

Ambient UFP Measurements

- Options & Limitations of current measurement techniques -

Frederik Weis

ECFA 7th Intl. UFP Symposium Brussels 2019

Palas serves aerosoltechnology since 1983...

based in Karlsruhe, Germany R&D and Manufacturing 100% inhouse

certified according to DIN EN ISO 9001:2015

Core competencies:

- Filter test systems
- Aerosol spectrometer systems
- Fine dust monitoring systems
- Nanoparticle measurement technology
- Particle generation systems
- Dilution systems
- Clean room particle technology
- Special developments
- Calibration systems
- Services
- Training courses and seminars

7th EFCA Intl. UFP Symposium Brussels, May 2019

Overview of Nanoparticle Measurement Systems

"Nano" is trendy in everyday life....and marketing

anob micro-sized building block ナノブロック

nanoblock[™] is an extremely small building block. The smallest part is a mere 4x4x5mm! This amazingly small micro sized block makes it possible to create more detailed and even smaller projetcts than what can be made with standard sized blocks. nanoblock™ is a stimulating and entertaining hobby material for everybody, especially for grown-ups. Instruction included For same 12 and u

It's not only marketing....also in real world, dimensions can be mixed.

Example: Fluidization of nanoparticles and nanopowders like Aerosil[®] in a fluidized bed reactor.

U-RANGE measurement for ambient air

Number concentration

416 particles/cm³ 19767 particles/cm³

Mass concentration

67.9 μg/m³

"There's Plenty of Room at the Bottom" (Richard Feynman,1959)

Application examples and related questions

Ambient Air monitoring for UFP

measure total concentration of UFPs by Condensation Particle Counters

Monitoring station at 3000m

UFP monitoring at harbours

Scope: identify ship emissions

7th EFCA Intl. UFP Symposium Brussels, May 2019

UFP monitoring at harbour

data: measured by Palas[®] U-SMPS 2100 X graphs by Palas[®] PDAnalyze

7th EFCA Intl. UFP Symposium Brussels, May 2019

UFP monitoring at harbour

PALASCOUNTS

PALAS

...

UFP monitoring at harbour – identifying the sources

Ultra fine particle formation event

7th EFCA Intl. UFP Symposium Brussels, May 2019

SECONDARY ORGANIC AEROSOL PRODUCTION

Over 500 reactions to describe the formation of SOA precursors, ozone, and other photochemical pollutants [Griffin et al., 2002; Griffin et al., 2005; Chen and Griffin, 2005]

growth rates were approximately 5 to 10 nm hr^{-1} . The nucleation events seem to have been triggered when the UV flux reached about 25 W m^{-2} . We can not identify the nucleating species, but the growth appears to have been driven by the photochemical oxidation of biogenic organic compounds.

12:00

31Aug.

00:00

00:00

M. Mozurkewich et al.: Particle nucleation and growth i

7th EFCA Intl. UFP Symposium Brussels, May 2019

12:00

30 Aug.

2-

100-

7

6-5-

3-

2

10-

00:00

Particle Diameter (nm)

Example A

Station at terminal (400 m to runway for landings / departure)

scope: general monitoring, air traffic visible ?

data: measured by Palas [®] U-SMPS 2100 X graphs by Palas[®] PDAnalyze

7th EFCA Intl. UFP Symposium Brussels, May 2019

Example B

very close to runway for landings / departure (~50m)

scope: identify individual airplanes, high-time resolution

PALASCOUNTS

Example data interpretation for one data set:

- Air traffic is clearly visible
- high UFP-fraction < 20 nm \rightarrow very small particles directly from jet combustion

butdaily averageCn_total [#/ccm]
> 7 nmCn_total [#/ccm]
> 23 nmno Diff-Correction
with Diff-Correction281 00081 00063 0004,5x higher
10x higher

Quantitative conclusions and comparisons among different sites are criticial!

(especially for different measurement systems and different Cutoffs)

Going one step further...

+ use of built-in AUX port for valve switching

+ built-in AUX port for valve switching (digital or analog)

+ built-in AUX port for valve switching (digital or analog)

"There's Plenty of Room at the Bottom" (Richard Feynman,1959)

Condensation Particle Counter

(nano)particle

PALAS

Down to...10nm...1nm

Slides taken from: presentation C.Kuang, AAAR conference 2016 + 2017

Slides taken from: presentation C.Kuang, AAAR conference 2016 + 2017

Ion Mobility Standard: HRDMA Calibration

Tetra-heptyl ammonium bromide (THAB) [CH₃(CH₂)₆]₄N(Br)

Ion Mobility Standard: HRDMA Calibration

Tetra-heptyl ammonium bromide (THAB) [CH₃(CH₂)₆]₄N(Br)

• UF-CPC operated with DEG enables for Cluster detection down to 1.47 nm

Down to...1nm

Ammonium Sulfate Calibration: Detection Efficiency

- Negatively charged ammonium sulfate
- UF-CPC operating temperatures: 55C/10C (saturator/condenser)
- tuned optics

Tuned optics: setup 2

Use of tuned photomultiplier settings and optic setup to detect droplet size distribution

• Chongai Kuang (2018): A Diethylene Glycol Condensation Particle Counter for Rapid Sizing of sub-3 nm Atmospheric Clusters, Aerosol Science and Technology, DOI:10.1080/02786826.2018.1481279

7th EFCA Intl. UFP Symposium Brussels, May 2019

• Chongai Kuang (2018): A Diethylene Glycol Condensation Particle Counter for Rapid Sizing of sub-3 nm Atmospheric Clusters, Aerosol Science and Technology, DOI:10.1080/02786826.2018.1481279

7th EFCA Intl. UFP Symposium Brussels, May 2019

Down to...

• Chongai Kuang (2018): A Diethylene Glycol Condensation Particle Counter for Rapid Sizing of sub-3 nm Atmospheric Clusters, Aerosol Science and Technology, DOI:10.1080/02786826.2018.1481279

Down to...

Ammonium Sulfate Calibration: Droplet Size As a Function of Initial Size

• Chongai Kuang (2018): A Diethylene Glycol Condensation Particle Counter for Rapid Sizing of sub-3 nm Atmospheric Clusters, Aerosol Science and Technology, DOI:10.1080/02786826.2018.1481279

Down to...

 Chongai Kuang (2018): A Diethylene Glycol Condensation Particle Counter for Rapid Sizing of sub-3 nm Atmospheric Clusters, Aerosol Science and Technology, DOI:10.1080/02786826.2018.1481279

Thank you for your attention !

PALASCOUNTS