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Zusammenfassung

Kollaboration zwischen Menschen und Robotern gewinnt zunehmend an Bedeutung in der

Industrie und Forschung. Manipulation ist eine Grundvoraussetzung für eine erfolgreiche Kolla-

boration und deshalb eine grundlegende Forschungsfrage in der Robotik. Bei der Manipulation

von Objekten, zum Beispiel beim Greifen eines Bohrers, müssen Roboter mit einer dynamischen

Umgebungen, partieller Wahrnehmung, Model- und Ausführungsunsicherheit zurechtkommen.

In dieser Arbeit identifizieren wir Einschränkungen von modellbasierten Ansätzen des gegen-

wärtigen Standes der Technik für Manipulationsaufgaben und untersuchen wie man diese mit

Lernverfahren kombinieren und verbessern kann, um autonome Manipulation zu ermöglichen.

Maschinelle Lernverfahren wie neuronale Netze, die mithilfe von großen Datenmengen ein

gutes Modell lernen, sind sehr geeignet für die Robotik, da Roboter ihre Umgebung mithilfe

von einer Vielzahl an Sensoren wahrnehmen und dadurch eine Fülle von Daten erzeugen. Im

Gegensatz zu anderen Forschungsgebieten, wie zum Beispiel Sprach- und Bildverarbeitung,

interagieren Roboter mit ihrer Umgebung, sodass Vorhersagen einen physikalischen Einfluss

auf die Umgebung haben. Aufgrund der Interaktion mit der Umgebung und der kontinuierlichen

Wahrnehmung ergibt sich eine Rückkopplungsschleife die neue Herangehensweisen erfordert

um Sicherheitsbedenken und Geschwindigkeitsanforderungen zu erfüllen.

Das Ziel dieser Dissertation ist es zu untersuchen, wie man bestehende modellbasierte Robo-

tersysteme mithilfe von Lernverfahren verbessern kann. Dabei ist es wichtig das vorhandene

domänenspezifische Wissen nicht zu vernachlässigen, sondern in die Lernverfahren zu integrieren.

Die Ergebnisse dieser Arbeit zeigen, dass lernbasierte Ansätze modellbasierte Methoden sehr

gut ergänzen und es ermöglichen Probleme, die ansonsten unlösbar wären, zu lösen. Wir zeigen,

wie man bestehende Modelle zum Trainieren von Lernverfahren verwenden kann. Dadurch wird

problemspezifisches Expertenwissen in den Datengenerierungsprozess integriert und somit an

das gelernte Modell weitergegeben. Wir entwickeln außerdem ein neues Optimierungsverfahren,

das während der Optimierung etwas über den Vorgang an sich lernt. Ein solches Verfahren ist sehr

relevant für eine Vielzahl von Problemen in der Robotik, da autonome Manipulationssysteme

kontinuierlich neue Aufgaben lösen müssen.

Im Folgenden stellen wir die Hauptbeiträge dieser Dissertation vor, eingebettet in den Kontext

von Manipulationsaufgaben.

iii



Zusammenfassung

Visuelle Wahrnehmung in Echtzeit trifft auf reaktive Bewegungsplanung Der Hauptbei-

trag dieser Arbeit ist ein voll integriertes Manipulationssystem das erste einheitliche Experimente

und dadurch empirische Ergebnisse ermöglicht. Diese zeigen eindeutig, dass kontinuierliche,

zeitnahe Wahrnehmung und die Integration mit schnellen Verfahren zur Erzeugung von reaktiven

Bewegungen essenziell für erfolgreiche Manipulation in dynamischen Szenarien ist. Wir verglei-

chen drei verschiedene Systeme, welche die gängigsten Architekturen im Bereich Robotik für

Manipulation repräsentieren: (i) Ein traditioneller Sense-Plan-Act Ansatz (aktuell am weitesten

verbreitet), (ii) einen myopischen Regelungsansatz, der nur auf lokale Veränderungen reagiert

und (iii) ein reaktives Planungsverfahren, das auf Änderungen der Umgebung reagiert diese

in die Bewegungsplanung einbezieht und den aktuellen Plan transparent an einen schnelleres

lokales Regelungsverfahren übergibt. Unser Gesamtsystem ist rein modellbasiert und umfang-

reich auf einer realen Roboterplattform in vier Szenarien empirisch evaluiert worden. Unsere

experimentellen Szenarien beinhalten anspruchsvolle Geometrien im Arbeitsraum des Roboters,

dynamische Umgebungen und Objekte mit denen der Roboter interagieren muss. Diese Arbeit

zeigt den aktuellen Stand der Forschung, der mit einem modellbasierten Manipulationssystem

im Bereich der Robotik unter Verwendung von schnellen Rückkopplungen und langsamerer

reaktiver Planung möglich ist. Angesichts des Interesses in der Robotikforschung modellbasierte

Systeme mit Ende-zu-Ende Lernansätzen ganzheitlich zu ersetzen, ist es wichtig ein performantes

modellbasiertes Referenzsystem zu haben um neue Methoden qualitativ in Hinblick auf ihre

Fähigkeiten und ihre Generalisierbarkeit zu vergleichen. Weiterhin erlaubt ein solches System

Probleme mit modellbasierten Ansätzen zu identifizieren und diese mithilfe von learnbasierten

Methoden zu verbessern.

Online Entscheidungsfindung für Manipulation Die meisten Robotermanipulationssyste-

me verfügen über viele Sensoren mit unterschiedlichen Modalitäten und Rauschverhalten. Die

Entwicklung von Modellen für alle Sensoren ist nicht trivial und die resultierende Modelle zu

komplex für Echtzeitverarbeitung in modellbasierten Manipulationssystem. Planen mit vielen

Sensormodalitäten ist besonders komplex aufgrund der vielen Modellunsicherheiten. Dies ist

besonders ausgeprägt für Manipulationsaufgaben bei denen Kontakte zwischen Roboter und

Objekten von Bedeutung sind. Eine der Hauptherausforderung für autonome Manipulation ist

daher die Erzeugung geeigneter multimodaler Referenztrajektorien, die es ermöglichen Steuerbe-

fehle für Regelungssysteme zu berechnen die nicht modellierte Störungen kompensieren und

damit die Erfüllung der gestellten Manipulationsaufgabe ermöglichen. In dieser Arbeit stellen

wir einen lernbasierten Ansatz zur inkrementellen Erfassung von Referenzsignalen vor, der

in Echtzeit entscheidet wann ein Verhalten abgebrochen und zu welchem Verhalten gewech-

selt werden sollte, um eine erfolgreiche Ausführung zu gewährleisten. Wir formulieren dieses

Online-Entscheidungsproblem als zwei miteinander verbundene Klassifikationsprobleme. Beide
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verarbeiten die aktuellen Sensormesswerte, zusammengesetzt aus mehreren Sensormodalitäten,

in Echtzeit (in 30 Hz). Dieser Ansatz basiert auf unserem domänenspezifischen Problemver-

ständnis, dass stereotypische Bewegungsgenerierung ähnliche Sensordaten erzeugt. Unsere

Experimente zeigen, dass dieser Ansatz es ermöglicht schwierige kontextbasierte Aufgaben zu

erlernen, die präzise Manipulation von relativ kleinen Objekten voraussetzen. Um eine solche

Aufgabe zu erlernen, benötigt ein Benutzer unseres Systems kein Expertenwissen. Das System

benötigt nur kinästhetische Demonstrationen und Unterbrechungen in Fehlersituationen. Die

gelernte Aufgabenausführung ist robust gegen Störeinflüsse und Sensorrauschen, da unsere

Methode online entscheidet, ob sie aufgrund von unerwarteter sensorischer Signale zu einer

anderen Ausführung wechseln sollte oder nicht.

Big-Data Greifen Greifen ist ein wichtiges Forschungsproblem in der Robotik, da es eine

Grundvoraussetzung für Manipulation darstellt. In dieser Arbeit konzentrieren wir uns auf das

Problem der Vorhersage von Position und Orientierung bevor ein Kontakt zwischen Objekt und

Endeffektor eintritt. Für diesen grundlegenden Schritt um “erfolgreich zu greifen” stehen nur

visuelle Sensordaten wie 2D-Bilder und/oder 3D-Punktwolken zur Verfügung. Die Verwendung

von modellbasierten Greifplanern ist in solchen Situationen nicht optimal, da präzise Simulatio-

nen zu rechenintensiv sind und alle Objekte bekannt, erkannt und visuell verfolgt werden müssen.

Lernbasierte Verfahren die direkt von visuellen Sensordaten stabile Griffe vorhersagen sind sehr

effizient in der Auswertung jedoch benötigen die aktuell vielversprechendsten Verfahren, neuro-

nale Netze, eine Vielzahl von annotierten Beispielen um diese Abbildung zu lernen. Im Rahmen

dieser Arbeit stellen wir eine umfangreichen Datenbank mit einer Vielzahl von Objekten aus sehr

unterschiedlichen Kategorien vor. Auf Basis dieser Datenbank analysieren wir drei Aspekte: (i)

Eine Crowdsourcing Studie zeigt, dass unsere neu vorgestellte Metrik auf Basis einer physikali-

schen Simulation ein besserer Indikator für Greiferfolg im Vergleich zu der bestehenden Standard

ε-Metrik ist. Darüber hinaus deutet unsere Studie darauf hin, dass unsere Datengenerierung

keine manuelle Datenannotation benötigt. (ii) Die daraus resultierende Datenbank ermöglicht

die Optimierung von parametrischen Lernverfahren wie neuronale Netze. Dadurch, dass wir

eine Abbildung von Sensordaten zu möglichen Griffen lernen, muss das Objekt, seine Position

und Orientierung nicht bekannt sein. Darüber hinaus zeigen wir, dass einfachere Methoden wie

logistische Regression nicht die Kapazität haben um die Komplexität unserer Daten zu erfassen.

(iii) Roboter nehmen ein Szenario typischerweise aus einem Blickwinkel wahr und versuchen ein

Objekt mit dem ersten Versuch zu greifen. Klassifikationsverfahren sind nicht speziell für diese

Verwendung optimiert, weshalb wir eine neue Formulierung erarbeiten, welche die beste, top-1

Hypothese aus den jeweiligen Teilmengen auswählt. Diese neuartige Optimierungszielsetzung

ermöglicht dies selbst auf unserem binären Datensatz, da das Lernverfahren selbst die Daten

ordnet und somit einfach zu erkennende Griffe selbst auswählen kann.
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Zusammenfassung

Lernen von inversen Dynamikmodellen für Manipulationsaufgaben Sichere Bewegungs-

ausführung auf Basis von Regelungskreisen sind entscheidend für Roboter die mit Menschen

kollaborativ Manipulationsaufgaben lösen. Daher werden neue Methoden benötigt, die es er-

möglichen inversen Dynamikmodelle zu lernen und bestehende Modelle zu verbessern, um

Verstärkungsgrößen in Regelungskreisen zu minimieren. Dies ist besonders wichtig, wenn Objek-

te manipuliert werden, da sich das bekannte inverse Dynamikmodell dadurch verändert. Aktuelle

Verfahren, welche Fehlermodelle zu bestehenden modellbasierten Regler für die inverse Dyna-

mik zu lernen, werden auf Basis der erzielten Beschleunigungen und Drehmomenten optimiert.

Da die tatsächlich realisierten Beschleunigungen, eine indirekte Datenquelle, jedoch nicht die

gewünschten Beschleunigungen darstellen, werden hohe Verstärkungen im Regelkreis benötigt,

um relevantere Daten zu erhalten die es erlauben ein gutes Modell zu lernen. Hohe Verstärkung

im Regelkreis ist wiederum schlecht für die Sicherheit. In dieser Arbeit leiten wir ein zusätz-

liches Trainingssignal her, das auf der gewünschten Beschleunigungen basiert und von dem

Rückkopplungssignal abgeleitet werden kann. Wir analysieren die Nutzung beider Datenquel-

len in Simulation und demonstrieren ihre Wirksamkeit auf einer realen Roboterplattform. Wir

zeigen, dass das System das gelernte inverse Dynamikmodell inkrementell verbessert. Durch

die Kombination beider Datenquellen kann ein neues Modell konsistenter und schneller gelernt

werden und zusätzlich werden keine hohen Verstärkungen im Regelungskreis benötigt.

Lernen wie man lernt, während man lernt Menschen sind bemerkenswert gut darin, neue

oder angepasste Fähigkeiten schnell zu erlernen. Dies ist darauf zurückzuführen, dass wir nicht

jede neue Fähigkeit von Grund auf neu erlernen, sondern stattdessen auf den bereits gewonnenen

Fertigkeiten aufbauen. Die meisten robotergestützten Lernaufgaben würden davon profitieren,

wenn sie ein solches abstraktes Meta-Lernverfahren zur Verfügung hätten. Ein solcher Ansatz ist

von großer Bedeutung für die Robotik, da autonomes Lernen ein inhärent inkrementelles Problem

ist. In dieser Arbeit stellen wir einen neuen Meta-Lernansatz vor, der es erstmals ermöglicht

die Roboterdynamik online zu erlernen und auf neue Probleme zu übertragen. Während der

Optimierung lernt unser Verfahren die Struktur der Optimierungsprobleme, welche für neue Auf-

gaben verwendet werden kann, was zu einer schnelleren Konvergenz führt. Das vorgeschlagene

Meta-Lernverfahren kann zudem mit jedem beliebigen gradientenbasierten Optimierungsansatz

verwendet werden. Wir zeigen, dass unser Ansatz die Dateneffizienz für inkrementelles Lernen

erhöht. Weiterhin ist unser Verfahren für das online Lernen mit korrelierten Daten geeignet, zum

Beispiel für inverse Dynamikmodelle. Der vorgestellte Ansatz eröffnet zusätzlich völlig neue

Wege um in Simulation gewonnene Erfahrungen in die reale Welt zu transferieren. Dadurch kann

möglicherweise bestehendes Domänenwissen in Form von modellbasierter Simulation auf völlig

neue Weise verwendet werden.
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Chapter 1

Introduction

1.1 Motivation

Simple, task-specific robotic manipulators were first successfully deployed for car assembly

in the 1960s (Nof, Shimon Y. 1999) and have changed industrial manufacturing ever since.

Nowadays, robots perform many repetitive, high precision tasks such as welding, part assembly,

labeling, packaging, palletizing and quality control (Hägele et al. 2008). Such robotic manipu-

lation systems operate on various scales, ranging from large robots moving cars, to small ones

performing high precision assembly of electrical sockets. Despite the success of robotic manipu-

lation in industry, commercial robots still have to operate in well-structured environments with

limited uncertainty and known dynamics to ensure safety and task success. Thus, current robots

are designed to be highly specialized for their industrial task and the manufacturing process. The

environment must also be adapted to the robot capabilities to ensure high throughput. Setting up

such specialized robot-based industrial pipelines requires domain knowledge, problem-specific

programming, and design. As a result of the complex setup and limited autonomy, robotic

systems are only applicable to industrial high-volume, highly repetitive, easy to isolate and fully

observable tasks.

In recent years, the industrial fabrication landscape has drastically changed. There is a new

demand for personalized products, resulting in more complicated, often adaptive, manufactur-

ing steps. Unfortunately, traditional robot-based manufacturing processes do not fulfill such

requirements. Highly specialized robots, often designed to perform exactly one manipulation

step, are not practical for short, low-volume production cycles given the initial cost of buying,

commissioning and the required task-specific programming time. Thus, there is an increasing

demand for general purpose robots, which are efficiently adaptable to new manipulation tasks

and human-in-the-loop setups. Leveraging the strengths of precise and repeatable robotic ma-

nipulation systems while being safe in collaborative settings poses new challenges. To address
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these challenges, we need to enable robots to perform autonomous manipulation in uncertain

and dynamic environments.

Aside from industrial applications, progress towards autonomous manipulation will also be

very advantageous for society. For the first time in human history, the world demographic

is going through a remarkable shift thanks to advances in healthcare, improvements in the

standard of living and political policy changes (WHO 2011). Further, the study (WHO 2011)

predicts that in the coming years the number of people aged 65 and older will for the first time

outnumber children under the age of 5 years. With a lack of personnel for geriatric care (Bardach

et al. 2012) in these countries, elderly care will become an even more pressing problem in

the centuries to come. Autonomous robots could help to alleviate this problem, allowing the

elders to stay autonomous in their own home and maintain their independence (Yamazaki et al.

2012). Safe and autonomous manipulation is necessary for robots to assist humans in everyday

environments. Such highly unstructured environments pose many challenges. For example, it

is impossible to know all the situations a robot manipulation platform will encounter before

deployment. Further, a successful assistant will require safe human-robot physical interaction

and collaboration. Therefore, robotic manipulation systems have to be adaptive and agnostic

to uncertainties in their dynamically changing environments. Importantly, they also require the

ability to learn novel tasks.

Similar to autonomous manipulation, autonomous driving has been a continuous research effort

since the first prototypical autonomous cars in the 1980s (Wallace et al. 1985; Kanade et al. 1986;

Dickmanns et al. 1992). With recent advances in sensor and actuator technology, computational

hardware and data storage, both fields have gone through a dramatic shift and have shown

tremendous improvements. Previously intractable approaches are now tractable and mature

enough to solve the low dimensional control problems such as autonomous driving (Levinson

et al. 2011). Fully integrated control system architectures have been developed, allowing to

integrate additional perceptual feedback such as obstacle tracking and obstacle detection (Urmson

et al. 2008). Computer vision problems, such as perceptual feedback for autonomous driving

(Angelova et al. 2015), have been disrupted by learning-based approaches, better leveraging

large datasets and increased computational resources.

Despite similar challenges, autonomous driving is on the verge of commercialization while au-

tonomous manipulation is still in its infancy. Currently, there exists no high-dimensional general

purpose manipulation system capable of handling the inevitable uncertainties in unstructured

human environments. Hence, naturally, the question arises: “How can we enable robotic manipu-

lations systems to operate autonomously and safely in dynamic, uncertain environments?”.
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1.2 Challenges in Autonomous Manipulation

(a) Perceive the environment and
the target object (Pringles box

PB).

(b) Attempt to grasp the PB while
avoiding the introduced obstacle.

(c) Successfully grasp the PB
after the obstacle was removed.

(d) Lift the PB and plan towards
the placing position.

(e) React to the introduced
obstacle in real-time and alter the

trajectory.

(f) Place the PB at the desired
target.

Figure 1.1: Example pick and place scenario.

1.2 Challenges in Autonomous Manipulation

Here, we discuss important challenges towards autonomous manipulation which hinder similar

progress as observed in autonomous driving. We identify open research challenges, to which this

thesis contributes novel model-based and learning-based approaches. The simple pick and place

task in a dynamic environment depicted in Figure 1.1 demonstrates the open research challenges.

In order to pick up an object, the robot must first identify, locate, and estimate the pose of the

object from partial scene observations (Figure 1.1a). Upon knowing the object pose, possible

grasps have to be identified from an infinite amount of possible solutions. Then, the robot has

to keep track of the target object and its surroundings while attempting to approach the grasp

pose (Figure 1.1b). During the approaching motion, the robot wants to avoid contacts with the

environment (Figure 1.1b-1.1c), humans in the scene, in order to make deliberate contact with

the object, resulting in a robust and stable grasp (Figure 1.1c). Hence, continuous re-planning

and feedback integration is a necessity to achieve robust behaviors in such dynamic and uncertain

scenarios. Assuming that we can generate collision-free policies, we need a controller that

achieves good tracking performance. When operating in dynamic environments (Figure 1.1a-

1.1f), compliant controller design is essential to ensure that the system is inherently safe. With a
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sufficiently good controller, tracking of the collision-free and continuously updated trajectory,

the robot still has to achieve the desired contact interactions, resulting in a stable grasp such

that the object does not slip (Figure 1.1c-1.1f). After the robot successfully grasps the target

object, its system dynamics change, posing new challenges for the underlying control system to

track the desired trajectories (Figure 1.1d-1.1e). Finally, grasping objects effectively alters the

end-effector of the robot, changing the kinematics and often introducing new dynamic constraints

(Figure 1.1c-1.1f). For example, a glass filled with water should be kept upright and moved such

no contents are spilled.

This example illustrates the key research challenges towards autonomous manipulation, control-

ling high degree of freedom (DoF) robotic manipulation systems: successful object interaction

while safely operating in highly dynamic, uncertain, and unstructured environments. A key

advantage of autonomous driving is that the task is more structured. For instance, there are traffic

laws, unknown objects are to be avoided, and no complicated object interactions are required.

Data collection for data-intensive learning-based approaches, allowing for many of the recent

breakthroughs in computer vision, natural language processing, and autonomous driving, are

another key differentiator for autonomous manipulation. Static, but large labeled and unlabeled

datasets are sufficient for computer vision tasks, e.g., image classification and object detection,

as well as natural language processing tasks, e.g., translation. The system dynamics for au-

tonomous driving and manipulation tasks render static dataset collection approaches impractical.

Yet, autonomous driving benefits from the ability of easily obtaining a large data corpus of

demonstrations by collecting sensory data and control actions during normal human driving.

For autonomous manipulation, data collection imposes a much more significant overhead since

we currently have to solve tasks by remote controlling robots, this is not only less efficient but

also requires humans to learn how to operate these systems. Further, measuring human data for

manipulation is incredibly difficult, e.g., human grasping data is very complex due to the complex

actuation and sensing, the need to measure/account for dynamics at hand-object interactions.

In summary, autonomous manipulation has to adapt to new tasks, such as establishing contacts

with new objects and coping with novel environment properties. The control and planning

problems in autonomous manipulation have a much higher complexity compared to autonomous

driving. Data collection requires more effort and has to incorporate system feedback for general-

ization. Finally, the set of possible manipulation tasks cannot be known a-priori for autonomous

manipulation systems; thus, autonomously acquiring new skills is a fundamental requirement.
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(a) ARMAR-III (Asfour et al.
2006)

(b) TUM-Rosie (Beetz et al.
2011)

(c) ARM-S robot, photo by Luke
Fisher Photography.

Figure 1.2: Robotic manipulation systems.

1.2.1 Model-Based and Learning-Based Manipulation

Despite these significant challenges, there has been tremendous progress towards autonomous

manipulation using model-based approaches. Robotic manipulation systems are complex and

consist of many abstractions which make use of models, e.g., dynamics, contact, kinematic, object

and cost/reward models for planning, control, and perception. Models are further used on very

different time scales ranging from milliseconds to minutes. Robots such as ARMAR-III (Asfour

et al. 2006) (see Figure 1.2a) have been shown to successfully operate in kitchen environments,

picking up objects and placing them in a dishwasher. (Beetz et al. 2011) (see Figure 1.2b)

presented a system capable of dexterous manipulation tasks such as cooking, performing dynamic

pancake flipping. The Darpa Autonomous Robotic Manipulation Software (ARM-S) challenge

(see Figure 1.2c) resulted in fully integrated systems (Hudson et al. 2014; Righetti et al. 2014)

able to perform difficult manipulation tasks such as opening and closing doors, locating, picking

up and placing objects in cluttered environments. Successful demonstrations of dual arm

manipulation tasks was another outcome of the ARM-S project. For example, cutting cables

with a pruning shear and unbolting, unmounting and bolting of a car wheel using standard

work equipment. Nevertheless, all mentioned systems and methods require carefully designed

models of the environment and the system itself, task-specific problem programming and manual

robustification of environment interactions. Although the presented methods exhibit excellent

generalization performance for single tasks, allow introspection and rigorous analysis, there is

still a significant gap towards true autonomy. For example, it is not clear how to scale up any of

the existing approaches/systems to new tasks without overcoming the manual task description

engineering, and error condition tuning that is currently required.

Similar to research in computer vision, natural language processing, and autonomous driving,

exploring the use of learning-based approaches towards autonomous manipulation is currently

a highly active research field. Data-driven methods are particularly appealing for a multitude

of robotics applications including manipulation (Bohg et al. 2014a). Learning-based methods
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allow solving problems leveraging sensor experience. This is especially useful in cases when

no mathematical tools exist, or traditional model-based approaches would be computationally

intractable. Further, it is unrealistic that we can pre-design all sufficient models required to

achieve autonomous manipulation, given the need to solve novel tasks with unknown novel

objects and unexpected events. Similar to model-based approaches, learning-based methods

have been shown to learn single tasks successfully such as inserting a block into a shape sorting

cube (Levine et al. 2016a), pick and place and opening doors (Chebotar et al. 2017). These

methods often specify tasks in terms of higher level cost functions or demonstrations, often

easier to define since they directly describe what we want to achieve, e.g., a binary reward for

successfully grasping an object. However, the optimization itself is still an open research problem

for such sparse reward settings (Riedmiller et al. 2018).

Hence, the problem of learning to solve tasks has shifted from designing the sufficient underlying

models and algorithms, solvable within the system time constraints, to finding the right data

representation and generation, learning and optimization method, as well as cost description.

Different from autonomous driving (Urmson et al. 2008), state-of-the-art learning-based ap-

proaches in autonomous manipulation focus on end-to-end task learning (Levine et al. 2016a).

Therefore, these methods neglect almost all existing model knowledge, meaning they have to

learn how to control a robot from sensory observations alone for every task from scratch. Thus,

very basic, fundamental and well-understood components, such as point to point movements,

have to be re-learned for each task. Dynamic environments pose further challenges for end-

to-end learning-based methods. The relevant information has to be identified automatically,

often from weakly supervised data, and the right decision has to be inferred from raw sensory

measurements. For example, approaches learning a mapping from pixel to torque/positions

have to learn to identify the target object and the manipulator itself (Levine et al. 2016a). The

field of computer vision is actively working on efficient and high-performance object detection

methods to address this fundamental problem. By formulating robotic tasks as an end-to-end

learning-based problems (Levine et al. 2016a), the underlying function approximation problem

needs to solve object detection from smaller robotic datasets in dynamic environments with less

variation. As a result of the problem complexity, either a significant amount of system executions

or problem specific demonstrations are usually required. Finally, state-of-the-art learning-based

methods in robotics often require an even larger number of system executions to achieve an

acceptable task generalization. The resulting learning-based systems function as black boxes,

which do not allow introspection of the learned model. Thus, safety guarantees and system

insights can only be obtained by observing the system operate.

We argue that both model-based and learning-based approaches are required towards autonomous

manipulation. We investigate the challenges of current state-of-the-art model-based approaches

face and how to extend them with complementary learning-based methods. We address a diverse
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set of the different learning problems posed by robotics systems operating on different time scales

and generating feedback loops. For example, a controller should appropriately react to changes

in the system dynamics like when picking up an object. Rigid body dynamics for fixed-based

manipulation robots are very well understood. A rich set of model-based tools that generalize

well across different free space motion tasks already exist for this problem type. Hence, we do

not and should not re-learn inverse dynamics models from scratch for different manipulation

problems. Since robots act in the real world, creating feedback loops between our predictions

and next observation, learning-based approaches in robotics pose additional challenges differing

from successful approaches in computer vision and natural language processing. High-frequency

inference and learning is a further important distinction from other more established learning

problem domains. Besides posing hard constraints on the computational complexity of the

learning method, high-frequency continuous data streams result in highly correlated data samples.

This property violates the most common assumption of traditional learning-based methods,

namely that data is distributed independently and identically. Therefore, we will propose efficient

model-based and learning-based methods using domain knowledge which cope better with the

inherent robotic manipulation constraints. Further, we aim to maintain the generalizability of

existing model-based approaches, successfully used for locomotion (Herzog et al. 2016) and

autonomous cars (Urmson et al. 2008), while being able to incorporate and adapt to new objects

and tasks. Ideally, we aspire to build a system which requires minimal model knowledge and

allows for automatic bootstrapping of all further enhancements in an autonomous manner using

learning-based methods. For example, simulating grasps based on knowledge of the geometric

object model, the robot kinematics and contact interactions to optimize a learning-based method

which can from then on further improve with every additionally obtained data sample, e.g. on

the real system. As we will show in this thesis, simulation can be a great tool to leverage

existing model knowledge and explore new solution spaces which can be incorporated using

learning-based methods.

In this thesis, we identify current limitations of previous (integrated) manipulation approaches

and present novel learning-based extensions, overcoming the unique robotic challenges. We test

our hypotheses on real robotic manipulation systems as well as within simulated environments,

providing empirical evidence of the effectiveness of our key contributions.

1.2.2 Limitations of System Architectures

In addition to the challenges as mentioned earlier regarding autonomous manipulation, the system

architecture itself poses many challenging research problems. How to best design the system

architecture itself is an open problem. In order to cope with the overall problem complexity,

system architectures follow a modularization, divide and conquer principle. The main idea of
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separation of concerns is to split the overall problem into separate independent problems. The

most common example of manipulation systems is composed of these three major components,

Sense-Plan-Act (SPA) (Kortenkamp et al. 2016). Perception (Sense) reasons about the system

and world state from sensor measurements, observations and is also addressed by the field of

computer vision. Planning (Plan) is responsible for generating high-level action sequences based

on, e.g. state machines and collision-free trajectories. Control (Act) attempts to generate the right

motor commands to follow and track the desired trajectories and apply the desired forces. The

limited bandwidth of data exchange between the modules is a major limitation of this particular

system architecture. In its most basic form SPA, does not allow for any online adaptation,

while this limitation is well known in the field (R. A. Brooks 1990), it is still the most common

system architecture used in robotic manipulation research. One argument for Sense-Plan-Act is

its simplicity. It makes software development very easy and allows research to be focused on

well-defined sub-problems without having to deal with the overall system complexity. To allow

for some uncertainty and dynamics in the environment, Sequential-Sense-Plan-Act (SeSPA) is

used, repeating the SPA steps at a low frequency (in the order of 0.1 Hz). This architecture

proved to be very successful for complex manipulation tasks such as those in the Amazon picking

challenge and the Darpa ARM-S challenge. Further, the most prominent frameworks for robotic

manipulation, such as MoveIT (Chitta et al. 2012), follow this paradigm. Nevertheless, the low

bandwidth and resulting limited adaptability to unforeseen environmental changes have recently

been identified as a key issue by the teams of the Amazon picking challenge (Correll et al. 2016).

Although additional efforts such as special hardware design can increase robustness, closing the

perceptual feedback loop is a key component to achieve good performance and robustness.

Without closing the perceptual feedback loop, even slight changes in the initial condition, e.g.,

uncertainty in the object state estimate, can render the initially planned solution, e.g., a trajectory,

infeasible. Only when a system continuously updates the world state and re-plans can it react

to environmental changes, either rendering current solutions infeasible or allowing for new

solutions. Closing feedback loops is by no means a new idea. It has been a long time effort in

robotic manipulation, starting with the work on visual servoing by (Shirai et al. 1973) and (Hill

et al. 1979). Nevertheless, fully integrated systems with closed loop perception integration are

not yet common within the community.

The decomposition of the overall problem into planning and control poses even more funda-

mental problems besides low bandwidth communication. Since the communication between

the controller and planner has a low bandwidth, it is often not clear what information should be

communicated, and to which level of abstraction in the controller should it be provided. This

becomes apparent for contact-based tasks. We will illustrate key issues with a simple object

grasping problem, for which the robot has to grasp and lift an object. The grasp controller is

responsible for tracking the desired interaction forces and pose trajectories. However, there is an
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inherent simulation reality gap for simulating interaction forces. Hence, the information a planner

provides to the underlying controller can easily diverge very quickly from the planned trajectory.

Whereas, a simple but well-tuned force controller often results in good grasp performance if the

initial end-effector pose is good. Designing and tuning feedback controller for every task does

not scale. Thus, the planner should be aware and choose the right controller parameterization

and optimization. This raises the question of what constitutes good controller parameterizations

such that a planner can exploit them.

1.2.3 Limitations of Model-Based Approaches

Robotics has a strong model-based history. Models have been extensively used on various time

scales, ranging from milliseconds to minutes as well as for perception, planning, and control.

Humans design robots, therefore, kinematic models and their geometry is readily available for

planning algorithms, computing collision-free trajectories. Nevertheless, planning has been

shown to be an algorithmically challenging, an NP-hard problem by (Reif et al. 1985). Geometric

simplifications are often required in order to find a feasible path in a reasonable time horizon. The

robot’s dynamics model allows to control the system with model predictive control (Allgöwer et al.

2004) or more straightforward inverse dynamics control approaches (Herzog et al. 2016). In order

to achieve precise control, the robot’s dynamics model has to be identified. The dynamics models

might change over time due to motor heat affecting friction or object interactions such as grasping,

requiring online re-identification or a detection mechanism which identifies if the underlying

model has changed. This poses further challenges for designing model-based approaches since

observed errors cannot be easily attributed to either imprecise models or algorithmic issues.

For many tasks, precise models are not crucial. Rather crude approximations which facilitate

fast optimal control approaches are sufficient (Herzog et al. 2016). Yet, determining sufficient

partial or approximate models is a difficult manual engineering task, which is not practical for

characterizing all required tasks towards autonomous manipulation.

Geometric environment modeling, as well as interaction planning based on geometric shapes,

is another common model-based domain in robotic manipulation. Building an environment

model consisting of all objects of interest is necessary to plan for safe trajectories. Therefore

objects have to be identified and their pose estimated from noisy 2D/3D observations. This

computer vision problem can be further complicated from partial occlusion or varying light

conditions, or example. Since new objects are created on any given day, it is not possible to

provide a robotic manipulation system with all required object models prior to deployment in a

household environment. Fortunately, for many tasks only approximate local models are required.

For example, stable grasps can be determined from local shape primitives (Herzog et al. 2014)
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which can even generalize to novel objects. Nevertheless, finding the right abstraction is again a

manual engineering task, and the resulting solution is not guaranteed to solve novel other tasks

since important information has been abstracted away. Additionally, object features such as

inertia, the center of mass and friction coefficients, relevant quantities for manipulation tasks,

are unknown, unidentifiable, uncertain or dynamically changing for many objects. Interaction is

required to estimate such properties. Yet, model-based approaches require such features to be

known to determine meaningful object interactions.

Computational complexity is one of the most fundamental problems for model-based methods

since they are generally designed to perform the main computation at runtime. For example,

contact planning is especially challenging mainly since there exists no computationally tractable

contact model to date which captures the required real-world interaction dynamics. Strong

assumptions are necessary to reduce the problem significantly, otherwise resulting in intractable

contact planning. Hence, only a relatively small body of work, attempting to plan contacts for

manipulation, exists. (Dogar et al. 2010) plan push-grasps, establishing contacts with an object

on a planar surface while pushing it to increase the probability of grasp success.

In summary, successful model-based approaches provide new problem insights, achieve great

generalization within a task, and allow for rigorous analysis. But, model-based methods face

fundamental issues towards autonomous manipulation since it is simply not possible to know

all models and possible tasks a priori. Therefore, we hypothesize that learning-based methods,

improving with new data, are a necessary complement towards autonomous manipulation.

1.2.4 Limitations of Learning-Based Approaches

Robotic systems create large amounts of interesting data during operation. Therefore, learning-

based methods have become a very common alternative to model-based approaches, especially for

robotic manipulation tasks. Traditionally, different modules within the SPA system architecture

have been replaced with learning approaches by collecting static datasets for learning, e.g.,

learning how to grasp (Pinto et al. 2016).

However, since the computer vision end-to-end breakthrough results on the large-scale image

classification challenge ImageNet in 2012 (Deng et al. 2009; Krizhevsky et al. 2012), the robotic

manipulation research community started to increasingly focus on end-to-end deep learning

approaches to learn robotic skills. Approaches such as guided policy search (Levine et al. 2013)

have lead to impressive results, learning control policies directly from pixel-based image inputs

(Levine et al. 2016a). Yet, to achieve these impressive results the user must provide either a

basic engineered control policy or a sufficiently close demonstration. Further, the learned control

policies only perform well in areas around the explored state space and thus, do not generalize
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well (Levine et al. 2016a). Conceptually, end-to-end learning of a robust skill that generalizes

to dynamic environments requires solving continuous object detection/identification/tracking

and learning dynamics model of the robot manipulator, as well as visual servoing. Thus, it is not

surprising that end-to-end learning frameworks for robot manipulation, using a general purpose

function approximators with almost no explicit prior information and model regularization,

cannot learn a general skill from a few examples on a single system. Further, all previously

mentioned sub-problems are open research areas on their own.

Although very different learning methods have been used for robot manipulation tasks, deep

neural networks represent the most used approach in recent literature. This framework scales

well to large datasets and does not require feature engineering since it optimizes a hierarchical

function approximator in an end-to-end fashion. Nevertheless, if a manipulation skill has been

learned for a particular platform and environment, current state-of-the-art tools and theory do not

allow to introspect the learned policies (Lipton 2016) and make no further statements about their

region of validity. This issue is typically less severe for computer vision problems since deep

neural networks are used for single image classification. In robotics, however, different systems

have different kinematics and appearances, making it challenging to transfer learned skills from

one system to another. Very different to domains in which deep learning approaches have reached

industry grade maturity, robotic systems act according to the predictions, changing the learning

problem significantly due to the introduced feedback. Predictions within this feedback loop

can drive the robotic system into catastrophic states without the possibility of recovery or result

in irreversible environmental changes. Additionally, for problems such as inverse dynamics,

there are strict time requirements for inference and online learning which need to be orders of

magnitude faster than in traditional supervised learning tasks.

(Pinto et al. 2016) and (Levine et al. 2017) have shown that it is possible to entirely bootstrap

grasping tasks autonomously in very structured environments without explicit prior model

knowledge. Still, in order to successfully bootstrap such tasks, there are fundamental implicit

underlying requirements such as the initial potentially random actions of the robotic system

have to yield a significant amount of successful task outcomes, and the task itself has to be

automatically or easily resettable. The reward formulation and data distribution are further

crucial aspects to successfully achieve autonomous bootstrapping and require careful tuning.

Hence, manipulation tasks, such as stacking blocks in a particular order or opening doors, could

not be solved in this manner on real systems without providing initial prior knowledge.

Learning-based approaches in robotics require a large amount of diverse data to achieve excellent

performance, even in the case of fully supervised tasks (Levine et al. 2017). While robots

typically generate lots of data, this data is highly correlated and often not diverse. Further,

without strong assumptions on the structure of the system dynamics, a significant fraction of
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state space would have to be explored. Due to recent breakthrough results on playing Atari

games, (deep) (model-free) reinforcement learning has received renewed attention. Albeit these

methods do not need models and task specification is straightforward, e.g., binary rewards for

the final task success, millions sometimes even billions of execution (A. Nair et al. 2017) have to

be executed to learn elementary concepts. During this process, already solved robotic problems

such as trajectory tracking are relearned from scratch as a necessary intermediate solution. Most

research in this sub-field of learning-based robotics is based on simulation-based experiments

due to the large number of trials required for learning. The simulation reality gap is a key issue

for policy learning for real systems. Although the learning approach is model-free, high fidelity

models and computationally expensive contact simulation are required to generate the data to

optimize these methods.

In summary, learning-based methods have been shown to acquire new manipulation skills with

self-supervision and allow them to adapt to changing environments. Yet, end-to-end learning

is not data efficient enough to be applicable to learn a fully autonomous manipulation system.

For new problems, these methods relearn previously solved problems from scratch. Hence,

enhancing learning-based with model-based feedback systems should alleviate these issues.

1.3 Problem Statement

The objective of this thesis is to study how learning-based methods can improve the system

performance by exploiting domain knowledge usually applied in model-based approaches. There-

fore, we identify current limitations in existing state-of-the-art model-based system architectures

for robotic manipulation tasks and focus on necessary extensions towards autonomous ma-

nipulation. Our results demonstrate that learning-based approaches efficiently complement

model-based methods, allowing us to solve problems which are often otherwise intractable.

We show how to use existing models to bootstrap learning-based methods, encoding expert

problem information in the data generation process. We further introduce a new learning-based

optimization technique relevant to robotic problems such as continual/online task learning and

model predictive control problems.

1.4 Thesis Structure & Contribution

The core contributions of this thesis, embedded in the context of robotic manipulation tasks, are

presented here, and their interaction visualized in Figure 1.3. First, we describe the foundations

for our contributions, followed by a high-level systems perspective. Next, we focus on three
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Figure 1.3: Here we embed all thesis contributions into our reactive model-based system
(Chapter 3). All model-based modules are represented by boxes with solid borders. Our
learning-based extensions have dashed borders and their additional interactions with the baseline
model-based system are added in their respective colors (Chapter 4, Chapter 5, Chapter 6, and
Chapter 7).

progressively more low-level aspects which arise in robotic manipulation tasks. After that, we

present an abstract learning approach relevant to applications in robotics, as well as the broader

fields of machine learning and optimization. Finally, we discuss the thesis contributions and their

impact on the field of autonomous manipulation.

Chapter 3, Real-Time Perception meets Reactive Motion Generation: The main contri-

bution of this work is a fully integrated system, presenting the first coherent empirical results,

demonstrating the importance of continuous, real-time perception and its tight integration with

reactive motion generation methods in dynamic manipulation scenarios. Three different systems

that are instantiations of the most common architectures in the field are compared: (i) a traditional

sense-plan-act approach (still most widely used), (ii) a myopic controller that only reacts to local

environment dynamics and (iii) a reactive planner that integrates feedback control and motion

optimization. The overall system is purely model-based and extensively evaluated on a real

robotic platform in four scenarios that exhibit challenging workspace geometries and/or dynamic

environments. This work shows the performance which can be achieved with a state-of-the-art

model-based manipulation system using fast feedback. Given the rise of recent end-to-end
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learning approaches in robotic manipulation, neglecting almost all existing domain knowledge

(e.g., in the form of models), it is especially important to have a model-based reference system.

Hence, this work functions as a performance baseline for learning approaches, not only in terms

of capabilities but also with respect to generalization. Within the context of this thesis, these

results allow identifying problems which arise in purely model-based approaches and are suitable

for learning-based extensions. For example, automatic online failure detection, inverse dynamics

model learning, data association as well as grasp planning. This chapter is based on (Kappler
et al. 2018).

Chapter 4, Online Decision Making for Manipulation: Most robotic manipulation systems

have a very diverse set of sensor modalities with different noise characteristics. Often it is

not trivial to simulate (model-based) all sensors; thus, it is very hard to plan with such modal-

ities. This is especially pronounced in cases when a robotic system makes physical contact

with the world, where bidirectional forces are simultaneously applied and felt by the robot.

Therefore, one of the main challenges in autonomous manipulation is to generate appropriate

multi-modal reference trajectories that enable feedback controllers to compute control commands

that compensate for unmodeled perturbations and therefore to achieve the task at hand. In this

thesis, we propose a data-driven (learning-based) approach to incrementally acquire reference

signals from experience and decide online when and to which successive behavior to switch,

ensuring successful task execution. The online decision-making problem is reformulated as a

pair of related classification problems. Both process the current sensor readings, composed of

multiple sensor modalities, in real-time (at 30 Hz). This approach exploits our domain specific

problem understanding that movement generation can dictate sensor feedback. Thus, enforcing

stereotypical behavior will yield stereotypical sensory events which can be accumulated and

stored along with the movement plan. Such movement primitives (DMPs), augmented with

sensor experience, are called Associative Skill Memories (ASMs) (Pastor et al. 2013b). Sensor

experience consists of (real) sensors, including haptic, auditory information and visual informa-

tion, as well as additional (virtual) features. Experiments show that this approach can be used to

teach dexterous tasks, e.g., a bimanual manipulation task on a real platform that requires precise

manipulation of relatively small objects. Task execution is robust against perturbation and sensor

noise because our method decides online whether or not to switch to alternative ASMs due to

unexpected sensory signals. In summary, this work demonstrated that we could learn simple

models for various sensor modalities, which can be evaluated in real-time, to make decisions

about the performance of our currently executed task. This chapter is based on (Kappler et al.

2015c).
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Chapter 5, Big-Data Grasping: Grasping is a prerequisite for object manipulation, making

it an important research problem in the robotics community. In this thesis, we focus on the

problem of predicting/planning grasps prior to contact, where only visual information (e.g., 2D

images and/or 3d point clouds) is available to infer a grasp pose and configuration. In such

settings model-based approaches typically suffer from high computational complexity, require

model identification from partial noisy sensor observation, and do not scale well due to a large

number of available objects in the world. One promising approach is the use of deep neural

networks which have been very successful in learning similar mappings, given a large set of

examples. We contribute a new large-scale database that contains grasps applied to a broad set of

objects from numerous categories. These grasps are generated in simulation, using our model and

domain knowledge, and they are automatically annotated with different grasp stability metrics.

Three different aspects are further analyzed within the scope of this thesis: (i) Crowdsourcing to

investigate the correlation of the metrics with grasp success as predicted by humans. The results

show that our proposed metric based on physics simulation is a more consistent predictor for

grasp success than the standard analytical ε-metric. Further, our study suggests that human labels

are not required for good ground truth grasp data. (ii) Instead, we use our domain knowledge to

design a fully automatic data generation process with high-quality labels using a physics-metric

that may be used to bootstrap learning in the real world. The resulting rich dataset allows us to

optimize highly parametric function approximators, such as deep neural networks, to learn both

the partial identification and pose/configuration regression problem. Further, these parametric

models allow for very fast and computationally efficient inference. Additionally, we verify that

simpler methods, such as logistic regression, do not have the capacity to leverage the large-scale

database. (iii) Robots typically observe a scene from one viewpoint when attempting to grasp an

object. In general, we strive for a grasp predictor which enables robots to grasp an object on the

first attempt successfully. This domain specific observation enables us to reformulate the typical

grasp prediction-/classification- into a top-1 prediction-problem, to obtain the best hypothesis

from a binary labeled dataset. Our novel loss formulation significantly outperforms previous,

more traditional classification and regression formulations by a large margin while still using the

same underlying models. This chapter is based on (Kappler et al. 2015b, 2016).

Chapter 6, Inverse Dynamics Learning: Inherently safe robot behavior is crucial for collab-

orative humanoid robotic manipulation tasks. Therefore, we need methods to track precisely

desired policies while still maintaining system compliance. Our previously presented approaches

generate reference policies for typical robot manipulation tasks such as picking up objects. As

part of this thesis, we present a novel approach which extends existing model-based inverse

dynamics controllers with learned error models, translating desired accelerations into torques.

Existing model-based approaches typically suffer from poor performance in cases of significant
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system payload changes. This is often the case when grasping and lifting an object. Traditional

learning techniques attempt to overcome this limitation by training a full or error model on the

actually realized accelerations, an indirect data source, instead of the policy’s desired acceler-

ations. We show how an additional training signal — measured at the desired accelerations —

can be derived from a feedback control signal. This effectively creates a second data source

for learning inverse dynamics models. We analyze the use of both data sources in simulation

and demonstrate its effectiveness on a real-world robotic platform. We show that our system

incrementally improves the learned inverse dynamics model. By combining both data sources,

we further show that error model learning converges more consistently and faster. This perfor-

mance improvement is likely due to our domain knowledge and understanding of the robotic

task, resulting in the derivation of the proposed additional data source. This chapter is based

on (Kappler* et al. 2017).

Chapter 7, Learning to Learn While Learning: Humans are remarkably skilled at quickly

acquiring new skills, or adapting existing ones. This ability can be attributed to the fact that

we do not learn each new skill from scratch, but instead build upon prior knowledge. Most

robotic learning tasks would benefit from being guided by a “meta-learner”, especially given

that multiple skill learning is an inherently incremental problem for truly autonomous systems.

In this thesis, we present a novel meta-learning approach which learns the robot dynamics

online and affords transfer of the learned structure to new tasks, resulting in faster convergence.

The proposed meta-learning approach is advantageous because (i) it can be combined with

any gradient-based optimizer, (ii) allows learning on the fly, and (iii) can be transferred to new

optimization tasks. Model-based control, often used in robotic manipulation, is particularly

well suited for our approach since very similar optimization problems have to be solved in a

recurrent manner. Further, our approach not only significantly reduces the amount of required

observed data samples, a challenge for real robot experiments, but opens up an entirely new

avenue to achieve simulation to real-world transfer. Hence, it allows us to exploit existing domain

knowledge in the form of model-based simulation in entirely novel ways. This chapter is based

on (Kappler* et al. 2018).
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Chapter 2

Foundations and Related Work

In this thesis, we present novel learning-based methods to complement model-based approaches

toward autonomous manipulation. Here we introduce the foundations relevant to the contributions

of this thesis.

We start out providing an overview of robotic manipulation and present the main building

blocks used in current state-of-the-art robotic systems towards autonomous manipulation. After

that, we introduce the central machine learning concepts used throughout the thesis. After the

general machine learning introduction, we focus on the core methods essential for the thesis

contributions.

2.1 Robotic Manipulation

The objective of robotic manipulation is to interact with an object to achieve a desired task. For

example, picking up a drill, drilling a hole and afterward placing the tool in a specific pose.

Successful autonomous manipulation requires the robotic system to understand its environment

to the degree that actions can be executed safely and efficiently. Pick and place manipulation

tasks have been studied extensively throughout the last decades of robotic manipulation research.

Since almost any manipulation task first requires to grasp an object to either use it as a tool

or place it in a different location, pick and place is one of the most fundamental manipulation

skills also addressed throughout this thesis. Manipulation tasks, in general, pose a very rich

and diverse set of challenges ranging from hardware component design, fusing different sensor

modalities, precisely actuating the system, and higher level task reasoning. This breadth of

research components makes robotic manipulation difficult to tackle at once, even for large teams.

Therefore, we first discuss different system architectures, typically used for robotic manipulation,

to cope with the aforementioned complexity. The subfields, perception, planning and control,

emerging from the inherent robotic system design are presented in more detail hereafter.

17



Chapter 2 Foundations and Related Work

2.1.1 System Architecture

Any robotic system is composed of three components: (i) sensors allowing to estimate the system

state and perceive their surrounding environment, (ii) computation to interpret and fuse the

sensor information and reason about future actions toward desired goals, and (iii) actuators which

physically change the system state based on the desired computed control inputs.

Modularization, a common and important abstraction for software-based systems to facilitate

code and functionality reuse, component testing and separation of concerns, is essential for

robotic manipulation systems. Manipulation tasks require complex novel research on various

abstraction levels. Since robot manipulation systems are composed of distributed sensors and

actuators and robotic systems operate on different operation timescales, distributed computation

is often necessary to cope with the high-performance demand. In order to fulfill the inherent

distributed computation requirements, most robotic system architectures are based on inter-

process communication middleware such as ROS (Quigley et al. 2009), YARP (Metta et al.

2006), ARMARX (Wächter et al. 2016; Vahrenkamp et al. 2015), CORBA (Orfali et al. 1998).

To simplify the overall system complexity and facilitate reusability, three conceptual system

architectures have been developed, as further discussed in (Coste-Maniere et al. 2000) and

(Kortenkamp et al. 2008): (i) a top-down hierarchical approach composed of functional modules,

(ii) a bottom-up behavioral approach and (iii) a hybrid of behavioral and functional modules.

2.1.1.1 Sense-Plan-Act

The most traditional approach for robotic system architectures (Moravec 1990; Crowley 1985)

and more specifically robotic manipulation is Sense-Plan-Act (SPA) (R. Brooks 1986), a hier-

archical top-down functional approach (Kortenkamp et al. 2016). In this paradigm, perception

provides a model of the environment, including the robot state, using the latest sensor infor-

mation. A planner uses the resulting world model to generate desired trajectories to solve the

manipulation task. Trajectory planning is mostly concerned with avoiding collisions in free

space. Typically, the goal of the planning phase is to find feasible solutions that are optimal

with respect to a user-defined cost. In a final step, the systems acts according to the desired

trajectories. In order to guarantee precision, stiff but accurate control approaches generate the

underlying controls. The main advantage of this paradigm lies in its simplicity, assuming a static

world state during planning and control. The subdivision of the complex problem of robotic ma-

nipulation into well defined and independent sub-fields allows for module reuse. Yet, in the case

of system manipulation failures, it is difficult to attribute errors to a single module, since there

exist implicit dependencies which raise questions about the right representations communicated
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between modules. Systems that are built according to sense-plan-act (SPA) are perfectly suited

for environments that are well-defined, structured, controlled, and not dynamic.

However, SPA struggles to achieve robust manipulation performance in the presence of uncer-

tainty and changing environments (Correll et al. 2016). Due to the well-known limitations of

sense-plan-act (R. A. Brooks 1990), robotics researchers have proposed extension, e.g. sequen-

tial sense-plan-act (seqSPA), acknowledging the importance of environmental feedback during

motion execution. Here, the robot does not only request feedback once at the very beginning

but also at deliberately chosen moments during task execution. This approach is more robust

against uncertainties in both sensing and actuation than SPA. Some teams competing in the

Amazon Picking Challenge and the DARPA ARM Challenge followed seqSPA (Correll et al.

2016; Righetti et al. 2014). However, it is still not able to cope with dynamic environments or

target objects.

2.1.1.2 Behavior-Based System Architecture

In the 1980’s the limits of sense-plan-act became apparent (R. A. Brooks 1990) because of

dynamic environments, slow reaction times, and system failures due to inaccurate modeling.

Therefore, (R. Brooks 1986) proposed the subsumption architecture, a system composed of

hierarchical finite state machines which all operate at the same time, considering the latest

sensory feedback and inhibit each other to create complex behaviors. This paradigm, known

as the behavior-based system architecture, has shown tremendous success for simple tasks

such as fetching and delivering mail. Typically systems controlled with this paradigm exhibit

very reactive behavior and can cope with rapidly changing environments. However, designing

behaviors, which solve complex tasks such as manipulating objects requiring higher-level

reasoning, has proven to be very difficult (Kortenkamp et al. 2008). Hybrid systems have

been proposed (Gat 1992; Isla 2005; Colledanchise et al. 2014) to use the best of both worlds,

behaviors to react to dynamic environmental changes and planning modules shaping the long-

term behavior.

2.1.2 Perception

Perceiving the world is essential for robotic manipulation to build an internal representation of

the world, facilitating planning and control. Even Shakey (Nilsson 1984), one of the first mobile

robotic platforms, used multiple sensor modalities such as a camera, rangefinder, and haptic

bumper sensors to perceive its surrounding. Different sensor modalities with applications in
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robotic manipulation are depth cameras, laser- and radio-based rangefinder, proximity, audio,

and force/torque sensors, joint encoders, and accelerometers.

A common problem for manipulation tasks is to reliably identify objects in the environment

and track their poses and geometries with respect to the manipulator. Ever since the low-

cost Kinect (Zhang 2012) became available, RGB-D sensors have become the standard sensor

modality to tackle object detection, classification, and tracking. Therefore, we focus on this sensor

modality after that. With the recent computation advances and new large-scale image datasets,

such as ImageNet (Deng et al. 2009), Pascal VOC (Everingham et al. 2010), and MSCOCO (Lin

et al. 2014), deep learning approaches have changed the landscape of computer vision research.

All state-of-the-art approaches for 2D image-based bounding box object detection (Redmon et al.

2017; Ren et al. 2017; Liu et al. 2016) and object classification (Krizhevsky et al. 2012; Simonyan

et al. 2014; Szegedy et al. 2017) are now based on deep learning methods (LeCun et al. 2015). In

robotics, 2D object bounding box detection and tracking (Kragic et al. 2001; Harris et al. 1990;

Choi et al. 2010) is used for planning within robotic manipulation applications. Different to the

computer vision community, robotics perception typically deals with small amounts of labeled

data and limited datasets. Additionally, 2D image-based information is often not sufficient to

infer precise object 6D poses or 3D object surfaces which are important for model-based control

approaches. 3D perception alleviates many issues arising from the 2D ambiguities and allows

robots to estimate the 6D pose, position and orientation, of the 3D objects. Depth sensing, readily

available on most manipulation platforms, allows to collect 3D object models (Newcombe et al.

2011) and extend existing large-scale 3D object model datasets such as ShapeNet (Chang et al.

2015). For instance, using appearance-based and model-based information, (Azad et al. 2006)

and (Hinterstoisser et al. 2012) propose a real-time object localization and recognition approach

for solid colored known objects. (Brachmann et al. 2014) present a learning-based approach

estimating the initial 6D pose of an object from a single RGB-D image. However, manipulation

tasks in dynamic environments not only require the initial 6D pose of an object but continuous

tracking in order to react and adapt to environmental changes. Manipulation tasks create unique

challenges for 6D object tracking such as partial occlusion and rapid movements due to grasping

and object interactions. While manipulating an object, the robot end-effector has to be in contact

with the object which results in further difficulties for tracking since the resulting observations

might be difficult to associate with either the manipulator or the object. Hence, model-based

object tracking remains an active research topic in robotics with very different approaches such

as probabilistic formulations (Wüthrich et al. 2013; Wüthrich et al. 2015) and optimization-based

methods (Schmidt et al. 2014).

In addition to requirements for real-time 6D object tracking, robotic manipulation needs precise

hand-eye coordination such that the desired plan can result in the desired interactions. Conceptu-

ally, there are two main approaches to ensure good hand-eye coordination. First, calibrating the
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kinematic parameters of the robot consisting of an offline stage at which a well-known calibration

object is moved in the target workspace under the expected system conditions (Pradeep et al.

2014; Pastor et al. 2013a). Yet, this paradigm often causes issues during execution due to

system changes. For example, the motor characteristics might change or sensor measurements,

required for the system state estimate, might drift. Both issues result in deteriorating system

calibration. Hence, tracking both, the manipulator/arm and objects in the environment is another

promising paradigm. Using this methodology the same reference frame, namely, the perception

sensor frame can be used to represent both tracked objects and the manipulator. Such a system

automatically calibrates online with respect to the tracked manipulator and therefore does not

suffer from sensor drift, cable stretch or other changes to the system state estimates. Approaches

for arm tracking such as (Vahrenkamp et al. 2009b) track fiducial markers which are attached to

the robot’s arm or manipulator at precisely known locations, allowing the reconstruct the exact

6D-pose of the manipulator. In contrast, model-based methods, not requiring any visual altering

of the system have been proposed by (Klingensmith et al. 2013), using the iterative closest

point (ICP) algorithm (Besl et al. 1992). (Schmidt et al. 2015) present another model-based

optimization approach using signed distance fields (SDFs) and recent computational advances in

general-purpose computing on graphics processing units (GPGPU) to achieve real-time articu-

lated tracking. A probabilistic formulation of model-based articulated real-time tracking for robot

manipulation is discussed in (Garcia Cifuentes et al. 2017), using the high-frequency joint angle

measurements in addition to low-frequency camera images, combining prior work (Wüthrich

et al. 2013; Wüthrich et al. 2015).

In summary, the main perceptual methods, required for robotic manipulation research, use

RGB images for appearance-based object detection, classification and identification and depth

information to estimate 6D object poses and track them over time. There exists a large body of

learning-based approaches for 2D object detection using appearance and object classification and

model-based 3D object pose estimation and tracking work which state-of-the-art manipulation

systems exploit for planning and control.

2.1.3 Planning

There are two main conceptually different planning problems for robot manipulation, discrete

symbolic high-level reasoning and continuous trajectory planning. Higher-level reasoning,

planning on a symbolic level, creates an abstract sequence of sub-tasks such as, first locating

a particular object, then approaching the object, picking it up, using it for a task and placing it

again. Motion generation, trajectory planning, is concerned with finding collision-free paths.

Object interactions, albeit discrete when contact is being made, might further be considered a

continuous planning problem in time. Hereafter, we focus on planning for motion generation
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and therefore assume that higher-level reasoning is provided to the system either in the form of

task-specific programming or learning.

Motion planning has been of interest to the robotics community since the 1960s and as a result

of that, free space motion generation is well understood problem (Siciliano et al. 2010). The two

predominant frameworks to tackle motion planning are: (i) sampling-based approaches and (ii)

optimization-based methods.

Sampling-based motion planning has intriguing properties such as completeness, meaning with

enough samples random sampling-based approaches are guaranteed to find a solution if one

exists. Further, sampling-based methods such as rapidly-exploring random trees (RRTs) (LaValle

1998) are global methods, meaning they do not get stuck in local minima. Although sampling-

based algorithms for robot manipulation are an active field of research (Diankov et al. 2008),

they generally suffer from the curse of dimensionality in high dimensional spaces. There-

fore, such methods are commonly used for low-dimensional planning problems such as for

autonomous driving (Kuwata et al. 2009), high-dimensional robotic manipulation tasks in static

environments (Vahrenkamp et al. 2009a), but not in complex dynamic environments. Due to

the random nature of most sampling procedures, solutions for similar problems, for example

with similar initial and final configurations, often result in vastly different trajectory solutions.

This unpredictability poses issues for human-robot interaction, a typical application for manip-

ulation tasks (Mainprice et al. 2011). Additionally, as discussed by (Hauser et al. 2010), the

resulting trajectory of most sampling-based motion planning approaches requires an additional

post-processing step to generate smooth, actually executable trajectories. (Karaman et al. 2011)

present anytime executable sampling-based planning methods which optimize additional cost

functions while planning such as RRT* (Jeon et al. 2011) to alleviate this problem. Yet, due to

their high computational requirements, such methods are impractical for high-DoF manipulation

platforms.

Optimization-based planning treats trajectory generation as an optimization objective solved

by iteratively estimating the Jacobian and Hessian (in case of second order methods) of the

kinematic model of the robot to improve the objective. Since motion planning is an inherently

non-convex problem, often with complex non-convex constraints, optimization-based approaches

aim to find local rather than global minima (Schulman et al. 2014). Obstacle avoidance results in

very complex optimization landscapes which can lead to poor solutions due to local minima even

if other much better solution exists. Yet, different from sampling-based methods optimization-

based planning does not suffer from the curse of dimensionality at the cost of sacrificing the

completeness property. There are three main distinctions between different optimization-based

planning methods: (i) how updates (gradients) are determined, (ii) the representation of the

trajectory and how it is initialized, and (iii) the representation of the workspace geometry.
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CHOMP (N. Ratliff et al. 2009) combines two objective terms, one for generating smooth

trajectories and one for collision avoidance. The objective is further invariant to the trajectory

parameterization. Gradients are required for both terms to perform gradient descent updates.

The trajectory itself is represented by a uniformly discretized set of configurations with equal

time steps. STOMP (Kalakrishnan et al. 2011a) based on a very similar trajectory representation

uses a derivative-free stochastic optimization method, PI2 (Theodorou et al. 2010). Similar to

CHOMP, STOMP uses signed distance fields (SDFs) to avoid collisions with obstacles. This

approach is especially efficient if the workspace is composed of known models since SDFs can

easily be composed and allow for fast collision checks. Both are initialized with a straight line

trajectory, connecting the start configuration to the goal configuration, which can be in collision

with obstacles. The SDF workspace representation allows to resolve these collisions and bend

the trajectory around obstacles. (Schulman et al. 2013) propose to formulate the optimization

problem as a sequential quadratic program and use an iterative solver as well as convex-convex

collision resolution which provides more information compared to the single point gradient of

the collision. More recent work on Riemannian Motion Optimization (RieMO) by (N. Ratliff

et al. 2015) changes the optimization space using a Riemannian geometry formulation which

bends the space around obstacles. Different from prior work, this approach starts with a zero

velocity trajectory at the starting configuration; thus, the robot is never in a collision.

The resulting trajectories of optimization-based motion planning strongly depend on the user-

defined cost function formulation which is often challenging to design (Ng et al. 1999). Usually,

there are infinitely many paths for a defined motion planning problem. However, humans expect

robots to behave collaboratively when performing manipulation tasks in close proximity to them.

This implicit knowledge can be inferred from human demonstrations in a learned objective

function (Kalakrishnan et al. 2013) using inverse reinforcement learning (IRL) or inverse optimal

control (IOC) formulations (Ng et al. 2000; Aghasadeghi et al. 2011; Kalakrishnan et al. 2013;

Finn et al. 2016b).

So far all approaches heavily rely on the kinematic robot model and manually designed or

learned cost functions. An alternative to these approaches is to build a sufficiently large corpus

of learning-based motion primitives, e.g., Dynamic Movement Primitives (DMPs) (Ijspeert

et al. 2013). Here, nominal trajectories have to be demonstrated or generated by a planner to

cover a robot’s workspace adequately. Planning in this formulation boils down to identifying

the right primitive and following and adapting its nominal trajectory. Notice, primitives such

as DMPs allow generalizing to new goals, significantly reducing necessary library size, and

automatically adapt to new obstacles, even dynamically using feedback terms (Rai et al. 2014;

Rai et al. 2016).
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2.1.4 Control

Control for robotic manipulation is concerned with finding actions, e.g., torques or accelerations,

for the robot which achieve a desired motion or interaction behavior. Control theory consists

of two major divisions, classical time domain and state-space theory (Friedland 2012). Within

the field of robotic manipulation research, control approaches are typically based on state-space

formulations which we focus on hereafter.

State space approaches try to compute a policy, mapping the current state to actions, such

that the underlying dynamical system fulfills a well-defined criterion. State space methods

are categorized by their underlying assumptions (i) model-based, most notably optimal control

formulations and (ii) model-free approaches, operating without any knowledge of the underlying

dynamical system.

(Pontryagin 1962) and (Bellman 1952) contributed most foundational work in the 1950s, leading

up to the extensive body of literature we have today about optimal control theory. The core idea

of this framework is to compute the optimal controls according to a cost function, a task-specific

design choice. In order to compute the cost of the controls, required for the optimization, the

underlying model of the system has to be known. Optimal control methods are especially suited

for the tracking of Cartesian end-effector or joint space trajectories, the bread and butter for

control in robot manipulation. Simple methods such as Jacobian transpose control (Balestrino

et al. 1984) and more sophisticated operational space control formulations (Khatib et al. 1986)

have a long history and have matured to become an integral component of industrial robotics.

(Peters et al. 2005) showed that these methods could be thought of as special cases within the

more general framework of optimal control. Based on strong assumptions on the system and

cost, (Kalman 1960) was able to unify this framework for state estimation and control using the

“Principle of Optimality” (Bellman 1952) resulting in the Kalman filter and Linear Quadratic

Regulators (LQRs). However, assuming an unconstrained linear quadratic system or linear

dynamics with quadratic cost is too restrictive for complex manipulation systems. However,

promising results for high-dimensional whole-body tasks have recently been shown by (Mason et

al. 2014) based on system linearization and fast feedback LQR control. Hardware improvements

in computation enabled more general quadratic programming (QP) methods to achieve superior

control performance on whole-body control tasks (Ames et al. 2013; Herzog et al. 2016). Despite

the computational advances, the overall optimization problem is still too complex to solve

for very complex models and sensitive to modeling uncertainties. Achieving high-frequency

control loops is essential, especially for contact interactions. Therefore, complex QP control

formulations consider only the next timestep to compute the next optimal action. Alternatively,

model predictive control (MPC) (Allgöwer et al. 2004) represents an optimal control framework

which optimizes over a receding horizon, meaning the optimal control problem is solved for a
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fixed horizon, but only the first controls are executed, and then the optimization problem is solved

again. Hence, the control policy is a result of continuously solving this receding time horizon

optimization problem (Erez et al. 2013; Herzog et al. 2015). Fortunately, in a high-frequency

control system, the state and thus the optimization problem changes gracefully, allowing to warm

start the next optimization iteration from the previous solution.

Model-free control approaches have a very long history dating back to the 17th century. Often,

they are simpler to design, and they do not require to determine and identify complicated

dynamics models, have less computational requirements. Further, model-free control completely

sidesteps the issues that “All models are wrong” (Box 1976). PID control, the most commonly

used model-free direct feedback control approach, was in simpler forms already used for control

of the original steam engine systems in the 18th century. The first theoretical analysis dates back

to (Minorsky. 1922). (Ogata 1990) present a more recent in-depth discussion of PID control

application. The acronym for this approach stems from the control computation itself, which

consists of gains scaling three different error terms, proportional (P), integral (I) and derivative

(D). The ease of use of this approach, the absence of any requirements to identify complicated

dynamics models, and it is well-understood behavior makes it the most fundamental control

method in industrial robotics. While increasing gains can sometimes improve trajectory tracking,

due to the limited bandwidth of most real systems, this eventually leads to the system going

unstable. Further, high gain feedback control results in very stiff systems, not well suited for

unexpected contact interactions in uncertain manipulation environments.

Reinforcement learning is another framework to determine controls. Different from optimal

control approaches for which knowledge of the underlying dynamics model is a fundamental

requirement, model-free reinforcement learning approaches learn how to take actions (controls)

without such models by observing the system behavior. More precisely, model-free reinforce-

ment learning is formulated as a Markov decision process (MDP) with an externally provided

reward function and no transition/dynamics model. The main objective is to infer a control policy

which optimizes the expected future reward for a given task. (Sutton et al. 1998b) introduce the

reinforcement learning problem in more detail and discusses standard techniques and formula-

tions such as policy gradient, q-learning, temporal difference learning, and actor-critic methods.

Different methods for model-free reinforcement learning can be distinguished based on (i) how

they evaluate the policy, (ii) how they update the policy and (iii) how they explore the space, with

active research in robotic manipulation for all categories. A more detailed discussion of relevant

approaches can be found in the recent survey by (Deisenroth et al. 2013). In light of recent

advances in optimizing highly parameterized nonlinear function approximators, most notably

deep neural networks (Chapter 2.2.2.4), and advances in computational hardware allowing for

highly distributed simulation and learning frameworks, first results for learning policies for
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manipulation tasks with model-free reinforcement learning have been presented (Lillicrap et al.

2015; Heess et al. 2015; Andrychowicz et al. 2017).

Learning dynamical systems is another interesting framework for model-free control, used

for dexterous robotic manipulation tasks. The key idea of these approaches is to observe the

system behavior and learn a direct mapping from a measurable system state to the controls.

Hence, none of the following approaches depends on any knowledge of the underlying system

dynamics. (Khansari-Zadeh et al. 2012) present real-time obstacle avoidance capable policies

learned from user demonstrations. Dynamic movement primitives (DMPs) (Ijspeert et al. 2013),

another learning-based method to infer policies from demonstrations, have been extended to

use feedback or coupling terms (Pastor et al. 2011b) to react to environmental changes such

as moving obstacles (Rai et al. 2014; Rai et al. 2016). (Gams et al. 2010) further show how

DMPs can be used to learn force-profiles in conjunction with periodic movements from visual

imitation.

2.2 Learning

Machine learning is concerned with computational methods which update predictive models

from experience (data), to improve on a performance measure (Mitchell et al. 1997). The abstract

concept of learning is of interest to the robotic community since it allows to optimize and improve

a functional representation, for instance, where to grasp an object, from data. For many complex

manipulation tasks, it is difficult to develop a generic algorithm to characterize desirable states

and how to achieve them for all possible situations a robot might be in. However, it is easy to

provide labels in the form of successes or failures as task outcomes in hindsight; thus, acquire

new data. In this context, data can be seen as the central design mechanism constraining the

functional representation to learn predictive models.

The broad field of machine learning can be divided into three main directions, supervised, unsu-

pervised, and reinforcement learning. The main distinction between supervised and unsupervised

learning is the availability of labels/targets for the corresponding features and the objective. Su-

pervised learning has a well-defined objective, learning a mapping from features to labels/targets.

Unsupervised learning is generally concerned with learning the underlying structure of the data

(features) and often results in ill-posed problem formulations, for instance, clustering (Kleinberg

2003). Reinforcement learning is a framework to learn policies, mapping states to actions while

optimizing for the highest possible expected reward. It is distinctly different from super and

unsupervised learning since it creates a feedback loop between the learning method and data

generation.
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In the following, we discuss supervised learning, an essential framework for this thesis. We

introduce the main methods and concepts, not strictly limited to supervised learning, building

the foundation of our thesis contributions. We refer the interested reader to standard textbooks

(C. Bishop 2007) and (Murphy 2012) for a more detailed introduction into supervised and

unsupervised learning and (Sutton et al. 1998a) for reinforcement learning.

2.2.1 Supervised Learning

The name supervised learning stems from the objective to find a mapping from features x to targets

y, the supervision signal. Hereafter, we discuss differentiating aspects and concepts for supervised

learning. Within the following sections, we refer to machine learning models (Chapter 2.2.1.2),

which are models that have been trained to capture the structure of the mapping we attempt to

optimize. Such learned predictive models can be used within the context of model-based robotic

manipulation, but are not to confused with more traditional analytical models, typically used in

robotics.

2.2.1.1 Dataset

Supervised learning methods use datasets

D = {(x,y) ∈ X ×Y} , (2.1)

also referred to as data design matrix, composed of pairs of features x and targets y. Without

loss of generality both x and y might represent multi dimensional vector representations. In

order to assess the performance of a learning method it is common practice to have three disjoint

datasets, referred to as train, validation, and test sets. The training set is used to optimize the

model (Chapter 2.2.1.2), the validation set to optimize the methods hyper-parameters and the

test set to evaluate the methods generalization capabilities. In order to use this optimization

methodology, the data samples composing the different datasets should be drawn from the

same underlying data distribution. The most common assumption, relevant for theoretical and

performance analysis, is that the data is independently, identically distributed (i.i.d.).

Relaxing requirements of the dataset D, composition, and changing the dataset generation

process, characterize distinctly different learning problems. We refer to learning problems on a

datasetD composed of labeled pairs (x,y) and additional samples x without a corresponding label

y as semi-supervised learning. This is a common scenario, given that manual data annotation is

a time-consuming and labor-intensive process. For example, grasp hypotheses would require

either manual annotation of real robot data, a self-supervision mechanism, or simulation robot
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experiments to obtain meaningful labels y. Weakly labeled learning problems operate on datasets

for which targets y encode a property relevant for the mapping at hand instead of the true labels.

For instance, (Oquab et al. 2015) present a method that locates objects in 2D images solely

optimized from labeled data pairs containing information if an object is present or not, but

not the location of the object itself. The data generation process allows categorizing learning

methods into offline and online learning. Most supervised problems are tackled with offline

learning approaches, greatly simplifying the learning problem. Offline learning consists of data

acquisition, e.g., robot movement data (Rasmussen et al. 2006), separating the full set into the

aforementioned train, validation and test set, followed by optimizing the model and reporting the

model performance on the test set. However, many real-world problems result in a continuous

data stream, meaning the dataset would grow indefinite and the underlying data distribution often

cannot be captured with a static dataset since it is time-varying. Online learning methods can

process such data streams and adapt to changing data distributions. Robots create an abundance

of data, stemming from their high-frequency sensor measurements and control actions. Hence,

efficient online learning is of interest to the field of robot manipulation.

2.2.1.2 Models and Methods

In order to make any predictions from previously seen data, every model and method has to make

prior assumptions. These structural choices encode some intrinsic assumptions, such as how the

observed data points are correlated. There cannot exist a single machine learning method which

outperforms or is on par with all other methods on all possible datasets, domains, as stated by

the no free lunch theorem (D. H. Wolpert et al. 1997). However, it is fair to assume that there

exist subsets of problems, relevant to robotic manipulation or to humans in general, for which a

learning algorithm can outperform all other methods since it is based on the right assumptions.

Models and methods for machine learning can be broadly categorized into three different

categories: (i) lazy learning methods such as nearest neighbor (C. M. Bishop 2006) store the

training data and perform inference by computing statistics on the set of k-nearest neighbors.

Locally weighted regression, another example of lazy learning does not simply store all training

examples but builds local models, lowering the inference complexity. (ii) Eager learning based

on parametric models such as logistic regression (Chapter 2.2.2.3) and deep neural networks

(Chapter 2.2.2.4) do not require any data samples at inference time. Such methods update a

parametric function representation to explain all observed data samples. Hyper-parameters for

parametric models might encode assumptions such as the functional form, or how data affects

the parametric model. (iii) Models which grow with new data samples from the last category,

typically referred to as non-parametric models, e.g. random forests (Ho 1995), decision trees

(Quinlan 1986) and Bayesian non-parametric (Murphy 2012).
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The broad family of parametric models is most relevant for this thesis and most commonly used

in the robotics manipulation literature. In the following, we represent parametric models as

f (·;θ) : X →Y (2.2)

where θ encapsulates all parameters optimized from data. The number of the open parameters

θ in conjunction with the functional structure defines the model capacity. Generally, one can

assume the more parameters, the higher the capacity of the model, typically required to express

complex mappings from data. Conversely, it is often beneficial to use the least amount of

parameters to explain the data, also referred to as Occam’s razor (c.1287–1347).

Within the framework of probability theory, supervised learning can be formalized as follows:

p(y|x) = p(x|y)p(y)
p(x)

=
p(x,y)
p(x)

(2.3)

p(y|x) is the feature conditional, p(x|y) the target conditional, p(y) the target prior and p(x) the

marginal distribution. Hence, we can categorize our parametric model f (·;θ) depending on the

term it attempts to fit, either directly the left hand side p(y|x) (discriminative) or the right hand

side (generative).

Generative Model: Generative models allow synthesizing data, reason about missing features

x and transparently encode prior knowledge about the targets y and model knowledge of the

data generating process. Hence, if we have a good model of the underlying data generation

process, less data is required to achieve good regression and classification results. However, a

severely wrong prior model introduces a strong bias. Thus, the resulting fitted model might not

achieve good performance. Generative models often lend themselves for better analysis since the

assumptions about the data generation process are explicitly expressed in the model. Additionally,

we can draw samples from the model and therefore get insights about the shortcomings of the

model. Further, generative models provide an uncertainty estimate, therefore, allow to better

reason about their predictions. Since robotic manipulation systems act in their environment, can

actively generate and acquire new data, uncertainty estimates can be exploited to make more

informed decisions about future actions. However, capturing uncertainty as well as modeling

the data generation process is a much more complex learning problem compared to simple

discriminative learning discussed hereafter. For example, in order to classify objects, we might

not be interested in rendering natural images, the inverse graphics problem. More related to

manipulation, if we are interested in inferring if a grasp hypothesis results in a stable or unstable

grasp from RGB-D sensor observations, we do not require to understand how realistic partially

occluded depth maps are generated and used to inform a grasp.
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Discriminative Model: The second model class attempts to directly learn a mapping from fea-

tures x to targets y, therefore learning a discriminative function p(y|x). For classification (Chap-

ter 2.2.1.6) this results in learning a decision boundary whereas for regression (Chapter 2.2.1.5) in

predicting the values of y. Models in this category are often computationally less expensive and

scale better with large-scale datasets and high dimensional feature spaces compared to generative

models. Further, since this model class learns a direct mapping, the inference is straightfor-

ward, requires simple model evaluation. Hence, discriminative models result in fast inference.

Different from generative models, information about the underlying data distribution has to

be learned implicitly during the optimization. Therefore, large datasets are essential for good

performance, usually resulting in gradient-based optimization methods which have been studied

extensively in the optimization literature (Bottou et al. 2018; Nocedal et al. 1999). Although

discriminative models are very flexible and allow to encode the assumptions implicitly, it is often

not clear how to encode domain knowledge. For instance, how to use existent knowledge about a

robots kinematics, useful for robot manipulation learning tasks, within a discriminative learning

approach such as deep neural networks (Chapter 2.2.2.4). Introspection of the resulting models

is another distinction to generative models. Understanding the biases of the learned model and

analyzing error cases is inherently difficult. Additionally, many state-of-the-art discriminative

models do not provide well-calibrated uncertainty estimates. Thus, it is unclear if a robotic

system should rely on, e.g. torque predictions from such methods since there is no assurance that

the resulting predictions are safe to execute on.

Global Model: Supervised learning approaches attempt to capture the important structure in

the feature space to infer targets y in an efficient manner. Global models such as Support Vector

Machines (SVMs) (Chapter 2.2.2.1) and deep neural networks (DNNs) (Chapter 2.2.2.4) consist

of one model f (·;θ) for all data samples in D. Therefore, different data samples (x,y) ∈ D
affect the prediction for all other data samples (x′,y′) ∈ D\(x,y). In the case of discriminative

approaches, this property facilitates extrapolation since the parametric model does not encode a

notion of proximity to the training data. Gaussian Process (Rasmussen et al. 2006), a generative

Bayesian approach, does encode proximity to the training data, essential to obtain a measure of

uncertainty. Still, the open parameters are optimized based on all data points which can result in

worse performance if the underlying data distribution has very different noise characteristics in

different parts of the feature space. Continuous online learning is another challenge for global

models. Since updates have a global effect, old data has to be revisited to not forget about its

mapping. Generally speaking, a representative dataset has to be maintained; otherwise, the model

performance degenerates concerning the previously learned mapping.
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Local Model: In order to better cope with shifting data distributions and streaming data, local

learning methods allocate new local models over time such as locally weighted regression

(LWR) (C. G. Atkeson et al. 1997) and incremental local Gaussian regression (iLGR) (Meier

et al. 2014b). Learning the “optimal” similarity metric is a challenging task for this learning

regime since a globally accessible proximity evaluation is vital to scale such methods to high

dimensional features spaces. Further, changing the similarity metric over time introduces further

complexity since efficient data structures such as k-d trees (Bentley 1975) required for fast

proximity computation would have to be updated over time as well. Other challenges are adding

models over time and altering local models while maintaining the best possible performance.

Extrapolation with local models is posing further difficulties since global effects and structures

are not captured; thus, it cannot be used to extrapolate to unseen parts of the feature space.

2.2.1.3 Objective

For the following objectives, we always assume that the dataset D, used for optimization, is

i.i.d. Hereafter, we present three different objectives, common in machine learning and robotic

learning applications.

Frequentist: Maximum likelihood estimation (MLE) is a common method to obtain a point

estimate of the model parameters θ given a dataset D. This frequentist method assumes no prior

information on the model parameter distribution. Since machine learning methods are often

formulated as minimization problems and the logarithm is a monotonic increasing function, we

formulate the two main MLE objectives as minimizing the negative log likelihood. Discriminative

models directly optimize

argmin
θ
− ∑

(x,y)∈D
log p(y|x;θ), (2.4)

the conditional negative log likelihood estimate, a point estimate of θ, maximizing the conditional

probability of predicting p(y|x;θ). Generative models optimize the model likelihood

argmin
θ
− ∑

(x,y)∈D
log p(y|x;θ) =− ∑

(x,y)∈D
log p(x|y;θ)+ log p(y)− log p(x). (2.5)

MLE allows for efficient gradient descent based optimization algorithms, suitable for complex

problems with large sample sizes. It further is guaranteed to converge to the true parameter

in the limit of examples if the true data distribution is within the parametric family of p(·;θ)
and is generated by at least one value θ (C. M. Bishop 2006). Hence, MLE optimization

approaches tend to require regularization, see optimization based perspective, to limit the effect
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of overfitting to the data. Overfitting basically results in remembering the observed data points

without allowing for inter- or extrapolation.

Bayesian: Different from frequentist methods, Bayesian approaches treat parameters as ran-

dom variables. Prior subjective information about the parameters θ is provided in p(θ) encoding

all problem-specific information. In order to use Bayesian inference, the posterior distribution

over the parameters has to be computed given the dataset

p(θ|D) = p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

. (2.6)

Using the posterior distribution p(θ|D) the parameters θ are integrated out to infer the conditional

probability

p(y∗|x∗,D) =
∫

p(y∗|x∗,θ)p(θ|D)dθ. (2.7)

For most interesting distributions integrating out the parameters is computationally intractable.

But since the parameters are treated probabilistically this problem fromulation is less prone to

overfitting. Optimization is performed on the parameters of the prior distribution, resulting in a

hyper-parameter optimization problem.

The maximum a posteriori (MAP) objective

argmin
θ
− ∑

(x,y)∈D
log p(y|x,θ)+ log p(θ), (2.8)

alleviates the computational burden of integrating out the parameters θ. The main difference

compared to MLE is the additional prior term log p(θ) which can be interpreted as a regularizer,

informed by prior problem specific knowledge. In case of a uniform prior, the MAP objective re-

covers the MLE objective. Similar to MLE, the MAP objective is prone to overfitting, weakening

the proper probabilistic interpretation.

Optimization Perspective: Many methods without a probabilistic interpretation such as max-

margin classification, deep neural network architectures, and decision trees are typically formu-

lated as a minimization problem. The canonical objective for supervised learning consists of the

sum of all prediction errors on the training dataset:

argmin
θ

∑
(x,y)∈D

l(y, f (x;θ))+ r(θ) (2.9)
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This formulation is a generalization of maximum likelihood estimation for p(y|x) assuming

l(y, f (x;θ)) =− log(p(y|x)) and θ and r(θ) = 0 or r(θ) =−logp(θ) for maximum a posteriori

estimation. Here, r(θ) acts as a regularizer, biasing the model to avoid singularities, disambiguat-

ing multiple solutions. A regularizer is also commonly used to constrain, bias the solutions of

the resulting model to be sparse, e.g. using ||θ||1 to encourage many parameters to be zero. This

popular approach allows learning a rich feature representation in a higher dimensional space,

such that linear separation or linear combination is encouraged. Data overfitting, common for

discriminative methods, is another reason for regularization. An overfitted model might have

resulted in a better, more compressed dataset representation, yet, if the training dataset does

capture all test examples, an overfitted model results in bad inference performance. Underfitting

is a common problem for generative models. Here, a regularizer might be required to encourage

a model to generate more diverse predictions. For instance, not capturing perceptual details in

images and missing modes of the data distribution is a common result of model underfitting.

Recent game theoretic inspired optimization approaches such as generative adversarial networks

(GANs) (I. Goodfellow et al. 2014) have shown first results to alleviate these issues.

The loss in the optimization objective (Equation 2.9) ultimately encodes the desired outcome of

the learning problem. In the case of binary classification (Chapter 2.2.1.6), for which y ∈ {0,1},
the optimal performance of a learning-based method would be if we fulfill the following element-

wise loss

lclassification(y, f (·;θ)) := 1(y, f (·;θ)) =

0, if y = f (·;θ)

1, otherwise
(2.10)

Yet, this loss is not differentiable and therefore difficult to optimize. The hinge loss

lhinge(y, f (·;θ)) := max(0,1− y f (·;θ)), (2.11)

a partial differentiable relaxation to equation 2.10, is a common proxy objective, used for

SVMs (Scholkopf et al. 2001) and for deep neural networks (Tang 2013a). If the dataset D
is separable and the underlying model parameterization results in zero hinge loss, the original

classification objective (Equation 2.10) will also be fulfilled. Based on the same assumptions,

the same holds true for the cross entropy objective (C. Bishop 2007)

lcrossentropy(y, f (·;θ)) := y log( f (·;θ))+(1− y) log(1− f (·;θ)). (2.12)

In the case of a regression problem (Chapter 2.2.1.5), the mean squared error

lmse(y, f (·;θ)) := ||y− f (·;θ)||2 (2.13)
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represents the gold standard objective, albeit not suitable for datasets with outliers. The Huber

loss

lhuber(y, f (·;θ)) :=

1
2(y− f (·;θ))2, for |y− f (·;θ)|< δ

δ |y− f (·;θ)|− 1
2 δ 2, otherwise

(2.14)

is an extension to the mean squared error, specially designed to be robust against outliers.

Designing the right objective or loss is crucial for learning methods to converge to good and

desired solutions. In robotic manipulation, the learning objective can be used to provide additional

domain-specific information, implicitly guiding the learning algorithms parameter updates.

2.2.1.4 Optimizer

Optimizing the open model parameters θ is a key component for the success of learning methods.

Optimization methods can be categorized into gradient-free and gradient-based. Sampling is

a common gradient-free approach whereas Newton-Raphson (Newton 1664; Raphson 1690)

allows for fast convergence in the proximity of a minimum and availability of second-order infor-

mation. Most state-of-the-art parametric approaches relevant to this thesis, such as deep neural

networks, are highly-parametric and have well-defined gradients. Sampling-based optimization

is very costly in this regime, and therefore gradient-based approaches represent the predominant

optimization approach for large-scale machine learning methods (Bottou et al. 2018). Recent

efforts in large-scale data collections render computing the gradient for equation 2.9 intractable.

Fortunately, we can obtain a sufficient stochastic gradient approximation

∇̂θt =
1

#Dmb ∑
(x,y)∈Dmb⊆D

∇θt l(y, f (x;θt)) (2.15)

by sampling subsets of the dataset D uniformly at random. We iteratively optimize our objective

by updating the parameters θ using a first order optimizer h and the latest ∇̂θt or some additional

statistics thereof.

θt+1 = θt +h1(∇̂θt ;ψ) (2.16)

Stochastic gradient descent (SGD)

hSGD(∇̂θt ;ψ) : =ψ∇̂θt , (2.17)

the most basic algorithm to optimize parametric models for large datasets, scales the noisy

gradient estimate ∇̂θt with a learning rate ψ. A more detailed discussion of theoretical properties
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and use cases for SGD can be found in (Bottou 2010). In the recent literature many more

first order stochastic gradient descent based methods have been proposed (Kingma et al. 2014;

Tieleman et al. 2012; Duchi et al. 2011; Zeiler 2012), all designed to better cope with the noisy

approximation and differently scaled gradients.

Newton’s method allows to speed up convergence significantly in the vicinity of a local minimum

by capturing additional information about the loss landscape based on the Hessian, the second

derivative with respect to the loss. The cubic computational and quadratic space complexity

renders second-order approaches not applicable to large-scale state-of-the-art models. Noisy

estimates of the Hessian pose additional challenges for second-order methods when applied in

highly stochastic settings. Even for large-scale convex optimization problems, with a factorizing

objective (Equation 2.2.1.3), stochastic first-order methods achieve faster convergence concerning

the overall computation time (Bottou 2010).

2.2.1.5 Regression

Supervised learning tasks which map from a continuous input X := Rn : n ∈ N+ to a continuous

target space Y := Rn : n ∈ N+ are commonly referred to as regression problems. Many robotic

manipulation problems, for instance, predicting the expected sensory reading (Pastor et al.

2012), learning inverse dynamics models (C. G. Atkeson et al. 1997; Meier et al. 2014a),

forward models (C. G. Atkeson et al. 1997) and grasp pose prediction from 2D images (Redmon

et al. 2015) have been phrased as regression problems. These approaches generally assume

that there exists a functional mapping (many-to-one or one-to-one) which learning methods

such as Gaussian processes (Rasmussen et al. 2006), linear models or deep neural networks (I.

Goodfellow et al. 2016) can infer from data. The mean squared error (MSE) (Equation 2.13) is

the most commonly used objective for the latter to methods to optimize its parameters.

However, if the dataset is ambiguous, for example, two grasp poses are equally suitable for a

given image of an object, we cannot learn a proper functional mapping from input features x

to targets y. Hence, using MSE for regression inevitably results in significant errors, since an

intermediate value and neither of the modes will be optimal. Therefore, such problems require to

learn a multi-modal distribution which allows resolving the ambiguity by sampling. Fortunately,

learning multi-modal distributions can be rephrased as a multi-class classification problem,

discussed hereafter, by approximating the output space Y with a sufficiently large number of

classes.
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2.2.1.6 Classification

Supervised learning problems with categorical a output space Y := {0,1}n : n ∈ N+ are referred

to as binary classification for n = 1 and multi-class classification for n > 1. This general class of

learning problems is a well understood and has a well established theoretical analysis (Vapnik

1999). There exist several standard benchmarks of increasing complexity and dataset size

allowing to compare the performance and develop new classification approaches. For example,

UCI (Dheeru et al. 2017), MNIST (LeCun 1998) and the ImageNet Classification Challenge

(Russakovsky et al. 2015) are well-established benchmarks, the latter two commonly used for

computer vision.

Many robotic manipulation problems have been cast into this learning framework. Failure

prediction due to unexpected sensor readings during real-world robotics experiments has been

phrased as a binary classification problem-based on statistical tests (Pastor et al. 2011a). Grasp

planning is another very active research field within the manipulation community. (Saxena

et al. 2008a) proposed to formulate grasp planning as a probabilistic classification problem,

using vision-based features. (Lenz et al. 2015) use an exhaustive sliding window classification

approach to grasp detection to solve the structured prediction problem, discussed in more detail

hereafter, in a brute force manner.

2.2.1.7 Structured Prediction

Structured prediction differs significantly to classification and regression due to a richer and

more complex output space Y . A typical example of more complex output spaces might be

graph structures like parsing trees in natural language processing or pairwise or higher order

terms between different elements of the output space. Such problems require different loss

formulations

l(y, f (x,y;θ)) := max(0,max
y′

(∆(y,y′)+ f (x,y′;θ))− f (x,y;θ)) (2.18)

and often different model formulations f (x,y;θ), mapping X ×Y →R, to capture the additional

structure in the output space. Inference in such structured model formulations is not a mere

mapping but requires to solve an optimization objective as well (Tsochantaridis et al. 2005):

ŷ = argmax
y

f (x,y;θ)) (2.19)

Hence, this is formulation is only applicable if Equation 2.19 can be optimized efficiently or the

search space is sufficiently small to be enumerated.
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Other structured problems, for instance, ranking bounding boxes, can be formulated in a different

manner

lranking(y, f (x;θ)) := max(0, max
(x′,y′)∈D

(∆(y,y′)+ f (x′;θ))− f (x;θ)) (2.20)

introducing a ranking between different data samples, without requiring the samples from the

output space as input to the model. In order to infer the best hypothesis from a set of hypotheses,

the model only needs to be evaluated for every hypothesis once. (Lehmann et al. 2011a) proposed

to use such a ranking formulation for efficient object detection within an image, significantly

reducing the search space compared to exhaustive classification formulations.

Semantic and instance segmentation are common computer vision problems with direct ap-

plications in robotic manipulation. Here, the output space Y is represented by labels for all

pixels. Hence, the assumption that all labels/pixels are independent given the input data does

not hold. Conditional random fields, an extension of logistic regression (Chapter 2.2.2.3) to

structured outputs, modeling pixel-wise relationships (Lafferty et al. 2001), better capture the

output space structure, resulting in easier learning problems and better predictive performance.

(N. D. Ratliff et al. 2007) have formulated learning from demonstration, a common approach

to teach manipulation skills for robotic manipulation, as a max-margin structured prediction

problem.

In summary, if there exists a known structure within the output space, it is often beneficial to

include additional objective terms or constraints such that the underlying learning method is

aware and can exploit this structure. Nevertheless, complex output space structures result in

more complex learning objectives, e.g., rendering otherwise convex problems indefinite. Thus,

global optimality cannot be ensured anymore.

2.2.2 Learning Methods

There exist a large body of work on different learning methods, exploiting different problem

structures, assumptions, scale to large datasets, as well as providing computationally efficient

uncertainty estimates. In the following, we discuss machine learning approaches which have

been used throughout this thesis to extend model-based approaches.

2.2.2.1 Support Vector Machine

Linear classification boils down to finding a separating hyperplane. In the case of linearly

separable data, with high probability, an infinite number of separating hyper-planes exist. For
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example, the perceptron algorithm (Rosenblatt 1958) is one particular method to determine a

particular separating hyperplane. Max-margin formulations attempt to find the hyperplane with

the maximal possible distance between the different classes. The primal optimization objective

can be written as a convex Quadratic program (QP) (Cortes et al. 1995; Scholkopf et al. 2001):

argmin
w
||w||+C

n

∑
i=1

ξi (2.21)

s.t. (2.22)

y(wT xi +b)≥ 1−ξi,∀i (2.23)

ξi ≥ 0,∀i (2.24)

with θ = [w,b] and ||w|| regularization to resolve the redundancy by re-scaling b and w. Slack

variables ξi are required if the dataset is not linearly separable. Linear separation in the original

feature space X is often too restrictive. This issue is commonly addressed by introduciing a

feature transformation function Φ(·). Using a hinge-loss objective (Equation 2.11) we obtain the

following max-margin classification objective

argmin
w
||w||+C

n

∑
i=1

max(0,1− yi(wT
Φ(xi)+b)). (2.25)

In its primal form, (stochastic) gradient descent can be used to solve this optimization problem,

albeit second order methods are more efficient for feasible dataset sizes. The primal objective

allows to further optimize the feature function Φ(·) using backpropagation (Rumelhart et al.

1986), for example in form of deep neural networks. The dual problem formulation

argmin
α

n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jΦ(xi)
T

Φ(x j) (2.26)

s.t. (2.27)
n

∑
i=1

αiyi = 0 (2.28)

C ≥ αi ≥ 0∀i (2.29)

provides an alternative perspective and extension for learning a linear separating hyperplane

by applying a non-linear feature transform. The dual problem is again a convex Quadratic

program with a unique global optimal solution for which efficient optimization approaches
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exist (Scholkopf et al. 2001). The separating hyper-plane is recovered by computing

w =
n

∑
i=1

αiyiΦ(xi) (2.30)

b = yi−wT
Φ(xi) : C > αi > 0. (2.31)

The support vectors (all non zero α) allow to compute the hyperplane. Analog to Gaussian

processes (Rasmussen et al. 2006), the input data is only used in an inner product Φ(xi)
T Φ(x j)

computation, lending itself to the kernel trick, replacing Φ(xi)
T Φ(x j) with a positive semi-definite

kernel function k(xi,x j) (Scholkopf et al. 2001) e.g. the RBF kernel

krbf(x1,x2) = exp
(
−(x1− x2)

2

l

)
. (2.32)

Thus, a kernel-based SVM determines support vectors, representative example templates in the

training dataset, based on the similarity metric defined by the kernel. In order to infer the class

of a new data sample the distance to all representative example templates, weighted by their

corresponding αi has to be evaluated. The number of support vectors is negligible compared to

the original dataset size resulting in a computationally efficient classification method. However,

the quadratic scaling of the kernel matrix fundamentally limits optimizing the kernel-based SVM

objective for large-scale datasets. In recent years large-scale datasets such as ImageNet (Deng

et al. 2009), Pascal VOC (Everingham et al. 2010) and MSCOCO (Lin et al. 2014) render kernel-

based methods computationally infeasible. Therefore, the primal objective with parametric

and optimized feature transform, resulting in a non-convex optimization problem, has been

revisited (Tang 2013b).

2.2.2.2 Naive Bayes

This generative naive classifier (Ng et al. 2002) is based on the assumption that all features are

independent given the class:

p(yk|x) =
p(yk)∏

n
i=1 p(xi|yk)

p(x)
(2.33)

Hence, the estimation of the likelihood model factorizes across features. The maximum likelihood

solution can be found by a closed form solution, depending on the likelihood model, allowing

for efficient and incremental learning by updating the sufficient statistics of the feature wise

likelihood models. This simple model has been used with great success for complex tasks such

as spam classification and decision making with medical data (Kazmierska et al. 2008) and

sampling-based motion planning (Burns et al. 2007).
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2.2.2.3 Logistic Regression

Despite the name “logistic regression” this method is in fact a discriminative binary classification

approach.

p(yk|x) = o(x)yk · (1−o(x))1−yk (2.34)

o(x) =
1

1+ exp(θT x)
(2.35)

In order to optimize Equation 2.34, we minimize the sum of the negative log-likelihood over

all samples, thus, compute the maximum likelihood estimate. Different from ordinary linear

regression, the additional non-linear transformation (Equation 2.35) hinders a closed form solu-

tion. As a generalized linear model for classification, this objective is straightforward and fast to

minimize using iterative gradient-based optimization. The resulting solution allows introspecting

the decision boundary by analyzing the feature weighting. Further, the computational require-

ments for inference are minimal, only a single inner product between the features and the data

sample and an additional exponential are required. Therefore, this method functions as a great

baseline for many robotics tasks, such as affordance predictions from 3D point clouds (Kim et al.

2014) and grasp prediction (Saxena et al. 2008b). However, good manual feature engineering is

essential for many tasks to achieve good performance with such a simple, learned mapping.

2.2.2.4 Deep Neural Networks

Neural networks have a long history in the field of machine learning (Schmidhuber 2015). On an

abstract level deep learning and thus deep neural networks represent a learning framework com-

posed of a directed computation graph for which most computational nodes can be derived with

respect to their inputs and open parameters. The hierarchical composition of the computational

graph structure lends itself to create complex parametric function approximators while main-

taining computationally efficient inference and optimization. Due to computational advances,

allowing to solve convex Quadratic programs efficiently, neural networks, known to be difficult

to optimize, became unfashionable in the late 1990s, and early 2000s and the field of machine

learning focused on SVMs and Gaussian processes. The breakthrough result by (Krizhevsky et al.

2012) has shown that DNNs make better use of the new available large-scale datasets (Deng et al.

2009), several orders of magnitude larger than before (LeCun 1998), and hardware advances

supporting efficient parallel matrix operations. This promising performance improvement on a

single classification task has spurred new interest within the research community in DNNs. In

the following, we describe the main concepts required to develop deep learning models. We refer

to (I. Goodfellow et al. 2016) for a more comprehensive literature review and discussion.
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Computational Node: The core idea of deep learning is to create a graph of computational

nodes to achieve minimal loss on an objective (Equation 2.9). A general node in this graph is a

functional mapping

n(·;θ) : X →Y (2.36)

where X represents the input feature space and Y the output space of this particular node. Most

computational nodes allow to obtain gradients for their parameters θ and for their input features

in X . Several computational nodes are commonly combined, building a composed node also

referred to as layer to communicate ideas and allow for easier model design. The fully connected

(FC) layer

nfullyConnected(x;w,b) := wx+b (2.37)

is the most fundamental building block for deep neural networks. It represents a linear projection

with open parameters θ = [w,b], using an efficient matrix multiplication and vector addition.

Since composing linear functions results in a linear model, the overall model complexity,

expressiveness does not increase. In fact, every composed, stacked hierarchical linear function

can be expressed by a single linear function. Hence, linear FC layers are typically followed by a

nonlinear node, also referred to nonlinearity:

nsigmoid(x) :=
1

1+ exp(−x)
(2.38)

nrelu(x) := max(0,x) (2.39)

nprelu(x) :=

x, x≥ 0

−αx, x < 0
(2.40)

nelu(x) :=

x, x≥ 0

α ∗ (exp(x)−1.), x < 0
(2.41)

Nonlinearities are characterized by their computational complexity, does hardware acceleration

for particular operations exist, and most importantly if they saturate or not. For instance, the

sigmoid nonlinearity (Equation 2.38) (Rumelhart et al. 1986) saturates, since its value approaches

0 for x� 0 and 1 for x� 0. In both cases its gradient vanishes. This creates complications while

optimizing very deep, thus hierarchical, neural networks, since gradients can easily vanish if the

network is not initialized properly. Hence, in recent years several novel non saturating activation

functions have been proposed. Most notably relu (Equation 2.39) (V. Nair et al. 2010), used in the

landmark ImageNet result by (Krizhevsky et al. 2012). This nonlinearty is only subdifferentiable

and can further result optimization challenges if many parameters project on R−, thus, not
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receiving a zero gradient. Prelu (Equation 2.40) (He et al. 2015) and elu (Equation 2.41) (Clevert

et al. 2015)) mitigate this issue by modeling x < 0 differently while maintaining the efficient

gradient computation.

For many feature spaces X , more structural information exists, for example, spatial or time

locality. FC layers do not use this information, even worse, if applied they destroy this data

property. Therefore, convolution (Conv) layers represent another major deep learning building

block. This layer is relevant for robotics since it is ideal for RGB-D images and time series data.

A naive 1D discrete convolution consists of a convolutional kernel w of size k, being convolved

over the input data x

nconvolution(x,w,b) := ∑
i

b+
k

∑
−k

wkxi+k. (2.42)

Depending on the kernel size k, it is more efficient to compute convolution layers in frequency

domain (Vasilache et al. 2014). Since the majority of research within the computer vision and

robotics community focuses on models with small kernels, the time domain is more common.

Convolutions extend to higher dimensional input data, relevant to robotics such as point clouds,

but become increasingly more computationally expensive (Pavel et al. 2013). Conv layers greatly

reduce the number of open model parameters, another important property, since the number

of open parameters w depends on the kernel size k and not on the input feature dimension.

Further, Conv layers are inherently translation invariant, therefore, ideal for learning hierarchical

representations from spatially or temporally structured data.

A large amount of diverse, representative, i.i.d. data, required for optimizing deep neural network

models is a common limitation for the direct application in robotic tasks. Further, it is not

common to directly integrate existing model knowledge into the computational graph. However,

it is possible to directly embed known models into the network structure (Kloss et al. 2017)

for as long as the gradients concerning the inputs and possibly its parameters exist, can be

derived or approximated. An embedded model is merely another computational node, which the

overall function approximator can exploit during training and inference. Note, with a sufficient

amount of data the neural network might ultimately replace the initial model. Still bootstrapping

a complex deep learning model by integrating simpler domain-specific models can be highly

beneficial since the overall network only has to learn an error model.

In recent years, deep learning has become a common learning-based method for robotics. In part,

this can be attributed to the availability of more mature frameworks such as TensorFlow (Abadi

et al. 2016), PyTorch (Paszke et al. 2017) and MXNet (Chen et al. 2015). Recently first results on

integrating non-differentiable models (Choromanski et al. 2017) into computational graphs with

robot applications have been presented. Additionally, state-of-the-art performance in fields for
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which large-scale datasets can be easily obtained such as computer vision and natural language

processing is only achieved by deep learning based approaches. Based on these empirical

observations the robotics community has started to investigate large-scale data collections to

enable such learning approaches (Chapter 5).

Structure: Deep learning methods can be categorized by the computational problems they

address, their objective formulation, and their model design. The best-understood problem is

supervised learning (Section 2.2.1), optimizing a fixed mapping from a feature space X to an

output space Y . Deep learning approaches tackling this problem class are commonly referred

to as feed forward models. (Hornik et al. 1989) proved that this family of models is a universal

function approximator, given a sufficient amount of open parameters, it is possible to approximate

any function sufficiently well with enough data samples. The high-level requirements are at the

neural network consists of least two FC layers with a sufficiently large number of parameters,

the first one followed by a saturating nonlinearity, e.g., sigmoid (Equation 2.38). We can

further categorize feed forward models by their most common computational nodes and graphs,

the network structure. Convolutional neural networks (CNNs), composed out of Conv layers

followed by FC layers, are the current best model structure for image and video-based problems.

(Shelhamer et al. 2017) proposed to further relax the requirement for a fixed size feature space

by using a fully convolutional approach. Here, a dense output map is generated, typically in

a much lower resolution as the input data. Fully convolutional classification tasks use the

maximum value of the last computational layer instead of the dense output. Auto-encoder

networks (Hinton et al. 1994) are another interesting family of networks, used to learn lower

dimensional embeddings. This class of structures has exciting new robotics applications since no

labeled data is required, allowing to use data from all available robot sensor streams. However,

learning low dimensional embeddings results often in an ill-posed regression problem due to

multi-modal output distributions (Chapter 2.2.1.5). Variational auto-encoder (Kingma et al.

2013) alleviate this issue by transforming samples from a known latent distribution into the

empirical data distribution.

Variable length feature and output spaces build another broad and very general problem class. For

instance, translation models have to cope with varying sentence length as input and potentially

different varying output length. Time series data such as sensor streams are ubiquitous in robotics

and also a representative of this problem class. Recurrent neural networks (RNNs) are the

predominant network topology for these problem instances. RNNs represent a universal Turing

complete computation architecture (Siegelmann et al. 1995). This computational expressiveness

results in a challenging learning problem. The computational graph is rolled out for every given

input sequence. Thus, the resulting network structure can be interpreted as a dynamically created

feedforward network per example. Since the dynamically created feedforward network repeatedly
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applies the same computational node, gradients are very likely to either vanish (converge towards

zero) or explode (converge towards infinity). (Hochreiter et al. 1997) identified this problem and

proposed a novel structure, long short-term memory (LSTMs) cells, to improve the gradient flow

through time. (Chung et al. 2014) presented a more straightforward but effective Gated RNN unit

(GRU) which has found great adaptation in the recent literature. Despite these improvements,

RNNs are still notoriously difficult to optimize. Therefore, attention-based models build a

promising new direction for limited size time series data as shown by (Vaswani et al. 2017). In

addition to the better-understood optimization problem formulation, attention-based models are

more suitable for the recent advances in parallel computation, resulting in faster training and

inference time.

Generative adversarial networks (GANs) (I. J. Goodfellow et al. 2014) are a novel concept, deep

neural network class, with broad applications in robotics, most commonly used for unsupervised

learning problems. The main idea of this framework is to use two networks, the generator

which attempts to synthesize data to fool the second network, the discriminator which tries to

differentiate synthesized from real data. Hence, this formulation does not require to specify the

desired target objective explicitly. For instance, in the case of learning how to generate realistic

robotic sensor measurements, it is not trivial to define the required noise characteristics. GANs

mitigate this problem by learning a discriminator which penalizes examples which are seemingly

different from the empirical data distribution. There exist further relevant relationships between

GANs and robotic learning problems, for example, inverse reinforcement learning (Finn et al.

2016a) and learning from demonstration. Unfortunately, GANs are very difficult to optimize

and parameterize (Lucic et al. 2017), hence, new optimization methods and tools have to be

developed to make this framework easier accessible to robotic manipulation research.
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Chapter 3

Real-time Perception meets Reactive Motion

Generation

Robotic manipulation is a challenging multidisciplinary field with a rich history of model-based

approaches (Chapter 2.1). To better understand current limitations of fully integrated model-

based manipulation systems we analyze a state-of-the-art fast feedback model-based system in

this chapter. Understanding how all model-based components interact enables us to recognize

possibilities for learning-based extensions.

Already in the 80’s (R. A. Brooks 1990), it has been postulated that tightly integrating real-

time perception and reactive motion generation is beneficial if not even required for robotic

systems that physically interact with uncertain and dynamic environments. Yet, Sense-Plan-

Act (Chapter 2.1.1.1) is still the predominant system architecture to date within the robotics

manipulation community, used for the recent challenges (DARPA Robotics Challenge (DRC)

(C. Atkeson et al. 2015; Johnson et al. 2015) or Amazon Picking Challenge (APC) (Eppner

et al. 2016; Correll et al. 2016)). In this chapter, we present an instantiation of a robotic system

which tightly integrates model-based real-time1 perception with reactive motion generation for

autonomous manipulation. The resulting model-based system architecture provides insights

into the achievable performance for dynamic manipulation tasks. It further allows us to identify

key assumptions required to achieve such high performance using purely model-based methods.

Different from end-to-end learning-based systems, the presented work enables introspection. It

enables us to reason about possible learning-based extensions to its components.

Therefore, we aim at drawing conclusions on model-based system integration based on empirical

evidence from an extensive number of experiments. We quantify the benefit of integrating

real-time perceptual feedback and reactive motion generation in dynamic manipulation scenarios

for high DoF systems to achieve high performance. We compare to baseline systems that rely on

1As common in the Computer Vision area, we use the term real-time to indicate that the computation time required
by the perception methods are below the frame-rate of the depth camera, i.e., below 30Hz.
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Figure 3.1: One time step to illustrate the different model-based components of our reactive
system. Left to right: 3.1a sensory input y (we overlay the position of target object [drill] at
an earlier time step), 3.1b the perceived state s of the robot and the environment (target object,
obstacles) inferred from perception modules, 3.1c local and global policies πl, πg, and 3.1d
fused policy π.

the same components but process sensory information at different rates or optimize the motion

over different time horizons. We propose requirements for components rather than prescribing

specific perceptual, planning or control modules. This quantitative evaluation of the level of

integration, possible due to the well-defined model-based components, is one aspect that makes

this work unique in relation to related work on robotic manipulation systems.

Our system is based on assumptions about the manipulation task and prior model knowledge. We

use model-based visual perception to simultaneously track a known target object and the robot

arm, and to obtain a geometrical representation of the workspace obstacles (Figure 3.1b). A local

controller at a high rate (1 KHz) and a continuous motion optimizer (Figure 3.1c) at a lower rate

(5-10 Hz), consume both the object pose, workspace geometry, and robot configuration, resulting

in a joined kinematic policy2 (Figure 3.1d).

Another unique aspect is the complexity of our experimental scenarios: they contain dynamic

target objects and a dynamic environment - conditions that are common in human-robot col-

laboration, household, or disaster relief scenarios. Such scenarios pose difficult challenges for

end-to-end learning-based systems. Acquiring a sufficiently large corpus of successful task

executions is rather challenging for dynamic scenarios without bootstrapping from a model-

based system. Further, specifying the task, automatically identifying, tracking and extracting

key objects in the scene, exploring the “right” action space while being safe, and guaranteeing

predictable and generalizable behavior, are just a few of the many additional challenges pure

learning-based approaches face in such scenarios. Compared to the robot challenges mentioned

above (APC and DRC), our experimental scenarios consider a much smaller variety of manip-

ulation tasks and are tested on a fixed-base platform. However, concerning dynamicity, our

scenarios go beyond those considered in the challenges where the environment is static and only

the robot interacts with it. Furthermore, we do not use any teleoperation as was the case in the

2Throughout this chapter we will use policy and controller interchangeably.
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DRC. We extensively evaluate the adaptivity, accuracy, and robustness of the alternative systems

in four different scenarios with varying degrees of geometric complexity and dynamicity. We

draw the following conclusions: (i) Incorporating real-time feedback on different time-scales

is crucial to achieving safe and successful task execution in uncertain, dynamically changing

environments, (ii) the availability of reactive motion generation relaxes the requirement for

perception systems to achieve maximum, one-shot accuracy since new, updated information can

be consumed immediately, (iii) fast feedback model-based systems in combination with slower

model-based feedforward methods, enabling look ahead planning, exhibit great manipulation

performance based on the strong assumption about the composition of the world state and limited

autonomy, and (iv) data association, inferring grasps and changes to the system dynamics while

grasping, lend themselves to learning-based extensions.

3.1 System Architectures

We evaluate and compare three alternative model-based system architectures along the spectrum

from motion planning (Eppner et al. 2016) to pure feedback control: (i) Sense-Plan-Act, (ii)

Locally Reactive Control and (iii) Reactive Planning. All discussed architectures belong to the

general class of top-down hierarchical approaches composed of functional modules as discussed

in Chapter 2.1.1. We are aware that our architecture notations still contain some ambiguity. In

the absence of existing terminology, we define what we mean by them in each subsection and

use them coherently after that. Figure 3.1 and Figure 3.2 present an overview of the information

flow between the perception and the motion generation modules in the different architectures.

We discuss them here in relation to existing work on robotic systems. Chapter 2.1 presents a

more extensive literature review on robotic manipulation. A review of the vast body of work on

visual tracking is the scope of this thesis and we refer to the respective sections in (Wüthrich

et al. 2013; Garcia Cifuentes et al. 2017).

3.1.1 Sense-Plan-Act

Building systems through strong modularization into sensing, planning and acting components

remains the predominant paradigm for high DoF robotic system building (Kortenkamp et al.

2016). In this paradigm, perception provides a model of the environment, in which a motion

planner finds an optimal, collision-free path that is then tracked by a stiff and accurate controller.

In Figure 3.2, this architecture corresponds to perception and motion optimization components,

with visual feedback being considered only at the beginning of the motion planning task.
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Figure 3.2: Flow of information across three time steps: The perception modules continuously
infer the latent state of the robot and the world s from observed sensory input y. The locally
reactive control immediately translates this world state into a local policy πl. The continuous
motion optimization computes a plan πg for some time-horizon at a slightly lower rate. Reactive
planning combines these two policies into one policy π, which enables it to immediately react
to local changes, and to look ahead in time to react to larger changes. Finally, this policy π
produces a control output u (omitted for readability) which is sent to the robot.

The advantage of this paradigm lies in the subdivision of the complex problem of robotic

manipulation into intuitive subproblems that are easier to solve. Systems that are built according

to sense-plan-act (SPA) are perfectly suited for environments that are well-defined, structured

and controlled. Chapter 2.1.1.1 provides a more in-depth discussion of this architecture, its

shortcomings and common extensions.

3.1.2 Locally Reactive Control

On the other end of the spectrum from feedback control to motion planning, we consider system

architectures that rely entirely on visual feedback control. They do not have the global motion

optimization modules (Figure 3.2), but purely rely on local policies (Figure 3.2) to generate

reactive motion behavior. With local, we indicate that they only take the local geometry of

the environment around the current manipulator pose into account to compute the optimal,

immediately next control command. System architectures in this category react to changes

immediately and are very robust to uncertainties in sensing and actuation. However, they

may get stuck in local minima, for example when the environment has a complex workspace

geometry (Brock et al. 2008).

Pure feedback control systems have a long tradition. For example, (Khatib 1986) propose a well-

defined interface for perceptual feedback in the form of potential fields constructed from closest
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points. The resulting feedback control law can be computed efficiently using the superposition

property of potential fields in combination with additive control laws based on the desired motion

and constraints such as joint limits.

Visual servoing (Chaumette et al. 2016) broadly refers to the class of locally reactive control

that closes the loop around visual data. More recently, there has been much work on end-to-end

learning-based approaches, neglecting almost all existent model-based information, directly

inferring motion policies from perceptual feedback in the form of raw camera images and the

system joint state, e.g., (Levine et al. 2016a). Another example comes from the team who won

the first APC (Eppner et al. 2016). Although they do not close the loop around visual data, they

demonstrate the robustness of standard joint space and operational space controllers. (Eppner

et al. 2016) admit that locally reactive control approach may have limitations in more complex

manipulation tasks that require planning.

3.1.3 Reactive Planning

Summarizing the above, locally reactive control gives robotic systems the ability to consume new

information immediately, instantly react to changes and compensate for inaccuracies. However,

it is susceptible to local minima. Motion planning as typically used in sense-plan-act finds

solutions even in complex situations where feedback controllers may get stuck. Such methods

use kinematic models and geometric environment models to plan for a longer horizon. However,

this comes at a significant computational cost that may break real-time requirements.

A hybrid system that combines both reactive motion planning and locally reactive control would

be ideal. Such a system can simultaneously adapt locally but also re-plan in case of larger

changes. Compared to SPA, these systems are much more reactive and faster in completing the

manipulation tasks. They rely on two motion generation modules, as depicted in Figure 3.2: the

global motion optimization and local policies. The motion representations of both modules need

to be fused to generate one policy for motion generation.

Combining local control with motion planning is quite common in the area of mobile robots, e.g.,

(Ferguson et al. 2006; Kuwata et al. 2009; Leonard et al. 2008; Richter et al. 2016). However,

fewer approaches exist to date that scale up such a hybrid system to robots with many degrees of

freedom which are manipulating the world due to the increasing planning complexity.

One example is the elastic-strip framework (Brock et al. 2002) which combines local control

with motion planning. The use of onboard vision sensing is suggested and demonstrated on a real

platform but with a simulated, potentially changing world model. Controller funneling (Burridge

et al. 1999) is another hybrid approach which takes perceptual information into account. This
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approach requires a-priori knowledge to design the state space partitioning controllers and their

switching conditions. So far we only talked about model-based approaches for reactive planning,

Dynamic Movement Primitives (DMPs) (Ijspeert et al. 2013) a learning-based method can be

interpreted as a combination of local control and a locally generalizing trajectory generator.

Feedback terms can be learned and incorporated (Rai et al. 2016) for an instant reaction. (Lehner

et al. 2015) present a mobile manipulation system that locally adapts and augments global

motion plans in response to changes in the environment as perceived by onboard sensors. (Yang

et al. 2016) present a system to find a valid stance and collision-free reaching configurations in

complex, dynamic environments for a full humanoid robot.

3.2 Real-Time Feedback Modules

We consider scenarios that require manipulation of dynamic objects in dynamic environments.

Continuous feedback on the location of target objects and the workspace structure is of utmost

importance for systems acting in these scenarios. An important requirement for the feedback com-

ponents is, therefore, to deliver information as fast as possible. A low-dimensional representation

of this information is beneficial to keep bandwidth requirements low.

In the following, we briefly describe the model-based methods integrated into our system.

However, we want to emphasize that any other approach which fulfills the requirements could be

used instead.

3.2.1 Visual Tracking of Target Objects

We use visual tracking to estimate the pose of every object the robot may want to manipu-

late (Chapter 2.1.2). We choose the probabilistic model-based method from previous work

by (Wüthrich et al. 2013). This method assumes knowledge of the 3-dimensional shape of the

objects of interest, represented as triangle meshes. It takes as input depth images and compresses

it into 6 DoF object poses at the frame rate of the onboard camera. The model, domain-specific

knowledge, and its formulation make it very robust to occlusions of object parts which are com-

mon in the context of manipulation tasks. Within this work, we assume that a good initialization

for the tracker can be provided. However, a learning-based object detector and pose estimator

would alleviate this requirement, complement our system.
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3.2.2 Visual Robot Tracking

Precise positioning of a robot arm with respect to the sensed environment and the target object

is a crucial ability for manipulation systems. It is not always possible to use merely forward

kinematics to determine the 6D end-effector pose as elucidated in Chapter 2.1.2. On real robotic

platforms, kinematic models and measured joint angles are commonly inaccurate and therefore

lead to erroneous predictions of end-effector pose relative to the camera.

To mitigate this problem, we continuously estimate the true robot arm configuration relative to

the camera mounted on the robot’s head. We choose the probabilistic, real-time method from

previous work by (Garcia Cifuentes et al. 2017). It fuses depth images and measured joint angles

to produce precise estimates of the robot configuration at 1kHz which is the rate of the joint

encoders. Even under massive occlusion of the arm and swift motion, this method can correct

errors due to biases in the joint sensors and too imprecise kinematics of the camera relative to the

rest of the kinematic chain. Furthermore, it models the delay between the measurements from

the joint sensors and the camera.

3.2.3 Modeling Unstructured Workspace Obstacles

The robot needs to be aware of the workspace geometry and the obstacles therein to generate

collision-free motion. Using model-based methods in such an unstructured environment is not

only an open research field but also not necessary for many manipulation tasks. For the scenarios

addressed in this chapter, we assume that only the target object, the table, and the robot has to be

modeled since every other obstacle observation has to be avoided by the robot. Commonly, occu-

pancy grids are a common data structure to probabilistically encode unstructured environments

at multiple scales by integrating depth measurements over time, e.g., using OctoMaps (Hornung

et al. 2013) (see Figure 3.3).

These approaches come at a significant computational cost that does not allow for reactive

behaviors. Hence, we represent obstacle regions in a discrete binary occupancy grid which is

newly generated frame by frame. We update our occupancy grid by transforming each point cloud

to world coordinates while removing the points outside the robot workspace. This transformed

point cloud is then converted to an occupancy grid (with 2 cm resolution), which is filtered for

statistical outliers using PCL (Rusu et al. 2011). Finally, the voxels corresponding to the robot

arms and the tracked object are set to empty (see Figure 3.1) and the occluded regions are set

occupied using ray casting (Hornung et al. 2013). These filtering and transformation steps can

be performed at approximately 15Hz. We found this rate to be sufficient in practice.
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3.3 From Visual Feedback to Continuous Signed Distance Fields

We convert the processed perceptual data as described in the previous sections into a set of Signed

Distance Fields (SDFs) describing the target object, table, unstructured workspace obstacles,

and the robot. SDFs provide a way to perform fast collision checking, used by many motion

optimization approaches (Zucker et al. 2013; N. Ratliff et al. 2015; Kalakrishnan et al. 2011b).

SDFs also allow defining proper Riemannian metrics to measure path length in workspaces

populated by obstacles (N. Ratliff et al. 2015), which we make use of in sense-plan-act and

reactive planning.

To compute the SDFs, we rely on a combination of analytic formulations and distance propagation

algorithms. The manipulated objects, the table, and the robot links are modeled by simple

geometrical shapes such as spheres, boxes and capsules (see Figure 3.3a and 3.3b). These

shape primitives allow for analytic SDF formulations. For the occupancy grid, the SDF is

computed using a voxel grid distance propagation algorithm and we use local interpolation

techniques (Mainprice et al. 2016) to define gradients over this field (see Figure 3.3a).

To obtain a consistent representation, all SDFs are transformed into world coordinates. The target

object SDF is positioned according to the object’s visually estimated 6DoF pose. The SDFs of

the robot links are positioned according to the forward kinematics and joint angles as estimated

by the sensor fusion approach as mentioned earlier. For the table, we assume a known pose.

The combined SDFs are used by sense-plan-act, reactive planning and locally reactive control

to produce collision-free movement as will be described in the next section. However, the SDF

of the occupancy grid would require a prohibitively high bandwidth if sent directly to locally

reactive control. Hence, we further approximate the workspace geometry with the closest point

to each sphere that approximates a robot link (see Figure 3.3c). The positions of these points are

obtained by computing the gradient of the SDF at the center of the sphere (see Figure 3.3c).

3.4 Motion Generation

The model-based motion generation module proposed in (N. D. Ratliff et al. 2018) is designed

for continuous feedback integration. The architecture enables blending local reactive control and

higher-level continuous motion optimization. More specifically, we use reactive control policies

of the form πA = ( f ,A) that are defined as a non-linear second-order differential equation of the

form ẍ= f (x, ẋ) with x, ẋ, ẍ ∈ Rk and a positive semi-definite weighting matrix that may vary

smoothly across the spaceA : Rk×Rk→ Rk×k. Example weighting matrices are discussed in

52



3.4 Motion Generation

(a) (b) (c) (d)

Figure 3.3: Local avoidance controllers to robot (3.3a), table (3.3b) and ambient world (3.3c).
(3.3d) the occupancy grid (cubes: colors represent height), along with a vertical slice of the
corresponding signed distance field (spheres: color represent the distance to the closest occupied
cell).

the following sections and further properties and derivations are presented in (N. D. Ratliff et al.

2018).

Suppose we have a number of differentiable maps xi = φi(q), mapping from configuration

space, assuming knowledge about the kinematics model, to task spaces x1, . . . ,xn (Toussaint

et al. 2010). Then given a collection of local controllers ( fi,Ai) defined on those task spaces, we

define their pointwise evaluation at joint angles q as

q̈desired = argmin
q̈

1
2

n

∑
i=1
||ẍdesired

i −Jiq̈||2Ai
(3.1)

where ẍd
i = fi(q, q̇) and Ji is the Jacobian of φi. Example differentiable maps are forward

kinematics maps to points on the robot’s body and maps to relative distances between the robot

and workspace objects. The kinematics model of the robot is easy to obtain i.e. from computer

aided design (CAD) models used to construct the robot, allows for efficient differentiation and

evaluation, and generalizes to the full state space of the robot. To simplify construction of the

quadratic program (QP) in Equation 3.1, we use a common Gauss-Newton-like approximation,

removing the term J̇ q̇ from ẍ=Jq̈+J̇ q̇. This term captures the information about the curvature

of the kinematics function which has no perceptible effect when optimizing in 1 kHz.

This formulation allows for expressing both attractor/collision avoidance controllers, based on

proximity to the goal/obstacles (Chapter 3.4.1), and complex anticipatory ones, obtained from

motion policies optimized over a longer time horizon (Chapter 3.4.2). Providing rich model-

based goals and obstacle representations enable more anticipatory and precise planning. Yet,

with fast optimization and feedback loops as presented in this chapter, primitives are sufficient.

Modularity is the key enabling us to experiment with the full spectrum from locally reactive

control to higher level motion optimization for longer horizon reasoning.
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3.4.1 Locally Reactive Control

Locally Reactive Control combines multiple controllers through Equation 3.1, including collision

controllers to instantaneously react to the local workspace geometry, and target controllers for

goal convergence. The target controller pulls the system toward position and orientation targets

in a purely local Cartesian control fashion. This portion of the system can, therefore, be used

by itself, without any higher level planning. It is visualized in Figure 3.1 with red arrows. In

addition to the target controller, we use a collection of obstacle avoidance controllers that take

effect when parts of the body get close to an obstacle. They create workspace accelerations away

from the obstacle with increasing priority as a function of proximity. They are visualized in

Figure 3.3. We also use a default posture potential that pulls the arms slightly toward a default

posture to resolve redundancy along with simple damping controllers in the c-space and at the

end-effector to regulate the velocity of the system. Designing and changing this default posture

potential, e.g., for different robots is only possible since our approach is model-based. Local

control runs at 1kHz for effective integration of the underlying highly nonlinear differential

equation. However, it sends joint positions, velocities, and accelerations for low-level execution

only at 100Hz. The lowest level of control handles the generation of the torques needed to track

the desired joint states through interpolation and an inverse dynamics controller.

3.4.2 Reactive Planning and Continuous Motion Optimization

We use a motion optimizer based on Riemannian Motion Optimization (RieMO) (N. Ratliff et al.

2015) as the basis for reactive planning. It runs continuously, tracking the local minimum based

on feedback while obstacles and the target change over time. This motion optimizer integrates

information over a time horizon of three seconds (the “approximate” average time length of a

reaching motion) based on the underlying kinematics model, enabling anticipatory behaviors

and efficient coordination of multiple controllers handling collision avoidance, position targets,

orientation targets, etc. As is sometimes done in optimal control and MPC (Chapter 2.1.4),

it summarizes its policies as Linear Quadratic Regulators (LQRs) built on a local quadratic

approximation around the local optimum. However, this is done only kinematically (with

accelerations as control variables) since the planning module addresses movement only. This

is visualized in Figure 3.1 with green arrows. These are sent to locally reactive control for

integration with the other controllers through Equation 3.1. The continuous optimizer operates

at a slower time-scale than locally reactive control, updating its optimization at 5-10Hz. To

mitigate potential delays, it sends full LQR policies that represent the optimal policy within a

region of the locally optimal trajectory. Rather than using a simple attractive potential pulling

the end-effector toward a desired pose (which can be expressed as a differential equation in
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the configuration space) the motion optimizer creates a more expressive attractor differential

equation that simultaneously pulls the system toward the desired target while also integrating

anticipatory actions (e.g. rotating the wrist to avoid future obstacle) that enable smoother, more

efficient, and well-coordinated behavior. Therefore, the local controllers are able to operate

cohesively with the planned policies between planning updates.

3.4.3 Grasping

We manually decompose the grasping problem into multiple sequential task states—approach,

establish grasp, move object, release, and retract—each governed by either local control, contin-

uous optimization, or some combination thereof. Grasping is controlled independently of the

other motion generation modules through force feedback in the fingers. The rest of the system

observes the resulting movement of the hand and reacts accordingly to simultaneously adjust the

arm to avoid obstacles and stabilize the hand posture to the extent possible under the constraints

of the environment. We manually defined a set of grasp poses for each object that we use in

our experiments. Annotating all objects with a fixed set of possible grasp hypotheses and a

heuristic to decide which one to pick at runtime is not sufficient for true autonomy. Model-based

grasping has very high computational demands and strongly depends on the perceptional system

components. Hence, we identify grasping as a key challenge towards autonomous manipulation

for which learning-based approaches can complement the presented system (see Chapter 5).

Nevertheless, restricting the experiments to manually defined grasps enables us to perform con-

sistent experiments across different scenarios and system instantiations for conducting empirical

studies discussed hereafter.

3.5 Experiments and Demonstrations

We compare the performance of the three different system architectures that were explained

in more detail in Chapter 3.1: (i) sense-plan-act, (ii) locally reactive control and (iii) reactive

planning, in different scenarios ranging from static to fully dynamic. As an experimental platform,

we use a fixed-base, manipulation platform equipped with two 7-DoF Kuka LWR IV arms, three-

fingered Barrett Hands and an RGB-D camera (Asus Xtion) mounted on an active humanoid

head by Sarcos. All components are torque controlled using model-based inverse dynamics

controllers and PID feedback controllers manually tuned to track the desired joint states even

if the underlying system dynamics change. It runs at determinable worst-case execution times

of 1ms and is executed on a PC running Xenomai, a real-time framework for Linux. We placed

system components that frequently interact on the same computer (tracking and SDFs, locally
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reactive control and motion optimization) to meet the computational requirements and network

bandwidth of the different system components.

3.5.1 System Architecture Realizations

The visual perception modules (Chapter 3.2) consist of a tracker for the right robot arm and a

tracker for the target object. We assume a known table pose. Everything else in the environment is

considered to be unstructured workspace obstacles modeled by an occupancy grid map. Since our

system is purely model-based it was essential but also straightforward to provide this information,

whereas learning-based approaches would have to infer this information from observations. The

algorithms used in all our implementations of the different architectures are identical. We vary

the frequency at which information is passed to motion generation and whether we consider

policies that are optimized over a longer time horizon.

Sense-Plan-Act Here, we acquire just one depth image at the very beginning of the exper-

iment. Based on this image, the poses of the objects of interest are estimated, and a model

of the workspace geometry is created. Then a one-shot motion optimizer, a simple variant of

Chapter 3.4.2, generates a plan which will be executed without any further visual feedback. The

overall planning time of sense-plan-act is limited to 2s for all experiments. This threshold has

been chosen empirically, trading off convergences success and potential restarting of the planner

in case no solution can be found.

Locally Reactive Control In this architecture, depth images are processed continuously to

estimate the object pose and robot arm configuration. Additionally, the world model is updated

online. This information is consumed by locally reactive control (see Chapter 3.4.1) that

immediately adapts to the observed changes in the next control cycle.

Reactive Planning As in the previous architecture, the object and robot arm tracker continu-

ously estimate the object pose and robot arm configuration. Also, the world model is updated

online. However, here the information from the perception modules is also used to continuously

replan in addition to the locally reactive control (see Chapter 3.4.2).
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(a) Static pick and
place

(b) Dynamic pick and
place

(c) Dynamic grasping (d) Dynamic pointing

Figure 3.4: Experimental scenarios: The human hands indicate which objects are being moved
during execution.

3.5.2 Scenarios

We present four different scenarios (see Figure 3.4) and experimental results which illustrate

the importance of tightly integrating real-time perception and reactive motion generation. Each

experiment parameterization is performed at least three times.

3.5.2.1 Pick and Place in Static Environments of Increasing Difficulty

In this experiment we consider the static pick and place scenario shown in Figure 3.4a. The

task is to pick up the Pringles box and place it on the other side of the brown box, without any

collisions. Figure 3.5 uses gray lines to visualize the varying positions of the box obstacle in

this scenario. The box is always placed before starting each experiment. The closer the box to

the robot base, the higher the difficulty to successfully pick and place the Pringles. For each

system architecture and complexity level, we run three trials. At position 15, we reached the

point where each system failed at least once. Table 3.1 shows the success rate of picking up the

object and placing it at the target location. Even though the planning problem itself becomes

very challenging, locally reactive control alone already performs very well. Not surprisingly,

sense-plan-act performs very well in such a static environment. However, in the most challenging

setting, it does fail more often compared to reactive planning. One reason for this is the limited

planning time allocated, during which no successful plan may be found. Reactive planning can

find a path more often since it can re-plan continuously, thus, has more time to find a feasible

path during execution. In Table 3.2 we report the average execution time for successful trials in

seconds. The time required for the initial object detection is not part of the execution. Locally

reactive control and reactive planning are on par for the simple settings, whereas sense-plan-act

is significantly slower. The difference in execution time is because sense-plan-act can only start
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Difficulty l. react. c. react. pl. s-p-a
static -10 100% (3) 100% (3) 100% (3)
static 0 100% (3) 100% (3) 100% (3)
static 5 67% (3) 100% (3) 100% (3)
static 10 33% (3) 100% (3) 67% (3)
static 15 17% (6) 50% (6) 17% (6)
dynamic 100% (3) 100% (3) 0% (3)

Table 3.1: Success rates (total runs) of pick-and-place experiment. Difficulty refers to obstacle
position (cm) relative to the robot (see Figure 3.5).

Difficulty l. react. c. react. pl. s-p-a
static -10 13.64 s 13.41 s 21.05 s
static 0 14.29 s 13.44 s 21.76 s
static 5 15.83 s 14.26 s 20.16 s
static 10 20.95 s 18.32 s 21.51 s
static 15 28.75 s 21.06 s 18.27 s
dynamic 17.95 s 15.44 s -

Table 3.2: Average execution time (seconds) of successful pick-and-place. Difficulty refers to
obstacle position (cm) relative to the robot (see Figure 3.5).

planning to the next pose after it achieved the old pose. It then has to wait until a solution has

been found. The execution time increases with difficulty due to the more confined workspace

which results in slower convergence especially for locally reactive control and in general for

longer trajectories. This scenario illustrates that even in static environments, the two tightly

integrated system architectures can have benefits over sense-plan-act.

3.5.2.2 Pick and Place in Dynamic Environments

In this scenario, the target object is placed in the same location as in the previous scenario, but

initially, there is no obstacle. During execution, we move an unmodeled obstacle between the

pickup and goal position (see Figure 3.4b). The obstacle is captured by the octomap and thus is

considered by both locally reactive control and reactive planning.

For the three different system architectures, we observe very different outcomes. Success rates

and execution times are reported in the bottom row (dynamic) in Table 3.1 and 3.2. While locally

reactive control and reactive planning are on par regarding these measures, sense-plan-act fails

completely - as expected. Results in terms of clearance between the robot and the dynamic

obstacle are summarized in Figure 3.6 for the nine experimental runs (three per architecture). In

the case of sense-plan-act the motion to perform the pick keeps high clearance with the obstacle.
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Figure 3.5: Visualization of the successful end-effector trajectories in a pick-and-place task in
the presence of a box obstacle (Cf. Table 3.1). Per experiment, the box varies its pose from -10,
0, 5, 10 or 15cm distance to the far edge of the table (as indicated by the dashed lines). The
black labels indicate which trajectory belongs to which box position. The black dots indicate
the start of each trajectory. The blue dot indicates the picking object position and the cross its
placing position. We compare locally reactive control (Left), reactive planning (Middle) and
sense-plan-act (Right).
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(a) Locally Reactive Control
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(b) Reactive Planning

20 0 5 10 15 20
time (sec.)

0

5

10

15

20

25

m
in

 d
is

ta
nc

e 
(c

m
)

(c) Sense-Plan-Act

Figure 3.6: Minimum distances (i.e., clearance) with the introduced obstacle during the dynamic
pick-and-place experiment. Locally reactive control gets stuck after successfully grasping the
object. Reactive planning while slower than the locally reactive control to realize the grasping
motion is able to perform the place successfully. Sense-plan-act despite higher initial clearance
than locally reactive control collides with the obstacle when its position changes.

However, since sense-plan-act does not react to changes in the environment during motion, the

arm collides with the unmodeled obstacle when its position changes. Locally reactive control

can move faster towards the pick configuration, but this results in lower clearance to the obstacle.

Locally reactive control is then unable to perform the place motion and gets stuck in a local

minimum. Only when removing the obstacle, it nicely converges to the goal position. Hence, in

this case, locally reactive control results in much safer behaviors than sense-plan-act. Finally,

reactive planning is able to avoid the introduced obstacle. Additionally, it successfully finds a

path to circumvent the obstacle and to place the object at the goal position.

In conclusion, these experiments show the importance of real-time perception to avoid collisions

with unmodeled obstacles. In addition, this experiment illustrates that having reactive planning

is essential to find collision-free paths in complex dynamically changing environments whereas

locally reactive control is safe but gets stuck more easily.

3.5.2.3 Grasping with Dynamic Targets

Not only the unmodeled environment is subject to constant change, but very often also target

objects may move when reaching for them. In this scenario, we systematically analyze the impor-

tance of perceptual feedback integration into motion generation, when the target is repositioned

after motion onset.

This scenario has two levels of difficulty. In both, we place the target object in the center of

the grid marked with white tape in Figure 3.4c. Level 1: As soon as the gripper starts moving,
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we move the target object to another grid cell. Level 2: We move and flip the target object 180

degrees. For each level, this repositioning is done very fast. For each level, we report execution

time and grasp success.

For Level 1, Figure 3.7a illustrates that both locally reactive control and reactive planning are

capable of adapting to the fast changing conditions and successfully grasp the object for all

possible changes. Notice, locally reactive control is slightly faster in execution which can be

explained by the easy path planning problem required to solve this task. Sense-plan-act however,

is only capable of grasping the object if it is close to the initial position. For the more complex

Level 2 shown in Figure 3.7b, we observe very similar performance in terms of grasp success.

Note, sense-plan-act did not adapt to the change of orientation; the grasp just happened to

work due to the symmetry of the target object. Concerning execution speed, we observe a big

difference between reactive planning and locally reactive control. The main reason for this

difference is that reactive planning continuously adapts to the rotated approach whereas locally

reactive control has an inherent tradeoff between convergence in position and orientation. For

instance, in the case of higher priority on the position, locally reactive control will attempt to

reduce the position error faster compared to the orientation error. This can result in overall slower

convergence since orientation changes might be more difficult after reaching the target position

due to environmental constraints. Arguably this tradeoff can be tuned to fit this scenario, but

it always will be task specific whereas reactive planning automatically solves this problem due

to the planning horizon. Instead of manually tuning, learning-based methods could identify

situations and infer the proper tuning in order to resolve this issue.

This experiment emphasizes the importance of continuous feedback of target object pose to adapt

the grasping motion in case the object moves during reaching. It also demonstrates the benefit of

a longer planning horizon.

3.5.2.4 Pointing in Dynamic Environments with Dynamic Target

In our most complex scenario, we want to analyze the accuracy and reactivity of simultaneous

changes in the environment and target pose. The task of the robot is to align its fingertip with the

tip of a drill (see Figure 3.4d).

We have four different levels of complexity for this task. Level 1: As a baseline, we start with

a static environment without obstacles while the drill is stationary. Level 2: we introduce a

blocking obstacle (box) during execution, which can be avoided by going around it. Level 3: the

obstacle is moved into the way such that the arm has to move over the obstacle or take a big

detour. Level 4: We start with a blocking obstacle. After the system starts moving, we remove
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4.43±0.6s 4.9±0.5s 8.12±0.6s

Loc. React. Cntrl Reactive Planning Sense-Plan-Act

(a) Target with Dynamic Position
Loc. React. Cntrl Reactive Planning Sense-Plan-Act

11.35±1.9s 9.48±0.4s 13.09±2.6s

(b) Target with Dynamic Pose

Figure 3.7: Visualization of successful grasps of in case of a (3.7a) repositioned target and
(3.7b) repositioned and flipped target after motion onset. We compare locally reactive control
(Left), reactive planning (Middle) and sense-plan-act (Right). (Top of 3.7a and 3.7b) The grid
of possible target object poses after motion onset. The grid is 24×24cm large. The central dot
marks the initial target object position. Dark blue dots indicate that all three grasp attempts were
successful. Red crosses indicate positions at which no grasp trial succeeded. (Bottom of 3.7a
and 3.7b) Visualization of the end-effector trajectories in the corresponding color per approach
for successful grasps. Black dots indicate the starting position. Blue dots indicate the target
pose. For (3.7a) both, locally reactive control and reactive planning grasp successfully in the
entire region of variation and successfully adapt the trajectory given the new feedback on target
pose. Locally reactive control is on average slightly faster than reactive planning˙Sense-plan-act
manages to successfully grasp the target when the new position is in/close to the path to the
original target location. For (3.7b) both, locally reactive control and reactive planning grasp
successfully in the entire region of variation and successfully adapt the trajectory given the
new feedback on target pose. Reactive planning is on average a bit faster (time in seconds ±
one standard deviation). Sense-plan-act manages to successfully grasp the target when the new
position is in/close to the path to the original target location.
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Difficulty l. react. c. react. pl. s-p-a
static 100% (3) 100% (3) 100% (3)
straight 100% (3) 100% (3) 0% (3)
diagonal 100% (3) 100% (3) 0% (3)
turning 100% (3) 100% (3) 0% (3)

Table 3.3: Success rates (total runs) of pointing experiment

the obstacle while also changing the orientation of the drill by 90 degrees. The reorientation of

the drill means that the pointing approach has to be adapted.

We report the results for this scenario in Table. 3.3. We define success as reaching the tip of the

drill up to a distance of 3 cm without a collision with any environmental obstacle. Neither locally

reactive control nor reactive planning collide with any obstacle in this experiment. Sense-plan-act

however, collides with the blocking obstacle for both the Level 2 and Level 3 experiment. In the

case of the Level 4 experiment, sense-plan-act was able to reach the initial position of the drill

tip. Since no perceptual feedback is considered it was not aware of the rotation whereas both

locally reactive control and reactive planning could even shorten the path towards the drill tip

by taking into account the removed obstacle. For optimal performance, Level 4 requires both

continuous tracking of the target (similar to Grasping with Dynamic Targets) and updates of the

workspace obstacles (similar to Pick and Place in Dynamic Environments).

This experiment supports our hypothesis that integrating real-time perception with motion

generation is key to task success and safe behavior in highly dynamic scenarios.

3.6 Summary and Review

In this chapter we presented and analyzed different fully integrated model-based system architec-

tures. We showed that already locally reactive control which integrates perceptual feedback at the

highest possible rate could be very efficient for simple known tasks while being safe by avoiding

collisions with the environment. Reactive Planning achieves a better performance in more

complex environments due to its ability to look ahead. Knowledge about the kinematic models

is essential for the presented system to reason about the future system behavior and achieve its

safe and reactive behavior. Sense-plan-act performs well in static scenarios as expected, but even

there locally reactive control and reactive planning have advantages as they can start moving

earlier while continuing to consume feedback.

We also observed that on the trade-off curve between perceptual accuracy and computational

speed, it is more beneficial to have fast feedback than accurate world representations. This is
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especially the case for dynamic and uncertain manipulation scenarios where a fast reaction to

sudden changes or new incoming information is critical. As communication bandwidth is limited,

this also places constraints and how much information can be transferred between components.

Therefore, we opted for model-based visual tracking and querying SDFs only for a small subset

of points on the robot. Data association, identifying if observed points are part of the robot or the

environment, was significant and we therefore carefully synchronized the different sensory and

information streams across the three different computers. Despite synchronization, heuristics for

data association are a current limitation. Learning-based approaches are an ideal candidate to

replace these heuristics and infer whether or not to ignore voxels in the occupancy grid.

The presented system still solves relatively simple pick and place tasks, albeit going beyond

state-of-the-art operating in dynamic environments. Constraining ourselves to simpler tasks

allows to formulate robust observation models and well-defined cost functions capturing collision

avoidance tasks. By choice, the presented system does not rely on any learning to tackle the

different scenarios. However, based on the experience with this model-based system we can

identify several avenues for learning-based extensions. The current architecture operates on

visual and joint encoder feedback. However, manipulation tasks are heavily concerned with

contact interaction. We use the finger strain gauges as feedback in the grasp controller. Our

system would further benefit from also taking haptic feedback from tactile sensor arrays or

force/torque sensors into account. Modelling these sensor modalities is challenging. Fusing

multiple measurements from very diverse sensors and using them for execution feedback is

a challenging problem. To the best of our knowledge, no complex fully model-based robotic

manipulation system exists, capable of handling a diverse set of sensor modalities for contact

interactions. In Chapter 4 we therefore present a novel learning-based approach to tackle this

problem.

To empirically quantify the importance of fast feedback, we had to make strong assumptions

about the manipulation task. For instance, only known objects with manually predefined grasps

have been considered to allow for a fair comparison between the different methods. Albeit robots

often have to interact with a small set of known objects, automatically inferring good grasp poses

for unknown objects would be essential for the presented system to achieve a higher level of

autonomy. Model-based methods for grasping are known to not translate well to the real world

due to model inaccuracies and computation requirements (Chapter 5). Therefore, we propose

learning-based methods capable of extending the discussed system by replacing the manually

defined grasps for known objects with a deep neural network (Chapter 5), capable of inferring

grasps poses from partial sensory observation even for unknown objects.

Another key assumption for the success of our reactive manipulation was precise and fast

trajectory tracking. Although our system achieves good tracking using model-based inverse
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dynamics and PID control (Chapter 2.1.4), it requires high feedback gains to allow for unmodeled

changes to the robot’s dynamics when grasping and lifting objects. Because of the real-time

perceptual feedback our presented manipulation system proactively avoids obstacles, thus, is

very safe. However, due to high feedback gains required to compensate for model inaccuracies

while grasping, it is not as compliant as possible, therefore not inherently safe. Chapter 6

discusses a learning-based method which is agnostic to the underlying model-based inverse

dynamics method and improves its performance from data. This approach can further improve

the fully integrated system, discussed in this chapter, without sacrificing domain specific robotics

knowledge for learning.
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Chapter 4

Online Decision-Making for Manipulation

Complex and dynamic environments require to close feedback control loops as demonstrated

in the previous Chapter 3. Within this thesis, we have already shown that closing perceptual

feedback loops allow model-based system architectures to perform challenging pick and place

manipulation tasks while being agnostic to continuous environmental changes. However, here we

argue that robust task execution for complex interaction tasks, beyond pick and place, requires

to close feedback control loops in novel ways around many more sensory signals than done

traditionally. Without considering different sensor modalities, the robotic system cannot cope

with noise and uncertainty in the sensory-motor system of the robot and the environment during

contact rich tasks because important events cannot be observed. For instance, when unscrewing

the cap of a bottle force/torque measurements allow detecting if the cap becomes lose which is

very difficult to infer from perceptual data. Low-level control systems increase the execution

robustness by integrating feedback of high-bandwidth sensors, e.g., force/torque. Still, task

execution often fails due to external perturbations that are hard to observe and model in the low-

level control system, using high-bandwidth sensors. Hereafter, we propose to close a high-level

feedback loop, leveraging additional low- and high-bandwidth sensor modalities increasing the

task robustness using learning.

One challenge towards autonomous manipulation is to provide feedback controllers with appro-

priate reference signals and decide online when to consider alternative behaviors to counteract

perturbations. Model-based reactive systems (see Chapter 3) have shown promising results for

known manipulation tasks as long as their models are correct and no complex contact interactions

are required. When such complex contact interactions are necessary, for instance, complex grasp-

ing interactions, modeling errors are inevitable and will significantly degrade the performance of

the model-based planner (Weisz et al. 2012), e.g., for dexterous object manipulation. Uncertainty

about the state of the manipulated object increases exponentially fast and therefore planning

becomes intractable, unless smart heuristics/biases (Brock 2011) are applied.

67



Chapter 4 Online Decision-Making for Manipulation

Figure 4.1: The ARM-S robot manipulating a bottle.

Additionally, model-based methods (Chapter 3) require proper task-specific objectives and

programming. Here, we present a novel learning-based approach, treating manipulation tasks

as a data-driven sequential online decision-making problem, bootstrapped from demonstrations.

We do not neglect all model-based information, for instance, the perceptual system uses the

same model-based probabilistic object tracker as before. To effectively use learning from

demonstration, we leverage the fact that most manipulation tasks, e.g., unscrewing a bottle

(see Figure 4.1), locally decompose into a sequence of skills. A sequence can be encoded in a

state machine, termed manipulation graph, see Figure 4.3. Conceptually this graph is similar

to the task decomposition used in the previous Chapter 3 with the main difference that we

merely have to demonstrate skills and associate their high-level interconnection rather than

determining objectives for model-based optimization-based planning and locally reactive control.

This graph representation imposes constraints onto the possible sequence of manipulation skills,

similar to how a grammar constraints the possible sequences of words to form sentences. Such

a representation can be either inferred from data (Kroemer et al. 2014; Niekum et al. 2013) or

provided by human operators, who usually have good intuition about the necessary high-level

information and skill decomposition to accomplish a certain task. However, manually designing

rules, based on current sensory information to determine whether or not the current skill execution

is valid and where to start an alternative skill, is very hard. This is mainly due to differences in

sensor modalities, noise characteristics, and the high dimensionality of the signal space.
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In this chapter, we develop a method which addresses this complex sensor-based online decision

making using two learning-based methods. We propose to decompose the underlying online

decision-making problem into two related classification problems. Both problems have to operate

in real-time to close the high-level feedback loop, learning when to switch skills and which

skill to execute next. Sensory experiences, stored in the manipulation graph structure, contain

all required information and should allow autonomous data extraction, only requiring user

interventions at failure conditions.

Task-relevant perceived sensor signals are strongly correlated with the executed manipulation

action (Pastor et al. 2011b) is the critical insight enabling this learning-based system. Thus, given

similar task execution, the robot will perceive similar sensory feedback (Pastor et al. 2011a).

Therefore, skills used throughout this chapter are encoded as Associative Skill Memories (ASMs),

sensor information encoded in sync with movement primitives, as introduced in (Pastor et al.

2012). Model-based planning approaches (Chapter 3) address a more general global solution

space, making it challenging to associate sensory traces with their execution. However, these

associated signals are essential to training our classification-based online decision-making system

(ODMS). To use stereotypical movements, we focus on solving a particular manipulation task

instance in this chapter, unscrewing a bottle cap and removing it and screwing it back on. Note,

the presented approach could also be used to demonstrated robust grasping behavior, bridging

the gap between perceptual grasp pose prediction (Chapter 5) and manual grasp controller design

(Chapter 3).

The development and discussion of the learning-based ODMS is the main contribution of this

chapter. It decides in real-time, at any moment of the task execution, if the currently executed skill

should be replaced with another one (when) and which skill to choose as a replacement (which).

We only require human demonstration to learn stereotypical movements and intervention, stop

task execution in case the system is about to fail. These real robot skill demonstrations and

execution interventions result in a dataset, stored in the manipulation graph structure. ODMS

automatically extracts supervised datasets from the real-robot experiments allowing for training

our classification based decision-making system. Our formulation enables integrating sensors

even if they contain no valuable information about the task. The importance of different sensor

modalities at different execution stages is automatically inferred. Thus, manual task-specific

feature selection is less crucial. We further report qualitative results of our method applied to a

dexterous manipulation task performed by a bimanual robotic system, see Figure 4.1.
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4.1 Related Work

Motion planning approaches such as (N. Ratliff et al. 2009; Kalakrishnan et al. 2011a) are mostly

applied to problems neglecting object interactions, see Chapter 2.1.3, 3.1, and 3.4 for a more

thorough discussion. One recent approach that creates plans for contact manipulation, proposed

in (Dogar et al. 2010), still uses a quasi-static assumption to obtain a feasible search space. This

work builds upon results reported in (Pastor et al. 2011a,b, 2012), a skill-based formulation

towards autonomous manipulation. In contrast to (Pastor et al. 2012), we propose to close the

high-level feedback loop by running a decision-making process online at all time and not only

selecting the next ASM at the terminal condition of the current ASM. Different from (Pastor

et al. 2011a), we propose to learn failure case prediction from a supervised signal, obtained

from the ASMs organized in the manipulation graph structure. Additionally, we reduce the

number of open hyper-parameters, compared to the previous work by (Pastor et al. 2011a). The

manipulation graph is capable of generating a large number of skill sequences. This structure is

assumed to be manually provided by a user similar to the manually designed task structure in

Chapter 3. A manipulation graph could be constructed automatically, as proposed in (Kroemer

et al. 2014; Niekum et al. 2013). However, the construction process is an open research problem

by itself. (Kroemer et al. 2014) proposed to infer the hidden phases of the manipulation task from

several trial executions, using an autoregressive Hidden Markov model. They train a logistic

classifier (see Chapter 2.2.2.3), on a small, manually selected set of discriminative features to

model the transition probability deciding when to switch between states in their inferred Hidden

Markov model. (Niekum et al. 2013) present another approach to automatically infer a state

machine representation which can be incrementally refined. Similar to (Pastor et al. 2012), this

approach is limited to skill switching at the end of each skill execution.

4.2 Problem Formulation

Similar to existing learning-based approaches to manipulation, we assume that tasks can be

decomposed into re-usable skills. Skills can be interpreted as low-level control systems (see

Chapter 2.1.4). Figure 4.2 illustrates such a control loop (blue). Although low-level control

systems allow counteracting local perturbations, they are not robust enough for manipulation in

unstructured environments. This is mainly due to strong unmodeled perturbations (outside of

the stability regions), simplistic model assumptions, or missing of high-level sensory feedback.

Hereafter, we focus on closing a high-level feedback loop (Figure 4.2, green) using both low-

and high-bandwidth sensors (Chapter 4.2.2), while being agnostic to the low-level control loop.

This problem can be interpreted as a real-time online decision-making problem, capable of
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Figure 4.2: This figure illustrates our control concept towards autonomous manipulation. The
left side shows the high-bandwidth low-level control loop. The DMP of the currently active
ASM generates the reference trajectory (black) locally adapting due to (real) sensory feedback.
The right side illustrates the main building blocks and their interaction, discussed in this chapter.
Our system leverages previous sensor experience of successful (green) and erroneous (red) trials
to train two sets of classifiers (state and failure). At runtime, the manipulation graph restricts the
possible successor ASMs, considered for state classification. The box labeled ’Online Decision
Making’ shows the general data flow and the individual steps to close the high-level feedback
loop.

orchestrating skills due to sensor feedback while improving from past experiences. In different

from the system described in the previous Chapter 3, here we argue that the training of such a

system should only require common sense user feedback and no low-level system knowledge.

4.2.1 Manipulation Graph

Inspired by language models, we believe that complex behaviors can be decomposed into skills

(words). Similar to grammar models, a task-specific directed graph models constraints on

possible skill sequences. Each graph node represents a skill, and an atomic unit represented as

an ASM, see Figure 4.3. This graphical representation and the sensory experience contain all the

required information for closing the high-level feedback loop.

Despite recent progress in structure learning, we believe that modeling such a directed graph

is still a domain where humans outperform state-of-the-art inference methods. Therefore, we
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propose that a task-specific manipulation graph is constructed by a user, using skills from an

existing ASM library or additionally taught task-specific skills. Initially, the manipulation

graph consists of a linear sequence (Figure 4.3, green) which encodes the expected outcome

of each skill. During task execution, the manipulation graph builds the connection between

the executed ASM and the ASM library, allowing to add annotations such as success, failure,

and the path through the graph. This information is initially based on user intervention for new

ASMs, stopping as soon as the execution fails. As soon as both successful and erroneous trails

are available, interventions can also be due to a trained ODMS. This initially linear graph is

extended to achieve the target task by intervention if failures occur. For example, while executing

unscrew, the cap of a bottle becomes loose and thus can be removed. Therefore, a failure case

is triggered since the expected skill (retreat), opening the gripper, cannot be applied. Then

either a new behavior (remove) is added as a possible successor to the current graph node, or a

terminal stopping node is added, representing an unrecoverable system condition. This procedure

guarantees an efficient teaching process, only considering human labeled failure cases, occurring

on the real system1. Hence, it becomes much simpler to teach a new contact interaction task using

this novel learning-based formulation compared to the purely model-based system presented

in Chapter 3. Structuring available ASMs in a graphical representation reduces computational

complexity and avoids perceptual aliasing, i.e., when the currently processed features cannot

distinguish between two or more ASMs.

4.2.2 Features

For our demonstration-based system, we strive for requiring only a small amount of user

demonstration to bootstrap the system. State-of-the-art deep neural network based approaches

(see Chapter 2.2.2.4) are therefore not applicable; such methods require large datasets. In our

small-scale data regimes, learning-based methods strongly depend on the information provided

by features, and the representation itself.

Robotic systems usually provide a lot of different sensor modalities which allow observing both

the state of the robot and of the environment. For some tasks, it might be intuitively clear which

sensors to select, to acquire all task-relevant information manually. However, for many tasks,

especially those that involve contact interactions and external perturbations from a nominal state,

this may not be as clear. We argue that it is beneficial to include many sensors in the ASM

representation and automatically infer their relevance from data. This allows using the same

methodology for a broader range of tasks and perturbations.

1 Previous related work (Pastor et al. 2012) does not support failure driven incremental teaching, since switching is
assumed to take place exclusively during the last 10 percent of the ASM execution.
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Figure 4.3: ASMs (left) contain a DMP which updates its internal representation based on
several executions (black). Sensor experience is stored in sync with the DMP progress and split
into successful (green) and unsuccessful (red) trials. Sensor signals for unsuccessful trials stop
as soon as a failure is indicated. The right-hand side shows an exemplary manipulation graph for
unscrewing a bottle initially (green) containing only a sequence of three ASMs, connected with
their expected successor ASM. As soon as the cap is loose on the bottle we stop the execution and
demonstrate a new ASM remove (blue), added to unscrew. Finally, we add additional recovery
ASMs (red) which result in a more robust overall performance.

The inherent noise of real sensor readings increases the learning complexity of classification

based systems (see Chapter 2.2.1.6). Therefore, we propose to enrich the ASM representation,

compared to (Pastor et al. 2012), with additional (real) as well as (virtual) sensors, adding possible

redundancy to the feature representation. Note, virtual sensors are possible since we use model-

based object tracking, incorporating additional domain-specific information. Hereafter, we use

the term features and sensors for both real as well as virtual sensor information interchangeably.

Virtual sensors are features, computed online from (real) sensor signals. Such (manually)

uncovered virtual features exploit task knowledge, e.g., the proximity of the robot’s end-effector

the target object, increasing robustness against sensor noise. These features provide an alternative

channel to obtain similar information, e.g., proximity for force/torque measurements.

Auditory information is rarely being considered during manipulation, yet we believe that valuable

information about the progress of a task can be inferred from this signal type. Especially failure

conditions are frequently accompanied with sound feedback, as shown for object grasping by

(Sinapov et al. 2014). Thus, we enrich our ASM representation with audio features. Figure 4.4

shows an exemplary feature representation, used for the experimental results. Chapter 4.4.1

provides further details of the feature acquisitions process.
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(a)

Feature count and descriptions
4 Joint angles of the right hand

12 Force/torque measurements at both wrists

3 Torques at the knuckles of the right hand

10 Distance between locations on the visually tracked
right hand and the corresponding closest point on the
tracked bottle

13 Position and orientation (in quaternion notation) of
the right palm and tool frame to the tracked pose of
the bottle

11 Relative linear and angular velocities of the right
palm, tool frame, and the tracked bottle

8 Mel-frequency cepstral coefficients (MFCC) com-
puted using the audio recordings of the two micro-
phones located in the sensor head

(b)

Figure 4.4: The left picture shows an image recorded from the left Bumblebee camera of the
ARM-S robot (see Figure 4.1) overlaid with sensor and feature information. The green markers at
the wrist are visually tracked and used to estimate the pose of the arm, overlaid in gray. The pose
of the bottle is tracked using 3D information from the depth camera as introduced in (Wüthrich
et al. 2013). Predicted and actual forces are also illustrated. The table on the right lists the feature
count and a corresponding description of each feature used during the experiments.
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4.3 Data-Driven Online Decision Making

The principal goal of the presented learning-based approach in this chapter is to close high-level

feedback loops (Figure 4.2 (green)), integrating low-level control systems while improving

from limited supervised data, using a transparent user process. High-level feedback loops

can leverage information from low-bandwidth model-based object tracker and high-bandwidth

sensors (force/torque), still operating in real-time (30 Hz), adding robustness to autonomous

manipulation systems. The change of feature importance throughout the execution of skills is a

common issue for the design of learning-based online decision-making systems. For example,

force/torque sensor readings might have no relevance before object grasping and completely

different signal characteristics after making contact. Partial skill execution, required to achieve

robust recovery behaviors, adds further complexity to the ODMS design.

We address these issues by formulating the online decision-making problem as two related

state-based classification problems (Figure4.2). A state (see Chapter 4.3.1) in the context of

our method represents a distinct execution stage of an ASM, with a corresponding data set

of feature readings, which is automatically associated from successful and erroneous trials.

The first classification process predicts the most likely state of the currently executed skill and

successor skills, discretizing the time series into independent states. Only possible successor

skills, determined by the manipulation graph, are considered, reducing the computational

complexity. Chapter 4.3.2 describes the optimization procedure for this classification problem

and the automatic supervised dataset construction from previous task executions. The second

classification task determines whether or not the sensory information is valid or not, meaning if

the currently executed skill should be switched or the system should stop (Chapter 4.3.3). Finally,

the high-level feedback loop is closed by fusing the outcome of all predictions, as described in

Chapter 4.3.4.

4.3.1 Representation

We use the following data representation to optimize our proposed ODMS, obtained and updated

using the information provided by the manipulation graph, sensory feedback, and user inter-

vention. Each ASM, stored in the skill-library, can be identified by a unique id and each skill

execution during real robot experiment has a corresponding trial id. We store the predecessor trial

id and the successor trial id respectively for every execution, allowing us to draw connections

between these executions. This information is automatically acquired during experiments, only

requiring the user to stop executions at failure cases and select or teach appropriate recovery

behaviors. While running an experiment, a pre-defined set of features is recorded at the highest
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possible frequency. The current feature readings are denoted as the feature vector x. We assume

that unsuccessful trials are interrupted before the skill is fully executed. Skills are represented by

ASMs. Thus skill execution is based on DMPs (Ijspeert et al. 2013). Therefore, unsuccessful

trials can be identified by the phase, meaning before the phase variable ρ of the DMP has

converged ρ = 0. Thus, we store every trial in the ASM library and add success (ρ = 0) or

failure (ρ > 0) labels. All (N) successful trials, associated with a particular ASM are aligned

using ρ and discretized in the target frequency (e.g., 30 Hz), resulting in the time series data

with T states f 1:N
1:T , where T is determined by the skill execution time and target frequency. Every

state s= f 1:N
t ∈ f 1:N

1:T is treated as a different class with corresponding data samples from the N

successful trials. Unsuccessful trials are stored but not aligned.

4.3.2 State Classification

State classification predicts the most likely state given the current sensor signals x (Figure 4.5).

The most likely state sc of the currently executed ASM is computed independently of the most

likely state of all possible successor ASMs ss (Figure 4.2). Using the ASM progress ρ to

estimate the current state sc directly is sub-optimal due to perturbation and noise, e.g., object

contact while grasping almost always happens at different stages but has a large effect on the

sensor readings. Our formulation decomposes state classification into T isolated problems. All

classifiers optimize their feature importance model completely independent of each other. This

rather strong assumption enables our system to predict at which state a new skill should start

since independent classifiers for each state s do not require any partial information up to the

current state.

Our approach is based on two main assumptions. First, we assume that sensor readings x

contain enough information to recover the corresponding state s. Second, we assume that feature

variations during successful executions are solely due to sensor noise or counteracting external

perturbation, using low-level feedback control.

Skills have typically a duration in the order of seconds, thus, thousands of classes have to be

considered to evaluate new sensor readings x (Figure 4.5). To ensure real-time classification,

the computational complexity of each individual classifier must be rather low. Fortunately

each classifier is only concerned with a short period of time, allowing us to use simple models.

We use a probabilistic naive Bayes formulation (see Chapter 2.2.2.2), which assumes feature

independence resulting in a diagonal matrix Σ for our Gaussian sensor likelihood models:

p̂(s|x) ∝ p(s|ρ)N (x;µs,Σs) (4.1)
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The ASM state is denoted by s, {µs,Σs} represent the statistics of a particular ASM state, and

p(s|ρ) a progress ρ dependent prior. The naive Bayes independence assumption is crucial for

fast training and inference time. Training is reduced to computing the mean µs and variance Σs

of the state-specific dataset s = f 1:N
t , obtained automatically from the successful trials of the

corresponding ASM (Chapter 4.3.1). Furthermore, incremental learning is possible by simply

re-estimating the feature mean and variance of the likelihood model. This likelihood model

automatically trades off the importance of different sensor modalities for each state, allowing to

handle completely different sensor modalities.

The presented state classification method factorizes both over time and features. Therefore

training and prediction can be parallelized for all states in the current and possible successor

ASMs, crucial to achieving real-time performance. Due to recent advances in hardware, especially

parallel computation accelerators such as GPUs, this can be done efficiently, scaling up to

hundreds of possible successor ASMs. Since a progress based prior p(s|ρ) for our naive Bayes

classifier would only be meaningful for the currently executed ASM, e.g., imposing a Gaussian

prior around the current skill progress, we assume a uniform prior for both the current and all

successor skills resulting in a maximum likelihood classification problem:

p̂(s|x) ∝ N (x;µs,Σs) (4.2)

4.3.3 Failure Classification

Due to the complexity of manipulation tasks, failure cases are inevitable during task execution.

However, we assume that the majority of the task executions succeed. Therefore, less data is

available for failure case classification. Failure cases rarely happen several times at the exact

same execution stage, adding further complexity to the prediction problem.

Since our aforementioned state classifiers already determine the most likely state s for both

the current and possible successor ASMs, we address failure classification independently for

each state. Hence, by associating sensor readings x from successful and unsuccessful trials of a

particular ASM with their most likely state, our system automatically generates state dependent

supervised datasets, enabling discriminative learning:

D′ = {(sk,dk,yk) : sk = argmax
x∈ASM

p̂(s|x),dk = max
x∈ASM

p̂(s|x)} (4.3)

Success and failure label y are determined by the label of the trial (see Chapter 4.3.1). To associate

feature vectors x from successful trials f 1:N
1:T with their corresponding state, leave-one-out cross
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Figure 4.5: State classification first discretizes
all successful trials of a particular ASM for all
sensors, shown in the top. The feature mean
(blue) and standard deviation (green) is updated
for each feature independently, based on the
time aligned signals. At test time the likelihood
of the current signal x is computed for all states
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Figure 4.6: Failure classification uses all ASM
trials and assigns the likelihood N (x;µsi ,Σsi)
of x to the most likely corresponding state si.
For each state we train a linear SVM (see Chap-
ter 2.2.2.1) using the generated dataset. The
decision boundary is propagated to neighbor-
ing states in terms of standard deviations of the
samples from successful trials. Test time evalu-
ation selects the most likely state and checks if
the state likelihood is below the error threshold.

validation (Kohavi et al. 1995) has to be used, otherwise the resulting state classification would

be overconfident. This means that state classification is trained on all successful trials except for

the one which is currently added to the supervised dataset. Further, the state classifier, trained on

all successful trials, assigns the last m feature vectors for unsuccessful trials of the corresponding

ASM to the most likely states (Equation 4.3). Thus, for generating the supervised datasets the

user only has to stop an execution in an error case. Since each state classifier returns the predicted

likelihood, resembling the similarity of the current feature readings with the state, we can further

simplify the given problem into a one-dimensional binary classification problem. Hence, our

failure classifiers automatically benefit from model improvements of our state classifiers, further

reducing the computational complexity at training and test time.

Although the particular classifier is not decisive for the success of the proposed method, using a

discriminative classifier allows to easily integrate data from the state classifier without requiring

further processing or modeling. We use the automatically generated dataset (Equation 4.3) to

learn a max-margin linear support vector machine (SVM) (see Chapter 2.2.2.1) In the case of

our one-dimensional problem, this optimization will result in a one-dimensional state dependent

threshold εs, which can be used to classify the predicted state likelihood into success or failure.

One reason to choose a discriminative over a probabilistic classifier is the dynamical nature of
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the dataset generation. It is to be expected that the data distribution will change throughout

experiments, resulting in multimodal distributions, adding additional model complexity.

Successful and unsuccessful trials have different effects on the decision boundary εs. All data

samples are used to determine the decision boundary. Data samples from successful trials

have an additional use case. They update the state classifiers such that similar feature readings

become more likely and therefore affect the dataset generation (Equation 4.3). Given the system

assumptions, our proposed ODMS does not require any threshold tuning, feature scaling, or

additional data annotation. The single user intervention, stopping the system in failure conditions,

is sufficient.

The decision boundary for failure case detection only exists for a fraction of an ASM due to

the state independence assumption. This is theoretically sufficient to learn to predict failure

cases. Practically this would require to demonstrate unwanted behavior multiple times to cover

a generous space of an ASM. Therefore, we assume that the dataset (Equation 4.3) can be

enhanced, by assigning failure examples to neighboring states. Based on the same assumption

the learned failure detection decision boundary can be transferred to close by parts of an ASM,

with vanishing impact based on the difference in ASM progress, e.g., exponential decay. Since

the likelihood statistics of successful trials are different for different states of an ASM, we

propose to propagate the decision boundary as scaling factor regarding one standard deviation

of a Gaussian fitted to the likelihood predictions for all successful trials, see Figure 4.6. This

decision boundary propagation enables failure classification for close by states when observing

an equally unlikely sensory event.

4.3.4 Decision Making

The box Online Decision Making in Figure 4.2 visualizes the decision making process. First,

the state of the currently executed ASM and independently for all possible successor ASMs is

estimated using our probabilistic classifier for every state (Figure 4.5). If no failure is classified for

the most likely state of the currently executed ASM, the results for the most likely successor are

ignored, and the execution of the current ASM continues. Otherwise, the most likely successor

state has to be analyzed by applying the corresponding failure classifier. In case of failure

classification for both the most likely current and successor state our system halts, otherwise, the

ASM is switched to the best successor ASM and state. Although the most likely successor state

is only required if failure for the current ASM is classified, continuous classification of the most

likely successor enables further post-processing, e.g., verifying the consistency of the successor,

which we want to investigate in future work.
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Switching could also be done solely based on the likelihood of the current and the best successor

state. Perceptual aliasing and system stalling are two reasons to avoid this methodology. For

example, a manipulation graph for robust grasping might require several alternative ASMs, but

for all ASMs the final configuration might be very similar.

For each decision, our state classification complexity scales linearly with the number of consid-

ered states. Our proposed failure classification is constant with respect to states and features

because it leverages the information provided by the state classifiers.

4.4 Experiments

The experimental setup (Figure 4.1) consists of dual arm manipulation setup similar to the one

presented in Chapter 3. Here, we use the ARM-S robot, a dual-armed robot of two Barrett WAMs

and a sensor head. For details about the platform we refer to http://bit.ly/2xq1OtT.

The considered manipulation task consists of unscrewing a cap of a bottle as well as to screw

the cap back on. This task requires very dexterous manipulation capabilities given the hardware

constraints of the robot, the three-fingered Barrett Hands with four degrees of freedoms, and a

tiny object compared to the size of the hand. Different from the pick and place tasks evaluated

in Chapter 3.5 unscrewing a bottle requires exact finger placement. Any imprecision can lead

to contact slippage resulting in a failure case. Further, this task requires additional sensor

information to determine whether or not the cap is loose and can be removed. This would not be

possible solely based on perceptual information as used for the system described in Chapter 3.

All of our experiments were conducted with the same parameters (see Chapter 4.4.1). The

presented results only reflect a subset of our experiments to illustrate the different properties

of our proposed method. High-resolution videos of more experiments are available at http:

//bit.ly/DDOMA and http://bit.ly/DDOMF, also showing how to screw the cap back

on the bottle.

4.4.1 Task Demonstration and System Parameters

For the exemplary bimanual manipulation task, we teach the required ASMs in the sequence,

grasp, unscrew, and retreat. Every ASM is executed at least five times to gather the required

statistics. As soon as the cap of the bottle comes off the first time during the execution of unscrew,

we stop the execution and teach a new remove ASM. Therefore, we obtain a manipulation

graph similar to Figure 4.3. For each trial execution, the ASM contains the previous and

next manipulation graph node. We teach the DMPs for the corresponding ASMs similar to

the methodology described in (Pastor et al. 2011b, 2012). First, movements are learned from
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Figure 4.7: With the help of two skills (unscrew,remove), this plot illustrates the benefit of a rich
set of features for state classification. The position of each data point indicates the estimated
DMP progress (y-axis) vs. the deviation from the ground truth DMP progress (x-axis). Therefore,
the closer the points are to the zero-line, the better the prediction. The colors indicate the
negative log-likelihood, where blue means small therefore high confidence and red vice versa.
With just four features, (right finger joints) it is impossible to classify the right state. Using 19
features, most similar to (Pastor et al. 2012), the state classification is possible for unscrew but
still impossible for remove. Integrating virtual vision based features (53), we achieve a good
correlation. Adding audio features (61), not providing any further task information, does not
degrade our system performance.

kinesthetic demonstrations and encoded into DMPs. Second, learned DMPs are executed multiple

times on the robot, and experienced sensor information is accumulated. Third, the mean position

and force trajectories are computed and re-encoded into DMPs. During execution, the end-

effector and finger positions, as well as forces, are controlled and adapted as described in (Pastor

et al. 2011b), i.e., only positional and force trajectories are encoded into DMPs. Given the

re-encoded DMPs, the experienced 61 features (see Figure 4.4) from at least five trials are

linearly re-sampled (30 Hz) and stored time aligned with each DMP to form ASMs.

In contrast to (Pastor et al. 2012), we encode end-effector trajectories into the start frame of

the movement. This encoding scheme generates movements that are locally similar to the

demonstration. It thus enforces a strong correlation among subsequent movements despite

changing absolute coordinates. End-effector force/torque trajectories are encoded in the goal

frame of the movement (see (Pastor et al. 2011b)). This ensures that the desired forces/torques

are independent of the (global) end-effector pose. We track the target object in real-time using

the model-based algorithm proposed in (Wüthrich et al. 2013), matching 3D information from

the depth camera against the geometric model of the bottle. Based on the object pose we enrich

our ASM representation with ten additional distance-based features between the manipulator

and the surface of the tracked target object, e.g., the fingertip to bottle, palm to bottle, finger
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Figure 4.8: Snapshots of the robot per-
forming the bottle opening task despite per-
turbation introduced by moving the left
hand of the robot. The compliance of
our control framework including DMP
adaptation as well as closed-loop visual
tracking of the bottle and both hands en-
able the robot to give in without losing
the necessary accuracy to perform the
task. The corresponding video is available
at http://bit.ly/2MzRiVt.

segment to bottle distance (Figure 4.4 distances). Parallel to using vision-based virtual features,

our system integrates vision sensors to improve the estimation of the robot end-effector pose,

directly improving low-level feedback control. Therefore, we use fiducials, round markers, to

visually track the hands during manipulation, arranged around the wrist (Figure 4.1). The fiducial

detector 2 is used in combination with triangulation to estimate the 3D position of each marker

to obtain a least-squares fit of the hand pose. Together with the known control input, these

measurements are used in a Kalman filter to smooth the position estimates over time. Besides, we

use the lower 8 Mel-frequency cepstral coefficients (MFCC) (Davis et al. 1980) as audio features.

They sufficiently cover the frequency spectrum of interest. To obtain the state classifiers for each

ASM, the mean and variance are computed as described in Chapter 4.3.2, using only successful

trials. We obtain the failure classification thresholds εs for all ASMs for which erroneous trials

exist, using the automatically generated datasets (Equation 4.3) with the last m = 5 samples of

erroneous executions and all corresponding positive trials (see Chapter 4.3.3). Thresholds εs are

propagated to neighboring states using exponential growth (εsi = min(εsi ,1.05|i−k|εsk )), since

we are optimizing the negative log likelihood. Thresholds are always encoded concerning the

state variance of the negative log-likelihood based on the generated datasets (Figure 4.6).

4.4.2 State Classification and Feature Importance

Our proposed method is based on the assumption that we can learn a model for every state

individually and identify the overall system state given the current sensor readings. Figure 4.7

illustrates that our method is capable of state classification, despite the strong independence

assumption. Results are obtained by leave-one-out cross-validation, training the state classifiers

for unscrew and remove on at least five successful trials. The correlation between the classified

2The fiducial detector has kindly been provided by Paul Hebert, Jeremy Ma, and Nicolas Hudson from the Jet
Propulsion Laboratory, Pasadena.
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Figure 4.9: The top four plots show the expected mean feature value (blue), standard deviation
(green), and the currently processed feature value (red) of a subset of all 61 processed features.
Horizontal dashed lines indicate transitions between subsequent ASMs. The selected features
are the first MFCC coefficient, the distance of the right fingertip of the right hand to the visually
tracked bottle, the Y component of the experienced force at the wrist of the left hand, and
the torque experienced at the right finger knuckle of the right hand (top to bottom). Note,
due to space constraints the plot only shows 4 out of 61 features. Nevertheless, all features
(auditory, visual, and haptic) are used for classification. The negative log-likelihood (bottom)
shows that each individual perturbation of each sensor modality (top three plots) has been scaled
appropriately since each perturbation became noticeable. The corresponding video is available
at http://bit.ly/2OrfV8L.
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state and the DMP progress is less good at the beginning, the end of an ASM execution, and

when object contact happens. Such events rarely happen at exactly the same time which is

why the DMP progress is not a good estimate for the current state. One key difference to

other approaches (Pastor et al. 2012; Niekum et al. 2013; Kroemer et al. 2014) is that we

propose always to use a high dimensional feature representation and automatically infer the

feature importance. Figure 4.7 supports the hypothesis that more features improve the system

performance, although not required for all skills. The lower two plots show that our method does

not degrade in performance even if we add features which contain no further information for the

task. This supports the hypothesis that our method is capable of learning the changing feature

importance for an ASM and thus, manual task-specific feature selection is less crucial.

4.4.3 Robustness through Perception-Action Loop

Robustness of our system is achieved by closing two control loops. The low-level loop im-

plements a compliant control framework, using the DMP adaptation mechanism as proposed

in (Pastor et al. 2011b) and integrating information from visual based tracking of both hands and

the bottle. To demonstrate the low level-adaptability, we introduce a large perturbation by moving

the left arm during the manipulation task as depicted in Figure 4.8. Despite this perturbation,

the right hand can maintain contact and continue the DMP execution due to vision in the loop,

adapting the goal of the DMP online. This approach significantly differs from Chapter 3 since

we require stereotypical motion generation to associated sensor traces for learning rather than

fast and reactive planning. The high-level control loop is capable of detecting perturbations of

different sensor modalities as shown in Figure 4.9. Our method can automatically determine the

importance of all available 61 features and fuse the information into a one-dimensional signal,

for which failure detection is easily achieved.

4.4.4 Failure Demonstration and Detection

Adding recovery behaviors incrementally in the case of failure, e.g., due to external perturbation,

is a key ingredient to add robustness to task execution. To demonstrate a typical use case, we

start our manipulation graph and pull the left arm during the first grasping attempt. Although

our system classifies the event as highly unlikely, it will not detect a failure condition initially,

see Figure 4.10. This design choice, to assume that even unlikely events will not result in

failure conditions if not known otherwise, allows to bootstrap our system easily but is not

required for our system. After retraining the classifiers of the corresponding ASM (Chapter 4.3.2

and 4.3.3), taking this erroneous execution into account, our system detects perturbations of

similar magnitude and will stop (Figure 4.11). The only user information required to teach this
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Figure 4.10: The top plot shows the measured
right wrist force in the Z direction (red) as well
as the expected mean (blue) and standard de-
viation (green). The intentional perturbation
is immediately detected as shown in the lower
plot indicated by the rise of the negative log-
likelihood (red). Without demonstrated failure
cases our system assumes that the introduced
perturbation, although highly unlikely, does not
constitute a problem.
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Figure 4.11: The plots show the same experi-
ment as in Figure 4.10 after the data obtained in
Figure 4.10 has been processed as an unwanted
(erroneous) execution. Given this failure case
example data, our approach updated the deci-
sion border (black) which now enables our sys-
tem to detect the unwanted failure condition
indicated by the arrow correctly. Now, our sys-
tem immediately stops the execution, as shown
in the video available at http://bit.ly/
2NgBLzf, if a similar perturbation is detected.

failure detection is stopping the current ASM execution before it has finished. If a possible

successor/recovery already exists, the user can add the connection in the manipulation graph

to enable automatic recovery. It is not clear how such a strategy could be achieved within the

model-based reactive motion generation framework (Chapter 3).

4.4.5 Failure Detection and Recovery

Figure 4.12 shows a sequence of automatically chosen ASMs, successfully unscrewing the cap

of a bottle without external perturbation. This experiment was part of a longer experiment to

unscrew the bottle. During which we repeatedly screwed the cap back on the bottle (during ASM

retreat execution). This demonstrates that our method automatically detected the subtle event,

when the cap becomes completely loose from the bottle, prior to finishing the ASM execution

and successfully switched to ASM remove. Figure 4.13 shows the prediction of unscrew at

different stages of a successful attempt to unscrew a cap of a bottle with manually introduced

unknown perturbations. For this experiment, an additional ASM has been taught named recover.

This ASM has been added to the manipulation graph as an additional outcome of unscrew

after stopping the execution of unscrew at the beginning of an external perturbation similar

to the one in this experiment. Our method successfully determines if the sensor information
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Figure 4.12: Both plots show the predicted negative log-likelihood (red) in log scale of the most
likely state within the currently active ASMs. The bottom plot shows that the system is certain
about the task progress since the predicted negative log-likelihood remains close to the expected
mean. The top plot shows that the successive ASM becomes more likely towards the end right
before the transition to this ASM. Note that the duration of the second unscrew movement is
shorter than the initial unscrew movement since our approach correctly detected that the cap
came off the bottle. The two overlaid plots show a closeup of these two events. The subtle event
of lifting the cap has been detected as the negative log-likelihood (red) passed the decision border
(black).

indicates a failure condition and selects the right successor ASM, either recover, retrieve, or

remove. Model-based approaches (Chapter 3) would potentially not require such fine grain

control over recovery behaviors. However, there exists no straightforward strategy to provide

similar high-level information to model-based systems allowing them to solve the task in future

attempts automatically. Again, the skill execution time in different runs varies due to the online

detection of failure conditions. Some failure conditions are detected while not even reaching

half of the expected skill execution time (Figure 4.13, left), not possible without closing the

high-level feedback loop (Pastor et al. 2012; Niekum et al. 2013).

4.5 Summary and Review

In this chapter, we focused on how to learn a complex contact interaction task by using online

failure detection and recovery. Determining whether or not a skill or planned trajectory execution

exhibits expected sensory measurements is crucial for contact rich manipulation. The model-

based system presented in the previous Chapter 3 proactively avoids obstacles and therefore

achieves robust pick and place performance. However, detecting when the reactive manipulation
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Figure 4.13: The plots show the three considered outcomes of one real experimental attempt
of unscrewing the bottle, triggering the learned recovery behavior after pulling the left arm
(left), triggering the retreat behavior because the cap of the bottle is not yet detached (middle),
and triggering the remove behavior immediately after cap has correctly been detected to have
detached from the bottle (right). Three small plots at the bottom show a close up of the negative
log-likelihood at the point of switching to the corresponding successor ASM (dotted line). The
solid horizontal lines indicate transitions. Note, the intermediate ASMs have been left out due
to space constraints. The complete experiment along with corresponding plots is available at
http://bit.ly/2pnbhOb.

system should abort grasping and which alternative objective it should optimize next based on

the latest sensor measurements is unclear. Systems like the one described in Chapter 3 are

very general and therefore require more abstract target parameterization. It is challenging to

infer these parameterizations from low-level sensory data. Hence, in this chapter we presented

a learning-based approach, exploiting the assumption that stereotypical movements result in

similar sensory traces during execution. By leveraging stereotypical movements and an object-

relative encoding, we can learn a classification-based real-time online decision-making process.

Our experiments demonstrate qualitatively that the proposed method is capable of detecting

otherwise catastrophic perturbations and failure conditions in real-time, using 61 features from

different sensor modalities. Furthermore, our system automatically triggers recovery behaviors if

needed, closing a high-level feedback loop. These results were achieved without the need for

any task-specific programming. Therefore, we believe that this method can complement reactive

model-based systems (Chapter 3). The presented approach is by no means a replacement for the

reactive free space obstacle avoidance capabilities achieved by model-based systems (Chapter 3).

ODMS is ideal for splitting up higher-level actions, such as establishing contacts for grasping,

into robust low-level skills using multimodal sensory feedback.

Non-expert users can tackle this problematic robotic manipulation challenge by demonstrating

robust strategies. Nevertheless, before manipulating objects, like opening a cap from a bottle, we

often want to grasp the object which so far was assumed to be known and either demonstrated

or hard-coded by a user. Therefore, we are interested in inferring possible grasps from partial
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perceptual sensory observations, discussed in the following chapter, to, for instance, automatically

select an ODMS for robust grasping.
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Chapter 5

Big Data Grasping

In this chapter we seek to answer the question: "How can learning-based grasping, learning

where to position a robot gripper, improve grasp success towards autonomous manipulation?".

Let us first take a step back and analyze why grasping is even necessary and why the previously

presented model-based and learning-based methods are not sufficient.

Grasping is a fundamental requirement towards autonomous manipulation systems (see Chap-

ter 3). Almost any robotic manipulation task requires tools to be picked up for usage or

repositioning objects, classical pick and place tasks. So far the presented approaches in this

thesis tackled this problem using human supervision, either in the form of manually defining

grasp poses (Chapter 3) or demonstrations (Chapter 4). The former approach requires object

identification and precise object tracking to associate and successfully execute grasps. This

methodology cannot scale towards true autonomy. Such systems would have to know all objects,

have to reliably identify objects from partial observations and additionally for every such object

robust grasps would have to be manually engineered before deployment. Manually engineering

robust grasps requires feedback policy design due to complex contact interactions, a challenging

problem in its own right. The demonstration-based approaches (Chapter 4) alleviate this design

step by learning reference and expected sensory signals to identify and automatically recover

from grasping failures, allowing to learn robust grasp controllers. Nevertheless, demonstrating

grasps and associating them with objects still requires to identify and track the corresponding

object model. Hereafter, we argue that we can complement the previously discussed approaches

by learning grasp poses rather than using model-based grasping. Such a learned grasp pose pre-

diction method can be extended to enable reusing taught demonstration-based grasp controllers

(Chapter 4) and naturally fits into our reactive model-based system (Chapter 3) to plan to the

desired grasp pose.

Classically, grasps are synthesized using analytic approaches that rely on a known set of contact

points between the object and gripper. Given this, the predominant metric for grasp stability is

the ε-metric (Ferrari et al. 1992) that quantifies the quality of a force-closure grasp regarding
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the smallest external wrench that breaks a grasp when unit force is applied at the contact points.

As already mentioned, analytic approaches require knowledge of the object and robot hand

model and the relative pose between them. When executing such a synthesized grasp in the real

world, achieving these contacts is very difficult because of noisy sensor readings and imprecise

actuation. Several papers have analyzed the ε-metric in terms of robustness and concluded that it

is not a good predictor for a stable grasp in the real world (Balasubramanian et al. 2012; Diankov

2010; Weisz et al. 2012). Learning-based methods towards grasping (Bohg et al. 2014a) address

the challenges of grasp synthesis arising in the real world such as noisy sensors and incomplete

information about the object and environment. They focus on finding a suitable representation of

the perceptual data that allows predicting whether a grasp will succeed or most likely fail. These

grasps are typically defined only in terms of a preshape, an approach vector and a wrist rotation.

Hence, they still depend on robust grasp controllers, either engineered or learned with methods

such as discussed in Chapter 4. In that way, they form a natural precursor to reactive grasping

approaches for robustly acquiring a grasp under uncertainty (Felip et al. 2009; Hsiao et al. 2009,

2010; Pastor et al. 2011b; Romano et al. 2011).

Many learning-based methods try to infer a grasp for an object without knowing its exact shape.

Typically, they employ supervised learning techniques that predict the stability of a grasp when

applied to a specific part of the environment (Detry et al. 2010, 2012; Goldfeder et al. 2009;

Herzog et al. 2014; Lenz et al. 2014; Morales et al. 2004; Popović et al. 2011; Saxena et al. 2008b;

Song et al. 2011). One problem with these kinds of methods is to get a sufficient set of coherently

labeled data points. In (Detry et al. 2010, 2012; Herzog et al. 2014; Morales et al. 2004), the

authors collected examples from a real robot performing grasps. Although the resulting data is

instrumental, it is extremely time-consuming to acquire. In other approaches (Goldfeder et al.

2009; Lenz et al. 2014; Popović et al. 2011; Saxena et al. 2008b; Song et al. 2011), this problem

is circumvented by either creating a synthesized or human-annotated dataset with discrete or

continuous labels. Although some of these approaches are demonstrated on a robot, it remains

unclear how well these grasps transfer to the real world. Furthermore, only (Goldfeder et al.

2009; Lenz et al. 2014; Popović et al. 2011; Saxena et al. 2008b) provide publicly available

datasets.

Therefore, this chapter presents three significant contributions to improve learning-based grasp-

ing. First, having big datasets is critical for state-of-the-art learning methods such as deep

learning (Chapter 2.2.2.4) due to a large number of open parameters that need to be optimized.

Hence, we propose a new database containing a large set of grasps generated for a large set of

objects in the OpenRAVE simulator (Diankov 2010). We use physics-based simulation because

running real-world large-scale robotic grasping experiments involves controlling complex hard-

ware, rendering generating hundred thousands of examples challenging outside of industrial

settings. Our proposed algorithm labels grasps with a set of metrics that we analyze in terms of
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their correlation with grasp stability as predicted by humans. Assuming that humans are optimal

in judging whether a grasp will succeed or not, we use crowdsourcing to verify both our proposed

physics-metric and the ε-metric.

Second, with the help of the proposed database, we investigate the application of classical

supervised machine learning techniques (see Chapter 2.2.1) that require large amounts of training

data to learn the mapping from a grasp to grasp stability. Grasp stability is influenced by many

aspects that include local and global object shape, object pose relative to the hand or the context

in which an object is placed. Our methods use modified features, presented in (Herzog et al. 2014)

and do not require knowledge about object identity, category, pose or accurate segmentation. This

aspect is crucial to overcome existing limitations in model-based and learning-based approaches

discussed in the previous chapters. We show that large-scale learning methods like deep neural

networks indeed outperform simpler logistic regression, making better use of the vast amounts

of training data. Furthermore, we provide evidence that our new physics-metric based grasp

success annotation is easier to learn for both methods compared to the standard ε-metric. This

result suggests that the ground truth labels derived from the ε-metric are much noisier.

Finally, we introduce a new perspective on grasp success prediction, changing the focus from

traditional classification-based learning objectives to structured ones (see Chapter 2.2.1.7). Since

robots only observe a partial view of a scene and crucially only execute one grasp, hopefully a

successful one, we hypothesize that our underlying learning-based method should be aware of

and exploit this information. We derive a novel predictor from a structured prediction objective

and show empirical evidence on our large-scale dataset that without changing the underlying

function approximator, this objective indeed results in better top-1 grasping performance.

5.1 Related Work

Prior to 2000, research in grasping has been focused on analytical model-based approaches

discussed in several surveys and reviews (Shimoga 1996; Bicchi et al. 2000). More recently

several studies have shown that model-based approaches using the well established ε-metric

in simulation do not transfer to real robot grasping (Balasubramanian et al. 2012; Diankov

2010; Weisz et al. 2012). Therefore the grasping community started to focus on data-driven,

learning-based approaches. As previously mentioned there exists a large body of learning-

based methods that use differently acquired datasets to learn grasp mappings from vision-based

representations to grasp success using classifiers trained in a supervised manner (Detry et al.

2010, 2012; Goldfeder et al. 2009; Herzog et al. 2014; Lenz et al. 2014; Morales et al. 2004;

Popović et al. 2011; Saxena et al. 2008b; Song et al. 2011). As labels, they either use the

ε-metric, human annotations or the outcome of real robot trials. For these approaches, different
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machine learning techniques have been applied to learn a grasp success model, e.g., linear or

non-linear discriminative classifiers or non-parametric methods. We refer to (Bohg et al. 2014a)

for a more comprehensive survey recent learning-based grasping methods. Up until 2015, there

were only a few approaches for robotic grasping and robotics in general that used deep learning

techniques. This can be mainly attributed to the lack of large publicly available datasets at the

time and system challenges towards large-scale real robot data collection efforts. Our work on

creating a large-scale publicly available database, presented hereafter, was among the first to

address this issue.

However, before 2015, there are two examples that we would like to mention here. (Lenz et al.

2014) frame the problem of finding a stable grasp as a detection problem. A grasp is represented

by a rectangle which is positioned on an RGB-D image. This rectangle has 5 DoFs (2D position,

orientation, and dimensions) and multiple hypotheses need to be evaluated. Color, depth, and

normals serve as features of the potentially graspable part that is enclosed in a rectangle. The

authors train a deep network to predict the stability of a grasp given this representation. The

resulting classifier is used to demonstrate the approach on two robots with parallel-yaw grippers.

The annotated training database is relatively small and consists of 1035 real RGB-D images each

with several hand-labeled positive and negative rectangles. These images show a total of 280

different objects.

Another example of applying deep learning to predict the stability of a grasp is presented

by (Madry et al. 2014). Here the goal is to predict the stability of a grasp during execution.

Given the reading from tactile sensors on the robot fingers, the authors apply a learned classifier

to distinguish between stable and unstable grasps. Excellent results are achieved on different

datasets recorded with different robots. Also, in this case, the databases are relatively small

with, e.g., 926 data points (Bekiroglu et al. 2010). Although this number is impressive when

considering that it has been collected and verified on a real robot, it is small when compared to the

ImageNet dataset with a total of one million images with bounding box annotations (Deng et al.

2009). Furthermore, maximally ten different objects are included in these different databases.

(Levine et al. 2016b) presented the first truly large-scale real-world grasping data collection effort.

Different from methods discussed in this thesis, their approach is purely learning-based, and the

resulting data has no ground truth object annotation. Hence, it only allows learning mappings

directly from 2D image space to poses (e.g., the 3D position and roll around the gripper). (Pinto

et al. 2016) also conducted a self-supervised data collection effort, again resulting in a dataset

which only allows regressing poses from 2D images without any object-specific ground truth

data annotations. Instead, our work uses a large number of object models, problem-specific

grasping knowledge, and synthesizes and annotates grasp with a new success metric and ground

truth sensory information. Since the inception of our large-scale database, new simulation-based
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strategies to create vast datasets for learning how to grasp have been proposed (Mahler et al.

2016, 2017).

All previously mentioned learning-based methods for grasp prediction either directly try to

infer grasp poses or classify grasp hypotheses into successes or failures. However, by doing so,

any such approach neglects the crucial information that we are typically interested in executing

a single successful grasp on our robotic system. Hence, we do not have to find all possible

successful grasps. Ranking is a structured prediction problem (see Chapter 2.2.1.7) which is

ideal for such problems. Therefore, various applications, including computer vision, robotic

locomotion, and grasping, make use of this framework. (Lehmann et al. 2011b) proposed to

speed up object search by reducing the number of expensive classifier evaluations by learning

how to rank sets of hypotheses. (Kalakrishnan et al. 2009) use ranking to learn to select footholds

based on terrain templates, enabling robust walking over rough terrain. (Herzog et al. 2014)

implicitly create a ranking over different grasp hypotheses by continuously extending a library

of labeled local shape templates and their matching costs. Finding the best fingertip placement

on objects for object grasping has been identified as a ranking problem by (Le et al. 2010). The

authors manually label the training data with three different classes (Bad, Good and Very Good)

instead of two. As a learning method, they employ a ranking SVM that optimizes a measure

that prefers better scores for the top grasp candidates. (Jiang et al. 2011) present an extension

to this work with a different representation of the grasp but otherwise the same SVM-based

ranking method. Our work presented in this chapter differs from this line of work since it directly

operates on binary labeled sets of hypotheses rather than requiring additional annotations. This

methodology is very closely related to multiple instance learning (MIL) (Dietterich et al. 1997;

Andrews et al. 2002). By deriving our formulation from a ranking perspective, we can exploit

additional problem-specific insights and use state-of-the-art non-linear function approximators

that scale to our large-scale grasping database.

5.2 Model-based Large-scale Grasp Data Generation

Discriminative learning-based methods such as deep neural networks (Chapter 2.2.2.4) can

uncover complex relationships from large datasets. However, incorporating prior problem-

specific knowledge, for instance, what constitutes a stable grasp, is rather challenging. Here,

we present a simulation-based approach which leverages our model-based grasping knowledge

and improvements in distributed computation to generate a large-scale database of ground truth

grasps. Different from applying model-based grasping for real robot experiments, we can run

more expensive physics-based simulations since we merely generate high quality labeled grasp

success and failure pairs. Our database contains more than 700 object instance from more than
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80 categories. For each object, we simulate approximately 500 grasp hypotheses, each of which

consists of more than 30 simulations to get high-quality stability metric estimates. We run a

crowdsourcing Mechanical Turk user study verifying the quality of our proposed physics-metric.

Our large-scale simulation effort yields approximately 300k different grasps. For each grasp,

point clouds are generated from several different viewpoints. For every viewpoint, we generate a

template representation and associate metrics obtained from the simulation with it, resulting in

about 500k labeled template examples. Hereafter, we discuss the data collection and verification

effort in more detail.

5.2.1 Database

Figure 5.1 (left) shows an overview of the dataset generation. A labeled data point in the database

consists of a template (local shape representation) and a set of metrics. Each point is associated

with a grasp preshape relative to the local coordinate frame of the feature. We store the database

in a single HDF5 file (HDF group - HDF5 n.d.) which allows fast and efficient querying of

single grasps. Furthermore, this file format allows to easily extend the grasp database with more

grasp metrics, robotic hands, simulation environments, and feature representations. The database

is publicly available for download (Kappler et al. 2015a). For easy data access, we provide a

python and C++ interface to the library, also available on the same website.

5.2.1.1 Objects

Our database contains more than 700 object mesh models from more than 80 categories. These

categories contain household objects, tools, toys, music instruments, groceries or drugstore

products. They span a wide range of shapes and sizes. Most of the mesh models are from the

3DNet database (Wohlkinger et al. 2012) with further augmentations from (Archive 3D: Free

35 000+ 3D models n.d.; TurboSquid: 3D Models for Professionals n.d.). All models have

been preprocessed such that they are suitable for the OpenRAVE simulator. Specifically, we

scale every object mesh such that the mean size of the objects in a category is realistic for this

category. Furthermore, each model is re-meshed using Poisson surface reconstruction (Kazhdan

et al. 2006) and subsequently simplified to reduce the number of polygons. Although the objects

lose some details, this procedure ensures that the meshes are not degenerate and that all surface

normals are pointing outwards. This preprocessing procedure is important for the correctness

of the collision checker and the computation of the contact normals. Some example models are

shown in Figure 5.2.
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Figure 5.1: (Left) To generate supervised training data samples, we propose to store the fol-
lowing quantities in a database: Models of different grippers and objects to leverage simulation
environments that use sampling techniques to synthesize possible grasp configurations and poses,
e.g., as described in (Diankov 2010). Different grasp metrics can be obtained for each of the
sampled grasp hypotheses. For the generation of local shape representations, point clouds are
generated from the object model given a certain viewpoint. To establish the relationship between
the point cloud and the computed grasp score, the local shape is represented relative to the
surface normal at the intersection between the approach vector of the grasp and object model.
The local shape representation is a heightmap of different point types: object surface (green),
occluded areas (red) and free space (blue). (Right) In the case of real robot experiments, the
local coordinate frames have to be obtained from the raw point cloud (cf. (Herzog et al. 2014)).
Based on those and the real point cloud, the local shape representation is extracted and the
corresponding metric inferred. Therefore allowing to determine possible grasp hypothesis.

Figure 5.2: Example grasp for instances of a subset of the object categories in the database.
The top row shows stable and the bottom row unstable grasps. The categories from left to right:
banjo, ladle, boot, bottle, camera, hammer, screwdriver, stapler, violin, tape, pliers, toaster, kettle,
and toy.
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5.2.1.2 Grasp Configurations

For sampling reference grasps for each object, we use the existing strategy in OpenRAVE (Di-

ankov 2010). Starting from an enclosing bounding box object approximation, rays get cast

towards the object from all sides. The intersection points are used as approach points and the

surface normals as approach vectors (see Figure 5.3a). For each approach point, we apply 16

different grasps each with the same preshape but with one of 8 different rotations around the

approach vector and one of two possible translation offsets along the approach vector. The first

contact between the object and the hand determines the first offset. The second offset backs up

the hand 25mm from its position at first contact. In the following, we refer to these offsets as

standoffs.

5.2.1.3 Grasp Metrics

As discussed above, defining a suitable grasp quality metric is an open problem in the community.

Despite its excellent theoretical properties (Pokorny et al. 2013), several studies (Balasubrama-

nian et al. 2012; Diankov 2010; Weisz et al. 2012) have concluded that the popular ε-metric is

not a good grasp stability proxy for real robotic experiments. This metric essentially quantifies

grasps that are in force closure which indicates a static equilibrium. However, closure is often

wrongly equated with stability that can only be analyzed in a dynamical system (Bicchi et al.

2000). Furthermore, force closure assumes that the manipulator can exert arbitrary forces at the

contact points which is never the case in practice. Given this, the results of the above studies

are not surprising as the aforementioned assumptions are violated in their experiments. For

example, the synthesized grasps are acquired with a real robot and are tested for stability either

by lifting (Weisz et al. 2012) or even by vigorous shaking (Balasubramanian et al. 2012). Since

all popular grasp simulators implement the ε-metric, it is still very commonly used despite these

studies.

Therefore, our database contains this metric as one of a set of grasp quality metrics. Additionally,

we evaluate a metric based on the outcome of a physics simulation of a grasp. A common way to

more robustly determine whether a grasp is stable or not is to compute a metric averaged over

many object pose perturbations (Diankov 2010; Weisz et al. 2012). Summarizing, we include the

following metrics in the database: (i) classic ε-metric, (ii) percentage of force-closure grasps for

additional object pose perturbed samples (ε-ratio), (iii) physics-metric, and (iv) percentage of

stable grasps according to the physics-metric of the perturbed samples (physics-ratio).

Computation of Raw Metrics
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ε-metric Given the robot hand in one of the poses as generated according to Chapter 5.2.1.2,

all fingers close simultaneously. As soon as a finger gets into contact with the object surface or

with itself, it stops moving. The objects remain static during this process. Then, we compute the

ε value with the efficient method proposed in (Pokorny et al. 2013). Given the rubber coating on

the fingertips and palm of the real BarrettHand, we assume a conservative friction coefficient of

µ = 0.4 for all objects (c.f. µ = 1.0 for rubber on glass). This friction assumption means that

most of the objects will be more slippery than in reality and the decision of whether a grasp is in

force closure or not is more restrictive.

physics-metric For this metric, we simulate the grasps in OpenRave using the ODE physics

engine (Open Physics Engine n.d.). Different from the computation of the ε-metric, here the

objects move upon contact. We assume the same friction coefficient as for the ε-metric. As a

simplification, the objects are assumed to be in free space without gravity acting on it.

Per grasp, the simulation process runs in a loop of maximally M iterations. Each iteration

executes the following steps. First, we command all fingers to close simultaneously. Each finger

individually stops closing upon collision detection. Then the physics simulation tries to resolve

all collisions, i.e., the object moves upon contact with the fingers. If the physics simulation

can resolve all collisions, all fingers continue to close simultaneously. Otherwise, the object is

randomly perturbed at the collision center, followed by a simulation step to resolve the current

collisions. If all attempts to resolve the perturbed instances fail we consider the grasp to be

stable according to the physics-metric and unstable otherwise. The magnitude of these random

perturbations is an open tuning parameter, as well as the number of perturbations. The latter

trades off the required simulation time till a grasp is considered stable and the certainty of the

grasp stability.

The physics-metric is more time consuming to compute than the ε-metric. Since we are interested

in acquiring high-quality simulation data for learning, additional computation requirements only

resemble a minor drawback since the offline process does not require any intervention. The

physics-metric requires to simulate the time course of a real grasp execution. We, therefore,

expect it to be more reliable in predicting grasp success than a static measure. (Popović et al.

2011) and (Rytz et al. 2013) also use the assumption that physics simulation can better predict

grasp success. We provide support for this hypothesis by verifying it through crowdsourcing (see

Chapter 5.2.2). Another benefit of this metric is that it is much less dependent on the standoff of

the grasp relative to the object (see Chapter 5.2.1.4). Furthermore, additional information such

as object interactions with, e.g. the simulation process can easily incorporate a table allowing for

different grasp executions.
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(a) (b) (c)

Figure 5.3: Visualization of the grasp generations. (a) All considered approach vectors for a
sample object. (b,c) Overlay of 30 noisy samples of object pose relative to one reference grasp
for two different objects.

Computation of Ratio Metrics A popular way to enhance simulation-based metrics is to

simulate uncertainty in object pose (Diankov 2010; Weisz et al. 2012). The same grasp is applied

multiple times on the slightly perturbed object. By taking all resulting grasp quality measure into

account, we arrive at a more robust final score.

Generation of Noisy Object Poses In the following, we will refer to each grasp that is

generated as described in Chapter 5.2.1.2 as a reference grasp. We believe that it is crucial to

simulate the perceptual noise which will affect the template extraction as closely as possible. At

inference time, for instance, real robot experiments, we only have access to point clouds and

therefore need to estimate surface positions and normals from this noisy data source. Therefore,

we propose the following strategy to sample 30 perturbations of the objects pose for each

reference grasp. We generate a random rotation axis that is placed at the approach point on the

object surface. The object is then rotated with a random angle around this axis and with the

surface point at the center of the rotation. This process captures estimation errors of the surface

normal. Subsequently, a random position is added to the surface pose, reflecting the noisy surface

reconstruction. Examples results are visualized in Figure 5.3b and Figure 5.3c.

Computing the Percentage of Stable Grasps Given all the sampled grasps, the following

ratio metrics indicate the percentage of stable grasps in this set. They differ in the stability

criterion, whether one sample is stable or not.

For computing the ε-ratio per reference grasp, we apply a threshold to the raw ε value of all the

perturbed grasp samples. All grasps above this threshold are considered stable, and all grasps

below unstable. For example, using the threshold 0 means that ε-ratio is equal to the percentage

of force-closure grasps in the sample set. For computing the physics-ratio, no thresholding on

single grasp samples is necessary as the labeling is already binary (see Chapter 5.2.1.3).

Naturally, we prefer grasps that are stable even under some perturbation of the object pose.

A reference grasp is therefore considered positive (stable) if 90% of the noisy grasp samples

98



5.2 Model-based Large-scale Grasp Data Generation

epsilon-0.0 epsilon-0.002 epsilon-0.004 physic
0.0

0.2

0.4

0.6

0.8

1.0

p
e
rc

e
n
ta

g
e

standoff 0: positive
standoff 0: negative
standoff 0.025: positive
standoff 0.025: negative

Figure 5.4: Comparison of the distribution of positive (green) and negative (red) reference grasps
in the entire dataset when labeled with the two different ratio-metrics: ε-ratio and physics-ratio.
A reference grasp is positive if at least 90% of grasp samples are stable. It is negative if less
than 10% of the samples are stable. Reference grasps that have intermediate percentages are
considered undecided and are not shown here. For ε-ratio we applied three different thresholds
on the raw ε-metric (0, 0.002, 0.004) to determine the percentage of stable grasp samples per
reference grasp. Additionally, we visualize the influence of the standoff of the hand from the
object.

were stable. If the number of stable grasps among the noisy sample set is below 10%, we label

this reference grasp as negative (unstable). Note, that this is different from its raw ε-metric or

physics-metric.

5.2.1.4 Statistics of the Database

The database contains approximately 300k different grasps. Figure 5.4 shows the distribution of

stable and unstable grasps according to the different ratio-metrics. As a first observation, we can

see that the dataset is extremely biased towards negative data. This bias mirrors the situation in

the real world. Furthermore, for the ε-ratio, there are more positive reference grasps for standoff

0 than for a standoff of 25mm available. Because the object remains static upon contact, the

relative pose of robot hand to grasp has much more influence on the ε-metric. The physics-metric

is more indifferent to changes of the gripper standoff.

Although a positive ε-metric indicates a force closure grasp, the magnitude of ε quantifies the

magnitude of the external wrench it can resist when applying unit force at the contact points.

Therefore, we analyzed the impact of increasing the threshold on the raw ε-metric for each

sample grasp before computing the ε-ratio per reference grasps. Figure 5.5 shows the histograms

over the raw ε-values for all the positive reference grasps. By thresholding the ε-metric of the

associated grasp samples at 0 or 0.002, respectively, we obtain these grasp stability histograms.

Hereafter, we partition our large-scale simulation-based database into four different datasets
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Figure 5.5: Histogram of ε-metric for all positive reference grasps for bottles (yellow), small
(red), medium (green), and large objects (blue). ε-metric from reference and sample grasps are
included in the plot. The solid colors histograms are generated after thresholding the ε-metric of
sample grasps at 0.002 and 0.0 otherwise.

according to object size, namely small, medium and large objects. A toy dataset, containing 63

bottles which is analyzed more extensively. For the majority of sample grasps the force-closure

value is close to zero or smaller. Therefore, even thresholding them with a minimal value leads

to a huge reduction of positive grasps that also confirmed by Figure 5.4. Some qualitative results

on the effect of different epsilon thresholds on the sample grasps and differences between the

ε-ratio and physics-ratio are shown in Figure 5.6. It is certainly beneficial to filter sample grasps

with a very small ε-metric. However, we can also observe that it is hard to use the ε-metric for

separating positive and negative grasps. Moreover, it is even harder to do that for two different

objects simultaneously even when they are of the same category. Another interesting result is

that only a small fraction of the stable grasps according to physics-ratio are in force closure. Our

website at (Kappler et al. 2015a) lists additional information about the database.

5.2.2 Using Crowdsourcing to Verify Grasp Metrics

We analyze the different simulation-based metrics in a crowdsourcing setup. The website (Kap-
pler et al. 2015a) shows an example page of this setup and additional information. Assuming

that humans are optimal predictors of grasp success in the real world, we aim to verify that the
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ε ≥0 ε ≥0.001 ε ≥0.002 ε ≥0.003 ε ≥0.004 ε ≥0.005 ε ≥0.006 physics + physics −

Figure 5.6: Grasp examples for two bottles and the two different metrics. Green Grippers:
Positive Examples, i.e., 90% of the associated grasp samples are stable. Red Grippers: Negative
Examples, i.e., less than 10% of the associated grasp samples were stable. Left: Visualization of
the influence of a varying ε-threshold on the percentage of force closure grasps from the samples.
ε ≥0 means that all force-closure grasps are considered stable while ε ≥0.006 means that they
have to reach this minimum quality. We can observe that a threshold of ε does not easily separate
stable from unstable grasps. Even for objects in the same category, it is hard to find one threshold
that fits all object instances.

grasp success labels assigned by these metrics match real-world expectations. If this is the case,

we can reduce the number of expensive real robot experiments for gathering high-quality labeled

data for grasping. Furthermore, we would also not require any additional human labels as the

metrics would be deemed reliable.

5.2.2.1 Setup

For all crowdsourcing experiments, the force closure threshold of the ε-metric is assumed to

be 0.0. Thus any grasp in force closure is considered to be stable for the computation of the

ε-ratio.

For the toy problem (bottles), all pictures of the positive (r ≥ 0.9) and negative (r ≤ 0.1) reference

grasps according to both ε-metric and physics-metric are rendered in simulation, where r denotes

the corresponding ratio-metric. For the small, medium, and large dataset, we subsample the data,

rendering at most 200 positive (r ≥ 0.9) and negative (r = 0) reference grasps, again according

to both ratio-metrics. Each image shows one grasp from four different viewpoints and is similar

to those in Fig 5.2.

Each Mechanical Turk hit contains 20 such images to label them as either stable, undecided or

unstable. Although we assume humans to be optimal predictors of grasp success, we still need to

filter noise in the labels due to, e.g. ambiguous pictures, accidental wrong clicks or spamming.

We, therefore, labeled 3 of these 20 images ourselves before publishing them on Mechanical Turk

and used them for post-processing. The remaining 17 images are drawn from both ratio-based
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Figure 5.8: The human ground truth labels for bottles assigned to grasps selected by the (a)
physics-metric and (b) ε-metric. A rejection ratio of 0.0 means that all labels of a worker with
a single mistake are ignored and 1.0 means that any mistake according to the pre-labeled data
is ignored. The x-axis denotes the absolute number of grasps with labels. In green we show
consistent labels from both humans and metrics, red means human have selected the opposite
outcome, and blue reflects undecided.

metrics such that on average one hit contains an equal amount of reference grasps labeled as

stable and unstable according to the metrics.

One of the three pre-labeled examples is an obviously unstable grasp which is used to block

workers from further experiments if they mislabel it, thus prevent spamming. Furthermore, if a

worker makes a mistake while labeling this particular grasp image, the hit is regenerated such

that five valid results are obtained per hit. The other two labeled examples are always visible

during the labeling task and are part of the 20 samples for human labeling.

5.2.2.2 Analysis

First, worker performance is evaluated based on the aforementioned pre-labeled validation

dataset. Figure 5.8 shows the label correlation for varying rejection ratios for the toy dataset.

The rejection ratio states how many mistakes on the pre-labeled data are allowed per worker until

their labels are discarded from the analysis. Green signifies an agreement between human labels

and the labels according to the metric. Red means disagreement and blue undecided. This result

shows that many workers make only a small number of mistakes. Already a rejection ratio of 0.3

results in inconsistent data.

Furthermore, we can observe that the correlation between the physics-ratio and human labels is

always similar for positive and negative grasps. However, for the ε-ratio, there is a significantly

lower correlation to human labels for positively labeled grasps. Negative grasps show a similar

correlation as for the physics-metric. Having large amounts of false positives in the dataset is

of course not desirable. A model that is learned from this data would require more real-world
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experimental data, which is hard to acquire in large quantities, to correct for the high false positive

rate. A similar outcome can also be observed for the small, medium and large object dataset in

Figure 5.12, although less pronounced. The human labeled data supports the hypothesis that the

proposed physics-metric is indeed a better proxy to determine whether or not a grasp is stable.

5.3 Large-scale Grasp Prediction as Classification

Now that we have a large-scale database with ground truth object grasp success and sensor data

annotations we want to analyze if a state-of-the-art classification based method benefits from the

large variety of objects. Therefore, we compare a deep neural network (see Chapter 2.2.2.4) with

logistic regression (see Chapter 2.2.2.3) functioning as a baseline. This comparison requires to

choose a representation of the input data that relates a grasp to an object. We are particularly

interested in a representation that can be easily extracted from real-world sensory data, requires no

prior semantic knowledge (object identity or category) and is local, i.e., independent of accurate

segmentation. In the following, we discuss our modifications to the feature representation

proposed in (Herzog et al. 2014). We want to stress that this feature representation is particularly

well suited since it is very task-specific and takes both training and inference requirements

into account. However, other feature representations might as well be extracted and added to

our database. Figure 5.1 (right) shows an overview of the system for the prediction of grasp

success.

5.3.1 Local Shape Representations

For a given grasp, our feature extraction algorithm extracts a tangent plane at the intersection

point between the approach vector of the hand and the object. The local shape representation (or

template) is a grid of a certain resolution that is aligned with this plane. If the intersection point

with this plane was in the view of the camera and thus the point cloud sufficiently covers the

area around the intersection point, we project the point cloud onto the aforementioned grid. Each

grid cell onto which a point gets projected will carry the distance to that point as a value. All

the other grid cells can either be labeled as occlusion (with a height value that depends on the

viewing angle) or as free space (with a constant height value). These three different channels are

visualized in Figure 5.1 (representation box).

In contrast to the original version in (Herzog et al. 2014), the template coordinate frame is always

aligned with the surface normal and not with the potentially different approach vector of the robot

hand. Thereby, template extraction becomes more efficient because there is only one template

per surface point and point cloud. This reduces the overall processing time to enable responsive
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(a) (b) (c)

Figure 5.9: Local shape representations for a rubber duck, a specific grasp pose and camera
viewpoint. (a) Cyan line indicates the surface normal of a point on the object model. It forms the
approach direction of the grasp. The pink line indicates the viewing direction of the camera. (b)
Blue dots indicate the point cloud for the object rendered from the given viewpoint. (c) Green
(surface) and red dots (occlusion) form the local representation which is a height map relative
to the plane that defined by the point on the surface and its normal (cyan line). Green dots are
generated by measuring the height of the cloud relative to the plane. Red dots indicate occluded
whose height value depends on the viewing angle (pink line).

grasping on a real robotic system. Depending on the roll of the robot hand around the surface

normal, we rotate the template to allow the classifier to disambiguate different rotations. The lack

of label requirements for a supporting plane or background is another simplification. We assume

that every solid point is assumed to be part of the object surface. The burden of separating the

object surface from the background is now on the classifier. A visualization of a template with

the corresponding grasp is shown in Figure 5.9.

For each grasp, we compute several templates from different viewpoints. These are based on a

set of point clouds that are generated per object from 64 different regularly-placed viewpoints.

Given one grasp and the associated surface normal, we compute templates only based on the

subset of point clouds with an angle between viewpoint and surface normal that is less than

20 degrees. This is visualized in Figure 5.10. For generating these templates for the objects

in the database, we consider two different kinds of simulated sensors. One is computing the

ground truth noise-free depth map using OpenGL. The other is simulating measurement from an

RGB-D camera including occlusion boundaries, quantization artifacts and Perlin noise (Bohg

et al. 2014b). When extracting this representation from real-world data, the surface normal of

a point in the point cloud has to be computed based on its neighboring points. Once this is

achieved, the template computation proceeds as above.
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5.3.2 Learning Methods

A key observation about the proposed feature representation is that it can be interpreted as a

2D image representation for which different channels have different semantic meanings. Deep

neural networks are the state-of-the-art learning approach on large datasets with image like data.

A key aspect for these methods is that they do not require data pre-processing but rather extract

the feature transformations in a data-driven manner. Inspired by the successful applications of

proxy objectives such as unsupervised (Erhan et al. 2010) and supervised pre-training (Collobert

et al. 2008), we analyze the possibility to exploit the synthetically generated labeled datasets

as initialization and regularizer for real-world data for grasping. Therefore we train a simple

logistic classifier (Chapter 2.2.2.3) as a baseline learning method. This approach provides further

insights into the overall data complexity since it only optimizes a linear mapping from the feature

representation to a scalar output. (Herzog et al. 2014) showed promising results in previous

work using this classifier on smaller datasets, both in terms of objects and data samples. The

logistic classifier in (Herzog et al. 2014) was manually optimized as part of a non-parametric

classifier which does not scale to our dataset size. We compare this method to a deep neural

network, LeNet like architecture (Lecun et al. 1998), a highly parametric non-linear function

approximator. We chose this architecture since it exploits 2D image like structures while being

very efficient to evaluate.
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Figure 5.10: Influence of the viewpoint on the local shape representation. All images show these
representations for the same grasp (cyan line = approach direction) but with a different viewpoint
(pink line). The top row shows the heightmap from the grasp direction while the bottom row
shows the same heightmap from the side. While the surface points stay largely the same, the
occlusion area changes drastically.
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5.3.3 Experiments

Our experiments, presented hereafter, demonstrate that a simple convolutional neural network

(CNN), representing the state-of-the-art deep learning architecture for computer vision, can be

used to learn a mapping from our feature representation to grasp success, better leveraging the

dataset size. The CNN model applied in our experiments can be seen as a logistic classifier

which learns an additional non-linear feature mapping from data. The output of each method

can be interpreted as a certainty that the given grasp is stable (close to 1) or unstable (close to

0). A threshold on this certainty can be used to achieve different rates of true and false positives

(Figure 5.13).

The dataset for this experiment contains eight different rolls of the hand around every approach

direction. This structure could be used to split the problem into eight different learning tasks.

However, these eight different rolls can be directly represented in the template by simple rotation.

Thus, a single learning method of appropriate complexity should be able to distinguish these

rolls. Our feature representation cannot disambiguate different grasp standoffs. Thus we learn a

different classifier for these cases.

The classification performance is reported on each dataset, using a binary threshold on the ratio-

metric of choice at 0.9. For the ε-ratio, we threshold the raw ε at 0.002 to obtain a comparable

data distribution for both ratio metrics. Each of our datasets contains randomly sampled objects

within the data group (bottle, small, medium, large, all) if more than one object per category is

available. Otherwise, it is only added to the training dataset. We exclude all objects that result

in point clouds with less than 30 points, yielding more than 600 remaining object instances.

Data from one object is exclusive to either the training, validation or testing dataset. Two thirds

of the data are used for training and validation data and one third for reporting the results in

Figure 5.13, 5.14, and 5.15. The validation dataset is used to select the best-learned predictor

and tune hyperparameters such that the network convergences. We always report results on the

test dataset, composed out of unique object not seen during training and validation. Although

the majority of possible grasps, both in simulation and reality are unstable, resulting in a very

biased dataset, we conducted experiments with balanced datasets to allow comparison with prior

work, e.g., (Lenz et al. 2014). However, learning on balanced datasets improves performance but

cannot be applied to the real unbalanced data distribution. We believe that in robotic grasping, it

is important to achieve a high true positive rate at a low false positive rate. This tradeoff lowers

the risk of applying unsuccessful grasps. Therefore, we report the ROC-curve up to 20% false

positive rate. We want to stress that this analysis is not about the absolute performance of the

deep learning method. We rather want to demonstrate that the data is too complex for linear

methods (Figure 5.15b) and that the data sample size is within a domain which is reasonable for

frameworks such as deep learning. One insight from the learning performance is that the physics-
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Figure 5.12: The ground truth labels for the three object groups (small,medium,large) assigned
to grasps selected by (a) physics-metric and (b) ε-metric, assuming a rejection ratio of 0.3. For
every result we report the correlation with the human labels for which at least > 2 (bottom),
> 3 (middle), and > 4 (top) labeled the grasp accordingly. In all cases the proposed physics-
metric outperforms the ε-metric. The x axis denotes the absolute number of grasps with labels. In
green we show consistent labels from both humans and metrics, red means human have selected
the opposite outcome and blue reflects undecided.
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Figure 5.13: ROC curve for the bottle dataset (standoffs 0; results for standoff 25mm are reported
online) Labels based on ε-ratio (e) and physics-ratio (p) for CNN and logistic classification (lreg).
CNN based prediction always outperforms lreg and physics-ratio outperforms ε-ratio based
datasets. The data ratio (r) for each dataset suggests that despite the stronger negative bias of the
physics-ratio based dataset it is still more consistent and thus easier to optimize for.

metric-based results are almost always better than the one based on the ε-metric (Figure 5.15b),

even though the physics-metric-based datasets are more biased and thus more challenging for

classification. Since the presented data is strongly biased towards predicting a negative outcome,

we believe that this interesting dataset can also result in new algorithms within the deep learning

framework.
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Figure 5.14: Results for small objects (a) and medium objects (b) illustrate that a linear logistic
classifier cannot cope with the data complexity.
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Figure 5.15: Results for large objects (a) and all objects (b) illustrate that a linear logistic
classifier cannot cope with the data complexity. In addition to that, the presented result supports
the hypothesis that the physics-ratio generates more consistent data which is in term easier to
learn.
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5.4 Large-scale Grasp Prediction as Top-1 Prediction

So far we have discussed traditional and state-of-the-art large-scale learning-based approaches

for grasp prediction. Supervised classification formulations such as logistic regression and

support vector machines (SVMs) are common methods for small grasping datasets and deep

neural networks show promising results for large-scale datasets. Given that robot grasping

is actually concerned with executing a single grasp successfully, but supervised classification

methods are optimized to create binary labels, typically a score, e.g., distance to the decision

boundary, has to be used as a proxy to select the most promising grasp for execution. This is

problematic since the underlying classification model is optimized for accurately predicting the

binary labels of the entire training dataset. While for some subsets of data points separating

positives from negatives may be easy to achieve, it generally can be tough to achieve this

separation for all data points. Attempting this separation is mainly a problem when training on

datasets with noisy labels or when the employed feature representation cannot disambiguate

different hypotheses in order to make a decision.

Here, we argue that for grasping, we should use our domain-specific knowledge and train models

on subsets of data, where one subset may, for instance, represent all possible grasp hypotheses

obtained from one viewpoint of the object. Furthermore, we should optimize an objective that

encourages that the highest scoring training data point of such a set represents a positive example.

For example, when considering a partial, segmented point cloud of an object, there exists a large

set of potential grasps, most of which are not stable. The best scoring hypothesis within this set

should correspond to a stable grasp. Such an objective is called a ranking loss. Thus far, only a

few grasp learning models in the literature consider this kind of objective.

Although similar to multiple instance learning (MIL), we derive a novel ranking formulation

for grasp stability prediction for binary labeled data hereafter. There are three main differences

between our problem formulation to typical ranking problems. First, our hypothesis set consists

only of binary data. Hence there is no inherent ranking between different examples other than the

distinction between positive and negative hypotheses. Second, we want to optimize solely for the

top-1 ranked hypothesis in a set of hypotheses, and we are not interested in the remaining order of

hypotheses. Third, our resulting ranking score can also be interpreted as a score for classification,

deciding whether or not the top-1 ranked hypothesis is a positive or negative one.

5.4.1 Classification Versus Ranking for Top-1 Prediction

To the best of our knowledge, data-driven learning methods for grasp planning are almost

exclusively formulated as classification problems, often from an optimization perspective (see
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Chapter 2.2.1.3).

We argue that for grasp planning, classification is a sub-optimal objective. The canonical problem

for grasp planning is to predict a successful grasp for a target object given an entire set of hypothe-

ses. Such a hypothesis set can, for example, contain all possible grasp rectangles for a view of an

object as provided by the Cornell dataset (Lenz et al. 2014) or all possible templates extracted

from a 3D point-cloud as in our previously discussed database (Chapter 5.2.1). Obtaining all

possible successful grasps is not necessary for robot grasping. Ideally, the robot succeeds on

the first grasp attempt. Therefore, the grasp stability prediction should be reformulated as a

ranking problem, trying to robustly identify one successful grasp within each hypothesis set.

Additionally, it should provide a calibrated score to decide whether the best hypothesis is stable

or not.

Similar to max-margin multiple instance learning (Andrews et al. 2002) we can formulate our

problem as a structure prediction (Chapter 2.2.1.7) ranking objective. Figure 5.16b illustrates the

canonical pair-wise ranking problem for different hypothesis sets (x,y) and (x,y)′, formulated as

a standard max-margin classification problem, defined as

min
θ

R(θ)+

∑
(x,y)

∑
(x,y)′

L(F(x;θ)−F(x′;θ),∆(y,y′)). (5.1)

The main difference to the standard classification problem is the pair-wise classification and

the pair-wise loss ∆. Notice this optimization problem can be specialized to the ranking SVM

formulation proposed in (Joachims 2002) by applying the appropriate max-margin loss L. As

shown in Figure 5.16b, the ranking problem as described in Equation 5.1 is concerned with

ordering examples from different hypothesis sets according to the ∆ loss. For typical grasp

datasets, consisting of binary labeled grasp hypotheses, this ranking formulation would result

in a solution similar to the binary classification problem (Equation 2.24) up to a hypothesis set

dependent scaling and offset. The scaling and offset are necessary since the ranking formulation

results in a relative ordering problem. Hereafter we derive a ranking formulation for binary

hypothesis sets that allows top-1 prediction within the given hypothesis set as well as classification

of that top-1 choice. We further propose a method to optimize this formulation within the standard

stochastic gradient descent optimization framework.

5.4.2 Top-1 Ranking

Top-1 ranking addresses the problem of optimizing a function that predicts one possible suc-

cessful grasp within any given hypothesis set, if the hypothesis set contains at least one stable
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(a) classification (b) ranking

Figure 5.16: We illustrate the difference between the standard (a) max-margin classification
problem and (b) pair-wise max-margin ranking problem. All symbols of the same shape are
within the same hypothesis set. (a) Binary classification aims at separating these two sets. The
magnitude of the error is indicated by the color saturation of the data samples where white means
no error. Each set has its own distinct color. The (b) ranking problem attempts to not only separate
the three sets, but also maintains an order such that stars are always further to the top right
than circles, and circles are further top right than squares. The resulting pair-wise classification
problems illustrate the similarity of the ranking problem to the standard classification problem in
(a).

grasp. In addition to that, the resulting score has to be discriminative to classify whether or not

the best predicted hypothesis is positive (y = 1) or negative (y =−1). In our work, hypothesis

sets only contain binary labeled grasps, meaning a grasp is either considered positive (stable)

or negative (unstable). We assume no additional label information for the data which would

allow to further discriminate between different examples in a set, e.g., if one positive grasp is

better than another positive grasp. Our large-scale grasp database is one concrete example of a

collection of hypothesis sets for which this formulation is ideal. In this particular example, every

partially observed object is associated with a point cloud and several labeled grasp templates,

where the grasp template takes the role of the feature representation x and the binary labels y

indicate a stable or unstable grasp. Thus in this setting, a hypothesis set contains all pairs (x,y)

available for a particular object view.

Every hypothesis set can either contain only positive examples, or only negative examples or

both. To simplify notation we introduce three different index sets:

• I+ refers to all sets with only positive examples,

• I− refers to all sets with at least one negative example,

• I+− refers to all sets with at least one positive and negative example.
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Every hypothesis set is assigned to at least one index set. Hypothesis sets with positive and

negative examples are assigned to both I+− and I−.

In the following we re-formulate and adapt the general ranking problem (Equation 5.1) to the

top-1 grasp prediction problem. We use a max-margin formulation with a margin (t = 1)

l(t− yk), (5.2)

both for classification (k = F(x;θ)) and ranking (k = F(x;θ)−F(x′;θ)). Here, we use the

squared hinge loss l(v) = 1
2 max(0,v)2. By introducing the additional square, the loss becomes

differentiable everywhere, a property that has been proven useful for stochastic gradient descent

based neural network optimization (Tang 2013b).

Our proposed loss function is comprised of three parts – L+−(θ), L+(θ) and L−(θ) operating on

the previously introduced index sets I+−, I+ and I−, respectively. The goal of the first part of

our loss, L+−(θ), is to rank positive and negative hypotheses using a max-margin formulation,

and is given as:

L+−(θ) = ∑
i∈I+−

∑
x+i

[
l(1−F(x+i ;θ))+

∑
x−i

l(1− (F(x+i ;θ)−F(x−i ;θ))
]

where x−i represents all negative and x+i all positive hypotheses in the corresponding hypothesis

sets in I+−. Notice, we obtain l(1− (F(x+i ;θ)−F(x−i ;θ)) from Equation 5.1, using equation 5.2

with t = ∆(y,y′) = 1 if y is a positive and y′ a negative hypothesis. Furthermore, we ensure that

positive examples get a calibrated score by adding the max-margin formulation l(1−F(x+i ;θ))

for positive examples.

In the case of separable data, we can rewrite L+− to

L+− = ∑
i∈I+−

∑
x+i

[
l(1− (F(x+i ;θ)−max

x−i
F(x−i ;θ))+

l(1−F(x+i ;θ))
]

(5.3)

If the data is separable, summing over all negative examples (as done in initial L+−(θ)) will result

in the same loss value, as this max formulation. The second part of our loss, L+(θ), operating on

index set I+(θ), ensures that the prediction scores are calibrated in the same manner as positive
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examples in I+−, again by using the max-margin formulation:

L+(θ) = ∑
i∈I+

∑
x+i

l(1−F(x+i ;θ))

The third component L−(θ), establishes that negative examples in the index set I− are separated

from positive ones to ensure the overall calibration of the score such that the final ranking score

for a hypothesis set can be used for classification:

L−(θ) = ∑
i∈I−

∑
x−i

l(1+F(x−i ;θ))

Finally, we obtain the joint ranking and classification loss formulation

min
θ

[
L+−(θ)+L+(θ)+L−(θ)

]
(5.4)

If our binary labeled training data, organized in hypothesis sets, is perfectly separable, this

formulation results in the same solution as the standard max-margin classification problem

(Equation 2.24). The pair-wise terms in equation 5.3 will vanish as soon as the two classes

are perfectly separated. If the dataset is not separable, the pair-wise term will function as an

additional loss on all positive examples within hypothesis sets for which the ranking loss cannot

be fulfilled. This can be interpreted as a difference in the importance of positive and negative

misclassifications. However, this does not resolve the issue that the top-1 prediction might be a

negative example. Figure 5.16a illustrates such a case. The reason for misclassification might

be the similarity to a positive example within a different hypothesis set. Hence, the perfect

order/separation is still not achievable.

More concretely, let us assume that there exists a negative grasp which has an indistinguishable

feature representation from several positive grasps in multiple sets. In this case, multiple failure

cases can occur. If this particular (negative) hypothesis is in the same hypothesis set as the

indistinguishable positive hypotheses, the negative hypothesis can be picked at random. The

reason for this is that the negative hypothesis achieves the same score as the positive hypotheses

and one hypothesis has to be selected based on this score. Another possibility is that this negative

hypothesis is in a different hypothesis set than the indistinguishable positive hypothesis and

no easy positive example exists for the function approximator F(x;θ) in the hypothesis set

containing the negative hypothesis. Thus, this negative hypothesis will achieve the highest

score.

In the following, we present our approach to obtaining a top-1 ranking problem despite the binary

nature of the hypothesis sets. Since there are no label differences within the set of positive or
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negative hypotheses, we propose to use the induced difference by the function approximator

itself. Thus, while optimizing the function approximator, the currently best positive and negative

example, given the current function approximator prediction, is used for the pair-wise loss,

resulting in:

min
θ

∑
i∈I+−

[
l(1− (max

x+i
F(x+i ;θ)−max

x−i
F(x−i ;θ))+

l(1−max
x+i

F(x+i ;θ))
]
+

∑
i∈I+

l(1−max
x+i

F(x+i ;θ))+

∑
i∈I−

∑
x−i

l(1+(F(x−i ;θ)) (5.5)

Figure 5.17 shows an example why this simple change to the optimization objective does achieve

the top-1 ranking property for binary datasets. Intuitively, our formulation does not penalize any

prediction for positive examples except for the current best positive and negative one in each

hypothesis set. The best examples are determined by the current ranking of the latest function

approximator parameterization. This ranking is not optimized by an explicit supervised quantity,

but it rather reflects the difficulty for the function approximator to distinguish positive from

negative hypotheses. Hence, the function approximator can select one positive example in each

hypothesis set, which contains at least one positive example, which is easy to separate from all

negative examples. This change enables our formulation to ignore negative examples which are

indistinguishable from positive hypotheses, as long as there exists at least one other positive

hypothesis which is distinguishable. Notice, that we do not select these positive examples, but

the optimization itself will determine these examples. Different learning methods for F(x;θ)

might result in different top-1 candidates.

This problem formulation enables automatic selection of positive top-1 examples which are easy

to separate from negative examples. Indistinguishable examples under the implicit function

approximator similarity measure, existing, e.g. in different hypothesis sets, are not enforced to

obtain a positive score anymore.

To be more concrete, this behavior is useful for positive hypotheses for which relevant informa-

tion, e.g., the surface points of an object, is not available, due to, e.g. partial occlusion. In this

scenario, the feature representation for the hypothesis might not contain enough information to

distinguish this example from other negative examples. Using our ranking formulation (Equa-

tion 5.5), the function approximator is not penalized if it assigns a low score to such examples,

as long as there is another positive hypothesis in the set, for which the feature representation

contains enough information to separate this example from all negative ones.

114



5.4 Large-scale Grasp Prediction as Top-1 Prediction

The pair-wise loss, solely applied to the two currently maximum examples of different classes

can be interpreted as a virtual target for the positive example. Alternatively, the pair-wise loss

can be seen as a ranking problem on precisely two hypotheses (highest scoring positive and

negative), selected by the score of the function approximator. The optimization tries to increase

the score of that particular positive example to outperform the best negative one by a fixed margin

(Equation 5.2 and 5.5).

For each hypothesis set, we have to solve at most two different problems. For hypothesis sets

in I+−, the pair-wise loss and negative calibration are optimized. For hypothesis sets in I+,

the best positive example is calibrated and for hypothesis sets in I− all negative examples are

calibrated. Despite the simple nature of these problems, obtaining an efficient optimization of

Equation 5.5 is not straightforward as discussed in the following section.

Figure 5.17: This figure illustrates the proposed ranking objective applied to a single binary set
of hypotheses. Squares represent negative examples and circles positive ones. The saturation of
the color filling the shapes represents the error magnitude for each sample. The three dashed
lines through zero represent the standard hinge loss. Notice that positive examples (circles) are
not enforced to be separated but negative (squares) are. Since the current best hypothesis is a
negative example, an additional classification problem for the best positive hypothesis is created,
creating a virtual target higher than the current best negative example plus a margin. Arrows
indicate the direction in which the optimization objective attempts to change the prediction
scores.

5.4.3 Efficient First Order Optimization

The naive problem formulation as proposed in Equation 5.5 could be optimized with first order

batch gradient descent. Different from MIL (Andrews et al. 2002) our formulation is not convex
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since we are using a deep neural network based function approximator. The standard approach

to optimizing a loss in the form of equation 5.5 for large datasets is to use mini-batch stochastic

gradient descent. This makes each optimization step independent of the total number of available

data points. Current state-of-the-art approaches such as CNN’s, which can exploit large datasets

due to a large number of open parameters, also follow this optimization scheme. Usually, n

data points (x,y) are sampled uniform at random from the training dataset, constructing one

mini-batch.

For our proposed loss, every mini-batch has to contain all positive examples of a hypothesis

set due to the max operation. Notice this is only restricted to the positive examples. Using any

subset of the negative examples which is already fulfilled would merely result in zero loss for

the pair-wise terms. Thus the naïve approach for our loss would be to sample a hypothesis set

uniform at random. All positive hypotheses of this set have to be in the mini-batch together with

any subset of negative hypotheses. This process is continued until the mini-batch is filled with

samples.

This naïve approach to constructing the mini-batches for stochastic gradient descent has two main

drawbacks. First, the number of positive examples would put a lower bound on the mini-batch

size. Second, the majority of the computation would result in no improvement, since only the

largest positive and negative example will be affected. In the following, we present our approach

to overcome the limitations of the naïve approach.

5.4.3.1 Pair-Wise Loss Relaxation

As pointed out before, the max operation in the pair-wise term of our ranking loss equation 5.5,

is the limiting factor to draw individual samples from each hypothesis set. Thus, next, we show

how to address this issue such that we can use stochastic gradient descent effectively.

Typical state-of-the-art methods for classification and regression such as (Convolutional) Neural

Networks are global function approximators. Hence, every update of F(x;θ) can affect the

prediction of any other data sample. We assume that F(x;θ) changes slowly for not affected

values and more so for values for which gradients are applied. This is not a very restrictive

assumption since we use stochastic gradient descent which requires to take small steps to

converge. Using this assumption, we can exploit that the maxxi F(xi;θ) within a hypothesis set

is unlikely to change very frequently. Thus, we propose to rewrite the pair-wise term as two
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max-margin classification problems with a hypothesis set dependent margin ti:

min
θ

∑
i∈I+−

[
l(t+i −max

x+i
F(x+i ;θ))+

l(t−i +max
x−i

F(x−i ;θ))+

l(1−max
x+i

F(x+i ;θ))
]
+

∑
i∈I+

l(1−max
x+i

F(x+i ;θ))+

∑
i∈I−

∑
x−i

l(1+F(x−i ;θ)) (5.6)

where t+i = 1+maxx−i
F(x−i ;θ) is computed for each hypothesis set, as well as t−i = 1−

maxx+i
F(x+i ;θ). The basic idea is to fix the maximum positive hypothesis for one hypothe-

sis set to compute the corresponding margin for the negative hypothesis and vice versa. Instead

of always evaluating the function approximator to obtain the true ti, the last known prediction

for every sample is used to update the estimates. This optimization problem will result in the

same minimum as equation 5.5, if our assumption, that the maximum hypothesis for a particular

hypothesis set does not change frequently, holds. Now, it is possible to draw individual samples

from each hypothesis set.

Note, the most informative examples are the best positive and negative examples. Other positive

examples of a hypothesis set in I+− do not contribute to the loss Equation 5.6. Thus, to improve

the loss the sample distribution over the hypothesis and hypothesis sets is not uniform but

dependent on the loss and an additional term described in the following section.

5.4.3.2 Loss Optimization using Sampling

Random data sample selection is crucial for stochastic gradient descent based optimization.

Selecting data which most likely results in zero loss, thus zero gradients, slow down the opti-

mization convergence. Using the previously introduced ranking loss Equation 5.6, the problem

with drawing sample hypotheses is to trade of the impact on the loss and the accuracy of the

ti estimation. The latter will ensure that the actual maximum of each hypothesis set is used to

compute the loss and not an out of date estimate. Thus, we propose a heuristic to update the

distribution for hypothesis sampling, which trades of the following two quantities (i) the error

given the current loss (Equation 5.6) and (ii) the iterations since the last update of the function

evaluation of each data sample.
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More concretely, after every function approximator evaluation, we will update the prediction

for the corresponding hypothesis and the iteration when the prediction was performed. For all

hypothesis sets for which a hypothesis prediction was updated, the estimates for the corresponding

t+i and t−i are updated and the loss based error for the hypothesis is updated. Notice, almost

all hypothesis in a set have zero loss since only negative and the maximum positive hypothesis

are strictly enforced. If we normalize the error per hypothesis with the total error for all

hypothesis, we obtain a distribution. Sampling hypotheses from this distribution will solely focus

on improving the loss under the current t+i and t−i estimates. Due to the assumed global nature of

the function approximator, we have to ensure that these estimates are still true. Therefore, we

augment this error with an artificial error term that captures the number of iterations since the

last update of a data point. It is of the following form:

e(c,u;o,b) = exp(−t +(c−u)/b) (5.7)

where c is the current iteration, u is the last update iteration of the example, o a trade-off

parameter to determine the base influence of not evaluating, and b determines how fast the

influence grows.

Finally, after each optimization iteration, the hypothesis predictions and loss errors are updated

as previously described. In addition to that, we add the artificial iteration dependent error term

Equation 5.7 to the hypothesis error. The overall error for all hypothesis is normalized to get

the discrete distribution from which we draw n samples (without replacement) to fill the new

mini-batch. This distribution results in low sample frequency for hypotheses with small loss

values, basically not until Equation 5.7 increases to a similar error magnitude as the maximum

loss violating hypotheses. The maximum positive and negative hypothesis per hypothesis set

are sampled more frequently if they do not fulfill the ranking loss. Figure 5.18 illustrates the

optimization loop for our proposed loss and mini-batch sampling.

5.4.4 Experiments

As motivated before we are interested in evaluating the top-1 accuracy for grasp prediction using

our large-scale grasp database. We use the same underlying deep neural network architecture

and compare to an additional classifier evaluated in (Bohg et al. 2016). Table 5.19 reports our

empirical results on the test dataset following the same training procedure as for the classification

experiments (Chapter 5.3.3). Different from the classification accuracy we report top-1 accuracy

as follows. In this case, a true positive is a prediction for a hypothesis set from an object point

cloud for which the highest scored hypothesis is classified positive, and the ground truth label

is positive. A true negative in this experiment is a prediction for a hypothesis set for which the
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Figure 5.18: This figure illustrates the general optimization loop, sampling a mini-batch, per-
forming one function approximator update step, feeding back the latest prediction values and
updating the error distribution. We show two exemplary sets of hypotheses, the one on the left
contains positive and negative examples and the one on the right only negative ones. The gray
value of the computed error distribution signals the importance of this sample for the mini-batch
sampling. Notice how the error due to the loss, indicated in red and green and the time since the
last update affects the error distribution. The error distribution is normalized across all hypothesis
sets and samples are drawn without replacement from the joint distribution.

highest ranked hypothesis is classified negative, and there is no positive labeled hypothesis in this

set. The scalar threshold for the classification prediction, based on the ranking score, is obtained

by cross-validation.

The results show that the proposed model trained on a ranking objective outperforms the two

baselines by a large margin. This further indicates the importance of using domain specific

knowledge in order to leverage large-scale machine learning approaches more efficiently within

robotics applications such as grasping. For the dataset containing large objects, the performance

improves by more than a factor of two. For the toy dataset of bottles, the improvement is moderate.

This result is probably due to the simplicity of this subset of data where positive samples can be

easily separated from negative ones. Notice that the datasets are highly unbalanced, meaning

that the majority of the grasp hypotheses across all hypothesis sets are negative. The results on

the other datasets suggest that it is much harder to perfectly separate positive from negative data

while it is easy to ensure that the top-ranking one refers to a stable grasp. This can be due to

remaining label noise in the dataset for which similarly looking templates can be either positive

or negative.

Figure 5.20 illustrates how our proposed sampling procedure (Chapter 5.4.3.2) affects the samples

used for optimization, focusing on the problematic examples the most. This graph supports our

hypothesis that during the optimization of our proposed loss, the majority of the hypotheses

are easy to separate based on the appearance-based features, resulting in low errors early on in

the optimization procedure. However, every example is revisited due to the suggested heuristic,
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Bottles Small Medium Large
data ratio 0.13 0.15 0.08 0.03
Forest 0.83 0.43 0.45 0.31
CNN 0.83 0.39 0.51 0.41
OURS 0.85 0.59 0.70 0.84

Figure 5.19: We report the data ratio (all positive grasps divided by all grasps) for each test
dataset and the top-1 score on the test dataset obtained by three different methods. The top-1
accuracy indicates the ratio of point clouds in the test data set for which the best scoring template
was classified positive and also had a positive ground truth label or the best scoring template
was classified negative, and there was no positive ground truth example in the set. Results are
reported per object group (bottles, small, medium, and large) and for gripper stand-off 0 from
the object surface before closing the fingers. The proposed model that is trained on a ranking
objective outperforms the baselines by a large margin. For large objects, the performance has
more than doubled.

despite changes to the parameters of the learning method. The error for these examples maintains

to be low meaning our underlying assumption that the global function approximator is not

drastically changing its behavior is valid, even more so it does not forget about the easy examples

over time.

0 50000 100000 150000 200000 250000
0

5

10

15

20

25

30

update-count-min

update-count-mean

update-count-max

#samples

#
sa

m
p
le

s 
p
e
r 

h
y
p
o
th

e
si

s

Figure 5.20: This figure shows the influence of the error distribution based sampling for the
optimization. The minimal update count (blue) illustrates that due to the error component based
on the iterations, all data samples are revisited over time. However, the maximum update count
(red) shows that the optimization is mostly focusing on the difficult hypotheses.

5.5 Summary and Review

Motivated by our prior work on reactive model-based fast feedback systems for manipulation

(Chapter 3) and robust task learning from demonstration (Chapter 4), we focused on learning-

based grasp pose prediction in this chapter. Integrating domain-specific model-based approaches

into state-of-the-art discriminate learning methods is a complex ongoing research effort. Instead,
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we propose to use our domain knowledge to produce high-quality ground truth data. Different

from model-based grasping used during real robot executions, simulation-based data collection

is not constraint by time; it is an offline process. Hence, we can leverage computationally

expensive simulation, simulating complex sensor noise and expected uncertainties to facilitate a

better real-world transfer. The learned mapping from sensor observation to grasp prediction is

computationally efficient and different from model-based approaches does not require object

identification and pose estimation. Since our proposed, physics-based grasp success method, to

overcome the known limitations of the ε-metric has no theoretical guarantees, we conducted

Mechanical Turk studies to verify that our large-scale and automatically labeled database with

our physics-metric is indeed more likely to predict better grasp success. Our classification-

based analysis provided further support that our dataset supervised by physics simulation is

more consistent and therefore better suited for learning. Further, the large object variety and

therefore complicated mapping in our database requires high capacity non-linear classification

methods such as deep neural networks to achieve good performance. Finally, we derived a new

problem specific top-1 ranking objective using our domain knowledge about robotic grasping for

manipulation. This method directly optimizes to predict one successful hypothesis per sensor

observation, if such a hypothesis exists. Therefore, our top-1 prediction approach automatically

determines easy, less ambiguous hypotheses given their feature representation, resulting in

better performance. The resulting problem is easier to optimize, the learned deep neural network

converges quickly, despite its more complex loss objective. Hence, we demonstrated two different

approaches to incorporate our model-based knowledge into the design of a domain-specific

learning objective and realistic training data generation for grasping.

In conclusion, this work represents another building block towards autonomous manipulation. It

complements our overall model-based system (Chapter 3) by enabling grasp hypothesis prediction

from partially observed sensory data. This contactless pre-grasp pose is an ideal starting point

for our learning from demonstration based robust task learning approach (Chapter 4) to learn fast

feedback grasp controller which can recover from failures. However, after having successfully

grasped the object, we still require high gain control to track the desired trajectories due to the

additional payload which altered the system dynamics and therefore our wrong inverse dynamics

model. In the following chapter, we discuss a novel method which uses the same underlying

model-based inverse dynamics model but efficiently learns an additional non-linear model from

data.

121





Chapter 6

Inverse Dynamics Learning

Achieving reactive and compliant behavior is a cornerstone of robotic applications involving

safe interaction with humans. In previous chapters, we have already presented two reactive

systems, a model-based fast feedback system enabling safe manipulation by proactive obstacle

avoidance (Chapter 3) and a learning-based method to teach new tasks using multiple sensor

modalities (Chapter 4). Both systems are based on model-based inverse dynamics control and

PID feedback controller to compensate for model inaccuracies. As famously said in (Box 1976):

"All models are wrong.". More specifically in the context of inverse dynamics models, model

errors are inevitable due to system payload changes, e.g., when picking up an object (Chapter 3),

and complex highly non-linear system dynamics. Therefore, high feedback gains (PID) are

required to achieve good trajectory tracking for these dynamic manipulation tasks. However,

inherently safe systems should be compliant, have low feedback gains. In this chapter we tackle

the problem of task-specific inverse dynamics learning in low feedback gain settings, agnostic to

already existing model-based inverse dynamics methods, complementing our work on reactive

systems (Chapter 3) and learning from demonstration (Chapter 4).

Considerable effort has been put into developing machine learning methods that can learn or

improve inverse dynamics models (Vijayakumar et al. 2000; Nguyen-Tuong et al. 2008; Gijsberts

et al. 2013; Meier et al. 2014b). These approaches attempt to identify a global inverse dynamics

model. Collecting data that covers the full state-space is typically not considered a viable

approach for high-dimensional systems. Furthermore, when considering motions with object

interaction (Chapter 3 and 4) learning one global model becomes even more involved if not

impossible since the model has to additionally take contact and payload signals into account.

Thus online learning (Chapter 2.2.1.1) has been a focus in these settings but remains a challenge.

The key difficulties are computationally efficient learning of models that are flexible enough to

capture the non-stationary data of inverse dynamics mapping and doing so on streaming data

that is highly correlated. To circumvent the issues of the aforementioned methods we follow the

path of learning task-specific (error) models (Jamone et al. 2014; Toussaint et al. 2005; Petkos

123



Chapter 6 Inverse Dynamics Learning

et al. 2006; D. M. Wolpert et al. 1998). Error models do not replace the underlying rigid body

dynamics model but rather complement it. This model is very well understood, quickly to obtain,

and achieves excellent performance if it is correctly identified. Thus, we only have to learn

error terms correcting the mistakes of the existing model, already taking care of many system

non-linearities. Further, in the absence of task-specific data, our system is still fully functional

due to the underlying model-based inverse dynamics approach that generalizes very well to the

whole state-space.

Assuming that we want to learn task-specific inverse dynamics for low gain, very compliant

systems, we can iterate and improve on the task, collect data and optimize our learning-based

approach incrementally. While this approach is iterative by nature, we aim at making it as

data-efficient as possible, such that only a few iterations are required, while achieving consistent

convergence in the error model learning process. Task-specific models do not mitigate the

problem of using payload signals or contextual information when trying to build a global model.

However, it simplifies the overall global problem into two subproblems: (i) finding a task-specific

inverse dynamics model and (ii) detecting which task model to use. In the case of learning from

demonstration (Chapter 4), task identification is trivial. Thus, this approach is straightforward to

incorporate in such a framework.

In the case of an existing imprecise inverse dynamics model (e.g., model-based rigid body

dynamics) and low gain feedback controller, traditional inverse dynamics learning approaches

learn the (error) model slightly off the desired trajectory. This comes from the fact that the data

points used to learn the model are based on the actually achieved accelerations instead of the

desired commanded accelerations. Thus if tracking is bad, the collected data points are slightly

off the desired trajectory for which we wanted to identify the inverse dynamics model. For

instance, one extreme case of bad tracking is encountered when the system cannot overcome

static friction. In that case, no useful data for inverse dynamics model learning is generated.

Traditionally, this is circumvented by increasing the gains of the feedback control term, at the

cost of compliance. Alternatively, this issue is addressed by our recent work (N. Ratliff et al.

2016), which employs a direct loss function, minimizing the error between desired and actual

accelerations, to learn feedback terms online.

In this work, we explore the intuition that feedback control can be viewed as an online technique

to compensate for errors in a given a priori inverse dynamics model, as discussed in (N. Ratliff

et al. 2016). The feedback terms, compensate for errors between what a given model predicts

and what we actually need. Therefore they naturally act as a convenient source of training data.

We show how the direct loss on accelerations, as presented in (N. Ratliff et al. 2016), can be

transformed into a loss on inverse dynamics torques, measured at desired accelerations. As a

result, we now have two training data sources: (i) the traditional inverse dynamics training data
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points measured at actual accelerations, and (ii) this new training signal measured at commanded

accelerations. We show how this additional data source leads to more consistent convergence of

the task-specific inverse dynamics learning process.

6.1 Background

Tracking desired accelerations with low feedback controller gains requires an accurate inverse

dynamics model. The dynamics of a classical dynamical system can be expressed as

τ = M(q)q̈+h(q, q̇) (6.1)

where q, q̇, q̈ denote the joint positions, velocities, and accelerations, M is the inertia matrix,

and h collects all the modeled forces such as gravitational, Coriolis, centrifugal forces, viscous

and Coulomb friction. When possible, inverse dynamics approaches (Craig et al. 1987) model

the system dynamics via the rigid body dynamics (RBD) equation of motions. Then, given

sufficiently rich data, the RBD parameters can be identified using linear regression techniques

(An et al. 1985), resulting in the approximate RBD dynamics model

τ̂rbd = M̂(q)q̈d + ĥ(q, q̇). (6.2)

with approximate M̂ and ĥ. This has been extended in (C. G. Atkeson et al. 1985), to additionally

estimate payloads.

Unfortunately, the RBD model typically is not flexible enough to capture all non-linearities of

the actual system’s dynamics. As a result, the estimated RBD model is generally only a rough

approximation. Thus, when attempting to track desired accelerations q̈d with τ̂rbd we achieve

actual accelerations q̈a differing from q̈d . Specifically, when τ̂rbd is applied on the real system,

with the true unknown dynamics model M,h, we can express the actual accelerations q̈a as

q̈a = M(q)−1[τ̂rbd−h(q, q̇)] (6.3)

= M(q)−1[
(
M̂(q)q̈d + ĥ(q, q̇)

)
−h(q, q̇)]. (6.4)

Note, if our estimated model M̂, ĥ were accurate, this expression would evaluate to q̈a = q̈d .

However, this is typically not the case on real systems and because of this a feedback term τfb

is required. This feedback term measures the error made and adds a corrective term to ensure

accurate tracking. Traditionally, this feedback term is realized through PID control. The higher

the gains, the better the tacking, at the cost of system compliance.
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6.1.1 Learning Inverse Dynamics Models

To this end, various approaches to learning either the full inverse dynamics or an error model have

been proposed. When learning an error model the total torque command is then a combination

of any existing approximate model (τ̂rbd), an error (torque) model ( fiderr) and a feedback term

(τfb),

τtotal = τ̂rbd + fiderr + τfb. (6.5)

One of the critical challenges of inverse dynamics learning is computational efficiency. Predicting

with learned models needs to be feasible within the real-time constraints of the systems consuming

torque commands. Furthermore, it is typically assumed that the inverse dynamics mapping is

non-stationary and can change over time. Thus, approaches that can incrementally learn and are

computationally efficient enough for real-time deployment (Vijayakumar et al. 2000; Nguyen-

Tuong et al. 2008; Gijsberts et al. 2013; Meier et al. 2014b; Jamone et al. 2014; Meier et al.

2016) form one of the main research directions within the topic of inverse dynamics learning.

However, learning globally valid models robustly on highly correlated data streams remains a

challenge. More in-depth discussion of the challenges and existing approaches can be found in

(Sigaud et al. 2011; Nguyen-Tuong et al. 2011).

Some robustness can be achieved by using analytical (parametric) models such as RBD models

as priors, and learning an error model on top of that (Nguyen-tuong et al. 2010; de la Cruz et al.

2012; Camoriano et al. 2016). Such approaches can revert to this prior knowledge when the

algorithm determines that the error model fit is uncertain.

Because of the difficulties of learning a globally valid model, some research has moved towards

learning task/context specific inverse dynamics models (D. M. Wolpert et al. 1998; Toussaint

et al. 2005; Petkos et al. 2006; Petrič et al. 2014; Jamone et al. 2014; Calandra et al. 2015;

Christiano et al. 2016). In this setting it is feasible to collect task-relevant data for offline learning,

therefore simplifying the learning process. However, this comes at the cost of having to detect

the correct context at runtime such that the correct task model can be chosen. Our work, fits into

this category, with the focus on efficiently learning one task model.

Finally, learning inverse dynamics models is typically motivated by being able to use low-gain

feedback control. However, traditional inverse dynamics learning approaches initially need high

enough gains to achieve good tracking, such that relevant data is being generated. Little work

has been done towards automatically lowering the feedback gains once a suitable model has

been learned. An exception is work presented in (Alberto et al. 2014) which allows for variable
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gains, using high gains, when the model is uncertain about its predictions and low gains when it

is certain.

All of these methods learn inverse dynamics models on only the indirect data source measured at

actual accelerations. In this chapter, we make use of two different data sources stemming from

indirect and direct learning approaches to train inverse dynamics models.

Thus, before going into the details of our proposed approach, we discuss the notion of indirect

and direct learning and present related work within that context.

6.1.2 Indirect vs. Direct Learning of Inverse Dynamics

As mentioned above, most of the recent work on inverse dynamics learning can be classified as

indirect learning methods. The objective function that these methods optimize is given as

Lindirect(θ) = ∑
(xa,τtotal)∈D

||τtotal− f (xa;θ)|| (6.6)

where the input data point xa = (q, q̇, q̈a) is a combination of the state (q, q̇) and the actual

accelerations q̈a. The output value τtotal is the corresponding applied torque that achieved the

accelerations q̈a. Here, the function that encodes the mapping from x to torques is defined as

f (x;θ), where θ are the open parameters of the chosen model.

Online, the robot attempts q̈d from state (q, q̇). It calculates torque τtotal and observes true

accelerations q̈a. Rather than training at input point xd = (q, q̇, q̈d), the data point xa = (q,q, q̈a)

is used with target τtotal. The drawback to indirect learning is that convergence might be slow

since the data is off the trajectory/distribution we want to optimize for. This is especially difficult

when q̈a = 0 due to static friction since many torques map to this value (i.e., the inverse function

is not one-to-one at this point).

Alternatively, it was shown in (N. Ratliff et al. 2016) that it is possible to directly measure

the gradient of the acceleration error of a system, which enables a new class of direct online

learning algorithms. This approach aims to minimize the error between the desired and actual

accelerations directly, by optimizing the following direct loss function, for every pair of desired

and actual accelerations,

Ldirect(θ) = ||q̈d− q̈a(θ)||2M (6.7)

= ||q̈d−M−1[τ̂rbd + fiderr−h]||2M
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where the actual accelerations q̈a are a function of the error model fiderr. Note, traditional direct

adaptive control methods (Astrom et al. 2008; Nakanishi et al. 2004) have similar motivations

– they use Lyapunov techniques to derive controllers that adjust the dynamics offset model

with respect to some reference signal. (N. Ratliff et al. 2016) show how to effectively perform

online learning on this objective leveraging well established online gradient descent techniques.

However, this simple feedback term does not capture any structure of the error model and requires

a relatively high learning rate to account for payload changes. (Meier et al. 2016) use the resulting

error presented in (N. Ratliff et al. 2016) as a feedback term on acceleration errors and use the

indirect loss function to learn a drifting Gaussian process to model larger structured inverse

dynamics modeling errors. Note, (Meier et al. 2016) combine the direct and indirect learning as

two separate learning processes with two different purposes: direct learning of an online adaptive

feedback term and indirect learning of a locally valid inverse dynamics error model to capture

larger errors. Also, the approach by (Meier et al. 2016) is a task-independent online learning

approach and theoretically applicable anywhere throughout the state space. However, it retains

no memory of previously learned error models and thus is not able to improve over time.

Our work presented here is orthogonal to this otherwise very related work: Here, we show

that we can use direct and indirect learning within the same learning process of task-specific

(feedforward) inverse dynamics (error) models, which can improve over time.

6.2 Combining Indirect and Direct Learning

To be able to learn the state-space dependent structure of the inverse dynamics modeling errors,

we assume that the error model is identifiable in the space of x = (q, q̇, q̈). Furthermore, since

every task execution may slightly vary, we also follow an incremental learning process, meaning

that each task execution generates a new training data set that can be used to update and improve

our error model. Thus, our error models are indexed by k, indicating the kth learning iteration. For

k = 0, meaning that no error model exists for the task at hand, we simply assume f 0
iderr(x;θ0) = 0.

Given this, the total torque applied to the system is the approximate rigid body dynamics model

τ̂rbd(xd) (if available) plus an offline learned error model f k
iderr and a feedback term τfb:

τtotal = τ̂rbd(xd)+ f k
iderr(xd ;θk)+ τfb. (6.8)

Here we show how the direct and indirect loss functions can be combined into one loss function

that uses two different data sources. In order to do so we 1) discuss the loss functions in

the context of offline error model learning, 2) show that the two loss functions create two
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different training signals for the error model, and 3) use this result to combine direct and indirect

learning.

6.2.1 Indirect Loss Function

We start by discussing the details of learning an error model with an indirect loss. We compute

the torque command based on the current state (q, q̇) and desired accelerations q̈d , apply this

torque, and then measure actual accelerations q̈a. Now we know what torque command achieves

these measured accelerations and can use this data point to learn an inverse dynamics model. We

collect all of these data points for one task execution, for t = 1 . . .T , such that we have T data

points to learn parameters θk, initialized with the parameters θk−1.

In the indirect formulation, we try to optimize the parameters θk such that the difference between

the applied torque τtotal and the inverse dynamics model fid at xa is minimized:

Lindirect(θ
k) = ∑

T
t=1 ‖τ

t
total− fid(xt

a;θk)‖2 (6.9)

Here we would like to utilize an approximate rigid body dynamics model (if available) and learn

an error model fiderr in order to optimize the fid model. Notice, our approach does not require a

rigid body dynamics model, all derivations hold when assuming a constant model τ̂rbd := 0 as

well. In this case we would learn the full inverse dynamics model, not using any domain specific

knowledge. However, if possible we can and should leverage the existing rigitd body dynamics

model. To compute what the RBD error is at input xt
a, we have to evaluate τ̂rbd at xt

a and subtract

it from the total torque applied τtotal, such that, in the kth learning iteration, we optimize

Lindirect(θ
k) = ∑

T
t=1 ‖τ

t
total− τ̂rbd(xt

a)− f k
iderr(x

t
a;θk)‖2

Thus, using the indirect learning approach we optimize f k
iderr(x;θk) on the following data set

Dk
indirect = {xt ← xt

a,y
t ← τ

t
total− τ̂rbd(xt

a)}T
t=1. (6.10)

The quality of this training data set depends on how well we have tracked the task policy or

trajectory. With accurate tracking behavior, one learning run should already give us a good

approximation of the modeling errors. However, if tracking is bad, it very well may be that we

require several learning iterations to estimate a good error model.
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6.2.2 Direct Loss Function

To overcome the limitations of the indirect learning process, (N. Ratliff et al. 2016) proposes to

use a direct loss (Equation 6.7) to learn modeling errors. Here we use this loss in acceleration

space (N. Ratliff et al. 2016), to derive an additional data source for inverse dynamics learning.

We start with Equation 6.7, drop the weighting of the acceleration error by the inertia matrix M

and instead multiply the accelerations with M

Ldirect(θ) = ∑
T
t=1 ‖Mq̈t

d−Mq̈t
a(θ

k)‖2 (6.11)

= ∑
T
t=1 ‖(Mq̈t

d +h)−Mq̈t
a(θ

k)−h‖2

where we have also added and subtracted h. The true dynamics model M,h is never evaluated

in our loss formulation, it is merely used to derive the direct loss formulation as shown in the

following. We can now summarize the first term as the true rigid body dynamics model τrbd(q̈t
d),

evaluated at the desired accelerations, and we expand q̈t
a(θ

k) as follows

Ldirect(θ) = ∑
T
t=1 ‖τrbd(q̈t

d)−Mq̈t
a(θ

k)−h‖2 (6.12)

= ∑
T
t=1 ‖τrbd(q̈t

d)−MM−1[ fid(q̈t
d ;θk)−h]−h‖2

= ∑
T
t=1 ‖τrbd(q̈t

d)− (τ̂rbd(q̈t
d)+ f k

iderr(x
t
d ;θk))‖2

= ∑
T
t=1 ‖(τrbd(q̈t

d)− τ̂rbd(q̈t
d))− f k

iderr(x
t
d ;θk)‖2

where fid(q̈t
d) represents the state based rigid body dynamics and error model without a feedback

term which should ideally be zero. We now have transformed the loss on accelerations to a loss

on torque commands at the input point xt
d . Note that this transformed loss intuitively means

that we want to minimize the difference between our error model f k
iderr(x

t
d ;θk) and the true

modeling error τ t
error = (τrbd(q̈t

d)− τ̂rbd(q̈t
d)) at input xt

d = (qt , q̇t , q̈t
d). While intuitively pleasing,

we unfortunately do not have access to the true modeling error τ t
error. However, we can get an

estimate of the modeling error τ̂ t
error = τ t

fb + f k−1
iderr(x

t
d ;θk−1) by combining the feedback term τ t

fb

and the error model f k−1
iderr from the previous task execution (similar to feedback error learning

(Nakanishi et al. 2004)), which results in the following loss

Ldirect(θ) = ∑
T
t=1 ‖τ̂

t
error− f k

iderr(x
t
d ;θk)‖2 (6.13)

Similar to the indirect learning we can now construct a dataset

Dk
direct = {xt ← xt

d ,y
t ← τ

t
fb + f k−1

iderr(x
t
d ;θk−1)}T

t=1 (6.14)
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which can be used to learn or update the new error model f k
iderr. We now receive data points

directly on the desired accelerations. However, also this data set’s quality depends on tracking

accuracy. With low feedback gains, the initial τfb may not really capture the errors very well,

such that the first learning iteration may only capture part of the modeling errors.

Thus, with low feedback gains, we may require multiple learning iterations to learn an accu-

rate error model. Whereas increasing the feedback gains g would lead to improved tracking,

increasing the fidelity of the data, at the cost of compliance. Here we simply propose to do

both: use glow to compute the feedback terms τfb(glow) which are sent to the system, and use

ghigh to compute feedback terms τfb(ghigh) which are sent to the learner. Notice, the feedback

term using τfb(ghigh) is never applied on the system. Thus, we maintain a very compliant system

while obtaining better error data for the portion of the state space reached with the glow. This

can be helpful to break stiction or counteract high friction with fiderr after fewer iterations which

otherwise would not be possible with traditional inverse dynamics learning approaches and low

gains.

6.2.3 Joint Inverse Dynamics Learning

The key insight for our approach is that we can use the feedback term as an error estimate for the

desired accelerations. Thereby the error model learning problem has two data sources indirect

and direct. Both exhibit the same structure to optimize the error model. Hence, we can formulate

a joint function approximation problem of the form:

Ljoint(θ
k) = ∑

(x,y)∈Dk
joint

‖y− f k
iderr(x;θk)‖ (6.15)

where data points for the actual accelerations q̈t
a for every timestep t can be used as well as data

points for the desired accelerations q̈t
d as described by

Dk
joint =Dk

direct∪Dk
indirect. (6.16)

6.3 Task Specific Inverse Dynamics Learning

Implementing our approach required several design decisions on the levels of motion generation,

control, and learning. Here we will give a short overview of our design choices, and give

an algorithmic overview of our iterative approach to learning task-specific inverse dynamics

models.
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Algorithm 1 Execute Task and Collect Data

Require: f k−1
iderr, π(qt , q̇t), system(τ t), q0, q̇0

1: Dk
joint = /0; t = 0

2: while not converged do
3: q̈t

d = π(qt , q̇t)
4: xt = (qt , q̇t , q̈t

d)
5: τ t = τ̂rbd(xd)+ τ t

fb + f k−1
iderr(x

t
d ;θk−1)

6: t = t +1
7: qt = system(τ t−1)
8: q̇t , q̈t−1

a = finiteDiff(qt ,qt−1)
9: update feedback term τ t

fb
10: Dk

joint =Dk
joint∪ (xt−1

a ,τ t−1− τ̂rbd(xt−1
a ))

11: Dk
joint =Dk

joint∪ (x
t−1
d ,τ t−1

fb + f k−1
iderr(x

t−1
d ;θk−1))

12:

13: end while
14: return optimize( f k

iderr, Dk
joint)

On the motion generation level, we assume that a kinematic policy for our task is provided,

similar to Chapter 3, meaning that we can obtain desired accelerations q̈t
d for every state qt , q̇t

relevant to our task. In particular, we use kinematic Linear Quadratic Regulators (LQRs) (Stengel

1994) (see Chapter 2.1.4) to provide us with the acceleration policy that is being executed. On

the control level, we use two types of feedback controllers: traditional PID control and the

recently introduced adaptive feedback learning DOOMED by (N. Ratliff et al. 2016). When

tuned sufficiently well, both approaches can result in good tracking performance. We also have

to choose a function approximator for the error model. Because we are learning the error model

offline, learning speed is not our main concern. However, prediction speed is important since

the models need to be evaluated at 1000Hz (hard real-time) on our robotic platform. We choose

a simple feedforward neural network which is capable of learning nonlinear mappings and

predictions require only a simple feedforward pass.

Finally, our iterative learning approach (Algorithm 1) can be summarized as follows:

1. task execution: Run task with approximate RBD model, feedback control, and feedback

error model if existent (line 5). Construct data set’s with two different sources of informa-

tion (Equation (6.10) (line 10) and (6.14)) (line 11) during the task execution, as shown in

Algorithm 1.

2. learning phase: Update the error model function approximators based on new data points,

or construct and initialize the error models if none exist (line 14).

3. repeat the task.
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As we empirically show in the Chapter 6.4, exploiting both sources of information allows us to

obtain a better fit of the error model with fewer task iterations, compared to using a single data

source.

6.4 Experiments

We evaluate our approach in two different settings. First, we analyze the proposed usage of

indirect and direct data sources in order to learn a task-specific inverse dynamics error model on a

2D simulation. This allows us to extensively test characteristics of the learning problems based on

the different data sources, using the same function approximator, under various simulated noise

levels, stictions, frictions, and a wrong RBD model. This evaluation is focused on investigating

the importance and influence of the different data sources rather than the function approximator

itself. Second, we report results on task-specific inverse dynamics learning using both data

sources on the KUKA lightweight arm of our robotic platform shown, the same robot as in

Chapter 3. We start out describing the evaluation of our 2D simulation setting.

6.4.1 Simulation Experiments

6.4.1.1 System description

This evaluation is based on a simple 2D example (Kappler et al. 2017a) of a system for which

the approximate RBD dynamics model differs drastically from the true dynamics. In this

simulated system, the true mass is set to M = 5I, while the approximate mass is assumed to be

M = 0.5I. The system attempts to realize a simple acceleration policy, defined as a PD-controller

with desired state at qdes = (1,1) and initial state qinit = (0,0) and q̇init = (0,0). Furthermore,

we simulate the true system to experience friction and stiction which is not modeled by the

approximate RBD model. Finally, we also add sensing noise to the position trajectories to mimic

noisy sensor measurements. The source code of our example simulation with all parameters,

friction, and stiction models used for the experiments can be found online (Kappler et al.

2017a).

6.4.1.2 Details of error model learning

Every experiment involves running the iterative learning process for 20 iterations. After each

cycle, a neural network is trained on the collected data and is then used to predict the modeling

error in the next cycle. The error model fiderr is learned via a neural network structure which
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(a) PID, low system noise (b) PID, very high system noise

(c) doomed, low system noise (d) doomed, very high system noise

Figure 6.1: Hand-picked simulation runs to illustrate (dis)-advantages of the direct or indirect
data sources. On the top row, we show position tracking error as a function of learning iterations,
for both low-gain PID and low-gain DOOMED feedback control on systems with low and very
high noise. In low noise settings, for both PID and DOOMED, the direct data source leads to
improved position tracking with an increasing number of learning iterations. However, when
using the indirect data source the NN cannot capture the error model, and thus position tracking
does not improve at all (with PID) or more slowly (with doomed) over time. In the very high
noise setting, the learning convergence with the indirect data source is comparable to the low
noise setting, but when using the direct data source alone, we see erratic tracking convergence.
The direct data is affected more by the noise. For both PID and DOOMED, the position tracking
performance converges more consistently when using the joint data set.
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consists of fully connected layers (200, 100, 50, 20, 1) with non-linearities (PReLU (He et al.

2015)) after every layer except the last (see Chapter 2.2.2.4 for more information on neural

networks). We optimize one network per simulated joint of our system. The neural network

is trained on the indirect dataset (Equation (6.10)), the direct dataset (Equation (6.10)), and as

proposed in this chapter the joint data set (Equation (6.16)).

6.4.1.3 Experimental Setup

To evaluate the use of the data source variants (direct, indirect or joint) in a principled manner,

we simulate various system conditions:

• 4 maximum sensing noise levels in meters are reported: low (0.0001), medium (0.0005),

high (0.007), very high (0.008)

• 2 friction levels: medium and high

• 2 stiction levels: medium and high

across different hyper-parameter settings:

• 2 different number of training epochs of the neural network training per task iteration are

evaluated (20, 50).

• 2 different gain settings (applied) for DOOMED and PID: low and high. The PID gains

have been tuned such that even without error model we achieve convergence to the goal.

Low gains are one order of magnitude lower.

The friction model is discontinuous and changes throughout the state space. The feedback

term for learning is exponentially filtered with the same value (0.1) for all experiments. This is

possible since the learning feedback term is not applied to the system.

For the detailed noise, friction and stiction models as well as the exact parameters to replicate

the experiments, please see our reference implementation (Kappler et al. 2017a). For each

data source variant (direct, indirect, joint) a total of 16 system combinations were executed,

10 times each, with different random seeds. A total of 1280 experiments were performed to

cover the different hyper-parameter settings. To make results comparable, the random seed was

kept consistent across the data source variants. For each of these runs, we record the average

magnitude of the applied feedback torque, the desired and actual acceleration, as well as the

desired and actual position.
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6.4.1.4 Illustration of Indirect vs. Direct

We start by illustrating some hand-picked scenarios that showcase the differences in learning

on indirect vs. direct data in Figure 6.1. We choose examples with the same parameter settings

and illustrate the difference when going from low to high noise. For the chosen examples, the

learning rates/feedback gains were set to the low value, such that friction and stiction were

not so easily overcome with feedback terms alone. This has the effect that for low-gain PID

control we see no improvement in position tracking over time when using the indirect data only.

With DOOMED, some improvement can be observed (with indirect data) - but at a slower rate

compared to using direct data. The noise level does not affect the indirect learning process

much. However, it affects the learning on direct data. In the low noise setting, we observe how

position tracking improves over time, but in the high noise setting, this is not true. However,

when combining both data sources, we get consistently good convergence of position tracking

performance, even with low-gain feedback control.

6.4.1.5 Extensive Evaluation

To provide a more extensive evaluation we now present results obtained when averaging across

all system and parameter settings, see Figure 6.2. These results show that, on average, using both

data sources results in a more consistent and faster convergence of the position tracking error,

when compared to using the traditional approach of using indirect data alone. Specifically, in

the case of low-gain PID control, the error model trained with the indirect data alone does not

improve the position tracking error, whereas the joint learning process does.

In the high-gain setting, the improvements are less pronounced. However, we want to stress that

one important goal of this work is to learn an accurate task-specific inverse dynamics model while

being as compliant as possible. Thus, the high gain setting shows that our proposed approach

does not deteriorate in case of a less compliant system configuration, but there is not much to

gain by using the additional data source. Intuitively, this makes sense, since, in a high gain

setting, the feedback control term is expected to provide good tracking performance in the very

first task execution already. Thus the indirect data collected during that first run already provides

excellent data to learn a model for that particular task. We want to emphasize that there exist

parameterizations and system settings that can lead to better performance by a single data source.

However, on average, the direct data source seems to be most sensitive to the system/parameter

combination, and the indirect data source requires higher feedback gains to be useful. The joint

data source, however, can achieve superior and more consistent model learning performance, in

low-gain settings.
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(a) PID: low-gain (b) PID: high-gain

(c) PID: low-gain (d) PID: high-gain

(e) PID: low-gain (f) PID: high-gain

(g) doomed: low-gain (h) doomed: high-gain

Figure 6.2: Results for low-gain and high-gain feedback control averaged across all system and
parameter settings. (top two rows) shows the position tracking error convergence as a function of
the number of learning iterations. (bottom two rows) shows the average feedback term applied.
We plot the mean and the mean plus one standard deviation of the results. low-gain: In this
setting, even when averaging across all system settings and parameters, we observe similar
position tracking behavior for the data source variants as in our hand-picked illustrations. Indirect
data alone is not able to capture the error model, which also explains why higher feedback
torques are required in this setting. Using direct data alone, results have a higher variance. On
average the mean tracking behavior degrades again after a few learning iterations (PID) or is
somewhat erratic (DOOMED). Using the joint data set results in the most consistent tracking
error convergence for both feedback controllers. high-gain When using high feedback gains, the
joint dataset method does not gain as much in convergence performance (over using indirect data
alone). However, using both data sources also does not degrade performance. 137
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6.4.2 Real robot experiments

We have evaluated our method with two real-world robot experiments, a quantitative and a

qualitative one. Our platform consists of two KUKA lightweight arms, each of which has 7

degrees of freedom. All experiments were performed on one arm resulting in a 21-dimensional

input for the error model learning problem. The control system operates on a hard real-time

loop of 1 kHz. Thus, all predictions are performed in less than 1 ms. All our experiments

presented here, use DOOMED as the feedback controller. We optimize one neural network per

joint with the following structure: 4 fully connected layers (200, 100, 50, 1) with non-linearities

(PReLU (He et al. 2015)) after every layer except the last. Furthermore, we bound the predicted

torques to ±20Nm. For both real robot experiments, we analyzed the task-specific inverse

dynamics learning based on the joint dataset since this has shown to provide the most consistent

performance.

For our quantitative experiments, we used a pre-planned sequence of LQR policies to generate

desired accelerations. We execute the task 10 times, always starting in the same position, up to

the precision of the arm. After each run, the collected data was used to re-optimize the neural

networks. Figure 6.3 shows how the sum of squared feedback terms (τfb), averaged across all

joints, changes with each run. Notice, the first run uses no error model, thus reflecting how much

the feedback term has to compensate for the modeling errors. Within one iteration we are already

able to capture most of the error with the learned error model. Hence, our learned model in

combination with the rigid body dynamics model is now a reliable inverse dynamics model for

this task. We want to stress that after every trial the newly obtained data is used to refine our

task-specific error model further, and despite the data correlation between trials our updated

model does not degrade. In Figure 6.4 we show the feedback term trajectory for the first and last

task execution, per joint. Again it can be seen how our learned model compensates for the errors

such that the feedback term only has to adjust for system noise.

In our qualitative example, we show the data efficiency of our approach for a real-world manipu-

lation task. The robot has to pick up a heavy drill from a table and place it in a different location

on the same table. Since we are interested in collaborative settings, we chose the learning rate

of DOOMED as low as possible such that the robot itself is as compliant as possible while still

being able to lift the drill at least. As shown in the video at (Kappler et al. 2017b), the usage of

the joint dataset enables our system to significantly improve the performance of the pick and

place task after a single iteration.
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Figure 6.3: Mean squared feedback terms (τfb) as a function of learning iterations. Run 1
corresponds to Figure 6.4 (top) and run 10 to Figure 6.4 (bottom).
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Figure 6.4: (top) The initial feedback terms (τfb), per joint, without a learned error model.
(bottom) τfb after 10 learning iterations.
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6.5 Summary and Review

In this chapter, we presented a novel approach for task-specific inverse dynamics learning

agnostic to an underlying rigid body dynamics model. To the best of our knowledge, the usage

of the two data sources, indirect, measured at the actual accelerations, and, direct, minimizing

the error between desired and actual accelerations, is a novel approach to this problem. We have

empirically shown, that using both data sources enables learning error models more consistently

and faster. Additionally, our approach allows data collection with low-gain feedback controllers.

This ability to use low gains is essential to have inherently safe systems not only after an error

model has been learned but already during data collection.

Good inverse dynamics control is essential for the previously presented system (Chapter 3). Our

proposed approach to inverse dynamics error model learning is well suited and important for

learning from demonstration settings (Chapter 4) since both methods are currently assumed to be

task-specific. Reactive motion generation systems (Chapter 3), reacting to perceptual feedback

in real-time, might drastically alter the desired trajectory towards a task-specific goal due to,

e.g. obstacle avoidance. Such strong perturbations can result in undesirable predictions since

the error model has not been trained on any data for that region of the state space. Fortunately,

we only add error terms in addition to the globally valid rigid body dynamics model mitigating

the effect of wrong predictions of the learned error model. Still, the overall trajectory tracking

performance might degrade due to the learned model in such scenarios. There are interesting

future avenues to determine the confidence of the learned error model using feedback terms to

alleviate such issues.

Another interesting observation is that robot manipulation system often repeatedly optimize

similar objectives, learn similar function approximators. Learning task-specific inverse dynamics

models is a prime example of this problem category. We believe that there exist many opportuni-

ties to speed up robotic optimization problems exploiting this insight, one particular approach

towards faster converges using meta-learning is presented in the next Chapter 7.
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Learning to Learn While Learning

Within this thesis, we have so far discussed model-based reactive manipulation systems (Chap-

ter 3), learning from demonstration based task controller using sensory feedback (Chapter 4),

learning-based grasp pose prediction (Chapter 5), and task-specific inverse dynamics learning

(Chapter 6). All of these contributions are designed towards increasing the capabilities of our

robotic manipulation system towards autonomy. All proposed methods have one property in

common, they either repeatedly solve model-based optimization problems, require incremental

learning towards true autonomoy, or attempt to reduce real-world data samples for learning.

To be more concrete, our reactive fast feedback system (Chapter 3) continuously solves an

optimization-based planning objective. Fast feedback and therefore fast iteration is crucial for

the reactiveness of this system. Hence, it would be highly beneficial if we could learn how to

achieve better convergence faster. In Chapter 6 we presented a task-specific inverse dynamics

learning approach which already improves sample efficiency. However, when learning multiple

task-specific models, no information besides initializing the deep neural network is shared.

Further, the robots’ sensors produce hundreds of data points per second. This information could

be used to adapt an existing task-specific model online if the optimizer could handle highly

correlated data samples. Thus, both problems would benefit from an approach which learns

something about the optimization process itself, better updating the learned models and achieving

faster convergence.

In fact, humans have the remarkable ability to quickly learn new skills, tasks and solve repetitive

problems more efficiently. This stems from a hierarchical learning process. Instead of learning

each new skill from scratch, a higher-level – more abstract – meta-learner acquires information

about the learning process itself which is used to guide and speed up the learning of new skills.

In the machine learning community, this concept of learning-to-learn has been explored in a

variety of contexts (Hochreiter et al. 2001; Schmidhuber 1987; Schweighofer et al. 2003; Vilalta

et al. 2002) and recently received renewed attention (Andrychowicz et al. 2016; Li et al. 2016;

Daniel et al. 2016; Hansen 2016; Fu et al. 2016).
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In this chapter, we take inspiration from human motor control task learning to tackle the problem

of learning to learn. (Herzfeld et al. 2014) observed in human studies that when learning from

motor control errors, we do not necessarily adapt our current behavior based on the magnitude of

the error. Instead, a current hypothesis is that when we learn to perform specific motor skills, we

also learn a memory of errors. This memory of errors guides new motor skill learning tasks to

achieve faster learning. In this work we take inspiration from (Herzfeld et al. 2014), and propose

a meta-learning algorithm to learn a memory of learning rates. This memory of learning rates

allows us to predict adaptive learning rates and update parameters more effectively.

Recent work on learning how to optimize (Andrychowicz et al. 2016; Li et al. 2016; Daniel

et al. 2016; Hansen 2016; Fu et al. 2016) employs a two-phase approach: (i) A meta-learner

is optimized to perform well on a priori chosen tasks, and (ii) once this meta-learner has been

trained, it can be utilized in similar optimization tasks. In this work, we propose an online

meta-learning algorithm, that learns to predict learning rates given currently observed gradients

while optimizing task-specific problems. We show how we can train such a memory of learning

rates online and in a computationally efficient manner. Our proposed approach has several

advantages: Because we perform the meta-learning online, our method utilizes each observed

data point for both the task learning as well as the meta-learning. Not only does this mean that

we utilize observed data more effectively, but also that the effect is immediate. Furthermore,

performing the meta-learning online alleviates the need for having to collect data on which

to perform the learning-to-learn optimization process. Thus, our meta-learner can improve

when necessary, while recent work is constrained to perform well on the task-distributions it

was trained on. Finally, the resulting memory of learning rates can be transferred to similar

optimization problems, to guide the learning of the new task.

To evaluate our meta-learning approach, we first illustrate its behavior on the well-known Rosen-

brock optimization problem. After that we show empirical evaluations of two supervised learning

tasks: Sequential binary classification tasks on the MNIST (LeCun 1998) dataset. This task al-

lows us to analyze the effect of incrementally introducing new object classes, relevant to robotics

since autonomous systems have to learn about new objects from few samples quickly. Learning

(task-specific) inverse dynamics models (see Chapter 6) represents the second experiment type.

This problem is ideal for meta-learning given the high frequency of the data and the challenges

due to the highly correlated data samples. Our experiments show that when combining an

optimizer with our meta-learner, we generally increase convergence speed, indicating that we

utilize observed data points more effectively to reduce errors in the learning task. Furthermore,

we show that when transferring our meta-learners internal state to new learning tasks, learning

progress is faster.
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7.1 Background

As mentioned above, most learning control problems use computationally efficient variants of

gradient descent

θt+1 = θt −h(∇θLtask( f (θt))) (7.1)

where Ltask typically corresponds to some loss function, f the model with parameters θ to

be optimized, and h transforms the observed gradient according to some rule. Note, in the

remainder of this chapter we sometimes suppress the dependency of Ltask on f , such that

Ltask( f (θ)) = Ltask(θ). State-of-the-art methods for large-scale learning problems (Chapter 5)

also use gradient descent variants. Since gradient computation for such problems is bounded

by the dataset size, stochastic variants (see Equation 2.17) are often the only viable approach

(Chapter 2.2.1.4).

In this gradient-based setting, meta-learning can happen at several levels. For instance, recent

work by (Finn et al. 2017) proposes a meta-learner that biases the learning process towards

feature representations that supports few-shot learning of new tasks. On the other hand, recent

learning to learn approaches (Andrychowicz et al. 2016; Li et al. 2016; Daniel et al. 2016;

Hansen 2016; Fu et al. 2016) have been focused on learning optimizers that can be re-used for

similar optimization tasks. The focus of these approaches, however, is on mitigating the issue

of hyperparameter tuning instead of learning representations that can be transferred between

(robotic) learning tasks.

Here, we present a novel meta-learning algorithm that is aligned with this second type of

meta-learning but is focused on maintaining an internal memory that can guide the learning

of new tasks. In the following, we review related work concerned with adaptive and learned

optimizers.

7.1.1 Adaptive First-Order Methods

In the machine learning community adaptive optimizers such as Adam (Kingma et al. 2014),

RMSprop (Tieleman et al. 2012), AdaGrad (Duchi et al. 2011), AdaDelta (Zeiler 2012) have

been developed. In essence, these optimizers extend the gradient transform mapping h to be a

function of sufficient statistics such as the mean and variance of the observed gradients

θt+1 = θt −h(∇θLtask(θ
t),E[∇Ltask(θ)],E[(∇Ltask(θ))

2]) (7.2)
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The specific gradient transform h then depends on the algorithm, as has been nicely summarized

in (Daniel et al. 2016), Table 1. These optimizers are of linear space and time complexity with

respect to the model parameters, and thus are suitable for highly parameterized models such

as deep neural networks. Yet, choosing the initial learning rate for each of these methods, or

which base learner to choose remains a complex manual tuning task (Loshchilov et al. 2016;

Goyal et al. 2017). More importantly, though, such adaptive methods are not meant to extract

information about the learning process itself. Thus, while they have proven successful at

increasing convergence speed, they are not designed to transfer knowledge to new optimization

tasks.

7.1.2 Learning to Learn

More recently, the idea of meta-learning – learning to learn – has re-gained momentum (Andrychow-

icz et al. 2016; Li et al. 2016; Daniel et al. 2016; Hansen 2016; Fu et al. 2016). These approaches

parametrize h to be a function of parameters ψ, which determine how observed gradients are to

be transformed

θt+1 = θt −h(∇θLtask(θ
t);ψ). (7.3)

The goal is to learn ψ to create a well-performing optimizer. In the most simple case, the

parameter ψ simply equals the learning rate η , which can be adapted online, as has been shown

in (Gunes Baydin et al. 2017). Specifically, the authors propose to compute the gradient ∇ηh

online and then perform gradient descent on the learning rate itself. While this approach is

simple and general as well as computationally and memory efficient, it does not retain a state –

everything is forgotten. Thus subsequent optimization tasks start from scratch.

When going from adaptive optimizers to learned optimizers we hope to have learned something

that we can reuse later on; that we performed meta-learning on some level. Recent work such

as (Daniel et al. 2016; Andrychowicz et al. 2016; Li et al. 2016) address this to some extent.

An optimizer is trained to perform well on some pre-defined set of optimization tasks and is

then used to optimize similar learning problems. While some approaches learn to transform

the gradient (Andrychowicz et al. 2016; Li et al. 2016), others assume h to be a scaling of

the gradient and learn to predict the learning rates (Daniel et al. 2016; Hansen 2016; Fu et al.

2016).

Our work falls into this second category of trying to learn a coordinate-wise scaling of the

gradient. To the best of our knowledge, recent work either performs learning on the step size

online, but retains no memory (Gunes Baydin et al. 2017), or the learning of the optimizer is

performed once at the beginning and never updated again. In the latter setting, two learning
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phases exist: In phase one h is trained, either via reinforcement learning (Daniel et al. 2016; Li

et al. 2016; Hansen 2016; Fu et al. 2016) or in a supervised manner (Andrychowicz et al. 2016);

In phase 2, the trained gradient transform h is used to optimize similar learning problems.

These recent learning to learn approaches are mostly focused on mitigating the issue of hyper-

parameter tuning by learning an optimizer. The goal of our approach is to learn a representation

of optimal gradient transforms that can be transferred to new learning tasks. Furthermore, as

opposed to previous work, we learn this representation in an online fashion while using this

representation to optimize task-specific optimization problems.

7.2 Learning a Memory for Learning Rates

In this work, we investigate how we can learn a memory of learning rates online, in a computa-

tionally efficient manner. Ideally, this memory can be transferred to subsequent similar learning

tasks, and speeds up the convergence of that optimization problem. Furthermore, this memory

should be continuously updated to be able to adapt and compress new learning rate landscapes as

well.

We envision our meta-learning algorithm to be used as follows: While our system attempts

to learn a model f (θ) for a specific task, such as a task-specific inverse dynamics model, by

minimizing the loss Ltask( f (θ)) it also aims at building a model h that can predict how much to

correct for observed errors. Thus for each optimization step, we perform two updates: a gradient

descent step on the task-specific model parameters and update our meta-learners memory h. An

overview in the form of a pseudo algorithm is given in 2.

In order to develop such a meta-learning approach, several challenges need to be met. One of the

core challenges is the choice of training signal to learn such a memory on. We take inspiration

from (Riedmiller et al. 1993) and start by showing how to derive a simple learning algorithm to

train a learning rate memory h for one-dimensional optimization problems. Then, we discuss a

representation for h that supports computationally efficient, incremental learning. Finally, we

show how to generalize our meta-learning approach to optimization problems involving complex

models such as neural networks.

7.2.1 Training Signal for the Learning Rate Memory

Let us assume that our main objective is a learning task that requires us to minimize the objective

Ltask(θ) with respect to parameter θ . While optimizing parameter θ we also aim to learn a
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Algorithm 2 Online Meta Learning

Require: initial task model f (θ 0), initial meta-memory hψ0

1: z0 = 0
2: for t ∈ 1, ...,T do
3: zt = ∇θLtask( f (θ t−1))
4: hψ t = MemoryUpdate(zt ,zt−1,hψ t−1) // eq. 7.10
5: θ t = θ t−1−hψ t (zt) // eq. 7.4 and eq. 7.11
6: end for
7: return f (θ T ),hψT

function h that given gradient information of the main objective Ltask(θ), can predict a learning

rate η̂

h(z;ψ) = η̂(z;ψ)z (7.4)

where ψ are the parameters of the learning rate memory h and z = ∇θLtask(θ). Ideally, we

would like to optimize the parameters ψ with respect to the loss Llr

Llr(η , η̂(z;ψ)) =
1
2
(η− η̂(z;ψ))2 (7.5)

where η is the true optimal learning rate, and η̂(z;ψ) the predicted learning rate for the current

gradient. To optimize parameters ψ via gradient descent, we would need access to the true

learning rate η

∂Llr

∂ψ
=−(η− η̂(z;ψ))

∂ η̂(z;ψ)

∂ψ
(7.6)

which is unknown to us. However, by comparing the gradient of the current time step with the

gradient of the previous time step, we can determine whether we over or underestimated η . If

the gradient has flipped between two consecutive optimization steps, the learning rate was too

large, meaning η− η̂(z;ψ)> 0. On the other hand, if the signs of the gradients are the same,

then we can most likely increase the learning rate.

With this knowledge at time step t, the memory parameter updates can be approximated as

ψ
t+1 = ψ

t −ξ (−(η t − η̂(zt ;ψ
t)))

∂ η̂(zt ;ψ)

∂ψ t (7.7)

≈ ψ
t +ξ sign

(
zt+1zt) ∂ η̂(zt ;ψ t)

∂ψ
(7.8)

where ξ is a step size parameter for the gradient descent on ψ . The exact form of this gradient

update depends on what parametric form η̂(z;ψ) takes.
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7.2.2 Learning Rate Memory Representation

As mentioned previously, we aim at developing an algorithm that can continuously update

the learning rate memory h. Designing the function approximator h, such that forgetting of

previously learned parameters is minimized, is one of the challenges of this approach. Here we

choose to use locally weighted regression (Schaal et al. 1998), which is known for computational

efficiency and which can increase model complexity when necessary. With locally weighted

regression we decompose the memory h into M local models hm, each parametrized by their own

parameters ψm.

Furthermore, in locally weighted regression, the loss function Llr also decomposes into M

separately weighted losses, each dependent on only their respective parameters ψm:

Llr(ψ) =
M

∑
m=1
Lm(ψ) =

M

∑
m=1

ζm(z)(η− η̂m(z;ψm))
2 (7.9)

where ζm(z) is the weighting function that defines the active neighborhood for each local

model. A standard selection of this weight function is the squared exponential kernel ζm(z) =

exp(−0.5 (z−cm)
2

λ 2
m

).

Using this memory representation leads to the following update rule per local model

ψt+1
m =ψt

m +ξ sign
(
zt+1zt)

ζm(zt)
∂ η̂m(zt ;ψt

m)

∂ψt
m

. (7.10)

Note, how only local models that are sufficiently activated require updating. Finally, at prediction

time the predicted learning rate is a weighted average over all local models’ predictions:

η̂ =
∑

M
m=1 ζm(z)η̂m(z;ψm)

∑
M
m=1 ζm(z)

(7.11)

We now have an algorithm that can train a model η̂ to predict a learning rate for one-dimensional

optimization problems. An illustration of what kind of learning rate landscapes can be trained

with this algorithm is given in the experimental Section in Figure 7.1.

As a final step, we show how this approach can be generalized to models with multiple high-

dimensional parameter groups, as commonly encountered in deep learning models.

7.2.3 Multi-Dimensional Learning Problems

Above we have assumed z = ∇θLtask(θ) to be one-dimensional. A key question is how to

generalize to optimization tasks that not only have high-dimensional gradients z = ∇θ f (θ), but
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also multiple layers of parameters Ltask(θ
1, . . . ,θK), where θk stands for the kth parameter group,

as is typical for deep neural networks for instance.

The straightforward extension would be to compute sign(zt+1zt) as the inner product sign(zt+1T
zt)

of two consecutive gradients, and place local models in the Dk-dimensional gradient space. How-

ever, this has the following consequences: We would only learn to predict one learning rate

per time step, and we lose much information through the inner product of the two gradients.

Furthermore, the number of local models needed to cover the gradient space evenly would

grow exponentially with the gradient dimension Dk and would significantly increase memory

requirements while decreasing computational efficiency.

On the other end of the spectrum we can choose z = ∇θiLtask(θ) to be the partial derivative with

respect to the ith coordinate, and create a learning rate memory per coordinate of the parameter

vector θ. Assuming θ ∈ RD, this would require D memory models, each with M local models.

This choice, would create a learning rate prediction per gradient coordinate, and thus offers

maximum flexibility. However, it also has a high memory (storage) requirements.

Here we choose a different route. First, we identify natural parameter groups, such as parameters

θk of each hidden layer in deep neural networks. For each of these K parameter groups, a memory

hk is created. Then, for the kth parameter group, we pool the updates of all coordinate-wise

updates, by computing the average update per local model, across all coordinates

at,k
m,d = sign

(
[z]t+1

d,k [z]
t
d,k

)
ζ

k
m([z]

t
d,k) (7.12)

ψt+1,k
m =ψt,k

m +ξ
1

Dk

Dk

∑
d

(
at,k

m,d

∂ η̂k
m([z]

t
d,k;ψt,k

m )

∂ψk
m

)
. (7.13)

where [z]d,k means we take the dth coordinate of z = ∇θkLtask(θ
k), and Dk denotes the dimen-

sionality of the kth parameter group θk. At prediction time, we similarly make predictions for

each parameter group, per gradient coordinate [z]d,k to obtain a learning rate per parameter

dimension.

Intuitively, this choice means that parameters within the same parameter group share the same

learning rate memory, expecting that they would benefit from the same scaling behavior. With this

representation, our meta-learner then requires extra memory resources in the order of O(KM).

Furthermore, the computational complexity of the memory update as well as learning rate

prediction is in the order of O(DM).
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7.2.4 Implementation Details

Finally, to implement this approach, a few design choices have to be made: Each memory is

pre-allocated with a fixed number M of local models. Since the localization happens in the space

of one-dimensional partial gradients - we linearly space the local models’ centers within the

range of the minimum and maximum gradient value allowed1. The size of each local model

is determined by parameters λm, which are chosen to create a reasonable amount of overlap

between neighboring local models. Thus the more local models we allow, the smaller they

become.

Furthermore, we choose local constant models, such that η̂(z;ψm) = ψm in our experiments.

Intuitively, this means that each ψm corresponds to a learning rate value, localized in gradient

space. We further use zt+1zt and clip the resulting (absolute) value at 1 instead of the sign(zt+1zt).

We have empirically found that this significantly improves the convergence since memory updates

are less pronounced in regions with small gradients. Finally, at the beginning of a learning

problem, when no previous memory of learning rates exist, we initialize the memories to predict

an initial learning rate ηinit, thus at the very beginning allψm = ηinit. A reference implementation

for our meta-learning approach can be found at (Meier* et al. 2017) in PyTorch (Paszke et al.

2017) and Tensorflow (Abadi et al. 2016).

At runtime, when performing a task-specific learning problem, we then immediately start

optimizing all hk as well. At each time step t, we update both, the parameters of the task-specific

problem θ and the learning rate memory parameters ψ.

On a final note, we want to point out that our presented approach here can be used on top of

any base-learner. While not explicitly noted, it is easily possible to first apply some fixed-rule

based learner, such as Adam (Kingma et al. 2014) to transform the gradient, and then apply our

learned memory evaluation on that transformed gradient. In fact, in our experimental evaluation,

we include results for both basic gradient descent with learning rate memory and Adam with

learning rate memory.

7.3 Experiments

We evaluate the key properties of our proposed meta-learning algorithm in three different settings.

On the Rosenbrock function, a well-known non-convex optimization problem, we illustrate the

progression of the internal memory of learning rates and show that reoptimizing the function

indeed speeds up convergence. Then we show extensive results on two learning tasks: First,

1this corresponds to the choice of gradient clipping as is common in Tensorflow implementations
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Figure 7.1: top row: (left) The Rosenbrock function with the meta-learners path. (middle)
Convergence to the minimum for gradient descent with η = 0.001, and two consecutive runs of
MetaGD with initial η = 0.001. The first run with a learning rate memory starts with all local
models predicting the initial learning rate η = 0.001, but quickly builds a model of learning rates
- thus this already converges faster than without memory. The second run of gradient descent
with learning rate memory re-uses and updates the memory from run 1 and converges even
faster. (right) the predicted learning rates for both dimensions, as a function of optimization
steps. bottom row: (left) zoomed in Rosenbrock function to visualize path in the valley. The
blue dots (in both top and bottom Rosenbrock plots) indicate where we took a snapshot of the
memories. (right) 3 snapshots of the memories, with the x-axis representing values of the partial
derivatives z, and the y-axis the predicted learning rate values. The black horizontal lines indicate
the current partial gradient - at the time of the snapshot.

we investigate learning binary classifiers on the MNIST dataset, both illustrating the effect

of transferring the learning rate memory between similar tasks and showcasing robustness to

parameter choices. Finally, we extensively evaluate our meta-learning approach on online inverse

dynamics learning tasks for manipulators (see Chapter 6). (Kappler et al. 2017c) presents

additional preliminary results on challenging deep learning models such as recurrent neural

networks (RNNs) and generative adversarial networks (GANs) beyond the scope of this thesis.

7.3.1 Baselines and Experimental Setup

As mentioned in Chapter 7.2, our proposed meta-learning can be combined with different base-

optimizers. We need to choose an optimizer on both hierarchies, the task-specific optimizer with

base learning rate η , and the meta optimizer with base learning rate ξ . We present results for

three variants: basic gradient descent without meta-learning (GD), gradient descent with meta-

learning with either gradient descent to update the memory (MetaGD) or with Adam (Kingma

et al. 2014) to update the memory (MetaGDMemAdam). For results involving neural networks,

a memory of learning rates per hidden layer was learned.

150



7.3 Experiments

We also compare to another meta-learner: L2LBGDBGD (Andrychowicz et al. 2016) is a very

recent approach which treats the optimizer itself as a function approximator, typically represented

by a two-layer recurrent LSTM network which transforms the gradients directly. L2LBGDBGD

does require to learn the optimizer before task-specific learning. For our binary MNIST problem

we sample initial neural network configurations (without structural changes) and optimize on

the same data as used for evaluation. In order to avoid overfitting, we run a validation epoch

with a random network instance after every second optimization. After 16 rounds of optimizing

a L2LBGDBGD learner, we take the best L2LBGDBGD network according to the validation

evaluation. All of the evaluated approaches, including our own, are based on TensorFlow (Abadi

et al. 2016) implementations. We provide a reference implementation of our algorithm on

github (Meier* et al. 2017).

7.3.2 Rosenbrock Problem

We start by illustrating our approach on the Rosenbrock problem, as visualized in Figure 7.1(left).

Rosenbrock objective is a 2D optimization problem, and each dimension has its own memory

of learning rates (as shown in Figure 7.1). We compare the convergence of gradient descent

with η = 0.001 and two consecutive runs of gradient descent with a memory of learning rates,

starting from the same initial position. The memories are initialized to predict η = 0.001 for the

first optimization run. For the second run, we carry over the memories from the previous run.

The middle plot (top row) of Figure 7.1 shows the convergence of each of these optimization

runs. Notice how already the first optimization run benefits from the online meta-learning. The

second run converges even faster. The right plot (top row), shows the corresponding learning

rates of both dimensions applied at each iteration of the second optimization run.

The bottom row shows a zoomed in Rosenbrock function, centered around the path taken by

the meta-learner. The blue dots indicate where we have taken a snapshot of the learning rate

memories. In the bottom right - we show the memory of the second dimension, at those three

different time steps during the first run. We see how the memories initially learn to predict

increased learning rates2. Once the optimization hits the valley, it learns to predict larger learning

rates as long as the optimization stays within a certain gradient range, at the borders of that

gradient range the learning rate is drastically reduced to prevent jumping out of the valley.

2Note, we clip the gradients at ±10, and thus it learns to increase the learning rates even in high curvature areas.
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7.3.3 Binary MNIST Problems

For both evaluations, sequential batch binary MNIST and sequential online binary MNIST we

use a neural network with the following structure: An input layer that takes the image as input;

two convolutional layers followed by a max pooling operation; two densely connected layers with

dropout follow this; finally, the output layer is another dense layer. All hidden units activation

functions are rectified linear units. The loss function is the softmax cross entropy loss. Please,

see Chapter 2.2.2.4 for more information on the neural network layers. For all meta-learning

variants, the memories (one per hidden layer) allocate a total of M = 100 local models.

7.3.4 Sequential Batch Binary MNIST Problem

This experiments analyzes the effect of meta-learning, transfer of our memory of learning rates,

to speed up subsequent binary classification tasks. Problems like grasp prediction (Chapter 5)

are related to this experimental setup. For instance, in case new object models become available

and extend the grasp database, existing learned grasp predictors should be updated faster using

our meta-learning approach.

The left three plots of Figure 7.2 illustrates the loss evolution when optimizing the learning tasks

in batch-mode. In green, we see vanilla gradient descent without any memory of learning rates.

The convergence of MetaGD and MetaGDMemAdam are shown in blue and red respectively.

For Task 1, no previous memory exists. Thus all optimizers start with the same learning rate

(except L2LBGDBGD which does not have an initial learning rate parameter). The meta variants

converge faster than vanilla gradient descent. In task 2 we deploy each meta-variant with a new

memory and with the memory trained in task 1. Meta-variants with the new memory again

convergence faster than vanilla gradient descent; meta-variants initialized with the previously

learned memory converge even faster. Notice, that we continue to update the memory of

learning rates during task 2 optimization. For task 3 we see the same convergence behavior

as for task 2. We also compare against L2LBGDBGD. This learned optimizer does not have a

base learning rate. It requires costly training on similar network instantiations before usage.

However, it requires a (meta) learning rate to train the optimizer. Here we chose to depict

the best L2LBGDBGD optimizer we could train, achieved with a (meta) learning rate of 0.01.

Furthermore, the L2LBGDBGD optimizer was explicitly trained for each task. Notice, on task

1 L2LBGDBGD achieves faster convergence. However, any subsequent learning tasks achieve

similar convergence to the MetaGDMemAdam-variant.

Note - we have achieved similar results when using Adam as the base optimizer. Adam itself,

without any meta-learner, performs very well on this task and can outperform all of the above
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meta-learning variants (including L2LBGDBGD). However, when combining Adam with our

meta-learner, we achieve even better results. This confirms that our online meta-learning approach

is versatile and can speed up convergence even when combined with an adaptive optimizer such

as Adam. However, Adam does not perform well in sequential (online) learning problems such

as the inverse dynamics task discussed in Chapter 7.3.6.2.

In the rightmost plot of Figure 7.2, we depict how many iterations each optimizer variant requires

to achieve an error below 0.1, as a function of initial learning rate values. These results are

averaged across three random seeds. Note L2LBGDBGD is constant because after having trained

no initial learning rate parameter is required. Here we include Adam, with and without meta-

learning. In green, we see gradient descent GD and MetaGDMemAdam, while in blue we see

Adam and MetaGDMemAdam. On average our meta-learning variants achieve a low error faster,

irrespective of the initial learning rate, while gradient descent does not converge within the

first 100 iterations, and Adam performs well if the learning rate is chosen high enough. This

result confirms that at each iteration, our meta-learning approach utilizes the observed data more

efficiently and as a result leads to faster learning progress.

7.3.5 Sequential Online Binary MNIST Problem

Another essential variant for robotics is online learning - training on one data point at the time.

Here, each binary classification task is trained in this fashion. With each new data sample, we

update the neural network and the meta-learner and evaluate the test classification rate. For the

second (1 vs. 3) and third (1 vs. 4) learning task we can choose to initialize a new meta-learner

or reuse the previously trained one and continue to update it. Figure 7.3 shows the convergence

of the test classification results. We compare to stochastic gradient descent and Adam with a base

learning rate η = 0.001. For all three tasks, stochastic gradient descent with meta-learning results

in high test accuracy with significantly less observed data points. Furthermore, when reloading

the meta-learner for task 2 and 3, sample efficiency is improved even further (see three leftmost

plots). Results were obtained by averaging over five randomly seeded runs - randomizing both

the training data sequence and initialization of the network. On the right-hand side of Figure 7.3

we summarize how many neural network updates (e.g., observed data samples) it took to reach

98% test accuracy, averaged across five randomly seeded runs. The meta-learning with re-loading

by far outperforms non-meta-learning variants. This experiments presented promising results for

robotic manipulation applications. For instance, it might enable to learn new object classifier

from a few observations or demonstrations, or adapt learned inverse dynamics models online

(Chapter 6).
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(a) (b)

(c) (d)

Figure 7.2: Results on the three binary MNIST learning tasks (a-c) convergence behavior of one
randomly seeded (same for all optimizers) network on the three subsequent learning tasks with
gradient descent based optimizers. (d): the average number of iterations it took for the loss to
drop below 0.1 on task 1 for different initial learning rate choices ([0.1,0.01,0.001]). Results for
meta-variants (from left to right: L2LBGDBGD, GD, MetaGD, Adam, MetaGDMemAdam) are
obtained with new memories that have been initialized with the respective learning rate choice.
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(a) (b)

(c) (d)

Figure 7.3: Results on the 3 binary MNIST learning tasks (a-c) Test accuracy as a function of
observed data points with gradient descent based optimizers. (d): average number of iterations it
took for the test accuracy to reach 98% accuracy on the final task for different meta-learning-rate
choices ([0.1,0.01,0.001]). Learning rate of SGD and Adam is η = 0.001. Meta-learning with
reloading (green) is the most sample-efficient - leading to a good predictive model faster.
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7.3.6 Inverse dynamics learning

Inspired by our results on learning task-specific inverse dynamics models (Chapter 6), in our

final set of experiments, we explore the use of our meta-learning variants to improve learning

convergence. Learning inverse dynamics is a function approximation problem that maps the

current joint position, velocities and accelerations (q, q̇, q̈) to torques (τ). Please see Chapter 6

for a more detailed introduction to learning inverse dynamics models. Here we consider two

possibilities of processing such a high-frequency data stream: we either collect task-specific data

and update a task-specific inverse dynamics model in a batch setting (Chapter 7.3.6.1); or we

optimize the model online, directly on the streaming data (Chapter 7.3.6.2). We use a similar

experimental setup as described in Chapter 6, learn one model per joint for the right arm.

7.3.6.1 Batch Learning

For this experiment we collect data of two motion tasks (in simulation): Task 1 corresponds

to acceleration policies (Ijspeert et al. 2013) trained to move along a rectangular path in the

horizontal plane, while task 2 corresponds to the same rectangular path in the vertical plane.

These movements are performed under strong perturbations of the assumed model-based rigid

body dynamics inverse dynamics model. Data collection consists of recording joint position,

velocities, accelerations, and torques at each time step (1ms). Each task is trained on 10000

collected data points. Per task, we train a neural network per joint in batch-mode, meaning that

the full dataset is used for each optimization step. The neural network structure has 3 densely

connected hidden layers with [100,50,10] hidden units, respectively. All activation functions

are rectified linear units and dropout before the output layer. The loss function is the mean

squared error (MSE) on the predicted torque values. Different from Chapter 6, we learn a full

inverse dynamics model, meaning we do not use the underlying rigid body dynamics model

for prediction. We report the error on the collected dataset and not apply the learned model as

presented in Chapter 6.

We perform the two learning tasks in sequence: First, we train a dynamics model on task 1, then

we learn a new (uninitialized) dynamics model for task 2. The convergence of each optimization

task is shown in Figure 7.4. Notice how using and optimizing our meta-learner while optimizing

the inverse dynamics model for task 1 already leads to faster convergence. When transferring

the meta-learner for task 2 learning convergence to a low error is even faster. Thus, improving

the convergence by re-using the meta-optimizer while adapting to new tasks allows performing

faster incremental learning of task-specific inverse dynamics models.

156



7.3 Experiments

Figure 7.4: Learning task-specific inverse dynamics models in batch mode, on the 1st joint of
our 7-DOF manipulator. Meta-Learning helps to convergence faster within task 1 already, when
transferring the learned memory of learning rates to task optimization, convergence speed is
increased.

7.3.6.2 Sequential Online Learning

In this experiment, we consider the task of lifting an object with different configurations (no,

light, heavy object) on the real manipulation platform. Again, we collect position, velocities,

accelerations, and torques at each time step (1ms), resulting in three data sets with more than

3000 samples each. The data was obtained using the model-based manipulation system presented

in Chapter 3. Further, we execute each task variation 10 times to assess the variance of the

learning process. All presented results are averaged across these 10 trials.

This experiment consists of 3 learning phases. First, we train an uninitialized network and

meta-learner on the lifting no object task. Then this network is further trained on the data

corresponding to task-variant 2: light object. Finally, the same network is re-used and further

adapted on task-variant 3: heavy lifting. This scenario tests, how quickly we can adapt previously

trained networks, with and without the meta-learner.

Again, we train one network per joint. We use the same neural network structure as for the batch

learning experiment, just without the dropout layers. Dropout acts as a regularizer, in online

settings such as this experiment each data point is evaluated precisely ones. Thus introducing

additional regularization through the noise (dropout) hinders learning and prediction performance

of the network. For all experiments, we use M = 200 local models for each memory (per layer), a

memory learning rate of 0.005, and gradient clipping of 1.0. These values have been determined

empirically. We present results for joint 1 since it exhibits large torque variations given payload

changes. Notice, the initial high loss values are due to the torque range which is between 30 and

35 N/m hence the model optimized with mean squared error loss has to first adjust for this offset.

Different from the previous experiment each learning phase is updating the network online using

sequential data batches of size 10, meaning we take data samples collected within the last 10
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(a)

(b)

(c)

Figure 7.5: Loss convergence when online learning an inverse dynamics model on the 1st joint of
our 7-DOF manipulator. (a) an uninitialized network is updated online with GDand MetaGDwith
an uninitialized memory. (b) online learning convergence on task-variant 2 with and without
reloading the network and meta-learner from task-variant 1. (c) convergence on task-variant 3
with and without reloading.
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milliseconds and perform one optimization step. Hence, the neural network observes every

data sample exactly once. This online learning formulation is very challenging since gradients

are highly correlated and the overall optimization step should be faster than 10 ms. From our

empirical evaluation, we found that Adam does not perform well in these very correlated settings

which is why we omit the results. Computation times for both MetaGD and basic GD are less

than 3 ms on standard hardware, hence, fast enough to consume a continuous data stream of

inverse dynamics data.

In Figure 7.5 we illustrate the convergence of the loss as we are moving along the trajectory

of each lifting task when using η = 0.0001. In the leftmost plot, we see convergence on task

1 of GD and MetaGD. The middle plot shows convergence on task 2 (light object), comparing

learning from scratch (no reloading of network or meta-learner) with continual learning of the

previously learned network (reload), for both basic GD and MetaGD. As we can see, when

reloading, we immediately start with a lower error for both GD and MetaGD. With MetaGD

we reduce the experienced error faster. Note, even without reloading GD and MetaGD (net and

memory uninitialized) manage to learn a good model by the end of the movement. However,

they produce larger prediction errors at the beginning of the movement. Similar behavior can be

observed in the final task of lifting the heavy object. Again, similar to the previous experiment

we report the prediction error on the offline dataset and do not apply the model on the real robot

platform as done in Chapter 6.

We performed this experiment for η = [0.01,0.001,0.0001] and summarize the mean loss for the

first 500 ms of the task execution of joint 1 in Table 7.1. We are mostly interested in assessing

fast convergence, therefore the focus on the beginning of the task. The data clearly illustrates

the benefit of using our proposed MetaGD, that converges faster, meaning using less data, in

almost all settings. Interesting to note is that with a really high learning rate all methods achieve

excellent results, e.g. 0.01 heavy, yet, due to the high learning rate there is a high chance that

some gradient in the sequence will drive the model into a “bad” parameter space, resulting in

poor convergence (0.01 no object).

7.4 Summary and Review

Inspired by the learning-based extensions to model-based robotic manipulation and their learning

requirements, we presented a novel meta-learning algorithm in this chapter. Our approach

incrementally learns a memory of learning rates as a function of current gradient observations,

improving both learning convergence and the number of iterations, thus data efficiency.
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η GD MetaGD GD MetaGD
lift noreload noreload reload reload

no object 180.062 228.421 180.062 228.421
0.01 light 234.276 228.704 55.407 18.926

heavy 220.249 167.623 0.034 0.027
no object 119.317 65.221 119.317 65.221

0.001 light 110.396 63.952 2.233 0.692
heavy 113.62 66.958 0.618 0.454

no object 468.849 80.219 468.849 80.219
0.0001 light 489.441 78.799 10.712 0.593

heavy 513.898 82.804 6.444 0.694
no object 256.076 124.62 256.076 124.62

average light 278.038 123.818 22.784 6.737
heavy 282.589 105.795 2.365 0.392

Table 7.1: MSE of the first 500 ms of each task execution.

We have empirically shown that memories of learning rates can be transferred between similar

learning tasks, and speed up the convergence of the new – previously unseen – learning problems.

However, thus far this effect has been constrained to base optimizers that do not transform the

gradient before updating the learning rate memory. Thus, we are interested in investigating

whether we can extend the state with which the memory is indexed beyond simple gradient

information. The hope would be that this would allow the memory to capture even more complex

learning rate landscapes. The challenge here is to do so while maintaining computational

efficiency.

Within the context of this thesis, the presented approach complements several contributions. The

optimization-based reactive motion generation system (Chapter 3) would benefit from faster

planning, allowing to reason about longer time horizons. Grasp prediction (Chapter 5) could be

extended to incorporate real-world data to adapt bootstrapped models trained with simulated

grasps quickly. Task-specific inverse dynamics discussed in Chapter 6 directly benefits from our

formulation as presented in our experimental evaluation.

Another exciting avenue for the presented approach within the context of this thesis would be

to use meta-learning for transfer learning. This idea is especially interesting in robotics since

real robot experiments are very costly and in general, do not scale in comparison to simulation.

Results from simple model-based simulations typically do not translate directly to the real

world, require fine tuning on additional real-world data. Our meta-learner, however, captures the

structure of the optimization process itself. Due to its higher abstraction level, this information

hopefully transfers to the real world. Therefore, using our meta-learning, used to train models

from model-based simulation, should result in less real robot experiments, required to achieve

good performance.
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Conclusion

The goal of this thesis was to improve and complement existing model-based approaches with

learning-based methods towards autonomous manipulation. Therefore, we developed a state-

of-the-art model-based manipulation system (Chapter 3) to identify and discuss key problems

towards autonomy. Truly autonomous manipulation systems inevitably have to cope with new,

previously unknown tasks. Therefore, we presented a learning-based approach (Chapter 4),

allowing to teach new capabilities, such as contact interaction tasks, to an existing system

by merely demonstrating solutions and stopping execution in failure cases. In Chapter 4 we

developed a large-scale simulation-based database to enable state-of-the-art learning-based

approaches for grasp prediction. We further derived a domain-specific objective to improve grasp

prediction for the specific robotic manipulation requirements. This learning-based extension

complements our model-based manipulation system (Chapter 3) and facilitates better use for our

learning from demonstration approach (Chapter 4). Since manipulation fundamentally requires

grasping objects, thus, changing the robots dynamics, we investigated a learning-based extension

to model-based inverse dynamics control (Chapter 6), improving data effeciency and safety. We

achieve this safety improvement by enabling learning from data obtained with low-gain feedback

control trajectory tracking, compliant systems. Finally, we contributed a new learning-based

optimizer (Chapter 7), showing promising results to speed up our reactive model-based system

(see Chapter 3) and our learning-based extensions (Chapter 5 and 6).

8.1 Scientific Contributions of the Thesis

Chapter 3, Real-Time Perception meets Reactive Motion Generation: We discussed the

design, requirements, and implementation of a fully integrated manipulation system, presenting

the first coherent empirical results, demonstrating the importance of continuous, real-time percep-

tion and its tight integration with reactive motion generation methods in dynamic manipulation

scenarios. We extensively evaluate the purely model-based system on a real robotic platform.
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Albeit our system is still limited to a rather simple pick and place tasks, our four experimental

scenarios are more challenging compared to previous work due to complex workspace geometries

and dynamic environments and targets. This work shows the performance which can be achieved

with a state-of-the-art model-based manipulation system using fast feedback in combination

with slower reactive planning and therefore functions as a qualitative performance baseline for

end-to-end learning approaches towards autonomous manipulation.

Chapter 4: Online Decision Making for Manipulation: We contributed a novel approach to

learn new complex contact rich manipulation tasks from demonstrations. Different from prior

work, our method makes use of many available sensor streams during task execution, deciding

online when and to which successive behavior to switch, to ensure successful task execution.

The approach exploits our domain specific problem understanding that movement generation

can dictate sensor feedback. Our experiments show that this approach can be used to teach

dexterous, contact rich tasks, such as unscrewing and removing the cap of a bottle, a bimanual

manipulation task performed on a real platform that requires precise manipulation of relatively

small objects. Our learned system is robust against perturbation and sensor noise because our

method decides online whether or not to switch to alternative ASMs due to unexpected sensory

signals. In summary, this work demonstrated that we could learn simple models for various

sensor modalities, which can be evaluated in real-time, to make decisions about the performance

of the currently executed task. To learn a new task we only need in the order of five demonstration

and simple user interventions in case of failures to automatically improve the task robustness.

Chapter 5, Big-Data Grasping: Good grasping metrics and realistic simulation are essential

for model-based grasping, rendering their online usage on real systems impracticable. State-

of-the-art learning-based methods further alleviate the requirement that the target object has to

be known a priory. However, such methods rely on large datasets to achieve good predictive

performance. We contribute the first large-scale database for grasping and evaluate our new

physics-based quality metric using a human user study. This study showed that our physics

simulation based metric is a better predictor for grasp success compared to the standard ε-metric,

enabling our automatic high-quality, large-scale data collection effort. This database enabled the

usage of state-of-the-art learning-based approaches. We empirically verified that high capacity

learning methods indeed benefit from our rich dataset with high perceptual variance. We further

presented a domain-specific objective directly optimizing for the top-1 grasp, better representing

the requirements for robotic grasping. An efficient optimization algorithm was proposed to

optimize this non-convex objective, and our empirical results demonstrated that this new objective

indeed outperforms traditional classification objectives for learning to predict grasp poses.
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Chapter 6, Inverse Dynamics Learning: Inherently safe robot control is crucial for collabora-

tive humanoid robotic manipulation tasks. Therefore, we need methods to precisely track desired

trajectories while maintaining system compliance. We presented a new method that extends

existing model-based inverse dynamics controllers with learned error models, translating desired

accelerations into torques. Different from existing methods our approach allows to quickly

improve an existing inverse dynamics model with a learned error model from off trajectory

data. Leveraging off trajectory data is essential for inverse dynamics learning on compliant,

inherently safe systems since they cannot track trajectories well if the system payload changes

or they encounter model inaccuracies. We achieve this by deriving an additional training signal

— measured at the desired accelerations — complementing the existing data source, using our

domain-specific knowledge. We extensively analyze the use of both data sources in simulation

and demonstrate its effectiveness on a real-world robotic platform. We show that the system

incrementally improves the learned inverse dynamics model. By combining both data sources,

we further show that error model learning converges more consistently and faster.

Chapter 7, Learning to Learn While Learning: The ability to quickly learn new tasks while

leveraging prior experiences is essential towards autonomous manipulation. We contribute a

new online meta-learning approach, tackling this problem, inspired by the remarkable human

ability to quickly acquiring new, or, adapting existing skills. We show that our method allows

for the first time to learn the robot dynamics online and transfer learned structure to new tasks,

resulting in faster convergence. The proposed meta-learning approach can be combined with any

gradient-based optimizer, learns on the fly and can be transferred to new optimization tasks. Thus,

any repetitive gradient-based optimization problem can benefit from our novel learning-based

optimizer. Additionally, our approach significantly reduces the amount of required observed data

samples. This improved data efficiency in combination with the improved convergence speed

opens up a promising new avenue for simulation to real transfer by learning how to improve

convergence and sample efficiency in simulation and therefore reducing the amount of real-world

data acquisition.

8.2 Limitations and Extensions

Within this thesis we have investigated how to improve model-based manipulation towards

autonomous manipulation using learning-based extensions. Our purely model-based reactive

system (Chapter 3) exhibits state-of-the-art performance for dynamic manipulation tasks in

uncertain and dynamic environments. In order to achieve good performance, this system relies

on several key assumptions: (i) All objects the robot should interact with have to be known,
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can be identified and a good initialization has to be provided to the object tracker. (ii) We

assume that during task execution the object is always visible and the object tracking algorithm

does not lose track. (iii) The overall task is simple enough that we can provide a cost function

for reactive planning, an observation model for tracking and grasp poses for a simple grasp

controller with a heuristic grasp success detection. (iv) We require good trajectory tracking to

achieve good pro-active obstacle avoidance. In Chapter 5 we present a learning-based grasp pose

predictor which overcomes the requirement for knowing the object a priory. Chapter 4 provides

a framework which allows to further relax the requirement for a robust hand designed grasp

controller by using learning from demonstration. However, it is still unclear how to generically

define tasks for a model-based framework in a scalable manner, allowing to learn new objectives

and fully integrate all components into one system. Credit assignment in case of failures is

another open research topic which poses significant challenges for fully integrated systems

towards autonomous manipulation. To be more concrete, in the case of a failed pick and place

attempt, it is not yet possible to autonomously infer if either object tracking, or robot trajectory

tracking or the grasp controller or all components have to be improved.

In Chapter 4, we carefully analyzed how to use learning from demonstration to teach new contact

rich manipulation tasks. This approach relies on the assumption that a task is executed in a

stereotypical manner and sensory measurements can be modeled with a uni-modal distribution.

However, using multi-modal distributions for both the expected sensory events and failure cases

would further improve the robustness of the presented approach and alleviate the dependency of

the failure propagation based on the skill progress. Recent results on learning distributions using

normalizing flows (Rezende et al. 2015) seem promising towards learning a rich multi-modal

sensor representation from unsupervised data which our online decision-making process could

leverage.

Our work on learning-based grasping, discussed in Chapter 5, predicts grasp success for grasp

poses extracted from partial sensory observations. However, for true autonomy, grasp prediction

has to be task specific. For instance, if the task is to drill a hole, only grasps which afford the

necessary tool usage to fulfill this task should be considered. Therefore, additional research

is required to condition learned state-of-the-art deep learning based grasp pose predictors for

task-specific grasping. Further, although the presented work has been analyzed in an empirical

human study, we still have to evaluate the real world performance of the learned grasp predictor,

trained with data from our simulation-based database.

Our work on task-specific dynamics learning (Chapter 6) assumes that we learn a local inverse

dynamics model and all information required for the task can be extracted from the state space

representation. Therefore, incorporating additional sensor information, for example, force/torque

measurements opens up new research directions to generalize learning inverse dynamics for
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complex interaction tasks. Since inverse dynamics is used to control the robot, exerts forces

on the world and achieve desired accelerations, the inherent safety of the robot is in question if

learned inverse dynamics model harms the system performance. Hence, it is essential to extend

existing inverse dynamics learning approaches with confidence estimates, allowing to ignore dire

predictions. We believe that using fast-feedback as a signal to obtain a confidence estimate is

a promising research direction to use existing non-probabilistic methods, such as deep neural

networks used in Chapter 6, in a safe manner.

As shown in this thesis, leveraging fast feedback loops and slower planning over longer time

horizons and learning are promising approaches towards autonomous manipulation. However,

for real autonomy, we need to strive towards a system which acts holistically, its components

complement and benefit each other and errors are automatically detected, attributed to its

components, and automatic improvements are made. Further, additional research towards

continual learning is necessary to allow for updating predictive models, within different system

components, with new data without forgetting, e.g., previously learned skills. Finally, current

state-of-the-art large-scale learning approaches in robotics require too much data in order to

be sufficient for the breadth of real-world robotics manipulation tasks. Data acquisition for

tasks which do not lend themselves for self-supervision, e.g., desk cleaning or tool usage, and

therefore require supervision, labeling or task-specific programming, fundamentally limit the

usability of such learning methods. However, simulation allows automating all of these aspects.

Unfortunately, results from imprecise simulation often do not transfer the real world. We believe

that meta-learning (Chapter 7) is a promising research direction to bridge this gap, allowing to

explore learning manipulation systems in simulation and better transfer their performance to the

real-world with fewer data samples.
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M. Popović, G. Kootstra, J. A. Jørgensen, D. Kragic, and N. Krüger (2011), “Grasping Unknown

Objects using an Early Cognitive Vision System for General Scene Understanding”, IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), San Francisco, USA.

V. Pradeep, K. Konolige, and E. Berger (2014), “Calibrating a multi-arm multi-sensor robot: A

Bundle Adjustment Approach”, Experimental Robotics, vol. 79, Springer Tracts in Advanced

Robotics, Springer Berlin Heidelberg, pp. 211–225.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng (2009),

“ROS: an open-source Robot Operating System”, ICRA workshop on open source software,

vol. 3, p. 5.

J. R. Quinlan (Mar. 1986), “Induction of Decision Trees”, Machine learning, vol. 1, no. 1,

pp. 81–106.

A. Rai, F. Meier, A. Ijspeert, and S. Schaal (Nov. 2014), “Learning coupling terms for obstacle

avoidance”, IEEE-RAS. International Conference on Humanoid Robots (Humanoids), pp. 512–

518.

A. Rai, G. Sutanto, F. Meier, and S. Schaal (2016), “Learning Feedback Terms for Reactive

Planning and Control”, IEEE International Conference on Robotics and Automation (ICRA).

J. Raphson (1690), Analysis aequationum universalis. London.

C. E. Rasmussen and C. Williams (2006), Gaussian Processes for Machine Learning, MIT Press.

N. D. Ratliff, D. M. Bradley, J. A. Bagnell, and J. Chestnutt (2007), “Boosting Structured

Prediction for Imitation Learning”, Advances in Neural Information Processing Systems

(NIPS), ed. by B. Schölkopf, J. C. Platt, and T. Hoffman, MIT Press, pp. 1153–1160.

N. Ratliff, M. Toussaint, and S. Schaal (2015), “Understanding the geometry of workspace obsta-

cles in Motion Optimization”, IEEE International Conference on Robotics and Automation

(ICRA), IEEE.

193



Bibliography

N. Ratliff, M. Zucker, J. A. ( Bagnell, and S. Srinivasa (2009), “CHOMP: Gradient Optimization

Techniques for Efficient Motion Planning”, IEEE International Conference on Robotics and

Automation (ICRA).

J. Redmon and A. Angelova (May 2015), “Real-time grasp detection using convolutional neu-

ral networks”, IEEE International Conference on Robotics and Automation (ICRA), IEEE,

pp. 1316–1322.

J. Redmon and A. Farhadi (July 2017), “YOLO9000: Better, Faster, Stronger”, IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), ieeexplore.ieee.org, pp. 6517–6525.

J. Reif and M. Sharir (1985), “Motion Planning in the Presence of Moving Obstacles”, Pro-

ceedings of the 26th Annual Symposium on Foundations of Computer Science, SFCS ’85,

Washington, DC, USA: IEEE Computer Society, pp. 144–154.

S. Ren, K. He, R. Girshick, and J. Sun (June 2017), “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks”, en, IEEE transactions on pattern analysis and

machine intelligence, vol. 39, no. 6, pp. 1137–1149.

D. J. Rezende and S. Mohamed (May 2015), “Variational Inference with Normalizing Flows”,

arXiv: 1505.05770 [stat.ML].

C. Richter, A. Bry, and N. Roy (2016), “Polynomial Trajectory Planning for Aggressive Quadro-

tor Flight in Dense Indoor Environments”, Int. Symposium on Robotics Research (ISRR),

ed. by M. Inaba and P. Corke, Cham: Springer International Publishing, pp. 649–666.

M. Riedmiller and H. Braun (1993), “A direct adaptive method for faster backpropagation

learning: the RPROP algorithm”, IEEE International Conference on Neural Networks.

M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. Van de Wiele, V. Mnih, N. Heess,

and J. T. Springenberg (Feb. 2018), “Learning by Playing - Solving Sparse Reward Tasks from

Scratch”, arXiv: 1802.10567 [cs.LG].

L. Righetti, M. Kalakrishnan, P. Pastor, J. Binney, J. Kelly, R. Voorhies, G. Sukhatme, and S.

Schaal (2014), “An autonomous manipulation system based on force control and optimization”,

Autonomous Robots, vol. 36, no. 1-2, pp. 11–30.

J. Romano, K. Hsiao, G. Niemeyer, S. Chitta, and K. Kuchenbecker (Dec. 2011), “Human-

Inspired Robotic Grasp Control With Tactile Sensing”, IEEE Trans. on Robotics, vol. 27, no. 6,

pp. 1067–1079.

F. Rosenblatt (Nov. 1958), “The perceptron: a probabilistic model for information storage and

organization in the brain”, en, Psychological review, vol. 65, no. 6, pp. 386–408.

194

http://arxiv.org/abs/1505.05770
http://arxiv.org/abs/1802.10567


D. E. Rumelhart, G. E. Hinton, and R. J. Williams (Oct. 1986), “Learning representations by

back-propagating errors”, Nature, vol. 323, p. 533.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, A. C. Berg, and L. Fei-Fei (2015), “ImageNet Large Scale Visual Recognition

Challenge”, International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252.

R. B. Rusu and S. Cousins (2011), “3d is here: Point cloud library (pcl)”, IEEE International

Conference on Robotics and Automation (ICRA).

J. A. Rytz, L.-P. Ellekilde, D. Kraft, H. G. Petersen, and N. Krüger (2013), “On Transferability

of grasp-affordances in data-driven grasping”, 22nd Int. Workshop on Robotics in Alpe-Adria-

Danube Region (RAAD).

A. Saxena, J. Driemeyer, and A. Y. Ng (Feb. 2008a), “Robotic Grasping of Novel Objects using

Vision”, The International journal of robotics research, vol. 27, no. 2, pp. 157–173.

A. Saxena, J. Driemeyer, and A. Y. Ng (2008b), “Robotic Grasping of Novel Objects using

Vision”, The International Journal of Robotics Research (IJRR).

S. Schaal and C. G. Atkeson (1998), “Constructive incremental learning from only local informa-

tion”, Neural computation, vol. 10, no. 8.

J. Schmidhuber (2015), “Deep Learning in Neural Networks: An Overview”, Neural Networks,

vol. 61, pp. 85–117.

J. Schmidhuber (1987), “Evolutionary principles in self-referential learning”, On learning how

to learn: The meta-meta-... hook.) Diploma thesis, Institut f. Informatik, Tech. Univ. Munich.

T. Schmidt, R. Newcombe, and D. Fox (July 2014), “DART: Dense Articulated Real-Time

Tracking”, Proceedings of Robotics: Science and Systems, Berkeley, USA.

T. Schmidt, R. Newcombe, and D. Fox (Oct. 2015), “DART: dense articulated real-time tracking

with consumer depth cameras”, Autonomous robots, vol. 39, no. 3, pp. 239–258.

B. Scholkopf and A. J. Smola (2001), Learning with Kernels: Support Vector Machines, Regular-

ization, Optimization, and Beyond, Cambridge, MA, USA: MIT Press.

J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel (2013), “Finding Locally

Optimal, Collision-Free Trajectories with Sequential Convex Optimization”, Robotics: Science

and Systems (R:SS).

J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg, and

P. Abbeel (Aug. 2014), “Motion planning with sequential convex optimization and convex

195



Bibliography

collision checking”, The International Journal of Robotics Research (IJRR), vol. 33, no. 9,

pp. 1251–1270.

N. Schweighofer and K. Doya (2003), “Meta-learning in reinforcement learning”, Neural Net-

works, vol. 16, no. 1, pp. 5–9.

E. Shelhamer, J. Long, and T. Darrell (Apr. 2017), “Fully Convolutional Networks for Semantic

Segmentation”, en, IEEE transactions on pattern analysis and machine intelligence, vol. 39,

no. 4, pp. 640–651.

K. B. Shimoga (1996), “Robot grasp synthesis algorithms: A survey”, The International Journal

of Robotics Research (IJRR), vol. 15, no. 3, pp. 230–266.

Y. Shirai and H. Inoue (June 1973), “Guiding a robot by visual feedback in assembling tasks”,

Pattern recognition, vol. 5, no. 2, pp. 99–108.

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo (2010), Robotics: Modelling, Planning and

Control, Second, Springer.

H. T. Siegelmann and E. D. Sontag (Feb. 1995), “On the Computational Power of Neural Nets”,

Journal of Computer and System Sciences, vol. 50, no. 1, pp. 132–150.

O. Sigaud, C. Salaün, and V. Padois (2011), “On-line regression algorithms for learning me-

chanical models of robots: a survey”, Robotics and Autonomous Systems, vol. 59, no. 12,

pp. 1115–1129.

K. Simonyan and A. Zisserman (2014), “Very Deep Convolutional Networks for Large-Scale

Image Recognition”, CoRR, vol. abs/1409.1556.

J. Sinapov, C. Schenck, K. Staley, V. Sukhoy, and A. Stoytchev (May 2014), “Grounding

semantic categories in behavioral interactions: Experiments with 100 objects”, Robotics:

Science and Systems (R:SS), vol. 62, no. 5, pp. 632–645.

D. Song, C. H. Ek, K. Hübner, and D. Kragic (2011), “Multivariate discretization for Bayesian

Network structure learning in robot grasping”, IEEE International Conference on Robotics

and Automation (ICRA).

R. Stengel (1994), Optimal Control and Estimation, Dover, New York.

R. S. Sutton and A. G. Barto (1998a), Reinforcement Learning: An Introduction (Adaptive

Computation and Machine Learning), The MIT Press.

R. S. Sutton and A. G. Barto (1998b), Reinforcement learning: An introduction, vol. 1, MIT

press Cambridge.

196



C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi (2017), “Inception-v4, inception-resnet and

the impact of residual connections on learning”, AAAI.

Y. Tang (June 2013a), “Deep Learning using Linear Support Vector Machines”, arXiv: 1306.

0239 [cs.LG].

Y. Tang (2013b), “Deep learning using linear support vector machines”, arXiv preprint arXiv:1306.0239.

E. Theodorou, J. Buchli, and S. Schaal (2010), “Reinforcement Learning of Motor Skills in

High Dimensions: a Path Integral Approach”, IEEE International Conference on Robotics and

Automation (ICRA).

T. Tieleman and G. Hinton (Apr. 2012), “Lecture 6.5-rmsprop: Divide the gradient by a running

average of its recent magnitude.”, COURSERA: Neural Networks for Machine Learning.

M. Toussaint and C. Goerick (2010), “A bayesian view on motor control and planning”, From

Motor Learning to Interaction Learning in Robots, Springer, pp. 227–252.

M. Toussaint and S. Vijayakumar (2005), “Learning discontinuities with products-of-sigmoids

for switching between local models”, International Conference on Machine Learning (ICML).

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun (2005), “Large Margin Methods

for Structured and Interdependent Output Variables”, Journal of machine learning research:

JMLR, vol. 6, no. Sep, pp. 1453–1484.

TurboSquid: 3D Models for Professionals (n.d.), www.turbosquid.com.

C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark, J. Dolan, D. Duggins,

T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh, M. Hebert, T. M. Howard, S. Kolski, A.

Kelly, M. Likhachev, M. McNaughton, N. Miller, K. Peterson, B. Pilnick, R. Rajkumar, P.

Rybski, B. Salesky, Y.-W. Seo, S. Singh, J. Snider, A. Stentz, W. " Whittaker, Z. Wolkowicki,

J. Ziglar, H. Bae, T. Brown, D. Demitrish, B. Litkouhi, J. Nickolaou, V. Sadekar, W. Zhang,

J. Struble, M. Taylor, M. Darms, and D. Ferguson (Aug. 2008), “Autonomous driving in

urban environments: Boss and the Urban Challenge”, Journal of Field Robotics, vol. 25, no. 8,

pp. 425–466.

N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R. Dillmann (Oct. 2009a), “Humanoid

motion planning for dual-arm manipulation and re-grasping tasks”, IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 2464–2470.

N. Vahrenkamp, C. Böge, K. Welke, T. Asfour, J. Walter, and R. Dillmann (Dec. 2009b), “Visual

servoing for dual arm motions on a humanoid robot”, IEEE-RAS. International Conference on

Humanoid Robots (Humanoids), pp. 208–214.

197

http://arxiv.org/abs/1306.0239
http://arxiv.org/abs/1306.0239
www.turbosquid.com


Bibliography

N. Vahrenkamp, M. Wächter, M. Kröhnert, K. Welke, and T. Asfour (2015), “The robot software

framework armarx”, it-Information Technology, vol. 57, no. 2, pp. 99–111.

V. N. Vapnik (1999), “An overview of statistical learning theory”, IEEE transactions on neural

networks a publication of the IEEE Neural Networks Council.

N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and Y. LeCun (Dec. 2014),

“Fast Convolutional Nets With fbfft: A GPU Performance Evaluation”, arXiv: 1412.7580

[cs.LG].

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. U. Kaiser, and

I. Polosukhin (2017), “Attention is All you Need”, Advances in Neural Information Processing

Systems 30, ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett, Curran Associates, Inc., pp. 5998–6008.

S. Vijayakumar and S. Schaal (2000), “Locally weighted projection regression: Incremental real

time learning in high dimensional space”, International Conference on Machine Learning

(ICML), pp. 1079–1086.

R. Vilalta and Y. Drissi (2002), “A perspective view and survey of meta-learning”, Artificial

Intelligence Review, vol. 18, no. 2.

M. Wächter, S. Ottenhaus, M. Kröhnert, N. Vahrenkamp, and T. Asfour (2016), “The ArmarX

Statechart Concept: Graphical Programming of Robot Behaviour”, Frontiers in Robotics and

AI, vol. 3, p. 33.

R. S. Wallace, A. Stentz, C. E. Thorpe, H. P. Moravec, W. Whittaker, and T. Kanade (1985), “First

Results in Robot Road-Following”, International Joint Conference on Artificial Intelligence

(IJCAI), Citeseer, pp. 1089–1095.

J. Weisz and P. Allen (2012), “Pose Error Robust Grasping from Contact Wrench Space Metrics”,

IEEE International Conference on Robotics and Automation (ICRA).

WHO (2011), Global Health and Aging, http://www.who.int/ageing/publications/

global_health/en/.

W. Wohlkinger, A. Aldoma, R. B. Rusu, and M. Vincze (2012), “3DNet: Large-scale object class

recognition from CAD models”, IEEE Int. Conf. on Robotics and Automation, ICRA, St. Paul,

Minnesota, USA, pp. 5384–5391.

D. H. Wolpert and W. G. Macready (Apr. 1997), “No free lunch theorems for optimization”,

IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82.

198

http://arxiv.org/abs/1412.7580
http://arxiv.org/abs/1412.7580
http://www.who.int/ageing/publications/global_health/en/
http://www.who.int/ageing/publications/global_health/en/


D. M. Wolpert and M. Kawato (1998), “Multiple paired forward and inverse models for motor

control”, Neural networks, vol. 11, no. 7.

M. Wüthrich, P. Pastor, M. Kalakrishnan, J. Bohg, and S. Schaal (2013), “Probabilistic object

tracking using a range camera”, IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS).

K. Yamazaki, R. Ueda, S. Nozawa, M. Kojima, K. Okada, K. Matsumoto, M. Ishikawa, I.

Shimoyama, and M. Inaba (Aug. 2012), “Home-Assistant Robot for an Aging Society”,

Proceedings of the IEEE, vol. 100, no. 8, pp. 2429–2441.

Y. Yang, V. Ivan, Z. Li, M. Fallon, and S. Vijayakumar (2016), “iDRM: Humanoid motion

planning with realtime end-pose selection in complex environments”, IEEE-RAS. International

Conference on Humanoid Robots (Humanoids).

M. D. Zeiler (Dec. 2012), “ADADELTA: An Adaptive Learning Rate Method”, ArXiv e-prints,

arXiv: 1212.5701 [cs.LG].

Z. Zhang (Feb. 2012), “Microsoft Kinect Sensor and Its Effect”, IEEE Multimedia, vol. 19, no. 2,

pp. 4–10.

M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M. Dellin, J. A.

Bagnell, and S. S. Srinivasa (2013), “CHOMP: Covariant hamiltonian optimization for motion

planning”, The International Journal of Robotics Research (IJRR), vol. 32.

199

http://arxiv.org/abs/1212.5701

	Zusammenfassung
	1 Introduction
	1.1 Motivation
	1.2 Challenges in Autonomous Manipulation
	1.2.1 Model-Based and Learning-Based Manipulation
	1.2.2 Limitations of System Architectures
	1.2.3 Limitations of Model-Based Approaches
	1.2.4 Limitations of Learning-Based Approaches

	1.3 Problem Statement
	1.4 Thesis Structure & Contribution

	2 Foundations and Related Work
	2.1 Robotic Manipulation
	2.1.1 System Architecture
	2.1.1.1 Sense-Plan-Act
	2.1.1.2 Behavior-Based System Architecture

	2.1.2 Perception
	2.1.3 Planning
	2.1.4 Control

	2.2 Learning
	2.2.1 Supervised Learning
	2.2.1.1 Dataset
	2.2.1.2 Models and Methods
	2.2.1.3 Objective
	2.2.1.4 Optimizer
	2.2.1.5 Regression
	2.2.1.6 Classification
	2.2.1.7 Structured Prediction

	2.2.2 Learning Methods
	2.2.2.1 Support Vector Machine
	2.2.2.2 Naive Bayes
	2.2.2.3 Logistic Regression
	2.2.2.4 Deep Neural Networks



	3 Real-time Perception meets Reactive Motion Generation
	3.1 System Architectures
	3.1.1 Sense-Plan-Act
	3.1.2 Locally Reactive Control
	3.1.3 Reactive Planning

	3.2 Real-Time Feedback Modules
	3.2.1 Visual Tracking of Target Objects
	3.2.2 Visual Robot Tracking
	3.2.3 Modeling Unstructured Workspace Obstacles

	3.3 From Visual Feedback to Continuous Signed Distance Fields
	3.4 Motion Generation
	3.4.1 Locally Reactive Control
	3.4.2 Reactive Planning and Continuous Motion Optimization
	3.4.3 Grasping

	3.5 Experiments and Demonstrations
	3.5.1 System Architecture Realizations
	3.5.2 Scenarios
	3.5.2.1 Pick and Place in Static Environments of Increasing Difficulty
	3.5.2.2 Pick and Place in Dynamic Environments
	3.5.2.3 Grasping with Dynamic Targets
	3.5.2.4 Pointing in Dynamic Environments with Dynamic Target


	3.6 Summary and Review

	4 Online Decision-Making for Manipulation
	4.1 Related Work
	4.2 Problem Formulation
	4.2.1 Manipulation Graph
	4.2.2 Features

	4.3 Data-Driven Online Decision Making
	4.3.1 Representation
	4.3.2 State Classification
	4.3.3 Failure Classification
	4.3.4 Decision Making

	4.4 Experiments
	4.4.1 Task Demonstration and System Parameters
	4.4.2 State Classification and Feature Importance
	4.4.3 Robustness through Perception-Action Loop
	4.4.4 Failure Demonstration and Detection
	4.4.5 Failure Detection and Recovery

	4.5 Summary and Review

	5 Big Data Grasping
	5.1 Related Work
	5.2 Model-based Large-scale Grasp Data Generation
	5.2.1 Database
	5.2.1.1 Objects
	5.2.1.2 Grasp Configurations
	5.2.1.3 Grasp Metrics
	5.2.1.4 Statistics of the Database

	5.2.2 Using Crowdsourcing to Verify Grasp Metrics
	5.2.2.1 Setup
	5.2.2.2 Analysis


	5.3 Large-scale Grasp Prediction as Classification
	5.3.1 Local Shape Representations
	5.3.2 Learning Methods
	5.3.3 Experiments

	5.4 Large-scale Grasp Prediction as Top-1 Prediction
	5.4.1 Classification Versus Ranking for Top-1 Prediction
	5.4.2 Top-1 Ranking
	5.4.3 Efficient First Order Optimization
	5.4.3.1 Pair-Wise Loss Relaxation
	5.4.3.2 Loss Optimization using Sampling

	5.4.4 Experiments

	5.5 Summary and Review

	6 Inverse Dynamics Learning
	6.1 Background
	6.1.1 Learning Inverse Dynamics Models
	6.1.2 Indirect vs. Direct Learning of Inverse Dynamics

	6.2 Combining Indirect and Direct Learning
	6.2.1 Indirect Loss Function
	6.2.2 Direct Loss Function
	6.2.3 Joint Inverse Dynamics Learning

	6.3 Task Specific Inverse Dynamics Learning
	6.4 Experiments
	6.4.1 Simulation Experiments
	6.4.1.1 System description
	6.4.1.2 Details of error model learning
	6.4.1.3 Experimental Setup
	6.4.1.4 Illustration of Indirect vs. Direct
	6.4.1.5 Extensive Evaluation

	6.4.2 Real robot experiments

	6.5 Summary and Review

	7 Learning to Learn While Learning
	7.1 Background
	7.1.1 Adaptive First-Order Methods
	7.1.2 Learning to Learn

	7.2 Learning a Memory for Learning Rates
	7.2.1 Training Signal for the Learning Rate Memory
	7.2.2 Learning Rate Memory Representation
	7.2.3 Multi-Dimensional Learning Problems
	7.2.4 Implementation Details

	7.3 Experiments
	7.3.1 Baselines and Experimental Setup
	7.3.2 Rosenbrock Problem
	7.3.3 Binary MNIST Problems
	7.3.4 Sequential Batch Binary MNIST Problem
	7.3.5 Sequential Online Binary MNIST Problem
	7.3.6 Inverse dynamics learning
	7.3.6.1 Batch Learning
	7.3.6.2 Sequential Online Learning


	7.4 Summary and Review

	8 Conclusion
	8.1 Scientific Contributions of the Thesis
	8.2 Limitations and Extensions

	List of Figures
	List of Tables
	List of Algorithms
	Own Publications
	Bibliography

