, this statement is independent of the
one-loop renormalization of the process, provided that we do not choose improper renor-
malization conditions which breaks the manifest GFP independence. More precisely, the
diagrammatic origin of all gauge dependences lies in the individual genuine box, triangle and
self-energy diagrams as well as in the external leg corrections, which, as discussed above,
define the WFRCs. In other words, the cancellation of all gauge dependences occurs between
the WFRCs and the genuine one-loop corrections and is independent of the renormalization
of the process15 [196, 200]. In order to illustrate the mechanism of the PT, we consider the
full one-loop scattering amplitude, cf. Fig. 3.6. While this is a manifestly GFP-independent
quantity, the individual diagrammatic contributions are GFP-dependent,

ANLO (s, t,mi) ≡ Abox(s, t,m, ξ) +Atri(s,m, ξ) +Aself(s, ξ) +Aleg(s, ξ) , (3.33)

where s and t are the usual s- and t-channel Mandelstam variables and m represents the
masses of the virtual particles in the loop. The key idea of the PT is to impose the elementary
Ward identity

/l = /l + /pi −mi −
(
/pi −mi

)
≡ S−1(l + pi)− S−1(pi) , (3.34)

where l denotes the loop momentum of any of the loop diagrams appearing in Fig. 3.6 and S−1

denotes the inverse fermion propagator. The term S−1(pi) on the right-hand side of Eq. (3.34)
vanishes in combination with an OS spinor by means of the Dirac equation. The term
S−1(l+ pi) on the right-hand side of Eq. (3.34) combines with a fermion propagator S(l+ pi)
stemming from an internal fermion, thereby effectively canceling it. Due to this, the internal
fermion is pinched out of the diagram. By imposing this elementary Ward identity in all loop
diagrams, their individual GFP-dependent contributions can be extracted analytically in an
unambiguous way. The crucial statement of the PT procedure is that the GFP-dependent
contributions stemming from the box and triangle diagrams as well as from the external
leg contributions are self-energy-like, i.e. they have the same functional dependence as the
self-energy contributions. This allows for a reallocation of all GFP-dependent contributions
into modified amplitudes for the box, triangle, self-energy and external leg contributions as
follows,

ANLO (s, t,m) ≡ Âbox(s, t,m) + Âtri(s,m) + Âself(s) + Âleg(s) , (3.35)

where the hats over the amplitudes denote that the GFP-dependent contributions have can-
celed in these quantities. The pinched self-energy Âself (s), as all other topological contri-
butions in Eq. (3.35), are now individually GFP-independent. In that sense, the PT is a
useful tool for the bookkeeping of the gauge dependences arising in a fixed-order calculation.
Moreover, the GFP-independent amplitudes in Eq. (3.35) can be used as building blocks for
the definition of GFP-independent renormalization schemes. As a practical example of this,
we will use the pinched self-energies for a manifestly GFP-independent definition of the CTs
of the scalar mixing matrices in the 2HDM and N2HDM in Secs. 5.1 and 10.1, respectively.
For an in-depth introduction to the PT and its numerous interesting applications, we refer
to [208].

The second useful tool for analyzing the cancellation of gauge dependences is the background
field method (BFM) [209–215]. Since we do not apply the BFM in any part of our work and
only adopt results from the literature that are calculated within the BFM framework, we only
briefly discuss it in the following and refer the reader to the aforementioned literature for an

15For this statement to be true, it is necessary that the genuine loop corrections to the two-body scattering
process as well as the corresponding external leg corrections contain contributions from tadpole diagrams, as
well [208]. This corresponds to an alternative treatment of the tadpole renormalization, as discussed further
in Secs. 5.1 and 10.1 for the 2HDM and N2HDM, respectively.
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in-depth introduction. Essentially, the BFM is an alternative gauge-fixing procedure which
allows to fix the gauge of the theory while simultaneously preserving its manifest local gauge
invariance. The key idea of the BFM is based on a modification of the building blocks of the
generating functional in Eq. (3.32). Each field considered in the generating functional is split
into a classical background field which is considered to be static, i.e. it represents a fixed field
configuration, and an additional fluctuating field. Due to the background field being static,
a local gauge symmetry of the Lagrangian is preserved, while the fluctuating field allows for
a fixation of the gauge. Since both fields appear explicitly in the generating functional, the
Feynman rules are modified in comparison to the original theory. In essence, the background
fields give rise to additional diagrammatic contributions, and also the renormalization of the
fields and parameters of the theory need to be modified accordingly. On the other hand, the
separation of the fields into the fluctuating and the background part allows for a separation
of the GFP-dependent contributions in a diagrammatic fixed-order calculation and due to
this, the cancellation of the GFP dependences is simpler to analyze. As it is the case for the
PT, the BFM formalism allows for the definition of e.g. self-energies which are manifestly
GFP-independent and which can subsequently be used for the definition of GFP-independent
CTs. As an example, one of the renormalization schemes used in this work for renormalizing
the scalar mixing angles of the 2HDM is based on the BFM [216], as further discussed in
Sec. 5.1.





Part II.

Electroweak One-Loop Corrections to
Higgs Boson Decays in the 2HDM





CHAPTER 4

A Brief Introduction to the 2HDM

In Part II of this thesis, we consider the electroweak one-loop corrections to the partial decay
widths of all Higgs bosons in the real 2HDM with a discrete Z2 symmetry that is only softly
broken. These corrections are implemented in the newly developed computer program 2HDE-

CAY, which combines the electroweak corrections with the state-of-the-art QCD corrections
to 2HDM Higgs decays already implemented in the tool HDECAY 6.52 [47,217]. As our work
focuses on the electroweak corrections to the partial widths, we do not consider the QCD
Lagrangian and its corresponding parameters in the following.

Starting with Sec. 4.1, we first introduce the full electroweak Lagrangian of the 2HDM and
briefly discuss the origin of each term contributing to it. In the subsequent Sec. 4.2, we focus
on the scalar Lagrangian of the 2HDM together with its accompanying scalar potential and
discuss the transformation from the gauge basis to the mass basis of the Higgs boson sector.
In Sec. 4.3, we consider the different possibilities of connecting the fermionic and scalar fields
in the 2HDM through corresponding Yukawa couplings, leading to four different types of
2HDMs considered in this work. Finally, in Sec. 4.4 we present an overview over two possible
full sets of independent parameters which can be used as inputs for the numerical evaluation
of the partial decay widths and BRs with the newly developed computer program 2HDECAY

presented in this thesis.

4.1. The Electroweak Lagrangian of the 2HDM

We consider a general CP-conserving 2HDM [17,18] with a discrete global Z2 symmetry which
is softly broken. In contrast to the SM, the 2HDM is comprised of two SU(2)L Higgs doublets
Φi (i = 1, 2) with weak hypercharge Y = +1. The full electroweak Lagrangian of the model
is split up into its several different contributions as follows,

LEW
2HDM = LYM + LF + L2HDM

S + LYuk + LGF + LFP . (4.1)

The Yang-Mills Lagrangian LYM and the fermion Lagrangian LF contain the kinetic terms
of the gauge bosons and fermions as well as the interactions between the gauge bosons with
both the fermions and themselves. In the 2HDM, these two Lagrangians are the same as the
ones present in the SM and their explicit forms are not needed for the subsequent parts of
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this work. Hence, we do not present these two Lagrangians explicitly here but instead refer
to e.g. [94,183] where they are presented in detail.

The third term in Eq. (4.1) is the scalar Lagrangian L2HDM
S of the 2HDM. It contains the

kinetic terms of the scalar fields as well as the scalar potential and consequently also the
interactions of the scalar particles with the gauge bosons and with themselves. Additionally,
the scalar potential defines the vacuum structure of the 2HDM whose explicit treatment is
crucial for a GFP-independent renormalization as further discussed in Sec. 5.1. Since the
main difference between the SM and the 2HDM lies in the extended scalar sector, we discuss
the scalar Lagrangian and the corresponding potential separately in detail in Sec. 4.2.

The fourth term in Eq. (4.1) is the Yukawa Lagrangian LYuk which describes the interactions
between the fermions and the extended scalar sector. In the SM, the only existing SU(2)L
Higgs doublet couples to the fermions in an unambiguous way. In contrast to that, the two
Higgs doublets of the 2HDM can couple in four different combinations to the fermions. Since
these combinations can differ significantly with respect to their phenomenology, we discuss the
Yukawa Lagrangian in more detail in Sec. 4.3 where we also introduce a short-hand notation
for the Yukawa coupling parameters that are used in this work.

The last two terms in Eq. (4.1) are the gauge-fixing Lagrangian LGF and the Faddeev-Popov
Lagrangian LFP. We do not list their explicit forms as they are not needed, but refer instead to
[168] for their full form. As briefly discussed in general in Sec. 3.6, these two Lagrangians are
required in order to remove the redundant degrees of freedom which arise due to the unphysical
polarization states of the gauge bosons. In our work, we use the class of renormalizable gauges,
the Rξ gauge [218, 219], to specify the gauge-fixing Lagrangian. As mentioned in Sec. 3.6,
the consequence of this gauge-fixing procedure is an explicit dependence of the partial decay
widths on the GFPs ξV (V = {W,Z, γ}) of each gauge boson. The Faddeev-Popov procedure
allows for the removal of the unphysical degrees of freedom by introducing unphysical Faddeev-
Popov ghost fields uW± , uZ and uγ for each gauge boson [191]. In our work, we apply the
approach of [168] and introduce the Lagrangians LGF and LFP only after the renormalization
of the 2HDM is completed. Hence, all fields contained in these two Lagrangians are already
renormalized fields and both the gauge-fixing and the Faddeev-Popov Lagrangian do not
receive additional CTs.

4.2. The Scalar Lagrangian and the Scalar Potential

The scalar Lagrangian of the general CP-conserving 2HDM contains the kinetic terms of the
scalar fields as well as their interactions with the gauge bosons and the scalar self-interactions.
By introducing the covariant derivative16

Dµ ≡ ∂µ +
i

2
g

3∑
a=1

σaW
a
µ +

i

2
g′Bµ , (4.2)

with the Pauli matrices σa (a = 1, 2, 3), the gauge boson fields W a
µ and Bµ of the gauge

groups SU(2)L and U(1)Y and their corresponding gauge couplings g and g′, respectively,
the scalar Lagrangian is given by

L2HDM
S =

2∑
i=1

(DµΦi)
†(DµΦi)− V2HDM , (4.3)

where Φi (i = 1, 2) denotes the two complex SU(2)L Higgs doublets. In comparison to the
SM, the scalar potential V2HDM of the 2HDM contains more interaction terms due to the

16We want to emphasize that we use the sign convention for the SU(2)L term that is typically used in MSSM
and 2HDM calculations, while in the SM, this term is usually introduced with an opposite sign [183].
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existence of two Higgs doublets instead of just one. The CP-conserving scalar potential can
be expressed as17 [18]

V2HDM = m2
11

(
Φ†1Φ1

)
+m2

22

(
Φ†2Φ2

)
−m2

12

(
Φ†1Φ2 + Φ†2Φ1

)
+
λ1

2

(
Φ†1Φ1

)2
+
λ2

2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+
λ5

2

[(
Φ†1Φ2

)2
+
(

Φ†2Φ1

)2
]
, (4.4)

with three real mass parameters m11, m22 and m12 as well as five real dimensionless coupling
constants λi (i = 1, ..., 5). For later convenience, three of these constants are combined as

λ345 ≡ λ3 + λ4 + λ5 . (4.5)

The scalar potential of the 2HDM exhibits an approximate discrete Z2 symmetry under the
simultaneous Higgs doublet transformations

Φ1 → −Φ1 , Φ2 → Φ2 . (4.6)

If m12 were zero, this symmetry would be exact and Eq. (4.4) would be invariant under these
field transformations. The Z2 symmetry is extended to the Yukawa sector of the 2HDM in
order to avoid the appearance of FCNCs on tree level, as further discussed in Sec. 4.3.

The two Higgs doublets Φi are expanded around their real VEVs vi (i = 1, 2),

Φ1 =

 ω+
1

v1 + ρ1 + iη1√
2

 , Φ2 =

 ω+
2

v2 + ρ2 + iη2√
2

 , (4.7)

where we introduced the charged complex fields ω+
i as well as the real neutral CP-even and

CP-odd fields ρi and ηi, respectively. The VEVs of the two doublets, i.e. their vacuum states

〈Φ1〉 =

 0

v1√
2

 , 〈Φ2〉 =

 0

v2√
2

 , (4.8)

represent the minima of the potential. They are connected to the SM VEV v through the
relation

v2 = v2
1 + v2

2 ≈ (246 GeV)2 , (4.9)

with

v =
1√√
2GF

, (4.10)

where GF denotes the Fermi constant. A characteristic parameter of the scalar sector of the
2HDM is given by the ratio of the two VEVs18,

tβ ≡
v2

v1
, (4.11)

which allows to replace the two VEVs in favor of the new parameter β and the SM-like VEV
v as follows,

v1 = cβv , (4.12)

v2 = sβv . (4.13)

17For alternative parametrizations of the 2HDM potential, we refer to [18,33,220,221].
18For convenience, we use the short-hand notations sx ≡ sin(x), cx ≡ cos(x) and tx ≡ tan(x) for the trigonometric

functions throughout this thesis.
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The gauge boson fields in the gauge basis can be rotated to the mass basis by a field redefi-
nition and by means of the Weinberg angle ΘW ,

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
, (4.14) Zµ

γµ

 =

cW −sW

sW cW

W 3
µ

Bµ

 , (4.15)

where we additionally introduced the short-hand notations sW ≡ sin(ΘW ) and cW ≡ cos(ΘW ).
The physical fields W±µ , Zµ and γµ correspond to the physical gauge bosons W±, Z and the

photon γ in the mass basis, and their squared masses m2
V (V = {W,Z, γ}) are given by

m2
W = g2 v

2

4
, (4.16)

m2
Z =

(
g2 + g′2

) v2

4
, (4.17)

m2
γ = 0 . (4.18)

Furthermore, the diagonalization of the gauge boson sector connects several parameters of
the electroweak Lagrangian with each other,

cW =
mW

mZ
, (4.19)

e =
√

4παem =
gg′√
g2 + g′2

= sW g , (4.20)

GF =

√
2g2

8m2
W

=
αemπ√
2m2

W s
2
W

, (4.21)

where we additionally introduced the electromagnetic coupling constant e and the correspond-
ing fine-structure constant αem.

Since we consider the CP-conserving 2HDM, there are only two terms which are linear in the
CP-even fields ρi, namely the tadpole terms

T1 ≡ m2
11v1 −m2

12v2 +
1

2
λ1v

3
1 +

1

2
λ345v1v

2
2 , (4.22)

T2 ≡ m2
22v2 −m2

12v1 +
1

2
λ1v

3
3 +

1

2
λ345v

2
1v2 . (4.23)

These terms are tightly connected to the vacuum states of the potential. In these states, the
scalar potential fulfills the two minimum conditions

∂V2HDM

∂Φ†1

∣∣∣∣∣
〈Φ1〉,〈Φ2〉

=
∂V2HDM

∂Φ†2

∣∣∣∣∣
〈Φ1〉,〈Φ2〉

= 0 , (4.24)

which at tree level is equivalent to vanishing tadpole terms,

T1|tree = T2|tree = 0 . (4.25)

The two tadpole terms in Eqs. (4.22) and (4.23) can be solved for the two potential parameters
m2

11 and m2
22 which consequently can be eliminated in favor of the other parameters of the

2HDM potential,

m2
11 = m2

12

v2

v1
− 1

2
λ1v

2
1 −

1

2
λ345v

2
2 +

T1

v1
, (4.26)

m2
22 = m2

12

v1

v2
− 1

2
λ2v

2
2 −

1

2
λ345v

2
1 +

T2

v2
. (4.27)
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The terms in the 2HDM potential which are bilinear in the scalar fields define the three
non-diagonal 2× 2 mass matrices M2

ρ, M2
η and M2

ω of the scalar sector of the 2HDM whose
analytic forms are explicitly given by

M2
ρ =

 m2
12

v2

v1
+ λ1v

2
1 −m2

12 + λ345v1v2

−m2
12 + λ345v1v2 m2

12

v1

v2
+ λ2v

2
2

+

T1

v1
0

0
T2

v2

 , (4.28)

M2
η =

(
m2

12

v1v2
− λ5

) v2
2 −v1v2

−v1v2 v2
1

+

T1

v1
0

0
T2

v2

 , (4.29)

M2
ω =

(
m2

12

v1v2
− λ4 + λ5

2

) v2
2 −v1v2

−v1v2 v2
1

+

T1

v1
0

0
T2

v2

 , (4.30)

where we already replaced m2
11 and m2

22 by means of Eqs. (4.26) and (4.27). While the
tadpole terms vanish at tree level according to Eq. (4.25), we keep them explicitly in the mass
matrices since in the framework of the usual treatment of the tadpoles, they yield higher-
order corrections to the mass matrices and consequently also to the CTs of the elements of
the mass matrices.

Since the scalar fields ρi, ηi and ωi, representing the gauge basis of the scalar potential of
the 2HDM, appear pairwise with the same quantum numbers, they mix with each other. In
order to interpret these fields as physical particles, the terms bilinear in the scalar fields in the
potential are diagonalized, analogously to the gauge boson fields as described above. Since all
three mass matrices of the 2HDM are real 2×2 matrices, they are diagonalized by orthogonal
matrices of the form

Rθ ≡

cθ −sθ
sθ cθ

 , (4.31)

where θ = {α, βn, βc} are the three scalar mixing angles of the 2HDM19 that quantify the
mixing of the scalar fields. The diagonalized matrices are then given by

D2
ρ ≡ RTαM2

ρRα =

m2
H 0

0 m2
h

+

THH THh

THh Thh

 , (4.32)

D2
η ≡ RTβnM2

ηRβn =

m2
G0 0

0 m2
A

+

TG0G0 TG0A

TG0A TAA

 , (4.33)

D2
ω ≡ RTβcM2

ωRβc =

m2
G± 0

0 m2
H±

+

TG±G± TG±H±

TG±H± TH±H±

 , (4.34)

19As described below, the two mixing angles βn and βc are actually equivalent to each other at tree level and
consequently, one typically refers to α and β as the only two scalar mixing angles of the 2HDM at tree level.
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where the squared mass parameters on the right-hand side of these equations are given below
and where we additionally introduced the rotated tadpole parametersTHH THh

THh Thh

 ≡ RTα
T1

v1
0

0
T2

v2

Rα , (4.35)

TG0G0 TG0A

TG0A TAA

 ≡ , RTβn

T1

v1
0

0
T2

v2

Rβn (4.36)

TG±G± TG±H±

TG±H± TH±H±

 ≡ RTβc
T1

v1
0

0
T2

v2

Rβc . (4.37)

At tree level, these tadpole parameters all vanish according to Eq. (4.25) and hence, the
diagonal structure of Eqs. (4.32) to (4.34) is revealed. Through the diagonalization, the
scalar field doublets are transformed to the mass basis by the same orthogonal matrices,H

h

 = RTα

ρ1

ρ2

 =

 cα sα

−sα cα

ρ1

ρ2

 , (4.38)

G0

A

 = RTβb

η1

η2

 =

 cβb sβb

−sβb cβb

η1

η2

 , (4.39)

G±
H±

 = RTβ

ω±1
ω±2

 =

 cβc sβc

−sβc cβc

ω±1
ω±2

 . (4.40)

In this basis, h and H represent the light and heavy CP-even Higgs bosons, A represents the
CP-odd Higgs boson and H± represents the charged Higgs boson pair, while G0 and G± are
the CP-odd and charged Goldstone bosons. The squared masses of the physical Higgs bosons
in the mass basis are given by

m2
H = c2

α−βM2
11 + s2(α−β)M2

12 + s2
α−βM2

22 , (4.41)

m2
h = s2

α−βM2
11 − s2(α−β)M2

12 + c2
α−βM2

22 , (4.42)

m2
A = v2

(
m2

12

v1v2
− λ5

)
, (4.43)

m2
H± = v2

(
m2

12

v1v2
− λ4 + λ5

2

)
, (4.44)

where we additionally introduced

M2
11 ≡ v2

[
c4
βλ1 + s4

βλ2 + 2s2
βc

2
βλ345

]
, (4.45)

M2
12 ≡ sβcβv2

[
−c2

βλ1 + s2
βλ2 + c2βλ345

]
, (4.46)

M2
22 ≡

m2
12

sβcβ
+
v2

8
(1− c4β) [λ1 + λ2 − 2λ345] . (4.47)

The unphysical Goldstone bosons are massless,

m2
G0 = 0 , (4.48)

m2
G± = 0 . (4.49)
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The scalar mixing angle α of the CP-even Higgs bosons can be expressed by the other pa-
rameters of the 2HDM potential as

t2(α−β) =
2M2

12

M2
11 −M2

22

. (4.50)

The inversion of this relation, together with Eqs. (4.41) to (4.44), yields expressions for the
2HDM potential parameters λi (i = 1, ..., 5) in terms of the physical parameters, i.e. in terms
of the masses of the physical Higgs bosons and the scalar mixing angle α [222],

λ1 =
1

v2c2
β

(
c2
αm

2
H + s2

αm
2
h −

sβ
cβ
m2

12

)
, (4.51)

λ2 =
1

v2s2
β

(
s2
αm

2
H + c2

αm
2
h −

cβ
sβ
m2

12

)
, (4.52)

λ3 =
2m2

H±

v2
+

s2α

s2βv2

(
m2
H −m2

h

)
− m2

12

sβcβv2
, (4.53)

λ4 =
1

v2

(
m2
A − 2m2

H± +
m2

12

sβcβ

)
, (4.54)

λ5 =
1

v2

(
m2

12

sβcβ
−m2

A

)
. (4.55)

The two mixing angles βn and βc are in general different from each other as well as from
the parameter β which is defined through the ratio of the VEVs, cf. Eq. (4.11). At tree level
however, all three of these parameters are equal,

βn|tree = βc|tree = β|tree . (4.56)

Consequently, the scalar mixing angle β and the mixing angle α of the CP-even Higgs bosons
are at tree level considered as the two independent scalar mixing angles of the 2HDM in this
work.

The Goldstone bosons, remaining massless in the unitary gauge, acquire the squared masses

m2
G0 = ξZm

2
Z , (4.57)

m2
G± = ξWm

2
W . (4.58)

in Rξ gauge and the squared masses of the ghost fields are given by

m2
uZ

= ξZm
2
Z , (4.59)

m2
uW±

= ξWm
2
W , (4.60)

m2
uγ = 0 . (4.61)

For the renormalization of the 2HDM described in Chapter 5, all Goldstone and ghost parti-
cles are still considered to be massless since we employ the gauge-fixing and Faddeev-Popov
Lagrangians only after the renormalization of the theory is completed [223].

4.3. The Yukawa Couplings and the Four Types of 2HDMs

The Yukawa Lagrangian LYuk contains the interactions between the fermionic and scalar
fields. In order to avoid FCNCs at tree level that occur in the 2HDM [18], the Z2 symmetry
of the scalar sector is extended to the Yukawa sector in such a form that each Higgs doublet
couples only to one specific type of fermion multiplet which is a sufficient condition to ensure
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u-type d-type leptons

I Φ2 Φ2 Φ2

II Φ2 Φ1 Φ1

lepton-specific Φ2 Φ2 Φ1

flipped Φ2 Φ1 Φ2

Table 4.1.: The four possible assignments of the Higgs doublets Φi (i = 1, 2) to the up-type
(u) and down-type (d) quarks and the charged leptons in the Z2-symmetric 2HDM.

that no FCNCs appear at tree level in the theory [224]. Per convention, the second Higgs
doublet Φ2 always couples to the up-type fermions. This leaves four different possibilities
for the coupling of the first Higgs doublet Φ1 to the up-type and down-type fermions and
the charged leptons, corresponding to the four types of 2HDM as presented in Table 4.1.
Due to the resulting different coupling structures between the physical Higgs bosons with
the fermions, each 2HDM type is phenomenologically different from the other and hence, the
contraints on the 2HDM parameters gained by experimental data differ for each type. The
different assignments of the Higgs doublets to each of the field multiplets of the fermions gives
rise to different Yukawa couplings between the Higgs bosons and the down-type quarks d and
charged leptons l. In our work, we parametrize these couplings by means of six different
Yukawa coupling parameters Yi (i = 1, ..., 6) as defined by the corresponding terms in the
Yukawa Lagrangian,

LYuk ⊃ −
md

v

(
Y1ψdψdh+ Y2ψdψdH

)
− ml

v

(
Y4ψlψlh+ Y5ψlψlH

)
(4.62)

+
2imd

v
Iz,dW Y3ψdγ5ψdA+

2iml

v
Iz,lW Y6ψlγ5ψlA ,

where Iz,fW denotes the third component of the weak isospin of the corresponding fermion field
ψf . In Table 4.2, we present the explicit values of the Yukawa coupling parameters for each
type of 2HDM.

4.4. Set of Independent Parameters

In the final section of this chapter, we conclude with the full set of independent parameters
used by us to parametrize the electroweak Lagrangian of the 2HDM. These independent pa-
rameters are used as input for the calculation of the electroweak corrections to the partial
decay widths of the Higgs bosons of the 2HDM with the newly developed computer program
2HDECAY, as further described in Chapter 6. Since 2HDECAY does not only calculate the elec-
troweak corrections, but moreover combines them with the state-of-the-art QCD corrections
already available in the computer program HDECAY, the following additional independent input
parameters are required for the computations performed by 2HDECAY:

� The electromagnetic coupling constant αem in the Thomson limit is required for the
calculation of loop-induced decays into Zγ and γγ final states.

� The strong coupling constant αs is used for the calculation of the loop-induced de-
cays into pairs of gluons as well as for the computation of the state-of-the-art QCD
corrections.

� The total decay widths ΓW and ΓZ of the W and Z bosons, respectively, are required
for the computation of the off-shell decays into final states containing these massive
gauge bosons.
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2HDM type Y1 Y2 Y3 Y4 Y5 Y6

I cα/sβ sα/sβ −1/tβ cα/sβ sα/sβ −1/tβ

II −sα/cβ cα/cβ tβ −sα/cβ cα/cβ tβ

lepton-specific cα/sβ sα/sβ −1/tβ −sα/cβ cα/cβ tβ

flipped −sα/cβ cα/cβ tβ cα/sβ sα/sβ −1/tβ

Table 4.2.: Yukawa coupling parameters Yi (i = 1, ..., 6) in the Z2-symmetric 2HDM,
parametrizing the Yukawa couplings for each 2HDM type.

These additional parameters are combined with the other independent parameters from the
gauge, fermion and scalar sectors of the electroweak Lagrangian as presented in the preceding
sections into the full set of independent parameters in the mass basis of the 2HDM potential,

{GF , αs,ΓW ,ΓZ , αem,mW ,mZ ,mf , Vij , tβ,m
2
12, α,mh,mH ,mA,mH±} . (4.63)

In this set, mf represents the masses of all fermions f = {s, c, b, t, µ, τ} and Vij (i, j = 1, 2, 3)
denotes the Cabibbo-Kobayashi-Maskawa matrix (CKM) [107, 108] matrix elements. The
fermions of the first generation, as well as the neutrinos, are assumed to be massless in the
computation of the partial decay widths. As an alternative to Eq. (4.63), we can consider
the scalar sector in the gauge basis and instead of the physical Higgs boson masses and the
mixing angle α, we use the 2HDM potential parameters λi (i = 1, ..., 5) as independent input.
In this case, the set of independent parameters is given by

{GF , αs,ΓW ,ΓZ , αem,mW ,mZ ,mf , Vij , tβ,m
2
12, λ1, λ2, λ3, λ4, λ5} , (4.64)

and the relation between the two sets is given by the formulae of the 2HDM potential param-
eters λi in terms of the physical parameters in Eqs. (4.51) to (4.55). We want to emphasize
that for the calculation of the electroweak corrections to the partial decay widths, we use the
OS masses mW and mZ of the W± and Z bosons, respectively, as well as the electromagnetic
coupling constant αem(m2

Z) at the scale of the Z boson mass, which is directly related to the
Fermi constant GF via Eq. (4.21). On the other hand, the state-of-the-art QCD corrections
implemented in HDECAY require GF as fundamental input and the fine-structure constant is
only used in the Thomson limit, i.e. αem(0), for the calculation of the loop-induced decays
into Z γ and γ γ as described above. We come back to this in Sec. 6.2.

For completeness, we want to mention that the tadpole parameters T1 and T2 formally belong
to these two sets of independent parameters, as well. However, as discussed in detail in
Sec. 5.1, these parameters either vanish at each order in perturbation theory in the framework
of the standard renormalization of the tadpoles or they do not appear in the first place as
independent input in the framework of an alternative tadpole renormalization. Since in both
cases the parameters T1 and T2 do not contribute to the calculation of the electroweak partial
decay widths, we do not include them in the two sets in Eqs. (4.63) and (4.64).





CHAPTER 5

The Renormalization of the 2HDM in a Nutshell

The calculation of partial decay widths of the Higgs bosons of the 2HDM at higher orders in
perturbation theory necessarily involves the evaluation of UV-divergent loop integrals. In this
chapter, we specify the renormalization conditions applied to all independent input parame-
ters for the calculation of the electroweak corrections in order to cancel all UV divergences
that appear at the electroweak one-loop level.

The one-loop renormalization of the 2HDM was considered in several publications before
[168, 222, 225]. One subtlety in the renormalization concerns the two scalar mixing angles α
and β of the 2HDM, since in the schemes proposed in e.g. [222], intricate GFP dependences
are introduced into the calculation of observables. In [226–228], several GFP-independent
renormalization schemes were proposed for the first time for the 2HDM. Subsequently, several
other GFP-independent renormalization schemes for the scalar mixing angles were introduced
in [189,216,229]. In this thesis, we adopt the renormalization schemes presented in [226] and
extend them to all sectors of the 2HDM and moreover additionally adopt the renormalization
schemes for the scalar mixing angles presented in [216]. We describe how these renormalization
schemes are implemented in the newly developed computer program 2HDECAY. Since in Part II
of this thesis we focus on the calculation of the electroweak one-loop corrections to the partial
decay widths and since the renormalization schemes for the 2HDM that we employ in our
work were presented in great detail before, we only briefly recapitulate these schemes here
while for a detailed description, we refer to the aforementioned literature.

Since the proper renormalization of the minimum conditions of the 2HDM potential is cru-
cial in order to obtain GFP-independent observables at one-loop level, we recapitulate the
tadpole renormalization in Sec. 5.1. In the subsequent Sec. 5.2, we briefly present the renor-
malization of the gauge, fermion and scalar sectors, mostly based on the OS scheme. Since
the renormalization of the scalar mixing angles potentially violates the GFP independence
of the electroweak one-loop partial decay widths, we review several renormalization schemes
and their GFP dependence and independence in a detailed overview in Sec. 5.3. Finally,
in Sec. 5.4 we present the renormalization scheme for the soft-Z2-breaking parameter m2

12

applied in our work.
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5.1. Renormalization of the Tadpoles

In the literature, there are two different approaches for determining the VEVs at loop level,
and the exact definitions of all CTs of the 2HDM depend on the chosen renormalization of the
VEVs. The difference between the two schemes was analyzed in detail in [226] for the 2HDM.
In the following, we therefore only briefly recapitulate the key ideas of the two schemes.

In the standard (tadpole) scheme, commonly used in electroweak calculations of the SM
[183] and the 2HDM [222, 230], the VEVs are determined through the loop-corrected scalar
potential. Since the VEVs represent the minimum states of the potential, the renormalization
of the tadpole terms in Eqs. (4.22) and (4.23) is tightly connected to the NLO treatment of
the VEVs. In the standard scheme, the tadpole parameters are promoted to one-loop order
by splitting them into their renormalized values and their CTs as follows,

Ti → Ti + δTi (i = 1, 2) . (5.1)

Demanding the minimum conditions of Eq. (4.24) to hold at one-loop order for the loop-
corrected potential implies that the renormalized tadpole parameters vanish again:

Ti = 0 (i = 1, 2) . (5.2)

As a consequence of this condition, the tadpole CTs in the standard scheme are given by20

Eq. (B.1). By promoting the tadpole terms to one-loop order in Eq. (5.1), the rotated tadpole
terms in Eqs. (4.35) to (4.37) receive CT contributions as well, all of which are functions of
the CTs δTi already fixed through Eq. (B.1). The resulting CTs of the rotated tadpole
parameters in the standard tadpole scheme are presented in App. B.1 for convenience.

The loop-corrected scalar potential of the 2HDM is manifestly GFP-dependent. Hence, fix-
ing the minima of this potential through Eq. (4.24) necessarily leads to loop-corrected VEVs
which are manifestly GFP-dependent quantities. As a consequence, all renormalized pa-
rameters and their CTs defined through these loop-corrected VEVs become GFP-dependent
quantities as well. As discussed in Sec. 3.6, such a GFP dependence of the CTs is acceptable
as long as in the calculation of a physical observable, all GFP dependences arising from dif-
ferent parts of the calculation cancel with each other. In the 2HDM, however, the standard
tadpole scheme requires a specific form of GFP dependence which needs to be included in the
CTs of the scalar mixing angles in order to cancel the GFP dependences of the full partial
decay widths for decay processes involving these mixing angle CTs. Renormalizing the mixing
angles in schemes as suggested e.g. in [222] leads to the inclusion of GFP dependences in the
definitions of their CTs which do not match the GFP dependences arising in other parts of
the calculation of the partial decay widths. Instead, these schemes introduce additional intri-
cate GFP-dependent terms and hence they break the GFP independence of the full one-loop
partial decay width. From a technical point of view, the application of the standard tadpole
scheme complicates tracing the various cancellations of all GFP dependences in the one-loop
calculation, since in general all CTs defined through the GFP-dependent VEVs contribute
GFP-dependent terms to the decay amplitudes.

In order to more systematically remove the GFP-dependent terms from the one-loop partial
decay widths, an alternative treatment of the minimum conditions can be applied. Such an
approach was first established in the SM in [231] and extended to the 2HDM for the first
time in [226,227]. We refer to this scheme as alternative (FJ tadpole) scheme in the following.
The key idea of this alternative scheme is to consider the VEVs as the fundamental quantities
which are promoted to higher orders and whose values are fixed through the tree-level scalar

20Note that the tadpole terms and diagrams in Eq. (B.1) are defined in the mass basis, related to the corre-
sponding terms in the gauge basis by means of the rotation matrix Rα, cf. Eq. (4.31).
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iΣtad(p2) ≡ + +
H/h

iΣ(p2) ≡ +

Figure 5.1.: Topological contributions to the one-loop self-energy. In the standard tad-
pole scheme, we consider the usual 1PI self-energy Σ(p2) while in the alternative FJ tadpole
scheme, the self-energy Σtad(p2) additionally contains contributions from the tadpole topol-
ogy. For the actual calculations of the 2HDM self-energies, the full particle content of the
2HDM has to be inserted into these topologies.

potential. This is in contrast to the standard scheme, where the fundamental quantities
are the tadpole terms which are promoted to higher orders and where the VEVs are fixed
through the loop-corrected potential. Since the VEVs are connected to the tree-level potential
in the alternative scheme, they a priori do not represent the proper minimum at one-loop
level, however. In order to maintain the proper minimum conditions at one-loop order, it is
therefore necessary to split the VEVs into renormalized VEVs and their CTs as

vi → vi + δvi (i = 1, 2) . (5.3)

By imposing the condition that the tree-level VEVs represent the proper minimum of the
scalar potential even at one-loop order, all effects of the shift of the minima are allocated to
the CTs of the VEVs δvi, which directly connects them to the genuine tadpole diagrams as
depicted in Eq. (B.11). As a consequence of the VEV shifts, explicit tadpole topologies have to
be considered in the calculation of all vertex corrections to the Higgs decay widths as well as in
all self-energies. The latter case is depicted in Fig. 5.1 where apart from the generic 1PI one-
loop self-energy Σ(p2) we moreover show the generic self-energy Σtad(p2) which additionally
contains one-loop contributions from the tadpole diagrams. All implications of the alternative
FJ scheme on the renormalization of the tadpoles were presented in [226] for the 2HDM for
the first time and are summarized in App. B.1 for convenience.

The application of the alternative FJ tadpole scheme has several important consequences
for the calculation of the Higgs decay widths at one-loop order. In this scheme, the VEVs
are defined through the proper minimum of the scalar potential, i.e. the renormalized VEVs
represent the tree-level minima to one-loop order as well. Due to this, the VEVs are mani-
festly GFP-independent and consequently, all quantities defined through these VEVs, e.g. the
masses of all particles of the 2HDM as well as their CTs, become manifestly GFP-independent,
as well. Moreover, applying the alternative FJ tadpole scheme allows for a GFP-independent
definition of the mixing angle CTs, since the one-loop decay amplitude calculated within
this tadpole scheme, but with the mixing angle CTs set to zero, is already a manifestly GFP-
independent quantity. Consequently, by defining the mixing angle CTs in a GFP-independent
scheme, the full partial decay width maintains the GFP independence as well. We come back
to this point in Sec. 5.3 where we present all renormalization schemes of the mixing angle
CTs that are considered in this work.

5.2. Renormalization of the Gauge, Scalar and Fermion Sectors

The renormalization of the gauge, scalar and fermion sectors is mostly performed in the
OS scheme. Since the gauge and fermion sectors of the 2HDM are essentially the same as
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those of the SM, we adopt the OS schemes presented in [183] for these sectors. For the
renormalization of the scalar doublets of the 2HDM, we impose OS conditions as generically
described in Sec. 3.2. In the following, we only briefly summarize the renormalization of
the gauge, scalar and fermion sectors and refer to [226, 227] for a detailed description of the
renormalization of the 2HDM.

Renormalization of the gauge sector
For the renormalization of the gauge sector, we split each parameter belonging to the weak
sector into its renormalized value and its CT and introduce one-loop WFRCs for the gauge
boson fields as follows,

m2
W → m2

W + δm2
W , (5.4)

m2
Z → m2

Z + δm2
Z , (5.5)

e → e (1 + δZe) , (5.6)

g → g + δg , (5.7)

αem → αem + δαem ≡ αem + 2αemδZe , (5.8)

W±µ →
(

1 +
δZWW

2

)
W±µ , (5.9)

Z
γ

 →

1 +
δZZZ

2

δZZγ
2

δZγZ
2

1 +
δZγγ

2


Z
γ

 . (5.10)

As can be inferred from Eq. (4.63), from the five constants presented in Eqs. (5.4) to (5.8), we
only use m2

W , m2
Z and αem as independent parameters. Nevertheless, we additionally intro-

duce CTs for the coupling constants e and g for later convenience. We impose OS conditions
for the renormalization of all CTs and WFRCs of the gauge sector. The corresponding generic
formulae from Eqs. (3.12) to (3.14) can be straightforwardly adapted to the gauge bosons by
replacing the self-energies in these formulae with the transverse parts of the gauge boson self-
energies. In the framework of the alternative tadpole scheme, all self-energies additionally
contain tadpole contributions, cf. Fig. 5.1. For the renormalization of the electromagnetic
coupling constant e, we impose the same condition as presented in [183], i.e. we define δZe
via the vertex corrections to the OS e+e−γ coupling. In our case, however, we do not impose
this condition in the Thomson limit but instead, we consider e to be renormalized at the scale
of the Z boson mass. All CTs and WFRCs of the gauge sector defined in this OS scheme are
presented explicitly in App. B.2.

Renormalization of the scalar sector
The masses and fields of all scalar particles of the 2HDM are promoted to one-loop order
by the introduction of mass CTs and WFRCs. For the unphysical Goldstone bosons, no
mass CTs are introduced since they remain massless to higher orders and only receive effec-
tive mass terms through the gauge-fixing Lagrangian after the renormalization is completed,
cf. Eqs. (4.57) and (4.58). In order to cancel all UV divergences for the calculation of the
decay amplitudes, the Goldstone boson fields acquire non-vanishing WFRCs, however. The
corresponding renormalized squared masses, mass CTs and WFRCs are introduced as follows,

m2
H → m2

H + δm2
H , (5.11)

m2
h → m2

h + δm2
h , (5.12)

m2
A → m2

A + δm2
A , (5.13)

m2
H± → m2

H± + δm2
H± , (5.14)
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H
h

 →

1 +
δZHH

2

δZHh
2

δZhH
2

1 +
δZhh

2


H
h

 , (5.15)

G0

A

 →

1 +
δZG0G0

2

δZG0A

2
δZAG0

2
1 +

δZAA
2


G0

A

 , (5.16)

G±
H±

 →

1 +
δZG±G±

2

δZG±H±

2
δZH±G±

2
1 +

δZH±H±

2


G±
H±

 . (5.17)

The generic formulae for the renormalization of scalar multiplets presented in Eqs. (3.12)
to (3.14) can be directly applied to the scalar particles of the 2HDM. The resulting explicit
forms of the CTs and WFRCs are presented in App. B.3.

Renormalization of the fermion sector
We introduce CTs for all fermion masses, the CKM matrix elements as well as for the Yukawa
coupling parameters defined in Table 4.2 and additionally introduce WFRCs for all fermionic
fields fi of the 2HDM as follows,

mf → mf + δmf , (5.18)

Vij → Vij + δVij , (5.19)

Yi → Yi + δYi , (5.20)

fLi →
∑
j

(
δij +

δZf,Lij
2

)
fLj , (5.21)

fRi →
∑
j

(
δij +

δZf,Rij
2

)
fRj . (5.22)

The generic formulae for the OS definition of the mass CTs and WFRCs from Eqs. (3.12)
to (3.14) can again be straightforwardly adapted to the case of the fermion self-energies. In
this case, the self-energy contributions are split up according to their chiral structures as
outlined in [183]. The CTs δYi of the Yukawa coupling parameters are not independent CTs
but instead, they are functions of the CTs of the scalar mixing angles whose renormalization
is discussed in the subsequent Sec. 5.3. For the renormalization of the CKM matrix elements,
several schemes were proposed in the literature [183,232–237]. Using the scheme proposed in
[183] leads to an inclusion of intricate GFP-dependent terms originating from the off-diagonal
fermion WFRCs into the calculation of one-loop partial decay widths which involve the CTs
of the CKM matrix elements. Since the CKM matrix is approximately a unit matrix [98],
the numerical effects of these GFP-dependent terms are typically small, but nevertheless,
the complete one-loop partial decay widths involving these CTs become manifestly GFP-
dependent. For our work, we employ the CKM matrix renormalization scheme presented
in [236] which allows for a manifestly GFP-independent definition of the CTs of the CKM
matrix elements. The explicit definitions of all CTs and WFRCs of the fermion sector are
presented in App. B.4.
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5.3. Renormalization of the Scalar Mixing Angles α and β

The scalar mixing angles α and β are promoted to one-loop order by splitting them into their
renormalized values and their CTs as follows,

α→ α+ δα , (5.23)

β → β + δβ . (5.24)

The renormalization of the scalar mixing angles is a non-trivial task. While for physical
fields and masses physically motivated renormalization schemes, e.g. the OS scheme, can be
applied, there is no analogon of an obvious physical renormalization scheme for the scalar
mixing angles. This situation is similar in the MSSM, where the scalar mixing angle β needs
to be renormalized. In [238], three desirable criteria for the renormalization of this mixing
angle were suggested:

� GFP independence: The definition of the mixing angle CT shall not introduce in-
tricate uncanceled GFP dependences into the calculation of the one-loop partial decay
widths.

� Numerical stability: The renormalization scheme imposed on the scalar mixing angle
shall not introduce unnaturally large contributions to the finite terms of the mixing angle
CT and consequently also to the full partial decay width. More specifically, the finite
term of the mixing angle CT shall not introduce large uncanceled contributions to the
one-loop partial decay widths such that they become orders of magnitude larger than
the decay widths at tree level.

� Process independence: The mixing angle CT shall not be defined via a physical
decay process.

In [238], a no-go theorem was formulated which states that for the MSSM, no renormalization
scheme for the scalar mixing angle β exists that fulfills all of the three aforementioned criteria
simultaneously. In [56,216,226,227], these criteria were adopted to the case of the two mixing
angles in the 2HDM and several different renormalization schemes were analyzed with respect
to the fulfillment of these criteria. In the following, we present an overview over these schemes,
all of which are implemented in the program package 2HDECAY developed in this thesis.

MS scheme
The application of the MS scheme is among the simplest renormalization schemes for the
mixing angle CTs. It was analyzed in [226,239] that the renormalization of δα and δβ in the
MS scheme can lead to one-loop-corrected partial decay widths that are orders of magnitude
larger than the tree level widths21. Moreover, in the framework of the standard tadpole
scheme, an MS condition for the mixing angle CTs breaks the GFP independence of the
one-loop decay amplitude since per definition, the finite parts of the mixing angle CTs vanish
and hence do not contribute GFP-dependent terms which could cancel the GFP dependences
appearing in the residual decay amplitude in the standard scheme. Nevertheless, we consider
this scheme in this work as a reference. Imposing the MS condition on the mixing angle CTs
means that only the UV-divergent parts proportional to ∆, cf. Eq. (3.2), are allocated to
the CTs δα and δβ, while no finite parts are assigned to these CTs. The resulting CTs are
presented in App. B.5.1.

KOSY scheme
The KOSY scheme, named after the authors’ initials, was first proposed in [222] in the

21On the other hand, a detailed analysis performed in [229] showed that the MS renormalization of the mixing
angle CTs can be useful for certain decay processes when they involve a partial cancellation of large contribu-
tions stemming from the tadpoles. This is not the case for any of the Higgs boson decay processes considered
in our work, however.
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framework of the standard tadpole scheme. The key idea in this approach is to consider an
alternative real symmetric matrix

√
Zφ̃ containing the WFRCs for each scalar doublet in the

gauge basis, denoted by φ̃, which is connected to the mass basis through an expansion of
the rotation matrix at one-loop order. This yields an alternative WFRC matrix in the mass
basis, √

ZKOSY
φ ≈ RTδθRTθ

√
Zφ̃Rθ ≈

1 +
δZφ1φ1

2
δCφ + δθ

δCφ − δθ 1 +
δZφ2φ2

2

 , (5.25)

where the rotation matrix Rθ is defined in Eq. (4.31) and the constants δZφ1φ1 , δZφ2φ2 and
δCφ denote the three independent parameters of the matrix

√
Zφ̃. Comparing Eq. (5.25) with

Eqs. (5.15) to (5.17) reveals a connection between the scalar mixing angle CTs δθ ∈ {δα, δβ}
and the WFRCs of the scalar sector. Since the latter are defined in the OS scheme in
our case, the KOSY approach hence yields an OS-motivated22 scheme for the scalar mixing
angles. The renormalization of the mixing angles is applied after the rotation from the gauge
to the mass basis is performed, when the tree-level relation in Eq. (4.56) is satisfied. Hence,
the mixing angle β diagonalizes the CP-odd and charged sectors simultaneously, but since
we do not have enough free constants in Eq. (5.25) for both the CP-odd and the charged
sectors, we are not able to apply the OS conditions for the definition of the mixing angle
CT δβ through the CP-odd and charged sectors simultaneously. Instead, we have to choose
through which of the two sectors the CT δβ shall be defined. In our work, we define δβ
either solely through the CP-odd or solely through the charged sector, which we refer to as
δβo and δβc respectively. While the KOSY scheme is process-independent and typically leads
to moderate one-loop corrections, hence featuring numerical stability in the aforementioned
sense, it introduces an explicit GFP dependence into the calculation of the partial decay
widths at one-loop order. The situation is unchanged in the framework of the alternative FJ
tadpole scheme, where again uncanceled GFP dependences are introduced. We nevertheless
consider the KOSY scheme in both tadpole schemes and implement them into 2HDECAY since
the partial decay widths calculated in these schemes serve as a reference for a comparison
with the ones computed in other schemes. The resulting explicit formulae for the mixing
angle CTs in the KOSY scheme are presented in App. B.5.2.

p∗-pinched scheme
One approach of avoiding the GFP dependence of the KOSY scheme but keeping its OS-
motivated definition is the p∗-pinched scheme [226,227] which is based on the PT [201–208].
The main drawback of the KOSY scheme is the fact that it does not allow for an unambiguous
extraction of the gauge-dependent parts of the full partial decay widths. As a first step to
solve this problem, the one-loop partial decay widths are evaluated within the alternative FJ
tadpole scheme instead of the standard one. As briefly mentioned at the end of Sec. 5.1, this
tadpole scheme requires the CTs δα and δβ to be manifestly GFP-independent quantities.
By defining the mixing angle CTs in the same OS-motivated approach as in the KOSY
scheme, but by using the manifestly GFP-independent pinched scalar self-energies instead
of the usual self-energies Σtad(p2) with tadpole contributions included, this scheme leads to
manifestly GFP-independent partial decay widths at one-loop level. The definition of the
mixing angle CTs via the pinched self-energies in this scheme leaves the additional freedom
at which scale p2 the CTs shall be defined. In the p∗-pinched scheme, we follow the approach
of [240] in the MSSM and evaluate the CTs at the p∗ scale given by

p2
∗ ≡

m2
i +m2

j

2
, (5.26)

22Following the argument presented in [216], we do not denote the KOSY scheme as a true OS scheme for the
scalar mixing angles, since δα and δβ are defined through off-diagonal WFRCs in the KOSY scheme, which
have no interpretation in the sense of physical OS quantities.
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where mi and mj denote the masses of the scalar particles hi and hj whose self-energy tran-
sition Σhihj (p

2) is considered. As shown in [226] for the 2HDM for the first time, the pinched

self-energies are equivalent to the usual self-energies Σtad(p2) with tadpole contributions eval-
uted in the Feynman-’t Hooft gauge, i.e. ξV = 1 (V ∈ {W±, Z, γ}), up to additional UV-finite
contributions Σadd(p2). These additional contributions identically vanish for p2 = p2

∗, how-
ever. Hence, the mixing angle CTs are solely defined through Σtad(p2

∗) at ξV = 1. The
resulting mixing angle CTs in the p∗-pinched scheme are presented in App. B.5.3. Since
they are manifestly GFP-independent, process-independent and yield moderate NLO correc-
tions to the partial decay widths as analyzed in [227, 228], the p∗-pinched scheme is a prime
candidate for a renormalization scheme of the scalar mixing angles fulfilling all three of the
aforementioned desirable criteria simultaneously.

OS-pinched scheme
The OS-pinched scheme [226, 227] is another OS-motivated definition of the mixing angle
CTs, closely related to the p∗-pinched scheme from which it differs solely by the scale p2

at which the mixing angle CTs are defined. In the OS-pinched scheme, this scale is chosen
analogously to the original scale definition of the KOSY scheme, i.e. the scale p2 in the
pinched self-energies, introduced through the connection to the off-diagonal WFRCs, is set to
the corresponding squared scalar masses as in the KOSY scheme. In this case, the additional
UV-finite self-energy contributions Σadd(p2), derived in [226] for the 2HDM, are non-zero
and need to be included in the definition of δα and δβ. The resulting mixing angle CTs
are explicitly presented in App. B.5.4. Analogous to the p∗-pinched scheme, the mixing angle
CTs defined in the OS-pinched scheme are manifestly GFP-independent, process-independent
and their application typically leads to moderate NLO corrections [227, 228], hence fulfilling
the three aforementioned desirable criteria simultaneously as well.

Process-dependent schemes
The connection of the definition of a mixing angle CT with an observable, e.g. a partial
decay width, was proposed for the mixing angle β in the MSSM in [238, 241] and for α
and β in the 2HDM in [242]. Such a scheme is per definition process-dependent, i.e. the
mixing angle CTs become functions of genuine vertex corrections and other CT contributions
to loop-corrected decay processes. Due to this, the definition of the mixing angle CTs is
technically more involved and moreover, the CTs themselves can become numerically large
due to uncanceled contributions stemming from the vertex corrections. Hence, these schemes
can often lead to numerical instabilities. On the other hand, since the mixing angle CTs are
defined via observables, using the process-dependent scheme automatically leads to manifestly
GFP-independent one-loop partial decay widths. For the definition of the mixing angle CTs
in the 2HDM, many possible processes could be considered through which the CTs could
be defined. Independent of the chosen decay φ −→ X1X2 of a Higgs boson φ to two other
particles X1 and X2, the common idea of a process-dependent scheme is to equate the partial
decay widths of the chosen process at LO and NLO,

ΓLO
φX1X2

≡ ΓNLO
φX1X2

≡ ΓLO
φX1X2

(
1 + 2 Re

[
FVC
φX1X2

+ FCT
φX1X2

])
, (5.27)

where we introduce form factors FVC
φX1X2

and FCT
φX1X2

for the genuine vertex corrections and the
CT contributions including the WFRCs, respectively and where we exclude real corrections
to the decay width as further described below. This condition can be reformulated as follows,

Re

[
FCT
φX1X2

]
= −Re

[
FVC
φX1X2

]
. (5.28)

The form factor FCT
φX1X2

contains, amongst other CTs and WFRCs, either one or both mixing
angle CTs δα and δβ. Hence, the reformulated renormalization condition in Eq. (5.28) can
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be solved for the mixing angle CTs which consequently become functions of a combination of
CTs and WFRCs of the 2HDM as well as of the genuine vertex corrections FVC

φX1X2
. Care has

to be taken when the chosen process involves charged particles in the initial or final states due
to the appearance of IR divergences in the vertex corrections and hence, also in the definition
of the mixing angle CTs, which is disfavored [238]. In order to circumvent this problem, a
process can be chosen which either does not contain charged particles in the initial or final
states or whose genuine IR-divergent QED-like contributions in the vertex corrections form
a UV-finite subset which is excluded from the renormalization condition, hence justifying
the approach of not including real corrections in the renormalization condition in Eq. (5.27).
The former case is unfavorable in the 2HDM due to the intricate structure of the mixing
angle CTs which would arise by solely using neutral-current decay channels23. In the latter
case, Eq. (5.28) contains only genuine weak contributions everywhere, i.e. the IR-divergent
QED-like contributions are neglected in both of the two form factors FVC

φX1X2
and FCT

φX1X2
. In

our work, we have chosen three different combinations of decay processes of the CP-even and
CP-odd Higgs bosons into pairs of tauons, all of which are implemented in 2HDECAY:

1. define δβ via A→ τ+ τ− and subsequently δα via H → τ+ τ−,

2. define δβ via A→ τ+ τ− and subsequently δα via h→ τ+ τ−

3. and define δα and δβ simultaneously via h→ τ+ τ− and H → τ+ τ−.

The resulting explicit forms of the mixing angle CTs for these three combinations are pre-
sented in App. B.5.5. While their forms are the same for both the standard and alternative FJ
tadpole scheme, the actual values of the mixing angle CTs differ between these two schemes.
On the other hand, the full one-loop partial decay width is independent of the chosen tadpole
renormalization when the mixing angle CTs are defined in a process-dependent scheme.

Physical OS scheme
In a process-dependent scheme, the mixing angle CTs are functions of not only S matrix
elements, but moreover of other CTs and WFRCs of the theory as well. In order to exploit
the advantageous feature of these schemes, namely their manifest GFP independence, while
simultaneously avoiding their shortcomings, i.e. potentially large NLO corrections stemming
from uncanceled contributions between the vertex corrections and the WFRCs and CTs, the
mixing angle CTs can be defined purely through S matrix elements, only. Such a physical OS
scheme was proposed for the renormalization of the quark mixing matrix in the SM in [243]
and for δα and δβ in the 2HDM in [216]. In the following, we only briefly review the physical
OS scheme while for a detailed derivation in the 2HDM, we refer to the latter reference. Solely
for the purpose of renormalizing the mixing angles, the 2HDM is temporarily extended by
adding two right-handed fermion singlets νiR (i = 1, 2) to the 2HDM Lagrangian, together
with imposing an additional discrete Z2 symmetry under which the singlets transform as

ν1R → −ν1R , (5.29)

ν2R → ν2R , (5.30)

and which prevents the mixture of different lepton generations for simplicity24. Due to the
additional two right-handed neutrino singlets, the mechanism of EWSB now generates mass

23Suitable decays for the neutral-current process-dependent renormalization of the mixing angles involve two-
body decays with neutral initial and final states for which the mixing angles appear at tree level in the
corresponding coupling constants. This is the case for all Higgs decays to fermions, but since these always
involve charged particles in the final state, they can not be used. Other candidates are h/H → Z A or
h/H → Z Z, but these decays only allow for a definition of the CT combination δα − δβ but not for a
definition of the CTs separately. The only remaining candidates are the neutral-current Higgs-to-Higgs decays
h/H → AA or H → hh, but due to the structures of the corresponding coupling constants, their application
leads to intricate definitions of the mixing angle CTs.

24The mixing of neutrino generations is observed in nature in form of neutrino oscillations [116] and theoretically
described by the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) neutrino mixing matrix [244, 245]. The addi-



54 5. The Renormalization of the 2HDM in a Nutshell

terms for two arbitrarily chosen neutrinos νj (j = 1, 2) in the mass basis25, together with
tree-level couplings between the massive neutrinos and the Higgs bosons, all of which are
proportional to new Yukawa coupling constants yνj . The limit yνj → 0 is then the 2HDM
limit in which the neutrinos become massless again and the contributions from the right-
handed neutrino singlets decouple. The CT of the mixing angle α is fixed by demanding
a modified process-dependent renormalization condition. Instead of imposing a condition
equivalent to Eq. (5.28), it is proposed in [216] to impose the condition that the ratios of the
amplitudes of two Higgs decays into massive neutrinos are the same at tree level and one-loop
order. Consequently, choosing the decay into a pair of e.g. massive ν1 neutrinos leads to the
condition

ANLO
Hν̄1ν1

ANLO
hν̄1ν1

≡
ALO
Hν̄1ν1

ALO
hν̄1ν1

, (5.31)

while choosing the decay into the second pair of massive neutrinos leads to the condition

ANLO
Hν̄2ν2

ANLO
hν̄2ν2

≡
ALO
Hν̄2ν2

ALO
hν̄2ν2

. (5.32)

Either of these two conditions can be solved for δα. Imposing this process-dependent definition
on the ratios has the advantage that contributions appearing universally in both decays in
the nominator and denominator cancel against each other. As a consequence, the mixing
angle CT δα is defined solely through the CP-even Higgs WFRCs as well as through genuine
vertex corrections to the tree-level vertices of the CP-even Higgs bosons h/H and the massive
neutrinos νj . For the definition of the CT for the mixing angle β, analogous conditions can
be imposed. In [216], it is suggested that one of the following conditions can be chosen,

ANLO
Aν̄1ν1

ANLO
Hν̄1ν1

≡
ALO
Aν̄1ν1

ALO
Hν̄1ν1

, (5.33)

ANLO
Aν̄2ν2

ANLO
Hν̄2ν2

≡
ALO
Aν̄2ν2

ALO
Hν̄2ν2

. (5.34)

However, the drawback of these conditions is that Eq. (5.33) leads to a definition of δβ which
becomes singular for cβ → 0 while Eq. (5.34) leads to a singular behavior for sβ → 0. While
these singularities might not be relevant for any phenomenological analysis of the 2HDM, this
singular behavior still can lead to numerical instabilities in certain corners of the parameter
space. In order to circumvent this problem, a third condition is suggested in [216]. By
introducing form factors as follows,

A(N)LO
H/hν̄jνj

≡
[
ūνjvνj

]
F̃ (N)LO
H/hν̄jνj

, (5.35)

A(N)LO
Aν̄jνj

≡
[
ūνj iγ5vνj

]
F̃ (N)LO
Aν̄jνj

, (5.36)

where the terms in brackets denote the full decay kinematics of the spinor chains of the
massive neutrinos, the following renormalization condition is imposed,

0 =
F̃LO
Aν̄1ν1

cαF̃LO
Hν̄1ν1

− sαF̃LO
hν̄1ν1

cβ +
F̃LO
Aν̄2ν2

sαF̃LO
Hν̄2ν2

+ cαF̃LO
hν̄2ν2

sβ (5.37)

≡
F̃NLO
Aν̄1ν1

cαF̃NLO
Hν̄1ν1

− sαF̃NLO
hν̄1ν1

cβ +
F̃NLO
Aν̄2ν2

sαF̃NLO
Hν̄2ν2

+ cαF̃NLO
hν̄2ν2

sβ ,

tional Z2 symmetry imposed on the neutrino singlets in the physical OS scheme prevents this mixing. We want
to emphasize, however, that imposing this additional Z2 symmetry does not further restrict the considered
model since in the original 2HDM without neutrino singlets, as considered in this work, neutrinos are assumed
to be massless and hence, no neutrino mixing is present in the first place.

25We adopt the nomenclature of [216] and refer to the massive neutrinos as ν1 and ν2 instead of using flavor
indices {e, µ, τ}, since νe, νµ and ντ are reserved for the three generations of massless neutrinos in our work.
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i.e. it is demanded that the tree-level relation in the first line of Eq. (5.37) remains valid at
one-loop level as well. The hereby defined CT δβ is free from numerical instabilities arising
from specific regions of the parameter space. Out of all presented renormalization conditions,
the three different combinations named and chosen in [216] are as follows:

� OS1 : define δα via Eq. (5.31) and δβ via Eq. (5.33) ,

� OS2 : define δα via Eq. (5.32) and δβ via Eq. (5.34) and

� OS12 : define δα via Eq. (5.32) and δβ via Eq. (5.37) .

The resulting explicit forms of the mixing angle CTs are presented in App. B.5.6 and all three
combinations are implemented as different renormalization schemes in 2HDECAY. All genuine
vertex corrections for the tree-level couplings of the Higgs bosons with the massive neutrinos,
required for the definition of the mixing angle CTs, yield non-vanishing contributions even
in the limit yνj → 0. After the renormalization is imposed on the mixing angles in these
schemes, this 2HDM limit is applied and the neutrino singlets are effectively removed from
the model again. Analogous to the process-dependent definition, defining the mixing angle
CTs in the physical OS schemes leads to an invariance of the one-loop partial decay width
with respect to the chosen tadpole scheme. In our work, we therefore apply the physical OS
scheme only in the framework of the alternative FJ tadpole scheme for simplicity.

Apart from the fact that the mixing angle CTs are defined solely through WFRCs and genuine
vertex corrections, another crucial difference between the physical OS scheme and the other
process-dependent schemes considered before lies in the definition of the renormalized values
of the mixing angles themselves. In the process-dependent schemes, both the mixing angle
CTs as well as their renormalized values are determined via Eq. (5.27), i.e. the measured
values of α and β in the process-dependent scheme are determined by the measured values
of the partial decay widths of the decays through which the mixing angle CTs are defined.
In the physical OS scheme on the other hand, the mixing angle CTs are defined via Higgs
decays to massive neutrinos. Since after the renormalization the 2HDM limit is applied and
the neutrinos become massless again, the renormalization conditions in Eqs. (5.31) to (5.34)
and (5.37) can not be directly applied to determine the measured values of the mixing angles
in the physical OS scheme since the corresponding decays into massive neutrinos do not exist
anymore in the 2HDM. Instead, their values are determined through the measured partial
decay widths of other measurable decay channels.

Rigid symmetry scheme (BFMS scheme)
In the KOSY scheme, the mixing angle CTs are defined by temporarily switching between the
mass and gauge bases which allows for a connection of the CTs with the scalar WFRCs in the
mass basis. In an alternative approach, the rigid symmetry of the Lagrangian in the unbroken,
i.e. symmetric, phase can be used to define the mixing angle CTs through alternative WFRCs.
In this rigid symmetry scheme, a minimal set of WFRCs is introduced in the gauge basis of
the 2HDM to ensure the UV finiteness of the calculated observables. Through a rotation and
an introduction of the mixing angle CTs in the rotation matrices, the CTs δα and δβ can be
connected to the rotated WFRCs which in general differ from the OS-defined WFRCs. Such
a scheme is applied for renormalizing the SM in [246] and in [216] for defining the mixing
angle CTs in the 2HDM. Since we only briefly present the key idea of the scheme here, we
refer to the latter reference for details. In order to ensure GFP independence of the hereby
defined CTs and the full one-loop partial decay widths, the WFRCs δZĥĤ and δZĤĥ used

in the definition of the CTs are defined through the BFM [209–215] with ĥ and Ĥ denoting
the CP-even Higgs fields defined in the BFM framework. The CP-even self-energies required
for the definition of these background-field WFRCs differ from the usual self-energies Σtad

with tadpole contributions by the additional terms stated in App. B of [216]. Due to the close
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connection between the PT and the BFM, these additional terms coincide with the additional
terms derived in the PT framework, cf. Eq. (B.75). Consequently, the definition of the CT δα
defined in the rigid symmetry scheme coincides with the definition of δα in the OS-pinched
scheme. The CT δβ on the other hand is connected to the CP-even WFRCs as well due to
the rigid symmetry and hence, the definition of the CT differs in comparison to the schemes
based on the PT. Explicit forms of both mixing angle CTs in the rigid symmetry scheme are
presented in App. B.5.7.

5.4. Renormalization of the Soft-Z2-Breaking Parameter m2
12

The only remaining independent parameter which requires renormalization is the soft-Z2-
breaking parameter m2

12 which is split into a renormalized value and its CT as usual,

m2
12 → m2

12 + δm2
12 . (5.38)

In contrast to e.g. the masses of the particles of the 2HDM, the parameter m2
12 has no direct

physical interpretation and hence, there is no straightforward OS definition which could be
imposed in order to fix its CT. Since m2

12 appears in the trilinear and quartic Higgs couplings,
it is in principle possible to fix the CT δm2

12 at one-loop order through a Higgs-to-Higgs decay.
The renormalized value of m2

12 would then depend on the measured value of the partial decay
width of the chosen decay channel. Apart from the fact that Higgs-to-Higgs decay channels
are rather difficult to measure directly in current collider experiments, it was found in [228]
that such a process-dependent renormalization condition for δm2

12 is additionally unfavorable
from a theoretical perspective since it introduces genuine one-loop vertex corrections of the
Higgs-to-Higgs decays into the finite parts of the CT. Due to this, δm2

12 itself as well as
partial decay widths containing this CT typically become orders of magnitude larger than
the tree-level partial decay widths, thereby leading to a numerical instability of the one-loop
calculation. Hence, for practical reasons, a process-dependent renormalization scheme for the
soft-Z2-breaking parameter m2

12 is not used in this work. Instead, we fix the CT in the MS
scheme and the explicit form of the CT is given in App. B.6. Since ∆ explicitly depends on
the renormalization scale µR, the MS-renormalized CT δm2

12 depends on this scale at which
the CT is defined as well and its value must be specified for the calculation of partial decay
widths involving the renormalization of m2

12.



CHAPTER 6

Calculation of Higher-Order Higgs Boson Decays with 2HDECAY

The main objective of Part II of this thesis is the calculation of the electroweak one-loop
corrections to the partial decay widths and branching ratios of all Higgs bosons of the 2HDM.
To this end, the corresponding decay amplitudes need to be calculated and all parameters
relevant for the electroweak corrections need to be renormalized. Due to the large amount
of Feynman diagrams contributing to the different decay channels of all Higgs bosons of the
2HDM already at one-loop level, it is sensible that the calculation of the decay amplitudes is
automated as far as possible.

In Sec. 6.1, we describe in detail which decay channels are considered in the calculation of
the electroweak one-loop corrections and all approximations that are applied in the course
of the computation. We introduce the computer routine 2HDMCalc which allows for a semi-
automated calculation of all one-loop corrections to the decay amplitudes of the Higgs bosons
of the 2HDM. In the subsequent Sec. 6.2, we explain the integration of all analytic results into
the newly developed computer program 2HDECAY and introduce its main features. Moreover,
we describe how the state-of-the-art QCD corrections implemented in HDECAY are combined
with the electroweak one-loop corrections to the partial decay widths of the Higgs bosons of
the 2HDM.

6.1. Calculation of the Electroweak Decay Widths with 2HDM-

Calc

For the calculation of the electroweak corrections to the partial decay widths of the Higgs
bosons of the 2HDM, we consider all OS decays that are not loop-induced and that acquire
electroweak corrections at the one-loop level. For the 2HDM, this amounts to the following
list of decays:

� h/H/A −→ f f̄ (f f̄ = s s̄, c c̄, b b̄, t t̄, µ− µ+, τ− τ+) ,

� h/H −→ V V (V V = Z Z, W±W∓) ,

� h/H −→ V S (V S = Z A, W±H∓) ,

� h/H −→ S S (S S = AA, H±H∓) ,
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� H −→ hh ,

� H± −→ V S (V S = W± h, W±H, W±A) ,

� H+ −→ f f̄ (f f̄ = u s̄, u b̄, c d̄, c s̄, c b̄, t d̄, t s̄, t b̄, νµ µ
+, ντ τ

+) ,

� A −→ V S (V S = Z h, Z H, W±H∓) .

While we calculate also the one-loop corrections to the decays of the Higgs bosons into pairs
of fermions of the first generation,

� h/H/A −→ f f̄ (f f̄ = u ū, d d̄, e− e+) ,

� H+ −→ f f̄ (f f̄ = u d̄, νe e
+) ,

� H− −→ f f̄ (f f̄ = d ū, e− ν̄e) ,

these decay channels are neglected in the implementation of the one-loop corrections in 2HDE-

CAY since they are overwhelmed by Dalitz decays S → f f̄ (′) γ (S = h,H,A,H±) which are
induced e.g. by the off-shell γ∗ → f f̄ splitting.

For the calculation of the decay amplitudes and partial widths at tree level and NLO, we
follow the approach described in Sec. 3.3. For each decay of a Higgs boson φ to any pair
of other particles X1 and X2 presented in the aforementioned list, we calculate the tree-
level amplitude ALO

φX1X2
as well as all genuine vertex corrections AVC

φX1X2
to the amplitude,

shown generically in Figs. 3.3 and 3.4, respectively, by generating the Feynman diagrams and
the corresponding decay amplitudes with the Mathematica [247] package FeynArts 3.9 [248].
The 2HDM model file required for this is a slightly modified version of the model file contained
in FeynArts in order to account for the lepton-specific and flipped 2HDM types as well.

The computation of the traces of the spinor structures and the reduction of the tensor integrals
to scalar loop integrals [249] is performed with the Mathematica package FeynCalc 8.2.0

[250, 251]. The CT amplitudes ACT
φX1X2

for all decays are generated by expanding the tree-
level vertex ALO

φX1X2
to one-loop order. This includes the one-loop expansion of all required

CTs and WFRCs that are defined through diagrammatic contributions in form of tadpole
diagrams, self-energies and vertex corrections, that are calculated with the help of the tools
FeynArts and FeynCalc.

All analytic results are combined according to Eqs. (3.18) and (3.23) to form the electroweak
partial decay widths at tree level and NLO, respectively. For the latter quantity for all decays
involving charged particles in the initial or final states, we additionally take into account the
real corrections Γreal

φX1X2+γ . As described in Sec. 3.3, these real corrections are implemented
fully analytically by adapting the generic formulae given in [182,183] to the case of the 2HDM
decays. In our work, we regulate the corresponding IR-divergent integrals contained in both
the real corrections and the vertex corrections containing virtual photons by introducing a
photon mass as a regulator. For the real corrections, this photon mass is introduced as
an additional parameter while in the calculation of the virtual corrections, FeynArts auto-
matically introduces an infinitesimal photon mass to regularize the IR divergences. Due to
the large number of considered decay channels and diagrammatic contributions at one-loop
level, all the aforementioned steps are performed in a semi-automated way. To that end, the
computer program 2HDMCalc was developed which allows for the calculation of the two-body
decays of the 2HDM Higgs bosons and which automatically converts the analytic results of
the computations to Fortran 90 code. 2HDMCalc can be obtained from

https://github.com/marcel-krause/2HDMCalc .

https://github.com/marcel-krause/2HDMCalc
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2HDECAY.py

HDECAY

List of input files

mc(OS), mb(OS)

current file

EW 1-loop

LO

loop-corrected

output file (BR)

electroweakCorrections

HDECAY

List of output files

Iterate over all input files

2HDECAY

QCD
off-shell

loop-induced

LO

output file (EW)

2HDMCalc.pyanalytic results

(minimal run)

(full run)

Figure 6.1.: Flowchart of 2HDECAY. The program consists of a main wrapper file 2HDECAY.py
which iterates over all input files provided by the user. For each input file, the wrapper calls
the subprograms HDECAY and electroweakCorrections. The program generates two output
files for each input file, one containing the electroweak partial decay widths (EW) and one
containing the branching ratios with and without the electroweak corrections (BR).

In this repository, we additionally provide the full analytic results of all contributions to the
partial decay widths at tree level and one-loop order, including the analytic formulae of all
tadpole diagrams, self-energies and vertex corrections required for the definition of all CTs
and WFRCs of the 2HDM.

6.2. Description of 2HDECAY

All analytic results for all electroweak partial decay widths at tree level and one-loop order
generated with the help of 2HDMCalc are implemented into the newly developed computer
program 2HDECAY [56] which can be obtained from

https://github.com/marcel-krause/2HDECAY .

The program combines the electroweak corrections to the non-loop-induced OS decays of all
Higgs bosons of the 2HDM with the state-of-the-art QCD corrections already implemented
in the program HDECAY 6.52 which can be obtained from

https://github.com/marcel-krause/2HDECAY
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http://tiger.web.psi.ch/hdecay .

These corrections provided by HDECAY comprise

� the state-of-the-art QCD corrections to the partial decay widths, where applicable,

� the calculation of the loop-induced decays into the final states g g, γ γ and Z γ, where
apart from the final state Z γ, higher-order QCD corrections are taken into account and

� the calculation of partial decay widths for the following off-shell decays into final states
containing an off-shell particle, denoted by an asterisk,

◦ h/H/A −→ t∗ t̄ ,

◦ h/H −→ Z∗A ,

◦ h/H/A −→ W±∗H∓ ,

◦ h/H −→ W±∗W∓∗ ,

◦ h/H −→ Z∗ Z∗ ,

◦ H± −→ W±∗ S (S = h, H, A) ,

◦ H+ −→ t∗ f̄ (f̄ = d̄, s̄, b̄) ,

◦ A −→ Z∗ S (S = h, H) ,

◦ h/H −→ A∗A ,

◦ H −→ h∗ h ,

where for the last two decay modes presented in the list, i.e. the decays into neutral Higgs
boson pairs with one off-shell Higgs boson, it is assumed that the off-shell Higgs boson pre-
dominantly decays into the b b̄ final state. The total width of the top quark in the 2HDM,
required for the calculation of the decay modes containing off-shell top quarks in the final
state, is calculated internally in HDECAY.

Structure of 2HDECAY

Depicted in Fig. 6.1 is the flowchart of 2HDECAY. The main component of the program is the
wrapper file 2HDECAY.py, written in Python. The user provides arbitrarily many input files
that contain the numerical values for the input parameters based on either of the two sets
of independent parameters presented in Eqs. (4.63) and (4.64), where the choice on the used
input set is left to the user by setting the corresponding flag PARAM in the input file, cf. the pre-
sentation of the input file format below. The wrapper file iterates over all provided input files.
For each file, HDECAY is called in a minimal run in which the charm and bottom quark masses,
provided in the input file as MS parameters, are converted to OS parameters. Subsequently,
the wrapper file calls the subroutine electroweakCorrections which reads the input files,
together with the calculated OS masses of the two quarks, and calculates the electroweak
partial decay widths to all OS decays of the Higgs bosons at tree level and one-loop order.
The numerical evaluation of the scalar one-loop integrals contained in the analytic formulae
of the electroweak partial decay widths is performed by linking the Fortran library Loop-

Tools 2.15 [252]. Finally, HDECAY is called in a second run in which the program computes
the tree-level partial decay widths together with the aforementioned state-of-the-art QCD
corrections and combines these consistently with the electroweak corrections. Subsequently,
the BRs are computed. They are calculated by 2HDECAY once without the inclusion of the
newly computed electroweak partial decay widths and once with them being included. We
want to emphasize that in 2HDECAY, the combination of the electroweak and QCD corrections

http://tiger.web.psi.ch/hdecay
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ID Scheme Abbreviation Tadpole scheme δα δβ

1/2 KOSY KOSYo/c standard (B.66) (B.67)/(B.68)

3/4 KOSY KOSYo/c alternative FJ (B.69) (B.70)/(B.71)

5/6 p∗-pinched p
o/c
∗ alternative FJ (B.72) (B.73)/(B.74)

7/8 OS-pinched pOSo/c alternative FJ (B.78) (B.79)/(B.80)

9 Process-dependent 1 proc1 alternative FJ (B.81) (B.82)

10 Process-dependent 2 proc2 alternative FJ (B.83) (B.84)

11 Process-dependent 3 proc3 alternative FJ (B.85) (B.86)

12 Physical on-shell 1 OS1 alternative FJ (B.87) (B.88)

13 Physical on-shell 2 OS2 alternative FJ (B.89) (B.90)

14 Physical on-shell 12 OS12 alternative FJ (B.91) (B.92)

15 Rigid symmetry (BFMS) BFMS alternative FJ (B.93) (B.94)

16 MS MS(stand) standard (B.64) (B.65)

17 MS MS(FJ) alternative FJ (B.64) (B.65)

Table 6.1.: Renormalization schemes of the two scalar mixing angles α and β of the real
2HDM used for the numerical analyses in Sec. 7.2, together their abbreviations and the equa-
tions through which the mixing angle CTs are defined in each scheme.

is performed in such a way that the electroweak corrections are only computed for OS decays
in the subroutine electroweakCorrections, while HDECAY computes the widths of off-shell
decays as well.

The subprogram HDECAY generates two output files for each input file, one containing the BRs
with and without the electroweak corrections included, denoted as “BR” in Fig. 6.1, and a
second file containing the LO and NLO electroweak partial decay widths of all decays denoted
as “EW”. The latter output is particularly interesting for dedicated studies on the renormal-
ization scheme dependence of the electroweak one-loop corrections. To that end, 2HDECAY
provides the parameter conversion necessary for comparing one-loop partial decay widths
calculated within different renormalization schemes, cf. Sec. 3.5. In 2HDECAY 1.1.3, the 17
different renormalization schemes for the scalar mixing angles α and β as shown in Table 6.1
are implemented. In the table, we moreover provide the required ID of each renormalization
scheme as used in the input file, cf. the presentation of the input file format below, as well
as a short-hand notation which is used for the identification of the schemes in the numerical
analysis in Chapter 7 and the formulae via which the mixing angle CTs are defined for each
scheme. The user chooses in the input file one of these renormalization schemes as a reference
scheme while the calculation of the electroweak partial decay widths can be performed either
in one selected scheme or in all 17 schemes simultaneously. Moreover, the input parameter
for the soft-Z2-breaking scale m2

12 can be specified at an arbitrary renormalization scale µR,
while the scale µout at which the one-loop decay widths are computed can be any other arbi-
trarily chosen scale. 2HDECAY converts the input parameters of the mixing angles and m2

12 for
the case that the one-loop decay widths are evaluated within another renormalization scheme
than the chosen reference scheme or in case that µR 6= µout is chosen, as described in Sec. 3.5.

Combination of the electroweak corrections with HDECAY

As mentioned in Sec. 4.4, HDECAY uses the Fermi constant GF as a fundamental parameter
while for the calculation of the electroweak corrections, the fine-structure constant αem(mZ)
at the scale of the Z boson mass is used as independent input. For the consistent combina-
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QCD-corrected QCD&EW-corrected

on-shell and non-loop-induced
Gcalc
F

GF
ΓHD,QCD
φX1X2

Gcalc
F

GF

[
1 + δEW

]
ΓHD,QCD
φX1X2

off-shell or loop-induced
Gcalc
F

GF
ΓHD,QCD
φX1X2

Gcalc
F

GF
ΓHD,QCD
φX1X2

Table 6.2.: The QCD-corrected and QCD&EW-corrected partial decay widths as computed
by 2HDECAY, where the superscript “QCD” indicates that QCD corrections are included where
applicable.

tion of the partial decay widths calculated within the subprograms electroweakCorrections
and HDECAY, a conversion between the two input parameter schemes is required which necessi-
tates the inclusion of the 2HDM-specific higher-order corrections in the conversion formulae.
Since these conversion formulae are not implemented yet, we choose instead a pragmatic
approximate solution. In the default configuration of 2HDECAY, i.e. when the electroweak
contributions to the partial decay widths in the 2HDM are taken into account, the fine-
structure constant αem(mZ) is read from the input file and is used as the fundamental input
for the calculation of the electroweak partial decay widths at tree level and NLO. For the
computation of the state-of-the-art QCD corrections in HDECAY, 2HDECAY calculates the Fermi
constant Gcalc

F as a function of αem(mZ), mW and mZ by means of Eq. (4.21). We expect
the differences between the observables calculated within these two schemes to be small. The
partial widths calculated in HDECAY are rescaled by the factor Gcalc

F /GF to account for the
change of the input parameter scheme. Moreover, we assume that all higher-order corrections
to the decay widths factorize. The combined partial decay widths of the decay of a Higgs
boson φ into two particles X1 and X2, excluding and including the electroweak corrections
to the decays respectively, are then given by

ΓQCD
φX1X2

≡ Gcalc
F

GF
ΓHD,LO
φX1X2

[
1 + δQCD

]
≡ Gcalc

F

GF
ΓHD,QCD
φX1X2

, (6.1)

ΓQCD&EW
φX1X2

≡ Gcalc
F

GF
ΓHD,LO
φX1X2

[
1 + δQCD

] [
1 + δEW

]
≡ ΓQCD

φX1X2

[
1 + δEW

]
, (6.2)

where δQCD and δEW denote the factorized higher-order contributions to the partial decay
widths calculated by the subroutines HDECAY and electroweakCorrections, respectively,
while ΓHD,LO

φX1X2
and ΓHD,QCD

φX1X2
denote the partial decay widths at tree level and at higher or-

ders including all state-of-the-art QCD corrections from HDECAY, respectively. The factorized
higher-order QCD contributions δQCD are normalized to the LO width ΓHD,LO

φX1X2
, calculated

internally by HDECAY. This means that for example in the case of final states consisting of
quark pairs, the LO width includes the running quark mass in order to improve the per-
turbative behavior. The factorized higher-order electroweak corrections δEW on the other
hand are obtained by a normalization to the LO width with OS particle masses. Since the
electroweak one-loop corrections implemented in the subroutine electroweakCorrections

are only calculated for OS decays that are not loop-induced, while in HDECAY also off-shell
and loop-induced decays are computed, the electroweak corrections are only included for OS
and non-loop-induced decays. In all other cases, there are no contributions from δEW and
the partial decay width is given by Eq. (6.1). This is shown in Table 6.2 where we present an
overview of the partial decay widths as they are calculated by 2HDECAY for all aforementioned
cases. In the table, “QCD-corrected” refers to the widths as defined in Eq. (6.1), including
the widths of loop-induced and off-shell decay modes as well as QCD corrections where ap-
plicable. The “QCD&EW-corrected” widths additionally contain the electroweak one-loop
corrections to the partial decay widths for all non-loop-induced OS decay modes.
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Line Input name Allowed values and meaning

6 OMIT ELW2 0: electroweak corrections (2HDM) are calculated
1: electroweak corrections (2HDM) are neglected

9 2HDM 0: considered model is not the 2HDM
1: considered model is the 2HDM

56 PARAM 1: 2HDM Higgs masses and α (lines 66-70) are given as input
2: 2HDM potential parameters (lines 72-76) are given as input

57 TYPE 1,2,3,4: 2HDM type I, II, lepton-specific, flipped

58 RENSCHEM 0: all renormalization schemes are calculated
1-17: only the chosen scheme (cf. Table 6.1) is calculated

59 REFSCHEM 1-17: the input values of α, β and m2
12 (cf. Table 6.4) are given in

the chosen reference scheme and at the scale µR as given by
INSCALE in case of MS parameters

Table 6.3.: Basic control input parameters for 2HDECAY. The table is adopted from [56].

The BRs of the Higgs decays are calculated separately without and with the electroweak
contributions in the HDECAY subroutine by means of the loop-corrected partial decay widths
in Eqs. (6.1) and (6.2), respectively. The BRs without and with the EW correctons are hence
given by

BRQCD (φ −→ X1X2) ≡
ΓQCD
φX1X2

Γtot,QCD
φ

, (6.3)

BRQCD&EW (φ −→ X1X2) ≡
ΓQCD&EW
φX1X2

Γtot,QCD&EW
φ

, (6.4)

where Γtot,QCD
φ and Γtot,QCD&EW

φ denote the total decay width of the scalar particle φ exclud-
ing and including the electroweak corrections, respectively.

Input file format
In App. F.1, we present an exemplary input file 2hdecay.in, where we restrict the presen-
tation only to the input parameters that are relevant for the calculations performed with
2HDECAY. The input file contains two classes of inputs. The first class contains the input
parameters that are relevant for the main flow of the program. In Table 6.3, we present
the input parameters of this class together with their line numbers in the input file, their
allowed values and the meaning of the parameters. In order to calculate the BRs and partial
decay widths in the 2HDM, the value 2HDM = 1 has to be set by the user. For the input
value OMIT ELW2 = 0, the QCD&EW-corrected partial decay widths and the corresponding
BRs are calculated as described in the preceding paragraph. For this choice, 2HDECAY auto-
matically sets 2HDM = 1 internally. If the user on the other hand sets OMIT ELW2 = 1, then
the electroweak corrections are not calculated and 2HDECAY provides the same corrections as
the original version of HDECAY 6.52. In this case, the QCD-corrected decay widths are not
rescaled by Gcalc

F but instead calculated by using the value of GF as provided in the input
file. The parametrization of the input values of the scalar sector is specified by the input pa-
rameter PARAM. For PARAM = 1, the parameter set shown in Eq. (4.63) is used, i.e. the masses
of the Higgs bosons and the CP-even scalar mixing angle α are considered as independent
input, while for PARAM = 2, the 2HDM potential parameters λi (i = 1, ..., 5) are used as inde-
pendent input as denoted by the parameter set in Eq. (4.64). We want to emphasize however
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Line Input name Name in Chapter 4 Allowed values and meaning

18 ALS(MZ) αs(mZ) strong coupling constant (at mZ)

19 MSBAR(2) ms(2 GeV) s-quark MS mass at 2 GeV in GeV

20 MCBAR(3) mc(3 GeV) c-quark MS mass at 3 GeV in GeV

21 MBBAR(MB) mb(mb) b-quark MS mass at mb in GeV

22 MT mt t-quark pole mass in GeV

23 MTAU mτ τ -lepton pole mass in GeV

24 MMUON mµ µ-lepton pole mass in GeV

25 1/ALPHA α−1
em(0) inverse fine-structure constant (Thomson limit)

26 ALPHAMZ αem(mZ) fine-structure constant (at mZ)

29 GAMW ΓW partial decay width of the W boson

30 GAMZ ΓZ partial decay width of the Z boson

31 MZ mZ Z boson on-shell mass in GeV

32 MW mW W boson on-shell mass in GeV

33-41 Vij Vij CKM matrix elements (i ∈ {u, c, t} , j ∈ {d, s, b})
61 TGBET2HDM tβ ratio of the VEVs in the 2HDM

62 M_12^2 m2
12 squared soft-Z2-breaking scale in GeV2

63 INSCALE µR renormalization scale for MS inputs in GeV

64 OUTSCALE µout renormalization scale for the evaluation of the

partial decay widths in GeV or in terms of MIN

66 ALPHA_H α CP-even Higgs mixing angle in radians

67 MHL mh light CP-even Higgs boson mass in GeV

68 MHH mH heavy CP-even Higgs boson mass in GeV

69 MHA mA CP-odd Higgs boson mass in GeV

70 MH+- mH± charged Higgs boson mass in GeV

72-76 LAMBDAi λi Higgs potential parameters, cf. Eq. (4.4)

Table 6.4.: Relevant physical input parameters for the calculations performed in 2HDECAY.
The table is adopted from [56].

that the analytic results for the electroweak partial decay widths are implemented in terms
of the former input parameter set and hence, if PARAM = 2 is chosen, the masses of the Higgs
bosons and the mixing angle α are calculated internally by 2HDECAY by means of Eqs. (4.41)
to (4.44) and Eq. (4.50) for the calculation of the electroweak partial decay widths. The
input value TYPE specifies the type of 2HDM that is considered as described in Sec. 4.3. The
value of RENSCHEM determines the renormalization scheme for the scalar mixing angles which
is used for the calculation of the electroweak partial decay widths. For RENSCHEM = 0, the
electroweak-corrected widths and BRs are calculated for all 17 implemented renormalization
schemes shown in Table 6.1 simultaneously. If RENSCHEM is set to any integer between 1 and
17, the partial decay widths are calculated for the scheme corresponding to the ID shown in
Table 6.1. The input parameter REFSCHEM with integer values between 1 and 17 denotes the
reference renormalization scheme at which the input values of the scalar mixing angles α and
β are defined. The input value for the MS parameter m2

12 is always defined at the input scale
µR and the same applies for the scalar mixing angles in case that the MS scheme is chosen as
a reference scheme, while the evaluation of the electroweak partial decay widths is performed
at the renormalization scale µout. The values of α, β and m2

12 at the scale µout and in the
chosen input renormalization scheme RENSCHEM are calculated from their values at µR and in
the reference scheme by means of Eqs. (3.30) and (3.31), respectively.
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The second class of input parameters for 2HDECAY are the relevant physical input parameters
presented in Table 6.4, together with their line numbers in the exemplary input file shown
in App. F.1, the corresponding parameters introduced in Chapter 4 as well as their allowed
values and meanings. The OUTSCALE renormalization scale µout is given either in GeV or in
terms of the mass MIN of the decaying Higgs boson for each decay channel that is calculated,
i.e. the input value OUTSCALE = MIN sets the renormalization scale at which the partial decay
widths are evaluated to µout = m1 for each decay channel, where m1 denotes the mass of the
decaying Higgs boson. Apart from OUTSCALE, all other input parameters shown in Table 6.4
are entered in FORTRAN double-precision format into the input file. In case that PARAM = 1 is
set, 2HDECAY reads the masses of the Higgs bosons and α as independent input and ignores
the values of the 2HDM potential parameters λi in the input file, while for PARAM = 2, the λi
are read in and the Higgs boson masses and α are instead calculated by means of Eqs. (4.41)
to (4.44) and Eq. (4.50).

Output file format
For each input file, 2HDECAY generates one output file containing the BRs of all decay channels
and, in case that OMIT ELW2 = 0 is set, additionally one output file containing the electroweak
partial decay widths of the OS non-loop-induced decay modes. In App. F.2, we present
exemplary output files for the BRs and electroweak decay widths which are shortened to
two decay channels of the lighter CP-even Higgs boson h since we focus on the description
of the general structure of the output files here. The output file format follows the SUSY
Les Houch Accord (SLHA) [253, 254] which however is modified in order to account for the
electroweak corrections to the partial decay widths calculated in the 2HDM. In the first four
blocks given out for both output files and not shown explicitly in App. F.2, basic information
about 2HDECAY as well as the input values used for the calculations are provided. The value of
GF which is printed in this block corresponds to the value of Gcalc

F in case that OMIT ELW2 = 0

is set and is consequently not necessarily the same as the value of GF provided in the input
file, as discussed above.

Subsequently, in the output file that contains the BRs, for each Higgs boson h, H, A and
H± two blocks DECAY QCD and DECAY QCD&EW are printed. Both blocks start with the total
decay width of the corresponding Higgs boson, followed by the ID of the renormalization
scheme for which the widths and BRs are calculated and the values of α, β and m2

12 in the
considered scheme and at the scale µout which, due to the conversion routine implemented
in 2HDECAY, can differ from the corresponding values provided in the input file defined in
the reference renormalization scheme and at the scale µR. The first block DECAY QCD for
each Higgs boson contains the BRs of the respective Higgs boson as they are implemented in
HDECAY, comprising the tree-level decays, the off-shell decay modes presented at the beginning
of this section as well as loop-induced decays into g g, γ γ and Z γ final states, together with
the state-of-the-art QCD corrections, where applicable. In case that OMIT ELW2 = 1 is set,
these BRs correspond to the ones which are printed out in the original HDECAY 6.52 version.
For OMIT ELW2 = 0 on the other hand, the printed BRs differ from the ones given out by
the original HDECAY version due to the rescaling with the calculated Fermi constant Gcalc

F , as
explained before. In the second block DECAY QCD&EW printed out for each Higgs boson, the
BRs of all decay modes of the corresponding Higgs boson, containing both the corrections
to the tree-level widths as implemented in HDECAY as well as the electroweak corrections
provided by the subroutine electroweakCorrections, are given. We want to note that since
the electroweak corrections are calculated only for OS decays that are not loop-induced, the
BRs of off-shell or loop-induced decay modes given out in the block DECAY QCD&EW are still
only QCD-corrected BRs and not QCD&EW-corrected ones. In the last block of the file,
which is not explicitly shown in App. F.2, the QCD-corrected BR of the top quark in the
2HDM is given out since it is required for the calculation of the Higgs boson decays into final
states containing an off-shell top quark as mentioned at the beginning of this section.



66 6. Calculation of Higher-Order Higgs Boson Decays with 2HDECAY

In the output file that contains the electroweak partial decay widths, after the first four
blocks containing the basic information about 2HDECAY and the input parameters used for the
calculation, two subsequent blocks LO DECAY WIDTH and NLO DECAY WIDTH are printed out
for each Higgs boson h, H, A and H±. Each block starts with the ID of the renormalization
scheme, followed by the parameters α, β and m2

12 in the considered renormalization scheme
and at the renormalization scale µout which are used for the calculation of the decay widths.
Subsequently, the electroweak partial decay widths of all OS and non-loop-induced decays
of the corresponding Higgs boson are given out. The decay widths printed in the block LO

DECAY WIDTH correspond to the tree-level partial decay widths while the ones printed in the
block NLO DECAY WIDTH are the one-loop decay widths. The widths provided by this second
output file are particularly useful for studies on the renormalization scheme dependence of the
electroweak one-loop corrections. We want to emphasize that since the electroweak corrections
are calculated for OS and non-loop-induced decays only, it can happen that the output file
for the electroweak partial decay widths does not contain all decay channels that are provided
by the output file containing the BRs, since for the latter, HDECAY also calculates the BRs of
off-shell and loop-induced decays.

Caveats
We want to note that it can happen that the electroweak-corrected partial decay widths
calculated by 2HDECAY can become very large or negative due to large contributions from the
one-loop partial decay widths with respect to the tree-level widths, for which there are several
different reasons:

� The electroweak corrections can be enhanced due to unsuitable schemes used for the
renormalization of the independent parameters of the 2HDM. In our work, this is re-
ferred to as the numerical instability of a chosen renormalization scheme, cf. the dis-
cussion in Sec. 5.3.

� The electroweak corrections can be parametrically enhanced in case that some coupling
constants involved in the calculation of the widths become very large or small for the
considered parameter point or due to virtual particles with very small masses in the one-
loop integrals, cf. [227,228,255]. In these cases, resummation methods could be applied
to improve the perturbative behavior of the partial decay widths, which in turn requires
the inclusion of electroweak corrections beyond the fixed one-loop level however.

� The tree-level partial decay widths can be suppressed due to small coupling constants of
the tree-level decay amplitude. As an example, the tree-level coupling constant between
the non-SM-like Higgs boson and two massive gauge bosons can be suppressed due to
the sum rules of the gauge boson couplings of the 2HDM. In case that the electroweak
one-loop corrections are not suppressed by the same powers of the coupling constant,
the loop-corrected decay width can become comparatively large with respect to the
tree-level width.

We want to note that since negative partial decay widths or too large loop-corrected widths
with respect to the tree-level results are unphysical, the electroweak-corrected widths and
BRs in these cases are not suitable for phenomenological analyses and should be discarded.



CHAPTER 7

Numerical Analysis with 2HDECAY

In this chapter, we perform numerical analyses on the BRs and partial decay widths of
the Higgs bosons of the real 2HDM by using 2HDECAY 1.1.3, focusing on the size of the
electroweak corrections to the decays implemented in this work.

In Sec. 7.1, we describe the scans over the parameter space of the real 2HDM and present all
constraints applied to the scans in order to obtain valid input parameter sets. In the subse-
quent Sec. 7.2, we perform the numerical calculation of the branching ratios and partial decay
widths of selected Higgs decay channels for our chosen input parameter sets. We compare the
size of the electroweak corrections computed within different renormalization schemes and
present exemplary analyses of selected decay channels with respect to the remaining theo-
retical uncertainty and the numerical stability of the renormalization schemes of the scalar
mixing angles.

7.1. Input Parameters

For the calculation of the numerical results presented in this chapter, we set the input values
of the SM parameters in 2HDECAY to the following values [98,256],

mµ ≡ 105.658 371 MeV , mτ = 1.776 82 GeV , (7.1)

mMS
s (2 GeV) = 95.0 MeV , mMS

c (3 GeV) ≡ 0.986 GeV ,

mMS
b (mMS

b ) ≡ 4.18 GeV , mt = 173.2 GeV ,

αMS
s (mZ) = 0.1181 , GF = 1.166 3787 · 10−5 GeV−2 ,

mW = 80.385 GeV , mZ = 91.1876 GeV ,

ΓW = 2.085 GeV , ΓZ = 2.4952 GeV ,

α−1
em(mZ) = 128.962 , α−1

em(0) = 137.036 ,

while the electron and the up and down quarks are massless in our approximation. The masses
of the gauge bosons are given as OS masses and all other masses without a superscript are
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mh/H/A mH± (II/flipped) mH± (I/lepton-specific) m2
12 α tβ

min 30 GeV 580 GeV 80 GeV 0 GeV2 -π/2 0.25

max 1500 GeV 1500 GeV 1500 GeV 100 000 GeV2 π/2 35

Table 7.1.: Allowed ranges of the input values of the real 2HDM for the parameter scan. Each
parameter is separately varied between its corresponding minimum and maximum values.

given as pole masses of the respective particles. For the CKM matrix, we consider a general
non-diagonal representation and set the nine different entries of the matrix to the values [98]

V =


0.974 460 0.224 520 0.003 650

−0.224 380 0.973 590 0.042 140

0.008 960 −0.041 330 0.999 105

 . (7.2)

For the generation of the input parameter sets that are compatible with most recent theo-
retical and experimental constraints, we scan over the parameter space of the real 2HDM. In
the following, we only briefly present the parameters of the scan and the constraints applied
to generate valid input parameter sets. For a detailed description about the scan procedure,
we refer to [257,258].

For all scans that are performed, we require that either the lighter CP-even Higgs boson h or
the heavier CP-even Higgs boson H corresponds to the SM-like Higgs boson, with its mass
given by [13]

mhSM
= 125.09 GeV . (7.3)

In order to avoid parameter sets that lead to Higgs signals being built up by two close
resonances, we demand that no other Higgs boson with a mass in the range of ±5 GeV
around the value given in Eq. (7.3) is produced in the scan. Apart from the SM parameters
and one of the Higgs masses being fixed by Eq. (7.3), all other parameters of the 2HDM are
free input parameters. In the scan, we allow these parameters to lie within the minimal and
maximal values presented in Table 7.1. For the mass of the charged Higgs boson, the lower
limit of mH± ≥ 580 GeV [259] for the 2HDM types II and flipped are applied.

The parameter scan is performed with the help of the tool ScannerS [57,260,261]. The various
generated parameter scenarios are checked against the following constraints:

� The Higgs exclusion limits stemming from experiments at the Large Electron Positron
collider (LEP), Tevatron and LHC are checked with HiggsBounds 5.3.2 [262–264].

� The Higgs rates are checked with HiggsSignals 2.2.3 [265].

Each parameter set passing these constraints is considered as a valid input parameter set.
Out of all valid sets, we choose a few exemplary ones for the sets used in our numerical
analysis. In the following, we present the values of the 2HDM-specific parameters for each of
the sets.
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Parameter set “P1”.
For the SM parameters, the input values presented in Eqs. (7.1) and (7.2) are used, while the
2HDM-specific parameters are set to

mh = 125.09 GeV , mH = 381.767 GeV , (7.4)

mA = 350.665 GeV , mH± = 414.114 GeV ,

m2
12(mhSM

) = 28 505.5 GeV2 , α|po∗ = − 0.189 345 ,

tβ|po∗ = 4.236 35 , 2HDM type = I ,

where for m2
12, the argument in brackets indicates that the input value is defined at the

scale µR = mhSM
. Moreover, the subscripts denote that the two mixing angles are defined

in the p∗-pinched (odd) scheme, defined through Eqs. (B.72) and (B.73), as the reference
scheme considered for our numerical analysis. The renormalization scale µout at which the
electroweak partial decay widths are evaluated is set to the mass of the decaying particle for
each decay channel, separately.

Parameter set “P2”.
Analogous to the former set, the input values of the SM parameters are set as presented in
Eqs. (7.1) and (7.2), while the 2HDM-specific parameters are chosen as follows,

mh = 125.09 GeV , mH = 302.324 GeV , (7.5)

mA = 494.618 GeV , mH± = 300.077 GeV ,

m2
12(mhSM

) = 28 328.8 GeV2 , α|po∗ = − 0.200 175 ,

tβ|po∗ = 2.660 82 , 2HDM type = I ,

For an analysis of the size of the electroweak corrections to selected decay channels, we
moreover perform a variation of some of the input parameters of this set:

� Variation of mH ∈ [130 GeV, 550 GeV], while all other parameters are given by the
fixed values in Eq. (7.5).

� Variation of mA ∈ [130 GeV, 550 GeV], while all other parameters are given by the fixed
values in Eq. (7.5).

These variations of the input parameters can lead to points in the parameter space of the real
2HDM that do not fulfill the aforementioned experimental constraints anymore. Since we do
not perform a dedicated phenomenological analysis in this work, however, we nevertheless
use the parameter sets generated by the variations in order to demonstrate the size of the
electroweak corrections implemented in 2HDECAY and to provide examples for analyses which
can be extended in future work. The renormalization scale µout at which the electroweak
partial decay widths are evaluated is again set to the mass of the decaying particle for each
decay channel, separately.

Parameter sets “P3”.
For another analysis of the size of the electroweak corrections of a selected Higgs decay channel
computed within different renormalization schemes, we use several additional parameter sets
which we collectively define as the“P3”set. The set includes 15 000 different parameter points
for a 2HDM type I with large varieties with respect to the values of the masses, mixing angles
and m2

12, while the SM values are again set according to Eqs. (7.1) and (7.2). We evaluate
the electroweak partial decay widths again at the renormalization scale µout which is set to
the mass of the decaying particle of the respective decay channel. In contrast to the other
two aforementioned parameter sets, the values of the mixing angles in set “P3” are defined
within each considered renormalization scheme separately such that no conversion between
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their input values is required. All points fulfill the aforementioned experimental constraints.
Since the amount of points considered in the set “P3” is too large, we do not present the
explicit values of the 2HDM-specific parameters for each point here.

7.2. Numerical Results and Analysis

In this section, we perform several analyses on the BRs and partial decay widths computed
for different renormalization schemes with 2HDECAY. In order to quantify the size of the elec-
troweak contributions newly computed in this thesis, we define

∆BR ≡ BRQCD&EW(φ→ X1X2)− BRQCD(φ→ X1X2)

BRQCD(φ→ X1X2)
(7.6)

as a measure for the relative contributions of the electroweak corrections to the BRs with
respect to the BRs already contained in HDECAY. Analogously, we define the deviation

∆ΓEW ≡
ΓNLO,EW
φX1X2

− ΓLO,EW
φX1X2

ΓLO,EW
φX1X2

(7.7)

as a measure of the size of the genuine one-loop contributions to the electroweak partial decay
widths with respect to the tree-level widths. Furthermore, we define the quantity

∆ΓEW,x ≡
ΓNLO,EW
φX1X2

∣∣∣
x
− ΓNLO,EW

φX1X2

∣∣∣
po∗

ΓNLO,EW
φX1X2

∣∣∣
po∗

(7.8)

as a measure of the difference of the one-loop electroweak partial decay width computed in a
renormalization scheme of the scalar mixing angles, denoted by the index “x”, with respect to
the one-loop width computed in the p∗-pinched scheme “po∗”. In order to consistently compare
the electroweak partial decay widths computed within the different renormalization schemes,
2HDECAY converts the scalar mixing angles from the scheme “po∗” to scheme “x”, as described
in Sec. 6.2. Since we restrict the computation of the electroweak corrections to OS decays
which are not loop-induced, the deviation of the electroweak decay widths in Eqs. (7.7) and
(7.8) are only calculated for electroweak decay amplitudes that are in general non-vanishing
at tree-level, while the deviation of the BRs defined in Eq. (7.6) is computed for all decay
channels implemented in 2HDECAY.

We begin our numerical analysis by computing the BRs and electroweak partial decay widths
of all decay channels for the parameter set “P1”. For the computation, we fix the renormal-
ization scheme of the scalar mixing angles to the OS-pinched scheme “pOSo” defined via the
CP-odd sector, cf. Table 6.1. Since the input values of the two mixing angles in the set “P1”
are defined in the p∗-pinched scheme “po∗”, they are converted to the “pOSo” scheme before
being used for the calculation of the decays, cf. Sec. 3.5. Moreover, the MS parameter m2

12 is
defined at the scale µR = mhSM

while the scale µout at which the electroweak decay widths
are evaluated is set equal to the mass of the decaying particle. Consequently, the parameter
m2

12 is converted from the scale µR to the scale µout wherever these two scales are not equal.

In Table 7.2, the BRs excluding and including the electroweak contributions as well as the
electroweak partial decay widths at tree level and one-loop order for all decay channels are
presented as they are given as output by 2HDECAY. Moreover, we present the calculated devia-
tions defined in Eqs. (7.6) and (7.7) for all decay channels, where applicable. For the SM-like
Higgs boson h, the relative electroweak contributions to the BRs are comparatively small,
ranging from −3.5 % to 3.0 % compared to the BRs computed without the electroweak cor-
rections. Analogously, the electroweak one-loop contributions shift the partial decay widths
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Decay channel BR
QCD
(φ→X1 X2)

BR
QCD&EW
(φ→X1 X2)

∆BR Γ
LO,EW
φX1X2

in GeV Γ
NLO,EW
φX1X2

in GeV ∆Γ
EW

h→ b b̄ 5.934 · 10
−1

5.850 · 10
−1

-1.4 % 5.968 · 10
−3

5.715 · 10
−3

-4.3 %

h→ τ
+
τ
−

6.388 · 10
−2

6.304 · 10
−2

-1.3 % 2.699 · 10
−4

2.587 · 10
−4

-4.2 %

h→ µ
+
µ
−

2.262 · 10
−4

2.183 · 10
−4

-3.5 % 9.555 · 10
−7

8.958 · 10
−7

-6.3 %

h→ s s̄ 2.239 · 10
−4

2.254 · 10
−4

0.7 % 2.317 · 10
−6

2.266 · 10
−6

-2.2 %

h→ c c̄ 2.904 · 10
−2

2.906 · 10
−2

0.1 % 5.268 · 10
−4

5.119 · 10
−4

-2.8 %

h→ g g 7.785 · 10
−2

8.015 · 10
−2

3.0 % − − −

h→ γ γ 2.199 · 10
−3

2.265 · 10
−3

3.0 % − − −

h→ Z γ 1.541 · 10
−3

1.587 · 10
−3

3.0 % − − −

h→ W
+
W
−

2.059 · 10
−1

2.120 · 10
−1

3.0 % − − −

h→ Z Z 2.570 · 10
−2

2.646 · 10
−2

3.0 % − − −

H → b b̄ 1.236 · 10
−3

1.057 · 10
−3

-14.5 % 6.653 · 10
−4

6.342 · 10
−4

-4.7 %

H → τ
+
τ
−

1.641 · 10
−4

1.335 · 10
−4

-18.7 % 2.988 · 10
−5

2.707 · 10
−5

-9.4 %

H → µ
+
µ
−

5.805 · 10
−7

4.611 · 10
−7

-20.6 % 1.057 · 10
−7

9.352 · 10
−8

-11.5 %

H → s s̄ 4.655 · 10
−7

3.897 · 10
−7

-16.3 % 2.563 · 10
−7

2.391 · 10
−7

-6.7 %

H → c c̄ 6.044 · 10
−5

5.012 · 10
−5

-17.1 % 5.829 · 10
−5

5.386 · 10
−5

-7.6 %

H → t t̄ 5.399 · 10
−1

4.755 · 10
−1

-11.9 % 6.327 · 10
−2

6.208 · 10
−2

-1.9 %

H → g g 4.236 · 10
−3

3.802 · 10
−3

-10.3 % − − −

H → γ γ 1.816 · 10
−5

1.629 · 10
−5

-10.3 % − − −

H → Z γ 1.068 · 10
−5

9.580 · 10
−6

-10.3 % − − −

H → W
+
W
−

1.272 · 10
−1

1.191 · 10
−1

-6.3 % 2.314 · 10
−2

2.416 · 10
−2

4.4 %

H → Z Z 5.900 · 10
−2

6.650 · 10
−2

12.7 % 1.074 · 10
−2

1.349 · 10
−2

25.6 %

H → AA 1.190 · 10
−10

1.068 · 10
−10

-10.3 % − − −

H → hh 2.680 · 10
−1

3.337 · 10
−1

24.5 % 4.879 · 10
−2

6.769 · 10
−2

38.7 %

H → Z A 1.709 · 10
−4

1.533 · 10
−4

-10.3 % − − −

A→ b b̄ 7.263 · 10
−4

6.831 · 10
−4

-6.0 % 8.953 · 10
−4

8.366 · 10
−4

-6.6 %

A→ τ
+
τ
−

9.737 · 10
−5

8.639 · 10
−5

-11.3 % 4.019 · 10
−5

3.542 · 10
−5

-11.9 %

A→ µ
+
µ
−

3.443 · 10
−7

2.983 · 10
−7

-13.4 % 1.421 · 10
−7

1.223 · 10
−7

-13.9 %

A→ s s̄ 2.603 · 10
−7

2.379 · 10
−7

-8.6 % 3.447 · 10
−7

3.129 · 10
−7

-9.2 %

A→ c c̄ 3.671 · 10
−5

3.322 · 10
−5

-9.5 % 7.841 · 10
−5

7.050 · 10
−5

-10.1 %

A→ t t̄ 9.622 · 10
−1

9.710 · 10
−1

0.9 % 1.782 · 10
−1

1.786 · 10
−1

0.3 %

A→ g g 9.650 · 10
−3

9.714 · 10
−3

0.7 % − − −

A→ γ γ 3.973 · 10
−5

4.000 · 10
−5

0.7 % − − −

A→ Z γ 6.741 · 10
−6

6.785 · 10
−6

0.7 % − − −

A→ Z h 2.723 · 10
−2

1.846 · 10
−2

-32.2 % 1.124 · 10
−2

7.570 · 10
−3

-32.7 %

H
+ → c b̄ 6.671 · 10

−7
6.537 · 10

−7
-2.0 % 2.042 · 10

−6
1.925 · 10

−6
-5.7 %

H
+ → τ

+
ντ 4.986 · 10

−5
4.720 · 10

−5
-5.3 % 4.746 · 10

−5
4.322 · 10

−5
-8.9 %

H
+ → µ

+
νµ 1.763 · 10

−7
1.631 · 10

−7
-7.5 % 1.678 · 10

−7
1.493 · 10

−7
-11.0 %

H
+ → u b̄ 4.772 · 10

−9
4.579 · 10

−9
-4.0 % 1.409 · 10

−8
1.300 · 10

−8
-7.7 %

H
+ → u s̄ 6.672 · 10

−9
6.498 · 10

−9
-2.6 % 2.052 · 10

−8
1.922 · 10

−8
-6.3 %

H
+ → c d̄ 8.766 · 10

−7
8.493 · 10

−7
-3.1 % 4.662 · 10

−6
4.345 · 10

−6
-6.8 %

H
+ → c s̄ 1.663 · 10

−5
1.608 · 10

−5
-3.3 % 8.815 · 10

−5
8.200 · 10

−5
-7.0 %

H
+ → t b̄ 9.702 · 10

−1
9.660 · 10

−1
-0.4 % 9.203 · 10

−1
8.815 · 10

−1
-4.2 %

H
+ → t s̄ 1.659 · 10

−3
1.651 · 10

−3
-0.4 % 1.573 · 10

−3
1.507 · 10

−3
-4.2 %

H
+ → t d̄ 7.795 · 10

−5
7.786 · 10

−5
-0.1 % 7.394 · 10

−5
7.105 · 10

−5
-3.9 %

H
+ → W

+
h 2.600 · 10

−2
3.012 · 10

−2
15.8 % 2.475 · 10

−2
2.758 · 10

−2
11.4 %

H
+ → W

+
H 5.028 · 10

−5
5.227 · 10

−5
4.0 % − − −

H
+ → W

+
A 1.918 · 10

−3
1.994 · 10

−3
4.0 % − − −

Table 7.2.: Higher-order BRs excluding and including electroweak contributions as well
as electroweak parial decay widths at tree level and one-loop order for all decay channels
implemented in 2HDECAY as calculated for the parameter set “P1” defined in Eq. (7.4). The
relative sizes ∆BR and ∆ΓEW of the BRs and electroweak partial decay widths are defined in
Eqs. (7.6) and (7.7), respectively. For the computation of all BRs including the electroweak
corrections as well as for the one-loop partial decay widths, the scalar mixing angles are
renormalized in the OS-pinched scheme “pOSo”, cf. Table 6.1.
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Figure 7.1.: Scenario “P2”: BRs of the heavy CP-even Higgs boson H as a function of mH

(left) and the CP-odd Higgs boson A as a function of mA (right) into various OS final states
including both the electroweak and the QCD corrections. For the computation of all BRs,
the scalar mixing angles are renormalized in the OS-pinched scheme “pOSo”, cf. Table 6.1.

moderately by −6.3 % to −2.2 % compared to the tree-level widths. The computed BRs, both
including and excluding the newly computed electroweak contributions, are compatible with
the BRs of the Higgs boson of the SM, cf. Table 11.3 of [98].

For the other Higgs bosons of the 2HDM, the electroweak contributions to the partial decay
widths and BRs are considerably larger for some decay channels. In the following, we restrict
the discussion to the relative change of the BRs since the discussion about the change of
the electroweak partial decay widths is analogous. In the considered scenario, the decay of
the heavy Higgs boson H is dominated by OS decays into a top quark pair, followed by OS
decays into a pair of SM-like Higgs bosons h as well as into pairs of W± bosons, with BRs
at the level of tens of percents for all three decay channels. Due to the mass values of the H
and A Higgs bosons, the former does not decay OS into AA and hence, this decay mode is
realized only off-shell with a very small BR of O(10−10). The electroweak corrections change
the BRs relatively by −20.6 % to 24.5 % and are hence sizeable. For the CP-odd Higgs boson
A, the dominant decay mode by far is the decay into a top quark pair. Moreover, the scenario
provides an OS decay of A into a Z boson and the SM-like Higgs boson h with a BR in the
percent level. Like the heavy CP-even Higgs boson, the electroweak corrections to the BRs
of the CP-odd Higgs boson range from −32.2 % to 0.9 % and are sizeable in particular for the
decay into Z h. The charged Higgs boson H± decays dominantly into a top-bottom quark
pair with a BR of 97 %, while the scenario additionally allows for an OS decay of H± into
W± h, with a BR at the percent level. In the parameter set “P1”, the decays of H± into W±

and either H or A are realized only off-shell with BRs of O(10−5) and O(10−3), respectively.
The electroweak contributions shift the BRs by −7.5 % to 15.8 %. The analysis shows that
the electroweak corrections to the partial decay widths and to the BRs are not negligible.
In contrast, especially for the additional Higgs bosons of the 2HDM with respect to the SM,
they can be of relevant size. Consequently, the inclusion of the electroweak corrections is
mandatory of a more precise calculation of the Higgs boson observables.

In order to analyze the sensitivity of the BRs on the 2HDM-specific input parameters and
to compare the electroweak one-loop partial decay widths computed within different renor-
malization schemes for the scalar mixing angles, we consider the second parameter set “P2”
as defined in Eq. (7.5). The scenario features a heavy Higgs boson H and a pair of charged
Higgs bosons H± both with masses of O(300 GeV) as well as a comparatively heavy CP-odd
Higgs boson A with a mass of O(500 GeV). Due to the distribution of the masses, the scenario
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Figure 7.2.: Scenario “P2”: Relative correction ∆ΓEW as defined in Eq. (7.7) between the
one-loop and tree-level electroweak partial decay width of the decay channel H → ZZ as a
function of mH (left) and of the decay channel A→ Zh as a function of mA (right) for several
renormalization schemes (for a definition of the abbreviations used, cf. Table 6.1).

allows, among other decay modes, for an OS decay of the heavy CP-even Higgs into a pair of
SM-like Higgs bosons h as well as for an OS decay of the CP-odd Higgs boson into tt̄, Z h and
W±H∓ final states. In order to analyze the dependence of the BRs on the 2HDM-specific
input parameters, we perform a variation of the masses of the heavy CP-even and the CP-odd
Higgs boson separately, in the ranges specified in the preceding Sec. 7.126.

Figure 7.1 shows the electroweak-corrected BRs of all decay modes of the heavy CP-even
Higgs boson H and of the CP-odd Higgs boson A as a function of either mH or mA on the
left-hand and right-hand sides of the figure, respectively, where the color code denotes the
various final states. The dashed vertical lines indicate the value of the respective Higgs mass
corresponding to its initial value defined in the parameter set “P2”, cf. Eq. (7.5). As can be
inferred from the plots, the BRs strongly depend on the chosen values of mH and mA. For
increasing masses, additional decay channels are realized OS and their corresponding BRs
potentially suppress those of other decay modes. This is the case e.g. for the decay of the
CP-odd Higgs boson A into the Z h final state, with the corresponding BRs exceeding the
BRs of all other decay modes for intermediate values of mA between 220 GeV and 330 GeV,
and for the decay of the A boson into the final state Z H for values mA > 450 GeV. The
heavy CP-even Higgs boson H dominantly decays into pairs of W± or Z bosons for values
of mH below 250 GeV. For mH & 2mh, the OS decay of the heavy CP-even Higgs into two
SM-like Higgs bosons becomes kinematically allowed and hence, the BR for this decay channel
becomes relevant for masses mH up to approximately 400 GeV. In particular, for scenario
“P2”, this decay channel is the dominant one with a BR of 57 %. For values of mH larger
than 400 GeV, the BR for the decay into W±H∓ final states exceeds the BRs of all other
decay channels.

In order to analyze the dependence of the size of the electroweak one-loop corrections to the
partial decay widths on the renormalization scheme of the scalar mixing angles, we again
perform a numerical analysis with the input parameter set “P2” with the same variations of
the masses mH and mA as before. For the analysis performed in this work, we compute the
relative correction ∆ΓEW defined in Eq. (7.7) as a function of mH and mA for two specific
decay channels, namely for the decay channels H → Z Z and A→ Z h, and for five different

26For some of the figures presented in the following, however, we reduce the range for both parameters for a
better legibility of the plots.



74 7. Numerical Analysis with 2HDECAY

� 	 � � � � � � � � � � � 	 � � � � � � �
� �

� �

� �

� �

�

�

� � � � 	 � � � � � � � � � � � 	 � � � � � � � � � � � 	 � � � �
� �

�

�

�

∆�
�

�
��

��
��

��
��

���
��

��

� � � � � � � � � �

� � � � �

� � � � �

� � � 
 	 � �
�

� � � � � �

� � � � � �
�

�
� � � � �

� � � � �

� � � � �

� � � 
 	 � �

� � � � � �

� � � � � �
�

�
�

∆�
�

�
��

��
��

��
���

��
��

��

� � � � � � � � �

� � � �

Figure 7.3.: The difference ∆ΓEW,x as defined in Eq. (7.8) between the one-loop electroweak
partial decay width of the decay channel H → ZZ computed in several renormalization
schemes “x” (cf. Table 6.1 for a definition of the abbreviations used) with respect to the one-
loop width as computed in the p∗-pinched scheme “po∗”. The difference is presented for the
decay channel H → Z Z as a function of mH (left-hand side) and for the decay channel
A→ Z h as a function of mA (right-hand side). For the calculation of all values in the plots,
the input parameters were set according to the set “P2”.

renormalization schemes. For each of the five schemes considered in this analysis, the tree-
level and one-loop decay widths entering the calculation of ∆ΓEW are always defined in the
same input renormalization scheme. For a direct comparison of the decay widths calculated
within the different schemes, we convert the input parameters as described in Sec. 6.2. In
Fig. 7.2, we present the relative deviations ∆ΓEW between the one-loop and tree-level decay
widths of the two decay channels as a function of mH and mA on the left-hand and right-
hand sides of the figure, respectively. The vertical dashed line indicates the values of mH

and mA corresponding to the respective initial values defined as the parameter set “P2” in
Eq. (7.5). As can be inferred from the plots, the sizes of the electroweak one-loop corrections
are sensitive on the choice of the renormalization scheme for a large range of the Higgs boson
masses. For the mass values corresponding to the set “P2” for instance, the relative size of the
one-loop corrections ∆ΓEW to the process H → Z Z varies between 9 % and 20 % and for the
process A→ Z h between −3 % and 7 % for the different renormalization schemes considered
here.

In order to get a rough estimate of the remaining theoretical uncertainty of the partial decay
widths due to missing higher-order corrections, we compare the decays widths computed in
different renormalization schemes “x” with the reference scheme that we choose here to be
“po∗”. We hence compute the relative difference ∆ΓEW,x, defined in Eq. (7.8), where we again
compute the tree-level and one-loop partial decay widths in the same renormalization scheme
“x” for each of the considered schemes. In Fig. 7.3 we show the relative difference ∆ΓEW,x

for the same two decay channels analyzed before, i.e. for H → Z Z as a function of mH on
the left-hand side and for A→ Z h as a function of mA on the right-hand side of the figure.
As can be inferred from the plots, the relative difference between the widths computed in the
different schemes varies between approximately −4 % and 1 % for the former decay channel
and between approximately −1 % and 2 % for the latter decay channel over the whole range of
varied masses presented in the plots. We want to emphasize again that for the computation
of the widths within different renormalization schemes, a parameter conversion as described
in Sec. 3.5 is performed in 2HDECAY which allows for a consistent comparison of the widths
computed within these different schemes. From the plots, it can be inferred that the relative
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Figure 7.4.: Parameter Set “P3”: The relative size of the electroweak corrections ∆ΓEW

as defined in Eq. (7.7) between the one-loop and tree-level electroweak partial decay width
of the decay channel H+ → W+ h as a function of the tree-level electroweak decay width
ΓLO,EW
H+W+h

for two different scales on the ∆ΓEW axis and for different renormalization schemes
used for the computation of the one-loop widths (left and right).

uncertainty on the one-loop electroweak partial decay widths, estimated from a change of the
renormalization schemes, is of the order of a few percent for the decay channels and points
in parameter space considered.

As briefly mentioned in Sec. 5.3, some renormalization schemes for the scalar mixing angles
considered in this thesis can lead to numerical instabilities, i.e. their application can lead
to large one-loop contributions to the electroweak partial decay widths. On the one hand,
this numerical instability of the one-loop results can appear in certain regions of parameter
space of the real 2HDM if e.g. the mixing angles α and β are set to such values that cer-
tain combinations of these two mixing angles become very small. Since these combinations
typically appear in the denominators of either the genuine one-loop vertex corrections or of
certain CTs of the partial decay widths, such a choice of α and β leads to an enhancement
of uncanceled one-loop contributions. On the other hand, an unsuitable choice of mixing
angle CTs can lead to an artificial increase of the one-loop partial decay widths if the mixing
angle CTs themselves become very small or large, leading to uncanceled contributions to the
partial decay width. While the former effect of numerical instability is restricted to certain
corners of parameter space, the latter appears more generally for a large variety of different
parameter sets.

In order to disentangle these two effects for a categorization of a renormalization scheme with
respect to its numerical stability, we perform a numerical analysis on the relative size of the
electroweak one-loop corrections, again quantified through ∆ΓEW as defined in Eq. (7.7), for
15 000 different input parameter sets randomly distributed in the parameter space of the real
2HDM denoted by the set “P3”, cf. Sec. 7.1. The electroweak tree-level and one-loop partial
decay widths are again calculated within the same input renormalization scheme. In contrast
to the analyses performed before, we consider the reference scheme of the mixing angles to
be equal to the input renormalization scheme for each parameter point in the set “P3” and
for each considered renormalization scheme, separately. Consequently, no conversion of the
mixing angles between the different schemes is required since we do not compare the results
computed within the different renormalization schemes directly with each other but instead
analyze each renormalization scheme with respect to its numerical stability separately. In
Fig. 7.4, we show the relative size ∆ΓEW of the electroweak one-loop corrections as a function
of the tree-level partial decay width ΓLO,EW

H+W+h
for the decay of a charged Higgs boson H+ into
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a pair of W+ and h bosons for several different renormalization schemes of the scalar mixing
angles. For both plots in the figure, we exclude the region where the tree-level partial decay
width is vanishing since in this case, the measure ∆ΓEW becomes very sensitive to the one-
loop corrections and is consequently not a suitable quantity for the estimate of the numerical
stability of the renormalization schemes.

On the left-hand side of Fig. 7.4, the difference ∆ΓEW is plotted up to values of ± 100 % as
a function of the tree-level width ΓLO,EW

H+W+h
. The results for the MS scheme, defined in the

framework of the alternative FJ tadpole scheme, mostly lie outside the plotted region with
relative differences up to ± 10 000 %. Hence, the MS scheme leads to one-loop corrections to
the partial decay widths that are orders of magnitude larger than the tree-level widths over a
large range of input parameter sets and the loop-corrected decay widths become unphysical.
This reconfirms the analysis performed in [227] for the same decay channel and indicates that
the MS scheme of the scalar mixing angles is an unsuitable scheme for the computation of
partial decay widths and BRs for the decays of the Higgs bosons in the 2HDM27. Analogously,
the process-dependent scheme“proc2”defined via the loop-corrected decay widths of the decay
channels A → τ+ τ− and h → τ+ τ− also leads to huge one-loop corrections. While in this
case the relative differences ∆ΓEW are typically smaller than the ones computed in the MS
scheme, they nevertheless are as large as ±1000 % over a large region of the parameter space.
Such huge corrections indicate that the decay widths need to be corrected by e.g. including
two-loop contributions or applying resummation methods, since corrections up to ± 10 000 %
are unphysical at fixed one-loop order, as discussed in Sec. 6.2. Moreover, relative corrections
below −100 % correspond to negative one-loop partial decay widths, which is unphysical as
well. In these cases, the loop-corrected partial decay widths should be discarded and not used
for any phenomenological studies.

For the process-dependent scheme “proc1” and the p∗-pinched scheme “po∗” on the other hand,
the relative corrections are typically orders of magnitude smaller. In order to analyze their
size further, we present on the right-hand side of Fig. 7.4 again the relative electroweak
corrections ∆ΓEW as a function of the tree-level decay widths, but with a smaller range of
the ∆ΓEW axis. Apart from the “proc1” and “po∗” schemes also presented on the left-hand
side of the figure, we moreover present the numerical results for the OS-pinched scheme
“pOSc” and the rigid symmetry scheme “BFMS”. As can be inferred from the plot, the
results for the process-dependent scheme are relatively widespread and can become larger
than 25 % over a wide range of input parameter sets, while most of the results computed in
the two pinched schemes and the rigid symmetry scheme lie in a band within ±25 %, with the
majority of the deviations ∆ΓEW being between −12 % and 10 %. Consequently, these three
renormalization schemes lead to numerically stable results for the considered decay channel
and for the parameter sets used for the analysis. While we do not show the numerical results
for the other renormalization schemes introduced in Sec. 5.3 explicitly here, we have verified
that the relative corrections ∆ΓEW computed within the other PT-based schemes and the
physical OS schemes are of a similar size as the ones computed in the two pinched schemes
and the rigid symmetry scheme shown on the right-hand side of Fig. 7.4.

27Although we only present results for the MS scheme in the alternative FJ tadpole scheme here, we confirmed
that analogous conclusions can be drawn for the MS scheme defined in the standard tadpole scheme. However,
since the latter not only leads to numerically unstable results but moreover also to GFP-dependent partial
decay widths, we do not present the numerical results for this scheme here explicitly.



CHAPTER 8

Conclusion of Part II

The key objective of Part II of this thesis was the calculation of the electroweak one-loop
corrections to the partial decay widths of all Higgs bosons of the 2HDM and the development
of the new computer program 2HDECAY, thereby increasing the precision of the partial decay
widths and BRs of all Higgs boson decays.

To that end, we presented the electroweak Lagrangian and the scalar potential of the 2HDM.
In the mass basis, the model features two CP-even Higgs bosons h and H, one CP-odd Higgs
boson A and the charged Higgs bosons H± together with the corresponding scalar mixing
angles α and β of the CP-even and CP-odd/charged sectors, respectively.

We presented the electroweak one-loop renormalization of the independent parameters of the
2HDM. For the renormalization of the scalar mixing angles, we presented several different
renormalization schemes based on MS conditions, (physical) OS-motivated approaches, rigid
symmetries, process-dependent definitions and on the application of the PT. We characterized
the different schemes with respect to the three desirable criteria of process independence, GFP
independence and numerical stability.

The electroweak partial decay widths of all Higgs bosons of the 2HDM at tree level and one-
loop order were calculated with the newly developed tool 2HDMCalc and the resulting decay
widths were consistently combined with the tree-level and loop-corrected widths provided by
HDECAY 6.52, including state-of-the-art QCD corrections, where applicable, to form the newly
developed Python program 2HDECAY. The program allows for the computation of the BRs and
partial decay widths of all Higgs bosons of the real 2HDM both excluding and including the
newly computed electroweak corrections to the Higgs decays. Being fast, 2HDECAY moreover
enables efficient phenomenological studies on the decays of the Higgs bosons of the real 2HDM.

We demonstrated a compact numerical analysis on the size of the electroweak corrections
implemented in 2HDECAY. To that end, we defined input parameter sets for the real 2HDM
which are compatible with most recent theoretical and experimental constraints. We showed
that the electroweak corrections to the partial decay widths and BRs, in particular for those of
the additional non-SM-like Higgs bosons of the 2HDM, can become sizeable and hence, they
are of importance for the calculation of the BRs and partial decay widths to highest precision.
We presented a comparison of the size of selected one-loop decay widths computed within
different renormalization schemes of the scalar mixing angles, thereby providing an estimate
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of the remaining theoretical uncertainties of the numerical results due to missing higher-order
corrections. For the considered decay channels, we found that the remaining uncertainty is
of the order of a few percent over a large range of chosen input parameter values. Moreover,
we compared the size of the one-loop corrections computed within different renormalization
schemes for 15 000 different input parameter sets in order to categorize the schemes with
respect to their numerical stability. For the decay channel considered in this analysis, we
found that the MS and the process-dependent schemes led to numerically unstable results for
a majority of the considered input parameters. On the other hand, the analysis showed that
the PT-based schemes, the physical OS scheme as well as the rigid symmetry scheme lead to
numerically stable results for a majority of all input parameter sets considered.



Part III.

Electroweak One-Loop Corrections to
Higgs Boson Decays in the N2HDM





CHAPTER 9

A Brief Introduction to the N2HDM

Part III of this thesis is dedicated to the calculation of the partial decay widths of all Higgs
bosons of the N2HDM at tree level and one-loop order in the electroweak corrections, with
the latter being calculated for OS and non-loop induced decays, and their combination with
the state-of-the-art QCD corrections implemented in N2HDECAY in form of a newly developed
program ewN2HDECAY, thereby enabling a more precise calculation of the BRs and partial
decay widths of the Higgs bosons of the N2HDM. In our work, we consider a CP-conserving
N2HDM with an additional discrete Z2 symmetry which is softly broken.

We start in Sec. 9.1 with the introduction of the electroweak Lagrangian of the N2HDM and
all its contributing terms. Since we consider the calculation of the electroweak corrections in
our work, we restrict the introduction of the N2HDM to its electroweak sector. In Sec. 9.2,
we discuss the scalar potential of the N2HDM in greater detail, focusing on the differences
between the N2HDM and the 2HDM with respect to the extended scalar sector of the former
model. In the subsequent Sec. 9.3, we briefly discuss the different realizations of the N2HDM
concerning the Yukawa couplings of the Higgs doublets to the fermion sector. This chapter
concludes in Sec. 9.4 with an overview over the set of independent parameters which are used
for the calculation of the partial decay widths and branching ratios of the Higgs boson decays
in ewN2HDECAY.

9.1. The Electroweak Lagrangian of the N2HDM

We consider a general CP-conserving N2HDM [19] with two additional discrete global Z2

symmetries, one of which is softly broken while the other one is retained as an exact symmetry
of the Lagrangian in the unbroken phase. In contrast to the CP-conserving 2HDM considered
in Part II, the N2HDM contains an additional real SU(2)L singlet Φs with weak hypercharge
Y = 0. The electroweak Lagrangian of the N2HDM is given by

LEW
N2HDM = LYM + LF + LN2HDM

S + LYuk + LGF + LFP . (9.1)

Most of these terms are formally equivalent to the ones present in the electroweak Lagrangian
of the 2HDM as defined in Sec. 4.1 and their explicit forms are presented for the 2HDM
e.g. in [168] from which their forms for the N2HDM can be directly inferred. As for the
2HDM, we use the class of Rξ gauges [218,219] as a gauge-fixing procedure.
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The scalar Lagrangian LN2HDM
S of the N2HDM contains the kinetic terms of the scalar fields

as well as the scalar potential. It comprises of all additional contributions stemming from the
gauge singlet which give rise to the additional scalar sector of the N2HDM in comparison to
the 2HDM. We describe these additional contributions to the scalar Lagrangian in detail in
the subsequent Sec. 9.2. Due to the extended scalar sector and the resulting modified rotation
of the scalar fields from the gauge to the mass basis, the Yukawa Lagrangian LYuk containing
the couplings between the fermionic and scalar fields is slightly modified in comparison to the
2HDM as well. We discuss these modifications and present the Yukawa coupling parameters
of the N2HDM in Sec. 9.3.

9.2. The Scalar Potential

The scalar Lagrangian of the general CP-conserving N2HDM is an extension of the scalar
Lagrangian of the 2HDM presented in Eq. (4.3) which accounts for the additional SU(2)L
singlet Φs contained in the model. The explicit form of the Lagrangian is given by

LN2HDM
S =

2∑
i=1

(DµΦi)
†(DµΦi) + (∂µΦs)(∂

µΦs)− VN2HDM , (9.2)

where the covariant derivative Dµ is defined in Eq. (4.2). The explicit form of the scalar
potential is given by [19]

VN2HDM =
1

2
m2
sΦ

2
s +

1

8
λ6Φ4

s +
1

2
λ7

(
Φ†1Φ1

)
Φ2
s +

1

2
λ8

(
Φ†2Φ2

)
Φ2
s + V2HDM . (9.3)

The potential contains the real mass parameter ms and the three dimensionless coupling
constants λi (i = 6, 7, 8) which, together with the parameters m11, m22, m12 and λi (i =
1, ..., 5) stemming from the 2HDM potential V2HDM, are all independent parameters of the
tree-level scalar potential of the N2HDM in the gauge basis.

We impose two discrete symmetries Z2 on the Lagrangian of the N2HDM. The first discrete
Z2 symmetry is analogous to the 2HDM and corresponds to the invariance of the Lagrangian
under the simultaneous field transformations

Φ1 → Φ1 , Φ2 → −Φ2 , Φs → Φs . (9.4)

We break this symmetry softly by allowing the parameter m2
12 to be non-vanishing. The

second discrete Z2 symmetry corresponds to the invariance of the Lagrangian under the
simultaneous transformations

Φ1 → Φ1 , Φ2 → Φ2 , Φs → −Φs . (9.5)

In the realization of the N2HDM studied in our work, this symmetry is retained in the
unbroken phase of the potential.

Analogous to the 2HDM, we introduce two VEVs vi (i = 1, 2) for the two SU(2)L doublets Φi

and additionally a VEV vs for the SU(2)L singlet Φs. After EWSB the doublet and singlet
fields can be expanded as follows,

Φ1 =

 ω+
1

v1 + ρ1 + iη1√
2

 , Φ2 =

 ω+
2

v2 + ρ2 + iη2√
2

 , Φs = vs + ρs , (9.6)

where in comparison to the 2HDM we introduced the additional real scalar field ρs which
leads to the presence of an additional CP-even Higgs boson in the N2HDM. The CP-odd and
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charged sectors on the other hand do not change with respect to the 2HDM. Likewise, the
characteristic parameter describing the ratios of the VEVs is given by

tβ ≡
v2

v1
. (9.7)

By inserting the doublet and singlet expansions of Eq. (9.6) into the scalar potential in
Eq. (9.3), we obtain28

VN2HDM =
1

2
(ρ1 ρ2 ρs)M2

ρ


ρ1

ρ2

ρs

+ T1ρ1 + T2ρ2 + Tsρs + · · · . (9.8)

The application of the minimum conditions leads to the tree-level conditions

T1|tree = T2|tree = Ts|tree = 0 (9.9)

for the three tadpole terms

T1 ≡ m2
11v1 −m2

12v2 +
1

2
λ1v

3
1 +

1

2
λ345v1v

2
2 +

1

2
λ7v1v

2
s , (9.10)

T2 ≡ m2
22v2 −m2

12v1 +
1

2
λ1v

3
3 +

1

2
λ345v

2
1v2 +

1

2
λ8v2v

2
s , (9.11)

Ts ≡ m2
svs +

1

2
λ6v

3
s +

1

2
λ7v

2
1vs +

1

2
λ8v

2
2vs , (9.12)

where λ345 is defined in Eq. (4.5). The minimum conditions can be used to eliminate m2
11,

m2
22 and m2

s in favor of the tadpole terms and the other parameters of the scalar potential.
The 3× 3 mass matrix M2

ρ introduced in Eq. (9.8) is given by

M2
ρ ≡


m2

12

v2

v1
+ λ1v

2
1 −m2

12 + λ345v1v2 λ7v1vs

−m2
12 + λ345v1v2 m2

12

v1

v2
+ λ2v

2
2 λ8v2vs

λ7v1vs λ8v2vs λ6v
2
s

+


T1

v1
0 0

0
T2

v2
0

0 0
Ts
vs

 , (9.13)

while the mass matrices M2
η and M2

ω of the CP-odd and charged scalar fields are the same
as the ones presented for the 2HDM in Eqs. (4.29) and (4.30), respectively. We transform
the scalar potential from the gauge basis to the mass basis by means of the CP-even 3 × 3
rotation matrix

R ≡


cα1cα2 sα1cα2 sα2

− (cα1sα2sα3 + sα1cα3) cα1cα3 − sα1sα2sα3 cα2sα3

−cα1sα2cα3 + sα1sα3 − (cα1sα3 + sα1sα2cα3) cα2cα3

 , (9.14)

where we introduced the three CP-even scalar mixing angles αi (i = 1, 2, 3), as well as by
means of the CP-odd and charged 2×2 rotation matricesRβn andRβc , respectively, generically

28Here and in the following, we do not explicitly introduce a superscript “N2HDM” for indicating that the
parameters, tadpole terms, etc. differ with respect to the corresponding quantities presented for the 2HDM in
Sec. 4.2. Instead, the difference of the parameters between the two models is implicitly understood.
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defined in Eq. (4.31). Analogously to the CP-odd and charged sectors, the rotation matrix
R transforms the CP-even mass matrix into the diagonal form

D2
ρ ≡ RT

αM2
ρRα =


m2
H1

0 0

0 m2
H2

0

0 0 m2
H3

+


TH1H1 TH1H2 TH1H3

TH1H2 TH2H2 TH2H3

TH1H3 TH2H3 TH3H3

 , (9.15)

where we introduced the squared masses m2
Hi (i = 1, 2, 3) and rotated tadpole parameters as

THiHj ≡ Ri1Rj1
T1

v1
+Ri2Rj2

T2

v2
+Ri3Rj3

Ts
vs

(i, j = 1, 2, 3) . (9.16)

Per convention, we impose an ordering of the CP-even Higgs bosons with ascending mass,

mH1 ≤ mH2 ≤ mH3 . (9.17)

The CP-even rotation matrix R transforms the fields in the gauge basis into the physical
Higgs boson fields Hi via the transformation

H1

H2

H3

 = R


ρ1

ρ2

ρs

 . (9.18)

Together with the CP-odd Higgs boson A and the charged Higgs bosons H±, these form
the mass basis of the scalar potential. The dimensionless coupling constants λi (i = 1, ..., 8)
of the unbroken scalar potential are connected to the parameters in the mass basis via the
relations [57]

λ1 =
1

v2c2
β

[
3∑
i=1

m2
HiR

2
i1 −

sβ
cβ
m2

12

]
, (9.19)

λ2 =
1

v2s2
β

[
3∑
i=1

m2
HiR

2
i2 −

cβ
sβ
m2

12

]
, (9.20)

λ3 =
1

v2

[
1

sβcβ

3∑
i=1

m2
HiRi1Ri2 + 2m2

H± −
1

sβcβ
m2

12

]
, (9.21)

λ4 =
1

v2

[
m2

12

sβcβ
+m2

A − 2m2
H±

]
, (9.22)

λ5 =
1

v2

[
m2

12

sβcβ
−m2

A

]
, (9.23)

λ6 =
1

v2
s

3∑
i=1

m2
HiR

2
i3 , (9.24)

λ7 =
1

vvscβ

3∑
i=1

m2
HiRi1Ri3 , (9.25)

λ8 =
1

vvssβ

3∑
i=1

m2
HiRi2Ri3 . (9.26)
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κHiV V κ̃HiV H

H1 cα2cβ−α1 −cα2sβ−α1

H2 −sα2sα3cβ−α1 + cα3sβ−α1 sα2sα3sβ−α1 + cα3cβ−α1

H3 −sα2cα3cβ−α1 − sα3sβ−α1 sα2cα3sβ−α1 − sα3cβ−α1

Table 9.1.: Definition of the coupling factors κHiV V and κ̃HiV H which characterize the
interaction between a CP-even Higgs and two gauge bosons as well as pairs of W∓H± and
Z A, respectively.

All other relations concerning the CP-odd and charged sectors are the same as in the 2HDM
and presented in Sec. 4.2. Especially, the masses of the Goldstone bosons G0 and G±, be-
fore and after the introduction of the gauge-fixing Lagrangian, as well as the masses of the
corresponding Faddeev-Popov ghosts and gauge bosons are unchanged.

Due to the extended CP-even sector in the N2HDM, the coupling constants between the Higgs
bosons and the gauge bosons are modified in comparison to the SM. The Feynman rules
corresponding to the tree-level interaction of a CP-even Higgs boson Hi with two massive
gauge bosons V (V = W±, Z) is given by

igµνκHiV V ghSMV V , (9.27)

where ghSMV V denotes the SM coupling factor, while for the interaction of a CP-even Higgs
boson Hi with either Z A or W∓H±, the Feynman rules are given by

mZ

v
(pHi − pA)µκ̃HiV H , (9.28)

±imW

v
(pHi − pH±)µκ̃HiV H , (9.29)

where px (x = Hi, A,H
±) denotes the four-momentum of the corresponding particle. In

Table 9.1, we present the coupling factors κHiV V and κ̃HiV H . For later convenience, we

moreover introduce the short-hand notations O(x)
HiHj

(x = 1, 2, 3) for combinations of the
coupling constants between the Higgs bosons and the gauge bosons,

O(1)
HiHj

= κ̃HiV H κ̃HjV H , (9.30)

O(2)
HiHj

= κHiV V κHjV V , (9.31)

O(3)
HiHj

= κHiV V κ̃HjV H . (9.32)

The 2HDM limit of the N2HDM is obtained by simultaneously applying the limits

α1 −→ α+
π

2
, (9.33)

α2 −→ 0 , (9.34)

α3 −→ 0 , (9.35)

vs −→ ∞ . (9.36)

With this phase convention, the mixing angle α1 of the N2HDM is related to the mixing angle
α of the 2HDM and the Higgs bosons are assigned as H1 → h and H2 → H. In the 2HDM
limit, all contributions stemming from the SU(2)L singlet Φs and the corresponding physical
Higgs boson H3 decouple and the particle spectrum of the 2HDM is obtained.
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N2HDM type Y l
1 Y l

2 Y l
3 Y l

4 Y d
1 Y d

2 Y d
3 Y d

4

I R12/sβ R22/sβ R32/sβ 1/tβ R12/sβ R22/sβ R32/sβ 1/tβ

II R11/cβ R21/cβ R31/cβ −tβ R11/cβ R21/cβ R31/cβ −tβ
lepton-specific R11/cβ R21/cβ R31/cβ −tβ R12/sβ R22/sβ R32/sβ 1/tβ

flipped R12/sβ R22/sβ R32/sβ 1/tβ R11/cβ R21/cβ R31/cβ −tβ

Table 9.2.: Introduction of the Yukawa coupling parameters for each type of the N2HDM
considered in this work.

9.3. The Yukawa Couplings and the Four Types of N2HDMs

The Yukawa Lagrangian LYuk connects the scalar sector of the N2HDM with the fermion
sector. Since the singlet field Φs does not directly couple to the fermion doublets and singlets,
the description of the Yukawa Lagrangian is analogous to the corresponding Lagrangian in
the 2HDM as presented in Sec. 4.3. Due to imposing the discrete Z2 symmetry on the two
Higgs doublets, which is only softly broking in the case of a non-vanishing term m2

12, there are
four different possibilities of coupling the two Higgs doublets to the fermions as presented in
Table 4.1. Analogous to the 2HDM, the softly broken Z2 symmetry leads to the assignment
of exactly one Higgs doublet per fermion field type and consequently, the N2HDM considered
in our work is free of FCNCs at tree level.

While the Yukawa Lagrangians of the 2HDM and N2HDM are formally the same, the coupling
constants of the physical Higgs bosons Hi to the fermions f nevertheless differ between the
two models due to the extended CP-even sector, parametrized by the CP-even rotation matrix
in Eq. (9.14). In our work, we parametrize the Yukawa coupling constants through Yukawa

coupling parameters Y f
i (i = 1, ..., 4) as defined by the corresponding terms in the Yukawa

Lagrangian,

LYuk ⊃ −
3∑
i=1

mf

v
Y f
i ψfψfHi +

2imf

v
Iz,fW Y f

4 ψfγ5ψfA , (9.37)

where Iz,fW denotes the third component of the weak isospin of the corresponding fermion field

ψf . In Table 9.2, we present the explicit values of Y f
i for each type of N2HDM.

9.4. Set of Independent Parameters

We conclude this chapter with a presentation of all independent parameters necessary for the
calculation of the electroweak one-loop corrections to the decay widths of the Higgs bosons in
the N2HDM with the newly developed computer program ewN2HDECAY, further described in
Chapter 11. To that end, we combine the electroweak one-loop corrections with the state-of-
the-art QCD corrections implemented in the computer program N2HDECAY. As described in
Sec. 4.4 for the 2HDM, N2HDECAY analogously requires the electromagnetic coupling constant
αem(0) in the Thomson limit, the strong coupling constant αs as well as the total decay widths
ΓW and ΓZ of the W± and Z bosons. These, together with the parameters required for the
evaluation of the electroweak one-loop corrections, are combined into the set of independent
parameters in the mass basis of the N2HDM as used in our work,

{GF , αs,ΓW ,ΓZ , αem,mW ,mZ ,mf , Vij , tβ,m
2
12, vs, α1, α2, α3,mH1 ,mH2 ,mH3 , (9.38)

mA,mH±} .
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For the calculation of the electroweak corrections, most of these input parameters require
renormalization. In the subsequent Chapter 10, we present the electroweak renormalization
of these parameters.





CHAPTER 10

The Renormalization of the N2HDM in a Nutshell

The calculation of the electroweak one-loop corrections to the partial decay widths of the
Higgs bosons of the N2HDM entails the computation of UV-divergent loop integrals. As
discussed in Sec. 3.1 in general, we regulate these UV divergences by means of DREG. For
the renormalization of these UV divergences, we adopt the schemes applied to the independent
parameters of the 2HDM in Chapter 5 and extend them to account for the additional CP-even
Higgs boson in the N2HDM. Since these two models mainly differ with respect to their CP-
even sectors, we restrict the discussion of the renormalization of the N2HDM to the differences
arising through its extended scalar sector in the following.

Starting with Sec. 10.1, we recapitulate the importance of the proper renormalization of the
minimum conditions of the scalar potential with respect to GFP-independent one-loop partial
decay widths. In the subsequent Sec. 10.2, we present the renormalization of the gauge, scalar
and fermion sectors while the renormalization of the four scalar mixing angles of the N2HDM
is presented in Sec. 5.3. Finally, in Sec. 10.4 and Sec. 10.5, we present the MS renormalization
of the soft-Z2-breaking scale m2

12 and the singlet VEV vs, respectively.

10.1. Renormalization of the Tadpoles

As discussed in detail in Sec. 5.1 for the 2HDM, the proper application of the minimum
conditions of the scalar potential beyond tree level is crucial for the formulation of GFP-
independent renormalization schemes for the scalar mixing angles as well as for obtaining
GFP-independent partial decay widths at the one-loop level. The corresponding treatment
of the vacuum structure of the scalar potential, or equivalently of the tadpole terms, can be
directly transferred to the case of the N2HDM. Since we discussed both the standard and the
alternative FJ tadpole scheme in detail in Sec. 5.1 for the 2HDM, we only recapitulate the
key ideas behind the two approaches in the following.

In the commonly applied standard tadpole scheme, we introduce CTs for the tadpole terms
defined in Eqs. (9.10) to (9.12) by splitting the bare tadpole terms into renormalized tadpole
terms and their corresponding CTs,

Ti → Ti + δTi (i = 1, 2, s) . (10.1)
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The renormalization conditions imposed on the tadpoles in the standard tadpole scheme are
given by

Ti = 0 (i = 1, 2, s) , (10.2)

thereby minimizing the loop-corrected potential. As a consequence of this condition, no
explicit tadpole topologies have to be considered in a one-loop calculation with the exception
of the appearance of the rotated tadpole CTs δTHiHj (i, j = 1, 2, 3) in the CTs of the scalar
mass matrices. We present their explicit forms in Eqs. (C.5) to (C.11).

In the alternative FJ tadpole scheme, extended to the N2HDM for the first time in the course
of this thesis and published in [255], the proper minima of the scalar potential are defined
through the GFP-independent tree-level scalar potential. In order to account for the proper
minimization of the NLO potential, the VEVs receive the shifts

vi → vi + δvi (i = 1, 2, s) , (10.3)

with the VEV CTs δvi. In the alternative FJ scheme, we impose the renormalization condition
that the VEVs vi on the right-hand side of Eq. (10.3) correspond to the tree-level VEVs which
represent the proper minima of the potential. Thereby, the CTs δvi of the VEVs are connected
to tadpole diagrams as shown in Eq. (C.12) and as a consequence, tadpole diagrams have to
be considered in the calculation of all self-energies and vertex corrections. We summarize the
effects of this alternative treatment of the minimum conditions in App. C.1.

Since the VEVs defined in the alternative FJ tadpole scheme are manifestly GFP-independent
quantities, the mass CTs defined through these VEVs become GFP-independent as well.
In the alternative treatment of the tadpoles, a GFP-independent definition of the scalar
mixing angle CTs is required. Providing such GFP-independent renormalization schemes,
cf. Sec. 10.3, allows for the calculation of partial decay widths at electroweak one-loop level
which become manifestly GFP-independent quantities as well.

10.2. Renormalization of the Gauge, Scalar and Fermion Sec-
tors

We perform the renormalization of the gauge, scalar and fermion sectors mostly in the OS
scheme. Due to the similarities of the gauge and the fermion sectors of the N2HDM and the
2HDM, we restrict the presentation of the renormalization to the differences between the two
models.

Renormalization of the gauge sector
The gauge sectors of the N2HDM and 2HDM are identical. As a consequence, we can directly
adopt the renormalization of the gauge sector in the latter model, presented in Sec. 5.2, to
the N2HDM. The explicit forms of the corresponding CTs are given in App. C.2.

Renormalization of the scalar sector
The masses and the fields corresponding to the CP-even Higgs bosons of the N2HDM are
promoted to one-loop order by introducing CTs and WFRCs as follows,

m2
Hi → m2

Hi + δm2
Hi , (10.4)

H1

H2

H3

 →


1 +

δZH1H1

2

δZH1H2

2

δZH1H3

2
δZH2H1

2
1 +

δZH2H2

2

δZH2H3

2
δZH3H1

2

δZH3H2

2
1 +

δZH3H3

2




H1

H2

H3

 . (10.5)
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These CTs and WFRCs of the CP-even sector are directly given by applying the generic
formulae for the OS renormalization of scalar multiplets presented in Eqs. (3.12) to (3.14).
Since the CP-odd and charged sectors of the N2HDM do not change with respect to the
2HDM, they are promoted to one-loop order as described in Sec. 5.2. The explicit forms of
the CTs and WFRCs of all scalar fields of the N2HDM are presented in App. C.3.

Renormalization of the fermion sector
The introduction of WFRCs for all fermionic fields and the promotion of the fermion masses
and the CKM matrix elements to one-loop order is exactly analogous to the 2HDM. For the
Yukawa coupling parameters defined in Table 9.2, we introduce renormalized parameters and
their CTs as follows,

Y f
i → Y f

i + δY f
i (f = l, d) . (10.6)

The fermion WFRCs and mass CTs are renormalized in the OS scheme, while for the CKM
matrix elements, we adopt the manifestly GFP-independent scheme presented in [236]. The
explicit forms of all WFRCs and CTs of the fermion sector, together with explicit expressions
for the CTs of the Yukawa coupling parameters δY f

i (f = l, d), are given in App. C.4.

10.3. Renormalization of the Scalar Mixing Angles αi and β

We promote the scalar mixing angles αi (i = 1, 2, 3) and β to one-loop order by splitting
them up into renormalized mixing angles and CTs as follows,

αi → αi + δαi (i = 1, 2, 3) , (10.7)

β → β + δβ . (10.8)

As for the scalar mixing angles in the 2HDM, renormalizing αi and β in the N2HDM is
non-trivial since there is no obvious renormalization scheme that connects the CTs to e.g. ob-
servables as it is the case for OS-renormalized masses. In our work, we adopt the three
desirable criteria for a renormalization scheme of the mixing angle β as presented in [238],
namely GFP independence, process independence and numerical stability, and use them as a
guideline for the renormalization of all four scalar mixing angles in the N2HDM. Some of the
renormalization schemes for the mixing angle CTs considered in this chapter resemble the ones
presented in Sec. 5.3 for the 2HDM. Hence, we only briefly present these adopted schemes in
the following. All renormalization schemes presented in this section are implemented in the
newly developed computer program ewN2HDECAY.

MS scheme
The simplest choice of renormalizing the angles αi and β in the N2HDM is the renormalization
via MS conditions. As analyzed in [226, 239] for the 2HDM, such a scheme can lead to
one-loop partial decay widths which commonly become orders of magnitude larger than the
corresponding widths at tree level. Consequently, we expect similarly large NLO corrections
to appear in the N2HDM when the MS scheme is imposed on the renormalization of the mixing
angles. Moreover, we want to emphasize that the MS scheme in the framework of the standard
tadpole scheme leads to manifestly GFP-dependent one-loop decay widths. Nevertheless, we
implement this scheme in ewN2HDECAY as a reference for a numerical comparison with results
computed in other renormalization schemes. Technically, imposing MS conditions on the
mixing angle CTs δαi and δβ is equivalent with allocating solely the UV-divergent parts
proportional to ∆ as defined inEq. (3.2) to them while setting their finite parts to zero.
As a consequence of these MS conditions, the mixing angle CTs become dependent on the
renormalization scale µR at which they are defined. The resulting CTs in the MS scheme are
presented in App. C.5.1.
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Adapted KOSY scheme
The KOSY scheme, proposed for the CTs of the scalar mixing angles of the 2HDM in [222],
can be adapted to the extended scalar sector of the N2HDM in a straightforward way. The
key idea of the scheme is the connection of the scalar mixing angle CTs to off-diagonal scalar
WFRCs by temporarily switching between the gauge and mass bases of the scalar sector. As
a consequence, the CTs αi and β are connected to the off-diagonal WFRCs of the CP-even
and CP-odd or charged sectors, respectively. In the framework of both the standard and
the alternative FJ tadpole scheme, these WFRCs contain intricate GFP dependences which
remain uncanceled in the calculation of a decay amplitude containing either of the mixing
angle CTs. As a consequence, the adapted KOSY scheme leads to manifestly GFP-dependent
partial decay widths at one-loop order. Nevertheless, we consider this scheme in our work and
implement it in ewN2HDECAY as a reference, since the one-loop corrections to the decay widths
calculated in this scheme are typically of moderate size and hence, the scheme is considered
to be numerically stable. The explicit expressions for the CTs δαi and β in the adapted
KOSY scheme, defined both within the standard and the alternative FJ tadpole schemes, are
presented in App. C.5.2.

p∗-pinched scheme
In order to retain the OS-motivated definition provided by the adapted KOSY scheme without
introducing intricate GFP dependences into the calculation of the one-loop partial decay
widths, the p∗-pinched scheme, based on the pinch technique, can be extended from the
2HDM to the N2HDM as worked out for the first time in this thesis and as published in [255].
The scheme relies on the application of the alternative FJ tadpole scheme which requires
a manifestly GFP-independent definition of the scalar mixing angle CTs. By replacing the
self-energies appearing in the definitions of the CTs δαi and δβ in the adapted KOSY scheme
with the pinched scalar self-energies of the N2HDM, the mixing angle CTs become manifestly
GFP-independent quantities themselves and as a consequence, the one-loop partial decay
widths calculated in this scheme become GFP-independent as well. The pinched scalar self-
energies differ from the self-energies Σtad(p2) in the alternative FJ scheme by additional terms
Σadd(p2). However, at the p∗ scale defined in Eq. (5.26), these additional terms identically
vanish and as a consequence, the mixing angle CTs are solely defined through the self-energies
Σtad(p2

∗). In App. C.5.3, we present the explicit forms of the CTs δαi and δβ in the p∗-pinched
scheme.

OS-pinched scheme
The OS-pinched scheme differs from the p∗-pinched scheme solely by the scale p2 at which the
pinched self-energies are evaluated. In this scheme, the scales used in the off-diagonal WFRCs
resemble the scales used in the adapted KOSY scheme. Due to this, the aforementioned
additional self-energy contributions Σadd(p2) contained in the pinched self-energies, derived
for the N2HDM for the first time in the course of this thesis and as published in [255], need
to be taken into account. In contrast to the 2HDM, these additional contributions are UV-
divergent by themselves. However, in the definition of the mixing angle CTs they appear
solely in UV-finite combinations and hence they retain the UV finiteness of the one-loop
partial decay widths. The analytic forms of δαi and δβ in the OS-pinched scheme together
with the additional self-energy contributions Σadd(p2) are presented in App. C.5.4.

10.4. Renormalization of the Soft-Z2-Breaking Parameter m2
12

The soft-Z2-breaking parameter m2
12 is promoted to one-loop order by splitting it into its

renormalized parameter and its CT,

m2
12 → m2

12 + δm2
12 . (10.9)
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In our work, we choose to renormalize m2
12 in the MS scheme, i.e. δm2

12 contains only UV-
divergent parts proportional to ∆, cf. Eq. (3.2). Since m2

12 is a genuine parameter of the
N2HDM potential in the unbroken phase, its CT is independent of the tadpole renormalization
and consequently, the UV-divergent terms allocated to δm2

12 do not differ in both tadpole
schemes. We present their explicit forms in App. C.6. Due to the MS renormalization of m2

12,
both the CT of the parameter as well as the parameter itself depend on the renormalization
scale µR at which the parameter is defined.

10.5. Renormalization of the Singlet Vacuum Expectation Value
vs

The last remaining parameter of the N2HDM that requires renormalization is the singlet
VEV vs. We split the parameter into its renormalized value and its CT according to

vs → vs + ∆vs , (10.10)

where we used the notation ∆vs to distinguish the additional CT ∆vs of the tree-level VEV
vs from the shift of the tadpoles introduced in Eq. (10.3) which accounts for the proper
minimum of the potential. This distinction is also applied for the doublet VEVs v1 and v2.
Once these two VEVs are shifted via δv1 and δv2 through Eq. (10.3), they are connected to
the renormalized VEV v via Eq. (4.9). In the alternative tadpole scheme, the renormalized
VEV vren corresponds to the tree-level VEV vtree which, by means of Eq. (4.16), can be
expressed in terms of the independent parameters mW and g as follows,

vren|FJ = vtree =
2mW

g

∣∣∣∣tree

. (10.11)

After the shift of the VEVs is performed, the tree-level parameters mW and g still need to be
renormalized by replacing them with their renormalized values and their corresponding CTs,

2mW

g

∣∣∣∣tree

→ 2mW

g

∣∣∣∣ren

FJ

+
2mW

g

(
δm2

W

2m2
W

− δg

g

)∣∣∣∣
FJ︸ ︷︷ ︸

≡∆v

. (10.12)

We want to emphasize that ∆v is unrelated to δv1 and δv2, which can also be inferred from
their different divergent structures.

For the singlet VEV vs, we similarly distinguish between δvs and ∆vs. In the alternative
tadpole scheme, δvs corresponds to the shift of the singlet VEV as shown in Eq. (10.3) and
the renormalized VEV vren

s equals the tree-level VEV vtree
s . Subsequently, the tree-level VEV

is renormalized by the CT ∆vs which we renormalize in the MS scheme. In the standard
tadpole scheme on the other hand, no VEV shift δvs is introduced and only the additional
VEV CT ∆vs needs to be specified. Within the standard tadpole scheme, it was shown in [266]
that such an additional CT of the VEV can contain at most UV-finite contributions if the
Lagrangian contains a rigid symmetry with respect to the field which corresponds to the VEV.
In the N2HDM, this is precisely the case for the SU(2)L gauge singlet Φs. Consequently, in
the standard tadpole scheme ∆vs is UV-finite and in this case, we choose to set the finite
part of the CT to zero. In App. C.7, we present an overview of the definition of ∆vs in both
tadpole schemes.





CHAPTER 11

Calculation of Higher-Order Higgs Boson Decays with ewN2HDECAY

In this chapter, we present the calculation of the electroweak one-loop corrections to the
partial decay widths and BRs of all Higgs bosons of the N2HDM and present the computer
program ewN2HDECAY which allows for a subsequent numerical analysis on the size of the
electroweak corrections. Due to the numerous decay channels that are considered and the
large amount of Feynman diagrams contributing to the decay amplitudes at one-loop level,
their calculation is automated as much as possible.

In Sec. 11.1, we present all Higgs boson decay channels considered in our work for the cal-
culation of the electroweak one-loop corrections. We briefly introduce the computer program
N2HDMCalc which allows for the automated calculation of the electroweak partial decay widths.
In the subsequent Sec. 11.2, we describe the computer program ewN2HDECAY which combines
the electroweak corrections computed with N2HDMCalc with the state-of-the-art QCD correc-
tions from N2HDECAY. Since ewN2HDECAY is structurally very similar to 2HDECAY and the as-
pects of combining the electroweak corrections with the corrections implemented in N2HDECAY

is analogous to the connection with HDECAY for the 2HDM, we only briefly recapitulate the
key ideas of the combination here.

11.1. Calculation of the Electroweak Decay Widths with N2HDM-

Calc

We consider the OS decays of all Higgs bosons of the N2HDM that are not loop-induced,
i.e. for the calculation of the electroweak corrections, we consider the following decays at tree
level and one-loop order:

� H1/H2/H3/A −→ f f̄ (f f̄ = s s̄, c c̄, b b̄, t t̄, µ− µ+, τ− τ+) ,

� H1/H2/H3 −→ V V (V V = Z Z, W±W∓) ,

� H1/H2/H3 −→ V S (V S = Z A, W±H∓) ,

� H1/H2/H3 −→ S S (S S = AA, H±H∓) ,

� H2 −→ H1H1 ,

� H3 −→ H1H1 ,
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� H3 −→ H2H2 ,

� H3 −→ H1H2 ,

� H± −→ V S (V S = W±H1, W
±H2, W

±H3, W
±A) ,

� H+ −→ f f̄ (f f̄ = u s̄, u b̄, c d̄, c s̄, c b̄, t d̄, t s̄, t b̄, νµ µ
+, ντ τ

+) ,

� A −→ V S (V S = Z H1, Z H2, Z H3, W
±H∓) .

In N2HDMCalc, we moreover compute the decays of the Higgs bosons into pairs of first-
generation fermions:

� H1/H2/H3/A −→ f f̄ (f f̄ = u ū, d d̄, e− e+) ,

� H+ −→ f f̄ (f f̄ = u d̄, νe e
+) .

Since these decays are overwhelmed by Dalitz decays S → f f̄ (′) γ (S = H1, H2, H3, A,H
±),

induced e.g. by the off-shell γ∗ → f f̄ splitting, they are not considered for any computations
performed in ewN2HDECAY, however.

The calculation of the partial decay widths at tree level and one-loop order is analogous to
the corresponding calculations in the 2HDM, described in Sec. 6.1. Therefore, we only briefly
recapitulate the key points of the calculation. All Feynman diagrams and corresponding decay
amplitudes of the Higgs decays are generated with the help of the Mathematica [247] package
FeynArts 3.9 [248]. The FeynArts model file of the real N2HDM required for generating the
amplitudes is obtained from SARAH 4.14.0 [267–270] with slight modifications added by hand
to account for the four different types of the N2HDM, cf. Sec. 9.3. The traces over the spinor
structures and the reduction of all tensor integrals to the basic set of ’t Hooft-Veltman scalar
integrals [249] is performed with the help of FeynCalc 8.2.0 [250,251]. Moreover, all tadpole
and self-energy diagrams required for the definition of the CTs and WFRCs are generated with
FeynArts and simplified with FeynCalc, as well. All analytic results are combined to form
the electroweak partial decay widths at tree level and one-loop order according to Eqs. (3.18)
and (3.23). For the numerical evaluation of the latter, we link LoopTools 2.15 [252]. For all
decays involving charged particles in the initial or final state, we moreover include the generic
formulae for the real corrections to the decay widths presented in [182, 183], applied to the
case of the N2HDM decays. The IR divergences stemming from the virtual massless photons
as well as from the radiated real photons are regulated by introducing a infinitesimal photon
mass as a regulator. The newly developed computer program N2HDMCalc allows for a semi-
automated computation of all aforementioned steps and automatically produces Fortran 90

code for all analytic results. N2HDMCalc can be downloaded from

https://github.com/marcel-krause/N2HDMCalc .

In the repository, we provide analytic results of all partial decay widths at LO and NLO,
including analytic formulae for the tadpole diagrams, self-energies and vertex corrections
through which the CTs and WFRCs are defined.

11.2. Description of ewN2HDECAY

The analytic results of the OS electroweak partial decay widths provided by N2HDMCalc are
integrated into the newly developed tool ewN2HDECAY [83] which can be downloaded from

https://github.com/marcel-krause/ewN2HDECAY .

https://github.com/marcel-krause/N2HDMCalc
https://github.com/marcel-krause/ewN2HDECAY
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It combines the electroweak corrections in a consistent fashion with all corrections already
implemented in N2HDECAY29 [57,58], consisting of

� state-of-the-art QCD corrections to the partial decay widths, where applicable,

� the calculation of the loop-induced decays into the final states g g, γ γ and Z γ, where
apart from the final state Z γ, higher-order QCD corrections are taken into account and

� the calculation of the following off-shell partial decay widths consisting of one particle
in the final state which is considered off-shell30, denoted by an asterisk,

◦ H1/H2/H3/A −→ t∗ t̄ ,

◦ H1/H2/H3 −→ Z∗A ,

◦ H1/H2/H3/A −→ W±∗H∓ ,

◦ H1/H2/H3 −→ W±∗W∓∗ ,

◦ H1/H2/H3 −→ Z∗ Z∗ ,

◦ H± −→ W±∗ S (S = H1, H2, H3, A) ,

◦ H+ −→ t∗ f̄ (f̄ = d̄, s̄, b̄) ,

◦ A −→ Z∗ S (S = H1, H2, H3) ,

For the calculation of the decay modes containing off-shell top quarks in the final state, the
required total width of the top quark is calculated internally in N2HDECAY.

Structure of ewN2HDECAY

In Fig. 11.1, we depict the flowchart of the program ewN2HDECAY, consisting of the main
wrapper file ewN2HDECAY.py written in Python. The wrapper iterates over all provided input
files. For each selected file, N2HDECAY is called first in a minimal run in order to convert the
provided MS charm and bottom quark masses to their OS values. These, together with all ad-
ditional input parameters provided in the selected input file, are then used for the calculation
of the electroweak partial decay widths at tree level and at one-loop order in the EW correc-
tions in the subprogram electroweakCorrections. Subsequently, the wraper calls N2HDECAY
in a second run in which all aforementioned state-of-the-art QCD corrections are computed
and consistently combined with the electroweak corrections. Finally, the wrapper produces
two output files for each selected input file. One file containing the BRs with and without
electroweak contributions and one file containing the OS and non-loop-induced partial decay
widths at tree level and one-loop order in the electroweak corrections, denoted by “BR” and
“EW” in Fig. 11.1 respectively. The latter file is particularly useful for studying the renor-
malization scheme dependence of the electroweak one-loop corrected partial decay widths.
As described generically in Sec. 3.5, the consistent comparison of the electroweak one-loop
corrected partial decay widths evaluated within different renormalization schemes requires
the conversion of the input parameters between the compared renormalization schemes. In
ewN2HDECAY, 10 different renormalization schemes for the scalar mixing angle CTs are imple-
mented. Moreover, the MS input parameters m2

12 and vs (and and also the mixing angles αi
(i = 1, 2, 3) and β in case that an MS scheme is chosen for their renormalization) are defined
at an arbitrarily chosen renormalization scale µR, while the computation of the partial decay
widths is performed at the arbitrarily chosen scale µout. In case that the two scales are chosen
to be different, an additional scale evolution of the MS parameters from µR to µout is required.

29The program package N2HDECAY can be downloaded from https://www.itp.kit.edu/~maggie/N2HDECAY/.
30Note that in N2HDECAY, the calculation of Higgs decays including off-shell Higgs bosons is disabled. These

decays are included in HDECAY for the approximation that the off-shell Higgs bosons dominantly decay into b b̄
final states, which is not justified for the additional Higgs bosons of the N2HDM in all ranges of parameter
space.

https://www.itp.kit.edu/~maggie/N2HDECAY/
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ewN2HDECAY.py

N2HDECAY

List of input files

mc(OS), mb(OS)

current file

EW 1-loop

LO

loop-corrected

output file (BR)

electroweakCorrections

N2HDECAY

List of output files

Iterate over all input files

ewN2HDECAY

QCD
off-shell

loop-induced

LO

output file (EW)

N2HDMCalc.py
analytic results

(minimal run)

(full run)

Figure 11.1.: Flowchart of ewN2HDECAY. The program consists of a main wrapper file
ewN2HDECAY.py which iterates over all input files provided by the user. For each input file,
the wrapper calls the subprograms N2HDECAY and electroweakCorrections. The program
creates two output files for each input file, one containing the electroweak partial decay widths
(EW) and one containing the BRs with and without the electroweak corrections (BR).

Combination of the electroweak corrections with N2HDECAY

Comparing the flowchart with the one of 2HDECAY in Fig. 6.1 reveals the narrow relationship
between the two programs. In fact, large parts of the program code of ewN2HDECAY are directly
inherited from 2HDECAY. Moreover, due to the similarities of the codes N2HDECAY and HDECAY,
the combination of the electroweak corrections with N2HDECAY can be analogously described
as in Sec. 11.2 for 2HDECAY. Consequently, we only briefly recapitulate the important aspects
of the combination in the following.

While the electroweak corrections use the fine-structure constant αem(mZ) at the Z boson
mass as independent input, N2HDECAY requires the Fermi constantGF for the calculation of the
state-of-the-art QCD corrections. For the conversion between the two schemes, higher-order
corrections in the conversion formulae would need to be included. Since these conversion
formulae are not implemented yet, we chose instead a pragmatic approximate solution in
ewN2HDECAY where we do not implement a full conversion between the two input schemes
but instead calculate the Fermi constant Gcalc

F as a function of the gauge boson masses mW
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ID Scheme Abbreviation Tadpole scheme δαi δβ

1/2 Adapted KOSY KOSYo/c standard (C.26)-(C.28) (C.29)/(C.30)

3/4 Adapted KOSY KOSYo/c alternative FJ (C.31)-(C.33) (C.34)/(C.35)

5/6 p∗-pinched p
o/c
∗ alternative FJ (C.36)-(C.38) (C.39)/(C.40)

7/8 OS-pinched pOSo/c alternative FJ (C.42)-(C.44) (C.45)/(C.46)

9 MS MS(stand) standard (C.24) (C.25)

10 MS MS(FJ) alternative FJ (C.24) (C.25)

Table 11.1.: Renormalization schemes of the four scalar mixing angles αi (i = 1, 2, 3) and β
of the real N2HDM used for the numerical analyses in Sec. 12.2, together their abbreviations
and the equations through which the mixing angle CTs are defined in each scheme.

and mZ and αem(mZ) by means of Eq. (4.21). We expect the numerical differences for the
decay widths calculated within the two schemes to be small. For consistently matching the
electroweak decay widths with the ones computed in N2HDECAY, we consequently rescale the
latter by powers of Gcalc

F /GF , where applicable. As for 2HDECAY, the fully combined partial
decay width is then given by Eq. (6.2), where we again assume that both the electroweak and
the state-of-the-art QCD corrections factorize. Since we calculate the electroweak corrections
only for non-loop-induced OS decays while the state-of-the-art QCD corrections implemented
in N2HDECAY moreover contain decay widths for off-shell and loop-induced decays, we want to
emphasize that the factorized electroweak contributions δEW given in Eq. (6.2) are only taken
into account if the considered decay channel is OS and not loop-induced. In all other cases,
only the state-of-the-art QCD contributions δQCD are taken into account and the partial
decay widths are calculated as given by Eq. (6.1). The calculation of the partial decay widths
for all of the aforementioned cases is presented as an overview in Table 6.2 for 2HDECAY which
analogously applies to ewN2HDECAY as well. The BRs of all decay channels are subsequently
calculated separately without and with the electroweak corrections by N2HDECAY via analogous
relations as the ones shown in Eqs. (6.3) and (6.4) for 2HDECAY, respectively.

Input file format
Since the input file format of ewN2HDECAY is similar to the one of 2HDECAY presented in
App. F.1, we restrict the presentation of the former to the differences with respect to 2HDECAY

in the following. The key difference between the input files of the two programs lies in the
extended scalar sector of the N2HDM with respect to the 2HDM. In the following listing, the
relevant differences in the input file are shown, together with the corresponding line numbers
in the input file:

...

10 N2HDM = 1

...

80 MH1 = 125.09 D0

81 MH2 = 286.094 D0

82 MH3 = 648.564 D0

83 alpha1 = 0.909079 D0

84 alpha2 = -0.155397D0

85 alpha3 = -1.54459D0

86 V_SING = 2440.84 D0

...

The input parameter N2HDM is analogous to the parameter 2HDM for 2HDECAY and in order
to calculate the BRs and partial decay widths for the N2HDM in ewN2HDECAY, the value
N2HDM = 1 has to be set. In contrast to 2HDECAY, the input value PARAM = 1 is always set
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Line Input name Name in Chapter 9 Allowed values and meaning

80 MH1 mH1 mass of the CP-even Higgs boson H1 in GeV

81 MH2 mH2
mass of the CP-even Higgs boson H2 in GeV

82 MH3 mH3
mass of the CP-even Higgs boson H3 in GeV

83 alpha1 α1 CP-even Higgs mixing angle α1 in radians

84 alpha2 α2 CP-even Higgs mixing angle α2 in radians

85 alpha3 α3 CP-even Higgs mixing angle α3 in radians

86 V_SING vs singlet VEV in GeV

Table 11.2.: Relevant physical input parameters for the calculations performed in
ewN2HDECAY which differ from the ones used in the input file of 2HDECAY, cf. Table 6.4. The
table is adopted from [83].

in ewN2HDECAY since the BRs and partial decay widths are always calculated as functions
of the masses of the physical Higgs bosons and the CP-even scalar mixing angles αi (i =
1, 2, 3) and not in terms of the N2HDM potential parameters, cf. Eq. (9.38). The reference
renormalization scheme REFSCHEM and the renormalization scheme REFSCHEM in which the
electroweak partial decay widths are evaluated are specified by the IDs as shown in Table 11.2.
The N2HDM-specific physical input parameters are shown in Table 11.2 together with their
line numbers in the input file as shown in the listing above, the corresponding parameters
as introduced in Chapter 9 and their allowed values and meanings. These parameters are
entered into the input file in FORTRAN double-precision format. All other input parameters
required for running ewN2HDECAY are analogous to the ones presented in Sec. 6.2 for 2HDECAY.

Output file format
For each input file, ewN2HDECAY provides one output file for the BRs of all implemented decay
channels as well as one output file containing the electroweak partial decay widths of the OS
non-loop-induced decay modes in case that OMIT ELW2 = 0 is set. The format of the output
files is analogous to the format of the output files of 2HDECAY as shown in App. F.2, with the
only difference between the output format of ewN2HDECAY being that in each block containing
the BRs or partial decay widths, the values of the three scalar mixing angles αi (instead of α
in the 2HDM) and additionally the value of the singlet VEV vs in the renormalization scheme
RENSCHEM and at the scale µout are printed out. Apart from this difference, the output files
provided by ewN2HDECAY follow the format as described in Sec. 6.2 for 2HDECAY.

Caveats
We want to point out that the electroweak partial decay widths calculated by ewN2HDECAY

can become very large or negative for certain points in the parameter space of the N2HDM.
The origin of these large contributions is analogously explained as in Sec. 6.2 for 2HDECAY,
i.e. unsuitable renormalization schemes can lead to numerical instabilities in the partial decay
widths, the electroweak one-loop corrections can be parametrically enhanced in case that
some coupling constants of the N2HDM become very large or small or the one-loop decay
widths become larger than the tree-level widths if the latter are more suppressed than the
former by small tree-level couplings. In these cases, the very large or negative partial decay
widths become unphysical and should hence be discarded and not used for phenomenological
analyses.



CHAPTER 12

Numerical Analysis with ewN2HDECAY

In this chapter, we present numerical analyses on the electroweak corrections to the BRs and
partial decay widths of the Higgs bosons of the real N2HDM by using ewN2HDECAY 1.0.1.

Beginning with Sec. 12.1, we briefly describe the scan procedure over the parameter space of
the real NMSSM for determining the input parameter sets that are used for the calculation
of the results presented in this chapter. In the subsequent Sec. 12.2, analyses on the BRs and
partial decay widths for selected Higgs decay channels are presented. Moreover, a comparison
of the size of the electroweak corrections computed within different renormalization schemes
of the scalar mixing angles is performed and the different schemes are analyzed with respect
to their numerical stability for selected decay channels.

12.1. Input Parameters

For the computation of all BRs and partial decay widths of the Higgs bosons of the N2HDM
with ewN2HDECAY, we set the values of the SM-like parameters to the ones presented in Sec. 7.1
for the performed numerical analyses with 2HDECAY. The generation of the input parameter
sets compatible with up-to-date theoretical and experimental constraints is achieved by scan-
ning through the parameter space of the real N2HDM. To that end, initial parameter sets
are generated by randomly choosing values of the N2HDM-specific parameters in the ranges
presented in Table 12.1 while demanding that one of the three CP-even Higgs bosons Hi

(i = 1, 2, 3) corresponds to the SM-like Higgs boson with its mass given by Eq. (7.3). Subse-
quently, the thereby created initial parameter sets are checked against several theoretical and
experimental constraints with help of the tool ScannerS [57, 260, 261]. Since all constraints
and additional conditions applied for the scan of the real N2HDM are analogous to the ones
applied for the real 2HDM, we do not state them here again explicitly and refer to Sec. 7.1
and moreover to [258] for a detailed description about the scan procedure. Out of all valid
parameter sets generated by the scan, we choose the following sets for the numerical analyses
performed in this thesis.



102 12. Numerical Analysis with ewN2HDECAY

mHi/A mH± (II/flip.) mH± (I/lep.-sp.) m2
12 vs αi tβ

min 30 GeV 580 GeV 80 GeV 0 GeV2 1 GeV -π/2 0.25

max 1500 GeV 1500 GeV 1500 GeV 100 000 GeV2 1500 GeV π/2 35

Table 12.1.: Allowed ranges of the input values of the real N2HDM for the parameter scan,
where i = 1, 2, 3. Each parameter is separately varied between its corresponding minimum
and maximum value.

Parameter set “P1”.
For the SM-like parameters, we use the input values presented in Eqs. (7.1) and (7.2), while
the N2HDM-specific parameters are set to

mH1 = 76.524 GeV , mH2 = 125.09 GeV , (12.1)

mH3 = 185.782 GeV , mA = 304.936 GeV ,

mH± = 298.729 GeV , m2
12(mhSM

) = 1712.82 GeV2 ,

vs(mhSM
) = 1454.24 GeV , α1|po∗ = 0.334 442 ,

α2|po∗ = 1.352 66 GeV , α3|po∗ = − 0.726 926 ,

tβ|po∗ = 2.385 25 , N2HDM type = I ,

where for m2
12 and vs, the arguments in brackets indicate that these input values are defined

at the scale µR = mhSM
. The subscripts denote that the four scalar mixing angles and their

CTs are given in the p∗-pinched (odd) scheme, defined through Eqs. (C.36) to (C.39), which
is used as the reference renormalization scheme for this set. The renormalization scale µout

at which all electroweak partial decay widths are evaluated is set to the mass of the decaying
particle for each decay mode, separately.

Parameter set “P2”.
The SM-like parameters are again set to the values presented in Eqs. (7.1) and (7.2) while
the N2HDM-specific parameters are set to the values

mH1 = 91.123 GeV , mH2 = 125.09 GeV , (12.2)

mH3 = 696.389 GeV , mA = 766.781 GeV ,

mH± = 672.106 GeV , m2
12(mhSM

) = 208 360.0 GeV2 ,

vs(mhSM
) = 2196.48 GeV , α1|po∗ = 0.697 912 ,

α2|po∗ = − 1.459 21 GeV , α3|po∗ = 1.516 15 ,

tβ|po∗ = 0.950 614 , N2HDM type = II ,

where the MS parameters are again defined at the scale µR = mhSM
and the four scalar mixing

angles are given in the p∗-pinched (odd) scheme. Moreover, we perform a variation of some
of the N2HDM-specific input parameters in order to analyze the sensitivity of the BRs and
partial decay widths on these parameters:

� Variation of mH3 ∈ [500 GeV, 800 GeV], while all other parameters are given by the
fixed values in Eq. (12.2).

� Variation of mH± ∈ [580 GeV, 1200 GeV], while all other parameters are given by the
fixed values in Eq. (12.2).

� Variation of mA ∈ [300 GeV, 1100 GeV], while all other parameters are given by the
fixed values in Eq. (12.2).
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For all input parameter points defined in set “P2”, the renormalization scale µout at which
the partial decay widths are evaluated is set to the mass of the decaying Higgs boson for
each decay channel, separately. The variation of the input parameters as presented above
potentially leads to the generation of parameter sets that do not fulfill all the experimental
constraints anymore. We nevertheless use them for the purpose of the numerical analysis on
the size of the electroweak corrections computed within different renormalization schemes in
this work.

Parameter sets “P3”.
In order to systematically analyze the size of the electroweak corrections to the partial de-
cay widths computed within different renormalization schemes for a larger sample of input
parameters, we use 15 000 input parameter sets, collectively denoted by “P3”, that fulfill
all of the aforementioned theoretical and experimental constraints. All parameter points in
the set correspond to an N2HDM type II and feature a large variety of different values of
the N2HDM-specific masses, mixing angles, m2

12 and vs. In contrast to the other two input
parameter sets, the mixing angles in set “P3” are defined for each renormalization scheme
separately as a reference scheme for the numerical analysis and hence, their values do not
require a parameter conversion from one scheme to the other. As for the sets defined above,
the renormalization scale µout at which the partial decay widths are evaluated is set to the
mass of the decaying particle for each decay channel separately. For the majority of all input
parameter sets generated, the lightest CP-even Higgs boson H1 corresponds to the SM-like
Higgs boson with its mass given in Eq. (7.3). However, the set “P3” also features a few
scenarios in which H1 is lighter than the SM-like Higgs boson which in all these scenarios
corresponds to H2. Due to the large amount of different points considered for this set, we do
not present the values of the N2HDM-specific input parameters for all points here explicitly.

12.2. Numerical Results and Analysis

For the quantification of the numerical results, we use the same measures as introduced in
Sec. 7.2, i.e. we adopt the definitions of the relative size ∆BR of the electroweak contributions
to the BRs from Eq. (7.6) and of the relative size ∆ΓEW of the electroweak corrections to
the partial decay widths for OS and non-loop induced decays from Eq. (7.7). Moreover, we
adopt the definition of the relative difference ∆ΓEW,x of the electroweak one-loop partial
decay widths computed within different renormalization schemes with respect to a defined
reference renormalization scheme from Eq. (7.8).

We first analyze the BRs and electroweak partial decay widths of all decay channels im-
plemented in ewN2HDECAY for the parameter set “P1”. For the calculation of all electroweak
corrections to the OS and non-loop-induced decays, we renormalize the four mixing angle CTs
in the p∗-pinched scheme “po∗”, cf. Table 11.1. Since the input values of the mixing angles
in the set “P1” are defined in the same scheme, no input parameter conversion needs to be
applied for them31. Shown in Table 12.2 are all BRs excluding and including the electroweak
corrections as well as, where applicable, the tree-level and one-loop electroweak partial decay
widths for all decay channels implemented in ewN2HDECAY for the parameter set “P1”. In the
table, we additionally present the quantities ∆BR and ∆ΓEW as measures for the relative size
of the electroweak contributions to the BRs and partial widths, all for the OS and non-loop
induced decays.

For the lightest CP-even Higgs boson H1, the relative one-loop contributions ∆ΓEW to the
electroweak decay widths are rather small, ranging from −5.4 % to −0.7 % and hence, their

31Of course, the MS parameters m2
12 and vs are nevertheless automatically converted from µR to µout for each

decay channel, separately.
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Decay channel BR
QCD
(φ→X1X2)

BR
QCD&EW
(φ→X1X2)

∆BR Γ
LO,EW
φX1X2

in GeV Γ
NLO,EW
φX1X2

in GeV ∆Γ
EW

H1 → b b̄ 8.319 · 10
−1

8.260 · 10
−1

-0.7 % 2.098 · 10
−5

1.985 · 10
−5

-5.4 %

H1 → τ
+
τ
−

8.091 · 10
−2

8.300 · 10
−2

2.6 % 9.611 · 10
−7

9.398 · 10
−7

-2.2 %

H1 → µ
+
µ
−

2.870 · 10
−4

2.881 · 10
−4

0.4 % 3.410 · 10
−9

3.263 · 10
−9

-4.3 %

H1 → s s̄ 3.144 · 10
−4

3.275 · 10
−4

4.2 % 8.269 · 10
−9

8.210 · 10
−9

-0.7 %

H1 → c c̄ 4.078 · 10
−2

4.230 · 10
−2

3.7 % 1.877 · 10
−6

1.856 · 10
−6

-1.1 %

H1 → g g 4.055 · 10
−2

4.254 · 10
−2

4.9 % − − −

H1 → γ γ 3.415 · 10
−3

3.582 · 10
−3

4.9 % − − −

H1 → W
+
W
−

1.471 · 10
−3

1.543 · 10
−3

4.9 % − − −

H1 → Z Z 4.095 · 10
−4

4.296 · 10
−4

4.9 % − − −

H2 → b b̄ 5.923 · 10
−1

5.828 · 10
−1

-1.7 % 5.824 · 10
−3

5.532 · 10
−3

-5.0 %

H2 → τ
+
τ
−

6.382 · 10
−2

6.300 · 10
−2

-1.3 % 2.634 · 10
−4

2.512 · 10
−4

-4.6 %

H2 → µ
+
µ
−

2.260 · 10
−4

2.181 · 10
−4

-3.5 % 9.324 · 10
−7

8.699 · 10
−7

-6.7 %

H2 → s s̄ 2.237 · 10
−4

2.253 · 10
−4

0.7 % 2.261 · 10
−6

2.201 · 10
−6

-2.7 %

H2 → c c̄ 2.902 · 10
−2

2.904 · 10
−2

0.1 % 5.141 · 10
−4

4.972 · 10
−4

-3.3 %

H2 → g g 7.778 · 10
−2

8.048 · 10
−2

3.5 % − − −

H2 → γ γ 2.053 · 10
−3

2.125 · 10
−3

3.5 % − − −

H2 → Z γ 1.506 · 10
−3

1.558 · 10
−3

3.5 % − − −

H2 → W
+
W
−

2.067 · 10
−1

2.139 · 10
−1

3.5 % − − −

H2 → Z Z 2.580 · 10
−2

2.670 · 10
−2

3.5 % − − −

H3 → b b̄ 1.880 · 10
−1

1.833 · 10
−1

-2.5 % 1.553 · 10
−3

1.499 · 10
−3

-3.5 %

H3 → τ
+
τ
−

2.184 · 10
−2

2.065 · 10
−2

-5.4 % 6.991 · 10
−5

6.545 · 10
−5

-6.4 %

H3 → µ
+
µ
−

7.725 · 10
−5

7.143 · 10
−5

-7.5 % 2.473 · 10
−7

2.264 · 10
−7

-8.5 %

H3 → s s̄ 7.087 · 10
−5

6.869 · 10
−5

-3.1 % 5.999 · 10
−7

5.756 · 10
−7

-4.1 %

H3 → c c̄ 9.197 · 10
−3

8.839 · 10
−3

-3.9 % 1.364 · 10
−4

1.298 · 10
−4

-4.8 %

H3 → g g 5.876 · 10
−2

5.935 · 10
−2

1.0 % − − −

H3 → γ γ 7.840 · 10
−5

7.919 · 10
−5

1.0 % − − −

H3 → Z γ 3.478 · 10
−6

3.513 · 10
−6

1.0 % − − −

H3 → W
+
W
−

1.218 · 10
−2

2.911 · 10
−2

139.0 % 3.898 · 10
−5

9.226 · 10
−5

136.7 %

H3 → Z Z 2.526 · 10
−3

3.269 · 10
−3

29.4 % 8.087 · 10
−6

1.036 · 10
−5

28.1 %

H3 → H1H1 7.073 · 10
−1

6.953 · 10
−1

-1.7 % 2.265 · 10
−3

2.204 · 10
−3

-2.7 %

A→ b b̄ 1.187 · 10
−3

1.104 · 10
−3

-6.9 % 2.536 · 10
−3

2.272 · 10
−3

-10.4 %

A→ τ
+
τ
−

1.551 · 10
−4

1.391 · 10
−4

-10.3 % 1.138 · 10
−4

9.830 · 10
−5

-13.6 %

A→ µ
+
µ
−

5.484 · 10
−7

4.800 · 10
−7

-12.5 % 4.025 · 10
−7

3.392 · 10
−7

-15.7 %

A→ s s̄ 4.251 · 10
−7

3.927 · 10
−7

-7.6 % 9.762 · 10
−7

8.683 · 10
−7

-11.1 %

A→ c c̄ 5.996 · 10
−5

5.485 · 10
−5

-8.5 % 2.221 · 10
−4

1.956 · 10
−4

-11.9 %

A→ t t̄ 1.083 · 10
−3

1.125 · 10
−3

3.9 % − − −

A→ g g 4.638 · 10
−3

4.817 · 10
−3

3.9 % − − −

A→ γ γ 1.434 · 10
−5

1.490 · 10
−5

3.9 % − − −

A→ Z γ 2.811 · 10
−6

2.920 · 10
−6

3.9 % − − −

A→ Z H1 1.957 · 10
−1

1.958 · 10
−1

0.1 % 1.436 · 10
−1

1.384 · 10
−1

-3.6 %

A→ Z H2 1.176 · 10
−3

5.442 · 10
−4

-53.7 % 8.629 · 10
−4

3.846 · 10
−4

-55.4 %

A→ Z H3 7.960 · 10
−1

7.964 · 10
−1

0.1 % 5.842 · 10
−1

5.628 · 10
−1

-3.7 %

A→ W
+
H
−

8.446 · 10
−9

8.771 · 10
−9

3.9 % − − −

A→ W
−
H

+
8.446 · 10

−9
8.771 · 10

−9
3.9 % − − −

H
+ → c b̄ 6.543 · 10

−7
6.251 · 10

−7
-4.5 % 4.797 · 10

−6
4.216 · 10

−6
-12.1 %

H
+ → τ

+
ντ 4.624 · 10

−5
4.266 · 10

−5
-7.8 % 1.115 · 10

−4
9.471 · 10

−5
-15.1 %

H
+ → µ

+
νµ 1.635 · 10

−7
1.471 · 10

−7
-10.0 % 3.943 · 10

−7
3.267 · 10

−7
-17.2 %

H
+ → u b̄ 4.683 · 10

−9
4.379 · 10

−9
-6.5 % 3.309 · 10

−8
2.849 · 10

−8
-13.9 %

H
+ → u s̄ 6.547 · 10

−9
6.211 · 10

−9
-5.1 % 4.821 · 10

−8
4.211 · 10

−8
-12.7 %

H
+ → c d̄ 8.601 · 10

−7
8.101 · 10

−7
-5.8 % 1.095 · 10

−5
9.499 · 10

−6
-13.3 %

H
+ → c s̄ 1.632 · 10

−5
1.537 · 10

−5
-5.8 % 2.071 · 10

−4
1.796 · 10

−4
-13.3 %

H
+ → t b̄ 6.613 · 10

−1
6.472 · 10

−1
-2.1 % 1.400 1.262 -9.9 %

H
+ → t s̄ 1.131 · 10

−3
1.107 · 10

−3
-2.1 % 2.393 · 10

−3
2.156 · 10

−3
-9.9 %

H
+ → t d̄ 5.314 · 10

−5
5.203 · 10

−5
-2.1 % 1.125 · 10

−4
1.014 · 10

−4
-9.9 %

H
+ → W

+
H1 5.942 · 10

−2
6.162 · 10

−2
3.7 % 1.433 · 10

−1
1.368 · 10

−1
-4.5 %

H
+ → W

+
H2 3.617 · 10

−4
3.534 · 10

−4
-2.3 % 8.723 · 10

−4
7.845 · 10

−4
-10.1 %

H
+ → W

+
H3 2.777 · 10

−1
2.896 · 10

−1
4.3 % 6.696 · 10

−1
6.429 · 10

−1
-4.0 %

Table 12.2.: Parameter set“P1”: Higher-order BRs without and with electroweak corrections
as well as tree-level and one-loop electroweak partial decay widths for OS and non-loop-
induced decays as computed by ewN2HDECAY. For the computation, the scalar mixing angles
are renormalized in the p∗-pinched scheme “po∗”. ∆BR and ∆ΓEW are defined in Eqs. (7.6)
and (7.7) respectively.
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Figure 12.1.: Parameter set “P2”: Shown are the BRs of the charged Higgs boson H+ as
a function of mH± (left) and the BRs of the CP-odd Higgs boson A as a function of mA

(right). The BRs contain the newly computed electroweak one-loop corrections to all OS
decay that are not loop-induced. For the calculation of all BRs, the four scalar mixing angles
are renormalized in the p∗-pinched scheme “po∗”, cf. Table 6.1.

inclusion changes the BRs of the decay channels of the H1 boson between −0.7 % to 4.9 %.
The H1 boson dominantly decays into b b̄ with a BR of 83 % and subdominantly into τ+ τ−,
c c̄ and g g, with BRs of the order of a few percent. The BRs for the off-shell decays into
W+W− and Z Z are very small since the corresponding coupling between the H1 boson and
the two gauge bosons is suppressed due to the sum rules of the gauge boson couplings in the
N2HDM. For the Higgs boson H2, which in the input parameter set “P1” corresponds to the
SM-like Higgs boson with mass 125.09 GeV, the relative corrections to the electroweak decay
widths are rather small as well and range between −6.7 % and −2.7 % and consequently,
the change of the BRs is rather small as well, ranging between −3.5 % and 3.5 %. As can
be inferred from a comparison with Table 11.3 of [98], the BRs of H2, both excluding and
including the electroweak contributions, are compatible with the BRs of the Higgs boson of
the SM.

For the heaviest CP-even Higgs boson H3, the inclusion of the electroweak corrections to the
partial decay widths leads to mostly moderate relative corrections to the electroweak decay
widths between −8.5 % and −2.7 % and to the BRs between −7.5 % and 1.0 %, with exception
of the decays into Z Z and W±W∓ where the relative corrections to the electroweak decay
widths become as large as 28.1 % and 136.7 %. For these two decay channels, the large one-
loop corrections stem from the mixing angle CTs and the off-diagonal WFRCs of the CP-even
Higgs bosons which appear together with a specific combination of tree-level scalar mixing
angles in the one-loop decay width of the two decay channels. In the parameter set “P1”,
these contributions are parametrically enhanced and hence lead to large one-loop corrections
to the rather small tree-level decay width. Due to the mass values in the parameter set “P1”,
the scenario allows for the OS decay of H3 into a pair of H1 Higgs bosons, which with a BR
of approximately 70 % is the dominant decay channel for the heaviest CP-even Higgs boson,
followed by the decay into b b̄.

For the decays of the CP-odd Higgs boson A, the relative electroweak corrections are sizeable,
ranging from −55.4 % to −3.6 % and hence, the relative corrections to the BRs between
−53.7 % to 3.9 % are sizeable as well. The large electroweak one-loop corrections to the decay
A→ Z H2 stem from parametrically enhanced contributions from the mixing angle CTs and
WFRCs in the parameter set “P1”, as it was the case for the decays of the H3 boson into
the gauge bosons. As can be inferred from the table, the A boson dominantly decays into
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Figure 12.2.: Parameter set “P2”: The relative one-loop corrections ∆ΓEW as defined in
Eq. (7.7) for the decay channel H3 → b b̄ as a function of mH3 (left) and for the decay channel
H+ → t b̄ as a function of mH± (right) for four different renormalization schemes as specified
in the figure. For a definition of the abbreviations used to identify the schemes, cf. Table 6.1.

Z H3 and Z H1. Since the masses of the CP-odd and charged Higgs boson are close to each
other, the decays of A into W±H∓ and are not possible OS and hence, the BRs for these
off-shell decays are very small. For the charged Higgs boson H±, the relative corrections to
the electroweak decay widths range from −17.2 % to −4.0 % and the corrections to the BRs
between −10.0 % and 4.3 % and are hence sizeable. The charged Higgs dominantly decays
into a top-bottom pair and W±H3. The numerical analysis for the parameter set “P1” shows
that the electroweak corrections to the electroweak partial decay widths and BRs of the
Higgs bosons of the N2HDM, in particular for the non-SM-like bosons, can become sizeable.
Consequently, the electroweak contributions provided in this thesis are relevant for a more
precise evaluation of the BRs and partial decay widths of the N2HDM Higgs bosons.

For an analysis of the sensitivity of the BRs on the N2HDM-specific parameters, we consider
the input parameter set “P2”, featuring a CP-even Higgs boson H1 which again is lighter
than the SM-like Higgs boson H2. The masses of the heaviest CP-even, CP-odd and charged
Higgs bosons are rather large. In order to analyze the behavior of the BRs with respect to
a change of the masses of the Higgs bosons, we perform a variation of mH± , mA and mH3

separately32. We show in Fig. 12.1 the BRs of the charged Higgs boson H+ as a function of
mH± as well as the BRs of the CP-odd Higgs boson A as a function of mA on the left-hand
and right-hand sides of the figure, respectively. All BRs presented in the plots contain the
newly computed electroweak corrections to all OS decays that are not loop-induced, computed
within the p∗-pinched scheme “po∗”. The dashed vertical lines indicate the masses of the two
Higgs bosons corresponding to the original definition of the parameter set “P2” where no
variation is applied. As can be inferred from the plots, the BRs show a strong behavior on
the two varied masses. The charged Higgs boson dominantly decays into t b̄ over a large range
of the mass mH± and only for larger values above about 1 TeV the BRs of the decays into
W+H3 and W+A exceed the ones of all other decay channels. The BRs of the decays into
W+H1 and W+H2 are similarly small over the whole range of chosen values of mH± . For the
BRs of the CP-odd Higgs boson A shown in the right-hand side of the figure, the threshold
of OS t t̄ production is clearly visible for mA & 2mt. Above the threshold, this decay mode
is the dominant one for the A boson over a large range of its mass until values of mA about

32We want to emphasize again that while the variation of the masses potentially leads to the definition of input
parameter sets that do not fulfill the theoretical and experimental constraints anymore, we only perform the
analysis of the BRs implemented in ewN2HDECAY to investigate the size of the electroweak corrections provided
in this thesis.
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Figure 12.3.: Parameter set “P2”: The relative difference ∆ΓEW,x of the one-loop partial
decay widths evaluated in the renormalization scheme“x” in comparison to the ones computed
in the “po∗” scheme, cf. Eq. (7.8), for the decay channel H3 → b b̄ as a function of mH3 (left)
and for the decay channel H+ → t b̄ as a function of mH± (right).

1 TeV are reached, where the BRs of the decays into Z H3 and W±H∓ exceed the BRs of all
other decay modes.

For the analysis of the size of the electroweak-corrected one-loop partial decay widths with
respect to the choice of the renormalization scheme for the scalar mixing angles, we again
consider the parameter set “P2” together with a variation of the masses of the H3 and H±

Higgs bosons. To that end, we compute the relative one-loop corrections ∆ΓEW for the decay
of the heaviest CP-even Higgs boson H3 into b b̄ and for the decay of the charged Higgs boson

H+ into t b̄ for the four different renormalization schemes “p
o/c
∗ ” and “pOSo/c” of the scalar

mixing angles. For each of the four renormalization schemes, both the tree-level and the one-
loop partial decay widths that enter ∆EW are calculated for the same renormalization scheme.
In case that this scheme differs from the reference scheme “po∗” in which the mixing angles are
defined in the parameter set “P2”, their values are converted from the reference scheme to the
input renormalization scheme in ewN2HDECAY. In Fig. 12.2, we show the corresponding relative
corrections ∆ΓEW for H3 → b b̄ as a function of mH3 on the left-hand side and for H+ → t b̄
as a function of mH± on the right-hand side of the figure, respectively. The relative one-loop
corrections are sensitive to the change of the masses of the two Higgs bosons. Depending
on the renormalization scheme, they range from approximately −21 % to −8 % for the decay
H3 → b b̄ and from −20 % to 3 % for the decay H+ → t b̄ and hence, they are sizeable for the
two decay modes and the parameter set “P2” used for this analysis.

For a rough estimate of the remaining theoretical uncertainty of the partial decay widths due
to missing higher-order corrections, we define the “po∗” as a reference scheme and compute the
difference ∆ΓEW,x, cf. Eq. (7.8), between the one-loop partial decay widths computed within
any other scheme “x” with respect to the one computed in the reference scheme. As before,
the tree-level and one-loop electroweak decay widths are evaluated in the same renormaliza-
tion scheme for each considered scheme “x” and the mixing angles are converted from the
reference scheme to scheme “x” via the parameter conversion routine that is implemented in
ewN2HDECAY. Figure 12.3 shows the difference ∆ΓEW,x, again for the decay channel H3 → b b̄
as a function of mH3 and for H+ → t b̄ as a function of mH± on the left-hand and right-
hand sides of the figure, respectively. As can be seen in the plots, the difference between the
one-loop corrections computed within the different variations of the pinched schemes is only
below the percent level over the range of mH3 and mH± that is considered. This serves as
a rough indicator that the estimated remaining theoretical uncertainty for the two consid-
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Figure 12.4.: Parameter set “P3”: The relative one-loop corrections ∆ΓEW as defined in
Eq. (7.7) for the decay channel A → ZH1 as a function of the electroweak decay width
ΓLO,EW
AZH1

at tree level. The results are presented for two different scales of the ∆ΓEW axis and
for different choices of the renormalization schemes used for the computation of the one-loop
widths (left and right).

ered decay channels and for the input parameters as defined in set “P2” is small. In order
to formulate more general statements about the remaining theoretical uncertainties due to
missing higher-order corrections, it is required to analyze all decay channels implemented in
ewN2HDECAY for a large amount of different input parameter sets, however.

As analyzed e.g. in [255] for selected decay channels of the Higgs bosons of the N2HDM,
some renormalization schemes of the scalar mixing angles presented in Sec. 10.3 potentially
introduce large uncanceled one-loop contributions to the partial decay widths and hence
lead to numerical instabilities in the sense that the one-loop partial decay widths become
orders of magnitude larger than the tree-level widths. In order to systematically categorize
the different renormalization schemes implemented into ewN2HDECAY with respect to their
numerical stability, we perform a numerical analysis on the electroweak one-loop corrections
to the partial decay widths of the sample decay channel A→ Z H1. To that end, we use the
15 000 different parameter sets collectively denoted by “P3”, for all of which the decay channel
is OS. For each parameter set, we compute the relative one-loop corrections ∆ΓEW for several
different renormalization schemes of the scalar mixing angles, where again the tree-level and
the one-loop partial decay widths are calculated in the same input renormalization scheme.
In contrast to the analyses before however, the reference scheme of the scalar mixing angles
for each of the 15 000 points is always set to the considered input renormalization scheme.
Hence, the mixing angle CTs are not converted from one scheme to the other which is not
required since we focus on the size of the relative electroweak corrections ∆ΓEW computed
for a large amount of input parameters for each renormalization scheme separately and we
do not directly compare the results computed within the different schemes with each other.
The results of the analysis are presented in Fig. 12.4 as a function of the electroweak partial
decay width of the process at tree level for two different scale choices of the ∆ΓEW axis and
for different choices of renormalization schemes presented on the left- and right-hand sides of
the figure, respectively.

On the left-hand side of Fig. 12.4, we present the relative difference ∆ΓEW in the range of
±100 % as a function of the tree-level width ΓLO,EW

AZH1
. For the MS scheme, defined in the

framework of the alternative FJ tadpole scheme, the relative differences become as large as
±10 000 % and lie outside of the plotted region for most of the input parameter points. Con-
sequently, the MS scheme yields huge relative one-loop corrections that are not sensible at the



12.2. Numerical Results and Analysis 109

fixed one-loop order. Moreover, we analyzed that the corrections in this scheme are typically
negative and below −100% for a large amount of input parameter sets which corresponds to
negative and unphysical one-loop partial decay widths. Hence, the loop-corrected widths can
not be used anymore for phenomenological studies and should be discarded in these cases. As
discussed in [255], the origin of these large corrections stems from both the genuine one-loop
vertex corrections to the decay process as well as from the WFRCs, both introducing intro-
ducing here huge corrections that cannot canceled by finite contributions from the mixing
angle CTs. This reconfirms that the MS scheme for the scalar mixing angles is in general not
a well-suited renormalization scheme for the computation of electroweak corrections to the
partial decay widths of the N2HDM Higgs bosons. On the other hand, as can be observed on
the right-hand side of Fig. 12.4 the KOSY scheme, p∗-pinched scheme and the OS-pinched
scheme, all three defined over the charged sector for tβ, all yield relative one-loop corrections
that are mostly between ±10 % and consequently, the schemes are considered to fulfill the
criterion of numerical stability.





CHAPTER 13

Conclusion of Part III

In Part III of this thesis, we dealt with the calculation of the electroweak one-loop corrections
to the partial decay widths of all Higgs bosons of the CP-conserving (i.e. real) N2HDM and
presented the new computed program ewN2HDECAY which allows for a more precise calculation
of the BRs and partial decay widths.

We introduced the electroweak Lagrangian and the scalar potential of the N2HDM. The scalar
sector of the model contains the three CP-even Higgs bosons Hi (i = 1, 2, 3) together with
the three CP-even tree-level mixing angles αi as well as the CP-odd Higgs boson A and the
charged Higgs bosons H± with the tree-level mixing angle β of the CP-odd/charged sectors.

We presented the electroweak one-loop renormalization of the N2HDM and introduced several
different renormalization schemes of the four scalar mixing angles that are based the MS
scheme, OS-motivated approaches as well as on the PT. As for the 2HDM in Part II, we
categorized these different renormalization schemes with respect to the three desirable criteria
of GFP independence, process independence and numerical stability.

For the automated calculation of all electroweak partial decay widths at tree level and one-
loop order, we presented the program N2HDMCalc. The resulting analytic formulae for the
partial decay widths were implemented in the newly developed program ewN2HDECAY which
combines the electroweak corrections with the tree-level and loop-corrected decay widths
already implemented in N2HDECAY, including off-shell decays and state-of-the-art QCD cor-
rections, where applicable. The program ewN2HDECAY allows for the fast calculation of the
BRs, excluding and including the electroweak corrections, as well as for the calculation of
the electroweak tree-level and one-loop partial decay widths of all Higgs bosons of the real
N2HDM.

In order to demonstrate the relevance of the newly computed electroweak corrections, we pre-
sented a numerical analysis on the BRs and electroweak partial decay widths with ewN2HDECAY.
To that end, we defined input parameter sets compatible with most recent theoretical and
experimental constraints. The size of the electroweak contributions to the BRs were ana-
lyzed and particularly for the additional non-SM-like Higgs bosons of the N2HDM, they were
found to be sizeable. A comparison of the electroweak partial decay widths computed within
different renormalization schemes of the scalar mixing angles allowed for a rough estimate of
the remaining theoretical uncertainties. For the two decay channels and the parameter sets
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considered, the remaining uncertainty was roughly estimated to be small. For a systematic
analysis on numerical stability, we analyzed the electroweak one-loop corrections for 15 000
input parameter sets computed within different renormalization schemes of the scalar mixing
angles. For the decay channel considered in our analysis, it was found that the MS scheme is
numerically unstable, leading to one-loop partial decay widths that are orders of magnitude
larger than the corresponding tree-level widths. On the other hand, the four pinched schemes
implemented in ewN2HDECAY typically lead to moderate radiative corrections for the analyzed
decay channel and the input parameter sets used. The numerical analysis has shown that the
electroweak corrections to the partial decay widths of the Higgs bosons of the N2HDM, pro-
vided in ewN2HDECAY for the first time, are of relevant size and that they should be included
in order to make more precise predictions for the BRs and partial widths.



Part IV.

The O(α2t ) Corrections to Higgs Boson
Masses in the Complex NMSSM





CHAPTER 14

A Brief Introduction to the Complex NMSSM

The main objective of Part IV of this thesis is the calculation of theO(α2
t ) two-loop corrections

to the masses of the Higgs bosons of the complex NMSSM, thereby allowing for a more precise
prediction. Since for the O(α2

t ) corrections only a subset of the particle content of the complex
NMSSM contributes, we restrict the introduction to the parameters and particles relevant for
the calculations performed in this work.

Starting with Sec. 14.1, we provide the Lagrangian relevant for our calculations and introduce
our notation. In Sec. 14.2, we discuss the Higgs potential and describe the tree-level Higgs
spectrum of the complex NMSSM. Since the O(α2

t ) contributions to the Higgs masses domi-
nantly stem from the top and stop sectors, we introduce their particle spectrum in Sec. 14.3.
Moreover, we introduce the chargino and neutralino sectors in the subsequent Sec. 14.4, since
they also contribute to the two-loop corrections in our work. In Sec. 14.5, we present an
overview over all approximations applied for the calculation of the two-loop corrections to
O(α2

t ). We conclude this chapter in Sec. 14.6 with an overview over the full set of independent
parameters through which we parametrize the higher-order corrections to the Higgs masses
in our work.

14.1. The Lagrangian of the Complex NMSSM

The complex NMSSM is an extension of the simplest and well-studied SUSY theory, the
MSSM. Due to this, we first briefly introduce the MSSM and motivate its extension to the
NMSSM in the following. As depicted graphically in Fig. 2.2, in the MSSM each field of the
SM acquires a superpartner whose spin differs by 1/2 with respect to the spin of the corre-
sponding SM field. Consequently, the fermions of the SM, i.e. the quarks and leptons, acquire
the spin 0 sfermions as superpartners, consisting of the squarks and sleptons. In contrast
to the SM with only one Higgs doublet, the MSSM contains two Higgs doublets, as further
described below. The superpartners of the Higgs fields contained in the doublets are spin 1/2

Weyl fermions called the higgsinos, while the gauge bosons of the SM acquire the gauginos
(consisting of the gluinos, winos and the bino) also with spin 1/2 as their superpartners. The
fermion and Higgs fields33 as well as their superpartners are combined into the chiral super-

33We want to emphasize that in comparison to Parts II and III of this thesis, we slightly alter the notation of
the Higgs fields in Part IV of this thesis to follow the convention that the subscripts u and d denote the quark
type to which the Higgs fields couple, cf. e.g. [36].



116 14. A Brief Introduction to the Complex NMSSM

names spin 0 spin 1
2 (SU(3)C × SU(2)L × U(1)Y )

squarks and
quarks

(3 generations)


Q̂ Q̃L = (ũL, d̃L)T QL = (uL, dL)T (3,2, 1

6)

Û ũ∗R u†R (3,1,−2
3)

D̂ d̃∗R d†R (3,1, 1
3)

sleptons and
leptons

(3 generations)

 L̂ L̃L = (ν̃L, ẽL)T LL = (νL, eL)T (1,2,−1
2)

Ê ẽ∗R e†R (1,1, 1)

Higgs and
higgsinos

 Ĥu Hu = (H+
u , H

0
u)T H̃u = (H̃+

u , H̃
0
u)T (1,2, 1

2)

Ĥd Hd = (H0
d , H

−
d )T H̃d = (H̃0

d , H̃
−
d )T (1,2,−1

2)

singlet Ŝ S S̃ (1,1, 0)

Table 14.1.: Chiral supermultiplets of the MSSM (excluding the singlet multiplet Ŝ in the
last row) and the NMSSM (including Ŝ) and the corresponding spin 0 and spin 1/2 fields which
form the superfields, adopted from [36]. The last column denotes the gauge transformation
properties of the supermultiplets with respect to the three gauge subgroups.

multiplets presented in Table 14.1 (where for the case of the MSSM, the singlet multiplet Ŝ
shown in the last row of the table is excluded), while the gauge boson fields and their super-
partners are combined into gauge supermultiplets as presented in Table 14.2. In the former
table, the chiral superfields are indicated with a hat while all superpartners of the particles
of the SM are denoted with a tilde in both tables.

One fundamental building block of each SUSY model is the holomorphic superpotential W
which determines the most general forms of non-gauge interactions of the chiral supermulti-
plets of any SUSY extension [36]. The superpotential of the MSSM contains two Higgs su-
perfields in comparison to the SM with one Higgs doublet. In fact, trying to build a minimal
SUSY model analogous to the MSSM but with just one Higgs superfield leads to inconsisten-
cies due to the appearance of gauge anomalies and due to the fact that the requirement of
the holomorphy of the superpotential cannot be fulfilled in this case.

Both problems are avoided by adding a second Higgs superfield to the model. Per construc-
tion, one of the Higgs superfields only couples to the up-type superfields Û while the other
one only couples to the down-type superfields D̂ as well as to the leptonic superfields L̂. In-
specting Table 4.1 reveals that this configuration resembles a type II 2HDM. Following from
these considerations, the superpotential of the MSSM is given by34 [36]

WMSSM = ÛY U
(
Q̂T εĤu

)
− D̂Y D

(
Q̂T εĤd

)
− ÊY E

(
L̂T εĤd

)
+ µ

(
ĤT
u εĤd

)
, (14.1)

where ε denotes the two-dimensional totally anti-symmetric tensor, the matrices Y f (f =
U,D,E) denote the 3 × 3 Yukawa coupling matrices in flavor space and µ is an additional
mass-dimensional parameter.

34For simplicity, we suppress all gauge and generation indices since they are not required for the following
discussions.
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names spin 1 spin 1
2 (SU(3)C × SU(2)L × U(1)Y )

gluons and gluinos g g̃ (8,1, 0)

W bosons and winos W±, W 0 W̃±, W̃ 0 (1,3, 0)

B boson and bino B B̃ (1,1, 0)

Table 14.2.: Gauge supermultiplets of the NMSSM and the corresponding spin 1 and spin
1/2 fields which form the superfields, adopted from [36]. For the charged W bosons, the
corresponding fields are already presented in the mass basis W±, cf Eq. (4.14). The last
column denotes the gauge transformation properties of the supermultiplets with respect to
the three gauge subgroups.

By deriving the tree-level spectrum of the MSSM it is revealed that the tree-level mass of the
lightest CP-even Higgs boson h is bounded from above by the mass of the Z boson due to
the SUSY relations between the Higgs and the gauge sectors,(

mMSSM
h

)2
< m2

Zc
2
2β , (14.2)

where the parameter β, connected to the ratios of the VEVs of the two Higgs doublets, is
introduced in the subsequent Sec. 14.2. Since the value of the Z boson mass is given by
91.1876 GeV [98], it is clear that the tree-level mass relation of Eq. (14.2) cannot be fulfilled
if the lightest CP-even Higgs boson h is considered to be the SM-like Higgs boson with a
measured mass of 125.09 GeV [13]. Instead, large higher-order corrections to the Higgs mass
mMSSM
h are required in order to allow for an interpretation of h as the SM-like Higgs observed

at the LHC. The dominant contributions of these higher-order corrections stem from virtual
top and stop particles and rather large stop masses are required to match the calculated mass
mMSSM
h with the measured SM Higgs boson mass. However, a too large discrepancy between

the top and stop masses leads to a reintroduction of the hierarchy problem into the MSSM,
cf. Sec. 2.3. From a theoretical point of view, this is unfavorable since the proposed solution
of the hierarchy problem is considered as a main theoretical motivation for the formulation
of the MSSM. But even if the stop masses turn out to be not too large, a closer look at the
superpotential of the MSSM reveals that the model is not capable of solving all fine-tuning
problems completely. The mass-dimensional parameter µ contributes to the mass terms of
the Higgs superfields and for phenomenological reasons, it is expected to be of the order of
the electroweak scale or the SUSY scale. However, since µ is in principle a free parameter of
the superpotential of the MSSM, there is no mechanism that would necessarily enforce the
parameter to be at these scales. This fine-tuning problem of the parameter µ is referred to
as the µ problem of the MSSM [271].

One possible solution to the µ problem is to consider the µ parameter to be generated dynam-
ically instead of adding it explicitly to the superpotential. This is the key idea realized in the
NMSSM. Extending the superfield content of the MSSM by an additional superfield Ŝ, con-
sisting of the singlet field S and the singlino S̃ as component fields, allows for a replacement
of the µ term in the superpotential with the new term

λŜ
(
ĤT
u εĤd

)
, (14.3)

where λ is a dimensionless complex coupling constant. By assigning a non-vanishing VEV
〈S〉 to the singlet field S, an effective µ term

µeff ≡ λ〈S〉 (14.4)
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is generated in the vacuum state of the potential. Since the VEV is connected to the mech-
anism of EWSB, its scale and consequently also the scale of µeff are automatically of the
desired order. Hence, the NMSSM provides a solution to the µ problem without relying on a
fine-tuning of the parameter.

The most general form of the superpotential of the NMSSM contains all combinations of
the superfields that maintain the holomorphy of the superpotential. In principle, this allows
for the appearance of terms which are linear or quadratic in the singlet superfield Ŝ, and a
dimensional analysis reveals that the corresponding parameters proportional to these terms
would have positive mass-dimension. This in turn would reintroduce the µ problem to the
NMSSM. In order to avoid these additional terms in the superpotential, the invariance under
an additional discrete Z3 symmetry is imposed on the model, which forbids the appearance of
terms proportional to Ŝ and Ŝ2 in the superpotential. For simplicity, throughout this thesis
we refer to this realization of the NMSSM as the NMSSM. Consequently, the Z3-conserving
superpotential of the NMSSM considered in this work is given by

WNMSSM = ÛY U
(
Q̂T εĤu

)
− D̂Y D

(
Q̂T εĤd

)
− ÊY E

(
L̂T εĤd

)
+ λŜ

(
ĤT
u εĤd

)
(14.5)

+
1

3
κŜ3 .

The additional term cubic in the singlet superfield is in accordance with the discrete Z3

symmetry. A vanishing value of κ would lead to an invariance of the superpotential under an
additional global U(1) gauge transformation, the so-called Peccei–Quinn symmetry [272,273].
As soon as the singlet field acquires its VEV through EWSB, this additional symmetry would
be spontaneously broken, giving rise to the Peccei-Quinn axion as the massless Goldstone
boson of the global symmetry breaking. The appearance of such an axion leads to strict
constraints on the parameters of the NMSSM through experimental data [274]. Hence, in the
realization of the NMSSM considered in this thesis, a non-vanishing value of κ is assumed
which prevents the appearance of the Peccei-Quinn axion.

In the NMSSM, the upper bound on the tree-level mass of the lightest CP-even Higgs boson
is elevated in comparison to the MSSM due to additional contributions stemming from the
term proportional to λ, (

mNMSSM
h1

)2
< m2

Zc
2
2β +

1

2
|λ|2 v2s2

2β . (14.6)

Consequently, the NMSSM allows for more moderate higher-order corrections to the Higgs bo-
son mass in order to assign h1 to the observed SM-like Higgs boson with a mass of 125.09 GeV.
Moreover, while the spectrum of the complex MSSM at tree level does not allow for CP vi-
olation in the Higgs sector since all CP-violating phases can be rotated away or vanish due
to the minimum conditions of the potential [275], the complex NMSSM studied in this work
contains additional phases which introduce CP-violating terms in the spectrum even at tree
level. Hence, the complex NMSSM also provides a possible solution to the shortcoming of
the SM with respect to its insufficient amount of CP violation [141].

Apart from the favorabale theoretical features, the NMSSM spectrum is moreover interesting
from an experimental point of view. Due to its extended Higgs sector in comparison to the
MSSM, the NMSSM allows for additional Higgs bosons which can be substantially lighter
than the Higgs boson with a mass of 125.09 GeV observed at the LHC and whose existences
are not yet excluded by experimental constraints stemming from data taken at LEP, Tevatron
and the LHC. Moreover, the NMSSM, containing more than two Higgs bosons in its spectrum,
allows for cascade decays of the Higgs bosons which in turn can lead to interesting and exotic
signatures, cf. e.g. [142].
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The Lagrangian of the complex NMSSM consists of SUSY-conserving and symmetry-breaking
contributions. The Lagrangian can be expressed as

LNMSSM = LSUSY + LGF + LFP + Lsoft . (14.7)

The SUSY Lagrangian LSUSY contains the kinetic terms of the particles of the NMSSM as
well as parts of the scalar potential and the Yukawa interactions. Its form follows from
the superpotential of the NMSSM, presented in Eq. (14.5), and from the transformation
properties of the superfields under gauge transformations. Analogous to the SM and its
doublet and singlet extensions, the Lagrangian is extended with the gauge-fixing and Faddeev-
Popov Lagrangians LGF and LFP respectively in order to remove the redundant unphysical
degrees of freedom from the model. Finally, the soft-SUSY-breaking Lagrangian Lsoft contains
terms that break SUSY softly, i.e. the coupling constants of the SUSY-violating operators
have positive mass-dimension. Due to this, these additional terms do not introduce additional
quadratically divergent contributions e.g. to the calculation of the higher-order corrections
to the Higgs mass, which in turn would reintroduce the hierarchy problem to the model.
The inclusion of the soft-SUSY-breaking terms is required due to the fact that we have not
observed superpartners with the same mass as their SM counterparts. The so far unknown
mechanism of SUSY breaking is parametrized by the introduction of the soft-SUSY-breaking
Lagrangian, given by

Lsoft = −1

2

[
M1B̃B̃ +M2

∑
iW̃

iW̃ i +M3
∑

g̃ g̃g̃ + h.c.
]

(14.8)

−
[
AUY

U Ũ∗R(Q̃T εHu)−ADY DD̃∗R(Q̃T εHd)−AEY EẼ∗R(L̃T εHd) + h.c.
]

−
[
Aλλ

(
HT
u εHd

)
S + 1

3AκκS
3 + h.c.

]
−m2

Q̃
Q̃†Q̃−m2

ŨR
|ŨR|2 −m2

D̃R
|D̃R|2 −m2

L̃
L̃†L̃−m2

ẼR
|ẼR|2

−m2
HuH

†
uHu −m2

Hd
H†dHd −m2

s|S|2 .

In principle, any term that breaks SUSY only softly can be added to the Lagrangian. In
Eq. (14.8), the soft-SUSY-breaking terms included are

� the complex mass parameters Mi (i = 1, 2, 3) for the gauginos presented in the first line
of Eq. (14.8),

� the soft-SUSY-breaking trilinear terms Ai (i = U,D,E, λ, κ) for the MSSM in the
second and for the singlet contributions in the third line of Eq. (14.8) which, together
with the Yukawa coupling matrices, are complex 3× 3 matrices in flavor space,

� the complex hermitian 3×3 matrices m2
i (i = Q̃, ŨR, D̃R, L̃, ẼR) presented in the fourth

line of Eq. (14.8) which provide additional mass terms e.g. for the sfermions and

� the real soft-SUSY-breaking terms m2
i (i = Hu, Hd, s) of the Higgs potential presented

in the fifth line of Eq. (14.8).

For the calculation of the genuine O(α2
t ) two-loop corrections to the Higgs boson masses

in the NMSSM performed in this work, we apply the approximation that the masses of all
SM fermions apart from the top quark vanish and we do not consider any flavor violation
in the quark sector. As a consequence, the Yukawa coupling matrices Y f (f = U,D,E)
simplify considerably and only a subset of the free parameters of the complex NMSSM yield
contributions to our calculations.
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14.2. The Scalar Sector and the Higgs Potential

The Higgs potential VNMSSM of the complex NMSSM consists of contributions from the SUSY
Lagrangian LSUSY as well as from the soft-SUSY-breaking Lagrangian Lsoft. In component
field notation, the potential reads

VNMSSM =
(
|λ|2|S|2 +m2

Hu

)
H†uHu +

(
|λ|2|S|2 +m2

Hd

)
H†dHd +m2

s|S|2 (14.9)

+
1

8
(g′ 2 + g2)

(
H†uHu −H†dHd

)2
+

1

2
g2

2

∣∣H†uHd

∣∣2
+
∣∣λ(HT

u εHd) + κS2
∣∣2 +

(
Aλλ(HT

u εHd)S +
1

3
AκκS

3 + h.c.

)
,

where g′ and g are the coupling constants associated to the gauge groups U(1)Y and SU(2)L,
respectively. Through the mechanism of EWSB, the two Higgs doublets Hu and Hd as well
as the Higgs singlet S acquire non-vanishing VEVs35 vu, vd and vs, respectively. The VEVs
of the two doublets are connected to the measured VEV v via [98]

v2 = v2
u + v2

d ≈ (246 GeV)2 , (14.10)

and their ratio defines the characteristic parameter β of the NMSSM,

tβ ≡
vu
vd

. (14.11)

The corresponding multiplets are expanded around their VEVs as follows,

Hd =

vd + hd + iad√
2

h−d

 , Hu = eiϕu

 h+
u

vu + hu + iau√
2

 , S = eiϕs
vs + hs + ias√

2
, (14.12)

where we introduced the neutral fields hi, ai (i = d, u, s) and the charged fields h±i (i = d, u)
as well as two additional phases ϕi (i = u, s) which account for the possible phase differences
between the multiplets36. Since the doublet Hu couples to the up-type quarks, cf. Eq. (14.5),
the phase ϕu is shifted to the Yukawa sector and hence it appears in the mass eigenvalues
and Yukawa couplings of the up-type quarks. In order to simplify the analytic calculations,
we redefine the up-type quark fields according to

uL −→ e−iϕu/2uL , uR −→ eiϕu/2uR . (14.13)

Through this redefinition, the phase ϕu is absorbed in the up-type quark fields and disappears
from the mass eigenvalues and Yukawa couplings of two up-type quarks, while for couplings
involving only one up-type quark, the phase now explicitly appears in the corresponding
coupling constants. Apart from the aforementioned phases, we could in principle express all
complex parameters of the NMSSM through their absolute values and their complex phases.
However, in order to comply with the SLHA, we express the soft-SUSY-breaking parameters
Aλ and Aκ through their real and imaginary parts,

Aλ ≡ Re(Aλ) + Im(Aλ) , Aκ ≡ Re(Aκ) + Im(Aκ) , (14.14)

while the parameters λ and κ are expressed through their absolute values and complex phases,

λ ≡ eiϕλ |λ| , κ ≡ eiϕκ |κ| . (14.15)

35The VEVs of the Higgs doublets of the complex NMSSM and of the 2HDM are related as vd ↔ v1 and vu ↔ v2.
36To describe the phase differences between the three multiplets, two complex phases are sufficient. One phase,
e.g. the one of the doublet Hd, can always be absorbed through a redefinition of the fields and hence, only the
two phases ϕi (i = u, s) describing the relative phases between the multiplets are relevant.
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Together with ϕu and ϕs, the phases enter the spectrum of the complex NMSSM in the
combinations

ϕy ≡ ϕκ − ϕλ + 2ϕs − ϕu , (14.16)

ϕω ≡ ϕκ + 3ϕs . (14.17)

The insertion of the multiplet expansion of Eq. (14.12) into the Higgs potential in Eq. (14.9)
yields terms that are linear and bilinear in the fields hi and ai (i = d, u, s),

VNMSSM =
(
Thd , Thu , Ths , Tad , Tau , Tas

)
φn +

1

2
φn,TM2

φφφ
n + φc,†M2

h+h−φ
c + · · · , (14.18)

where we present only the terms Tφi (φi = hd, hu, hs, ad, au, as) as well as M2
φφ and M2

h+h−

linear and bilinear in the fields, respectively, since all other constant, cubic and quartic terms
are not relevant for the following discussion. In Eq. (14.18), we moreover introduce the neutral
and charged scalar field multiplets in the gauge basis of the complex NMSSM,

φn,T ≡
(
hd, hu, hs, ad, au, as

)T
, (14.19)

φc,T ≡
(
(h−d )∗, h+

u

)T
. (14.20)

The terms linear in the neutral scalar fields are the tadpole terms whose explicit forms are
given by

Thd
vcβ
≡ m2

Hd
+

1

2
m2
Zc2β −

1

2
|λ|tβvs

(
|κ|vscϕy −

√
2sϕω−ϕy Im(Aλ) +

√
2cϕω−ϕyRe(Aλ)

)
+

1

2
|λ|2

(
s2
βv

2 + v2
s

)
, (14.21)

Thu
vsβ
≡ m2

Hu −
1

2
m2
Zc2β −

|λ|vs
2tβ

(
|κ|cϕyvs −

√
2sϕω−ϕy Im(Aλ) +

√
2cϕω−ϕyRe(Aλ)

)
+

1

2
|λ|2

(
c2
βv

2 + v2
s

)
, (14.22)

Ths
vs
≡ m2

s + |κ|2v2
s +

1

2
|λ|2v2 +

|λ|sβcβv2

√
2vs

(
sϕω−ϕy Im(Aλ)− cϕω−ϕyRe(Aλ)−

√
2vs|κ|cϕy

)
+

1√
2
|κ|vs

(
cϕωRe(Aκ)− sϕω Im(Aκ)

)
, (14.23)

Tad
vsβ
≡ 1

2
|λ|vs

(
−|κ|vssϕy +

√
2cϕω−ϕy Im(Aλ) +

√
2sϕω−ϕyRe(Aλ)

)
, (14.24)

Tau ≡
1

tβ
Tad , (14.25)

Tas ≡
1

2
|λ|cβsβv2

(
2|κ|vssϕy +

√
2cϕω−ϕy Im(Aλ) +

√
2sϕω−ϕyRe(Aλ)

)
− 1√

2
|κ|v2

s

(
cϕω Im(Aκ) + sϕωRe(Aκ)

)
, (14.26)

where Eq. (14.25) reveals that the tadpole parameters Tau and Tad are linearly dependent and
hence, the total amount of independent tadpole parameters is five. The minimum conditions

∂VNMSSM

∂Hd

∣∣∣∣
〈Hd〉,〈Hu〉,〈S〉

=
∂VNMSSM

∂Hu

∣∣∣∣
〈Hd〉,〈Hu〉,〈S〉

=
∂VNMSSM

∂S

∣∣∣∣
〈Hd〉,〈Hu〉,〈S〉

= 0 , (14.27)

imply that the tadpole parameters vanish at tree level,

Thd |tree = Thu |tree = Ths |tree = Tad |tree = Tau |tree = Tas |tree = 0 . (14.28)
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Nevertheless, we explicitly keep the tadpole parameters in the following expressions since they
require renormalization and hence receive higher-order corrections. The tadpole parameters
in Eqs. (14.21) to (14.23) can be solved for m2

Hd
, m2

Hu and m2
s which allows for eliminating

these three parameters in favor of the other Higgs potential parameters, while Eqs. (14.24)
and (14.26) allow for eliminating Im(Aλ) and Im(Aκ). To summarize, we replace the five
Higgs potential parameters as follows,

m2
Hd

=
Thd
vcβ
− 1

2
c2βm

2
Z +

1

2
|λ|tβvs

(
|κ|cϕyvs −

√
2Im(Aλ)sϕω−ϕy +

√
2Re(Aλ)cϕω−ϕy

)
− 1

2
|λ|2

(
s2
βv

2 + v2
s

)
, (14.29)

m2
Hu =

Thu
vsβ

+
1

2
c2βm

2
Z +

1

2

|λ|vs
tβ

(
|κ|cϕyvs −

√
2Im(Aλ)sϕω−ϕy +

√
2Re(Aλ)cϕω−ϕy

)
− 1

2
|λ|2

(
c2
βv

2 + v2
s

)
, (14.30)

m2
s =

Ths
vs
− |κ|2v2

s −
1

2
|λ|2v2 − |λ|cβsβv2

(
Im(Aλ)sϕω−ϕy − Re(Aλ)cϕω−ϕy√

2vs
− |κ|cϕy

)
− 1√

2
|κ|vs

(
Re(Aκ)cϕω − Im(Aκ)sϕω

)
, (14.31)

Im(Aλ) =
1√

2cϕω−ϕy

(
2

vvs|λ|sβ
Tad + |κ|vssϕy −

√
2sϕω−ϕyRe(Aλ)

)
, (14.32)

Im(Aκ) =

√
2

|κ|v2
scϕω

(
3

2
|λ||κ|sβcβv2vssϕy +

cβv

vs
Tad − Tas

)
− tϕωRe(Aκ) . (14.33)

The bilinear terms in Eq. (14.18) form the mass matricesM2
φφ andM2

h+h− of the neutral and
charged fields. The analytic form of the former is further discussed below, while the one of
the latter is presented in App. D.3. The 2× 2 mass matrixM2

h+h− is diagonalized by means
of the 2× 2 rotation matrix

Rc ≡

−cβc sβc

sβc cβc

 (14.34)

where βc denotes the scalar mixing angle of the charged sector of the NMSSM. The rotation
matrix Rc transforms the charged doublet from the gauge basis to the mass basis,G±

H±

 ≡ Rc
h∓,∗d
h±u

 , (14.35)

and the mass matrix M2
h+h− is transformed as follows,

D2
h+h− ≡ RcM2

h+h−R
c,T ≡

 m2
G± m2

G±H±

m2
H±G± m2

H±

 . (14.36)

The four elements of this transformed matrix are explicitly given by

m2
H± =

|λ|c2
β−βcvs

s2βcϕω−ϕy

(
|κ|vscϕω +

√
2Re(Aλ)

)
− 1

2
|λ|2c2

β−βcv
2 + c2

β−βcm
2
W (14.37)

+
c2
βc

vsβ
Thu +

s2
βc

vcβ
Thd +

c2
β−βctϕy−ϕω

s2
βcβv

Tad ,
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m2
G± = t2β−βcm

2
H± −

sβ−2βc

vc2
β−βc

Thu +
cβ−2βc

vc2
β−βc

Thd , (14.38)

m2
G±H± = −tβ−βcm2

H± +
cβc

vcβ−βc
Thu −

sβc
vcβ−βc

Thd +
i

vsβ
Tad , (14.39)

m2
H±G± =

(
m2
G+H+

)∗
. (14.40)

At tree level, the mixing angle βc coincides with β defined in Eq. (14.11) and all tadpole
parameters vanish, cf. Eq. (14.28). Consequently, the three matrix elements m2

G± , m2
G±H±

and m2
H±G± vanish, the transformed mass matrix D2

h+h− becomes diagonal and the charged
Higgs bosons acquire the squared mass m2

H± . The analytic expression in Eq. (14.37) allows
to eliminate one further parameter of the Higgs potential in favor of another. In our work,
we consider the choice whether to take m2

H± or Re(Aλ) as independent input. In case of
the latter choice, m2

H± can be calculated by means of Eq. (14.37) as a function of the other
potential parameters, while choosing the former option implies that Eq. (14.37) has to be
solved for Re(Aλ), yielding

Re(Aλ) =
s2βcϕω−ϕy√
2|λ|c2

β−βcvs

(
m2
H± +

1

2
|λ|2c2

β−βcv
2 − c2

β−βcm
2
W −

c2
βc

vsβ
Thu −

s2
βc

vcβ
Thd (14.41)

−
c2
β−βctϕy−ϕω

s2
βcβv

Tad

)
− |κ|vscϕω√

2
,

which is then calculated as a function of the other parameters. For the neutral multiplet, we
split the rotation from the gauge to the mass basis into two consecutive rotations,

(hd, hu, hs, a, as, G
0)T ≡ RG(hd, hu, hs, ad, au, as)

T , (14.42)

(h1, h2, h3, h3, h4, h5, G
0)T ≡ R(hd, hu, hs, a, as, G

0)T . (14.43)

The basis on the left-hand side of Eq. (14.42) is gained from the gauge basis by extracting
the Goldstone boson G0 by means of the rotation matrix

RG ≡

13×3 ∅3×3

∅3×3 R̃G

 with R̃G ≡


sβn cβn 0

0 0 1

cβn −sβn 0

 , (14.44)

where the mixing angle βn is introduced. The rotation matrix RG rotates the mass matrix
into the matrix M2

hh,

M2
hh ≡ RGM2

φφR
G,T , (14.45)

and the analytic forms of all elements of this matrix are presented explicitly in App. D.1.
We want to mention already at this stage that while M2

hh is a 6 × 6 matrix, we restrict
the presentation of its elements in App. D.1 to the 5 × 5-dimensional sub-matrix in which
the admixture with the Goldstones is neglected. Hence, the corresponding modified 5 × 5-
dimensional mass matrix M2

hh used for calculating the loop-corrected neutral Higgs boson
masses accounts for the mixing of the neutral Higgs boson fields only, neglecting the Goldstone
boson contributions. Likewise, while the rotation matrix R introduced in Eq. (14.43) is a 6×6
matrix, we consider only a 5×5-dimensional modified rotation matrix R where the Goldstone
boson admixture is neglected for the calculation of the loop-corrected masses in Sec. 16.2.
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The complete mass basis of the neutral sector given on the left-hand side of Eq. (14.43) is
gained by a second rotation with the rotation matrix37 R,

D2
hh ≡ RM2

hhR
T ≡ diag

(
m2
h1
,m2

h2
,m2

h3
,m2

h4
,m2

h5
, 0) , (14.46)

where in this equation, the tree-level tadpole conditions from Eq. (14.28) are applied together
with the fact that at tree level, the mixing angle βn coincides with β defined in Eq. (14.11)
and moreover with βc from Eq. (14.34),

βn|tree = βc|tree = β|tree . (14.47)

The physical neutral CP-mixed Higgs bosons hi (i = 1, ..., 5) are per convention sorted by
ascending mass,

m2
h1
≤ m2

h2
≤ m2

h3
≤ m2

h4
≤ m2

h5
. (14.48)

The effective µ parameter µeff of the complex NMSSM, dynamically generated through the
VEV of the singlet field is given by

µeff =
1√
2
λvse

iϕs ≡ |µeff|eiϕµeff , (14.49)

where we defined the absolute value and the phase of µeff as

|µeff| ≡
1√
2
|λ|vs , (14.50)

ϕµeff
≡ ϕs + ϕλ . (14.51)

The MSSM limit of the complex NMSSM is gained by letting the NMSSM-specific parameters
λ and κ vanish, i.e. by simultaneously taking the limits λ→ 0 and κ→ 0, while λ/κ and the
effective Higgs mass parameter µeff in Eq. (14.4) are kept at a constant non-vanishing value.

14.3. The Quark, Lepton, Sfermion and Gauge Boson Sectors

The next sectors of the complex NMSSM we consider are the SM-like fermions, i.e. the quark
and lepton sector, the sfermions as well as the gauge bosons. In the following, we restrict
the presentation of each sector to the parts that yield contributions to the two-loop O(α2

t )
corrections to the Higgs boson masses.

Quark and lepton sectors
In the approximations used in our two-loop calculations, cf. Sec. 14.5 for further discussions,
we consider all quarks and leptons to be massless apart from the top quark with a non-zero
massmt. Moreover, we neglect all generation mixing in the quark sector as well, i.e. we replace
the CKM matrix V with a unit matrix. Due to these approximations, only the massive top
quark and the approximately massless bottom quark are relevant for our calculations, while
all other quarks and leptons do not contribute at the O(α2

t ) two-loop level.

Up-squark sector
Due to the aforementioned approximation in the quark and lepton sector, i.e. neglecting all
generation mixing and considering all quarks and leptons apart from the top quark to be
massless, the up-squark mixing matrix reduces considerably. Moreover, the since we apply
the gaugeless limit g′ = g = 0 in our O(α2

t ) two-loop calculations, the diagonal elements of

37We do not introduce subscripts for the neutral mixing matrix in order to distinguish it from the one presented
in the N2HDM in Eq. (9.14). Throughout Part IV of this thesis, the matrix R denotes the one defined via
Eq. (14.43).
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the squark mass matrix simplify even further. With these approximations, the only non-zero
contributions stem from the superpartners of the top quark and the corresponding reduces
2× 2 mass matrix reads

M2
t̃

=

 m2
Q̃3

+m2
t mt

(
A∗t e

−iϕu − µeff

tβ

)
mt

(
Ate

iϕu − µ∗eff

tβ

)
m2
t̃R

+m2
t

 , (14.52)

where m2
Q̃3

and m2
t̃R

denote the only entries of the soft-SUSY-breaking mass matrices m2
Q̃

and m2
ŨR

which are relevant in this approximation and At is the soft-SUSY-breaking trilinear
coupling of the stop sector. The 2× 2 matrix is diagonalized by the unitary matrix Ut̃. The
corresponding eigenstates are the two physical stop squarks in the mass basis(

t̃1, t̃2
)T

= Ut̃
(
t̃L, t̃R

)T
, (14.53)

and the diagonalized matrix contains the squared masses of the stop squarks,

D2
t̃

= Ut̃M2
t̃
U†
t̃

= diag
(
m2
t̃1
,m2

t̃2

)
. (14.54)

For later convenience, we additionally define the off-diagonal matrix element of the diagonal-
ized stop matrix,

Yt̃ ≡
(
Ut̃M2

t̃
U†
t̃

)
12

, (14.55)

which vanishes at tree level according to Eq. (14.54) but receives higher-order corrections
through renormalization.

Down-squark sector
By applying the aforementioned approximations of vanishing quark and lepton masses (apart
from mt) and the gaugeless limit, the down-squark mass matrix simplifies considerably and
moreover, it is revealed that only the left-handed sbottom squark contributes to our calcula-
tions. The mass eigenstate of the first sbottom squark corresponds to the left-handed sbottom
squark,

b̃1 ←→ b̃L , (14.56)

and the squared mass of the particle is given by

m2
b̃1

= m2
Q̃3

. (14.57)

The second sbottom squark b̃2, corresponding to the right-handed sbottom state, decouples
and does not contribute to our two-loop calculations at O(α2

t ).

Gauge boson sector
The squared masses of the gauge bosons W± and Z, generated through the mechanism
of EWSB, are defined as in Eqs. (4.16) and (4.17). While the masses mW and mZ of the
gauge bosons vanish in the gaugeless limit, they nevertheless yield non-vanishing contributions
through their renormalization as further described in Sec. 15.4.

14.4. The Chargino and Neutralino Sectors

Chargino sector
The mass matrix of the charged winos W̃± and the charged higgsinos H̃±u,d in the gauge basis
(W̃−, H̃−d ) and (W̃+, H̃+

u ) is given by

Mχ̃± =

 M2

√
2e−iϕusβmW

√
2cβmW µeff .

 (14.58)
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The physical eigenstates in the mass basis are given by the charginos χ̃±i (i = 1, 2). In the
gaugeless limit, cf. Sec. 14.5, the mass matrix simplifies to the diagonal form

Mχ̃± = diag
(
M2, µeff

)
. (14.59)

The charged winos decouple and the charginos χ̃±2 are directly connected to the charged
higgsinos. The diagonalization of the fermion mass matrix yields the masses of the charginos,

Dχ̃± = diag
(
mχ̃1

,mχ̃2

)
= diag

(
M2, |µeff|

)
, (14.60)

where we absorbed the phase ϕµeff
into the mixing matrix elements which, as a consequence,

leads to the reappearance of this phase in the chargino couplings. In the approximations that
we consider for the calculation of the two-loop corrections to the Higgs boson masses, the
charginos χ̃±1 decouple and only the charginos χ̃±2 contribute to our calculations.

Neutralino sector
In the gauge basis (B̃, W̃ 0, H̃0

d , H̃
0
u, S̃), the 5× 5-dimensional mass matrix of the neutralinos

is given by

Mχ̃0 =



M1 0 −cβmZsW sβe
−iϕumZsW 0

0 M2 cβmW −sβe−iϕumW 0

−cβmZsW cβmW 0 −µeff −vsβe
iϕuλ√
2

sβe
−iϕumZsW −sβe−iϕumW −µeff 0 −vsβe

iϕuλ√
2

0 0 −vsβe
iϕuλ√
2

−vsβe
iϕuλ√
2

√
2vse

iϕsκ


, (14.61)

where we use the short-hand notation sW ≡ sin(ΘW ) for the Weinberg angle ΘW . The
diagonalization of the mass matrix yields the five neutralinos χ̃0

i (i = 1, ..., 5). In the gaugeless
limit, the mass matrix reduces to a block-diagonal form consisting of two block matrices

Mχ̃0 = diag
(
MG

χ̃0 ,MN
χ̃0

)
, (14.62)

with the diagonal 2× 2 gaugino mass matrix

MG
χ̃0 = diag

(
M1,M2

)
, (14.63)

and the 3× 3 higgsino-singlino mass matrix

MN
χ̃0 =


0 −µeff −vsβe

iϕuλ√
2

−µeff 0 −vsβe
iϕuλ√
2

−vsβe
iϕuλ√
2

−vsβe
iϕuλ√
2

√
2vse

iϕsκ

 . (14.64)

The already diagonalized form of MG
χ̃0 ,

DGχ̃0 =MG
χ̃0 = diag

(
mχ̃0

1
,mχ̃0

2

)
= diag

(
M1,M2

)
, (14.65)

corresponds to the two neutralino eigenstates χ̃0
i (i = 1, 2). In our approximations, these

eigenstates decouple and do not contribute to our two-loop results at O(α2
t ). On the other

hand, the diagonalization of the other fermion block matrixMN
χ̃0 yields the three neutralinos

χ̃0
i (i = 3, 4, 5) which contribute to our two-loop results. The diagonalized mass matrix is

gained by applying the mixing matrix N to the mass matrix,

DNχ̃0 = N ∗MNχ̃0N
† = diag

(
mχ̃0

3
,mχ̃0

4
,mχ̃0

5

)
. (14.66)
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14.5. Approximations for the Two-Loop Calculations

For convenience, we provide an overview over all aforementioned approximations applied in
the calculation of the O(α2

t ) two-loop corrections to the Higgs boson masses in the complex
NMSSM in this section and moreover present another approximation which we apply for the
calculation of the genuine two-loop Feynman diagrams. To that end, we first define the exact
meaning of denoting the two-loop corrections by O(α2

t ). We define the coupling constant αt
as

αt ≡
y2
t

4π
≡ 1

4π

2m2
t

v2s2
β

, (14.67)

where we defined the top Yukawa coupling constant yt for convenience. In general, the
notation O(αiαj · · · ) used in this thesis implies that only certain powers of the coupling
constants αi, αj , . . . defined via relations analogous to Eq. (14.67), are taken into account.
Consequently, the notation O(α2

t ) implies that only diagrammatic contributions proportional
to α2

t are taken into account. Strictly speaking however, we actually calculate contributions
proportional to m2

tα
2
t in this work and hence, our two-loop results are of O(m2

tα
2
t ). In order

to comply with the conventional notation however, we nevertheless refer to our two-loop
calculations as being of O(α2

t ) throughout this thesis.

Concerning the independent input parameters, we apply the approximations that

� in the gaugeless limit, the gauge couplings g′ and g of the gauge subgroups U(1)Y and
SU(2)L, respectively and consequently also the gauge boson masses vanish38,

g′ → 0 , g → 0 , mW → 0 , mZ → 0 , (14.68)

� all quarks and leptons, apart from the top quark, have vanishing mass,

mt 6= 0 , mf → 0 (all other quarks and leptons) , (14.69)

� no mixing of generations in the quark and lepton sectors are present and especially, the
CKM matrix V equals a unit matrix,

Vij → δij . (14.70)

As a consequence of these approximations, only a reduced amount of particles compared to
the full particle content of the complex NMSSM as shown in Fig. 14.1 are relevant for the
O(α2

t ) two-loop corrections to the Higgs masses. These particles are given by

� the top quark t and the bottom quark b,

� the stop squarks t̃i (i = 1, 2) and the sbottom squark b̃1,

� the neutral CP-mixed Higgs bosons hi (i = 1, ..., 5) and the charged Higgs bosons H±,

� the neutral Goldstone boson G0 and the charged Goldstone bosons G±,

� the chargino χ̃±2 and the three neutralinos χ̃0
i (i = 3, 4, 5) and

� the W± and Z gauge bosons.

Apart from these approximations, we moreover simplify the calculation of the genuine two-
loop Feynman diagrams by taking the limit of vanishing external momentum, i.e. we evaluate
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Figure 14.1.: Particle content of the complex NMSSM in the mass basis. In the complex
realization of the NMSSM, the five Higgs bosons hi (i = 1, ..., 5) represent CP-mixed states.

the genuine two-loop diagrams in the limit p2 → 0. In this limit, the calculated Feynman
amplitudes correspond to their counterparts derived in the effective potential approach.

We want to emphasize that we apply all aforementioned approximations only for the cal-
culation of the O(α2

t ) two-loop corrections to the Higgs boson masses. For the numerical
evaluation presented in Chapter 17 on the other hand, we also evaluate the Higgs boson
masses at full one-loop order, without any approximations applied, and at O(αtαs) two-loop
order, with the same approximations applied as for the calculation of the O(α2

t ) corrections.

14.6. Set of Independent Parameters and Particle Content

In the following, we present the independent input parameters relevant for the O(α2
t ) correc-

tions. For practical reasons, we include in this set only the parameters which are relevant
for the O(α2

t ) two-loop corrections to the Higgs masses when all approximations in the pre-
ceding Sec. 14.5 are applied. When choosing mH± as an independent parameter, Re(Aλ) is
calculated as a function of the other parameters of the scalar potential through Eq. (14.41)
and the set of independent parameters is given by{

Tφi , v, sW , e, tβ, |λ|, |κ|, vs,mH± ,Re(Aκ), ϕj ,mt,mQ̃3
,mt̃R

, At
}
, (14.71)

where φi = hd, hu, hs, ad, au, as and j = λ, κ, u, s. If we instead choose Re(Aλ) to be an inde-
pendent parameter, m2

H± is calculated as a function of the other Higgs potential parameters
by means of Eq. (14.37) and the set of independent parameters is given by{

Tφi , v, sW , e, tβ, |λ|, |κ|, vs,Re(Aλ),Re(Aκ), ϕj ,mt,mQ̃3
,mt̃R

, At
}
. (14.72)

38We want to emphasize here already that while g′, g, mW and mZ all vanish in the gaugeless limit, constants
defined over the ratio of these quantities, e.g. the VEV v or the sine and cosine of the Weinberg angle ΘW ,
are unaffected by these limit and remain at their constant non-zero values.



CHAPTER 15

The Renormalization of the Complex NMSSM for the O(α2
t ) Corrections

The computation of the higher-order corrections to the Higgs boson masses necessitates the
evaluation of one- and two-loop integrals which in general contain UV divergences. Conse-
quently, the independent parameters presented at the end of the preceding Chapter 14 require
renormalization. In contrast to Parts II and III of this thesis, where we considered correc-
tions at the one-loop level, the two-loop corrections require the renormalization of the relevant
parameters not only at one-loop level but additionally also at two-loop order. Throughout
this chapter, the definition of the one- and two-loop CTs of the independent parameters
is restricted to contain only contributions which are relevant for the genuine O(α2

t ) two-
loop corrections and for all approximations which are used in the course of the calculations,
cf. Sec. 14.5. The resulting CTs are implemented in a new version of the computer program
NMSSMCALC which is used for the numerical computation of the higher-order corrections to
the Higgs boson masses in the complex NMSSM. The discussion of the renormalization which
is required for the computation of the O(α2

t ) two-loop corrections presented in this chapter
closely follows the recent publication [82].

Starting with Sec. 15.1, we introduce CTs for all independent parameters of the complex
NMSSM that are relevant for the calculations performed in our work. In Sec. 15.2, we present
the renormalization of the top and stop sector which is of particular relevance for the O(α2

t )
corrections. In the subsequent Sec. 15.3, we present the renormalization of the scalar sec-
tor including the definition of the CTs for the neutral Higgs mass matrix, the WFRCs of the
scalar fields as well as the renormalization of the charged Higgs boson mass and tβ. Moreover,
we discuss the renormalization of the minimum conditions of the scalar potential and define
the tadpole CTs required for the higher-order corrections to the Higgs masses. Subsequently,
we present in Sec. 15.4 the renormalization of the gauge sector of the complex NMSSM. Fi-
nally, we discuss the renormalization of all remaining independent parameters of the complex
NMSSM in Sec. 15.5.

15.1. The Counterterms for the O(α2
t ) Corrections

In the first section of this chapter, we first formally introduce the CTs of all independent
parameters given by either of the two sets in Eqs. (14.71) and (14.72). For each indepen-
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dent parameter, we split the bare parameter into a renormalized value and its corresponding
genuine one- and two-loop CTs as follows39,

Tφi → Tφi + δ(1)Tφi + δ(2)Tφi , (15.1)

v → v + δ(1)v + δ(2)v , (15.2)

e → e
(
1 + δ(1)Ze + δ(2)Ze

)
, (15.3)

sW → sW + δ(1)sW + δ(2)sW , (15.4)

m2
W → m2

W + δ(1)m2
W + δ(2)m2

W , (15.5)

m2
Z → m2

Z + δ(1)m2
Z + δ(2)m2

Z , (15.6)

m2
H± → m2

H± + δ(1)m2
H± + δ(2)m2

H± , (15.7)

m2
G±H± → m2

G±H± + δ(1)m2
G±H± + δ(2)m2

G±H± , (15.8)

(M2
hh)φiφj → (M2

hh)φiφj + (δ(1)M2
hh)φiφj + (δ(2)M2

hh)φiφj , (15.9)

tβ → tβ + δ(1)tβ + δ(2)tβ , (15.10)

Re(Aλ) → Re(Aλ) + δ(1)Re(Aλ) + δ(2)Re(Aλ) , (15.11)

|λ| → |λ|+ δ(1)|λ|+ δ(2)|λ| , (15.12)

|κ| → |κ|+ δ(1)|κ|+ δ(2)|κ| , (15.13)

vs → vs + δ(1)vs + δ(2)vs , (15.14)

Re(Aκ) → Re(Aκ) + δ(1)Re(Aκ) + δ(2)Re(Aκ) , (15.15)

ϕi → ϕi + δ(1)ϕi + δ(2)ϕi (i = u, s, λ, κ) , (15.16)

µeff → µeff + δ(1)µeff + δ(2)µeff , (15.17)

mt → mt + δ(1)mt , (15.18)

m2
Q̃3
→ m2

Q̃3
+ δ(1)m2

Q̃3
, (15.19)

m2
t̃R
→ m2

t̃R
+ δ(1)m2

t̃R
, (15.20)

At → At + δ(1)At , (15.21)

m2
t̃i
→ m2

t̃i
+ δ(1)m2

t̃i
(i = 1, 2) , (15.22)

m2
b̃1
→ m2

b̃1
+ δ(1)m2

b̃1
, (15.23)

Yt̃ → Yt̃ + δ(1)Yt̃ , (15.24)

with φi = hd, hu, hs, ad, au, as for Eq. (15.1) and φi, φj = hd, hu, hs, a, as for Eq. (15.9). For
later convenience we additionally introduced CTs of the squared gauge boson masses m2

W and
m2
Z , for the effective parameter µeff defined in Eq. (14.49), for the off-diagonal entry m2

G±H±

of the diagonalized charged Higgs mass matrix defined in Eq. (14.39), for the neutral mass
matrix elements (M2

hh)φiφj as given in App. D.1 as well as for the additional parameters m2
t̃i

(i = 1, 2), m2
b̃1

and Yt̃ of the top and stop sectors which are promoted only up to one-loop

order, since the two-loop CTs are not required in our calculations.

In order to incorporate the newly calculated O(α2
t ) contributions consistently with the full

one-loop and O(αtαs) two-loop corrections for the complex NMSSM already implemented in
NMSSMCALC [79, 81], we adopt the mixed DR-OS scheme used in these computations, i.e. in
case that m2

H± is chosen as independent input the independent parameters of the complex
NMSSM are renormalized as follows,

Tφi ,m
2
H± , v, e, sW︸ ︷︷ ︸

OS scheme

, tβ, |λ|, vs, |κ|,Re(Aκ), ϕi︸ ︷︷ ︸
DR scheme

,mt,mQ̃3
,mt̃R

, At︸ ︷︷ ︸
OS/DR scheme

. (15.25)

39In Part IV, we introduce the CT δ(n)p of the parameter p required for the two-loop calculations with a super-
script (n) denoting the nth loop level at which the CT is defined.
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where OS/DR denotes that the parameters of the top and stop sectors are renormalized either
in the OS or in the DR scheme as described in the subsequent Sec. 15.2. If instead Re(Aλ) is
considered as input, then the CTs in the mixed DR-OS scheme are fixed according to

Tφi , v, e, sW︸ ︷︷ ︸
OS scheme

, tβ, |λ|, vs, |κ|,Re(Aλ),Re(Aκ), ϕi︸ ︷︷ ︸
DR scheme

,mt,mQ̃3
,mt̃R

, At︸ ︷︷ ︸
OS/DR scheme

, (15.26)

In the subsequent sections, we present the renormalization conditions imposed on the differ-
ent sectors of the complex NMSSM in more detail and present the resulting CTs explicitly.
However, we want to emphasize again that we restrict the presentation and definition of all
CTs solely to the terms which contribute to the newly calculated two-loop corrections to
the Higgs masses at O(α2

t ). For the one-loop corrections to the Higgs masses implemented
in NMSSMCALC on the other hand, the full CTs including contributions from all independent
parameters are considered. We do not show these full one-loop CTs in this work and instead
refer to [79] for their presentation.

15.2. Renormalization of the Top and Stop Sectors

The first sector considered for renormalization in the complex NMSSM is the top and stop
sector of the theory. The relevant parameters of the top/stop sectors are split into renormal-
ized parameters and one-loop CTs as presented in Eqs. (15.18) to (15.21). In our work, we
proceed along the lines of [81] and consider the two possibilities of renormalizing the top/stop
sector either in the OS or in the DR scheme. In case the former is chosen, it is more practical
to directly define the CTs for the masses of the two stops t̃i (i = 1, 2), for the sbottom b̃1
as well as for the off-diagonal mixing element Yt̃ of the stop sector as defined in Eq. (14.55).
These additional CTs are introduced analogously by splitting the bare parameters into the
sum of the renormalized parameters and their CTs as presented in Eqs. (15.22) to (15.24).

We first consider the case that the parameters of the top/stop sectors are renormalized OS.
For the OS conditions of the top/stop sector, we adopt the scheme definitions of the CTs
presented in [276,277]. The four CTs are given by

δ(1)mt =
mt

2
Re
[
Σ(1),L
tt (m2

t ) + Σ(1),R
tt (m2

t ) + 2Σ(1),S
tt (m2

t )
]
, (15.27)

δ(1)m2
t̃1

= R̃e
[
Σ(1)

t̃1 t̃1
(m2

t̃1
)
]
, (15.28)

δ(1)m2
t̃2

= R̃e
[
Σ(1)

t̃2 t̃2
(m2

t̃2
)
]
, (15.29)

δ(1)Yt̃ =
1

2
R̃e
[
Σ(1)

t̃∗1 t̃
∗
2

(m2
1̃2

) + Σ(1)

t̃∗1 t̃
∗
2

(m2
t̃2

)
]
, (15.30)

where the superscripts denote the left-chiral (L), right-chiral (R) and scalar (S) projections
of the unrenormalized one-loop top quark self-energies in terms of the chirality projectors ω∓
(cf. e.g. [183] for more details). The terms Σ(1)

t̃
(∗)
i t̃

(∗)
j

(p2) (i, j = 1, 2) denote the unrenormalized

one-loop self-energies of the stop transitions t̃
(∗)
i → t̃

(∗)
j and R̃e implies that the real part is

applied only to the loop integrals but not to the coupling constants of the complex NMSSM
appearing in the stop self-energies. For the calculation of the O(α2

t ) two-loop corrections,
only the subsets of self-energy diagrams shown in Fig. 15.1 and Fig. 15.2 for the top and stop
self-energies, respectively, are required. The CTs of the soft-SUSY-breaking masses, trilinear
coupling constants and of the squared sbottom mass are derived as functions of other CTs as
follows,

δ(1)At =
e−iϕu

mt

[
(Ut̃)11(Ut̃)∗12

(
δ(1)m2

t̃1
− δ(1)m2

t̃2

)
+ (Ut̃)11(Ut̃)∗22(δ

(1)Yt̃)
∗ (15.31)
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S, F = {ha, G
0, H+, G+, t̃b, b̃1}, {t, b, χ0

c, χ
+
2 }

t t

F

S

Figure 15.1.: Generic one-loop self-energies of the top quark relevant for the O(αt) renor-
malization of mt. We implicitly sum over the indices a = 1, ..., 5, b = 1, 2 and c = 3, 4, 5 of
all internal particles.

+ (Ut̃)21(Ut̃)∗12δ
(1)Yt̃ −

(
Ate

iϕu − µ∗eff

tβ

)
δ(1)mt

]
− e−iϕuµ∗effδ

(1)tβ
t2β

+
e−iϕu(δ(1)µeff)∗

tβ

δ(1)m2
Q̃3

= |(Ut̃)11|2δ(1)m2
t̃1

+ |(Ut̃)12|2δ(1)m2
t̃2

+ (Ut̃)21(Ut̃)∗11δ
(1)Yt̃ + (Ut̃)11(Ut̃)∗21(δ

(1)Yt̃)
∗ (15.32)

− 2mtδ
(1)mt ,

δ(1)m2
t̃R

= |(Ut̃)12|2δ(1)m2
t̃1

+ |(Ut̃)22|2δ(1)m2
t̃2

+ (Ut̃)22(Ut̃)∗12δ
(1)Yt̃ + (Ut̃)12(Ut̃)∗22(δ

(1)Yt̃)
∗ (15.33)

− 2mtδ
(1)mt ,

δ(1)m2
b̃1

= δ(1)m2
Q̃3

, (15.34)

where δ(1)tβ and δ(1)µeff are defined in the upcoming Subsec. 15.3.4 and Sec. 15.5, respectively.

For the two-loop calculations, we need to expand the one-loop CT δ(1)p for any parameter p
a priori up to O(ε) terms40 as follows,

δ(1)pOS =
1

ε
δ(1)pdiv + δ(1)pfin + εδ(1)pε , (15.35)

where the subscripts denote the divergent (div) and finite (fin) parts of the CT as well as
the part which is proportional to ε. While the latter terms can in principle be included in
the calculation, cf. [278, 279], it turns out that all εδ(1)pε terms of each OS-defined CT do
not contribute to the O(α2

t ) two-loop corrections of the Higgs masses, which was checked
explicitly by us. As a consequence, we set the parts proportional to ε of all OS-defined CTs
to zero and consider only the expansion up to the finite part in the following,

δ(1)pOS → 1

ε
δ(1)pdiv + δ(1)pfin . (15.36)

The DR CT on the other hand is given by

δ(1)pDR =
1

ε
δ(1)pdiv . (15.37)

According to the SLHA, the top quark mass used in the higher-order computations of the
Higgs boson masses is understood as the pole mass while the soft-SUSY-breaking mass terms
m2
Q̃3

and m2
t̃R

as well as the soft-SUSY-breaking trilinear coupling At are parameters defined
in the DR scheme at the renormalization scale µR = MSUSY, where MSUSY denotes the SUSY
mass scale. In our work, we consider both possibilities that the top/stop sector is renormalized
either through OS or DR conditions. Since we apply the SLHA, this, however, requires that
in both cases, some of the parameters need to be converted from one scheme to the other:

40The O(ε) terms of the CTs are relevant when calculating one-loop Feynman diagrams with CT insertions at
e.g. one of the vertices of the diagram. The O(ε) terms of the CT can combine with the UV-divergent O(ε−1)
terms of the one-loop integral and hence contribute at two-loop order to the finite part of the diagram.
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F1, F2 = {t, b}, {χ0
c, χ

+
2 }

t̃i t̃j

F2

F1

S1, S2 = {ha, G
0, H+, G+}, {t̃b, b̃1}

t̃i t̃j

S2

S1

S = {ha, G
0, H+, G+, t̃b, b̃1}

t̃i t̃j

S

Figure 15.2.: Generic one-loop self-energies of the stops relevant for the O(αt) renormaliza-
tion of the stop sector. We implicitly sum over the indices a = 1, ..., 5, b = 1, 2 and c = 3, 4, 5
of all internal particles.

� In case the DR scheme is chosen for renormalizing the top/stop sector, the DR-defined
parameters m2

Q̃3
, m2

t̃R
and At are taken as they are, but the pole mass mt needs to be

converted to the DR top quark mass mDR
t . For this, we follow the approach as described

in detail in App. C of [82].

� In case the OS scheme is chosen for renormalizing the top/stop sector, the top quark pole
mass mt is taken as input while the DR parameters m

Q̃3
, mt̃R

and At are converted to
their corresponding values in the OS scheme by applying the generic formula presented
in Eq. (3.31) to the case of the three DR parameters,

AOS
t = ADR

t − δ(1)Afin
t , (15.38)

(m2
Q̃3

)OS = (m2
Q̃3

)DR − (δ(1)m2
Q̃3

)fin , (15.39)

(m2
t̃R

)OS = (m2
t̃R

)DR − (δ(1)m2
t̃R

)fin . (15.40)

In contrast to Eq. (3.31) however, we evaluate the finite parts of the CTs on the right-
hand sides of Eqs. (15.38) to (15.40) with the OS parameters AOS

t , (m2
Q̃3

)OS and (m2
t̃R

)OS

instead of the DR parameters. But since these are defined through these equations, this
requires an iterative procedure for solving Eqs. (15.38) to (15.40) for the OS parameters,
as discussed in Sec. 3.5. In NMSSMCALC, such an iterative procedure is implemented for
the conversion of the DR parameters m

Q̃3
, mt̃R

and At.

Both the OS and the DR scheme of the top/stop sectors are implemented in NMSSMCALC and
the user can decide in the input file which renormalization scheme is chosen. Since both
schemes differ by finite terms in the CTs of the top/stop sector, the resulting computed
higher-order corrections to the Higgs masses differ between the two schemes, as well. We
discuss this in more detail in Chapter 17.

15.3. Renormalization of the Scalar Sector

The next sector considered for renormalization is the scalar sector of the theory. This com-
prises of the renormalization of the scalar field multiplets, the treatment of the tadpoles at
one- and two-loop order and the renormalization of the charged Higgs boson mass mH± and
tβ. We discuss each of these sectors separately in the following subsections.

15.3.1. The Scalar Wave Function Renormalization Constants

As discussed for scalar field multiplets in general in Sec. 3.2, the scalar fields of the complex
NMSSM receive higher-order corrections due to which the bare fields are rescaled to form the

https://arxiv.org/pdf/1903.11358.pdf#appendix.C
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renormalized fields. We introduce one WFRC for each Higgs doublet and singlet41, expanded
up to two-loop order as follows,

Hd →
(

1 +
δ(1)ZHd

2
+
δ(2)ZHd

2
− 1

2

(δ(1)ZHd
2

)2
)
Hd (15.41)

≡
(

1 +
∆(1)ZHd

2
+

∆(2)ZHd
2

)
Hd ,

Hu →
(

1 +
δ(1)ZHu

2
+
δ(2)ZHu

2
− 1

2

(δ(1)ZHu
2

)2
)
Hu (15.42)

≡
(

1 +
∆(1)ZHu

2
+

∆(2)ZHu
2

)
Hu ,

S →
(

1 +
δ(1)ZS

2
+
δ(2)ZS

2
− 1

2

(δ(1)ZS
2

)2
)
S (15.43)

≡
(

1 +
∆(1)ZS

2
+

∆(2)ZS
2

)
S ,

where for later convenience we define the short-hand notations

∆(1)ZΦi ≡ δ(1)ZΦi , (15.44)

∆(2)ZΦi ≡ δ(2)ZΦi −
(
δ(1)ZΦi

2

)2

, (15.45)

for the genuine one-loop WFRCs as well as for the combination of the genuine two-loop WFRC
with the squared one-loop contributions, where (Φi = Hd, Hu, S). For the renormalization
of the three WFRCs, we follow the approach used in the calculation of the full one-loop and
O(αtαs) two-loop corrections in NMSSMCALC [67,79,81] and fix the WFRCs at n-loop level by
applying the DR conditions

∂Σ̂(n)

φiφi

∂p2

∣∣∣∣∣
div

= 0 (15.46)

to any scalar component field (φi = hd, hu, hs, ad, au, as) in the gauge basis, where the sub-
script denotes that only the UV-divergent contributions proportional to ε−1, cf. Eq. (3.2),
in the framework of DRED are taken into account. Since for Eq. (15.46) we have six com-
ponent fields at our disposal but only three WFRCs that need to be determined, we could
in principle choose any combination of three scalar fields42 to fix the WFRCs through these
renormalization conditions. In our case, we choose the three fields φi = hd, hu, hs to define
the three WFRCs,

δ(n)ZHd = −
∂Σ(n)

hdhd
(p2)

∂p2

∣∣∣∣∣
div

, (15.47)

δ(n)ZHu = −
∂Σ(n)

huhu
(p2)

∂p2

∣∣∣∣∣
div

, (15.48)

δ(n)ZS = −
∂Σ(n)

hshs
(p2)

∂p2

∣∣∣∣∣
div

. (15.49)

41As discussed in [280] for the MSSM, the introduction of one WFRC for each fundamental SU(2)L doublet or
singlet is sufficient for the UV finiteness of observables calculated as a function of these WFRCs.

42In fact, we could also apply Eq. (15.46) to all six fields (φi = hd, hu, hs, ad, au, as) and solve the six equations
for the three WFRCs. Three of these six equations are linearly dependent, so that the system of equations is
always well-determined.
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hi hj

t̃b

t̃a

hi hj

t

t

hi hj

t̃a

Figure 15.3.: Generic Feynman-diagrammatic contributions to the self-energies of the neu-
tral Higgs bosons hi,j (i, j = 1, ..., 5) relevant at O(αt). We implicitly sum over the indices
a, b = 1, 2 of all internal particles.

In these definitions, the corresponding one- and two-loop self-energies Σ(n)

φiφi
(p2) are given

in the gauge basis. In practical calculations, however, we perform all calculations of the
self-energies Σ(n)

hihj
(p2) (i, j = 1, ..., 5) in the mass basis consisting of the physical particles

of the complex NMSSM as depicted in Fig. 14.1. A straightforward translation of the two
quantities can be achieved by calculating the diagonal self-energies Σ(n)

hihi
(p2) in the mass basis

in the limit of a diagonal mixing matrix of the neutral Higgs sector, which directly relates
the diagonal components of the self-energies in the mass basis to the ones in the gauge basis.

For our computations at O(α2
t ) and with all approximations as discussed in Sec. 14.5 applied,

the one-loop self-energies required for the definition of the WFRCs are depicted in Fig. 15.3,
while the two-loop self-energies are presented in App. E.1. For the one-loop WFRCs, we find
for the O(αt) contributions relevant for our two-loop calculations the analytic results

δ(1)ZHd = 0 , (15.50)

δ(1)ZHu =
−3m2

t

8π2v2s2
β

1

ε
, (15.51)

δ(1)ZS = 0 . (15.52)

Since the O(α2
t ) two-loop WFRCs are among others derived from Feynman-diagrammatic

contributions containing CTs from the top/stop sector as depicted by the CT insertions in
Fig. E.1, the analytic form of the scalar WFRCs at two-loop level depend on the renormaliza-
tion scheme of the top/stop sector that is chosen, cf. the discussion at the end of the preceding
Sec. 15.2. In case that the sector is renormalized in the DR scheme, the WFRCs are given by

δ(2)ZDR
Hd

= 0 , (15.53)

δ(2)ZDR
Hu =

9(mDR
t )4

128π4v4s4
β

(
1

ε
− 1

ε

2
)
, (15.54)

δ(2)ZDR
S = 0 . (15.55)

If the top/stop sector is renormalized in the OS scheme, then the WFRCs gain additional
contributions stemming from the finite parts of the OS CTs, cf. Eq. (15.36), and the WFRCs
are explicitly given by

δ(2)ZOS
Hd

= 0 , (15.56)

δ(2)ZOS
Hu =

9(mOS
t )4

128π4v4s4
β

(
1

ε
− 1

ε

2
)
− 3(mOS

t )2

4π2v2s2
β

(
δmαt,fin

t

mOS
t

− δvαt,fin

v

)
1

ε
, (15.57)

δ(2)ZOS
S = 0 , (15.58)
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where the finite shifts are given in terms of OS parameters by

δmαt,fin
t = − m3

t

16π2v2s2
β

Re

[
c2
βB

fin
1 (m2

t ; 0,m2
H±) +Bfin

1 (m2
t ; |µeff|2,m2

Q̃3
) (15.59)

+ 2c2
βB

fin
1 (m2

t ;m
2
t ,m

2
H±) +Bfin

1 (m2
t ; |µeff|2,m2

t̃1
) +Bfin

1 (m2
t ; |µeff|2,m2

t̃2
)

]
,

δvαt,fin =
3

32π2s2
W v

[
(c2
W − s2

W )
(
|(U t̃)11|2F0(m2

t̃1
,m2

Q̃3
) + |(U t̃)21|2F0(m2

t̃2
,m2

Q̃3
)
)

(15.60)

− c2
W |(U t̃)11|2|(U t̃)12|2F0(m2

t̃1
,m2

t̃2
)

]
,

as a function of

F0(m2
1,m

2
2) ≡ m2

1 +m2
2 −

2m2
1m

2
2

m2
1 −m2

2

ln

(
m2

1

m2
2

)
, (15.61)

as well as of the finite part of the loop integral

Bfin
1 (p2;m2

1,m
2
2) =

1

2p2

[
Afin

0 (m2
1)−Afin

0 (m2
2)− (p2 +m2

1 −m2
2)Bfin

0 (p2;m2
1,m

2
2)
]
, (15.62)

evaluated at µR = MSUSY, where the finite parts of the scalar Afin
0 and Bfin

0 integrals are
presented in App. A. In the formulae for the finite shifts, the top quark mass mt is given
as the NMSSM running mass at the SUSY scale µR = MSUSY. The analytic formulae of
the one- and two-loop WFRCs in the DR scheme presented in Eqs. (15.50) to (15.55) and
derived in the Feynman-diagrammatic approach are in agreement with the formulae presented
in [266,281] which are derived on the basis of the renormalization group.

So far, we considered the WFRCs defined in the minimal scheme solely in the gauge basis
(hd, hu, hs, ad, au, as)

T , where the two WFRC matrices for the neutral and charged sectors
are given by

∆(n)Zφ0 ≡ diag
(

∆(n)ZHd ,∆
(n)ZHu ,∆

(n)ZS ,∆
(n)ZHd ,∆

(n)ZHu ,∆
(n)ZS

)
, (15.63)

∆(n)Zφ± ≡ diag
(

∆(n)ZHd ,∆
(n)ZHu

)
. (15.64)

For practical calculations, however, it is additionally useful to present the explicit formulae
for all WFRCs in the corresponding mass bases of the scalar fields. By introducing symmetric
WFRCs δ(n)Zhihj (where hi, hj = h1, ..., h5 and additionally h6 ≡ G0 for the symmetry between

the two bases) for the neutral and δ(n)ZH±i H
±
j

(withH±i,j = H±, G±) for the charged sectors, the
WFRCs in the gauge basis are related to the ones in the mass basis by the field transformations
shown in Eqs. (14.35), (14.42) and (14.43),

δ(n)Zhihj =
(
RRG∆(n)Zφ0RG,†R†

)
ij
, (15.65)

δ(n)ZH±i H
±
j

=
(
Rc∆(n)Zφ±R

c,†
)
ij
. (15.66)

Since the elements of the rotation matrix R can in general not be given analytically in closed
form, we are not able to express the matrix elements δ(n)Zhihj analytically in general, either.
For the charged sector, however, we insert the rotation matrix Rc given in Eq. (14.34) and
find the following analytic expressions of the matrix elements δ(n)ZH±i ,H

±
j

,

δ(n)ZH±H± = s2
βc∆

(n)ZHd + c2
βc∆

(n)ZHu , (15.67)

δ(n)ZG±G± = c2
βc∆

(n)ZHd + s2
βc∆

(n)ZHu , (15.68)

δ(n)ZG±H± = sβccβc

(
∆(n)ZHu −∆(n)ZHd

)
, (15.69)

δ(n)ZH±G± = δ(n)ZG±H± . (15.70)
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hi

t

hi

t̃a

Figure 15.4.: One-loop tadpole diagrams of all neutral Higgs bosons hi (i = 1, ..., 5). Tadpole
diagrams stemming from the Goldstone boson h6 ≡ G0 do not contribute to our calculations.
We implicitly sum over the index a = 1, 2 of the internal stops.

For later convenience, it is additionally useful to define the WFRC matrix δ(n)Z
φ̃0 after the

rotation with the neutral Goldstone matrix RG is performed:

(δ(n)Z
φ̃0)ij =

(
RG∆(n)Zφ0RG,†

)
ij
. (15.71)

This WFRC matrix is a 6 × 6-dimensional matrix with the elements of the sixth row and
column describing the admixture of the neutral Goldstone boson with all other neutral Higgs
bosons in the basis of (14.42). However, for the actual calculation of the higher-order cor-
rections to the neutral Higgs boson masses in Sec. 16.2, we neglect the admixture with the
Goldstone bosons. Consequently, it is useful to define the 5×5-dimensional sub-matrix of the
WFRCs by restricting the indices of Eq. (15.71) to i, j ≤ 5. In this case, the reduced WFRC
matrix is given by

δ(n)Z
φ̃0 ≡ diag

(
∆(n)ZHd ,∆

(n)ZHu ,∆
(n)ZS , s

2
βn∆(n)ZHd + c2

βn∆(n)ZHu ,∆
(n)ZS

)
. (15.72)

15.3.2. Renormalization of the Tadpoles

In order for the VEVs to represent the vacua states at higher orders in perturbation the-
ory, it is necessary to renormalize them properly such that at two-loop order, the minimum
conditions of the scalar potential apply again. As outlined in detail in Secs. 5.1 and 10.1
for the 2HDM and N2HDM respectively, the proper renormalization of the minimum condi-
tions of the scalar potential through the alternative FJ tadpole scheme is crucial for defining
e.g. renormalized masses and their CTs in a GFP-independent way. In Part IV of this thesis
on the other hand, we solely renormalize the minima of the potential in the standard tadpole
scheme as used e.g. in [183] in the SM. We want to emphasize that at the level of the newly
calculated O(α2

t ) contributions to the Higgs boson masses in the gaugeless limit and in the
limit of vanishing external momentum, the framework of the standard tadpole scheme does
not introduce additional one- or two-loop GFP dependences into the calculation of the Higgs
boson masses. All GFP-dependent contributions are proportional to g and g′ (or mW and
mZ , equivalently) and hence, these contributions vanish in the gaugeless limit. Consequently,
we are able to perform all calculations in the standard tadpole scheme without introducing
additional GFP-dependent terms into the two-loop Higgs masses.

In the framework of the standard tadpole scheme, we introduce CTs for the tadpoles as shown
in Eq. (15.1) which account for the shift of the scalar potential such that the VEVs represent
the vacuum states at higher orders again. At one- and two-loop level, the one-point functions
in the scalar potential not only acquire contributions from the tadpole CTs δ(n)Tφi for all fields
(φi = hd, hu, hs, ad, au, as) but moreover additional contributions stemming from the genuine
tadpole diagrams T (n)

φi
(n = 1, 2). The tadpole CTs are fixed by imposing the renormalization
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Figure 15.5.: Two-loop tadpole diagrams of all neutral Higgs bosons hi (i = 1, ..., 5). Tadpole
diagrams stemming from the Goldstone boson h6 ≡ G0 do not contribute to our calculations.
All placeholders S(i) and F(i) (i = 1, 2) represent the particle content, specified below each
individual Feynman diagram. We implicitly sum over the indices a, b = 1, 2 of the internal
stops.

condition that the renormalized tadpoles Tφi vanish again at higher orders, leading to the
relations

T (n)

φi
−∆(n)Tφi ≡ 0 . (15.73)

As a consequence, the tadpole CTs absorb the contributions stemming from the genuine one-
and two-loop tadpole diagrams and their explicit forms are given by

δ(1)Tφi = ∆(1)Tφi (15.74)

= T (1)

φi
,

δ(2)Tφi = ∆(2)Tφi + T (1)

φi
δ(1)Zφi (15.75)

= T (2)

φi
+ δ(1)Tφiδ

(1)Zφi .

Since we perform the calculations in the mass basis, we can transform these CT definitions
given in the gauge basis to the mass basis by means of the rotation matrices R and RG.
Consequently, the tadpole CTs in the mass basis are given by

δ(1)Thi = T (1)

hi
, (15.76)

δ(2)Thi = T (2)

hi
+
∑
j

δ(1)Thjδ
(1)Zhjhi , (15.77)

with hi, hj = h1, ..., h5 and additionally h6 ≡ G0. However, we want to emphasize that the
tadpole diagrams and CTs stemming from the Goldstone boson G0 do not contribute to our
calculations. In the mass basis, the genuine tadpole diagrams T (n)

hi
are presented at one-loop

level in Fig. 15.4 and to two-loop order in Fig. 15.5.

15.3.3. Renormalization of the Charged Higgs Boson Mass and Re(Aλ)

The squared charged Higgs boson mass m2
H± and the real part Re(Aλ) of the soft-SUSY-

breaking trilinear coupling Aλ are promoted to higher orders as given in Eqs. (15.7) and
(15.11). Depending on the choice whether m2

H± or Re(Aλ) are considered as an independent
parameter for our calculations, only the chosen parameter needs to be renormalized and
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b̃1
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S = {t̃a, b̃1}
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Figure 15.6.: Generic one-loop self-energies of the charged Higgs boson transition H± → H±

that contribute at O(αt), required for the renormalization of the squared charged Higgs mass
m2
H± . We implicitly sum over the indices a = 1, 2 of the internal stops.

receives an independent CT, while the CT of the other parameter becomes a function of
other independent CTs.

We first consider the case that m2
H± is chosen as an independent parameter. In this case, we

renormalize m2
H± in the OS scheme. However, since the O(α2

t ) two-loop corrections to the
Higgs boson masses are calculated in the limit of vanishing external momentum, we apply
the OS scheme in the same limit. To that end, we adapt the generic presentation of the
OS renormalization outlined in Sec. 3.2 to account for the fact that now, we employ the OS
conditions at vanishing external momentum, i.e. for p2 = 0. A look at Eq. (3.10) reveals
that in this limit, the OS-defined scalar mass CTs additionally are dependent on the WFRCs
already at one-loop level. Moreover, the charged Higgs mass CT receives contributions from
the off-diagonal element m2

G±H± defined in Eq. (14.39) which at tree level vanishes. The
one-loop CT of m2

G±H± is given by

δ(1)m2
G±H± =

cβ
v
δ(1)Thu −

sβ
v
δ(1)Thd − c2

βm
2
H±δ

(1)tβ +
i

vsβ
δ(1)Tad . (15.78)

The resulting charged Higgs mass CTs at one- and two-loop level in the limit of vanishing
external momentum read

δ(1)m2
H± = Re

[
Σ(1)

H±H±(0)−m2
H±δ

(1)ZH±H±

]
, (15.79)

δ(2)m2
H± = Re

[
Σ(2)

H±H±(0)−m2
H±

(
δ(1)ZH±H±

2

)2

− δ(1)ZH±H±δ
(1)m2

H± − δ(1)ZG±H±δ
(1)m2

H±G±

−m2
H±δ

(2)ZH±H±

]
, (15.80)

where Σ(n)

H±H±(0) denotes the unrenormalized n-loop self-energy of the charge Higgs transition
H± → H± in the limit of vanishing external momentum. At one-loop order, the corresponding
Feynman diagrams are depicted in Fig. 15.6 and the analytic formula for the self-energy
relevant for the O(α2

t ) corrections is given by

Σ(1)

H±H±(0) =
3m2

t

8π2t2βv
2

(
Afin

0 (m2
Q̃3

)− 2Afin
0 (m2

t ) +
∣∣(Ut̃)12

∣∣2Afin
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∣∣(Ut̃)22
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t̃2
)

+

∣∣∣∣∣mt

∣∣(Ut̃)11

∣∣+
∣∣At∣∣ei(ϕω−ϕy+ϕAλ )
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√

2
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) (15.81)

+

∣∣∣∣∣mt

∣∣(Ut̃)21

∣∣+
∣∣At∣∣ei(ϕω−ϕy+ϕAλ )

∣∣(Ut̃)22
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)
,
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where the finite parts of the scalar integrals Afin
0 and Bfin

0 are presented in App. A. At two-loop
order, all Feynman-diagrammatic contributions to the charged Higgs self-energy are depicted
in App. E.2. Since the resulting analytic form of the two-loop self-energy is rather intricate,
we do not present it explicitly. The CTs δ(n)Re(Aλ) are given as functions of the CTs of the
other parameters by inserting their renormalized values and CTs, cf. Eqs. (15.1) to (15.21),
into Eq. (14.41). The resulting formulae are presented analytically in App. D.5.

In the second case that the parameter Re(Aλ) is considered as the independent parameter,
we renormalize its CTs δ(n)Re(Aλ) in a DR scheme at the SUSY scale µR = MSUSY. In this
case, the one- and two-loop CTs δ(n)m2

H± of the charged Higgs mass are given as functions
of the other CTs of the NMSSM by inserting the corresponding higher-order expansions,
cf. Eqs. (15.1) to (15.21), into Eq. (14.37). The resulting analytic formulae for the CTs
δ(n)m2

H± are presented in App. D.4. Moreover, the charged Higgs mass receives higher-order
corrections since it is not renormalized in the OS scheme in case that Re(Aλ) is chosen as the
independent parameter. We define the renormalized self-energy of the charged Higgs boson
at one-loop level by adapting the generic formula of Eq. (3.10) to the case of the charged
Higgs,

Σ̂(1)

H±H±(p2) = Σ(1)

H±H±(p2) + (p2 −m2
H±)δ(1)ZH±H± − δ(1)m2

H± , (15.82)

where the one-loop contributions of the unrenormalized self-energy Σ(1)

H±H±(p2) are given
in [79]. Analogously, the renormalized self-energy at two-loop order in the approximation of
vanishing external momentum is given by

Σ̂(2),O
H±H±(0) = Σ(2),O

H±H±(0)−m2
H±

(
δ(1)ZH±H±

2

)2

− δ(1)ZH±H±δ
(1)m2

H± (15.83)

− δ(1)ZH±G±δ
(1)m2

G±H± −m2
H±δ

(2)ZH±H± − δ(2)m2
H± , (15.84)

where O ∈ {αtαs, α2
t }. The O(αtαs) two-loop unrenormalized self-energy Σ(2),O

H±H±(0) is given
in [81], while at O(α2

t ), the corresponding Feynman diagrams contributing to the self-energy
are again depicted in App. E.2. The loop-corrected value of the charged Higgs boson mass at
two-loop order is then given as the solution of the equation

p2 −m2
H± + Σ̂(1)

H±H±(p2) + Σ̂(2),αtαs
H±H± (0) + Σ̂

(2),α2
t

H±H±(0) = 0 (15.85)

with respect to p2 which corresponds to the two-loop expansion of the generic formula pre-
sented in Eq. (3.26). In NMSSMCALC, Eq. (15.85) is solved iteratively.

15.3.4. Renormalization of tβ

The parameter tβ, defined as the ratio of the VEVs in Eq. (14.11), is promoted to higher
orders by means of Eq. (15.10). In our work, we renormalize tβ through DR conditions. In
this case, the CTs at one- and two-loop level are given by [238,282–286]

δ(n)tβ =
1

2
tβ

(
δ(n)ZHu − δ(n)ZHd

)∣∣∣
div

=
1

2
tβ δ

(n)ZHu
∣∣
div

, (15.86)

where the subscript denotes that only the UV-divergent part of the WFRCs presented in Sub-
sec. 15.3.1 are taken into account. We want to emphasize that the last identity in Eq. (15.86)
only holds at one-loop O(αt) and two-loop O(α2

t ) level, but not in general. As shown in [238]
and discussed in Secs. 5.3 and 10.3, imposing the DR scheme for fixing the CTs of tβ in the
framework of the standard tadpole scheme has the drawback that such a scheme is manifestly
GFP-dependent. At the level of the O(α2

t ) two-loop corrections to the Higgs masses however,
no additional GFP dependences are introduced since all GFP-dependent contributions vanish
in the gaugeless limit in which the two-loop corrections are calculated.
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Figure 15.7.: Generic one-loop self-energies of the W± boson transition W± → W± con-
tributing at O(αt) to the renormalization of m2

W and v. We implicitly sum over the index
a = 1, 2 of the internal stops.

15.3.5. Renormalization of the Neutral Higgs Boson Mass Matrix

The elements of the neutral Higgs mass matrix (M2
hh)φiφj , defined in the basis (φi, φj =

hd, hu, hs, a, as), are not independent parameters but instead given analytically as functions
of the other independent parameters of the complex NMSSM in App. D.1. Nevertheless, we
formally promote them to higher orders in Eq. (15.9) for convenience, since the CTs of the
neutral Higgs mass matrix elements, (δ(n)M2

hh)φiφj , explicitly appear in the calculation of the
higher-order corrections to the Higgs boson masses, as further discussed in Sec. 16.2. By
inserting the CT expansions of all independent parameters, cf. Eqs. (15.1) to (15.24), into the
formulae for the matrix elements (M2

hh)φiφj , the corresponding dependent CTs (δ(n)M2
hh)φiφj

at one- and two-loop order are gained. Their analytic forms are presented in App. D.2.

15.4. Renormalization of the Gauge Sector

We turn to the renormalization of the gauge sector of the complex NMSSM. From the five
parameters promoted to higher orders in Eqs. (15.2) to (15.6), only three are independent
parameters whose CTs are fixed by independent renormalization conditions, while the other
two are presented as a function of the independent parameters and CTs in the following.
The CT δ(n)Ze of the electromagnetic coupling constant e is fixed by adopting the approach
presented in [183], i.e. via the vertex corrections to the OS coupling e+e−γ. At O(α2

t ) both
e and δ(n)Ze vanish in the gaugeless limit and hence, the CTs δ(n)Ze do not contribute to our
computations. Consequently, for n = 1, 2 we set

δ(n)Ze = 0 . (15.87)

For the renormalization of the squared gauge boson masses m2
W and m2

W , we impose OS
conditions. However, since we perform our calculations in the gaugeless approximation where
the gauge boson masses vanish, the OS conditions are applied in the gaugeless approximation
as well, leading to the following definitions of the CTs of the squared gauge boson masses at
one-loop level,

δ(1)m2
W = Re

[
Σ(1),T
WW (0)

]
, (15.88)

δ(1)m2
Z = Re

[
Σ(1),T
ZZ (0)

]
, (15.89)

where Σ(1),T
V V (0) (V = W,Z) denotes the transverse part of the unrenormalized self-energies of

the W and Z bosons presented diagrammatically at O(αt) in Figs. 15.7 and 15.8 respectively,
evaluated in the limit of vanishing external momentum. While the unrenormalized gauge
boson self-energies vanish in the gaugeless limit analogously to the gauge boson masses them-
selves, we want to emphasize that for the O(α2

t ) corrections to the Higgs boson masses, the
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Figure 15.8.: Generic one-loop self-energies of the Z boson transition Z → Z contributing
at O(αt) to the renormalization of m2

Z and v. We implicitly sum over the indices a, b = 1, 2
of the internal stops.

CTs of the squared gauge boson masses often appear in the combination δ(1)m2
V /m

2
V which is

in general non-vanishing in the gaugeless limit.

In our work, the one-loop CT of the sine of the Weinberg angle is not an independent quantity
but instead given as a function of the CTs of the squared gauge boson masses,

δ(1)s2
W = c2

W

(
δ(1)m2

Z

m2
Z

− δ(1)m2
W

m2
W

)
. (15.90)

Analogously, we do not consider the VEV v to be an independent quantity but instead a
function of m2

W , m2
Z and e, cf. Eq. (4.16). Hence, we renormalize the one-loop CT of v in the

OS scheme by expressing δ(1)v as a function of the OS-defined CTs δ(1)m2
V as well as δ(1)Ze,

δ(1)v = v

[
c2
W

2s2
W

(
δ(1)m2

Z

m2
Z

− δ(1)m2
W

m2
W

)
+
δ(1)m2

W

2m2
W

+ δ(1)Ze

]
(15.91)

= v

[
c2
W

2s2
W

(
δ(1)m2

Z

m2
Z

− δ(1)m2
W

m2
W

)
+
δ(1)m2

W

2m2
W

]
,

where in the second line, we used the fact that δ(1)Ze vanishes in the gaugeless approximation,
cf. Eq. (15.87).

In principle, the OS conditions can be extended to provide definitions of all CTs of the
gauge boson sector to two-loop order as well. While e.g. the two-loop CT δ(2)v explicitly
appears in the analytic formulae of the CTs of the neutral Higgs boson mass matrix elements,
cf. App. D.2, it turns out that at O(α2

t ) in the gaugeless limit, the two-loop CTs of the gauge
boson sector do not contribute to the calculation of the Higgs boson masses. Consequently,
for our work we effectively set

δ(2)m2
W = 0 , (15.92)

δ(2)m2
Z = 0 , (15.93)

δ(2)sW = 0 , (15.94)

δ(2)v = 0 . (15.95)
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15.5. Renormalization of the Remaining Parameters

The remaining independent parameters of the complex NMSSM, namely |λ|, |κ|, vs, Re(Aκ)
and ϕi (i = u, s, λ, κ), are all renormalized by DR conditions. For the one-loop CT of |λ|
introduced in Eq. (15.12), we find at one-loop O(αt) the analytic expression

δ(1)|λ| = −|λ|
2

(
c2
βδ

(1)ZHu +
2

v
δ(1)v

∣∣∣
div

)
= −|λ|

2
δ(1)ZHu (15.96)

(15.51)
=

−3m2
t |λ|

16π2v2s2
β

1

ε
.

The two-loop CT δ(2)|λ| as well as the one- and two-loop CTs of all other remaining parame-
ters, introduced in Eqs. (15.13) to (15.16), vanish in our approximations and hence yield no
contributions to the O(α2

t ) two-loop Higgs mass corrections:

δ(2)|λ| = 0 , (15.97)

δ(n)|κ| = 0 , (15.98)

δ(n)vs = 0 , (15.99)

δ(n)Re(Aκ) = 0 , (15.100)

δ(n)ϕi = 0 . (15.101)

For convenience, we additionally provide the dependent CT of the effective parameter µeff,
introduced in Eq. (14.49) and promoted to higher orders in Eq. (15.17). For the dependent
CT, we find at one-and two-loop order

δ(1)µeff = µeff

[
δ(1)|λ|
|λ| +

δ(1)vs
vs

+ i
(
δ(1)ϕs + δ(1)ϕλ

)]
, (15.102)

δ(2)µeff = µeff

[
δ(2)|λ|
|λ| +

δ(2)vs
vs

+ i
(
δ(2)ϕs + δ(2)ϕλ

)
+
δ(1)|λ|
|λ|

δ(1)vs
vs

(15.103)

+ i
(
δ(1)ϕs + δ(1)ϕλ

)(δ(1)|λ|
|λ| +

δ(1)vs
vs

+ i
(
δ(1)ϕs + δ(1)ϕλ

))]
. (15.104)

However, as most of the CTs in these formulae vanish in our approximations, the CTs of µeff

relevant for the O(α2
t ) corrections for the Higgs boson masses reduce to the simple forms

δ(1)µeff =
µeff

|λ| δ
(1)|λ| = −1

2
δ(1)ZHu (15.105)

(15.51)
=

−3m2
t

16π2v2s2
β

1

ε
,

δ(2)µeff = 0 . (15.106)





CHAPTER 16

Calculation of the Higgs Boson Masses at O(α2
t )

In order to calculate the loop corrections to the Higgs boson masses, the only missing ingre-
dients are the unrenormalized self-energies of the neutral Higgs bosons which are consistently
combined with the CTs introduced in the preceding Chapter 15 to form the renormalized
self-energies.

Starting with Sec. 16.1, we present the calculation of the genuine one- and two-loop corrections
to the unrenormalized self-energies of the neutral Higgs bosons as key ingredients for the
calculation of the higher-order corrections to the Higgs masses. Moreover, we present an
overview over all computer tools used in the course of the calculations and provide technical
details about the calculations themselves. In the subsequent Sec. 16.2, we describe how the
unrenormalized self-energies are combined with the CTs defined in the preceding Chapter 15
in order to form the renormalized self-energies of the neutral Higgs bosons of the complex
NMSSM. Subsequently, we describe the implementation of all analytic results into a new
version of NMSSMCALC and discuss how the loop-corrected masses are calculated from the
renormalized self-energies through an iterative procedure.

16.1. The Unrenormalized Self-Energies of the Neutral Higgs
Bosons at O(α2

t )

The first contributions considered for the calculation of the loop corrections to the Higgs
boson masses in the complex NMSSM are the genuine one- and two-loop corrections to the
self-energies of the Higgs bosons. We adopt the notation from Subsec. 15.3.1 and denote by
Σ(n)

hihj
(p2) the corrections to the physical Higgs self-energy transitions hi → hj (i, j = 1, ..., 5)

at the n-loop order as a function of the squared external momentum p2. For some parts of the
calculation of the loop-corrected Higgs boson masses, products of one-loop terms stemming
from e.g. the unrenormalized one-loop neutral Higgs boson self-energy arise. These products
yield contributions to the two-loop O(α2

t ) corrections of the Higgs boson masses. Since in
our work we focus on these O(α2

t ) corrections, we restrict the calculation of the self-energy
to one-loop O(αt) and to two-loop O(α2

t ) contributions in order to be consistent with the
rest of the calculation. We moreover restrict ourselves to the gaugeless limit and apply the
approximation of vanishing external momentum, i.e. we set p2 = 0. We want to emphasize
that the restriction to the O(αt) contributions to the unrenormalized one-loop self-energy
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Σ(1)

hihj
(p2), with all aforementioned approximations applied, is considered in NMSSMCALC only

when computing the genuine two-loop O(α2
t ) contributions to the neutral Higgs boson masses.

For the calculation of the genuine one-loop corrections to the masses in NMSSMCALC on the
other hand, the full one-loop self-energy without any approximations as published in [79],
i.e. without the gaugeless limit and the approximation of vanishing external momentum, is
considered.

As a consequence of the application of these approximations, we effectively consider the
MSSM limit of the complex NMSSM43. The diagrams that contribute at one-loop O(αt)
are depicted in Fig. 15.3. At two-loop order, the number of diagrams increases significantly,
with all relevant diagrammatic contributions being presented in App. E.1. In this case, Σ(2)

hihj
consists not only of contributions stemming from genuine two-loop diagrams but moreover
from one-loop diagrams with CT insertions, depicted as a cross in the corresponding diagrams
in the next-to-last and last rows of Fig. E.1, that are formally of two-loop order as well.
All independent CTs required for the calculation of the Feynman diagrams containing CT
insertions have been presented in the preceding Chapter 15.

The calculation of all contributions to the unrenormalized self-energies is performed in the
framework of DRED which, as discussed in Sec. 3.1, preserves SUSY. The calculation of all
one- and two-loop diagrams required for the unrenormalized self-energies of the neutral Higgs
bosons are performed fully analytically by generating all Feynman diagrams and the corre-
sponding amplitudes with the help of the Mathematica [247] package FeynArts 3.9 [248]. To
that end, the model file of the complex NMSSM required by FeynArts is obtained from SARAH

4.14.0 [267–270], where we slightly modified the built-in model file of the complex NMSSM
to account for the phase shifts introduced in Eq. (14.13). For the diagrams that contribute to
the unrenormalized two-loop self-energies, we apply the approximation of vanishing external
momentum as well as the gaugeless limit at this stage44, since this considerably simplifies the
subsequent parts of the calculations.

The computations of all traces of spinor structures in the Feynman amplitudes are per-
formed with FeynCalc 8.2.0 [250, 251]. As an independent cross-check, we additionally
performed the calculation of the spinor traces with the Mathematica package FormTracer

2.3.6 [287] which evaluates the fifth Dirac matrix γ5 appearing in the spinor traces in the
Larin scheme [288]. In contrast, FeynCalc 8.2.0 evaluates γ5 in the default configuration
in the “naive” scheme [157]. Consequently, the independent cross-check between the trace
calculations performed with the help of the tools FeynCalc and FormTracer allows for a
comparison of the results gained within the two different approaches for treating γ5. For all
spinor traces required for the computation of the O(α2

t ) contributions, we find that both tools
and hence both the naive and Larin scheme yield the same analytic results for the traces.

After the calculation of the traces is performed, the Feynman amplitudes are further simplified
by reducing the tensor structures of all one- and two-loop integrals to a set of basis integrals.
For the one-loop integrals, the reduction is performed with the package FeynCalc 8.2.0

while for the two-loop integrals, moreover the FeynCalc package TARCER [289] is used for
the tensor decomposition. The resulting simplified Feynman amplitudes are functions of the
basic scalar loop integrals. In the one-loop case, the corresponding analytic results of the
’t Hooft-Veltman scalar loop integrals are presented in [249,290] while for the two-loop case,
the analytic results for the corresponding integrals required for the O(α2

t ) corrections to the

43Note, however, that the MSSM limit is taken only for the computation of the two-loop O(α2
t ) corrections

performed in the gaugeless limit to ensure the cancellation of all UV divergences. All other parts of the
calculations performed in NMSSMCALC are not restricted to the MSSM limit.

44Note, however, that the unrenormalized two-loop self-energies of the neutral Higgs bosons are also required for
the WFRCs as defined in Eqs. (15.47) to (15.49). For the calculation of these, we only apply the approximation
of vanishing external momentum after the derivatives of the self-energies with respect to p2 are taken.
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Higgs boson masses in the limit of vanishing external momentum are presented in [291]. For
convenience, we moreover present the analytic results for all these integrals in App. A.

The resulting analytic formulae for all Feynman diagrams are converted to FORTRAN code and
implemented in the newly developed version 3.00 of NMSSMCALC45 [82]. Since the analytic
formulae of the unrenormalized self-energies of the neutral Higgs bosons atO(α2

t ) are intricate,
we do not present the results explicitly in this thesis and refer to the source code of NMSSMCALC
where the formulae for the self-energies are implemented.

Since at O(m2
tα

2
t ) the self-energies of the NMSSM are equivalent to the ones in the MSSM

when µeff is used as the input value for the µ parameter and when further O(α2
t ) contributions

are neglected, we can compare our results for the Higgs boson self-energies in the NMSSM with
the ones implemented in FeynHiggs [292–300] for the MSSM. To that end, we adapted the CTs
of the VEV v and the weak mixing angle to the renormalization scheme used in FeynHiggs,
cf. e.g. [301], and ensured that the same input values for NMSSMCALC and FeynHiggs were
used. In the comparison, we found agreement between the results computed by us and the
ones implemented in FeynHiggs. As a further check, we compared our results, computed
for real input parameters and with mA as an independent input, in the OS and DR scheme
with the results and the corresponding computer program presented in [302] and found an
agreement between the results as well.

16.2. The Renormalized Self-Energies and Loop-Corrected Mass-
es of the Neutral Higgs Bosons at O(α2

t )

We define the renormalized self-energies of the transition hi → hj (i, j = 1, ..., 5) of the
physical neutral Higgs bosons as a function of the squared external momentum p2 by

Σ̂(n)

hihj
(p2) ≡ Σ̂(1)

hihj
(p2) + Σ̂(2)

hihj
(0) , (16.1)

composed of the renormalized self-energy Σ̂(1)

hihj
(p2) at the one-loop level as published in [79]

and Σ̂(2)

hihj
(0) at the two-loop level, where the latter is evaluated in the approximation of

vanishing external momentum and in the gaugeless limit. In the two-loop case, we moreover
split the renormalized self-energy as

Σ̂(2)

hihj
(0) ≡ Σ̂

(2),αtαs
ij (0) + Σ̂

(2),α2
t

ij (0) , (16.2)

where Σ̂
(2),αtαs
ij (0) denotes the renormalized two-loop self-energy containing the O(αtαs) con-

tributions as computed and implemented into NMSSMCALC in [81], while Σ̂
(2),α2

t
ij (0) represents

the new O(α2
t ) corrections to the renormalized two-loop self-energies as computed and im-

plemented in NMSSMCALC in this thesis and published in [82]. In this work, we restrict all
discussions to the genuine O(α2

t ) two-loop contributions to the neutral Higgs bosons masses
and drop the corresponding superscript indicating the considered subgroup of diagrams in
the following.

For the parts of the calculation where products of one-loop terms stemming from the unrenor-
malized neutral Higgs boson self-energies appear, we limit the calculation of the renormalized
self-energy Σ̂(1)

hihj
to one-loop O(αt) contributions as well and apply the approximations of

vanishing external momentum and the gaugeless limit. We want to emphasize again that we
limit the renormalized one-loop self-energy to these approximations only in the case where
products of one-loop terms relevant to the newly computed O(α2

t ) corrections appear, while
for the computation of the loop-corrected masses to one-loop order in NMSSMCALC, the full
renormalized one-loop self-energy is taken into account.

45The computer program NMSSMCALC can be obtained from https://www.itp.kit.edu/~maggie/NMSSMCALC/.

https://www.itp.kit.edu/~maggie/NMSSMCALC/
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The renormalized one-loop self-energy of the neutral Higgs boson transition hi → hj at O(αt)
is decomposed analogously to the generic formula presented in Eq. (3.10) as46

Σ̂(1)

hihj
(p2) ≡ Σ(1)

hihj
(p2)− (Rδ(1)M2

hhR
T )ij (16.3)

+

R
(p215×5 −M2

hh

) δ(1)Z
φ̃0

2
+

(
δ(1)Z

φ̃0

)†
2

(
p215×5 −M2

hh

)RT


ij

,

where the 5 × 5 WFRC matrix δ(1)Z
φ̃0 is defined in Eq. (15.72), the elements of the neutral

Higgs mass matrix M2
hh and their one-loop CTs δ(1)M2

hh are given in Appendices D.1 and
D.2, respectively, and the matrix R describes the rotation to the physical Higgs boson basis.
As mentioned in Sec. 14.2, while the matrices R, M2

hh and δ(1)M2
hh are originally defined as

6 × 6 matrices to account for the full spectrum of the neutral scalar fields of the complex
NMSSM, we perform the approximation of neglecting the Goldstone boson admixture with
the physical Higgs boson fields. Consequently, the matrices R,M2

hh and δ(1)M2
hh used for the

calculation of the renormalized self-energy in Eq. (16.3) represent the corresponding 5 × 5-
dimensional sub-matrices without the Goldstone boson admixture. We explicitly checked
that this admixture is numerically small for the parameter sets used in the numerical analysis
presented in Chapter 17.

Analogously to the one-loop case, we define the two-loop renormalized self-energy contributing
up to O(α2

t ) as

Σ̂(2)

hihj
(p2) ≡ Σ(2)

hihj
(p2)− (Rδ(2)M2

hhR
T )ij (16.4)

+

[
R

{(
p215×5 −M2

hh

) δ(2)Z
φ̃0

2
+

(
δ(2)Z

φ̃0

)†
2

(
p215×5 −M2

hh

)
+

(
δ(1)Z

φ̃0

)†
2

(
p215×5 −M2

hh

) δ(1)Z
φ̃0

2
−
(
δ(1)Z

φ̃0

)†
2

δ(1)M2
hh − δ(1)M2

hh

δ(1)Z
φ̃0

2

}
RT

]
ij

,

where the 5× 5 matrix δ(2)M2
hh contains the two-loop contributions to the CTs of the neutral

Higgs mixing matrix elements given in App. D.2 and the two-loop WFRC matrix δ(2)Z
φ̃0 is

defined in Eq. (15.72). As before, the matrices R, M2
hh and δ(1)M2

hh in Eq. (16.4) denote
the 5× 5 sub-matrices without the Goldstone boson admixture. Note that in contrast to the
one-loop case, the renormalized two-loop self-energy contains additional products of one-loop
terms which provide contributions at O(α2

t ) as well.

Both Σ̂(1)

hihj
(p2) and Σ̂(2)

hihj
(p2) are renormalized, i.e. they contain no UV divergences. As

described in the preceding Sec. 16.1, we perform all calculations in the framework of DRED
which regulates the UV divergences as poles in the dimensional regulator ε. We calculate
all UV-divergent terms proportional to ε−2 and ε−1 analytically and we explicitly verify
numerically that all UV-divergent contributions within the renormalized one- and two-loop
self-energies cancel with each other. All UV-finite contributions to the renormalized self-
energies are evaluated numerically in NMSSMCALC. To that end, the required finite parts of the
one- and two-loop integrals, cf. App. A, are implemented as FORTRAN functions in NMSSMCALC.
Consequently, no additional library is required for performing the numerical evaluation of the
loop integrals.

In order to calculate the loop-corrected masses of the neutral Higgs bosons, we apply the
generic procedure described in Sec. 3.4 to the case of the complex NMSSM. The quantity

46Here and in the following, even when considering the corresponding self-energies in the approximation of van-
ishing external momentum, we present the renormalized self-energies in the most general way for completeness,
i.e. we include the terms proportional to p2 as well.



16.2. The Renormalized Self-Energies and Loop-Corrected Masses of the Neutral Higgs
Bosons at O(α2

t ) 149

required for the calculation of the masses at n-loop order is the renormalized two-point cor-
relation function of the neutral Higgs bosons, given by

Γ̂(p2) = i
(
p215×5 −M(n)

)
. (16.5)

The mass matrix part of the two-point correlation function is given by(
M(n)

)
ij
≡ m2

hi
15×5 − Σ̂(n)

hihj
(p2) (i, j = 1, ..., 5) , (16.6)

where m2
hi

denotes the square of the neutral Higgs boson masses at tree level as introduced
in Eq. (14.46). As discussed in Sec. 3.4, the loop-corrected neutral Higgs boson masses up to
n-loop order are given by the real parts of the poles of the propagator matrix of the neutral
Higgs bosons. Consequently, they are calculated as the zeros of the determinant of the two-
point correlation function Γ̂(p2). The n-loop-corrected masses m(n)

hi
are hence obtained from

Γ̂
(

(m(n)

hi
)2
)

= 0 (i = 1, ..., 5) . (16.7)

These equations are solved numerically in NMSSMCALC by an iterative procedure. For the
calculation of the loop-corrected mass m(n)

hi
of the ith neutral Higgs boson, this iterative

procedure follows the subsequently described steps:

1. As the first iteration step, the square of the external momentum is set to the tree-level
value of the ith neutral Higgs boson mass, i.e. p2 = m2

hi
.

2. With the chosen value of p2, the matrix part of the two-point correlation function,
i.e. Eq. (16.6), is diagonalized.

3. The ith eigenvalue gained by the diagonalization is an approximate value of the loop-
corrected mass m(n)

hi
of the ith Higgs boson.

4. The squared external momentum is set to the ith eigenvalue calculated in the previous
step.

5. Steps 2 to 4 are repeated until the difference of the ith eigenvalue between two consec-
utive steps falls below 10−9, at which point the procedure terminates.

This iterative procedure is applied for the calculation of the loop-corrected masses of all five
neutral Higgs bosons in NMSSMCALC. As briefly discussed in general in Sec. 3.4, computing the
masses via such an iterative procedure has the advantage of a straightforward implementa-
tion through e.g. the fourth-order Runge-Kutta algorithm [187,188] which is implemented in
NMSSMCALC. Moreover, in general the procedure leads to a fast convergence.

On the other hand, the iterative procedure mixes orders of perturbation theory since the
loop-corrected squared masses are inserted as values of p2 into higher-order renormalized self-
energies which again are used for the calculation of the next approximation of the masses.
Nevertheless, as it was argued at least for the one-loop case in [280], using this iterative
procedure is considered to yield a better approximate result of the loop-corrected masses
than gained through a fixed-order calculation. One drawback of the iterative procedure is
the introduction of GFP dependences into the loop-corrected masses. As argued in general
in Sec. 3.6, these GFP dependences arise since the usage of a loop-corrected instead of a tree-
level mass in the renormalized self-energies leads to a violation of Slavnov-Taylor identities.
For the genuine O(α2

t ) contributions computed in this work, however, no additional GFP
dependences are introduced since all new contributions are calculated in the gaugeless limit
in which the GFP-dependent terms vanish.





CHAPTER 17

Numerical Analysis with NMSSMCALC

In the following chapter, we perform a numerical analysis of the loop-corrected masses of the
neutral Higgs bosons of the complex NMSSM with the up-to-date version NMSSMCALC 3.00,
including the O(α2

t ) corrections derived in this work.

Beginning with Sec. 17.1, we describe the scanning procedure over the parameter space of
the complex NMSSM which is applied for generating the valid input parameter sets for the
computation of the higher-order corrections to the Higgs masses with NMSSMCALC. We discuss
all constraints applied and present all input parameters of each of the two sets used in this
thesis. In the subsequent Sec. 17.2, for each of the two input parameter sets we present
the numerical results for the higher-order Higgs masses calculated with NMSSMCALC 3.00.
We analyze the higher-order corrections to the neutral Higgs masses for these two sets and
describe the relative size and importance of the newly calculated O(α2

t ) corrections.

17.1. Input Parameters

For the computation of all numerical results presented in this chapter, we use the following
fixed values for the input parameters of the SM [98,303],

me = 510.9989 keV , mµ = 105.6584 MeV , (17.1)

mτ = 1.77682 GeV , mu = 2.2 MeV ,

md = 4.7 MeV , ms = 95.0 MeV ,

mc = 1.274 GeV , mMS
b (mMS

b ) = 4.18 GeV ,

mt = 172.74 GeV , GF = 1.166 37 · 10−5 GeV−2 ,

mZ = 91.1876 GeV , mW = 80.379 GeV ,

α−1
em(mZ) = 127.955 , αMS

s (mZ) = 0.1181 .

In order to obtain input parameter sets compatible with current theoretical and experimental
constraints that are subsequently used for the numerical analysis of the higher-order Higgs
boson masses, we apply a scan procedure over the parameter space of the complex NMSSM47,
cf. also [82]. For the scan, we fix the gluino mass parameter to the value

M3 = 1.85 TeV , (17.2)

47For a detailed description about the scan procedure, we refer to [142,304,305].
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while the mass parameters of the sfermions of the first and second generations are all set to
the value

mi = 3 TeV
(
i ∈ {ũR, d̃R, s̃R, c̃R, ẽR, µ̃R, Q̃1, Q̃2, L̃1, L̃2}

)
. (17.3)

Since the newly computedO(α2
t ) contributions are obtained in the MSSM limit of the complex

NMSSM, we do not allow for too large contributions stemming from the singlet in the NMSSM
in our numerical analysis. We therefore make sure not to choose to large values of λ and κ
in the following. We furthermore apply the rough constraint

|λ|2 + |κ|2 ≤ 0.7 , (17.4)

to ensure unitarity. Since the one-loop corrections to the Higgs masses implemented in NMSSM-

CALC are not restricted to the MSSM limit and hence include contributions from λ and κ,
however, the numerical results for the loop-corrected Higgs boson masses should not be sig-
nificantly affected by these missing contributions at two-loop order as long as λ and κ do not
become too large48. We demand λ and κ to lie in the ranges

10−4 ≤ λ ≤ 0.4 , (17.5)

0 ≤ κ ≤ 0.6 , (17.6)

which also satisfies the constraint from Eq. (17.4). We additionally restrict λ and κ to real
values for the scan. For the other parameters of the complex NMSSM, we allow a variation
of their input values in the ranges presented in Table 17.1. As can be inferred from the table,
we use mH± as independent input parameter instead of Re(Aλ) for our scan. Furthermore,
we want to emphasize that since we follow the SLHA format [253, 254], we use µeff as an
independent input and obtain the values of vs and ϕs by means of Eq. (14.49). Not shown
in Table 17.1 are the soft-SUSY-breaking trilinear terms of the first and second generation.
Their values are set equal to the values of the trilinear terms of the corresponding third
generation,

Ae = Aµ = Aτ , (17.7)

Ad = As = Ab , (17.8)

Au = Ac = At . (17.9)

In accordance with the SLHA, all soft-SUSY-breaking trilinear and mass terms as well as
the parameters λ, κ, Aκ, µeff and tβ are considered to be DR parameters given at the SUSY
scale49 MSUSY given by

µR = MSUSY =
√
m
Q̃3
mt̃R

. (17.10)

One of the neutral CP-even Higgs bosons is identified with the SM-like Higgs boson, called
hSM in the following, and its mass, calculated at O(αtαs +α2

t ), is required to lie in the range

122 GeV ≤ m(2)

hi
≤ 128 GeV (for one hi ≡ hSM) . (17.11)

For the parameter scan, initial parameter values are created by randomly fixing the NMSSM
parameters within the aforementioned ranges. We restrict the scan to the real NMSSM while
for the numerical analysis, some of the complex phases are turned on as described below. The
generated parameter sets are checked against the following experimental constraints:

� The Higgs exclusion limits stemming from experiments at LEP, Tevatron and LHC are
checked with HiggsBounds 5.3.2 [262–264].

48We also refer to [306] for a discussion about the size of these contributions.
49According to the SLHA format, this is only the case for tβ if its value is read in from the block EXTPAR, which

is the case in NMSSMCALC. Otherwise, tβ is considered as a DR parameter defined at the scale mZ .
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M1 M2 Aτ Ab At Aκ mH± mτ̃R mL̃3
mb̃R

mt̃R
mQ̃3

µeff tβ

all values apart from tβ in TeV

min 0.4 0.4 -2.0 -2.0 -2.0 -2.0 0.2 0.4 0.4 2.0 0.4 0.4 0.2 1.5

max 1.0 1.0 2.0 2.0 2.0 2.0 1.0 3.0 3.0 3.0 3.0 3.0 0.3 10.0

Table 17.1.: Scan ranges of the input values of the complex NMSSM. Each parameter is
separately varied between its corresponding minimum and maximum value. The soft-SUSY-
breaking trilinear terms of the first two generations are set equal to the trilinear terms of
their corresponding third generation.

� The Higgs rates are checked with HiggsSignals 2.2.3 [265]. To that end, the effective
coupling factors computed by NMSSMCALC are used as an input in HiggsSignals and
we demand that the total χ2 value calculated by HiggsSignals using these coupling
factors is compatible with the χ2 value of the SM within 1σ.

� Current LHC exclusion bounds on the masses of the SUSY particles are applied, in-
cluding

◦ the slepton masses to be larger than 400 GeV [307],

◦ the stop and sbottom masses to be larger than 800 GeV [307,308],

◦ the gluino masses as well as the masses of the lightest squarks of the second gen-
eration to be larger than 1.8 TeV [307].

� While we perform the scan in the real NMSSM, checks against constraints stemming
from the EDMs become relevant as soon as non-vanishing complex phases are considered
[141, 309]. In this case, the input parameter set is checked in NMSSMCALC against the
experimental limits given by the ACME collaboration [310].

For our numerical analysis we use parameter sets that pass all these constraints. From all
valid sets generated in the scan, we choose the two parameter sets which are presented and
used in [82] for our numerical analysis of the loop-corrected Higgs boson masses in this thesis.
The two parameter points differ with respect to the treatment of the top and stop sectors
applied in NMSSMCALC during the scan, cf. Sec. 15.2. For the first parameter set, denoted by
“P1OS”, the top and stop sectors are renormalized in the OS scheme while for the second
parameter set, denoted by “P2DR”, the DR scheme is applied. In the following, we present
all input values of the two corresponding sets.

Parameter set “P1OS”.
The input values of the SM parameters are as stated in Eq. (17.1), while the mass parameter
of the gluino and the soft-SUSY-breaking mass parameters are fixed to the values given in
Eqs. (17.2) and (17.3), respectively. The input values of the remaining parameters are set as
follows50,

mτ̃R = 2967 GeV , m
L̃3

= 1369 GeV , (17.12)

m
b̃R

= 2765 GeV , mt̃R
= 881 GeV ,

m
Q̃3

= 1226 GeV , Ae = Aµ = Aτ = 1170 GeV ,

Ad = As = Ab = − 1885 GeV , Au = Ac = At = − 1922 GeV ,

50The imaginary part of Aκ is not an independent input parameter but instead determined via the other pa-
rameters of the Higgs sector as shown in Eq. (14.33).
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M1 = 644 GeV , M2 = 585 GeV ,

λ = 0.301 , κ = 0.299 ,

Re(Aκ) = − 791 GeV , µeff = 209 GeV ,

tβ = 4.44 , mH± = 898 GeV ,

which fixes the complex phases of the parameters to the values

ϕAu = ϕAd = ϕAs = ϕAc = ϕAb = ϕAt = π , (17.13)

ϕAe = ϕAµ = ϕAτ = ϕM1 = ϕM2 = ϕM3 = ϕλ = ϕκ = ϕµeff
= ϕu = 0 .

All parameters in this set are generated by using the OS scheme in the top and stop sectors,
cf. Sec. 15.2. For the numerical evaluation, we moreover perform a variation of some of the
input parameters of this set:

� Variation of At ∈ [−3000 GeV, 3000 GeV], while all other parameters are kept fixed as
described above.

� Variation of ϕAt ∈ [−π, π], while all other parameters are kept fixed as described
above51.

� Variation of ϕµeff
∈ [−π, π] with a simultaneous variation of the phases of λ and Aκ

according to ϕλ = 2/3ϕµeff
and ϕAκ = −ϕµeff

, while all other parameters are kept fixed
as described above52. As a consequence of these phase variations, the CP-violating phase
ϕy, defined in Eq. (14.16), which appears already at tree level in the Higgs sector, is
ensured to vanish for all chosen values of the phases. Consequently, the main effects of
the phase variations only appear at one-loop level and beyond.

We want to point out that the variation of some of the input parameters as described above
might lead to points in the parameter space of the complex NMSSM which do not fulfill the
aforementioned experimental constraints anymore53. We nevertheless perform this variation
of the input parameters in order to demonstrate the effects of the input parameters on the
newly computed O(α2

t ) corrections to the Higgs boson masses in NMSSMCALC 3.00.

Parameter set “P2DR”.
As for the former set, the input values of the SM parameters are set according to Eq. (17.1),
while the mass parameter of the gluino and the soft-SUSY-breaking mass parameters are
given as in Eqs. (17.2) and (17.3), respectively. The input values of all remaining parameters
are set as follows,

mτ̃R = 3000 GeV , m
L̃3

= 3000 GeV , (17.14)

m
b̃R

= 3000 GeV , mt̃R
= 1247 GeV ,

m
Q̃3

= 1353 GeV , Ae = Aµ = Aτ = 173 GeV ,

Ad = As = Ab = 753 GeV , Au = Ac = At = 2987 GeV ,

M1 = 614 GeV , M2 = 528 GeV ,

λ = 0.096 , κ = 0.372 ,

51Since NMSSMCALC follows the SLHA format and hence uses Re(At) and Im(At) as input instead of |At| and
ϕAt , the variation of ϕAt is converted to a variation of the real and imaginary parts of At for the numerical
analysis. The same applies for the variation of ϕµeff as well.

52The phase of vs is additionally automatically varied in NMSSMCALC according to ϕs = 1/3ϕµeff by means of
Eq. (14.49).

53For the input parameter set “P1OS”, choosing complex phases |ϕAt | & 0.08π or |ϕµeff | & 9.5 · 10−10 π (with all
other phases being fixed as described before) leads to points in the parameter space of the complex NMSSM
which are excluded by the EDM constraints.
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h1 (hs) h2 (hu) h3 (as) h4 (a) h5 (hd)

in GeV

mhi 74.29 91.43 704.12 895.91 897.83

m(1),OS

hi
86.58 135.00 700.03 895.83 897.83

m
(2,O(αtαs)),OS

hi
86.16 118.11 700.04 895.83 897.76

m
(2,O(αtαs+α

2
t )),OS

hi
86.35 125.05 700.04 895.83 897.79

m(1),DR

hi
85.93 112.77 700.05 895.79 897.71

m
(2,O(αtαs)),DR

hi
86.21 118.62 700.04 895.78 897.73

m
(2,O(αtαs+α

2
t )),DR

hi
86.22 119.10 700.04 895.78 897.73

Table 17.2.: Parameter set “P1OS”: Mass values of the five neutral Higgs bosons of the
complex NMSSM at tree level, one-loop level and two-loop O(αtαs) and O(αtαs +α2

t ) levels.
The superscripts OS and DR denote the two renormalization schemes of the top and stop
sectors used at two-loop order. In brackets, we give the dominant components of the Higgs
fields in the gauge basis.

Re(Aκ) = − 61.8 GeV , µeff = 237 GeV ,

tβ = 9.97 , mH± = 793 GeV ,

which fixes the complex phases of the parameters to the values

ϕAu = ϕAd = ϕAs = ϕAc = ϕAb = ϕAt = 0 , (17.15)

ϕAe = ϕAµ = ϕAτ = ϕM1 = ϕM2 = ϕM3 = ϕλ = ϕκ = ϕµeff
= ϕu = 0 .

All parameters in this set are generated by using the DR scheme in the top and stop sectors,
cf. Sec. 15.2. As for the other set, we perform a variation of the input parameters to analyze
the numerical effects of the parameter changes on the computed Higgs boson masses. For the
set “P2DR”, we restrict the variation only to one parameter:

� Variation of At ∈ [−4000 GeV, 4000 GeV], while all other parameters are kept fixed as
described above.

As for the other input parameter set, the variation of the parameters might lead to points
in the parameter space of the complex NMSSM which do not fulfill the experimental con-
straints anymore. Nevertheless, we use these points in order to demonstrate the effect of
these parameters on the O(α2

t ) corrections.

17.2. Numerical Results and Analysis

Numerical results for the parameter set “P1OS”.
We start with the analysis of the results for “P1OS”. For this parameter set, the tree-level
masses of the two stops, computed in the OS and DR schemes respectively, are given by

mOS

t̃i
=

{
811 GeV , i = 1

1276 GeV , i = 2
, mDR

t̃i
=

{
837 GeV , i = 1

1271 GeV , i = 2
. (17.16)

In case the DR scheme is chosen for the renormalization of the top and stop sectors, the OS
top mass, which is an input value, is converted to the DR scheme as described in detail in
App. C of [82], resulting in the value

mDR
t = 141.80 GeV . (17.17)
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Table 17.2 displays the masses of the five physical Higgs bosons hi (i = 1, ..., 5) at tree
level, one-loop level as well as at two-loop O(αtαs) and O(αtαs + α2

t ) levels. For the loop-
corrected masses, we additionally use the superscripts OS and DR to indicate which of the two
renormalization schemes of the top and stop sectors where applied, cf. Sec. 15.2. Additionally,
we denote in brackets the main gauge field component which contributes to the respective
Higgs eigenstates in the mass basis. In general, the main components of each physical Higgs
field may differ at different loop levels. For all values computed with the parameter set
“P1OS”, however, the main component for each field hi remains the same at each loop order.
The scenario “P1OS” features a SM-like Higgs boson given by h2, with its mass computed
at two-loop O(αtαs + α2

t ) to 125.05 GeV when the top and stop sectors are renormalized in
the OS scheme. The SM-like Higgs boson is dominantly produced at the LHC through gluon
fusion in a loop-induced process with major contributions stemming from virtual top quarks.
Due to this, the Higgs boson h2 is dominated by contributions stemming from the field hu
in the gauge basis in order to be compatible with the Higgs rates measurements of the LHC.
The lighter Higgs boson h1 has a mass of 86.35 GeV in the OS scheme and the three heavier
neutral Higgs bosons hi (i = 3, 4, 5) have masses between 700 GeV and 900 GeV.

In order to compare the relative size of the higher-order corrections to the Higgs masses, we
define the relative change of the mass values computed by NMSSMCALC as∣∣mb

hi
−ma

hi

∣∣
ma
hi

, (17.18)

where a and b denote two subsequent loop orders including the corresponding levels of the
corrections. For the hs-dominated lightest Higgs boson h1 the relative change between the
tree-level and one-loop mass value, both in the OS and the DR scheme, amounts O(16 %). On
the other hand, the two-loop corrections at O(αtαs) and at O(αtαs +α2

t ) change the mass of
h1 only below the percent level for both renormalization schemes of the top and stop sectors.
For the hu-dominated Higgs boson h2, the one-loop corrections increase the tree-level mass by
sizeable O(48 %) in the OS scheme and by O(23 %) in the DR scheme. The O(αtαs) two-loop
corrections reduce the mass of the Higgs boson h2 by O(12 %) in the OS scheme, while in the
DR the mass is again increased by O(5 %). As can be inferred from Table 17.2, at the level
of the two-loop O(αtαs) corrections, the computed masses m

(2,O(αtαs))

hi
are very close to each

other for both renormalization schemes of the top and stop sectors. The newly computed
O(αtαs+α2

t ) corrections add another O(6 %) to the mass of h2 in the OS scheme while in the
DR scheme, the relative change of the mass induced by these additional corrections is only
below the percent level. Consequently, the difference between the SM-like Higgs boson mass
computed in the OS scheme and in the DR scheme becomes larger again at O(αtαs + α2

t ).
For the three heavier Higgs bosons, the relative change of the mass values remains below the
percent level for each pair of loop orders and hence they receive only very small radiative
corrections.

For the comparison of the Higgs boson masses computed within the two renormalization
schemes of the top and stop sectors, we define their relative difference by

∆1 ≡

∣∣∣m(x),DR

hi
−m(x),OS

hi

∣∣∣
m(x),DR

hi

(17.19)

for each loop order denoted by the superscript (x) separately. We vary the input parameters
At and ϕAt as described in the previous Sec. 17.1 in order to investigate the sensitivity of
the Higgs masses to a change of these two parameters. Among the neutral Higgs bosons,
the hu-dominated Higgs boson receives the largest higher-order corrections and consequently,
we restrict the subsequent numerical analysis to this Higgs boson. The two upper plots of
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Figure 17.1.: Top: The mass m(x)

hu
of the hu-dominated Higgs boson at one-loop order (black

lines), two-loop O(αtαs) (blue lines) and at two-loop O(αtαs + α2
t ) (red lines) as a function

of At (left) and of ϕAt (right). The masses are calculated for both the OS (straight lines) and
DR (dashed lines) renormalization schemes of the top and stop sectors. Bottom: Absolute
value of the relative difference between m(x)

hu
in the OS and DR, cf. Eq. (17.19), as a function

of At (left) and of ϕAt (right). The difference is computed at one-loop order (black line),
two-loop O(αtαs) (blue line) and two-loop O(αtαs + α2

t ) (red line).

Fig. 17.1 shows the mass m(x)

hu
of the hu-dominated Higgs boson as a function of At on the

left and as a function of ϕAt on the right. As can be inferred from the plots, the mass of the
hu-dominated Higgs boson shows a rather strong dependence on At, while the dependence
on ϕAt is relatively small. Furthermore, the one-loop corrections computed in the OS scheme
are almost symmetric with respect to a sign change of At while they are asymmetric for the
one-loop corrections calculated in the DR scheme. For the computation of the Higgs boson
masses in the OS scheme, the DR input parameters of the top and stop sectors are converted
to the OS scheme. The dependence on the sign of At almost exactly cancels out in this
conversion, hence leading for the one-loop corrections to a weak dependence on the sign. For
the computation of the Higgs boson masses in the DR scheme on the other hand, the OS top
quark mass is converted to the DR top quark mass. Due to threshold effects, the conversion
depends more strongly on the sign of At and hence, the one-loop Higgs boson masses in the
DR scheme show a stronger asymmetry around At = 0.

The two lower plots of Fig. 17.1 show the relative difference ∆1 between the hu-dominated
Higgs boson masses computed in the OS scheme and DR scheme, cf. Eq. (17.19), as a function
of At (left) and ϕAt (right). As can be inferred from the plots, while the difference ∆1 between
the Higgs boson masses computed within the two renormalization schemes is relatively large
at one-loop level, the values lie closer to each other at O(αtαs). On the other hand, the
inclusion of the O(α2

t ) contributions only leads to a minor change of the Higgs boson mass in
the DR scheme while for the OS scheme the O(α2

t ) contributions are larger. Consequently,
in the plot on the left-hand side of the bottom row of Fig. 17.1 the relative difference ∆1

at O(αtαs + α2
t ) lies above the corresponding difference at O(αtαs). From the plots on the
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right-hand side of Fig. 17.1, we infer that the SM-like Higgs boson mass is less dependent
on ϕAt than on At for all loop levels. The dependence of the relative difference ∆1 between
the masses computed in the OS and DR on the phase ϕAt is analogously described as the
dependence on At. The difference between the masses computed in the two schemes is largest
at one-loop order, lowest at the order of the O(αtαs) two-loop corrections and becomes larger
again when including the O(α2

t ) corrections.

The larger difference ∆1 between the masses computed in the two renormalization schemes at
O(αtαs + α2

t ) in comparison to O(αtαs) can be understood by considering the conversion of
the top mass mt between the OS and DR scheme at the SUSY scale µR = MSUSY, described
in detail in App. C of [82]. For the conversion, the OS top quark mass is first converted
within the SM to the MS mass at the Z boson scale µR = mZ , including corrections up to
O(αs + αt + α2

s). Subsequently, the converted top quark mass is evolved to the SUSY scale
µR = MSUSY via renormalization group equation (RGE) running, including corrections of
O(αs + αt) as well as O(αtαs + α2

s + α2
t ). Hence, already at one-loop level, the Higgs boson

masses contain higher-order corrections beyond the fixed one-loop order when the top and
stop sectors are renormalized in the DR scheme. As a consequence, the Higgs mass m(x)

hu

calculated at one-loop order differs less from the one calculated at two-loop order for the DR
scheme in comparison to the same difference in the OS scheme and moreover, the inclusion
of the O(α2

t ) corrections does not change the computed Higgs masses significantly in the DR
while for the OS scheme, the mass of the hu-dominated Higgs is shifted again by a few GeV.

The difference ∆1 plotted in the lower row of Fig. 17.1 is related to the remaining theoretical
uncertainty of the Higgs mass calculations due to missing higher-order corrections. While in
an all-order calculation both the OS and the DR schemes would lead to the same numerical
results, the computation of the contributions to the Higgs masses up to a fixed order leads
to differences of these values between the two schemes. These differences, as large as a few
tens of percent in the given scenario at one-loop order, decrease significantly at the O(αtαs)
two-loop level, while the inclusion of the O(α2

t ) increases the difference again. Consequently,
the estimated remaining theoretical uncertainty of the calculated Higgs masses is higher at
O(αtαs + α2

t ) compared to O(αtαs). This fact, at first seeming counter-intuitive, can be
explained by realizing that both the O(αtαs) and the O(αtαs + α2

t ) are of two-loop order
and consequently, it is not necessarily expected that the remaining theoretical uncertainty
decreases when further contributions of the same loop level are included. While the former
corrections, combined with the higher orders introduced in the conversion of the top quark
mass, allow for an estimate of the missing three-loop O(α2

tαs+αtα
2
s) and four-loop O(α3

tαs+
α2
tα

2
s+α

3
sαt) corrections, the inclusion of the two-loopO(α2

t ) corrections allows for an estimate
of the missing three-loop O(α3

t ) and four-loop O(α4
t ) corrections, respectively, in addition to

the estimate of the missing contributions as before. Hence, the newly computed O(αtαs+α2
t )

corrections show that care has to be taken when estimating the uncertainty due to missing
higher-order corrections at a given loop level when only parts of the loop contributions at
this given order are taken into account.

In order to further analyze the phase dependence of the higher-order Higgs boson masses,
we perform an additional variation of the phase µeff with a simultaneous variation of the
phases of λ, vs and Aκ as described in the preceding Sec. 17.1, while all other phases are kept
fixed at their initial values according to the parameter set “P1OS”. Separately for the OS and
DR renormalization schemes of the top and stop sectors, we define the absolute value of the
relative difference between the two- and one-loop corrections as

∆
OS/DR
2 ≡

∣∣∣m(2,x),OS/DR
hi

−m(1),OS/DR
hi

∣∣∣
m

(1),OS/DR
hi

(17.20)

https://arxiv.org/pdf/1903.11358.pdf#appendix.C
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Figure 17.2.: Top: The mass m(x)

hu
of the hu-dominated Higgs boson at one-loop order (black

lines), two-loop O(αtαs) (blue lines) and two-loop O(αtαs + α2
t ) (red lines) as a function of

ϕi (with i = {At, µeff}) for the DR scheme (left) and the OS scheme (right). Bottom:
Absolute value of the relative difference ∆2, cf. Eq. (17.20), of either the O(αtαs) (blue line)
or O(αtαs + α2

t ) (red line) two-loop masses of hu with respect to the one-loop mass as a
function of the phases ϕi, again for the DR/OS schemes (left/right).

where the superscript (x) denotes either the O(αtαs) or the O(αtαs+α2
t ) two-loop corrections

to the Higgs boson masses. The two upper plots of Fig. 17.2 show the mass of the hu-
dominated Higgs boson as a function of the phases ϕAt and ϕµeff

. The plot on the left-hand
side is computed for the DR scheme in the top and stop sectors, while for the plot on the
right-hand side the OS scheme was used. As can be inferred from the plots, the dependence of
the mass of the hu-dominated Higgs boson on ϕAt is in general stronger than on ϕµeff

where
for the latter, the computed masses vary only mildly as a function of ϕµeff

. However, the
overall dependence of the computed values of the SM-like Higgs boson mass on both phases
is rather small since we consider only radiatively induced CP violation in our analysis.

The two lower plots of Fig. 17.2 show the relative difference ∆2 between the O(αtαs) or
O(αtαs+α2

t ) two-loop masses with respect to the one-loop mass, cf. Eq. (17.20), as a function
of the phases ϕAt and ϕµeff

for the DR scheme (left) and for the OS scheme (right) of the
top and stop sectors. The comparison of the differences ∆2 between the two renormalization
schemes reveals that the absolute difference is larger in the OS scheme than in the DR scheme.
While in the latter scheme, both the two-loop corrections at O(αtαs) and at O(αtαs + α2

t )
change the one-loop result by up to O(5 %), in the OS scheme the change from one-loop
order to O(αtαs) introduces relatively large corrections up to O(12 %). This can again be
explained by the resummation of the higher-order corrections into the fixed-order calculation
when the top quark mass is converted from the OS to the DR scheme, hence leading to a
lower difference ∆2 in the DR scheme at O(αtαs). At the level of the two-loop O(αtαs +α2

t )
contributions, the difference ∆2 is slightly increased in the DR scheme and decreased in the
OS scheme and the convergence of the Higgs boson mass in the former scheme is worsened.

Since the main focus in Part IV of this thesis lies on the calculation of the genuine O(α2
t )

contributions to the Higgs boson masses, as described in detail in Chapter 16, we restrict
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h1 (hu) h2 (as) h3 (hd) h4 (a) h5 (hs)

in GeV

mhi 89.38 409.50 788.76 790.98 1828.56

m(1),OS

hi
142.91 407.74 788.62 790.90 1827.81

m
(2,O(αtαs)),OS

hi
123.92 407.71 788.57 790.91 1827.81

m
(2,O(αtαs+α

2
t )),OS

hi
133.56 407.71 788.59 790.91 1827.81

m(1),DR

hi
120.86 407.68 788.64 791.01 1827.81

m
(2,O(αtαs)),DR

hi
124.58 407.69 788.65 791.00 1827.81

m
(2,O(αtαs+α

2
t )),DR

hi
125.67 407.69 788.65 791.00 1827.81

Table 17.3.: Parameter set “P2DR”: Mass values of the five neutral Higgs bosons of the
complex NMSSM at tree level, one-loop level and two-loop O(αtαs) and O(αtαs +α2

t ) levels.
The superscripts OS and DR denote the two renormalization schemes of the top and stop
sectors used at two-loop order. In brackets, we give the dominant components of the Higgs
fields in the gauge basis.

the numerical analysis on the effects stemming from these newly computed contributions, as
presented above. For a more detailed numerical analysis with respect to the scale dependence
as well as for an analysis of the numerical effects of gauge contributions on the higher-order
Higgs boson masses, we refer to [82].

Numerical results for the parameter set “P2DR”.
For the input values of the parameter set“P2DR”, the tree-level masses of the stops, computed
in the OS and DR schemes respectively, evaluate to

mOS

t̃i
=

{
1100 GeV , i = 1

1469 GeV , i = 2
, mDR

t̃i
=

{
1121 GeV , i = 1

1473 GeV , i = 2
, (17.21)

while the converted top quark mass in the DR scheme is given by

mDR
t = 146.64 GeV . (17.22)

In Table 17.3, we again present the numerical results of the masses of the five physical Higgs
bosons hi (i = 1, ..., 5) at tree level, one-loop level as well as at two-loop O(αtαs) and two-
loop O(αtαs + α2

t ) both in the OS and DR scheme of the top and stop sectors. Analogous
to the parameter set “P1OS”, the main gauge field components for each of the five physical
Higgs bosons does not change between the different loop levels. Hence, we present the main
component of each Higgs boson in brackets in the header of Table 17.3. The “P2DR” scenario
features the SM-like Higgs boson h1 as the lightest of the five Higgs bosons with a mass
of 125.67 GeV computed at two-loop O(αtαs + α2

t ) in the DR scheme. The four other Higgs
bosons are considerably heavier than the SM-like Higgs, namely we have a CP-odd singlet-like
Higgs h2 with a mass of around 407 GeV, two CP-even and CP-odd MSSM-like Higgs bosons
h3 and h4 with masses around 790 GeV and finally a CP-even singlet-like Higgs h5 with a mass
of approximately 1828 GeV. As can be inferred from Table 17.3, the higher-order corrections
lead to sizable contributions to the mass of the SM-like Higgs h1 only, while the masses of
the other four Higgs bosons are barely modified by the radiative corrections. Consequently,
we restrict the numerical analysis on h1 in the following.

For the comparison of the relative size of the higher-order corrections between two subsequent
loop levels, we again compute the quantity defined in Eq. (17.18) for each pair of loop levels
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Figure 17.3.: Top: The mass m(x)

hu
of the hu-dominated Higgs boson at one-loop order (black

lines), two-loop O(αtαs) (blue lines) and two-loop O(αtαs + α2
t ) (red lines) as a function

of At. The masses are calculated for both the OS (straight lines) and DR (dashed lines)
renormalization schemes of the top and stop sectors. Bottom: Absolute value of the relative
difference between m(x)

hu
in the OS and DR schemes, cf. Eq. (17.19), as a function of At.

The difference is computed at one-loop order (black line), two-loop O(αtαs) (blue line) and
two-loop O(αtαs + α2

t ) (red line).

for both renormalization schemes of the top and stop sectors. The comparison between the
masses of h1 at tree level and one-loop order reveals an increase of O(60 %) in the OS scheme
and of O(35 %) in the DR scheme, indicating the importance of the one-loop corrections to
the Higgs boson masses. The O(αtαs) two-loop corrections decrease the mass of the SM-like
Higgs by O(13 %) in the OS scheme while they add another O(3 %) to the mass calculated
in the DR scheme. As for the parameter set “P1OS”, the values of the mass of the SM-
like Higgs lie close to each other for both renormalization schemes at this loop level. The
additional inclusion of the O(α2

t ) two-loop corrections increases the mass computed in the OS
scheme again by O(8 %) while in the DR scheme, the mass only mildly increases by O(1 %),
consequently pushing the masses computed within the two different schemes further apart
again. While the overall radiative corrections to the mass of h1 in the “P2DR” scenario are
larger than in the “P1OS” scenario, the numerical behavior of the masses at the different loop
orders is very similar to the latter scenario considered above.

Analogous to the parameter set “P1OS”, we perform a variation of the input parameter At in
the set “P2DR” as described in the preceding Sec. 17.1 in order to investigate the sensitivity
of the SM-like Higgs boson mass on this parameter. The upper plot of Fig. 17.3 shows the
mass of the hu-dominated Higgs boson as a function of At for both renormalization schemes
of the top and stop sectors. A comparison with the plot shown on the left-hand side of
Fig. 17.1 reveals that the behavior of m(x)

hu
with varying At is very similar for both parameter

sets considered in this thesis. Since the previously explained approximate symmetry of the
one-loop Higgs mass in the OS scheme and the asymmetry in the DR scheme with respect
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to a sign change of At are generic features of the conversion of the parameters of the top
and stop sectors from one renormalization scheme to the other, they are not specific to a
particular parameter set and hence, they are observable in Fig. 17.3 as well.

In the bottom row of Fig. 17.3, the difference ∆1 between the hu-dominated Higgs mass
computed in the OS and DR schemes at a specific loop level, cf. Eq. (17.19), is presented
as a function of At. As for the previously considered parameter set, it can be inferred from
the plot that the O(αtαs) two-loop corrections considerably reduce the difference between
the Higgs masses computed within these two renormalization schemes, while the addition of
the O(α2

t ) corrections increase the difference again. As explained above, the origin of the
larger discrepancies at O(αtαs +α2

t ) is the inclusion of additional three-loop O(α3
t ) and four-

loop O(α4
t ) terms in the conversion of the top quark mass from the OS to the DR scheme.

Consequently, at two-loop O(αtαs + α2
t ), we find a slightly worse convergence of the results

calculated in the two renormalization schemes, which leads to a more conservative estimate
of the remaining theoretical uncertainty of the computed Higgs boson masses in comparison
to the estimate derived at two-loop O(αtαs).

A futher analysis of the behavior of the Higgs boson masses with respect to variations of other
parameters of the set “P2DR”, e.g. for a variation of ϕAt or ϕµeff

, reveals qualitatively similar
results as for the previously analyzed parameter set “P1OS”. We therefore do not present the
results and plots for the variation of these parameters within the set “P2DR” explicitly here,
since no additional conclusions can be drawn from their analyses.



CHAPTER 18

Conclusion of Part IV

The main objective of Part IV of this thesis was the calculation of the O(α2
t ) two-loop cor-

rections to the Higgs boson masses of the CP-violating (i.e. complex) NMSSM and the im-
plementation of the newly computed contributions to the computer program NMSSMCALC.

We introduced the Lagrangian of the complex NMSSM, focusing on a detailed presentation
of the Higgs potential of the NMSSM. By rotating from the gauge basis to the mass basis,
we presented the physical spectrum of the scalar sector of the complex NMSSM, consisting
of five physical CP-mixed Higgs bosons hi (i = 1, ..., 5).

We presented the one-loop and two-loop renormalization of the independent parameters of
the complex NMSSM that are relevant for the calculation of the two-loop O(α2

t ) corrections
to the Higgs boson masses. All CTs were defined in the approximation of vanishing external
momentum as well as in the gaugeless limit. For the parameters of the top and stop sectors,
we considered the two different approaches of renormalizing them either via DR conditions
or in an OS scheme, both of which are implemented in NMSSMCALC.

For the calculation of the O(α2
t ) two-loop corrections to the Higgs boson masses, we applied

the Feynman-diagrammatic approach and presented the computations in full detail. As for
the definition of the CTs, we applied the approximation of vanishing external momentum
and the gaugeless limit for the calculation of the Feynman amplitudes. All analytic results
relevant for the two-loop O(α2

t ) calculations were implemented in NMSSMCALC 3.00.

As an analysis of the size of the newly computed O(α2
t ) two-loop contributions to the Higgs

boson masses, we provided numerical results for two input parameter sets that fulfill up-to-
date theoretical and experimental constraints. At the level of the newly computed O(αtαs +
α2
t ) corrections, the loop-corrected mass of the SM-like Higgs boson is increased by O(6−8 %)

in the OS scheme for both sets compared to the loop-corrected mass values at two-loop
O(αtαs). From this, we inferred that the O(α2

t ) corrections are not negligible but instead
they are of relevant size.

We further studied the differences of the SM-like Higgs boson mass computed within the OS
or DR scheme of the top and stop sectors by performing variations of the soft-SUSY-breaking
trilinear term At as well as of the phases of At and µeff. We found that the loop-corrected
masses at all levels of corrections depend relatively strongly on At while the dependence of the
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mass values on the phases was rather small for both renormalization schemes. At the level of
the two-loop O(αtαs+α

2
t ) corrections, the difference of the loop-corrected mass of the SM-like

Higgs boson between the OS and the DR scheme turned out to be larger than at two-loop
O(αtαs). From this, we drew the conclusion that at the level of the two-loop O(αtαs + α2

t )
corrections to the Higgs boson masses, the estimated remaining theoretical uncertainty is
increased in comparison to the estimate based on the two-loop O(αtαs) corrections and that
care has to be taken when estimating the remaining uncertainty at a given loop level when
only parts of the higher-order corrections at this loop level are taken into account.



CHAPTER 19

Final Conclusion and Outlook

This thesis has dealt with higher-order corrections in several different models beyond the SM
of particle physics. Despite the remarkable agreement of experimental data with the predic-
tions made within the SM, the SM alone does not provide sufficient explanations of many
other phenomena observed in our universe. It is therefore expected that the SM reflects only
the low-energy limit of another more fundamental theory capable of providing explanations
of these phenomena.

In this thesis, we considered the CP-conserving realizations of the 2HDM and the N2HDM
as two rather simple extensions of the Higgs sector of the SM as well as the CP-violating
NMSSM as an example of a more complex SUSY extension. While none of these three mod-
els is capable of providing solutions to all of the unanswered questions about our universe
simultaneously, each of the models provides at least solutions to a subset of the shortcomings
of the SM. Since the discovery of the SM-like Higgs boson at the LHC in 2012, the scalar
sector of the SM has been under ongoing investigation from both the experimental as well as
the theoretical point of view. By exploring the properties of the Higgs boson and thereby the
structure of the scalar potential in more detail in current or future particle collider experi-
ments, the Higgs sector itself serves as a portal to the exploration of BSM theories. However,
However, the increasing precision in the Higgs sector requires improvements on the precision
of the theoretical predictions, as well. Therefore, this thesis focused on higher-order correc-
tions to observables connected to the Higgs sectors of the 2HDM, N2HDM and the NMSSM,
respectively, in order to provide more precise predictions for the observables considered in
this work.

In Part I of this thesis, we gave a brief description of the SM and its shortcomings as a
motivation for the introduction of BSM theories. As examples, we briefly discussed SU(2)L
singlet and doublet extensions of the SM Higgs sector as well as SUSY theories. For the
calculation of the higher-order corrections to the observables of the Higgs sectors of the 2HDM,
N2HDM and NMSSM in later parts of the thesis, we provided the theoretical framework and
generic formulae for the observables that were applied in the corresponding parts.

Parts II and III of this thesis dealt with the calculation of the electroweak corrections to the
OS partial decay widths of all decays of the Higgs bosons of the CP-conserving 2HDM and
N2HDM that are not loop-induced. Due to the similar structure of the two models, Parts II
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and III were both structurally and conceptionally similar as well. After having introduced
the electroweak Lagrangians of the two models and in particular their Higgs sectors in detail,
we presented the complete renormalization of the 2HDM and N2HDM. For the scalar mixing
angles, introduced through the rotation of the Higgs potential from the gauge to the physical
mass eigenstates, we presented several different renormalization schemes and categorized them
with respect to the three desirable criteria of GFP independence, process independence and
numerical stability. The electroweak one-loop corrections to the partial decay widths of all
Higgs bosons of the 2HDM and N2HDM were computed fully analytically with the help of the
Mathematica packages SARAH 4.14.0, FeynArts 3.9 and FeynCalc 8.2.0. The resulting
electroweak partial decay widths were consistently combined with the FORTRAN codes HDECAY
6.52 and N2HDECAY for the 2HDM and N2HDM, respectively, both of which contain the
state-of-the-art QCD corrections to the BRs of the Higgs boson decays for the two models.
The combined corrections were provided as the newly developed Python/FORTRAN program
packages 2HDECAY and ewN2HDECAY, again for the 2HDM and N2HDM, respectively. Being
fast, the programs allow for an efficient numerical evaluation of the partial decay widths and
BRs of all decay modes of the Higgs bosons of the 2HDM and N2HDM. We concluded Parts
II and III with numerical analyses on the size of the electroweak corrections and found that
they can be of relevant size in particular for the non-SM-like Higgs bosons of the two models.
Based on the change of the renormalization schemes for the scalar mixing angles, where we
took care of the consistent conversion of the input parameters as well, we estimated the
remaining theoretical uncertainties on the decay widths to be of a few percent for selected
decay channels and input parameter sets. Additionally, we reconfirmed that the MS and
process-dependent schemes typically lead to very large one-loop corrections for a large amount
of different parameter sets, while the renormalization schemes based on the PT are considered
to be numerically stable for the decay channels and parameters considered. For the 2HDM, we
found that the additionally implemented renormalization schemes based on rigid symmetries
and physical OS approaches can be considered as being numerically stable as well.

The final Part IV of this thesis dealt with the calculation of the O(α2
t ) two-loop corrections

to the masses of the Higgs bosons of the CP-violating NMSSM. After having introduced the
superpotential and the Lagrangian of the complex NMSSM, we presented in full detail the
renormalization of all parameters up to O(α2

t ) contributions relevant for the cancellation of all
UV divergences appearing in the course of the calculation of the mass corrections. As a key
ingredient for the computation of the higher-order corrections to the masses, we provided the
genuine O(α2

t ) two-loop corrections to the unrenormalized self-energies of the Higgs bosons
and combined them with the CTs to obtain the renormalized self-energies of the complex
NMSSM. For the calculation of all loop integrals, we applied the Feynman-diagrammatic
approach and generated and evaluated all Feynman amplitudes with the help of the Math-

ematica packages SARAH 4.14.0, FeynArts 3.9, FeynCalc 8.2.0, FormTracer 2.3.6 and
TARCER. Throughout the calculations of the self-energies and the CTs, we applied the approx-
imations of vanishing external momentum and the gaugeless limit in order to simplify the
evaluation of the two-loop tensor integrals. In the limit of vanishing external momentum, all
one- and two-loop integrals could be reduced to a set of scalar integrals for which analytic
expressions are well known. We expanded these expressions up to terms linear in the dimen-
sional regulator ε which allowed us to explicitly confirm the UV finiteness of our results. The
full analytic results for the O(α2

t ) two-loop corrections to the Higgs boson masses were imple-
mented in the new NMSSMCALC 3.00 version. We concluded Part IV with a numerical analysis
for two exemplary input parameter sets which fulfill up-to-date theoretical and experimental
constraints. Our analysis showed that at the two-loop O(αtαs + α2

t ) level, the mass of the
SM-like Higgs boson is shifted by several percent in the OS scheme when compared to the
results obtained at O(αtαs). From this, we concluded that the O(α2

t ) corrections yield rele-
vant contributions for the precise calculation of the masses of the NMSSM Higgs bosons. For
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the DR scheme on the other hand, the shift of the masses between the two different orders is
only below the percent level. Based on the results when the O(α2

t ) corrections are included,
we arrived at a more conservative estimate on the remaining theoretical uncertainties of the
loop-corrected Higgs boson masses due to missing higher-order corrections. Further numer-
ical analyses revealed that the loop corrections to the mass of the SM-like Higgs boson are
rather sensitive to the chosen value of At while the dependence on the complex phases of At
and µeff turned out to be relatively small, showing that radiatively induced CP violation has
only a minor effect on the mass of the SM-like Higgs boson.

Only recently, the second run of data-taking at the LHC at a center-of-mass energy of 13 TeV
concluded, providing more data than ever on the particle collisions observed at the exper-
iments at the LHC. In the future, the data acquired by the experiments will be analyzed
in detail. The Higgs sector, as one of the lesser precisely studied aspects of the SM, might
provide a portal for the search of new physics. Through the calculations performed in this
work, we provided relevant contributions for more precise predictions of observables in the
Higgs boson sector of the CP-conserving 2HDM and N2HDM as well as of the CP-violating
NMSSM. We hope that the computer programs developed in the course of this work, namely
2HDECAY, ewN2HDECAY and NMSSMCALC 3.00, will be useful for detailed studies of the 2HDM,
N2HDM and the NMSSM, respectively, thereby providing a contribution to the ongoing quest
of understanding the fundamental theories that describe nature in more detail.

For future work, it would be interesting to further extend the studies and computations pre-
sented in this thesis. The time-efficient calculation of the BRs and electroweak partial decay
widths of the Higgs bosons of the 2HDM and N2HDM with 2HDECAY and ewN2HDECAY en-
ables dedicated phenomenological studies on all decay channels for these two BSM theories. It
would be additionally of interest to analyze the effects of the electroweak higher-order contri-
butions on certain regions of parameter space of the 2HDM and N2HDM, e.g. the alignment
or the decoupling limits, and whether the electroweak corrections are sizeable enough to have
an effect on these limits. For the renormalization schemes of the scalar mixing angles imple-
mented in the two tools, a dedicated numerical analysis including large amounts of different
input parameter sets would be of interest, thereby allowing for a more general categorization
of the renormalization schemes with respect to their numerical stability. Regarding NMSSM-

CALC, future work could include the computation of other higher-order contributions beyond
the O(αtαs +α2

t ) two-loop level, focusing e.g. on the NMSSM-specific two-loop contributions
stemming from terms mediated by λ or κ. Moreover, it might be of interest to recompute the
existing contributions without the approximations of the gaugeless limit and vanishing ex-
ternal momentum. Furthermore, the existing version NMSSMCALC 3.00 can be used in future
work for dedicated phenomenological studies on the CP-violating NMSSM.





APPENDIX A

Scalar One-Loop and Two-Loop Integrals

A.1. Scalar One-Loop Integrals up to O(ε)
In this section, we present the expansion of the scalar one-loop one-point, two-point and three-
point integrals up to O(ε), where ε is the dimensional regulator in DREG/DRED, cf. Sec. 3.1.
For the one-loop electroweak corrections to the partial decay widths of the Higgs bosons in
the 2HDM and N2HDM, presented in Parts II and III of this thesis, we use the expansion
of the scalar one-loop integrals up to O(1), while for the O(α2

t ) two-loop corrections to the
Higgs boson masses in the complex NMSSM as presented in Part IV, their expansion up to
O(ε) is required.

A.1.1. Used Conventions

For convenience, we define a modified renormalization scale QR which is related to the renor-
malization scale µR of DREG/DRED via the relation

Q2
R ≡ 4πµ2

Re
−γE . (A.1)

Additionally, we define a short-hand notation for the logarithm at the scale QR,

ln (m2
i ) ≡ ln

(
m2
i

Q2
R

)
, (A.2)

where mi is an arbitrary mass-dimensional parameter. The O(ε) expansion of the one-loop
two-point integral can be expressed in terms of this logarithm and additionally the polyloga-
rithm of order 2 (also called dilogarithm or Spence’s function), defined as a function of z ∈ C
by [311]

Li2(z) ≡ −
∫ z

0
dx

ln(1− x)

x
. (A.3)

Special analytic solutions of the dilogarithm are given by

Li2(−1) = −π
2

12
, (A.4)

Li2(1) ≡ ζ(2) =
π2

6
, (A.5)



170 A Scalar One-Loop and Two-Loop Integrals

where ζ(2) denotes the Riemann zeta function ζ(s) evaluated at the value s = 2. The
expansion of the scalar one-loop two-point integral can be expressed by means of the two
solutions r1 and r2 of the equation [312]

m2
2

m2
1

r2 +
p2 −m2

1 −m2
2 + iε

m1m2

m2

m1
r + 1 = 0 . (A.6)

In closed form, the solutions are given by

r1/2 =
−p2 +m2

1 +m2
2 − iε±

√
(p2 −m2

1 −m2
2 + iε)2 − 4m2

1m
2
2

2m2
2

, (A.7)

where the infinitesimal shift ε > 0 with ε � m2
i and ε � p2 is required to evaluate the

logarithms containing these complex roots on the correct branch. By defining the two dimen-
sionless quantities

x ≡ p2

m2
2

, (A.8)

y ≡ m2
1

m2
2

, (A.9)

the two solutions are related via

y = r1r2 , (A.10)

x = (1− r1)(1− r2) . (A.11)

A.1.2. The Scalar One-Loop One-Point Integral A0 to O(ε)

We define the scalar one-loop one-point integral in D = 4− 2ε dimensions as in [149],

A0(m2) ≡ 16π2µ4−D
R

∫
dDl

i(2π)D
1

[l2 −m2]
. (A.12)

Up to O(ε), the solution of this integral is given by

A0(m2) =
m2

ε
+m2

{
1− ln(m2)

}
+m2

{
ζ(2)

2
+

1

2
ln

2
(m2)− ln(m2) + 1

}
ε . (A.13)

In the massless case, i.e. for a vanishing argument m2 = 0, the integral vanishes as well,

A0(0) = 0 . (A.14)

A.1.3. The Scalar One-Loop Two-Point Integral B0 to O(ε)

We define the scalar one-loop two-point integral in D = 4− 2ε dimensions as in [149],

B0(p2,m2
1,m

2
2) ≡ 16π2µ4−D

R

∫
dDl

i(2π)D
1

[l2 −m2
1][(l + p)2 −m2

2]
. (A.15)
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Up to O(ε), the most general solution of the B0 integral can be expressed as [312]

B0(p2;m2
1,m

2
2) =

1

ε
+

{
2− ln(m2

1) + ln(m2
2)

2
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2x
ln(y) +
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2x
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2
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(
ln(m2
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)2

8
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1

8
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ln(y) (A.16)

+
(
ln(m2

1) + ln(m2
2)
)(
−1 +

y − 1

4x
ln(y)− r1 − r2

4x
(ln(r1)− ln(r2))

)
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)]}
ε .

While this general solution is valid for arbitrary values of p2, m2
1 and m2

2, in a practical
calculation, its implementation can lead to numerical instabilities due to the appearance of
vanishing denominators or large (di)logarithms. Therefore, we present several special cases
for the O(ε) expansion of the B0 integral:

B0(p2; 0,m2) =
1

ε
+

{
2− ln(m2) +

m2 − p2

p2
ln

(−p2 +m2 − iε
m2

)}
(A.17)
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(A.18)

+
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B0(0; 0,m2) =
1
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1− ln(m2)
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+
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2
+ 1 +

ln
2
(m2)

2
− ln(m2)
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B0(0; 0, 0) ≡ 1

ε
− 1

εIR
. (A.23)
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We also refer to [297], where several of these special cases are presented. The last integral
in Eq. (A.23) represents the scalar one-loop two-point function with vanishing momentum
and vanishing masses. In the framework of DREG/DRED, this integral yields the same UV-
divergent structure as the most general solution of the B0 integral, i.e. a simple pole in the
regulator ε. However, in the limit that all arguments of the integral are vanishing, the integral
moreover contains an IR divergence. In Eq. (A.23), we regulated this divergence also in
DREG/DRED with an IR regulator εIR in order to make it explicit. The appearance of these
IR-divergent integrals is typical when the approximations of vanishing external momentum,
i.e. p2 = 0, and the gaugeless limit, i.e. massless Goldstone bosons, are applied. This is known
in literature as the Goldstone boson catastrophe (GBC) and several possible solutions were
proposed for dealing with these divergent contributions [313–316]. For the results derived in
our work, the GBC does not appear. In the case of the one-loop corrections to the partial
decay widths of the Higgs bosons in the 2HDM and N2HDM, the loop integrals are computed
with full momentum dependence, while for the two-loop corrections to the Higgs masses in
the complex NMSSM, there are no diagrammatic contributions to O(α2

t ) that would give
rise to B0 integrals with vanishing arguments54. Hence, all results derived in our work are
independent of the IR regulator εIR.

For the derivative of the most general result in Eq. (A.16), we find
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A.1.4. The Scalar One-Loop Three-Point Integral C0 to O(ε)
We define the scalar one-loop three-point integral in D = 4− 2ε dimensions as in [149],

C0(p2, q2, (p+ q)2,m2
1,m

2
2,m

2
3) ≡ 16π2µ4−D

R (A.25)

·
∫

dDl

i(2π)D
1

[l2 −m2
1][(l + p)2 −m2

2][(l + p+ q)2 −m2
3]
.

The most general result of this integral to O(1) is presented in [183]. For the calculation
of the O(α2

t ) corrections to the Higgs boson masses in the complex NMSSM, the following
special solution of the integral to O(ε) is required:

C0(0, 0, 0;m2,m2,m2) = − 1

2m2
+

ln(m2)

2m2
ε . (A.26)

A.2. Scalar Two-Loop Integrals to O(1)
In this section, we present the expansion of the two-loop integrals up to O(1), where ε is the
dimensional regulator in DREG/DRED, cf. Sec. 3.1, as they are needed for the calculation
of the two-loop corrections to the Higgs boson masses in the complex NMSSM presented in

54For completeness, we want to mention that as soon as other NMSSM-specific contributions (e.g. the O(αtαλ)
corrections) are taken into account, the GBC explicitly appears at two-loop level when the approximations of
vanishing external momentum and the gaugeless limit are applied.
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Part IV of this thesis. For the calculation of the two-loop tensor integrals and their decompo-
sition into the basic scalar two-loop integrals, we use the Mathematica package TARCER [289]
which implements the reduction algorithms presented in [317, 318]. In the TARCER notation,
the most general form of a two-loop integral is given by

TFI[D,p2,∆p,{a,b},{u,v,r,s,t},{{ν1,m1},{ν2,m2}, ... ,{ν5,m5}}] (A.27)

≡ 1

πD

∫∫
dDl1dDl2 (∆ · l1)a (∆ · l2)b (l21)u (l22)v (p · l1)r (p · l2)s (l1 · l2)t

[l21 −m2
1]ν1 [l22 −m2

2]ν2 [(l1 − p)2 −m2
3]ν3 [(l2 − p)2 −m2

4]ν4 [(l1 − l2)2 −m2
5]ν5

,

where a, b, u, v, r, s, t and νi (i = 1, ..., 5) are non-negative integers and ∆ represents a light-
like four-vector, i.e. it satisfies ∆2 = 0. The reduction algorithm reduces all integrals to a
combination of basic integrals, defined as [289]

TFI[D,p2,{{ν1,m1},{ν2,m2},{ν3,m3},{ν4,m4},{ν5,m5}}] (A.28)

≡ 1

πD

∫∫
dDl1dDl2

[l21 −m2
1]ν1 [l22 −m2

2]ν2 [(l1 − p)2 −m2
3]ν3 [(l2 − p)2 −m2

4]ν4 [(l1 − l2)2 −m2
5]ν5

,

TVI[D,p2,{{ν1,m1},{ν2,m2},{ν3,m3},{ν4,m4}}] (A.29)

≡ 1

πD

∫∫
dDl1dDl2

[(l1 − l2)2 −m2
1]ν1 [l22 −m2

2]ν2 [(l1 − p)2 −m2
3]ν3 [(l2 − p)2 −m2

4]ν4
,

TJI[D,p2,{{ν1,m1},{ν2,m2},{ν3,m3}}] (A.30)

≡ 1

πD

∫∫
dDl1dDl2

[l21 −m2
1]ν1 [(l1 − l2)2 −m2

2]ν2 [(l2 − p)2 −m2
3]ν3

,

TJI[D,0,{{ν1,m1},{ν2,m2},{ν3,m3}}] (A.31)

≡ 1

πD

∫∫
dDl1dDl2

[l21 −m2
1]ν1 [(l1 − l2)2 −m2

2]ν2 [l22 −m2
3]ν3

,

TBI[D,p2,{{ν1,m1},{ν2,m2}}] (A.32)

≡ 1

πD/2

∫
dDl1

[l21 −m2
1]ν1 [(l1 − p)2 −m2

2]ν2
,

TAI[D,0,{{ν1,m1}}] (A.33)

≡ 1

πD/2

∫
dDl1

[l21 −m2
1]ν1

.

For the calculation of the corrections to the Higgs masses in the complex NMSSM to O(α2
t ),

we only need a subset of these integrals. For those, we implemented the analytic results
presented in [291,319] to the order that is required for our calculations. The integrals in the
notation used in this reference are connected to the integrals in the TARCER notation via the
following relations:

TAI[D,0,{{1,m1}}] = −iπ2 A(m2
1) , (A.34)

TBI[D,p2,{{1,m1},{1,m2}}] = iπ2 B(m2
1,m

2
2) , (A.35)

TJI[D,0,{{1,m1},{1,m2},{1,m3}}] = π4 I(m2
1,m

2
2,m

2
3) , (A.36)

TJI[D,p,{{1,m1},{1,m2},{1,m3}}] = π4 S(m2
1,m

2
2,m

2
3) , (A.37)

TJI[D,p,{{2,m1},{1,m2},{1,m3}}] = −π4 T(m2
1,m

2
2,m

2
3) , (A.38)

TVI[D,p2,{{1,m4},{1,m1},{1,m3},{1,m2}}] = −π4 U(m2
1,m

2
2,m

2
3,m

2
4) . (A.39)
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The analytic results of these integrals are given by [291,319]

A(m2
1) = −m

2
1

ε
−Afin

0 (m2
1)− εAε0(m2

1) , (A.40)

B(m2
1,m

2
2) =

1

ε
+Bfin

0 (p2,m2
1,m

2
2) + εBε

0(p2,m2
1,m

2
2) , (A.41)

I(m2
1,m

2
2,m

2
3) = −m

2
1 +m2

2 +m2
3

2ε2
+
Afin

0 (m2
1) +Afin

0 (m2
2) +Afin

0 (m2
3)− m2

1+m2
2+m2

3
2

ε

+ TJIfin(m2
1,m

2
2,m

2
3) , (A.42)

S(m2
1,m

2
2,m

2
3) = −m

2
1 +m2

2 +m2
3

2ε2
(A.43)

+
Afin

0 (m2
1) +Afin

0 (m2
2) +Afin

0 (m2
3)− m2

1+m2
2+m2

3
2 + p2

4

ε
,

T(m2
1,m

2
2,m

2
3) =

1

2ε2
−

A0(m2
1)

m2
1

+ 1
2

ε
, (A.44)

U(m2
1,m

2
2,m

2
3,m

2
4) =

1

2ε2
+
Bfin

0 (p2,m2
1,m

2
2) + 1

2

ε
, (A.45)

where the superscripts fin and ε denote the O(1) and O(ε) terms of the A0 and B0 integrals
given in Eqs. (A.13) and (A.16), respectively. Moreover, the finite part of the I integral is
given by [320]

TJIfin(m2
1,m

2
2,m

2
3) =

3∑
i=1

{
Aε0(m2

i )−
m2
i

2

(
ln(m2

i )
[
ln(m2

i )− 4
]

+ 5
)}
− m2

3

2
λ2(x, y)Φ(x, y)

+
m2

1 +m2
2 −m2

3

4
ln

2
(z) +

m2
1 −m2

2 +m2
3

4
ln

2
(x) +

−m2
1 +m2

2 +m2
3

4
ln

2
(y) , (A.46)

where

x ≡ m2
1

m2
3

, y ≡ m2
2

m2
3

, z ≡ m2
1

m2
2

, (A.47)

and

λ(x, y) ≡
√

(1− x− y)2 − 4xy , (A.48)

Φ(x, y) ≡ 1

λ(x, y)

[
2 ln

(
1 + x− y − λ(x, y)

2

)
ln

(
1− x+ y − λ(x, y)

2

)
− ln(x) ln(y) + 2 ζ(2)

− 2 Li2

(
1 + x− y − λ(x, y)

2

)
− 2 Li2

(
1− x+ y − λ(x, y)

2

)]
. (A.49)

The Riemann zeta function ζ(s) evaluated at s = 2 is given in Eq. (A.5). Moreover, we
implemented the following special cases of the integral in order to avoid numerical instabilities
due to large (di)logarithms,

TJIfin(0,m2
2,m

2
3) = −

3∑
i=2

m2
i

[
ln(m2

i )
(
ln(m2

i )− 3
)

+
7 + ζ(2)

2

]
+
m2

2

2
ln

2
(y) (A.50)

− (m2
2 −m2

3)
[
Li2(y) + ln(1− y) ln(y)− ζ(2)

]
,

TJIfin(0, 0,m2
3) = −m2

3

[
ln(m2

3)
(
ln(m2

3)− 3
)

+
7 + 3ζ(2)

2

]
, (A.51)

TJIfin(0, 0, 0) = 0 , (A.52)

where the first of these relations is also presented in [321].



APPENDIX B

One-Loop Electroweak Renormalization Constants of the 2HDM

B.1. One-Loop Renormalization Constants of the Tadpoles

In the standard tadpole scheme, the tadpole terms Ti (i = 1, 2) are promoted to one-loop
order by means of Eq. (5.1) and fixed by demanding that the loop-corrected VEVs represent
the minima of the loop-corrected scalar potential. This connects the tadpole CTs δTi directly
to the one-loop tadpole diagrams,

iδTH/h =


H/h

 , (B.1)

where we additionally rotated the tadpole CTs from the gauge basis to the mass basis by
means of the rotation matrix Rα as defined in Eq. (4.31). The nine distinct tadpole terms
appearing in the diagonalized mass matrices in Eqs. (4.32) to (4.34) receive CTs as well which
are given by [226]

Renormalization of the tadpoles (standard scheme)

δTHH =
c3
αsβ + s3

αcβ
vsβcβ

δTH −
s2αsβ−α
vs2β

δTh , (B.2)

δTHh = −s2αsβ−α
vs2β

δTH +
s2αcβ−α
vs2β

δTh , (B.3)

δThh =
s2αcβ−α
vs2β

δTH −
s3
αsβ − c3

αcβ
vsβcβ

δTh , (B.4)

δTG0G0 =
cβ−α
v

δTH +
sβ−α
v

δTh , (B.5)

δTG0A = −sβ−α
v

δTH +
cβ−α
v

δTh , (B.6)

δTAA =
cαs

3
β + sαc

3
β

vsβcβ
δTH −

sαs
3
β − cαc3

β

vsβcβ
δTh , (B.7)

δTG±G± =
cβ−α
v

δTH +
sβ−α
v

δTh , (B.8)
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δTG±H± = −sβ−α
v

δTH +
cβ−α
v

δTh , (B.9)

δTH±H± =
cαs

3
β + sαc

3
β

vsβcβ
δTH −

sαs
3
β − cαc3

β

vsβcβ
δTh . (B.10)

In the alternative tadpole scheme, the VEVs are the fundamental quantities and hence, the
tadpole terms do not receive CTs. Instead, the condition that the tree-level VEVs represent
the proper minimum of the potential is imposed at one-loop level, leading to the following
definition of the VEV CTs [226]:

δv1 =
−icα
m2
H


H

− −isαm2
h


h

 , δv2 =
−isα
m2
H


H

+
−icα
m2
h


h

 . (B.11)

As a consequence of this renormalization condition of the minimum of the scalar potential, ex-
plicit tadpole contributions in all self-energies and vertex corrections need to be included:

Renormalization of the tadpoles (alternative FJ scheme)

δTij = 0 , (B.12)

Σ(p2) → Σtad(p2) , (B.13)

Tadpole diagrams have to be considered in the vertex corrections .

B.2. One-Loop Renormalization Constants of the Gauge Sector

The explicit forms of the gauge boson mass CTs depend on the chosen tadpole scheme. By
denoting the transverse part of the gauge boson self-energies with the superscript T, the
corresponding CTs are given by [226]

Renormalization of the gauge sector (standard scheme)

δm2
W = Re

[
ΣT
WW

(
m2
W

)]
, (B.14)

δm2
Z = Re

[
ΣT
ZZ

(
m2
Z

)]
, (B.15)

Renormalization of the gauge sector (alternative FJ scheme)

δm2
W = Re

[
Σtad,T
WW

(
m2
W

)]
, (B.16)

δm2
Z = Re

[
Σtad,T
ZZ

(
m2
Z

)]
. (B.17)

The SU(2)L coupling constant g is not an independent parameter in our work, but for conve-
nience, we nevertheless present its CT as a function of the CTs of the independent parameters
as follows:

δg

g
= δZe +

c2
W

2s2
W

(
δm2

W

m2
W

− δm2
Z

m2
Z

)
. (B.18)

The WFRCs of the gauge bosons as well as the definition of the CT for the electromagnetic
charge e are independent of the tadpole scheme and explicitly given by [226]
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Renormalization of the gauge sector (both schemes)

δZe(m
2
Z) =

1

2

∂ΣT
γγ

(
p2
)

∂p2

∣∣∣∣∣
p2=0

+
sW
cW

ΣT
γZ (0)

m2
Z

− 1

2
∆α(m2

Z) , (B.19)

δZWW = −Re

[
∂ΣT

WW

(
p2
)

∂p2

]
p2=m2

W

, (B.20)

δZZZ δZZγ

δZγZ δZγγ

 =


−Re

[
∂ΣT

ZZ

(
p2
)

∂p2

]
p2=m2

Z

2

m2
Z

ΣT
Zγ (0)

− 2

m2
Z

Re
[
ΣT
Zγ

(
m2
Z

)]
−Re

[
∂ΣT

γγ

(
p2
)

∂p2

]
p2=0

.

 (B.21)

Since we do not define δZe in the Thomson limit but instead at the scale of the Z boson
mass, we additionally introduce the term

∆α(m2
Z) =

∂Σlight,T
γγ (p2)

∂p2

∣∣∣∣∣
p2=0

−
ΣT
γγ(m2

Z)

m2
Z

(B.22)

which accounts for this scale shift. The transverse photon self-energy Σlight,T
γγ (p2) contains

only contributions from light fermions, i.e. from all fermions apart from the top quark. Due
to this, the one-loop corrections to the decay widths containing δZe are independent of large
logarithms stemming from light fermion contributions [183].

B.3. One-Loop Renormalization Constants of the Scalar Sector

The diagonal WFRCs of the Higgs bosons of the 2HDM are independent from tadpole con-
tributions since they are defined over the derivatives of the scalar self-energies. Hence, their
explicit forms are the same in both tadpole schemes [226]:

Renormalization of the scalar sector (both schemes)

δZHH = −Re

[
∂ΣHH

(
p2
)

∂p2

]
p2=m2

H

, (B.23)

δZhh = −Re

[
∂Σhh

(
p2
)

∂p2

]
p2=m2

h

, (B.24)

δZG0G0 = −Re

[
∂ΣG0G0

(
p2
)

∂p2

]
p2=0

, (B.25)

δZAA = −Re

[
∂ΣAA

(
p2
)

∂p2

]
p2=m2

A

, (B.26)

δZG±G± = −Re

[
∂ΣG±G±

(
p2
)

∂p2

]
p2=0

, (B.27)

δZH±H± = −Re

[
∂ΣH±H±

(
p2
)

∂p2

]
p2=m2

H±

. (B.28)
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The mass CTs of the scalar Higgs bosons as well as their off-diagonal WFRCs depend on the
chosen tadpole scheme and are explicitly given as follows [226],

Renormalization of the scalar sector (standard scheme)

δZHh =
2

m2
H −m2

h

Re
[
ΣHh(m2

h)− δTHh
]
, (B.29)

δZhH = − 2

m2
H −m2

h

Re
[
ΣHh(m2

H)− δTHh
]
, (B.30)

δZG0A = − 2

m2
A

Re
[
ΣG0A(m2

A)− δTG0A

]
, (B.31)

δZAG0 =
2

m2
A

Re
[
ΣG0A(0)− δTG0A

]
, (B.32)

δZG±H± = − 2

m2
H±

Re
[
ΣG±H±(m2

H±)− δTG±H±
]
, (B.33)

δZH±G± =
2

m2
H±

Re
[
ΣG±H±(0)− δTG±H±

]
, (B.34)

δm2
H = Re

[
ΣHH(m2

H)− δTHH
]
, (B.35)

δm2
h = Re

[
Σhh(m2

h)− δThh
]
, (B.36)

δm2
A = Re

[
ΣAA(m2

A)− δTAA
]
, (B.37)

δm2
H± = Re

[
ΣH±H±(m2

H±)− δTH±H±
]
, (B.38)

Renormalization of the scalar sector (alternative FJ scheme)

δZHh =
2

m2
H −m2

h

Re
[
Σtad
Hh(m2

h)
]
, (B.39)

δZhH = − 2

m2
H −m2

h

Re
[
Σtad
Hh(m2

H)
]
, (B.40)

δZG0A = − 2

m2
A

Re
[
Σtad
G0A(m2

A)
]
, (B.41)

δZAG0 =
2

m2
A

Re
[
Σtad
G0A(0)

]
, (B.42)

δZG±H± = − 2

m2
H±

Re
[
Σtad
G±H±(m2

H±)
]
, (B.43)

δZH±G± =
2

m2
H±

Re
[
Σtad
G±H±(0)

]
, (B.44)

δm2
H = Re

[
Σtad
HH(m2

H)
]
, (B.45)

δm2
h = Re

[
Σtad
hh (m2

h)
]
, (B.46)

δm2
A = Re

[
Σtad
AA(m2

A)
]
, (B.47)

δm2
H± = Re

[
Σtad
H±H±(m2

H±)
]
. (B.48)
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B.4. One-Loop Renormalization Constants of the Fermion Sec-
tor

The mass CTs of the fermions and their off-diagonal WFRCs dependent on the tadpole
scheme,

Renormalization of the fermion sector (standard scheme)

δmf,i =
mf,i

2
Re
(

Σf,L
ii (m2

f,i) + Σf,R
ii (m2

f,i) + 2Σf,S
ii (m2

f,i)
)
, (B.49)

δZf,Lij =
2

m2
f,i −m2

f,j

Re

[
m2
f,jΣ

f,L
ij (m2

f,j) +mf,imf,jΣ
f,R
ij (m2

f,j) (B.50)

+ (m2
f,i +m2

f,j)Σ
f,S
ij (m2

f,j)

]
(i 6= j) ,

δZf,Rij =
2

m2
f,i −m2

f,j

Re

[
m2
f,jΣ

f,R
ij (m2

f,j) +mf,imf,jΣ
f,L
ij (m2

f,j) (B.51)

+ 2mf,imf,jΣ
f,S
ij (m2

f,j)

]
(i 6= j) ,

Renormalization of the fermion sector (alternative FJ scheme)

δmf,i =
mf,i

2
Re
(

Σf,L
ii (m2

f,i) + Σf,R
ii (m2

f,i) + 2Σtad,f,S
ii (m2

f,i)
)
, (B.52)

δZf,Lij =
2

m2
f,i −m2

f,j

Re

[
m2
f,jΣ

f,L
ij (m2

f,j) +mf,imf,jΣ
f,R
ij (m2

f,j) (B.53)

+ (m2
f,i +m2

f,j)Σ
tad,f,S
ij (m2

f,j)

]
(i 6= j) ,

δZf,Rij =
2

m2
f,i −m2

f,j

Re

[
m2
f,jΣ

f,R
ij (m2

f,j) +mf,imf,jΣ
f,L
ij (m2

f,j) (B.54)

+ 2mf,imf,jΣ
tad,f,S
ij (m2

f,j)

]
(i 6= j) .

The diagonal WFRCs are independent of the tadpole renormalization. For the CTs of the
CKM matrix elements, we implement the scheme presented in [236] which defines the CTs over
the pinched fermion self-energies which are equivalent to the ordinary fermion self-energies,
but evaluated in the Feynman-’t Hooft gauge. The corresponding CTs and WFRCs are given
as

Renormalization of the fermion sector (both schemes)

δVij =
1

4

[(
δZu,Lik − δZ

u,L†
ik

)
Vkj − Vik

(
δZd,Lkj − δZ

d,L†
kj

)]
ξ=1

, (B.55)

δZf,Lii = −Re
[
Σf,L
ii (m2

f,i)
]
−m2

f,iRe

[
∂Σf,L

ii (p2)

∂p2
+
∂Σf,R

ii (p2)

∂p2
+ 2

∂Σf,S
ii (p2)

∂p2

]
p2=m2

f,i

,
(B.56)

δZf,Rii = −Re
[
Σf,R
ii (m2

f,i)
]
−m2

f,iRe

[
∂Σf,L

ii (p2)

∂p2
+
∂Σf,R

ii (p2)

∂p2
+ 2

∂Σf,S
ii (p2)

∂p2

]
p2=m2

f,i

.
(B.57)
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As argued in [216], we want to note that the CT definition in Eq. (B.55) can also be used
in the framework of the standard tadpole scheme, which effectively resembles the original
GFP-dependent definition of the CTs of the CKM matrix elements presented in [183], but
evaluated at a specific gauge.

The Yukawa coupling parameters introduced in Table 4.2 are not independent parameters.
For convenience, we nevertheless present their CTs as functions of the mixing angle CTs δα
and δβ, presented in the subsequent App. B.5. The explicit forms of the Yukawa coupling
parameter CTs, independently of the 2HDM type chosen, are given by

δY1 = Y1

(
−Y2

Y1
δα+ Y3δβ

)
, (B.58)

δY2 = Y2

(
Y1

Y2
δα+ Y3δβ

)
, (B.59)

δY3 =
(
1 + Y 2

3

)
δβ , (B.60)

δY4 = Y4

(
−Y5

Y4
δα+ Y6δβ

)
, (B.61)

δY5 = Y5

(
Y4

Y5
δα+ Y6δβ

)
, (B.62)

δY6 =
(
1 + Y 2

6

)
δβ . (B.63)

B.5. One-Loop Renormalization Constants of the Scalar Mix-
ing Angles

B.5.1. MS Scheme

In the MS scheme, the mixing angle CTs do not receive finite contributions δαfin and δβfin

but instead, they only contain the UV-divergent parts proportional to ∆, defined in Eq. (3.2).
The resulting CTs are independent of the tadpole scheme and are hence given by

Renormalization of δα and δβ: MS scheme (both schemes)

δα|fin = 0 , (B.64)

δβ|fin = 0 . (B.65)

The analytic forms of the UV-divergent parts of δα and δβ are rather intricate. Hence, we
do not display them here explicitly but refer to [189] for their presentation.

B.5.2. KOSY Scheme

The KOSY scheme [222] connects the definition of the mixing angle CTs with the WFRCs of
the scalar doublets. For the CP-even scalar mixing angle α this connection is unambiguous,
while for the CP-odd and charged mixing angle β, different combinations of WFRCs in
the definition of δβ are possible. We choose the two combinations where δβ is defined solely
through the CP-odd sector, denotes by δβo, and where it is defined solely through the charged
sector, denoted by δβc. The corresponding CTs in the standard and alternative FJ tadpole
scheme are given by [222,226]
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Renormalization of δα and δβ: KOSY scheme (standard scheme)

δα =
1

2(m2
H −m2

h)
Re
[
ΣHh(m2

H) + ΣHh(m2
h)− 2δTHh

]
, (B.66)

δβo = − 1

2m2
A

Re
[
ΣG0A(m2

A) + ΣG0A(0)− 2δTG0A

]
, (B.67)

δβc = − 1

2m2
H±

Re
[
ΣG±H±(m2

H±) + ΣG±H±(0)− 2δTG±H±
]
, (B.68)

Renormalization of δα and δβ: KOSY scheme (alternative FJ scheme)

δα =
1

2(m2
H −m2

h)
Re
[
Σtad
Hh(m2

H) + Σtad
Hh(m2

h)
]
, (B.69)

δβo = − 1

2m2
A

Re
[
Σtad
G0A(m2

A) + Σtad
G0A(0)

]
, (B.70)

δβc = − 1

2m2
H±

Re
[
Σtad
G±H±(m2

H±) + Σtad
G±H±(0)

]
. (B.71)

We want to emphasize that the KOSY scheme features mixing angle CTs which are manifestly
GFP-dependent and that their usage one-loop order yields GFP-dependent partial decay
widths.

B.5.3. p∗-Pinched Scheme

In the p∗-pinched scheme, the OS-motivated approach of the KOSY scheme is connected with
an unambiguous definition of the GFP-independent part of the self-energies involved in the
definition of the mixing angle CTs, given by the pinched scalar self-energies. For the p∗ scale,
cf. Eq. (5.26), the pinched scalar self-energies of the 2HDM are equivalent to the usual self-
energies Σtad(p2) including tadpole contributions, evaluated at the Feynman-’t Hooft gauge
ξV = 1 (V ∈ {W±, Z, γ}). For consistency, the p∗-pinched scheme requires the framework of
the alternative FJ scheme. The mixing angle CTs in this scheme are given by [226]

Renormalization of δα and δβ: p∗-pinched scheme (alternative FJ scheme)

δα =
1

m2
H −m2

h

Re

[
Σtad
Hh

(
m2
H +m2

h

2

)]
ξ=1

, (B.72)

δβo = − 1

m2
A

Re

[
Σtad
G0A

(
m2
A

2

)]
ξ=1

, (B.73)

δβc = − 1

m2
H±

Re

[
Σtad
G±H±

(
m2
H±

2

)]
ξ=1

, (B.74)

where δβo and δβc are the two variations of the CT definition of the mixing angle β, adopted
from the KOSY scheme.

B.5.4. OS-Pinched Scheme

The OS-pinched scheme is analogous to the p∗-pinched scheme, however, the original scale p2

of the self-energies from the KOSY scheme is adopted in the definition of the mixing angle



182 B One-Loop Electroweak Renormalization Constants of the 2HDM

CTs instead of the p2
∗ scale. Due to this, the additional UV-finite self-energy contributions

derived for the 2HDM in [226] need to be taken into account,

Σadd
Hh (p2) =

αemm
2
Zsβ−αcβ−α

8πm2
W

(
1− m2

W

m2
Z

) (p2 − m2
H +m2

h

2

){[
B0(p2;m2

Z ,m
2
A)−B0(p2;m2

Z ,m
2
Z)
]

+ 2
m2
W

m2
Z

[
B0(p2;m2

W ,m
2
H±)−B0(p2;m2

W ,m
2
W )
]}

, (B.75)

Σadd
G0A(p2) =

αemm
2
Zsβ−αcβ−α

8πm2
W

(
1− m2

W

m2
Z

) (p2 − m2
A

2

)[
B0(p2;m2

Z ,m
2
H)−B0(p2;m2

Z ,m
2
h)
]
, (B.76)

Σadd
G±H±(p2) =

αemsβ−αcβ−α

4π
(

1− m2
W

m2
Z

) (p2 − m2
H±

2

)[
B0(p2;m2

W ,m
2
H)−B0(p2;m2

W ,m
2
h)
]
. (B.77)

As for the p∗-pinched scheme, the OS-pinched scheme requires the alternative FJ tadpole
scheme for consistency. The mixing angle CTs in the OS-pinched scheme are given by [226]

Renormalization of δα and δβ: OS-pinched scheme (alternative FJ scheme)

δα =
Re
[ [

Σtad
Hh(m2

H) + Σtad
Hh(m2

h)
]
ξ=1

+ Σadd
Hh (m2

H) + Σadd
Hh (m2

h)
]

2
(
m2
H −m2

h

) , (B.78)

δβo = −
Re
[ [

Σtad
G0A(m2

A) + Σtad
G0A(0)

]
ξ=1

+ Σadd
G0A(m2

A) + Σadd
G0A(0)

]
2m2

A

, (B.79)

δβc = −
Re
[ [

Σtad
G±H±(m2

H±) + Σtad
G±H±(0)

]
ξ=1

+ Σadd
G±H±(m2

H±) + Σadd
G±H±(0)

]
2m2

H±
, (B.80)

where again the two chosen combinations δβo and δβc where adopted from the KOSY scheme.

B.5.5. Process-Dependent Schemes

The process-dependent scheme imposes the renormalization condition that the partial decay
widths at LO and NLO for a set of chosen decay processes φ −→ X1X2 of Higgs bosons φ
into two other particles X1 and X2 are equivalent, i.e. the full one-loop effects are shifted
into the definition of the mixing angle CTs. In order to avoid the appearance of IR-divergent
contributions, only the genuine weak one-loop corrections are considered, requiring that for
the chosen processes the QED-like contributions form a UV-divergent subset. For the three
different combinations of decay processes presented in Sec. 5.3, the resulting mixing angle
CTs are given as:

Renormalization of δα and δβ: process-dependent scheme 1 (both schemes)

δα =
−Y5

Y4

[
FVC
Hττ +

δg

g
+
δmτ

mτ
− δm2

W

2m2
W

+ Y6δβ +
δZHH

2
+
Y4

Y5

δZhH
2

+
δZL

ττ

2
(B.81)

+
δZR

ττ

2

]
,

δβ =
−Y6

1 + Y 2
6

[
FVC
Aττ +

δg

g
+
δmτ

mτ
− δm2

W

2m2
W

+
δZAA

2
− 1

Y6

δZG0A

2
+
δZL

ττ

2
+
δZR

ττ

2

]
,

(B.82)
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Renormalization of δα and δβ: process-dependent scheme 2 (both schemes)

δα =
Y4

Y5

[
FVC
hττ +

δg

g
+
δmτ

mτ
− δm2

W

2m2
W

+ Y6δβ +
δZhh

2
+
Y5

Y4

δZHh
2

+
δZL

ττ

2
(B.83)

+
δZR

ττ

2

]
,

δβ =
−Y6

1 + Y 2
6

[
FVC
Aττ +

δg

g
+
δmτ

mτ
− δm2

W

2m2
W

+
δZAA

2
− 1

Y6

δZG0A

2
+
δZL

ττ

2
+
δZR

ττ

2

]
,

(B.84)

Renormalization of δα and δβ: process-dependent scheme 3 (both schemes)

δα =
Y4Y5

Y 2
4 + Y 2

5

[
FVC
hττ −FVC

Hττ +
δZhh

2
− δZHH

2
+
Y5

Y4

δZHh
2
− Y4

Y5

δZhH
2

]
, (B.85)

δβ =
−1

Y6(Y 2
4 + Y 2

5 )

[
(Y 2

4 + Y 2
5 )

(
δg

g
+
δmτ

mτ
− δm2

W

2m2
W

+
δZL

ττ

2
+
δZR

ττ

2

)
(B.86)

+ Y4Y5

(
δZHh

2
+
δZhH

2

)
+ Y 2

4

(
δZhh

2
+ FVC

hττ

)
+ Y 2

5

(
δZHH

2
+ FVC

Hττ

)]
,

where the first process-dependent scheme was already presented in [226]. Formally, these
definitions of the mixing angle CTs are the same for the standard and alternative FJ tadpole
scheme. However, since some of the CTs involved in these definitions differ between the two
schemes, the actual values of the mixing angle CTs differ between these schemes, as well.

B.5.6. Physical On-Shell Schemes

The formal definition of the mixing angle CTs in the physical OS schemes from [216] are
independent of the tadpole scheme and explicitly given by

Renormalization of δα and δβ: physical (on-shell) scheme OS1 (both schemes)

δα = sαcα (δHν1ν̄1 − δhν1ν̄1) + sαcα
δZHH − δZhh

2
+
c2
αδZHh − s2

αδZhH
2

, (B.87)

δβ = tβ

[
c2
αδHν1ν̄1 + s2

αδhν1ν̄1 − δAν1ν̄1 +
c2
αδZHH + s2

αδZhh − δZAA
2

(B.88)

− sαcα
δZHh + δZhH

2

]
+
δZG0A

2
,

Renormalization of δα and δβ: physical (on-shell) scheme OS2 (both schemes)

δα = sαcα (δhν2ν̄2 − δHν2ν̄2) + sαcα
δZhh − δZHH

2
+
s2
αδZHh − c2

αδZhH
2

, (B.89)

δβ =
1

tβ

[
δAν2ν̄2 − s2

αδHν2ν̄2 − c2
αδhν2ν̄2 +

δZAA − s2
αδZHH − c2

αδZhh
2

(B.90)

− sαcα
δZHh + δZhH

2

]
+
δZG0A

2
,
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Renormalization of δα and δβ: physical (on-shell) scheme OS12 (both schemes)

δα = sαcα (δhν2ν̄2 − δHν2ν̄2) + sαcα
δZhh − δZHH

2
+
s2
αδZHh − c2

αδZhH
2

, (B.91)

δβ = sβcβ

[
c2α

δZHH − δZhh
2

− s2α
δZHh + δZhH

2

]
+
δZG0A

2
(B.92)

+ sβcβ
[
δAν2ν̄2 − δAν1ν̄1 + c2

αδHν1ν̄1 − s2
αδHν2ν̄2 + s2

αδhν1ν̄1 − c2
αδhν2ν̄2

]
.

The genuine factorized vertex corrections δHνiν̄i , δhνiν̄i and δAνiν̄i (all for i = 1, 2) to the
couplings of the Higgs bosons with the massive neutrinos are presented in App. D of [216].

B.5.7. Rigid Symmetry Scheme (BFMS scheme)

The definition of the rigid symmetry scheme (BFMS scheme) from [216] is formally indepen-
dent of the renormalization scheme. The mixing angle CTs are defined through alternative
WFRCs which are introduced in the symmetric phase of the potential in the framework of
the BFM. In this scheme, the CTs are given by

Renormalization of δα and δβ: BFMS scheme (alternative FJ scheme)

δα =
Re
[ [

Σtad
Hh(m2

H) + Σtad
Hh(m2

h)
]
ξ=1

+ Σadd
Hh (m2

H) + Σadd
Hh (m2

h)
]

2
(
m2
H −m2

h

) , (B.93)

δβ =
s2β

s2α

Re
[ [

Σtad
Hh(m2

h)− Σtad
Hh(m2

H)
]
ξ=1

+ Σadd
Hh (m2

h)− Σadd
Hh (m2

H)
]

2
(
m2
H −m2

h

) (B.94)

+
e

2mW

√
1− m2

W

m2
Z

[
sβ−α

δTH
m2
H

− cβ−α
δTh
m2
h

]
.

B.6. One-Loop Renormalization Constant of the Soft-Z2-Break-
ing Parameter m2

12

As a genuine parameter of the tree-level 2HDM potential, the soft-Z2-breaking parameter
m2

12 and its CT are independent of the tadpole renormalization and the latter reads

Renormalization of m2
12 (both schemes)

δm2
12 =

αemm
2
12

16πm2
W

(
1− m2

W

m2
Z

)[8m2
12

s2β
− 2m2

H± −m2
A +

s2α

s2β
(m2

H −m2
h)− 3(2m2

W +m2
Z)

+
∑
u

3m2
u

1

s2
β

−
∑
d

6m2
dY3

(
−Y3 −

1

t2β

)
−
∑
l

2m2
l Y6

(
−Y6 −

1

t2β

)]
∆ , (B.95)

where we sum over all up-type (u) and down-type (d) quarks and charged leptons (l).

https://arxiv.org/pdf/1808.03466.pdf#appendix.D


APPENDIX C

One-Loop Electroweak Renormalization Constants of the N2HDM

C.1. One-Loop Renormalization Constants of the Tadpoles

In the standard tadpole scheme, the tadpole terms Ti (i = 1, 2, s) are promoted to one-loop
order by means of Eq. (5.1) and fixed by demanding that the loop-corrected VEVs represent
the minimum of the loop-corrected scalar potential. This connects the tadpole CTs δTi
directly to the one-loop tadpole diagrams T loop

Hi
,

iδTHi ≡ iT loop
Hi
≡


Hi

 . (C.1)

The relations between the tadpole CTs in the mass and gauge bases are given by

δT1 =
3∑
j=1

Rj1δTHj , (C.2)

δT2 =

3∑
j=1

Rj2δTHj , (C.3)

δTs =
3∑
j=1

Rj3δTHj , (C.4)

where the CP-even rotation matrix R is defined in Eq. (9.14). The twelve distinct tadpole
terms appearing in the diagonalized mass matrices in Eq. (9.15) and Eqs. (4.33)-(4.34), the
latter two presented for the 2HDM being equivalent to the ones in the N2HDM, receive CTs
as well which are given by
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Renormalization of the tadpoles (standard scheme)

δTHiHj = Ri1Rj1
δT1

v1
+Ri2Rj2

δT2

v2
+Ri3Rj3

δTs
vs

(i, j = 1, 2, 3) (C.5)

δTG0G0 = cβ
δT1

v
+ sβ

δT2

v
(C.6)

δTG0A = −sβ
δT1

v
+ cβ

δT2

v
(C.7)

δTAA =
s2
β

cβ

δT1

v
+
c2
β

sβ

δT2

v
(C.8)

δTG±G± = cβ
δT1

v
+ sβ

δT2

v
(C.9)

δTG±H± = −sβ
δT1

v
+ cβ

δT2

v
(C.10)

δTH±H± =
s2
β

cβ

δT1

v
+
c2
β

sβ

δT2

v
. (C.11)

In the alternative tadpole scheme, the VEVs are the fundamental quantities and hence, the
tadpole terms do not receive CTs. Instead, the condition that the tree-level VEVs represent
the proper minimum of the potential is imposed at one-loop level, leading to the following
definition of the VEV CTs: 

δv1

δv2

δvs

 = RT


T loop
H1 /m2

H1

T loop
H2 /m2

H2

T loop
H3 /m2

H3

 . (C.12)

As a consequence of this renormalization condition of the minimum of the scalar potential, ex-
plicit tadpole contributions in all self-energies and vertex corrections need to be included:

Renormalization of the tadpoles (alternative FJ scheme)

δTij = 0 , (C.13)

Σ(p2) → Σtad(p2) , (C.14)

Tadpole diagrams have to be considered in the vertex corrections.

C.2. One-Loop Renormalization Constants of the Gauge Sector

The definitions of all CTs and WFRCs of the gauge sector of the N2HDM are equivalent to
the ones of the gauge sector of the 2HDM. Consequently, we do not present the resulting
definitions here explicitly but refer to App. B.2 for their presentation.

C.3. One-Loop Renormalization Constants of the Scalar Sector

The diagonal WFRCs of the CP-even Higgs bosons of the 2HDM are independent from tadpole
contributions since they are defined over the derivatives of the scalar self-energies. Hence,
their explicit forms are the same in both tadpole schemes:
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Renormalization of the scalar sector (both schemes)

δZHiHi = −Re

[
∂ΣHiHi

(
p2
)

∂p2

]
p2=m2

Hi

. (C.15)

The mass CTs of the CP-even Higgs bosons as well as their off-diagonal WFRCs depend on
the chosen tadpole scheme and are explicitly given as follows,

Renormalization of the scalar sector (standard scheme)

δZHiHj =
2

m2
Hi
−m2

Hj

Re
[
ΣHiHj (m

2
Hj )− δTHiHj

]
(i 6= j) , (C.16)

δm2
Hi = Re

[
ΣHiHi(m

2
Hi)− δTHiHi

]
, (C.17)

Renormalization of the scalar sector (alternative FJ scheme)

δZHiHj =
2

m2
Hi
−m2

Hj

Re
[
Σtad
HiHj (m

2
Hj )
]

(i 6= j) , (C.18)

δm2
Hi = Re

[
Σtad
HiHi(m

2
Hi)
]
. (C.19)

The CTs and WFRCs of the CP-odd and charged Higgs bosons of the N2HDM are analogous
to the ones defined in the 2HDM. Their explicit forms are presented in App. B.3.

C.4. One-Loop Renormalization Constants of the Fermion Sec-
tor

The CTs and WFRCs of the fermion sector of the N2HDM are analogously defined to the
ones in the 2HDM. For an explicit presentation of their definitions, we refer to App. B.4.

The only difference between the fermion sectors of the two models lies in the different structure
of the Yukawa interactions between the Higgs bosons and the fermions. The Yukawa coupling
parameters introduced in Table 9.2 are not independent parameters. For convenience, we
nevertheless present their CTs as functions of the mixing angle CTs δαi (i = 1, 2, 3) and δβ,
presented in the subsequent App. C.5. The explicit forms of the Yukawa coupling parameter
CTs, independently of the 2HDM type chosen, are given by

δY f
1 = cα2

(
cα3Y

f
2 − sα3Y

f
3

)
δα1 − tα2Y

f
1 δα2 − Y f

1 Y
f

4 δβ (C.20)

δY f
2 =

(
sα2Y

f
3 − cα2cα3Y

f
1

)
δα1 − sα3Y

f
1 δα2 + Y f

3 δα3 − Y f
2 Y

f
4 δβ (C.21)

δY f
3 =

(
cα2sα3Y

f
1 − sα2Y

f
2

)
δα1 − cα3Y

f
1 δα2 − Y f

2 δα3 − Y f
3 Y

f
4 δβ (C.22)

δY f
4 = −

(
1 +

(
Y f

4

)2
)
δβ . (C.23)
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C.5. One-Loop Renormalization Constants of the Scalar Mix-
ing Angles

C.5.1. MS Scheme

In the MS scheme, the mixing angle CTs do not receive finite contributions δαfin
i (i = 1, 2, 3)

and δβfin but instead, they only contain the UV-divergent parts proportional to ∆, defined
in Eq. (3.2). The resulting CTs are independent of the tadpole scheme and are hence given
by

Renormalization of δαi and δβ: MS scheme (both schemes)

δαi|fin = 0 (i = 1, 2, 3) (C.24)

δβ|fin = 0 (C.25)

The analytic forms of the UV-divergent parts of δα and δβ are rather intricate. Hence, we
do not display them here explicitly.

C.5.2. Adapted KOSY Scheme

The KOSY scheme [222] which connects the definition of the mixing angle CTs with the
WFRCs of the scalar doublets is adapted to the N2HDM. Following the same conventions as
in the 2HDM presented in App. B.5.2, the corresponding CTs in the standard and alternative
FJ tadpole scheme are given by

Renormalization of δαi and δβ: adapted KOSY scheme (standard scheme)

δα1 =
cα3

(
Re
[
ΣH1H2(m2

H1
) + ΣH1H2(m2

H2
)
]
− 2δTH1H2

)
2cα2(m2

H1
−m2

H2
)

(C.26)

−
sα3

(
Re
[
ΣH1H3(m2

H1
) + ΣH1H3(m2

H3
)
]
− 2δTH1H3

)
2cα2(m2

H1
−m2

H3
)

,

δα2 =
sα3

(
Re
[
ΣH1H2(m2

H1
) + ΣH1H2(m2

H2
)
]
− 2δTH1H2

)
2(m2

H1
−m2

H2
)

(C.27)

+
cα3

(
Re
[
ΣH1H3(m2

H1
) + ΣH1H3(m2

H3
)
]
− 2δTH1H3

)
2(m2

H1
−m2

H3
)

,

δα3 =
Re
[
ΣH2H3(m2

H2
) + ΣH2H3(m2

H3
)
]
− 2δTH2H3

2(m2
H2
−m2

H3
)

(C.28)

−
sα2cα3

(
Re
[
ΣH1H2(m2

H1
) + ΣH1H2(m2

H2
)
]
− 2δTH1H2

)
2cα2(m2

H1
−m2
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δβc = −Re
[
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H±) + ΣG±H±(0)
]
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2m2
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. (C.30)
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Renormalization of δαi and δβ: adapted KOSY scheme (alternative FJ scheme)
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cα3

(
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(m2
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) + Σtad
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(C.31)

δα2 =
sα3

(
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[
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(m2
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])
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])

2(m2
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(C.32)

δα3 =
Re
[
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, (C.33)

δβo = −Re
[
Σtad
G0A(m2

A) + Σtad
G0A(0)

]
2m2

A

, (C.34)

δβc = −Re
[
Σtad
G±H±(m2

H±) + Σtad
G±H±(0)

]
2m2

H±
, (C.35)

We want to emphasize that the adapted KOSY scheme features mixing angle CTs which are
manifestly GFP-dependent and that their usage one-loop order yields GFP-dependent partial
decay widths.

C.5.3. p∗-Pinched Scheme

In the p∗-pinched scheme, the OS-motivated approach of the adapted KOSY scheme is con-
nected with an unambiguous definition of the GFP-independent part of the self-energies
involved in the definition of the mixing angle CTs, given by the pinched scalar self-energies.
The mixing angle CTs in this scheme are given by

Renormalization of δαi and δβ: p∗-pinched scheme (alternative FJ scheme)

δα1 =
cα3Re

[
Σtad
H1H2

(
p2
∗,12

)]
ξ=1
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)

−
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, (C.36)
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+
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, (C.37)

δα3 =
Re
[
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+
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−
sα2cα3Re

[
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(
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)]
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,

δβo = − 1

m2
A
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G0A

(
m2
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2

)]
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, (C.39)

δβc = − 1

m2
H±

Re

[
Σtad
G±H±

(
m2
H±

2

)]
ξ=1

, (C.40)
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where δβo and δβc are the two variations of the CT definition of the mixing angle β in
correspondence to the adapted KOSY scheme and the p2

∗,ij are given by

p2
∗,ij ≡

m2
Hi

+m2
Hj

2
. (C.41)

C.5.4. OS-Pinched Scheme

The mixing angle CTs in the OS-pinched scheme are given by

Renormalization of δαi and δβ: OS-pinched scheme (alternative FJ scheme)
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cα3

(
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(C.43)

+
cα3

(
Re
[
Σtad
H1H3

(m2
H1

) + Σtad
H1H3

(m2
H3

)
]
ξ=1

+ Σadd
H1H3

(m2
H1

) + Σadd
H1H3

(m2
H3

)
)

2(m2
H1
−m2

H3
)

,

δα3 =
Re
[
Σtad
H2H3

(m2
H2

) + Σtad
H2H3

(m2
H3

)
]
ξ=1

+ Σadd
H2H3

(m2
H2

) + Σadd
H2H3

(m2
H3

)

2(m2
H2
−m2

H3
)

(C.44)

−
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2cα2(m2
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)

,
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Re
[
Σtad
G0A(m2

A) + Σtad
G0A(0)

]
ξ=1
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G0A(m2

A) + Σadd
G0A(0)

2m2
A

, (C.45)

δβc = −
Re
[
Σtad
G±H±(m2

H±) + Σtad
G±H±(0)

]
ξ=1

+ Σadd
G±H±(m2

H±) + Σadd
G±H±(0)

2m2
H±

, (C.46)

where again the two chosen combinations δβo and δβc where adapted from the KOSY scheme.

The OS-pinched scheme is analogous to the p∗-pinched scheme, however, the original scale p2

of the self-energies from the adapted KOSY scheme is adapted in the definition of the mixing
angle CTs instead of the p2

∗ scale. Due to this, the additional self-energy contributions derived
in [255] for the N2HDM need to be taken into account,

Σadd
HiHj (p

2) = − αemm
2
Z

8πm2
W

(
1− m2

W

m2
Z

) (p2 −
m2
Hi

+m2
Hj

2

)
(C.47)

·
{
O(1)
HiHj

B0(p2;m2
Z ,m

2
A) +O(2)

HiHj
B0(p2;m2

Z ,m
2
Z)
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+ 2
m2
W

m2
Z

[
O(1)
HiHj

B0(p2;m2
W ,m

2
H±) +O(2)

HiHj
B0(p2;m2

W ,m
2
W )
]}

Σadd
G0A(p2) = − αemm

2
Z

8πm2
W

(
1− m2

W

m2
Z

) (p2 − m2
A

2

) 3∑
k=1

O(3)
HkHk

B0(p2;m2
Z ,m

2
Hk

) (C.48)

Σadd
G±H±(p2) = − αem

4π
(

1− m2
W

m2
Z

) (p2 − m2
H±

2

) 3∑
k=1

O(3)
HkHk

B0(p2;m2
Z ,m

2
Hk

) (C.49)

where the short-hand notations O(x)
HiHj

(x = 1, 2, 3) are introduced in Eqs. (9.30) to (9.32).
While some of these additional self-energy contributions are UV-divergent, they only appear
in the definition of the mixing angle CTs in combinations which are explicitly UV-finite.

C.6. One-Loop Renormalization Constant of the Soft-Z2-Break-
ing Parameter m2

12

As a genuine parameter of the tree-level N2HDM potential, the soft-Z2-breaking parameter
m2

12 and its CT are independent of the tadpole renormalization and in both schemes read

Renormalization of m2
12 (both schemes)

δm2
12 =

αemm
2
12

16πm2
W

(
1− m2

W

m2
Z

)[8m2
12

s2β
− 2m2

H± −m2
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3∑
i=1

Ri1Ri2m
2
Hi − 3(2m2

W +m2
Z)

+
∑
u

3m2
u

1

s2
β

+
∑
d

6m2
dY

d
4

(
Y d

4 −
1

t2β

)
+
∑
l

2m2
l Y

l
4

(
Y l

4 −
1

t2β

)]
∆ (C.50)

where we sum over all up-type (u) and down-type (d) quarks and charged leptons (l).

C.7. One-Loop Renormalization Constant of vs

The CT ∆vs of the singlet VEV is renormalized in an MS scheme. In the standard tadpole
scheme, the CT contains at most finite contributions ∆vs|fin due to the rigid symmetry of the
potential and hence, we can choose to set the finite contributions to zero. In the alternative
FJ tadpole scheme on the other hand, ∆vs contains UV-divergent contributions but since
we apply an MS scheme, its finite contributions vanish again. Consequently, the CT in both
schemes is given by

Renormalization of the tree-level vs (both schemes)

∆vs|fin = 0 . (C.51)

Due to its intricate analytic structure, we do not state the UV-divergent part of the CT in
the alternative FJ tadpole scheme explicitly.





APPENDIXD

NMSSM Higgs Boson Mass Matrices and Their Counterterms

In this appendix, we present the analytic expressions of the mass matrices of the neutral
and charged Higgs bosons in the complex NMSSM together with their CTs at one- and two-
loop order. Furthermore, we present the CTs of the charged Higgs boson mass and of the
parameter Re(Aλ). The tree-level matrices presented in this appendix are given in the most
general form, i.e. for their presentation we do not apply any of the approximations which are
used for the actual calculation of the two-loop corrections of the Higgs boson masses, while
for the CTs, we restrict the presentation to the contributions relevant for the O(α2

t ) two-loop
contributions.

D.1. Neutral Higgs Boson Mass Matrix at Tree Level

All elements of the neutral Higgs mass matrix in the complex NMSSM, expressed through
the set of independent parameters presented in Eq. (14.71), are given in analytic form in
the following. We restrict the presentation of the matrix elements to the 5 × 5-dimensional
sub-matrix without the Goldstone boson admixture. Since the tadpole parameters, actually
vanishing at tree level, and moreover the parameter β, defined via the ratio of the VEVs
of the two Higgs doublets in Eq. (14.11), receive CT contributions while the mixing angle
βn, introduced in Eq. (14.44), does not, we present these parameters here explicitly as well.
At tree level as well as after the promotion of all independent parameters to higher orders
through the introduction of their CTs, the tadpole parameters vanish and βn → β holds. The
elements of the neutral Higgs mass matrix are given by

(M2
hh)hdhd =

1

2
|λ|2s2

βv
2 + c2

βm
2
Z −m2

W s
2
β +

m2
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2
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+
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(D.1)

−
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,

(M2
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, (D.2)
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In order to apply the gaugeless limit to the mass matrix elements, the simultaneous limits
mW ,mZ → 0 are applied while the VEV v is kept at a constant non-vanishing value.

D.2. Neutral Higgs Boson Mass Matrix Counterterm at One-
and Two-Loop Level

The one-loop CT of the neutral Higgs boson mass matrix consists of genuine one-loop CT
contributions (∆(1)M2

hh)φiφj , while the two-loop CT contains not only genuine two-loop CT
contributions (∆(2)M2

hh)φiφj , but moreover contributions (∆(1)(1)M2
hh)φiφj from products of two

one-loop CTs (all terms given in the basis (φi, φj = hd, hu, hs, a, as) without the Goldstone
boson admixture). The genuine CT contributions to nth loop order (n = 1, 2) are given by
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while the contribution consisting of products of one-loop CTs explicitly reads
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Therefore, the full CTs of the elements of the neutral Higgs mass matrix with the fields at
one-loop level are given by

(δ(1)M2
hh)φiφj = (∆(1)M2

hh)φiφj , (D.46)

while the CTs at two-loop level read

(δ(2)M2
hh)φiφj = (∆(2)M2

hh)φiφj + (∆(1)(1)M2
hh)φiφj . (D.47)

D.3. Charged Higgs Boson Mass Matrix at Tree Level

We present the analytic expression of the 2 × 2 charged Higgs mass matrix as a function of
the set of independent parameters in the complex NMSSM, cf. Eq. (14.71), in the following.
At tree level, the tadpole parameters vanish and βc → β holds. Nevertheless, we keep both
the tadpole parameters and terms with βc explicitly in the following expressions, since the
tadpole parameters and β require renormalization, while βc does not. The charged Higgs
mass matrix reads
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 . (D.48)
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D.4. Charged Higgs Boson Mass Counterterm at One- and
Two-Loop Level

The one-loop CT of the squared charged Higgs boson mass consists of genuine one-loop
CT contributions ∆(1)m2

H± , while the two-loop CT contains not only genuine two-loop CT
contributions ∆(2)m2

H± , but moreover contributions ∆(1)(1)m2
H± from products of two one-loop

CTs. The genuine CT contributions to nth loop order (n = 1, 2) are given by

∆(n)m2
H± =

[
vs
(
|κ|vscϕω +

√
2Re(Aλ)

)
s2βcϕω−ϕy

− |λ|v2

]
δ(n)|λ|+

s2
β

cβv
δ(n)Thd − |λ|2vδ(n)v (D.49)
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while the contribution consisting of products of one-loop CTs explicitly reads
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2 .

Therefore, the full CT of the squared charged Higgs mass at one-loop level is given by

δ(1)m2
H± = ∆(1)m2

H± , (D.51)

while the CT at two-loop level reads

δ(2)m2
H± = ∆(2)m2

H± + ∆(1)(1)m2
H± . (D.52)

D.5. Counterterm of Re(Aλ) at One- and Two-Loop

The one-loop CT of Re(Aλ) consists of genuine one-loop CT contributions ∆(1)Re(Aλ). At
two-loop level, the CT does not only contain contributions ∆(2)Re(Aλ) stemming from genuine
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two-loop CTs, but moreover contributions ∆(1)(1)Re(Aλ) containing the products of one-loop
CTs. The genuine CT contributions to nth loop level (n = 1, 2) are given by

∆(n)Re(Aλ) =
s2βcϕω−ϕy√
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while the contribution consisting of products of one-loop CTs explicitly reads
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s2βcϕω−ϕy√

2|λ|vs

[
2|λ|vδ(1)vδ(1)|λ|+ 1

2
|λ|2(δ(1)v)2 − 1

2
|λ|2c4

βv
2(δ(1)tβ)2 (D.55)

+
1

2
v2(δ(1)|λ|)2 +

c3
β

v2tβ

(
v

tβ
δ(1)tβ +

1

c2
β

δ(1)v

)
δ(1)Thu +

s3
β

v2

(
1

cβ
δ(1)v − vsβδ(1)tβ

)
δ(1)Thd

+
tϕy−ϕω
s2
βcβv

2

(
δ(1)v +

(
2c2
β − s2

β

) v
tβ
δ(1)tβ

)
δ(1)Tad

]
− cϕω√

2
δ(1)|κ|δ(1)vs

+

(
Re(Aλ) +

|κ|vscϕw√
2

)[
(δ(1)|λ|)2

|λ|2 +
(δ(1)vs)

2

v2
s

+
δ(1)vsδ

(1)|λ|
vs|λ|

− c4
β(δ(1)tβ)2

− 2
c2
β

vs|λ|t2β
(
vsδ

(1)|λ|+ |λ|δ(1)vs
)
δ(1)tβ − 2

sβc
3
β

t2β
(δ(1)tβ)2

]
.

Therefore, the full one-loop CT of Re(Aλ) is given by

δ(1)Re(Aλ) = ∆(1)Re(Aλ) , (D.56)

while the CT at two-loop level reads

δ(2)Re(Aλ) = ∆(2)Re(Aλ) + ∆(1)(1)Re(Aλ) . (D.57)





APPENDIX E

NMSSM Two-Loop Self-Energy Diagrams

In this appendix, we present all Feynman-diagrammatic contributions to the two-loop self-
energies required for the computation of the O(α2

t ) corrections. For the diagrams shown in
Appendices E.1 and E.2, we do not separately show diagrams which differ from the presented
ones by an inversion of the fermion current. All placeholders Si and Fi (i = 1, 2) represent
the particle content as specified below each individual Feynman diagram. A cross denotes
the insertion of one-loop CT contributions of the propagators (i.e. the mass CTs) and the
vertices. We implicitly sum over the indices a, b, c, d = 1, 2, e = 3, 4, 5 and f = 1, ..., 5 of all
virtual particles in the Feynman diagrams.
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E.1. Two-Loop Self-Energies of the Neutral Higgs Bosons

The following figure shows all Feynman-diagrammatic contributions to the neutral Higgs
boson self-energies required for the computation of the O(α2

t ) corrections.

F, S = {χ0
e, χ

+
2 }, {t̃a, b̃1}

hi hj

t

t

F

S

t

S1, S2 = {hf , G
0, H+, G+}, {t̃d, b̃1}

hi hj

t̃c

t̃a

S1

S2

t̃b

F1, F2 = {t, b}, {χ0
e, χ

+
2 }

hi hj

t̃c

t̃a

F1

F2

t̃b

F, S = {t, b}, {hf , G
0, H+, G+}

hi hj

t

t

F

S

t

S = {hf , G
0}

hi hj

t̃c t̃d

S

t̃a t̃b

S = {hf , G
0}

hi hj

t t

S

t t

hi hj

t t̃b

χ0
e

t t̃a

hi hj

t̃b t

χ0
e

t̃a t

S1, S2 = {hf , G
0, H+, G+}, {t̃b, b̃1}

hi hj

S2

S1

t̃a

S = {hf , G
0, H+, G+, t̃c, b̃1}

hi hj
t̃a t̃b

S

S1, S2 = {t̃c, b̃1}, {hf , G
0, H+, G+}

hi hj

S1

S2

t̃a t̃b

F1, F2 = {t, b}, {χ0
e, χ

+
2 }

hi hj

F1

F2

t̃a t̃b

S = {hf , G
0, H+, G+, t̃d, b̃1}

hi hj

t̃c

t̃a t̃b

S

S1, S2 = {hf , G
0, H+, G+}, {t̃c, b̃1}

hi hj

t̃a

S2

S1

t̃b

hi hj

t̃c

t̃a t̃b

t̃d

S1, S2 = {hf , G
0, H+, G+}, {t̃c, b̃1}

hi hj

t̃a
S1

S2

t̃b

hi hj

t t

t

hi hj

t̃b t̃c

t̃a

hi hj

t̃bt̃a

hi hj

t

t

hi hj

t̃b

t̃a

hi hj

t

t

hi hj

t̃b

t̃a

hi hj

t̃a

Figure E.1.: Generic neutral Higgs boson two-loop self-energies required for the computation
of the O(α2

t ) corrections of the Higgs masses in the complex NMSSM.
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E.2. Two-Loop Self-Energies of the Charged Higgs Bosons

The following figure shows all Feynman-diagrammatic contributions to the neutral Higgs
boson self-energies required for the computation of the O(α2

t ) corrections.
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Figure E.2.: Generic charged Higgs boson two-loop self-energies required for the computation
of the O(α2

t ) two-loop CT of the charged Higgs boson mass.





APPENDIX F

Exemplary Input and Output Files for 2HDECAY

F.1. Exemplary Input File for 2HDECAY

In the following, we show the exemplary shortened input file 2hdecay.in where we present
only the relevant input parameters as described in Sec. 6.2. The first integer in each line
corresponds to the line number in the input file and is not part of the actual input.

...

6 OMIT ELW2= 0

...

9 2HDM = 1

...

18 ALS(MZ) = 1.18000e-01

19 MSBAR (2) = 9.50000e-02

20 MCBAR (3) = 0.98600e+00

21 MBBAR(MB)= 4.18000e+00

22 MT = 1.73200e+02

23 MTAU = 1.77682e+00

24 MMUON = 1.056583715e-01

25 1/ALPHA = 1.37036e+02

26 ALPHAMZ = 7.754222173973729e-03

27 GF = 1.1663787e-05

28 GFCALC = 0.000000000

29 GAMW = 2.08500e+00

30 GAMZ = 2.49520e+00

31 MZ = 9.11876e+01

32 MW = 8.0385e+01

33 VTB = 9.9910e-01

34 VTS = 4.040e-02

35 VTD = 8.67e-03

36 VCB = 4.12e-02

37 VCS = 9.7344e-01

38 VCD = 2.252e-01

39 VUB = 3.51e-03

40 VUS = 2.2534e-01

41 VUD = 9.7427e-01

...

56 PARAM = 1

57 TYPE = 1

58 RENSCHEM = 7

59 REFSCHEM = 5

60 ********************

61 TGBET2HDM= 4.23635 D0

62 M_12^2 = 28505.5 D0

63 INSCALE = 125.09 D0

64 OUTSCALE = MIN

65 ******************** PARAM =1:
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66 ALPHA_H = -0.189345D0

67 MHL = 125.09 D0

68 MHH = 381.767 D0

69 MHA = 350.665 D0

70 MH+- = 414.114 D0

71 ******************** PARAM =2:

72 LAMBDA1 = 6.368674377530086700 D0

73 LAMBDA2 = 0.235570240072350970 D0

74 LAMBDA3 = 1.780416490847621700 D0

75 LAMBDA4 = -1.52623758540479430 D0

76 LAMBDA5 = 0.074592764717552856 D0

...

F.2. Exemplary Output Files for 2HDECAY

In the following, we show exemplary output files for the BRs and the electroweak partial
decay widths. Since we restrict the description of the output file format to exemplary decay
channels in Sec. 6.2, we only show shortened output files in the following, while the actual full
output files provided by 2HDECAY contain the BRs and decay widths for all decay channels and
for all renormalization schemes that are considered. The first integer in each line corresponds
to the line number in the output file and is not part of the actual input.
Exemplary shortened output file 2hdecay_BR.out for the BRs:

...

51 # PDG Width QCD Only

52 DECAY QCD 25 4.22730978E-03 # h decays with QCD corrections only

53 7 # Renormalization Scheme Number

54 -0.18809815E+00 # Corresponding mixing angle alpha

55 0.43048897E+01 # Corresponding tan(beta)

56 0.28505500E+05 # Corresponding m_12^2

57 # BR NDA ID1 ID2

58 5.93838905E-01 2 5 -5 # BR(h -> b bb )

63 7.76755623E-02 2 21 21 # BR(h -> g g )

...

69 # PDG Width QCD and EW

70 DECAY QCD&EW 25 4.10575180E-03 # h decays with QCD and EW corrections

71 7 # Renormalization Scheme Number

72 -0.18809815E+00 # Corresponding mixing angle alpha

73 0.43048897E+01 # Corresponding tan(beta)

74 0.28505500E+05 # Corresponding m_12^2

75 # BR NDA ID1 ID2

76 5.85412930E-01 2 5 -5 # BR(h -> b bb )

81 7.99752836E-02 2 21 21 # BR(h -> g g )

...

Exemplary shortened output file 2hdecay_EW.out for the electroweak decay widths:

...

51 # PDG

52 LO DECAY WIDTH 25 # h non -zero LO EW decay widths of on-shell

and non -loop induced decays

53 7 # Renormalization Scheme Number

54 -0.18809815E+00 # Corresponding mixing angle alpha

55 0.43048897E+01 # Corresponding tan(beta)

56 0.28505500E+05 # Corresponding m_12^2

57 # WIDTH NDA ID1 ID2

58 5.96669359E-03 2 5 -5 # GAM(h -> b bb )

59 2.69987831E-04 2 -15 15 # GAM(h -> tau+ tau - )

...

64 # PDG

65 NLO DECAY WIDTH 25 # h non -zero NLO EW decay widths of on-shell

and non -loop induced decays

66 7 # Renormalization Scheme Number

67 -0.18809815E+00 # Corresponding mixing angle alpha

68 0.43048897E+01 # Corresponding tan(beta)

69 0.28505500E+05 # Corresponding m_12^2

70 # WIDTH NDA ID1 ID2

71 5.71289204E-03 2 5 -5 # GAM(h -> b bb )

72 2.58765783E-04 2 -15 15 # GAM(h -> tau+ tau - )

...
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[81] M. Mühlleitner, D. T. Nhung, H. Rzehak, and K. Walz, “Two-loop contributions of
the order O (αtαs) to the masses of the Higgs bosons in the CP-violating NMSSM,”
JHEP 05 (2015) 128, arXiv:1412.0918 [hep-ph].
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[246] M. Böhm, H. Spiesberger, and W. Hollik, “On the 1-Loop Renormalization of the
Electroweak Standard Model and its Application to Leptonic Processes,” Fortsch.
Phys. 34 (1986) 687–751.

[247] W. R. Inc., Mathematica, Version 11.3. Wolfram Research, Inc., 2018. Champaign,
IL.

[248] T. Hahn, “Generating Feynman diagrams and amplitudes with FeynArts 3,” Comput.
Phys. Commun. 140 (2001) 418–431, arXiv:hep-ph/0012260 [hep-ph].

[249] G. ’t Hooft and M. J. G. Veltman, “Scalar one-loop integrals,” Nucl. Phys. B153
(1979) 365–401.

http://dx.doi.org/10.1103/PhysRevD.62.096003
http://arxiv.org/abs/hep-ph/0004136
http://dx.doi.org/10.1103/PhysRevD.62.073010
http://arxiv.org/abs/hep-ph/0005060
http://arxiv.org/abs/hep-ph/0005060
http://dx.doi.org/10.1103/PhysRevD.65.115013
http://dx.doi.org/10.1103/PhysRevD.65.115013
http://arxiv.org/abs/hep-ph/0203210
http://dx.doi.org/10.1103/PhysRevD.64.036008
http://dx.doi.org/10.1103/PhysRevD.64.036008
http://arxiv.org/abs/hep-ph/0103046
http://dx.doi.org/10.1016/S0550-3213(01)00453-9
http://arxiv.org/abs/hep-ph/0109110
http://dx.doi.org/10.1103/PhysRevD.66.095014
http://arxiv.org/abs/hep-ph/0205281
https://www.itp.kit.edu/prep/diploma/PSFiles/MasterRobinL.pdf
http://dx.doi.org/10.1103/PhysRevD.67.036003
http://arxiv.org/abs/hep-ph/0207351
http://dx.doi.org/10.1007/s100520050148
http://dx.doi.org/10.1007/s100520050148
http://arxiv.org/abs/hep-ph/9607485
http://dx.doi.org/10.1016/S0370-2693(96)01485-2
http://arxiv.org/abs/hep-ph/9608376
http://dx.doi.org/10.1103/PhysRevD.70.033002
http://arxiv.org/abs/hep-ph/0402130
http://arxiv.org/abs/hep-ph/0402130
http://www.jetp.ac.ru/cgi-bin/e/index/e/7/1/p172?a=list
http://dx.doi.org/10.1143/PTP.28.870
http://dx.doi.org/10.1002/prop.19860341102
http://dx.doi.org/10.1002/prop.19860341102
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://arxiv.org/abs/hep-ph/0012260
http://dx.doi.org/10.1016/0550-3213(79)90605-9
http://dx.doi.org/10.1016/0550-3213(79)90605-9


228 References
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